Титан ti: описание металла, свойства, сферы применения и месторождения

Содержание

Титан. Характеристики физико-механических свойств титана — «Тиком-М»

Основные сведения о титане

Титан — химический элемент с порядковым номером 22, атомный вес 47,88, легкий серебристо-белый металл. Плотность 4,51 г/см3, Tпл=1668+(-)5 °С, Tкип=3260 °С. Титан и титановые сплавы сочетают легкость, прочность, высокую коррозионную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

История открытия титана

Оксид титана TiO2 впервые был обнаружен в 1789 году английским ученым, специалистом в области минералогии У. Грегором, который при исследовании магнитного железистого песка выделил окись неизвестного металла, назвав ее менакеновой. Первый образец металлического титана получил в 1825 году шведский химик и минераловед Й. Я. Берцелиус.

Свойства титана

В периодической системе элементов Д. И. Менделеева титан расположен в IV группе 4-го периода под номером 22. В важнейших и наиболее устойчивых соединениях металл четырехвалентен. По внешнему виду похож на сталь. Титан относится к переходным элементам. Данный металл плавится при довольно высокой температуре (1668±4 °С) и кипит при 3300 °С, скрытая теплота плавления и испарения титана почти в два раза больше, чем у железа.

Известны две аллотропические модификации титана (две разновидности титана, имеющие одинаковый химический состав, но различное строение и свойства). Низкотемпературная альфа-модификация, существующая до 882,5 °С и высокотемпературная бетта-модификация, устойчивая от 882,5 °С и до температуры плавления.

По плотности и удельной теплоемкости титан занимает промежуточное место между двумя основными конструкционными металлами: алюминием и железом. Стоит также отметить, что его механическая прочность примерно вдвое больше, чем чистого железа, и почти в шесть раз выше, чем алюминия. Но титан может активно поглощать кислород, азот и водород, которые резко снижают пластические свойства металла. С углеродом титан образует тугоплавкие карбиды, обладающие высокой твердостью.

Титан обладает низкой теплопроводностью, которая в 13 раз меньше теплопроводности алюминия и в 4 раза — железа. Коэффициент термического расширения при комнатной температуре сравнительно мал, с повышением температуры он возрастает.

Модули упругости титана невелики и обнаруживают существенную анизотропию. Модули упругости характеризуют способность материала упруго деформироваться при приложении к нему силы. Анизотропия заключается в различии свойств упругости в зависимости от направления действия силы. С повышением температуры до 350 °С модули упругости уменьшаются почти по линейному закону. Небольшое значение модулей упругости титана — существенный его недостаток, т.к. в некоторых случаях для получения достаточно жестких конструкций приходится применять большие сечения изделий по сравнению с теми, которые следуют из условий прочности.

Титан имеет довольно высокое удельное электросопротивление, которое в зависимости от содержания примесей колеблется в пределах от 42·10-8до 80·10-6 Ом·см. При температурах ниже 0,45 К он становится сверхпроводником.

Титан — парамагнитный металл. Обычно у парамагнитных веществ магнитная восприимчивость при нагревании уменьшается. Магнитная восприимчивость характеризует связь между намагниченностью вещества и магнитным полем в этом веществе. Титан составляет исключение из этого правила — его восприимчивость существенно увеличивается с температурой.

Характеристики физико-механических свойств титана (ВТ1-00)

Плотность r , кг/м3 4,5 × 10–3
Температура плавления Тпл, ° С 1668± 4
Коэффициент линейного расширения a  ×  10–6
, град–1
8,9
Теплопроводность l , Вт/(м × град) 16,76
Предел прочности при растяжении s в, МПа 300–450
Условный предел текучести s 0,2, МПа 250–380
Удельная прочность (s в/r × g)× 10–3, км 7–10
Относительное удлинение d , % 25–30
Относительное сужение Y , % 50–60
Модуль нормальной упругости Е´ 10–3, МПа 110,25
Модуль сдвига G´ 10–3, МПа 41
Коэффициент Пуассона m , 0,32
Твердость НВ 103
Ударная вязкость KCU, Дж/см2 120

Титан имеет две полиморфные модификации: a -титана с гексагональной плотноупакованной решеткой с периодами 

а = 0,296 нм, с = 0,472 нм и высокотемпературную модификацию b -титана с кубической объемно-центрированной решеткой с периодом а = 0,332 нм при 900 ° С. Температура полиморфного a « b -превращения составляет 882 ° С.

Механические свойства титана существенно зависят от содержания примесей в металле. Различают примеси внедрения — кислород, азот, углерод, водород и примеси замещения, к которым относятся железо и кремний. Хотя примеси повышают прочность, но одновременно резко снижают пластичность, причем наиболее сильное отрицательное действие оказывают примеси внедрения, особенно газы. При введении всего лишь 0,003 % Н, 0,02 % N или 0,7 % О титан полностью теряет способность к пластическому деформированию и хрупко разрушается.

Особенно вреден водород, вызывающий водородную хрупкость титановых сплавов. Водород попадает в металл при плавке и последующей обработке, в частности при травлении полуфабрикатов. Водород малорастворим в a -титане и образует пластинчатые частицы гидрида, снижающего ударную вязкость и особенно отрицательно проявляющегося в испытаниях на замедленное разрушение.

Поэтому содержание примесей, особенно газов, в титане и титановых сплавах (табл. 17.1, 17.2) строго ограничено.

Промышленный способ производства титана состоит в обогащении и хлорировании титановой руды с последующим его восстановлением из четыреххлористого титана металлическим магнием (магнийтермический метод). Полученный этим методом 

титан губчатый (ГОСТ 17746–79) в зависимости от химического состава и механических свойств выпускают следующих марок: 
ТГ-90, ТГ-100, ТГ-110, ТГ-120, ТГ-130, ТГ-150, ТГ-ТВ (см. табл. 17.1). Цифры означают твердость по Бринеллю НВ, ТВ — твердый.

Для получения монолитного титана губка размалывается в порошок, прессуется и спекается или переплавляется в дуговых печах в вакууме или атмосфере инертных газов.

Механические свойства титана характеризуются хорошим сочетанием прочности и пластичности. Например, технически чистый титан марки ВТ1-0 имеет: s 

в = 375–540 МПа, s 0,2 = 295–410 МПа, d ³ 20 %, и по этим характеристикам не уступает ряду углеродистых и Cr—Ni коррозионностойких сталей.

Высокая пластичность титана по сравнению с другими металлами, имеющими ГПУ- решетку (Zn, Mg, Cd), объясняется большим количеством систем скольжения и двойникования благодаря малому сотношению с/а = 1,587. По-видимому, с этим связана высокая хладостойкость титана и его сплавов (подробнее см. гл. 13).

При повышении температуры до 250 ° С прочность титана снижается почти в 2 раза. Однако жаропрочные Ti-сплавы по удельной прочности в интервале температур 300–600 ° С не имеют себе равных; при температурах выше 600 ° С сплавы титана уступают сплавам на основе железа и никеля.

Титан имеет низкий модуль нормальной упругости (Е = 110,25 ГПа) — почти в 2 раза меньше, чем у железа и никеля, что затрудняет изготовление жестких конструкций.

Титан относится к числу химически активных металлов, однако он обладает высокой коррозионной стойкостью, так как на его поверхности образуется стойкая пассивная пленка TiO2, прочно связанная с основным металлом и исключающая его непосредственный контакт с коррозионной средой. Толщина этой пленки обычно достигает 5–6 нм.

Благодаря оксидной пленке, титан и его сплавы не корродируют в атмосфере, в пресной и морской воде, устойчивы против кавитационной коррозии и коррозии под напряжением, а также в кислотах органического происхождения.

Производство изделий из титана и его сплавов имеет ряд технологических особенностей. Из-за высокой химической активности расплавленного титана его плавку, разливку и дуговую сварку производят в вакууме или в атмосфере инертных газов.

При технологических и эксплуатационных нагревах, особенно выше 550–600 ° С, необходимо принимать меры для защиты титана от окисления и газонасыщения (альфированный слой) (см. гл. 3).

Титан хорошо обрабатывается давлением в горячем состоянии и удовлетворительно в холодном. Он легко прокатывается, куется, штампуется. Титан и его сплавы хорошо свариваются контактной и аргонодуговой сваркой, обеспечивая высокую прочность и пластичность сварного соединения. Недостатком титана является плохая обрабатываемость резанием из-за склонности к налипанию, низкой теплопроводности и плохих антифрикционных свойств.

Основной целью легирования титановых сплавов является повышение прочности, жаропрочности и коррозионной стойкости. Широкое применение нашли сплавы титана с алюминием, хромом, молибденом, ванадием, марганцем, оловом и др. элементами. Легирующие элементы оказывают большое влияние на полиморфные превращения титана.

Таблица 17.1

Марки, химический состав (%) и твердость титана губчатого (ГОСТ 17746–79)

Марка
Ti, не менее
Не более

Твердость НВ,

10/1500/30, не более

Fe Si Ni C Cl N O
ТГ-90 99,74 0,05 0,01 0,04 0,02 0,08 0,02 0,04 90
ТГ-100 99,72 0,06 0,01 0,04 0,03 0,08 0,02 0,04 100
ТГ-110 99,67 0,09 0,02 0,04 0,03 0,08 0,02 0,05 110
ТГ-120 99,64 0,11 0,02 0,04 0,03 0,08 0,02 0,06 120
ТГ-130 99,56 0,13 0,03 0,04 0,03 0,10 0,03 0,08 130
ТГ-150 99,45 0,2 0,03 0,04 0,03 0,12 0,03 0,10 150
ТГ-Тв 99,75 1,9 0,10 0,15 0,10

Таблица 17.2

Марки и химический состав (%) деформируемых титановых сплавов (ГОСТ 19807–91)

Обозначения
марок
Ti Al V Mo Sn Zr Mn Cr Si Fe O H N C
ВТ1-00 Основа 0,08 0,15 0,10 0,008 0,04 0,05
ВТ1-0 То же 0,10 0,25 0,20 0,010 0,04 0,07
ВТ1-2 То же 0,15 1,5 0,30 0,010 0,15 0,10
ОТ4-0 То же 0,4–1,4 0,30 0,5–1,3 0,12 0,30 0,15 0,012 0,05 0,10
ОТ4-1 То же 1,5–2,5 0,30 0,7–2,0 0,12 0,30 0,15 0,012 0,05 0,10
ОТ4 То же 3,5–5,0 0,30 0,8–2,0 0,12 0,30 0,15 0,012 0,05 0,10
ВТ5 То же 4,5–6,2 1,2 0,8 0,30 0,12 0,30 0,20 0,015 0,05 0,10
ВТ5-1 То же 4,3–6,0 1,0 2,0 –3,0 0,30 0,12 0,30 0,15 0,015 0,05 0,10
ВТ6 То же 5,3–6,8 3,5–5,3 0,30 0,10 0,60 0,20 0,015 0,05 0,10
ВТ6с То же 5,3–6,5 3,5–4,5 0,30 0,15 0,25 0,15 0,015 0,04 0,10
ВТ3-1 То же 5,5–7,0 2,0–3,0 0,50 0,8–2,0 0,15–0,40 0,2–0,7 0,15 0,015 0,05 0,10
ВТ8 То же 5,8–7,0 2,8–3,8 0,50 0,20–0,40 0,30 0,15 0,015 0,05 0,10
ВТ9 То же 5,8–7,0 2,8–3,8 1,0–2,0 0,20–0,35 0,25 0,15 0,015 0,05 0,10
ВТ14 То же 3,5–6,3 0,9–1,9 2,5–3,8 0,30 0,15 0,25 0,15 0,015 0,05 0,10
ВТ20 То же 5,5–7,0 0,8–2,5 0,5–2,0 1,5–2,5 0,15 0,25 0,15 0,015 0,05 0,10
ВТ22 То же 4,4–5,7 4,0–5,5 4,0–5,5 0,30 0,5–1,5 0,15 0,5–1,5 0,18 0,015 0,05 0,10
ПТ-7М То же 1,8–2,5 2,0–3,0 0,12 0,25 0,15 0,006 0,04 0,10
ПТ-3В То же 3,5–5,0 1,2–2,5 0,30 0,12 0,25 0,15 0,006 0,04 0,10
АТ3 То же 2,0–3,5 0,2–0,5 0,20–0,40 0,2–0,5 0,15 0,008 0,05 0,10

Примечание. Сумма прочих примесей во всех сплавах составляет 0,30 %, в сплаве ВТ1-00 — 0,10 %.

Двоякость свойств металла титан

 

Многих интересует немного загадочный и не до конца изученный титан — металл, свойства которого отличаются некоторой двоякостью. Металл и самый прочный, и самый хрупкий.

Двоякость титана

Самый прочный и самый хрупкий металл

Его открыли двое ученых с разницей в 6 лет — англичанин У. Грегор и немец М. Клапрот. Название титана связывают, с одной стороны, с мифическими титанами, сверхъестественными и бесстрашными, с другой стороны, с Титанией — королевой фей.
Это один из самых распространенных в природе материалов, но процесс получения чистого металла отличается особой сложностью.

Свойства титана

22 химический элемент таблицы Д. Менделеева Titanium (Ti) относится к 4 группе 4 периода.

Цвет титана серебристо-белый с выраженным блеском. Его блики переливаются всеми цветами радуги.

Это один из тугоплавких металлов. Он плавится при температуре +1660 °С (±20°). Титан отличается парамагнитностью: он не намагничивается в магнитном поле и не выталкивается из него.
Металл характеризуется низкой плотностью и высокой прочностью. Но особенность этого материала заключается в том, что даже минимальные примеси других химических элементов кардинально изменяют его свойства. При наличии ничтожной доли других металлов титан теряет свою жаропрочность, а минимум неметаллических веществ в его составе делают сплав хрупким.
Эта особенность обуславливает наличие 2 видов материала: чистого и технического.

  1. Титан чистого вида используют там, где требуется очень легкое вещество, выдерживающее большие нагрузки и сверхвысокие температурные диапазоны.
  2.  Технический материал применяется там, где ценятся такие параметры, как легкость, прочность и устойчивость к коррозии.

Вещество обладает свойством анизотропности. Это означает, что металл может изменять свои физические характеристики, исходя из приложенных усилий. На эту особенность следует обращать внимание, планируя применение материала.

Свойства титана

Титан теряет прочность при малейшем присутствии в нем примесей других металлов

Проведенные исследования свойств титана в нормальных условиях подтверждают его инертность. Вещество не реагирует на элементы, находящиеся в окружающей атмосфере.
Изменение параметров начинается при повышении температуры до +400°С и выше. Титан вступает в реакцию с кислородом, может воспламеняться в азоте, впитывает газы.
Эти свойства затрудняют получение чистого вещества и его сплавов. Производство титана основано на применении дорогостоящей вакуумной аппаратуры.

Титан и конкуренция с другими металлами

Этот металл постоянно сравнивают с алюминием и сплавами железа. Многие химические свойства титаназначительно лучше, чем у конкурентов:

  1. По механической прочности титан превосходит железо в 2 раза, а алюминий в 6 раз. Прочность его увеличивается при снижении температуры, чего не отмечается у конкурентов.
    Антикоррозионные характеристики титана значительно превышают показатели других металлов.
  2. При температурах окружающей среды металл абсолютно инертен. Но при повышении температуры свыше +200°С вещество начинает поглощать водород, изменяя свои характеристики.
  3. При более высоких температурах титан вступает в реакции с другими химическими элементами. Он обладает высокой удельной прочностью, что в 2 раза превосходит свойства лучших сплавов железа.
  4. Антикоррозионные свойства титана значительно превышают показатели алюминия и нержавеющей стали.
  5. Вещество плохо проводит электричество. Титан имеет удельное электросопротивление в 5 раз выше, чем у железа, в 20 раз, чем у алюминия, и в 10 раз выше, чем у магния.
  6. Титан характеризуется низкой теплопроводностью, это обусловлено низким коэффициентом температурного расширения. Она меньше в 3 раза, чем у железа, и в 12, чем у алюминия.

Какими способами получают титан?

Материал занимает 10 место по распространению в природе. Существует около 70 минералов, содержащих титан в виде титановой кислоты или его двуокиси. Наиболее распространенные из них и содержащие высокий процент производных металла:

  • ильменит;
  • рутил;
  • анатаз;
  • перовскит;
  • брукит.

Основные залежи титановых руд находятся в США, Великобритании, Японии, большие месторождения их открыты в России, Украине, Канаде, Франции, Испании, Бельгии.

Как добывают титан

Добыча титана – дорогой и трудозатратный процесс

Получение металла из них стоит очень дорого. Ученые разработали 4 способа производства титана, каждый из которых рабочий и эффективно используется в промышленности:

  1. Магниетермический способ. Добытое сырье, содержащее титановые примеси, перерабатывают и получают диоксид титана. Это вещество подвергается хлорированию в шахтных или солевых хлораторах при повышенном температурном режиме. Процесс очень медленный, ведется в присутствии углеродного катализатора. При этом твердый диоксид переводится в газообразное вещество – тетрахлорид титана. Полученный материал восстанавливается магнием или натрием. Сплав, образовавшийся при реакции, подвергают нагреванию в вакуумной установке до сверхвысоких температур. В результате реакции происходит испарение магния и его соединений с хлором. В конце процесса получают губкоподобный материал. Его плавят и получают титан высокого качества.
  2. Гидридно-кальциевый способ. Руду подвергают химической реакции и получают гидрид титана. Следующий этап – разделение вещества на составляющие. Титан и водород выделяют в процессе нагревания в вакуумных установках. По окончании процесса получают оксид кальция, который отмывают слабыми кислотами. Первые два способа относятся к промышленному производству. Они позволяют получать в кратчайшие сроки чистый титан с относительно небольшими издержками.
  3. Электролизный метод. Титановые соединения подвергают воздействию током большой силы. В зависимости от исходного сырья, соединения разделяются на составляющие: хлор, кислород и титан.
  4. Йодидный способ или рафинирование. Полученный из минералов диоксид титана обдают парами йода. В результате реакции образуется йодид титана, который нагревают до высокой температуры – +1300…+1400°С и воздействуют на него электрическим током. При этом из исходного материала выделяются составляющие: йод и титан. Металл, полученный данным способом, не имеет примесей и добавок.

Области применения

Применение титана зависит от степени его очистки от примесей. Наличие даже небольшого количества других химических элементов в составе сплава титана кардинально меняет его физико-механические характеристики.

Титан с некоторым количеством примесей называется техническим. Он имеет высокие показатели коррозийной стойкости, это легкий и очень прочный материал. От этих и других показателей зависит его применение.

  • В химической промышленности из титана и его сплавов изготавливают теплообменники, различного диаметра трубы, арматуру, корпуса и детали для насосов различного назначения. Вещество незаменимо в местах, где требуются высокая прочность и стойкость к кислотам.
  • На транспорте титан используют для изготовления деталей и агрегатов велосипедов, автомобилей, железнодорожных вагонов и составов. Применение материала уменьшает вес подвижных составов и автомобилей, придает легкость и прочность велосипедным деталям.
  • Большое значение титан имеет в военно-морском ведомстве. Из него изготавливают детали и элементы корпусов для подводных лодок, пропеллеры для лодок и вертолетов.
  • В строительной промышленности применяется сплав цинк-титан. Он используется как отделочный материал для фасадов и кровель. Этот очень прочный сплав имеет важное свойство: из него можно изготавливать архитектурные детали самой фантастической конфигурации. Он может принимать любую форму.
  • В последнее десятилетие титан широко применяют в нефтедобывающей отрасли. Сплавы его применяют при изготовлении оборудования для сверхглубокого бурения. Материал используется для изготовления оборудования для добычи нефти и газа на морских шельфах.
Где применяют титан

У титана очень широкая область применения

Чистый титан имеет свои области применения. Он нужен там, где необходима стойкость к высоким температурам и при этом должна сохраняться прочность металла.

Его применяют в:

  • авиастроении и космической отрасли для изготовления деталей обшивки, корпусов, элементов крепления, шасси;
  • медицине для протезирования и изготовления сердечных клапанов и других аппаратов;
  • технике для работы в криогенной области (здесь используют свойство титана – при снижении температуры усиливается прочность металла и не утрачивается его пластичность).

В процентном соотношении использование титана для производства различных материалов выглядит так:

  • на изготовление краски используется 60 %;
  • пластик потребляет 20 %;
  • в производстве бумаги используют 13 %;
  • машиностроение потребляет 7 % получаемого титана и его сплавов.

Сырье и процесс получения титана дорогостоящие, затраты на его производство компенсируются и окупаются сроком службы изделий из этого вещества, его способностью не менять свой внешний вид за весь период эксплуатации.

Титан, свойства атома, химические и физические свойства

Титан, свойства атома, химические и физические свойства.

 

 

 

Ti 22  Титан

47,867(1)      1s2s2p3s3p6 3d2 4s2

 

Титан — элемент периодической системы химических элементов Д. И. Менделеева с атомным номером 22. Расположен в 4-й группе (по старой классификации — побочной подгруппе четвертой группы), четвертом периоде периодической системы.

 

Атом и молекула титана. Формула титана. Строение титана

Изотопы и модификации титана

Свойства титана (таблица): температура, плотность, давление и пр.

Физические свойства титана

Химические свойства титана. Взаимодействие титана. Реакции с титаном

Получение титана

Применение титана

Таблица химических элементов Д.И. Менделеева

 

Атом и молекула титана. Формула титана. Строение титана:

Титан (лат. Titanium, назван в честь титанов) – химический элемент периодической системы химических элементов Д. И. Менделеева с обозначением Ti и атомным номером 22. Расположен в 4-й группе (по старой классификации – побочной подгруппе четвертой группы), четвертом периоде периодической системы.

Титан – амфотерный металл. Относится к группе переходных металлов.

Как простое вещество титан при нормальных условиях представляет собой лёгкий прочный металл серебристо-белого цвета.

Молекула титана одноатомна.

Химическая формула титана Ti.

Электронная конфигурация атома титана 1s2s2p3s3p6 3d2 4s2. Потенциал ионизации атома титана равен 6,8281 эВ (657,8 кДж/моль).

Строение атома титана. Атом титана состоит из положительно заряженного ядра (+22), вокруг которого по четырем оболочкам движутся 22 электрона. При этом 20 электронов находятся на внутреннем уровне, а 2 электрона – на внешнем. Поскольку титан расположен в четвертом периоде, оболочек всего четыре. Первая – внутренняя оболочка представлена s-орбиталью. Вторая – внутренняя оболочка представлена s- и р-орбиталями. Третья – внутренняя оболочка представлена s-, р- и d-орбиталями. Четвертая – внешняя оболочка представлена s-орбиталью. На внутреннем энергетическом уровне атома титана на 3d-орбитали находятся два неспаренных электрона. На внешнем энергетическом уровне атома титана – на s-орбитали находится два спаренных электрона. В свою очередь ядро атома титана состоит из 22 протонов и 26 нейтронов.

Радиус атома титана составляет 147 пм.

Атомная масса атома титана составляет 47,867(1) а. е. м.

Титан обладает высокой коррозионной стойкостью.

 

Изотопы и модификации титана:

 

Свойства титана (таблица): температура, плотность, давление и пр.:

Общие сведения 
НазваниеТитан/ Titanium
СимволTi
Номер в таблице22
ТипМеталл
ОткрытУ. Грегор, Англия, 1791 г., М. Г. Клапрот, Германия, 1795 г.
Внешний вид и пр.Лёгкий прочный металл серебристо-белого цвета
Содержание в земной коре0,66 %
Содержание в океане1,0×10-7 %
Свойства атома 
Атомная масса (молярная масса)47,867(1) а. е. м. (г/моль)
Электронная конфигурация1s2s2p3s3p6 3d2 4s2
Радиус атома147 пм
Химические свойства 
Степени окисления+2, +3, +4
Валентность+2, +3, +4
Ковалентный радиус132 пм
Радиус иона(+4e)68 (+2e)94 пм
Электроотрицательность1,54 (шкала Полинга)
Энергия ионизации (первый электрон)657,8 кДж/моль (6,8281 эВ)
Электродный потенциал-1,64 В
Физические свойства
Плотность (при  нормальных условиях)4,54 г/см3
Температура плавления1668° C (1941 K)
Температура кипения3287 °C (3560 K)
Уд. теплота плавления18,8 кДж/моль
Уд. теплота испарения422,6 кДж/моль
Молярная теплоёмкость25,51 Дж/(K·моль)
Молярный объём10,6 см³/моль
Теплопроводность (при 300 K)21,9 Вт/(м·К)
Электропроводность в твердой фазе2,5х10См/м
Сверхпроводимость при температуре
Твёрдость6 по шкале Мооса, 970 МПа по Виккерсу
Структура решёткигексагональная
плотноупакованная (α-Ti)
Параметры решёткиa = 2,951 Å,  с = 4,697 Å (α-Ti)
Отношение c/a1,587
Температура Дебая380 К

 

Физические свойства алюминия:

 

Химические свойства титана. Взаимодействие титана. Реакции с титаном:

 

Получение титана:

 

Применение титана:

 

Таблица химических элементов Д.И. Менделеева

 

  1. 1. Водород
  2. 2. Гелий
  3. 3. Литий
  4. 4. Бериллий
  5. 5. Бор
  6. 6. Углерод
  7. 7. Азот
  8. 8. Кислород
  9. 9. Фтор
  10. 10. Неон
  11. 11. Натрий
  12. 12. Магний
  13. 13. Алюминий
  14. 14. Кремний
  15. 15. Фосфор
  16. 16. Сера
  17. 17. Хлор
  18. 18. Аргон
  19. 19. Калий
  20. 20. Кальций
  21. 21. Скандий
  22. 22. Титан
  23. 23. Ванадий
  24. 24. Хром
  25. 25. Марганец
  26. 26. Железо
  27. 27. Кобальт
  28. 28. Никель
  29. 29. Медь
  30. 30. Цинк
  31. 31. Галлий
  32. 32. Германий
  33. 33. Мышьяк
  34. 34. Селен
  35. 35. Бром
  36. 36. Криптон
  37. 37. Рубидий
  38. 38. Стронций
  39. 39. Иттрий
  40. 40. Цирконий
  41. 41. Ниобий
  42. 42. Молибден
  43. 43. Технеций
  44. 44. Рутений
  45. 45. Родий
  46. 46. Палладий
  47. 47. Серебро
  48. 48. Кадмий
  49. 49. Индий
  50. 50. Олово
  51. 51. Сурьма
  52. 52. Теллур
  53. 53. Йод
  54. 54. Ксенон
  55. 55. Цезий
  56. 56. Барий
  57. 57. Лантан
  58. 58. Церий
  59. 59. Празеодим
  60. 60. Неодим
  61. 61. Прометий
  62. 62. Самарий
  63. 63. Европий
  64. 64. Гадолиний
  65. 65. Тербий
  66. 66. Диспрозий
  67. 67. Гольмий
  68. 68. Эрбий
  69. 69. Тулий
  70. 70. Иттербий
  71. 71. Лютеций
  72. 72. Гафний
  73. 73. Тантал
  74. 74. Вольфрам
  75. 75. Рений
  76. 76. Осмий
  77. 77. Иридий
  78. 78. Платина
  79. 79. Золото
  80. 80. Ртуть
  81. 81. Таллий
  82. 82. Свинец
  83. 83. Висмут
  84. 84. Полоний
  85. 85. Астат
  86. 86. Радон
  87. 87. Франций
  88. 88. Радий
  89. 89. Актиний
  90. 90. Торий
  91. 91. Протактиний
  92. 92. Уран
  93. 93. Нептуний
  94. 94. Плутоний
  95. 95. Америций
  96. 96. Кюрий
  97. 97. Берклий
  98. 98. Калифорний
  99. 99. Эйнштейний
  100. 100. Фермий
  101. 101. Менделеевий
  102. 102. Нобелий
  103. 103. Лоуренсий
  104. 104. Резерфордий
  105. 105. Дубний
  106. 106. Сиборгий
  107. 107. Борий
  108. 108. Хассий
  109. 109. Мейтнерий
  110. 110. Дармштадтий
  111. 111. Рентгений
  112. 112. Коперниций
  113. 113. Нихоний
  114. 114. Флеровий
  115. 115. Московий
  116. 116. Ливерморий
  117. 117. Теннессин
  118. 118. Оганесон

 

Таблица химических элементов Д.И. Менделеева

 

Примечание: © Фото https://www.pexels.com, https://pixabay.com

 

Найти что-нибудь еще?

Похожие записи:

карта сайта

титан атомная масса степень окисления валентность плотность температура кипения плавления физические химические свойства структура теплопроводность электропроводность кристаллическая решетка
атом нарисовать строение число протонов в ядре строение электронных оболочек электронная формула конфигурация схема строения электронной оболочки заряд ядра состав масса орбита уровни модель радиус энергия электрона переход скорость спектр длина волны молекулярная масса объем атома
электронные формулы сколько атомов в молекуле титана 
сколько электронов в атоме свойства металлические неметаллические термодинамические 

 

Коэффициент востребованности 536

Титан (элемент) — это… Что такое Титан (элемент)?

У этого термина существуют и другие значения, см. Титан.
Внешний вид простого вещества

Металл серебристого оттенка
Свойства атома
Имя, символ, номер

Тита́н / Titanium (Ti), 22

Атомная масса
(молярная масса)

47,88 а. е. м. (г/моль)

Электронная конфигурация

[Ar] 3d2 4s2

Радиус атома

147 пм

Химические свойства
Ковалентный радиус

132 пм

Радиус иона

(+4e)68 (+2e)94 пм

Электроотрицательность

1,54 (шкала Полинга)

Электродный потенциал

−1,63

Степени окисления

2, 3, 4

Энергия ионизации
(первый электрон)

657,8(6,82) кДж/моль (эВ)

Термодинамические свойства простого вещества
Плотность (при н. у.)

4,54 г/см³

Температура плавления

1933±20 K

Температура кипения

3560 K

Теплота плавления

18,8 кДж/моль

Теплота испарения

422,6 кДж/моль

Молярная теплоёмкость

25,1[1] Дж/(K·моль)

Молярный объём

10,6 см³/моль

Кристаллическая решётка простого вещества
Структура решётки

гексагональная
плотноупакованная (α-Ti)

Параметры решётки

a=2,951 с=4,697 (α-Ti) Å

Отношение c/a

1,587

Температура Дебая

380 K

Прочие характеристики
Теплопроводность

(300 K) 21,9 Вт/(м·К)

Тита́н (лат. Titanium; обозначается символом Ti) — элемент побочной подгруппы четвёртой группы, четвёртого периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 22. Простое вещество титан (CAS-номер: 7440-32-6) — лёгкий металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C[1]. Температура плавления 1660±20 °C[2].

История

Открытие TiO2 сделали практически одновременно и независимо друг от друга англичанин У. Грегор и немецкий химик М. Г. Клапрот. У. Грегор, исследуя состав магнитного железистого песка (Крид, Корнуолл, Англия, 1791), выделил новую «землю» (оксид) неизвестного металла, которую назвал менакеновой. В 1795 г. немецкий химик Клапрот открыл в минерале рутиле новый элемент и назвал его титаном. Спустя два года Клапрот установил, что рутил и менакеновая земля — оксиды одного и того же элемента, за которым и осталось название «титан», предложенное Клапротом. Через 10 лет открытие титана состоялось в третий раз. Французский учёный Л. Воклен обнаружил титан в анатазе и доказал, что рутил и анатаз — идентичные оксиды титана.

Первый образец металлического титана получил в 1825 году Й. Я. Берцелиус. Из-за высокой химической активности титана и сложности его очистки чистый образец Ti получили голландцы А. ван Аркел и И. де Бур в 1925 году термическим разложением паров иодида титана TiI4.

Происхождение названия

Металл получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи. Название элементу дал Мартин Клапрот в соответствии со своими взглядами на химическую номенклатуру в противовес французской химической школе, где элемент старались называть по его химическим свойствам. Поскольку немецкий исследователь сам отметил невозможность определения свойств нового элемента только по его оксиду, он подобрал для него имя из мифологии, по аналогии с открытым им ранее ураном.

Однако согласно другой версии, публиковавшейся[источник не указан 312 дней] в журнале «Техника-Молодежи» в конце 1980-х, новооткрытый металл обязан своим именем не могучим титанам из древнегреческих мифов, а Титании — королеве фей в германской мифологии (жена Оберона в шекспировском «Сне в летнюю ночь»). Такое название связано с необычайной «лёгкостью» (малой плотностью) металла.

Нахождение в природе

Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре 0,57 % по массе, в морской воде 0,001 мг/л[3]. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках. Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.

Месторождения

Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана[4].

Запасы и добыча

Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтверждённые запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т[5]. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более, чем на 150 лет.

Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений (Ярегское) находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн руды со средним содержанием диоксида титана около 10 %[6].

Крупнейший в мире производитель титана — российская компания «ВСМПО-АВИСМА»[7].

Получение

Как правило, исходным материалом для производства титана и его соединений служит диоксид титана со сравнительно небольшим количеством примесей. В частности, это может быть рутиловый концентрат, получаемый при обогащении титановых руд. Однако запасы рутила в мире весьма ограничены, и чаще применяют так называемый синтетический рутил или титановый шлак, получаемые при переработке ильменитовых концентратов. Для получения титанового шлака ильменитовый концентрат восстанавливают в электродуговой печи, при этом железо отделяется в металлическую фазу (чугун), а не восстановленные оксиды титана и примесей образуют шлаковую фазу. Богатый шлак перерабатывают хлоридным или сернокислотным способом.

Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана TiCl4:

Образующиеся пары TiCl4 при 850 °C восстанавливают магнием:

Полученную титановую «губку» переплавляют и очищают. Рафинируют титан иодидным способом или электролизом, выделяя Ti из TiCl4. Для получения титановых слитков применяют дуговую, электроннолучевую или плазменную переработку.

Физические свойства

Титан — легкий серебристо-белый металл. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой (a=2,951 Å; с=4,679 Å[8]; z=2; пространственная группа C6mmc), β-Ti с кубической объёмноцентрированной упаковкой (a=3,269 Å; z=2; пространственная группа Im3m), температура перехода α↔β 883 °C, ΔH перехода 3,8 кДж/моль. Точка плавления 1660±20 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³[1], атомная плотность 5,71·1022 ат/см³[источник не указан 1191 день]. Пластичен, сваривается в инертной атмосфере. Удельное сопротивление 0,42 мкОм·м при 20 °C

Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

При обычной температуре покрывается защитной пассивирующей плёнкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной).

Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C. Титановая стружка пожароопасна.

Химические свойства

Устойчив к коррозии благодаря оксидной плёнке, но при измельчении в порошок, а также в тонкой стружке или проволоке титан пирофорен[9].

Титан устойчив к разбавленным растворам многих кислот и щелочей (кроме HF, H3PO4 и концентрированной H2SO4).

Легко реагирует даже со слабыми кислотами в присутствии комплексообразователей, например, с плавиковой кислотой HF он взаимодействует благодаря образованию комплексного аниона [TiF6]2−.

При нагревании на воздухе до 1200 °C Ti загорается с образованием оксидных фаз переменного состава TiOx. Из растворов солей титана осаждается гидроксид TiO(OH)2·xH2O, осторожным прокаливанием которого получают оксид TiO2. Гидроксид TiO(OH)2·xH2O и диоксид TiO2амфотерны.

TiO2 взаимодействует с серной кислотой при длительном кипячении. При сплавлении с содой Na2CO3 или поташом K2CO3 оксид TiO2 образует титанаты:

При нагревании Ti взаимодействует с галогенами. Тетрахлорид титана TiCl4 при обычных условиях — бесцветная жидкость, сильно дымящая на воздухе, что объясняется гидролизом TiCl4 содержащимися в воздухе парами воды и образованием мельчайших капелек HCl и взвеси гидроксида титана.

Восстановлением TiCl4водородом, алюминием, кремнием, другими сильными восстановителями, получен трихлорид и дихлорид титана TiCl3 и TiCl2 — твёрдые вещества, обладающие сильными восстановительными свойствами. Ti взаимодействует с Br2 и I2.

С азотом N2 выше 400 °C титан образует нитрид TiNx(x=0,58-1,00). При взаимодействии титана с углеродом образуется карбид титана TiCx (x=0,49-1,00).

При нагревании Ti поглощает H2 с образованием соединения переменного состава TiHх (x=1,3 — 2). При нагревании эти гидриды разлагаются с выделением H2. Титан образует сплавы со многими металлами.

Применение

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 7 декабря 2012.
Часы из титанового сплава

В чистом виде и в виде сплавов

Титановый памятник Гагарину на Ленинском проспекте в Москве
  • Металл применяется в: химической промышленности (реакторы, трубопроводы, насосы, трубопроводная арматура), военной промышленности (бронежилеты, броня и противопожарные перегородки в авиации, корпуса подводных лодок), промышленных процессах (опреснительных установках, процессах целлюлозы и бумаги), автомобильной промышленности, сельскохозяйственной промышленности, пищевой промышленности, украшениях для пирсинга, медицинской промышленности (протезы, остеопротезы), стоматологических и эндодонтических инструментах, зубных имплантатах, спортивных товарах, ювелирных изделиях (Александр Хомов), мобильных телефонах, лёгких сплавах и т. д. Является важнейшим конструкционным материалом в авиа-, ракето-, кораблестроении.
  • Титановое литье выполняют в вакуумных печах в графитовые формы. Также используется вакуумное литье по выплавляемым моделям. Из-за технологических трудностей, в художественном литье используется ограниченно. Первой в мировой практике монументальной литой скульптурой из титана является памятник Юрию Гагарину на площади его имени в Москве[10].
  • Титан является легирующей добавкой во многих легированных сталях и большинстве спецсплавов.
  • Нитинол (никель-титан) — сплав, обладающий памятью формы, применяемый в медицине и технике.
  • Алюминиды титана являются очень стойкими к окислению и жаропрочными, что в свою очередь определило их использование в авиации и автомобилестроении в качестве конструкционных материалов.

В виде соединений

  • Белый диоксид титана (TiO2) используется в красках (например, титановые белила), а также при производстве бумаги и пластика. Пищевая добавка E171.
  • Титанорганические соединения (напр. тетрабутоксититан) применяются в качестве катализатора и отвердителя в химической и лакокрасочной промышленности.
  • Неорганические соединения титана применяются в химической электронной, стекловолоконной промышленности в качестве добавки или покрытий.
  • Карбид титана, диборид титана, карбонитрид титана — важные компоненты сверхтвёрдых материалов для обработки металлов.
  • Нитрид титана применяется для покрытия инструментов, куполов церквей и при производстве бижутерии, т.к. имеет цвет, похожий на золото.
  • Титанат бария BaTiO3, титанат свинца PbTiO3 и ряд других титанатов —- сегнетоэлектрики.

Существует множество титановых сплавов с различными металлами. Легирующие элементы разделяют на три группы, в зависимости от их влияния на температуру полиморфного превращения: на бета-стабилизаторы, альфа-стабилизаторы и нейтральные упрочнители. Первые понижают температуру превращения, вторые повышают, третьи не влияют на неё, но приводят к растворному упрочнению матрицы. Примеры альфа-стабилизаторов: алюминий, кислород, углерод, азот. Бета-стабилизаторы: молибден, ванадий, железо, хром, никель. Нейтральные упрочнители: цирконий, олово, кремний. Бета-стабилизаторы, в свою очередь, делятся на бета-изоморфные и бета-эвтектоидообразующие. Самым распространённым титановым сплавом является сплав Ti-6Al-4V (в российской классификации — ВТ6).

Анализ рынков потребления

В 2005 компания Titanium Corporation опубликовала следующую оценку потребления титана в мире:

  • 60 % — краска;
  • 20 % — пластик;
  • 13 % — бумага;
  • 7 % — машиностроение.

Цены

В этом разделе не хватает ссылок на источники информации. Информация должна быть проверяема, иначе она может быть поставлена под сомнение и удалена.
Вы можете отредактировать эту статью, добавив ссылки на авторитетные источники.
Эта отметка установлена 12 мая 2011.

15-25 $ за килограмм, в зависимости от чистоты.

Чистота и марка чернового титана (титановой губки) обычно определяется по её твёрдости, которая зависит от содержания примесей. Наиболее распространены марки ТГ100 и ТГ110.

Цена ферротитана (минимум 70 % титана) на 22.12.2010 $6,82 за килограмм. На 01.01.2010 цена была на уровне $5,00 за килограмм.

В России цены на титан на начало 2012 года составляли 1200-1500 руб/кг.

Физиологическое действие

Примечания

Ссылки

  Электрохимический ряд активности металлов

Eu, Sm, Li, Cs, Rb, K, Ra, Ba, Sr, Ca, Na, Ac, La, Ce, Pr, Nd, Pm, Gd, Tb, Mg, Y, Dy, Am, Ho, Er, Tm, Lu, Sc, Pu, Th, Np, U, Hf, Be, Al, Ti, Zr, Yb, Mn, V, Nb, Pa, Cr, Zn, Ga, Fe, Cd, In, Tl, Co, Ni, Te, Mo, Sn, Pb, H2, W, Sb, Bi, Ge, Re, Cu, Tc, Te, Rh, Po, Hg, Ag, Pd, Os, Ir, Pt, Au

Титан — свойства, характеристики, сплаты

В периодической системе химический элемент титан обозначается, как Ti (Titanium) и располагается в побочной подгруппе IV группы, в 4 периоде под атомным номером 22. Это серебристо-белый твёрдый металл, который входит в состав большого количества минералов. Купить титан вы можете на нашем сайте.

Открыли титан в конце 18 века химики из Англии и Германии Ульям Грегор и Мартин Клапрот, причём независимо друг от друга с шестилетней разницей. Название элементу дал именно Мартин Клапрот в честь древнегреческих персонажей титанов (огромных, сильных, бессмертных существ). Как оказалось, название стало пророческим, но чтобы познакомиться со всеми свойствами титана, человечеству понадобилось ещё больше 150 лет. Только через три десятилетия удалось получить первый образец металла титана. На тот момент времени его практически не использовали из-за хрупкости. В 1925 году после ряда опытов, при помощи йодидного метода химики Ван Аркель и Де Бур добыли чистый титан.

Благодаря ценным свойствам металла, на него сразу же обратили внимание инженеры и конструкторы. Это был настоящий прорыв. В 1940 году Кролль разработал магниетермический способ получения титана из руды. Этот способ актуален и на сегодняшний день.

Физические и механические свойства

Титан является довольно тугоплавким металлом. Температура его плавления составляет 1668±3°С. По этому показателю он уступает таким металлам, как тантал, вольфрам, рений, ниобий, молибден, тантал, цирконий. Титан – это парамагнитный металл. В магнитном поле он не намагничивается, но не выталкивается из него. Изображение 2
Титан обладает низкой плотностью (4,5 г/см³) и высокой прочностью (до 140 кг/мм²). Эти свойства практически не меняются при высоких температурах. Он более чем в 1,5 раза тяжелее алюминия (2,7 г/см³), зато в 1,5 раза легче железа (7,8 г/см³). По механическим свойствам титан намного превосходит эти металлы. По прочности титан и его сплавы располагаются в одном ряду со многими марками легированных сталей.

По стойкости к коррозии титан не уступает платине. Металл обладает отличной устойчивостью в условиях кавитации. Пузырьки воздуха, образующиеся в жидкой среде при активном движении титановой детали, практически не разрушают её.

Это прочный металл, способный сопротивляться разрушению и пластической деформации. Он в 12 раз твёрже алюминия и в 4 раза — меди и железа. Ещё один важный показатель – это предел текучести. С увеличением этого показателя улучшается сопротивление деталей из титана эксплуатационным нагрузкам.

В сплавах с определёнными металлами (особенно с никелем и водородом) титан способен «запоминать» форму изделия, созданную при определённой температуре. Такое изделие потом можно деформировать и оно надолго сохранит это положение. Если же изделие нагреть до температуры, при которой оно было сделано, то изделие примет первоначальную форму. Называют это свойство «памятью».

Теплопроводность титана сравнительно низкая и коэффициент линейного расширения соответственно тоже. Из этого следует, что металл плохо проводит электричество и тепло. Зато при низких температурах он является сверхпроводником электричества, что позволяет ему передавать энергию на значительные расстояния. Также титан обладает высоким электросопротивлением.
Чистый металл титан подлежит различным видам обработки в холодном и горячем состоянии. Его можно вытягивать и делать проволоку, ковать, прокатывать в ленты, листы и фольгу с толщиной до 0,01 мм. Из титана изготавливают такие виды проката: титановая лента, титановая проволока, титановые трубы, титановые втулки, титановый круг, титановый пруток.

Химические свойства

Чистый титан – это химически активный элемент. Благодаря тому, что на его поверхности формируется плотная защитная плёнка, металл обладает высокой устойчивостью к коррозии. Он не подвергается окислению на воздухе, в соленой морской воде, не меняется во многих агрессивных химических средах (например: разбавленная и концентрированная азотная кислота, царская водка). При высоких температурах титан взаимодействует с реагентами намного активнее. На воздухе при температуре 1200°С происходит его воспламенение. Возгораясь, металл даёт яркое свечение. Активная реакция происходит и с азотом, с образованием нитридной плёнки желто-коричневого цвета на поверхности титана.

Реакции с соляной и серной кислотами при комнатной температуре слабые, но при нагреве металл усиленно растворяется. В результате реакции образуются низшие хлориды и моносульфат. Также происходят слабые взаимодействия с фосфорной и азотной кислотами. Металл реагирует с галогенами. Реакция с хлором происходит при 300°С.
Активная реакция с водородом протекает при температуре чуть выше комнатной. Титан активно поглощает водород. 1 г титана может поглотить до 400 см³ водорода. Нагретый металл разлагает двуокись углерода и пары воды. Взаимодействие с парами воды происходит при температуре более 800°С. В результате реакции образуется окисел металла и улетучивается водород. При более высокой температуре горячий титан поглощает углекислый газ и образует карбид и окисел.

Способы получения

Титан является одним из самых распространённых элементов на Земле. Содержание его в недрах планеты по массе составляет 0,57%. Самая большая концентрация металла наблюдается в «базальтовой оболочке» (0,9%), в гранитных породах (0,23%) и в ультраосновных породах (0,03%). Существует около 70 минералов титана, в которых он содержится в виде титановой кислоты или двуокиси. Главные минералы титановых руд это: ильменит, анатаз, рутил, брукит, лопарит, лейкоксен, перовскит и сфен. Основные мировые производители титана – это Великобритания, США, Франция, Япония, Канада, Италия, Испания и Бельгия.
Существует несколько способов получения титана. Все они применяются на практике и вполне эффективны.

1. Магниетермический процесс.

Добывают руду, содержащую титан и перерабатывают его в диоксид, который медленно и при очень высоких температурных значениях подвергают хлорированию. Хлорирование проводят в углеродной среде. Затем хлорид титана, образовавшийся в результате реакции, восстанавливают магнием. Полученный металл нагревают в вакуумном оборудовании при высокой температуре. В результате магний и хлорид магния испаряются, остаётся титан с множеством пор и пустот. Губчатый титан переплавляют для получения качественного металла.

2. Гидридно-кальциевый метод.

Сначала получают гидрид титана, а затем разделяют его на компоненты: титан и водород. Процесс происходит в безвоздушном пространстве при высокой температуре. Образуется оксид кальция, который проходит отмывку слабыми кислотами.
Гидридно-кальциевый и магниетермический методы обычно используются в промышленных масштабах. Эти методы позволяют получить значительное количество титана за небольшой промежуток времени, с минимальными денежными затратами.

3. Электролизный метод.

Хлорид или диоксид титана подвергается воздействию высокой силы тока. В результате происходит разложение соединений.

4. Йодидный метод.

Диоксид титана взаимодействует с парами йода. Далее на титановый йодид воздействуют высокой температурой, в результате чего получается титан. Этот метод является наиболее эффективным, но и самым дорогостоящим. Титан получается очень высокой чистоты без примесей и добавок.

Применение титана

Благодаря хорошим антикоррозионным свойствам титан используют для изготовления химической аппаратуры. Высокая жаростойкость металла и его сплавов способствует применению в современной технике. Сплавы титана – это прекрасный материал для самолётостроения, ракетостроения и судостроения.

Из титана создают памятники. А колокола из этого металла известны необычайным и очень красивым звучанием. Двуокись титана является компонентом некоторых лекарственных препаратов, например: мази против кожных заболеваний. Также большим спросом пользуются соединения металла с никелем, алюминием и углеродом.

Титан и его сплавы нашли применение в таких сферах, как химическая и пищевая промышленность, цветная металлургия, электроника, ядерная техника, энергомашиностроение, гальванотехника. Вооружение, броневые плиты, хирургические инструменты и имплантаты, оросительные установки, спортинвентарь и даже украшения делают из титана и его сплавов. В процессе азотирования на поверхности металла образуется золотистая плёнка, не уступающая по красоте даже настоящему золоту.

Титан и его характеристики

Общая характеристика титана

Титан очень распространен в природе; содержание титана в земной коре составляет 0,6% (масс.), т.е. выше, чем содержание таких широко используемых в технике металлов, как медь, свинец и цинк.

Минералы, содержащие титан, находятся в природе повсеместно. Важнейшими из них являются: титаномагнетиты FeTiO3×nFe3O4, ильменит FeTiO3, сфен CaTiSiO5 и рутил TiO2.

В виде простого вещества титан представляет собой серебристо-белый металл (рис. 1). Относится к легким металлам. Тугоплавок. Плотность – 4,50 г/см 3. Температуры плавления и кипения равны 1668oС и 3330oС, соответственно. Коррозионно-устойчив при на воздухе при обычной температуре, что объясняется наличием на его поверхности защитной пленки состава TiO2.

Рис. 1. Титан. Внешний вид.

Атомная и молекулярная масса титана

Относительной молекулярная масса вещества (Mr) – это число, показывающее, во сколько раз масса данной молекулы больше 1/12 массы атома углерода, а относительная атомная масса элемента (Ar) — во сколько раз средняя масса атомов химического элемента больше 1/12 массы атома углерода.

Поскольку в свободном состоянии титан существует в виде одноатомных молекул Ti, значения его атомной и молекулярной масс совпадают. Они равны 47,867.

Изотопы титана

Известно, что в природе титан может находиться в виде пяти стабильных изотопов 46Ti, 47Ti, 48Ti, 49Ti и 50Ti. Их массовые числа равны 46, 47, 48, 49 и 50 соответственно. Ядро атома изотопа титана 46Ti содержит двадцать два протона и двадцать четыре нейтрона, а остальные изотопы отличаются от него только числом нейтронов.

Существуют искусственные изотопы титана с массовыми числами от 38-ми до 64-х, среди которых наиболее стабильным является 44Ti с периодом полураспада равным 60 лет, а также два ядерных изотопа.

Ионы титана

На внешнем энергетическом уровне атома титана имеется четыре электрона, которые являются валентными:

1s22s22p63s23p63d24s2.

В результате химического взаимодействия титан отдает свои валентные электроны, т.е. является их донором, и превращается в положительно заряженный ион:

Ti0 -2e → Ti2+;

Ti0 -3e → Ti3+;

Ti0 -4e → Ti4+.

Молекула и атом титана

В свободном состоянии титан существует в виде одноатомных молекул Ti. Приведем некоторые свойства, характеризующие атом и молекулу титана:

Энергия ионизации атома, эВ

6,82

Относительная электроотрицательность

1,54

Радиус атома, нм

0,147

Сплавы титана

Главное свойство титана, способствующее его широкому применению в современной технике – высокая жаростойкость как самого титана, так и его сплавов с алюминием и другими металлами. Кроме того, эти сплавы жаропрочностью – стойкостью сохранять высокие механические свойства при повышенных температурах. Все это делает сплавы титана весьма ценными материалами для самолето- и ракетостроения.

При высоких температурах титан соединяется с галогенами, кислородом, серой, азотом и другими элементами. На этом основано применение сплавов титана с железом (ферротиттана) в качестве добавки к стали.

Примеры решения задач

ТИТАН (Ti)

Свойства атома Титана

Название

Титан / Titanium

Символ

Ti

Номер

22

Атомная масса (молярная масса)

47,867 (1) а. е. м. (г/моль)

Электронная конфигурация

[Ar] 3d2 4s2

Радиус атома

147 пм

Химические свойства Титана

Ковалентный радиус

132 пм

Радиус иона

(+4e) 68 (+2e) 94 пм

Электроотрицательность

1,54 (шкала Полинга)

Электродный потенциал

−1,63

Степени окисления

2, 3, 4

Энергия ионизации (первый электрон)

 657,8 (6,82) кДж/моль (эВ)

Термодинамические свойства простого вещества

Плотность (при н. у.)

4,54 г/см3

Температура плавления

1933±20 K

Температура кипения

3560 K

Уд. теплота плавления

18,8 кДж/моль

Уд. теплота испарения

422,6 кДж/моль

Молярная теплоёмкость

25,1 Дж/(K·моль)

Молярный объём

10,6 см3/моль

Кристаллическая решётка простого вещества

Структура решётки

гексагональная

плотноупакованная (α-Ti)

Параметры решётки

a=2,951 с=4,697 (α-Ti)

Отношение c/a

1,587

Температура Дебая

380 K

Прочие характеристики Титан

Теплопроводность

(300 K) 21,9 Вт/(м·К)

Номер CAS

7440-32-6

титан (Ti) — это … Что такое титан (Ti)?

  • Titanium — «Titanium» Sencillo de David Guetta con Sia del álbum Nothing But the Beat Publicación 5 августа 2011 г. Формат Descarga… Wikipedia Español

  • титан — ti‧ta‧ni‧um [taɪˈteɪniəm] существительное [бесчисленное множество] прочный, легкий и очень дорогой металл, используемый в производстве и продаваемый на товарных рынках: • Компания планирует разрабатывать месторождения титана в Южной Африке.* * * Ⅰ. титан Великобритания США / tɪˈteɪniəm /…… Финансовые и коммерческие условия

  • Titanium — bezeichnet: den englischen Namen des chemischen Elements Titan, siehe Titan (Element) Titanium (Programmiersprache) eine objektorientierte Programmiersprache Titanium (Engine) eine Spieleplattform ein Lied von David Guetta…

  • Титан — Ti * ta ni * um, n. [NL., Фр. Л. Титани или Титаны, гр. ?, сыновья земли.] (Chem.) Элементарное вещество, объединенное в минералы манакканит, рутил, сфен и т. Д., И выделенное в виде неплавкого аморфного порошка серого железа, имеющего…… The Collaborative International Dictionary of English

  • Титан — (мин.), Поэтому v.w. Титан… Универсальный лексикон Пирера

  • титан — Символ: Ti Атомный номер: 22 Атомный вес: 47,90 Белый металлический переходный элемент. Встречается во многих минералах. Используется в прочных, легких коррозионно-стойких сплавах.При контакте с воздухом образует пассивное оксидное покрытие. Впервые обнаружен Грегором в…… элементах периодической системы

  • титан — металлический элемент, 1796, современная латынь, назван в 1795 году немецким химиком и минералогом Мартином Генрихом Клапротом (1743 1817) из Л. Титана (см. ТИТАН (ср. Titan)) как сыновей земли. Ранее он называл УРАН (ср. Уран)… Словарь этимологии

  • титан — ► NOUN ▪ твердый серебристо-серый металл, используемый в прочных, легких, устойчивых к коррозии сплавах.ПРОИСХОЖДЕНИЕ с ТИТАНА (ср. ↑ Titan), по образцу урана… Словарь английских терминов

  • титан — [tī tā′nē əm, titā′nē m] n. [ModL: произвольная чеканка (1796 г.) М. Х. Клапрота (см. ТЕЛЛЮРИЙ) для элемента, открытого (1791 г.) Уильямом Грегором (1761–1817 гг.), Британским минералогом, а позже — Клапротом и Л. Т.; Gr Titanes, пл. of Titan, TITAN + IUM, автор…… English World Dictionary

  • Титан — Эта статья о химическом элементе.Для использования в других целях, см Титан (значения). скандий ← титан → ванадий… Википедия

  • титан — / tuy tay nee euhm /, n. Chem. темно-серый или серебристый, блестящий, очень твердый, легкий, устойчивый к коррозии металлический элемент, встречающийся в сочетании с различными минералами: используемый в металлургии для удаления кислорода и азота из стали и для ее повышения. Символ… Универсал

  • .

    Wikipedia bahasa Indonesia, ensiklopedia bebas

    19 logam trans
    Titanium, 22 Ti
    Sifat umum
    Nama, simbol titanium Pengucapan Tygucapan TAY -ne-əm
    Penampilan abu-abu putih perak metalik
    Titanium di tabel periodik
    Nomor atom ( Z ) 22
    Golongan, blok golongan 4, blok-d
    Periode periode 4
    Kategori unsur
    Бобот атом стандарт (±) ( A r ) 47.867 (1)
    Konfigurasi elektron [Ar] 3d 2 4s 2

    на келопак

    2, 8, 10, 2
    Sifat fisika
    Fase твердый
    Titik lebur 1941 K (1668 ° C, 3034 ° F)
    Titik didih 3560 K (3287 ° C, 5949 ° F)
    Kepadatan Mendekati sk 4.506 г / см 3
    saat cair, pada t.l. 4,11 г / см 3
    Kalor peleburan 14,15 кДж / моль
    Kalor penguapan 425 кДж / моль
    Kapasitas kalor молярный 25,0 K60 Дж / ( )
    Tekanan uap
    P (Па) 1 10 100 1 к 10 к 100 к
    при T (K) 1982 2171 (2403) 2692 3064 3558
    Sifat atom
    Bilangan oksidasi 4 , 3, 2, 1 [1] oksida amfoter
    Elektronegativitas Skala Pauling: 1.54
    Energi ionisasi
    (artikel)
    Атом Джари-яри empiris: 147 pm
    Jari-jari kovalen 160 ± 8 pm
    Lain-lain
    Struktur kristal heksagon
    Kecepatan suara batang ringan 5090 м / с (pada sk )
    Ekspansi kalor 8,6 мкм / (м · К) (суху 25 ° C)
    Konduktivitas termal 21.9 Вт / (м · К)
    Resistivitas listrik 420 н Ом · м (суху 20 ° C)
    Магнит Арах paramagnetik
    Модуль упругости 116 ГПа
    Модуль сдвига 44 ГПа
    Объемный модуль упругости 110 ГПа
    Rasio Poisson 0,32
    Skala Mohs 6,0
    Skala Vickers 970 970 MПа 716 МПа
    Nomor CAS 7440-32-6
    Isotop titanium terstabil
    | referensi | ди Викиданные


    Титан adalah sebuah unsur kimia dalam tabel periodik yang memiliki simbol Ti dan nomor atom 22.Unsur ini merupakan logam transisi yang ringan, kuat, berkilau, tahan korosi (termasuk tahan terhadap air laut, aqua regia, dan klorin) dengan warna putih-metalik-keperakan.

    Titanium ditemukan di Cornwall, Kerajaan Britania Raya pada tahun 1791 oleh William Gregor dan dinamai oleh Martin Heinrich Klaproth dari mitologi Yunani Titan. Elemen ini ada di antara месторождение минерал berbagai, диантаранья рутил дан ильменит, ян баньяк тердапат пада керак буми дан литосфер, серта пада хампир семуа махлюк хидуп, батуан, аир, дан танах [2] Logam ini diekstrak dari bijih Mineralnya Melalui proses Kroll [3] atau proses Hunter. Senyawanya ян палинг умум, титан диоксида, адалах fotokatalisator умум дан дигунакан далам пембуатан пигмен путих. [4] Senyawa lainnya adalah titanium tetraklorida (TiCl 4 ), komponen layar asap dan katalis; дан триклорида титана (TiCl 3 ), дигунакан себагай каталис далам продукты полипропилена. [2]

    Титан дапат дигунакан себагай алои денган беси, алюминий, ванадий, дан молибден, унтук мемпродукси алои ян куат намун ринган унтук пенербанган (месин джет, мисил, адан вахана индастриан антарикса), милитро кимия , пабрик десалинаси, пульпа, дан кертас), отомотиф, агроиндустри, алат кедоктеран, имплан ортопеди, пералатан дан инструментмен доктер гиги, имплан гиги, алат олахрага, перхиасан, телепон генггам, дан масих баньяин апликас. [2]

    Дуа сифат ян палинг бергуна пада титан адалах кетаханан корози дан расио кекуатан терхадап денситасня янь палинг тингги антара семуа логам лайн. [5] Пада кондиси мурни, титан сама куат денган беберапа баджа, тетапи лебих ринган. [6] Ада дуа бентук алотропи [7] дан лима изотоп алами дари унсурини, 46 Ti sampai 50 Ti, dengan 48 Ti adalah yang paling banyak terdapat di alam (73,8%) . [8] Мески мемилики джумлах электрон валенси дан берада пада голонган табель периодик ян сама денган цирконий, кедуанья мемилики баньяк пербедаан пада сифат кимия дан фисика.

    Биланган оксидаси +4 mendominasi unsur titanium, [9] tetapi senyawa pada bilangan oksidasi +3 juga banyak ditemukan. [10] Умумня, титан мемпуняи геометрические координаты октаэдрической пада комплексня, тетапи TiCl 4 ян тетраэдрический адалах пингесуалиан. Карена биланган оксидасинья тингги, сенява титан (IV) мемилики сифат икатан ковален тингги.Tidak seperti logam transisi lain, kompleks aquo Ti (IV) tidak diketahui.

    Оксида, сульфида, дан алкоксида [загорать | загар]

    Джем танган берлапис титан

    Оксида янь палинг пентинг адалах TiO 2 , ян ада пада 3 полиморф; анатаз, брукит, дан рутил. Кетиганья адалах падатан диамагнетик варна путих, мески ада беберапа сампельня берварна гелап (лихат рутил).

    Titanat biasanya merujuk ke senyawa титан (IV), сеперти титанат бария (BaTiO 3 ).Денган структура перовскита, материал иници мемилики сифат пьезоэлектрик дан дигунакан себагай преобразователь пада интерконверси суара дан келистрикан. [7] Баняк минерал мерупакан титанат, сеперти ильменит (FeTiO 3 ). Safir bintang дан rubi memiliki sifat asterisme dari adanya titanium dioksida didalamnya. [11]

    Beberapa macam oksida tereduksi dari titanium telah diketahui. Ti 3 O 5 adalah semikonduktor warna ungu yang diproduksi dari reduksi TiO 2 dengan hidrogen pada suhu tinggi, [12] dan digunakan pada Industri Ketika Ada Permukaan Diy yang perlu : akan menguap sebagai TiO murni, sedangkan TiO 2 menguap sebagai campuran oksida дан дан пелаписан месторождение dengan indeks refraktif bervariasi. [13] Джуга сеньява ян дикенал адалах Ti 2 O 3 , dengan structure karborundum, дан TiO. [14]

    Alkoksida dari titanium (IV), dibuat denganmeaksikan TiCl 4 dengan alkohol, adalah senyawa tak berwarna yang akan berubah menjadi dioksida ketika direaksikan dengan air. Dalam industrial hal ini berguna untuk mendapatkan padatan TiO 2 через золь-гель. Титан isopropoksida digunakan dalam sintesis senyawa organik kiral melalui proses Sharpless.

    Титановый мембентук berbagai macam varietasulfida, tetapi hanya TiS 2 янь menarik perhatian. Senyawa ini digunakan sebagai katode dalam pengembangan baterai litium. Karena Ti (IV) adalah «катион берат», сульфида титана тидак стабильный и устойчивый к тергидролизу dengan pelepasan hidrogen sulfida.

    • Salah satu karakteristik Titanium yang paling terkenal adalah dia sama kuat dengan baja tetapi hanya 60% дар berat baja.
    • Kekuatan lelah (усталостная прочность) yang lebih tinggi daripada paduan aluminium.
    • Tahan suhu tinggi. Ketika temperatur pemakaian melebihi 150 C maka dibutuhkan titanium karena aluminium akan kehilangan kekuatannya secara nyata.
    • Tahan korosi. Ketahanan korosi titanium lebih tinggi daripada aluminium dan baja.
    • Dengan rasio berat-kekuatan yang lebih rendah daripada aluminium, maka komponen-komponen yang terbuat dari titaniummbutuhkan ruang yang lebih sedikit dibanding aluminium. [15]
    • Милитер. Oleh karena kekuatannya, unsur ini digunakan Untukmbuat peralatan perang (бак) дан Untuk Memuat pesawat ruang angkasa.
    • Industri. Beberapa mesin pemindah panas (теплообменник) дан bejana bertekanan tinggi serta pipa-pipa tahan korosi memakai bahan titanium.
    • Кедоктеран. Bahan implan gigi, penyambung tulang, pengganti tulang tengkorak, structur penahan katup jantung.
    • Месин. Материал поршня Pengganti Untuk Batang.
    • Perikanan. Карена сифат Титан ян куат, ринган, дан тахан коросиф воздух лаут джади унтук пембуатан панцинган.
    1. ^ Андерссон, Н. Campbell, F.C. (2006). Технология производства конструкционных материалов для авиакосмической промышленности (edisi ke-1st). Эльзевир. глм. 120.
    • Руководство по элементам — пересмотренное издание , Альберт Ствертка, (Oxford University Press; 1998) ISBN 0-19-508083-1
    • История и использование химических элементов нашей Земли: Справочное руководство , Роберт Э. Кребс (Greenwood Press: Westport, CT, 1998) ISBN 0-313-30123-9
    • Британская энциклопедия «Титан» из Encyclopdia Britannica Premium Service.[1] [Проверено 23 января 2005 г.].
    • «Titanium» Колумбийская электронная энциклопедия, 6-е изд. [2] [Доступно 23 января 2005 г.]
    • «Titanium», Microsoft Encarta Online Encyclopedia 2005 [3] [Доступно 24 января 2005 г.]
    • Статистика и информация USGS Titanium
    • Природа , Том 407, 21 сентября 2000 г.
    Wikimedia Commons memiliki media mengenai Титан .
    .

    X-Ti LLC

    15.06.2019 Приветствие дилеров и дистрибьюторов
    Приветствие дилеров и дистрибьюторов

    31.03.2019 Icespeedway 2019
    Даниил Иванов Чемпион мира 2019 Icespeedway
    Дмитрий Колтаков Вице-чемпион мира 2019 Icespeedway
    Двигатель Титановые детали (клапаны, штифты, шатуны) X-Ti LLC

    12.04.2018 Icespeedway 2018
    Чемпион мира Icespeedway 2018 Дмитрий Колтаков
    Вице-чемпион Icespeedway 2018 Даниил Иванов
    Детали двигателя Титановые (клапаны, пальцы, шатуны)
    X-Ti LLC

    01.05.2017 2017 AZTORIN SLOVENIAN FIM SPEEDWAY GRAND PRIX
    Мартин Вакулик победитель AZTORIN SLOVENIAN FIM SPEEDWAY GRAND PRIX 2017 г. Тюнер Эшли Холлоуэй.Детали двигателя титановые X-Ti LLC

    06.04.2017 2017 Icespeedway
    Дмитрий Колтаков Чемпион мира Icespeedway 2017 —
    Двигатель Титановые детали (клапаны, пальцы, шатуны) X-Ti LLC

    10.10.2015 Янник Де Йонг, чемпион мира 2015 г. Длинная трасса
    Янник Де Йонг, чемпион мира 2015 г. Длинная трасса.
    Янник Де Йонг Чемпион Европы 2015 Грасстрак.
    Тюнер Берт ван Эссен.Детали двигателя титановые X-Ti LLC.

    20.03.2015 Icespeedway
    Чемпион мира Icespeedway 2015 Дмитрий Колтаков
    Вице-чемпион Icespeedway 2015 Даниил Иванов
    Двигатель Титановые детали (клапаны, штифты, шатуны) X-Ti LLC

    01.05.2014 Icespeedway
    Чемпион мира Icespeedway 2014 Даниил Иванов
    Вице-чемпион Icespeedway 2014 Дмитрий Колтаков
    Двигатель Титановые детали (клапаны, штифты, шатуны) X-Ti LLC

    28.07.2013 Финал индивидуальной гонки EC в Билефельде (Германия)
    Победителем финала стал голландский гонщик Янник Де Йонг, опередив его земляка Дирка Фабрика.
    Тюнер Берт ван Эссен. Детали двигателя титановые X-Ti LLC.

    23.05.2013 Speedway Grand Prix
    X-Ti LLC является техническим спонсором Эмиля Сайфутдинова.

    02.09.2012 Объявление — изменение названия
    Мы рады сообщить, что с 1 июля 2012 года мы меняем название нашей компании на
    X-Ti LLC.

    30.05.2010 Расширенное производственное предприятие
    Мы хотели бы уведомить клиентов и партнеров о переходе на расширенное производственное предприятие.


    Новости 1-12 из 12
    Первый | Пред. | 1 | Далее | Последний | Все .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *