Титан где применяют: Сферы и области применения титана. Где применяется титан?

Содержание

Сферы и области применения титана. Где применяется титан?

Область применения титана

Титан – уникальный металл. Свойства этого материала делают его незаменимым во многих сферах человеческой жизни. Титан стал известен более двухсот лет назад и с тех пор не теряет своей популярности. Это один из самых распространённых элементов в периодической таблице Менделеева. Чтобы доказать это, мы подробно рассмотрим сферы и области применения титана.

Свойства и характеристики титана

Титан может похвастаться весьма выгодным набором различных свойств. К ним можно отнести:

  • стойкость к механическому воздействию;
  • стойкость к коррозии;
  • высокие прочностные показатели;
  • высокая температура плавления;
  • показатели плотности выше чем у алюминия;
  • теплопроводимость ниже чем у алюминия и железа;
  • титан можно использовать в большом диапазоне температур.
  • Перечисленные свойства титана говорят о том, что его можно применять в самых различных целях. Именно об этом и мы и поговорим более подробно. Сперва, стоит отметить, что титан имеет не только различные свойства и характеристики, но и марки.

    Марки титана

    Титан имеет достаточно большое количество различных марок. Каждая марка имеет разное содержание химических элементов и примесей, таких как азот, кремний, кислород, железо и другие. Возьмем, к примеру, марки титана ВТ1-0 и ВТ1-00. Титан данных марок используется в технических целях, так как имеет сравнительно небольшую прочность из-за низкого количества примесей в своем составе. То есть состав определенной марки титана влияет на его свойства и качественные показатели.

    Где применяют титан?

    Первоначально титан использовался преимущественно в военной промышленности, но со временем его стали активно применять и в других сферах, таких как:

  • энергетическая промышленность. Сплавы титана нашли свое применение в производстве теплообменного оборудования, различных труб, а также в качестве их покрытий.
  • химическая и нефтехимическая промышленность. Листы из титана используют для производства различных деталей химического и нефтехимического оборудования.
  • пищевая промышленность. Для оборудования данной отрасли ставят очень высокие требования, а титановые сплавы соответствуют им. Из этого металла делают центрифуги, мерные цистерны, фильтры, сосуды и другое оборудование для пищевой отрасли.
  • целлюлозная промышленность. Этой отрасли характерны весьма сложные процессы, которые требуют материалы с высокими качественными показателями. К таким материалам относят титан.
  • автомобильная промышленность. Доказано, что чем меньше масса автомобиля, тем меньше расход топлива. Тем самым повышается его экономичность и экологичность. Небольшая масса титана позволяет снизить массу деталей автомобилей.
  • декоративно – прикладное искусство. Титан хорошо обрабатывается, тем самым позволяет использовать себя для изготовления различных украшений, скульптур, памятников. К примеру, из титана делают серьги для пирсинга. Их можно использовать для первичных проколов, так как титан не вызывает аллергических реакций.
  • Применение титана в строительстве

    Такие свойства как прочность, стойкость к коррозии, химическим веществам, атмосферным осадкам, ультрафиолетовым лучам и другим неблагоприятным факторам внешней среды позволяют использовать титан в строительстве. Титан, как строительный материал, популярен во многих странах мира. Например, в восточных странах титан используют в качестве кровельного материала. Очень часто здания облицовывают титаном из-за его выгодных свойств и в других странах мира. Также титаном облицовывают карнизы, колонны и другие элементы зданий.

    Этот цветной металл, на протяжении многих лет, зарекомендовал себя как надежный и долговечный материал. Сферы и области применения титана очень обширны и благодаря своим уникальным свойствам, данный металл называют «металлом будущего». Нет и капли сомнения, что титан не утратит своей популярность даже через много лет.

    Свойства титана и его сплавов и сфера их применения

    Свойства титана и его сплавов

    Вопросы, рассмотренные в материале:

    • Каковы свойства титана
    • Что добавляют в титан для получения сплава
    • Каковы свойства сплавов титана
    • Где используют титан и его сплавы

     

    Титановые сплавы обладают таким количеством преимуществ, что это выгодно отличает их от других соединений. Высокая удельная прочность, устойчивость к повышенным температурам, стойкость к коррозии, податливость к сварке – эти и многие другие свойства титана и его сплавов сделали эти материалы особо ценными в сфере металлообработки. В нашей статье мы подробнее рассмотрим все свойства этого удивительного металла.

     

    Характеристики титана

    В таблице Менделеева Титан (Ti) можно найти под номером 22. Этот металл и его сплавы являются четырехвалентными. Кипение достигается при температуре +3330 °С, а плавление при +1168 °С.

    Выделяют два вида титана, которые имеют идентичный химический состав при разном строении. Это обуславливает отличия в их свойствах. Низкотемпературная α-модификация сохраняет устойчивость только до температуры +882,5 °С, β-модификация может выдерживать большую температуру и сохраняет устойчивость до температуры плавления.

    Характеристики титана

    Титан и его сплавы парамагнитны. Удельное электросопротивление этого материала достаточно высоко 5.562*10-7–7.837*10-7 Ом/м. Он отличается низкой восприимчивостью температуры при нагревании. В случае снижения температуры до 0,45 К, титан становится проводником. Сталь и титан внешне очень похожи.

    Если сравнивать титан с алюминием или железом, то его плотность и удельная теплоемкость находятся где-то посередине. Зато он обладает высокой механической прочностью, превосходя в этом параметре алюминий в 6 раз, а чистое железо в 13 раз. Данный материал может быть представлен в любой форме: листами, плитами, трубами и прутками.

    Механические и технические свойства титана и его сплавов, а также их химический состав определяются маркой материала. В его состав могут входить следующие элементы:

    • алюминий;
    • молибден;
    • ванадий;
    • марганец;
    • хром;
    • олово;
    • кремний;
    • цирконий;
    • железо.

    Свойства титана и его сплавов

    Стандартно выделяются три категории титановых сплавов:

    1. Конструкционные и высокопрочные титановые сплавы. Имеют очень твердый состав, благодаря которому достигается идеальный баланс пластичности и прочности.
    2. Жаропрочные титановые сплавы. Имеют твердый состав, включающий в себя определенное количество химического соединения, что несколько снижает пластичность, зато придает высокую жаропрочность.
    3. Титановые сплавы на основе химического соединения. Этот жаропрочный состав имеет малую плотность и может составить конкуренцию никелевым соединениям по жаропрочности при определенной температуре.

    Сейчас Ti очень широко используют в конструкционной деятельности. Еще 200 лет назад его считали неподходящим для конструирования, но прошло время, и на данный момент это один из самых долговечных и надежных материалов с широким спектром других полезных свойств.

    Свойства титана и его сплавов

    Рассмотрим подробнее самые популярные сплавы титана, их свойства и применение:

    Технический титан. Полуфабрикаты технического Ti марок ВТ1-00 и ВТ1-0 поставляются в большом количестве металлургическими заводами. В состав этих марок входят примеси железа, азота, кремния, кислорода, углерода и пр. При этом в разновидности ВТ1-0 примесей значительно больше, чем обуславливается его большая прочность и меньшая пластичность по сравнению со второй маркой. Высокая пластичность этих марок позволяет изготавливать тончайшие изделия, включая фольгу.

    Рекомендовано к прочтению

    Эти материалы не обладают высокой прочностью, поэтому для ее увеличения можно выполнить нагартовку. Правда, при этом снизится пластичность. Нагартовка не является оптимальным методом улучшения свойств данного металла, поскольку пластичность снижается гораздо сильнее, чем повышается прочность. Еще одним недостатком технического Ti является водородная хрупкость. Важно следить за тем, чтобы содержание водорода не превышало 0,008 % в титане ВТ1-00 и 0,01 % в ВТ1-0.

    • Сплав ВТ5 (ВТ5Л).

    Для легирования сплава ВТ5 (ВТ5Л) использовали лишь алюминий, который является самым распространенным легирующим средством. Особые свойства алюминия привели его к лидирующим позициям среди всех лигирующих добавок:

    1. алюминий является природным материалом, который можно легко найти и стоит недорого;
    2. меньшая по сравнению с Ti плотность алюминия позволяет значительно повышать удельную прочность получаемого состава;
    3. чем больше в составе алюминия, тем более жаропрочное соединение получается, также увеличивается сопротивление ползучести соединения;
    4. включение в состав алюминия позволяет улучшить показатели модулей упругости;
    5. повышение объема алюминия в соединении снижает их водородную хрупкость.

    По сравнению с техническим Ti, для марки ВТ5 характерны такие свойства, как большая прочность и жароустойчивость. Улучшение данных свойств приводит к снижению технологической пластичности Ti. Соединение ВТ5 в горячем состоянии может быть подвергнуто штамповке, ковке и прокату, что позволяет производить профильную, прутковую и штамповочную продукцию. Но основной сферой применения является фасонное литье (марка ВТ5Л), а не металл в деформированном состоянии.

    Соединение ВТ5-1 включено в систему Ti-Al-Sn. Технологические свойства титана и его сплавов с алюминием улучшаются за счет олова. Это приводит к снижению окислительных процессов и увеличению сопротивления ползучести. Прочностные свойства этого сплава титана позволяют отнести его к соединениям средней прочности. При этом ВТ5-1 не поддается надрезам, предел его выносливости с достаточным запасом, уровень жаропрочности достигает +450 °С.

    Сплав ВТ5-1

    С технологической точки зрения ВТ5-1 более предпочтителен (по сравнению с ВТ5). Основная сфера применения: поковки, листы, профили, плиты, штамповки, трубы, проволока и другие виды полуфабрикатов, производимых под давлением.

    Соединение образуется путем сваривания. При этом основной материал и сварное соединение обладают одинаковой прочностью. Воздействие высокой температурой не повышает прочности ВТ5-1.

    Если необходимо работать при криогенных температурах, то надо контролировать содержание примесей в материале, поскольку превышение допустимого порога может приводить к повышению хладноломкости. Маркировка ВТ5-1кт обозначает состав с пониженным содержанием примесей.

    В европейских странах соединение Ti-5A1-2,5Sn используют двумя способами: по стандартному назначению и для работы при криогенных температурах. Состав для криогенной работы маркируют Ti-5AI-2,5Sn ELI и также для поддержания его свойств следят за уровнем примесей.

    Высокотехнологичное соединение с малой прочностью маркируют ОТ4-0. Под давлением в результате горячей обработки марганец способен повысить технологичность состава. Это сплав титана псевдо-α-класса с небольшим количеством β-фазы. Не подлежит термическому упрочнению. Сфера применения: поковки, листы, прутки, ленты, штамповки и полосы. Легко принимает нужную форму при холодной и горячей обработке. Допускается даже штамповка в условиях комнатной температуры. Свойства материала прекрасно подходят для сварочных работ.

    Среди наиболее технологичных можно выделить сплав титана ОТ4-1. Обладает следующими свойствами: малопрочный, малолегированный псевдо-α-класса системы Ti-Al-Mn, прекрасно деформируется. Можно менять форму этого титанового сплава как в горячем, так и в холодном состоянии. Сфера применения: поковки, листы, профили, плиты, ленты, прутки, полосы и трубы.

    На холодную в основном выполняется листовая штамповка, не требующая сложной формы. Если необходимо изготовить более сложную по форме деталь, то желательно подогреть материал до +500 °С. Свойства ОТ4-1 позволяют использовать его для выполнения сварочных работ любым способом. При этом основной металл и сварное соединение будут обладать одинаковой прочностью и пластичностью.

    Для полного отжига необходима температура +640…+690 °С (подходит для изготовления листовых полуфабрикатов и их производных) и +740…+790 °С (для изготовления поковок, прутков, штамповки и пр.).

    Для неполного отжига достаточно температуры +520…+560 °С. Среди свойств, которые понижают ценность данного сплава, можно выделить невысокую прочность и излишнюю водородную хрупкость (для поддержания оптимальных свойств металла необходимо содержание водорода не более 0,005 %).

    Сплав ОТ4-1

    Сферы применения титана и его сплавов

    Свойства титана и его сплавов нашли широкое применение в ракетной, авиационной и судостроительной отраслях. Титан и ферротитан являются лигирующими добавками к стали. Кроме этого, они могут выступать в качестве раскислителя.

    Широкое распространение технический титан получил при изготовлении изделий, подвергающихся агрессивному воздействию среды (например, трубопроводы, клапаны, химические реакторы, арматура и пр.). Даже в электровакуумных приборах, работа которых тесно связана с высокой температурой, сетки и некоторые другие детали изготовлены из этого устойчивого материала.

    Среди конструкционных материалов титан занимает четвертое место (после железа, алюминия и магния). Важным свойством титанового сплава с алюминием является высокая стойкость к окислению и повышению температуры, что особенно актуально для авиационной и автомобильной промышленности. Пищевая промышленность и восстановительная хирургия по достоинству оценили такое свойство этого материала, как биологическая безопасность для здоровья человека.

    Разнообразие свойств титана и его сплавов довольно широко: высокая механическая прочность, устойчивость к повышению температуры, удельная прочность, стойкость к коррозии, низкая плотность и многие другие. Несмотря на высокую стоимость этого металла, затраты могут быть компенсированы более длительным сроком эксплуатации. А в некоторых ситуациях только этот материал способен выдержать работу в конкретных условиях.

    Для авиастроения большое значение имеет такое свойство, как легкость материала в сочетании с высокой прочностью. Возможность использовать легкий Ti для работы в среде, где преобладают высокие температуры, выгодно отличает его от алюминия. Эти свойства титана и его сплавов позволяют использовать их при изготовлении обшивки самолетов, деталей шасси и крепления, и даже для конструирования реактивных двигателей. При этом масса изделия снижается на 10–25 %. Элементы воздухозаборников, лопатки и диски компрессоров, крепеж и многие другие детали производятся именно из титановых сплавов.

    Ракетостроение также не обходится без данного материала, поскольку здесь необходимо решать сразу несколько проблем, возникающих из-за слишком малого срока работы двигателей при быстром прохождении плотных слоев атмосферы. Такие проблемы, как статическая выносливость, ползучесть и усталостная прочность, можно преодолеть за счет использования титана.

    Свойства технического титана не соответствует в полной мере запросам авиационной отрасли, поскольку он не обладает достаточной тепловой прочностью. Зато его свойство сопротивляться коррозии нашло свое применение в судостроительной и химической промышленности. Здесь с его помощью изготавливают насосы для перекачки кислоты или соли, компрессоры, трубопроводы и запорную арматуру.

     

    Емкости и фильтры из этого материала не поддаются негативному влиянию серной и соляной кислоты, а также растворам хлора. Помимо этого, Ti входит в состав материала для изготовления теплообменников, работающих в агрессивной среде (к примеру, в азотной кислоте). В области судостроения его можно встретить в обшивке подводных лодок и других кораблей, в материале торпед и гребных винтов. Удивительные свойства титана и его сплавов способствуют тому, что ракушки просто не налипают на такие детали. Вследствие этого снижается сопротивление судна во время движения.

    Повсеместное использование соединений этого металла могло бы приобрести колоссальные темпы, если бы не его высокая стоимость и малая распространенность.

    В промышленности соединения титана используются с разными целями в зависимости от их свойств. Так, высокая твердость карбида позволяет изготавливать из него режущие инструменты и абразивы. В производстве бумаги и пластика нашел свое применение белый диоксид. Кроме этого, с помощью него изготавливаются титановые белила.

    В лакокрасочной и химической промышленности титаноорганические соединения используются как отвердитель и катализатор. Также в качестве добавки Ti применяют в химической, стекловолоконной и электронной промышленности, где идут в дело его неорганические соединения. Из нитрида титана изготавливают специальное покрытие для инструментов, а для обработки металлов чаще используют диборид как компонент, придающий твердость.

    Сферы применения титана и его сплавов

    Почему следует обращаться именно к нам

    Мы с уважением относимся ко всем клиентам и одинаково скрупулезно выполняем задания любого объема.

    Наши производственные мощности позволяют обрабатывать различные материалы:

    • цветные металлы;
    • чугун;
    • нержавеющую сталь.

    При выполнении заказа наши специалисты применяют все известные способы механической обработки металла. Современное оборудование последнего поколения дает возможность добиваться максимального соответствия изначальным чертежам.

    Для того чтобы приблизить заготовку к предъявленному заказчиком эскизу, наши специалисты используют универсальное оборудование, предназначенное для ювелирной заточки инструмента для особо сложных операций. В наших производственных цехах металл становится пластичным материалом, из которого можно выполнить любую заготовку.

    Преимуществом обращения к нашим специалистам является соблюдение ими ГОСТа и всех технологических нормативов. На каждом этапе работы ведется жесткий контроль качества, поэтому мы гарантируем клиентам добросовестно выполненный продукт.

    Благодаря опыту наших мастеров на выходе получается образцовое изделие, отвечающее самым взыскательным требованиям. При этом мы отталкиваемся от мощной материальной базы и ориентируемся на инновационные технологические наработки.

    Мы работаем с заказчиками со всех регионов России. Если вы хотите сделать заказ на металлообработку, наши менеджеры готовы выслушать все условия. В случае необходимости клиенту предоставляется бесплатная профильная консультация.

    Где применяют ТИТАН

    Области применения титана

    При существующих высоких ценах на титан его применяют преимущественно для производства военного оборудования, где главная роль принадлежит не стоимости, а техническим характеристикам. Тем не менее известны случаи использования уникальных свойств титана для гражданских нужд. По мере снижения цен на титан и роста его производства применение этого металла в военных и гражданских целях будет все больше расширяться.
    Авиация. Малый удельный вес и высокая прочность (особенно при повышенных температурах) титана и его сплавов делают их весьма ценными авиационными материалами. В области самолетостроения и производства авиационных двигателей титан все больше вытесняет алюминий и нержавеющую сталь. С повышением температуры алюминий быстро утрачивает свою прочность. С другой стороны, титан обладает явным преимуществом в отношении прочности при температуре до 430° С, а повышенные температуры такого порядка возникают при больших скоростях благодаря аэродинамическому нагреванию. Преимущество замены стали титаном в авиации заключается в снижении веса без потери прочности. Общее снижение веса с повышением показателей при повышенных температурах позволяет увеличить полезную нагрузку, дальность действия и маневренность самолетов. Этим объясняются усилия, направленные на расширение применения титана в самолетостроении при производстве двигателей, постройке фюзеляжей, изготовлении обшивки и даже крепежных деталей.
    При постройке реактивных двигателей титан применяется преимущественно для изготовления лопаток компрессора, дисков турбины и многих других штампованных деталей. Здесь титан вытесняет нержавеющую и термически обрабатываемую легированную стали. Экономия в весе двигателя в один килограмм позволяет сберегать до 10 кг в общем весе самолета благодаря облегчению фюзеляжа. В дальнейшем намечено применять листовой титан для изготовления кожухов камер сгорания двигателя.
    В конструкции самолета титан находит широкое применение для деталей фюзеляжа, работающих при повышенных температурах. Листовой титан применяется для изготовления всевозможных кожухов, защитных оболочек кабелей и направляющих для снарядов. Из листов легированного титана изготовляются различные элементы жесткости, шпангоуты фюзеляжа, нервюры и т. д.
    Кожухи, закрылки, защитные оболочки для кабелей и направляющие для снарядов изготовляются из нелегированного титана. Легированный титан применяется для изготовления каркаса фюзеляжа, шпангоутов, трубопроводов и противопожарных перегородок.
    Титан получает все большее применение при постройке самолетов F-86 и F-100. В будущем из титана будут делать створки шасси, трубопроводы гидросистем, выхлопные патрубки и сопла, лонжероны, закрылки, откидные стойки и т. д.
    Титан можно применять для изготовления броневых плит, лопастей пропеллера и снарядных ящиков.
    В настоящее время титан применяется в конструкции самолетов военной авиации Дуглас Х-3 для обшивки, Рипаблик F-84F, Кертисс-Райт J-65 и Боинг В-52.
    Применяется титан и при постройке гражданских самолетов DC-7. Фирма «Дуглас» заменой алюминиевых сплавов и нержавеющей стали титаном при изготовлении мотогондолы и противопожарных перегородок уже добилась экономии в весе конструкции самолета около 90 кг. В настоящее время вес титановых деталей в этом самолете составляет 2%, причем эту цифру предусматривается довести до 20% общего веса самолета.
    Применение титана позволяет уменьшить вес геликоптеров. Листовой титан используется для полов и дверей. Значительное снижение веса геликоптера (около 30 кг) было достигнуто в результате замены легированной стали титаном для обшивки лопастей его несущих винтов.
    Военно-морской флот. Коррозионная стойкость титана и его сплавов делает их весьма ценным материалом на море. Военно-морское министерство США обстоятельно исследует коррозионную стойкость титана против воздействия дымовых газов, пара, масла и морской воды. Почти такое же значение в военно-морском деле имеет и высокое значение удельной прочности титана.
    Малый удельный вес металла в сочетании с коррозионной стойкостью повышает маневренность и дальность действия кораблей, а также снижает расходы по уходу за материальной частью и ее ремонту.
    Применение титана в военно-морском деле включает изготовление выхлопных глушителей для дизельных двигателей подводных лодок, дисков измерительных приборов, тонкостенных труб для конденсаторов и теплообменников. По мнению специалистов, титан, как никакой другой металл, способен увеличить срок службы выхлопных глушителей на подводных лодках. Применительно к дискам измерительных приборов, работающих в условиях соприкосновения с соленой водой, бензином или маслом, титан обеспечит лучшую стойкость. Исследуется возможность применения титана для изготовления труб теплообменников, которые должны обладать коррозионной стойкостью в морской воде, омывающей трубы снаружи, и одновременно противостоять воздействию выхлопного конденсата, протекающего внутри них. Рассматривается возможность изготовления из титана антенн и узлов радиолокационных установок, от которых требуется стойкость к воздействию дымовых газов и морской воды. Титан может найти применение и для производства таких деталей, как клапаны, пропеллеры, детали турбин и т. д.
    Артиллерия. По-видимому, наиболее крупным потенциальным потребителем титана может явиться артиллерия, где в настоящее время ведутся интенсивные исследования различных опытных образцов. Тем не менее в этой области стандартизовано производство лишь отдельных деталей и частей из титана. Весьма ограниченное использование титана в артиллерии при большом размахе исследований объясняется его высокой стоимостью.
    Были исследованы различные детали артиллерийского оборудования с точки зрения возможности замены титаном обычных материалов при условии снижения цен на титан. Главное внимание уделялось деталям, для которых существенно снижение веса (детали, переносимые вручную и перевозимые по воздуху).
    Опорная плита миномета, изготовленная из титана вместо стали. Путем такой замены и после некоторой переделки вместо стальной плиты из двух половинок общим весом 22 кг удалось создать одну деталь весом 11 кг. Благодаря такой замене можно уменьшить число обслуживающего персонала с трех человек до двух. Рассматривается возможность применения титана для изготовления орудийных пламегасителей.
    Проходят испытания изготовленные из титана орудийные станки, крестовины лафетов и цилиндры противооткатных приспособлений. Широкое применение титан может получить при производстве управляемых снарядов и ракет.
    Проведенные первые исследования титана и его сплавов показали возможность изготовления из них броневых плит. Замена стальной брони (толщиной 12,7 мм) титановой броней одинаковой снарядостойкости (толщиной 16 мм) позволяет получить, по данным этих исследований, экономию в весе до 25%.
    Сплавы титана повышенного качества позволяют надеяться на возможность замены стальных плит титановыми равной толщины, что дает экономию в весе до 44%. Промышленное применение титана позволит обеспечить большую маневренность, увеличит дальность перевозки и долговечность орудия. Современный уровень развития воздушного транспорта делает очевидными преимущества легких броневиков и других машин из титана. Артиллерийское ведомство намерено снарядить в будущем пехоту касками, штыками, гранатометами и ручными огнеметами, сделанными из титана. Первое применение в артиллерии титановый сплав получил для изготовления поршня некоторых автоматических орудий.
    Транспорт. Многие из тех выгод, которые сулит использование титана при производстве бронетанковой материальной части, относятся и к транспортным средствам.
    Замена конструкционных материалов, потребляемых в настоящее время предприятиями транспортного машиностроения, титаном должна привести к снижению расхода топлива, росту полезной грузоподъемности, повышению предела усталости деталей кривошипно-шатунных механизмов и т. п. На железных дорогах исключительно важно снизить мертвый груз. Существенное уменьшение общего веса подвижного состава за счет применения титана позволит сэкономить в тяге, уменьшить габариты шеек и букс.
    Важное значение вес имеет и для прицепных автотранспортных средств. Здесь замена стали титаном при производстве осей и колес также позволила бы увеличить полезную грузоподъемность.
    Все эти возможности можно было бы реализовать при снижении цены титана с 15 до 2-3 долларов за фунт титановых полуфабрикатов.
    Химическая промышленность. При производстве оборудования для химической промышленности самое важное значение имеет коррозионная стойкость металла. Существенно также снизить вес и повысить прочность оборудования. Логически следует предположить, что титан мог бы дать ряд выгод при производстве из него оборудования для транспортировки кислот, щелочей и неорганических солей. Дополнительные возможности применения титана открываются в производстве такого оборудования, как баки, колонны, фильтры и всевозможные баллоны высокого давления.
    Применение трубопроводов из титана способно повысить коэффициент полезного действия нагревательных змеевиков в лабораторных автоклавах и теплообменниках. О применимости титана для производства баллонов, в которых длительно хранятся газы и жидкости под давлением, свидетельствует применяемая при микроанализе продуктов сгорания вместо более тяжелой трубки из стекла (показана в верхней части снимка). Благодаря малой толщине стенок и незначительному удельному весу эта трубка может взвешиваться на более чувствительных аналитических весах меньших размеров. Здесь сочетание легкости и коррозионной стойкости позволяет повысить точность химического анализа.
    Прочие области применения. Применение титана целесообразно в пищевой, нефтяной и электротехнической промышленности, а также для изготовления хирургических инструментов и в самой хирургии.
    Столы для подготовки пищи, пропарочные столы, изготовленные из титана, по качествам превосходят стальные изделия.
    В нефте- и газобурильной областях серьезное значение имеет борьба с коррозией, поэтому применение титана позволит реже заменять корродирующие штанги оборудования. В каталитическом производстве и для изготовления нефтепроводов желательно применять титан, сохраняющий механические свойства при высокой температуре и обладающий хорошей коррозионной устойчивостью.
    В электропромышленности титан можно применить для бронирования кабелей благодаря хорошей удельной прочности, высокому электрическому сопротивлению и немагнитным свойствам.
    В различных отраслях промышленности начинают применять крепежные детали той или иной формы, изготовленные из титана. Дальнейшее расширение применения титана возможно для изготовления хирургических инструментов главным образом благодаря его коррозионной стойкости. Инструменты из титана в этом отношении превосходят обычные хирургические инструменты при многократном кипячении или обработке в автоклаве.
    В области хирургии титан оказался лучше виталлиума и нержавеющих сталей. Присутствие титана в организме вполне допустимо. Пластинка и винты из титана для крепления костей находились в организме животного несколько месяцев, причем имело место прорастание кости в нитки резьбы винтов и в отверстие пластинки.
    Преимущество титана заключается также в том, что на пластине образуется мышечная ткань.

    Где используют титан?

    В судостроении

     

    Широко используются титановые сплавы в морском судостроении. Исключительная стойкость титана и его сплавов при воздействии морской воды делает их незаменимыми материалами для обшивки судов, производства деталей насосов, трубопроводов и для других целей морского судостроения.

     

    Главные свойства титана, которые открывают ему большие перспективы в морском судостроении, ― это малая плотность, феноменальная коррозионная стойкость металла в морской воде, стойкость к эрозии и кавитации.

     

    Малая плотность позволяет снижать массу корабля, что повышает его маневренность и дальность хода. Обшитые листами титана корпуса судов никогда не потребуют окраски, так как они десятилетиями не ржавеют и не разрушаются в морской воде. Эрозионная и навигационная стойкость позволят не бояться больших скоростей в морской воде: взвешенные в ней мириады песчинок не повредят титановым рулям, винтам, корпусу. Из титановых сплавов можно изготовлять валы, распорки, опоры, части якоря, выхлопные глушители подлодок. Глушители из титана значительно экономичнее, долговечнее, прочнее медно-никелевых. На подводных лодках титан используется для изготовления различных деталей палубной арматуры, антенн, приборов, рукояток, постоянно погруженных в морскую воду. Они способны служить вечно, не требуя покрасок и ремонтов. Из титана можно сделать и корпуса подводных лодок сверхглубокого погружения (до 6 км).

     

    Кроме того, слабые магнитные свойства титана и его сплавов позволяют применять их для создания самых разнообразных навигационных приборов, устранять девиацию, т. е. влияние металлических частей корабля на навигационные приборы, уменьшать опасность подрыва на магнитных минах. Не исключена возможность создания из титановых сплавов так называемых немагнитных кораблей, крайне необходимых для геолого-геофизических исследований в открытых океанах.

     

    Наибольшие перспективы в судостроении имеет применение титана в производстве конденсаторных труб, турбинных двигателей и паровых котлов. Увеличение размеров кораблей требует резкого повышения мощности двигателей и размеров котлов. Загрязнение последних в процессе эксплуатации приводит к замедлению скорости хода или даже к полной остановке судна. Применение конденсаторов из титана практически снимает проблему очистки котлов. Так, на одном из японских танкеров водоизмещением 164 тыс. тонн титановый конденсатор после эффективной эксплуатации в течение почти 5 тыс. часов не обнаружил ни следов коррозии и загрязнения, ни изменений в микроструктуре металла и его механических свойств.

     

    Серьезно обсуждаются проблемы строительства из титана обитаемых батискафов и батисфер для исследования морских глубин. Американские специалисты создали обитаемый батискаф «Алвин» с титановой оболочкой, который может исследовать глубины океана до 4 километров. Действительно, титан с его высочайшей коррозионной стойкостью и способностью выдерживать огромные давления и нагрузки ― наилучший материал для создания глубоководных аппаратов. Не исключено, что в будущем титан будет широко использоваться для строительства обитаемых экспериментальных жилищ под водой, где станут подолгу жить исследователи океанских и морских глубин, разведчики подводных богатств.

     

    Продолжение статьи читайте в февральском номере журнала «Наука и техника» за 2020 год.  Доступна как печатная, так и электронная версии журнала. Оформить подписку на журнал можно здесь.

     

    В магазине на сайте также можно купить магниты, календари, постеры с авиацией, кораблями, сухопутной техникой

    Титановые сплавы: обработка, свойства, применение, марки

    Одним из самых распространенных элементов, который находится в земле, можно назвать титан. Согласно результатам проведенных исследований, он занимает 4-е место по степени распространенности, уступая лидирующие позиции алюминию, железу и магнию. Несмотря на столь большое распространение, титан стал использоваться в промышленности лишь в 20 веке. Титановые сплавы во многом повлияли на развитие ракетостроения и авиации, что связано с сочетанием малой плотности с высокой удельной прочностью, а также коррозионной стойкостью. Рассмотрим все особенности данного материала подробнее.

    Титановые сплавыТитановые сплавы Титановые сплавы

    Общая характеристика титана и его сплавов

    Именно основные механические свойства титановых сплавов определяют их большое распространение. Если не уделять внимание химическому составу, то все титановые сплавы можно охарактеризовать следующим образом:

    1. Высокая коррозионная стойкость. Недостатком большинства металлов можно назвать то, что при воздействии высокой влажности на поверхности образуется коррозия, которая не только ухудшает внешний вид материала, но и снижает его основные эксплуатационные качества. Титан менее восприимчив к воздействию влажности, чем железо.
    2. Хладостойкость. Слишком низкая температура становится причиной того, что механические свойства титановых сплавов существенно снижаются. Часто можно встретить ситуацию, когда эксплуатация при отрицательных температурах становится причиной существенного повышения хрупкости. Титан довольно часто применяется при изготовлении космических кораблей.
    3. Титан и титановые сплавы имеют относительно низкую плотность, что существенно снижает вес. Легкие металлы получили широкое применение в самых различных отраслях промышленности, к примеру, в авиастроении, строительстве небоскребов и так далее.
    4. Высокая удельная прочность и низкая плотность – характеристики, которые довольно редко сочетаются. Однако именно за счет подобного сочетания титановые сплавы сегодня получили самое широкое распространение.
    5. Технологичность при обработке давлением определяет то, что сплав применяется часто в качестве заготовки при прессовании или другом виде обработки.
    6. Отсутствие реакции на воздействие магнитного поля также назовем причиной, по которой рассматриваемые сплавы получили широкое применение. Часто можно встретить ситуацию, когда проводится производство конструкций, при работе которых образуется магнитное поле. Применение титана позволяет исключить вероятность возникновения связи.

    Эти основные преимущества титановых сплавов определили их достаточно большое распространение. Однако, как ранее было отмечено, многое зависит от конкретного химического состава. Примером можно назвать то, что твердость изменяется в зависимости от того, какие именно вещества применяются при легировании.

    Важно, что температура плавления может достигать 1700 градусов Цельсия. За счет этого существенно повышается устойчивость состава к нагреву, но также усложняется процесс обработки.

    Виды титановых сплавов

    Классификация титановых сплавов ведется по достаточно большому количеству признаков. Все сплавы можно разделить на несколько основных групп:

    1. Высокопрочные и конструкционные – прочные титановые сплавы, которые обладают также достаточно высокой пластичностью. За счет этого они могут применяться при изготовлении деталей, на которые оказывается переменная нагрузка.
    2. Жаропрочные с низкой плотностью применяются как более дешевая альтернатива жаропрочным никелевым сплавам с учетом определенного температурного интервала. Прочность подобного титанового сплава может варьироваться в достаточно большом диапазоне, что зависит от конкретного химического состава.
    3. Титановые сплавы на основе химического соединения представляют жаропрочную структуру с низкой плотностью. За счет существенного снижения плотности вес также снижается, а жаропрочность позволяет использовать материал при изготовлении летательных аппаратов. Кроме этого с подобной маркой связывают также высокую пластичность.

    Маркировка титановых сплавов проводится по определенным правилам, которые позволяют определить концентрацию всех элементов. Рассмотрим некоторые из наиболее распространенных разновидностей титановых сплавов подробнее.

    Сферы из титанового сплаваСферы из титанового сплава

    Сферы из титанового сплава

    Рассматривая наиболее распространенные марки титановых сплавов, следует обратить внимание ВТ1-00 и ВТ1-0. Они относятся к классу технических титанов. В состав данного титанового сплава входит достаточно большое количество различных примесей, которые определяют снижение прочности. Однако за счет снижения прочности существенно повышается пластичность. Высокая технологическая пластичность определяет то, что технический титан можно получить даже при производстве фольги.

    Очень часто рассматриваемый состав сплава подвергается нагартовке. За счет этого повышается прочность, но существенно снижается пластичность. Многие специалисты считают, что рассматриваемый метод обработки нельзя назвать лучшим, так как он не оказывает комплексного благоприятного воздействия на основные свойства материала.

    Сплав ВТ5 довольно распространен, характеризуется применением в качестве легирующего элемента исключительно алюминия. Важно отметить, что именно алюминий считается самым распространенным легирующим элементом в титановых сплавах. Это связано с нижеприведенными моментами:

    1. Применение алюминия позволяет существенно повысить модули упругости.
    2. Алюминий также позволяет повысить значение жаропрочности.
    3. Подобный металл один из самых распространенных в своем роде, за счет чего существенно снижается стоимость получаемого материала.
    4. Снижается показатель водородной хрупкости.
    5. Плотность алюминия ниже плотности титана, за счет чего введение рассматриваемого легирующего вещества позволяет существенно повысить удельную прочность.

    В горячем состоянии ВТ5 хорошо куется, прокатывается и штампуется. Именно поэтому его довольно часто применяют для получения поковки, проката или штамповки. Подобная структура может выдержать воздействие не более 400 градусов Цельсия.

    Титановый сплав ВТ22 может иметь самую различную структуру, что зависит от химического состава. К эксплуатационным особенностям материала можно отнести следующие моменты:

    1. Высокая технологическая пластичность при обработке давлением в горячем состоянии.
    2. Применяется для изготовления прутков, труб, плиты, штамповок, профиля.
    3. Для сваривания могут использоваться все наиболее распространенные методы.
    4. Важным моментом является то, что после завершения процесса сварки рекомендуется проводить отжиг, за счет чего существенно повышаются механические свойства получаемого шва.

    Существенно повысить эксплуатационные качества титанового сплава ВТ22 можно путем применения сложной технологии отжига. Она предусматривает нагрев до высокой температуры и выдержки в течение нескольких часов, после чего проводится поэтапное охлаждение в печи также с выдержкой в течение длительного периода. После качественного проведения отжига сплав подойдет для изготовления высоконагруженных деталей и конструкций, которые могут нагреваться до температуры более 350 градусов Цельсия. Примером можно назвать элементы фюзеляжа, крыла, детали системы управления или крепления.

    Титановый сплав ВТ6 сегодня получил самое широкое распространение за рубежом. Назначение подобного титанового сплава заключается в изготовлении баллонов, которые могут работать под большим давлением. Кроме этого, согласно результатам проведенных исследований, в 50% случаев в авиакосмической промышленности применяется титановый сплав, который по своим эксплуатационным качествам и составу соответствует ВТ6. Стандарт ГОСТ сегодня практически не применяется за рубежом для обозначения титановых и многих других сплавов, что следует учитывать. Для обозначения применяется своя уникальная маркировка.

    ВТ6 обладает исключительными эксплуатационными качествами по причине того, что в состав добавляется также ванадий. Этот легирующий элемент характеризуется тем, что повышает не только прочность, но и пластичность.

    Данный сплав хорошо деформируется в горячем состоянии, что также можно назвать положительным качеством. При его применении получают трубы, различные профили, плиты, листы, штамповки и многие другие заготовки. Для сваривания можно применять все современные методы, что также существенно расширяет область применения рассматриваемого титанового сплава. Для повышения эксплуатационных качеств также проводится термическая обработка, к примеру, отжиг или закалка. На протяжении длительного времени отжиг проводился при температуре не выше 800 градусов Цельсия, однако результаты проведенных исследований указывают на то, что есть смысл в повышении показателя до 950 градусов Цельсия. Двойной отжиг зачастую проводится для повышения сопротивления коррозионному воздействию.

    Внешний вид титановых сплавовВнешний вид титановых сплавов

    Внешний вид титановых сплавов

    Также большое распространение получил сплав ВТ8. В сравнении с предыдущим он обладает более высокими прочностными и жаропрочными качествами. Достигнуть уникальных эксплуатационных качеств смогли за счет добавления в состав большого количества алюминия и кремния. Стоит учитывать, что максимальная температура, при которой может эксплуатироваться данный титановый сплав около 480 градусов Цельсия. Разновидностью этого состава можно назвать ВТ8-1. Его основными эксплуатационными качествами назовем нижеприведенные моменты:

    1. Высокая термическая стабильность.
    2. Низкая вероятность образования трещин в структуре за счет обеспечения прочных связей.
    3. Технологичность при проведении различных процедур обработки, к примеру, холодной штамповки.
    4. Высокая пластичность вместе с повышенной прочностью.

    Для существенно повышения эксплуатационных качеств довольно часто проводится двойной изотермический отжиг. В большинстве случаев данный титановый сплав применяется при производстве поковок, прудков, различных плит, штамповок и других заготовок. Однако стоит учитывать, что особенности состава не позволяют проводить сварочные работы.

    Применение титановых сплавов

    Рассматривая области применения титановых сплавов отметим, что большая часть разновидностей применяется в авиационной и ракетостроительной сферах, а также в сфере изготовления морских судов. Для изготовления деталей авиадвигателей другие металлы не подходят по причине того, что при нагреве до относительно невысоких температур начинают плавиться, за счет чего происходит деформация конструкции. Также увеличения веса элементов становится причиной потери КПД.

    Нож из титанового сплаваНож из титанового сплава
    Нож из титанового сплава
    Применение титановых сплавов в протезахПрименение титановых сплавов в протезах
    Применение титановых сплавов в медицине

    Применим материал при производстве:

    1. Трубопроводов, используемых для подачи различных веществ.
    2. Запорной арматуры.
    3. Клапанов и других подобных изделий, которые применяются в агрессивных химических средах.
    4. В авиастроении сплав применяется для получения обшивки, различных креплений, деталей шасси, силовых наборов и других агрегатов. Как показывают результаты проводимых исследований, внедрение подобного материала снижает вес примерно на 10-25%.
    5. Еще одной сферой применения является ракетостроение. Кратковременная работа двигателя, движение на большой скорости и вхождение в плотные слои становится причиной, по которой конструкция переживает серьезные нагрузки, способные выдержать не все материалы.
    6. В химической промышленности титановый сплав применяется по причине того, что он не реагирует на воздействие различных веществ.
    7. В судостроении титан хорош тем, что не реагирует на воздействие соленой воды.

    В целом можно сказать, что область применения титановых сплавов весьма обширна. При этом проводится легирование, за счет чего существенно повышаются основные эксплуатационные качества материала.

    Трубы из титановых сплавовТрубы из титановых сплавов

    Трубы из титановых сплавов

    Термообработка титановых сплавов

    Для повышения эксплуатационных качеств проводится термическая термообработка титановых сплавов. Данный процесс существенно усложняется по причине того, что перестроение кристаллической решетки поверхностного слоя проходит при температуре выше 500 градусов Цельсия. Для плавов марки ВТ5 и ВТ6-С довольно часто проводят отжиг. Время выдержки может существенно отличаться, что зависит от толщины заготовки и других линейных размеров.

    Детали, изготавливаемые из ВТ14, на момент применения должны выдерживать температуру до 400 градусов Цельсия. Именно поэтому термическая обработка предусматривает закалку с последующим старением. При этом закалка требует нагрева среды до температуры около 900 градусов Цельсия, в то время как старение предусматривает воздействие среды с температурой 500 градусов Цельсия на протяжении более 12-и часов.

    Индукционные методы нагрева позволяют проводить самые различные процессы термической обработки. Примером можно назвать отжиг, старение, нормализацию и так далее. Конкретные режимы термической обработки выбираются в зависимости от того, какие нужно достигнуть эксплуатационные характеристики.

    Титан. Описание, свойства, происхождение и применение металла

    Брусок кристаллического титана

    Брусок кристаллического титана

    Титан — лёгкий прочный металл серебристо-белого цвета. Существует в двух кристаллических модификациях: α-Ti с гексагональной плотноупакованной решёткой, β-Ti с кубической объёмно-центрированной упаковкой, температура полиморфного превращения α↔β 883 °C.Титан и титановые сплавы сочетают легкость, прочность, высокую коррозийную стойкость, низкий коэффициент теплового расширения, возможность работы в широком диапазоне температур.

    СТРУКТУРА


    Кристаллическая структура кристалла

    Кристаллическая структура кристалла

    Титан имеет две аллотропические модификации. Низкотемпературная модификация, существующая до 882 °C, имеет гексагональную плотноупакованную решетку с периодами а = 0,296 нм и с = 0,472 нм. Высокотемпературная модификация имеет решетку объемноцентрированного куба с периодом а = 0,332 нм.
    Полиморфное превращение (882 °C) при медленном охлаждении происходит по нормальному механизму с образованием равноосных зерен, а при быстром охлаждении — по мартенситному механизму с образованием игольчатой структуры.
    Титан обладает высокой коррозионной и химической стойкостью благодаря защитной окисной пленке на его поверхности. Он не корродирует в пресной и морской воде, минеральных кислотах, царской водке и др.

    СВОЙСТВА


    Кристаллы титана

    Кристаллы титана

    Точка плавления 1671 °C, точка кипения 3260 °C, плотность α-Ti и β-Ti соответственно равна 4,505 (20 °C) и 4,32 (900 °C) г/см³, атомная плотность 5,71×1022 ат/см³. Пластичен, сваривается в инертной атмосфере.
    Применяемый в промышленности технический титан содержит примеси кислорода, азота, железа, кремния и углерода, повышающие его прочность, снижающие пластичность и влияющие на температуру полиморфного превращения, которое происходит в интервале 865-920 °С. Для технического Титана марок ВТ1-00 и ВТ1-0 плотность около 4,32 г/см3, предел прочности 300-550 Мн/м2 (30-55кгс/мм2), относительное удлинение не ниже 25%, твердость по Бринеллю 1150-1650 Мн/м2 (115-165 кгс/мм2). Является парамагнетиком. Конфигурация внешней электронной оболочки атома Ti 3d24s2.

    Имеет высокую вязкость, при механической обработке склонен к налипанию на режущий инструмент, и поэтому требуется нанесение специальных покрытий на инструмент, различных смазок.

    При обычной температуре покрывается защитной пассивирующей пленкой оксида TiO2, благодаря этому коррозионностоек в большинстве сред (кроме щелочной). Титановая пыль имеет свойство взрываться. Температура вспышки 400 °C.

    ЗАПАСЫ И ДОБЫЧА


    Кристаллы титана

    Кристаллы титана

    Основные руды: ильменит (FeTiO3), рутил (TiO2), титанит (CaTiSiO5).

    На 2002 год, 90 % добываемого титана использовалось на производство диоксида титана TiO2. Мировое производство диоксида титана составляло 4,5 млн т. в год. Подтвержденные запасы диоксида титана (без России) составляют около 800 млн т. На 2006 год, по оценке Геологической службы США, в пересчёте на диоксид титана и без учёта России, запасы ильменитовых руд составляют 603—673 млн т., а рутиловых — 49.7—52.7 млн т. Таким образом, при нынешних темпах добычи мировых разведанных запасов титана (без учёта России) хватит более чем на 150 лет.

    Россия обладает вторыми в мире, после Китая, запасами титана. Минерально-сырьевую базу титана России составляют 20 месторождений (из них 11 коренных и 9 россыпных), достаточно равномерно рассредоточенных по территории страны. Самое крупное из разведанных месторождений находится в 25 км от города Ухта (Республика Коми). Запасы месторождения оцениваются в 2 миллиарда тонн.

    Концентрат титановых руд подвергают сернокислотной или пирометаллургической переработке. Продукт сернокислотной обработки — порошок диоксида титана TiO2. Пирометаллургическим методом руду спекают с коксом и обрабатывают хлором, получая пары тетрахлорида титана их при 850 °C восстанавливают магнием.

    Полученную титановую «губку» переплавляют и очищают. Ильменитовые концентраты восстанавливают в электродуговых печах с последующим хлорированием возникающих титановых шлаков.

    ПРОИСХОЖДЕНИЕ


    Титановая руда

    Титановая руда

    Титан находится на 10-м месте по распространённости в природе. Содержание в земной коре — 0,57 % по массе, в морской воде — 0,001 мг/л. В ультраосновных породах 300 г/т, в основных — 9 кг/т, в кислых 2,3 кг/т, в глинах и сланцах 4,5 кг/т. В земной коре титан почти всегда четырёхвалентен и присутствует только в кислородных соединениях. В свободном виде не встречается. Титан в условиях выветривания и осаждения имеет геохимическое сродство с Al2O3. Он концентрируется в бокситах коры выветривания и в морских глинистых осадках.
    Перенос титана осуществляется в виде механических обломков минералов и в виде коллоидов. До 30 % TiO2 по весу накапливается в некоторых глинах. Минералы титана устойчивы к выветриванию и образуют крупные концентрации в россыпях. Известно более 100 минералов, содержащих титан. Важнейшие из них: рутил TiO2, ильменит FeTiO3, титаномагнетит FeTiO3 + Fe3O4, перовскит CaTiO3, титанит CaTiSiO5. Различают коренные руды титана — ильменит-титаномагнетитовые и россыпные — рутил-ильменит-цирконовые.
    Месторождения титана находятся на территории ЮАР, России, Украины, Китая, Японии, Австралии, Индии, Цейлона, Бразилии, Южной Кореи, Казахстана. В странах СНГ ведущее место по разведанным запасам титановых руд занимает РФ (58.5%) и Украина (40.2%).

    ПРИМЕНЕНИЕ


    Изделия из титана

    Изделия из титана

    Титановые сплавы играют большую роль в авиационной технике, где стремятся получить наиболее легкую конструкцию в сочетании с необходимой прочностью. Титан легок по сравнению с другими металлами, но в то же время может работать при высоких температурах. Из титановых сплавов изготовляют обшивку, детали крепления, силовой набор, детали шасси, различные агрегаты. Также данные материалы применяются в конструкциях авиационных реактивных двигателей. Это позволяет уменьшить их массу на 10-25%. Из титановых сплавов производят диски и лопатки компрессора, детали воздухозаборника и направляющего аппарата, крепеж.

    Также титан и его сплавы используют в ракетостроении. Ввиду кратковременной работы двигателей и быстрого прохождения плотных слоев атмосферы в ракетостроении в значительной мере снимаются проблемы усталостной прочности, статической выносливости и отчасти ползучести.

    Технический титан из-за недостаточно высокой теплопрочности не пригоден для применения в авиации, но благодаря исключительно высокому сопротивлению коррозии в ряде случаев незаменим в химической промышленности и судостроении. Так его применяют при изготовлении компрессоров и насосов для перекачки таких агрессивных сред, как серная и соляная кислота и их соли, трубопроводов, запорной арматуры, автоклав, различного рода емкостей, фильтров и т.п. Только титан обладает коррозионной стойкостью в таких средах, как влажный хлор, водные и кислые растворы хлора, поэтому из данного металла изготовляют оборудование для хлорной промышленности. Из титана делают теплообменники, работающие в коррозионно активных средах, например в азотной кислоте (не дымящей). В судостроении титан используется для изготовления гребных винтов, обшивки морских судов, подводных лодок, торпед и т.д. На титан и его сплавы не налипают ракушки, которые резко повышают сопротивление судна при его движении.

    Титановые сплавы перспективны для использования во многих других применениях, но их распространение в технике сдерживается высокой стоимостью и дефицитностью титана.


    Титан (англ. Titanium) — Ti

    Молекулярный вес 47.88 г/моль
    Происхождение названия Минерал получил своё название в честь титанов, персонажей древнегреческой мифологии, детей Геи.
    IMA статус подтвержден в 2010 году

    КЛАССИФИКАЦИЯ


    Strunz (8-ое издание) 1/A.06-05
    Dana (7-ое издание) 1.1.36.1
    Nickel-Strunz (10-ое издание) 1.AB.05

    ФИЗИЧЕСКИЕ СВОЙСТВА


    Цвет минерала Серебристо-серый
    Цвет черты серовато черный
    Прозрачность непрозрачный
    Блеск металлический
    Спайность нет
    Твердость (шкала Мооса) 4
    Излом в зазубринах
    Прочность податливый
    Плотность (измеренная) 4.503 г/см3
    Радиоактивность (GRapi) 0
    Магнетизм парамагнетик

    ОПТИЧЕСКИЕ СВОЙСТВА


    Люминесценция в ультрафиолетовом излучении не флюоресцентный

    КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА


    Точечная группа 6/mmm (6/m 2/m 2/m) — дигексагональный дипирамидальный
    Пространственная группа P63/mmc
    Сингония гексагональная
    Параметры ячейки a=2,951 с=4,697 (α-Ti)

    Интересные статьи:

    mineralpro.ru   13.07.2016  

    Свойства и применение титана и его сплавов, технические характеристики

    Титан занимает 4-е место по распространению в производстве, но эффективная технология его извлечения была разработана только в 40-х гг прошлого века. Это металл серебристого цвета, характеризующийся небольшой удельной массой и уникальными характеристиками. Для анализа степени распространения в промышленности и других сферах необходимо озвучить свойства титана и области применения его сплавов.

    Основные характеристики

    Металл обладает малой удельной массой – всего 4.5 г/см³. Антикоррозийные качества обусловлены устойчивой оксидной пленкой, образующейся на поверхности. Благодаря этому качеству титан не изменяет своих свойств при длительном нахождении в воде, соляной кислоте. Не возникают поврежденные участки из-за воздействия напряжения, что является основной проблемой стали.

    В чистом виде титан обладает следующими качествами и характеристиками:

    • номинальная температура плавления — 1 660°С;
    • при термическом воздействии +3 227°С закипает;
    • предел прочности при растяжении – до 450 МПа;
    • характеризуется небольшим показателем упругости – до 110,25 ГПа;
    • по шкале НВ твердость составляет 103;
    • предел текучести один из самых оптимальных среди металлов – до 380 Мпа;
    • теплопроводность чистого титана без добавок – 16,791 Вт/м*С;
    • минимальный коэффициент термического расширения;
    • этот элемент является парамагнитом.

    Для сравнения, прочность этого материала в 2 раза больше, чем у чистого железа и в 4 раза такого же показателя алюминия. Также титан имеет две полиморфные фазы – низкотемпературную и высокотемпературную.

    Для производственных нужд чистый титан не применяется из-за его дороговизны и требуемых эксплуатационных качеств. Для повышения жесткости в состав добавляют оксиды, гибриды и нитриды. Реже изменяют характеристики материала для улучшения стойкости к коррозии. Основные виды добавок для получения сплавов: сталь, никель, алюминий. В некоторых случаях он выполняет функции дополнительного компонента.

    О технологии сварки титана читайте здесь.

    Области применения

    Благодаря небольшой удельной массе и прочностным параметрам титан широко используется в авиационной и космической промышленности. Его применяют в качестве основного конструкционного материала в чистом виде. В особых случаях за счет уменьшения жаропрочности делают более дешевые сплавы. При этом его сопротивление коррозии и механическая прочность остаются неизменными.

    Кроме этого, материал с добавками титана нашел применение в следующих областях:

    • Химическая промышленность. Его стойкость практически ко всем агрессивным средам, кроме органических кислот, позволяет изготавливать сложное оборудование с хорошими показателями безремонтного срока службы.
    • Производство транспортных средств. Причина – небольшая удельная масса и механическая прочность. Из него делают каркасы или несущие элементы конструкций.
    • Медицина. Для особых целей применяется специальный сплав нитинол (титан и никель). Его отличительное свойство – память формы. Для уменьшения нагрузки пациентов и минимизации вероятности негативного воздействия на организм многие медицинские шины и подобные им устройства делают из титана.
    • В промышленности металл применяется для изготовления корпусов и отдельных элементов оборудования.
    • Ювелирные украшения из титана обладают уникальным внешним видом и качествами.

    В большинстве случаев материал обрабатывается в заводских условиях. Но есть ряд исключений – зная свойства этого материала, часть работ по изменению внешнего вида изделия и его характеристик можно выполнять в домашней мастерской.

    Особенности обработки

    Для придания изделию нужной формы необходимо использовать специальное оборудование – токарный и фрезерный станок. Ручное резание или фрезеровка титана невозможна из-за его твердости. Помимо выбора мощности и других характеристик оборудования необходимо правильно подобрать режущие инструменты: фрезы, резцы, развертки, сверла и т.д.

    При этом учитываются такие нюансы:

    • Титановая стружка легко воспламеняется. Необходимо принудительное охлаждение поверхности детали и работа на минимальных скоростях.
    • Гибка изделия выполняется только после предварительного разогрева поверхности. В противном случае велика вероятность появления трещин.
    • Сварка. Обязательно соблюдение особых условий.

    Титан – уникальный материал с хорошими эксплуатационными и техническими качествами. Но для его обработки следует знать специфику технологии, а главное – технику безопасности.

    Титан

    Химический элемент титан относится к переходным металлам. Он был открыт в 1791 году преподобным Уильямом Грегором.

    Зона данных

    Классификация: Титан — переходный металл
    Цвет: серебристо-белый
    Атомный вес: 47,87
    Состояние: цельный
    Точка плавления: 1668 o C, 1941 K
    Температура кипения: 3287 o C, 3560 K
    Электронов: 22
    Протонов: 22
    Нейтронов в наиболее распространенном изотопе: 26
    Электронных оболочек: 2,8,10,2
    Электронная конфигурация: [Ар] 3d 2 4s 2
    Плотность при 20 o C: 4.50 г / см 3
    Показать больше, в том числе: тепла, энергии, окисления,
    реакций, соединений, радиусов, проводимости
    Атомный объем: 10,64 см 3 / моль
    Состав: hcp: шестиугольное закрытие pkd
    Твердость: 6.0 mohs
    Удельная теплоемкость 0,52 Дж г -1 K -1
    Теплота плавления 14.15 кДж моль -1
    Теплота распыления 471 кДж моль -1
    Теплота испарения 425 кДж моль -1
    1 st энергия ионизации 658 кДж моль -1
    2 nd энергия ионизации 1310,3 кДж моль -1
    3 rd энергия ионизации 2652.5 кДж моль -1
    Сродство к электрону 7,6 кДж моль -1
    Минимальная степень окисления –1
    мин. общее окисление нет. 0
    Максимальное число окисления 4
    Макс. общее окисление нет. 4
    Электроотрицательность (шкала Полинга) 1,54
    Объем поляризуемости 14.6 Å 3
    Реакция с воздухом легкая, без нагрузки ⇒ TiO 2
    Реакция с 15 M HNO 3 пассивированный
    Реакция с 6 M HCl нет
    Реакция с 6 М NaOH нет
    Оксид (ов) TiO, Ti 2 O 3 , TiO 2 (диоксид титана) + другие
    Гидрид (-ы) TiH 2
    Хлорид (ы) TiCl 2 , TiCl 3 , TiCl 4
    Атомный радиус 140 вечера
    Ионный радиус (1+ ион) 128 вечера
    Ионный радиус (2+ ионов) 100 часов
    Ионный радиус (3+ иона) 81 вечера
    Ионный радиус (1-ионный)
    Ионный радиус (2-ионный)
    Ионный радиус (3-ионный)
    Теплопроводность 21.9 Вт м -1 K -1
    Электропроводность 2,6 x 10 6 См -1
    Температура замерзания / плавления: 1668 o C, 1941 K

    Музей Гуггенхайма, Бильбао, покрытый титановыми панелями.

    Ильменит, минерал, в котором Уильям Грегор открыл титан.

    Открытие титана

    Доктор Дуг Стюарт

    Об открытии титана было объявлено в 1791 году геологом-любителем преподобным Уильямом Грегором из Корнуолла, Англия. (1), (2)

    Грегор нашел черный магнитный песок, похожий на порох, в ручье в округе Маннакан в Корнуолле, Англия. (Теперь мы называем этот песчаный ильменит; это смесь, состоящая в основном из оксидов железа и титана.)

    Грегор проанализировал песок и обнаружил, что это в основном магнетит (Fe 3 O 4 ) и довольно нечистый оксид нового металла, который он описал как «красновато-коричневый кальций».

    Эта окалина стала желтой при растворении в серной кислоте и пурпурной при восстановлении железом, оловом или цинком.Грегор пришел к выводу, что он имеет дело с новым металлом, который он назвал манакканитом в честь прихода Маннакана.

    Обнаружив новый металл, Грегор вернулся к своим пастырским обязанностям.

    Немногое больше происходит в нашей истории до 1795 года, когда известный немецкий химик Мартин Клапрот испытал трепет от открытия нового металлического элемента. Клапрот назвал новый металл титаном в честь титанов, сыновей богини Земли в греческой мифологии.

    Клапрот обнаружил титан в минерале рутиле из Бойника, Венгрия.Как и калькс Грегора, рутил был красного цвета. В 1797 году Клапрот прочитал отчет Грегора от 1791 года и понял, что красный оксид, в котором он нашел титан, и красный оксид, в котором Грегор нашел манакканит, на самом деле одно и то же; титан и макканит были одним и тем же элементом, и Грегор был настоящим первооткрывателем этого элемента.

    Грегор, возможно, превзошел Клапрота до нового металла, но ученые предпочли «титан» Клапрота «манакканиту» Грегора.

    Получить образец чистого титана оказалось намного сложнее, чем его обнаружить.

    Многие ученые пытались, но прошло 119 лет с момента его открытия, пока в 1910 году металлург Мэтью Хантер в Скенектади, штат Нью-Йорк, не выделил титан с чистотой 99,9%, который нагрел хлорид титана (IV) с натрием до красного тепла в цилиндре под давлением. (2)

    В 1936 году процесс Кролла (нагрев хлорида титана (IV) с магнием) сделал возможным промышленное производство титана. К 1948 году мировое производство достигло всего 3 тонн в год.

    К 1956 году, однако, ученые и инженеры осознали, что свойства титана очень желательны, и мировое производство выросло до 25 000 тонн в год. (3)

    Прогноз мирового производства металлического титана с использованием процесса Kroll на 2011 год составлял 223 000 метрических тонн. (4)

    .

    фактов о титане | Живая наука

    Есть ли какой-нибудь элемент, напоминающий о силе, как титан? Названный в честь титанов, греческих богов мифов, 22-й элемент Периодической таблицы появляется в авиалайнерах, палках для лакросса, пирсинге, медицинском оборудовании и даже солнцезащитном креме.

    Титан устойчив к коррозии, отличается особой прочностью и легкостью. По данным Лос-Аламосской национальной лаборатории, он прочен, как сталь, но его вес составляет всего 45 процентов.И он вдвое прочнее алюминия, но только на 60 процентов тяжелее.

    Только факты

    • Атомный номер (количество протонов в ядре): 22
    • Атомный символ (в Периодической таблице элементов): Ti
    • Атомный вес (средняя масса атома): 47,867
    • Плотность : 4,5 грамма на кубический сантиметр
    • Фаза при комнатной температуре: твердое вещество
    • Точка плавления: 3034,4 градуса по Фаренгейту (1668 градусов по Цельсию)
    • Точка кипения: 5948.6 F (3 287 C)
    • Количество изотопов: 18; пять стабильных
    • Наиболее распространенные изотопы: Титан-46, Титан-47, Титан-48, Титан-49 и Титан-50

    (Изображение предоставлено Грегом Робсоном / Creative Commons, Андрей Маринкас Shutterstock)

    Элемент супергероя

    Для элемента, обладающего сверхспособностями, титан имеет подходящую историю происхождения: он выкован в недрах сверхновых звезд или коллапсирующих звезд. Исследование конкретной умирающей звезды, Supernova 1987A, в 2012 году показало, что одна сверхновая может создать по массе титан-44, радиоактивный изотоп титана, стоимостью 100 земных земных.

    Титан является девятым по распространенности металлом в земной коре, согласно Chemicool, но он не был открыт до 1791 года. Английский геолог-любитель преподобный Уильям Грегор обнаружил черный металлический песок в русле ручья, проанализировал его и открыл быть смесью магнетита, обычной формы оксида железа и нового металла. Грегор назвал его манакканитом в честь прихода, в котором он обнаружил песок.

    Четыре года спустя немецкий ученый по имени Мартин Генрих Клапрот изучал руду из Венгрии, когда он обнаружил, что она содержит никогда ранее не описанный химический элемент.Он назвал его титаном, а позже подтвердил, что манакканит Грегора тоже содержал титан.

    По данным Королевского химического общества (RSC), первым, кто перегонял титан в чистую форму, был М.А. Хантер, сотрудник General Electric. Однако только в 1930-х годах Уильям Дж. Кролл изобрел процесс, который сделал возможным извлечение титана в промышленных масштабах. Так называемый процесс Кролла сначала обрабатывает руду оксида титана хлором с получением хлорида титана.Затем магний или натрий смешиваются с хлоридом титана в газообразном аргоне (пропуск кислорода в процесс действительно был бы весьма взрывоопасным, учитывая, что титан очень реактивен к кислороду, согласно RSC). При температуре 2192 F (1200 ° C) магний или натрий восстанавливают хлорид титана до чистого титана. По данным RSC, этот процесс примерно в 10 000 раз менее эффективен, чем процесс, используемый для производства железа, что помогает объяснить, почему титан является более дорогим металлом.

    Титан — переходный металл, что означает, что он может образовывать связи, используя электроны более чем с одной из своих оболочек или уровней энергии. Он разделяет эту особенность с другими переходными металлами, включая золото, медь и ртуть.

    Кто знал?

    • По данным RSC, почти каждая магматическая порода — горная порода, образовавшаяся в результате затвердевания расплавленной породы — содержит титан.
    • По данным компании, Boeing 737 Dreamliner на 15 процентов изготовлен из титана.
    • Титан сейчас вращается вокруг планеты: по данным НАСА, на Международной космической станции (МКС) есть ряд деталей из титана, включая трубы.Rosetta Project, исследовательское и архивное предприятие, целью которого является сохранение человеческих языков и мышления, также вывезло кусок чистого титана за пределы МКС, чтобы увидеть, как он противостоит радиации и суровым условиям космоса.
    • Земля — ​​не единственное место, где можно найти титан. В 2011 году на спутниковой карте поверхности Луны были обнаружены скопления богатых титаном горных пород. Эти породы часто содержат до 10 процентов титана по сравнению с 1 процентом или около того, обычно наблюдаемыми в земных породах.
    • Титан можно использовать как сырье для 3D-печати. В 2013 году исследователи из Австралийской организации научных и промышленных исследований Содружества Наций напечатали на 3D-принтере пару легких титановых подков для скаковых лошадей. Туфли были стильного ярко-розового цвета.

    Диоксид титана

    Диоксид титана (TiO 2 ), также называемый оксидом титана (IV) или диоксидом титана, представляет собой встречающийся в природе оксид титана. Белый пигмент, диоксид титана, используется в красках (в виде титанового белила или пигментного белого 6) и в солнцезащитных кремах из-за его способности преломлять свет и поглощать ультрафиолетовые лучи.По данным Геологической службы США, 95 процентов добываемого титана превращается в пигменты из диоксида титана, а оставшиеся 5 процентов идут на производство химикатов, металлов, карбидов и покрытий.

    Диоксид титана также широко используется в медицине, косметике и зубной пасте и все чаще используется в качестве пищевой добавки (как E171) для отбеливания продуктов или придания им более непрозрачного вида. Некоторые из наиболее распространенных пищевых продуктов с добавлением E171 включают глазурь, жевательную резинку, зефир и добавки.

    Нет ограничений на использование диоксида титана в пищевых продуктах. Тем не менее, новое исследование на мышах, опубликованное в журнале Gut, показывает, что частицы диоксида титана могут очень сильно повредить кишечник людей с определенными воспалительными заболеваниями кишечника.

    Исследователи из Цюрихского университета в Швейцарии обнаружили, что, когда клетки кишечника поглощают частицы диоксида титана, слизистая оболочка кишечника мышей, у которых был колит, воспаляется и повреждается, согласно пресс-релизу исследования.

    Воспалительные заболевания кишечника, такие как болезнь Крона и язвенный колит, в течение многих лет увеличивались в западных странах. Эти состояния характеризуются крайней аутоиммунной реакцией на кишечную флору. Несколько факторов играют роль в развитии болезни, включая генетические факторы и факторы окружающей среды, такие как образ жизни и питание. Швейцарские исследователи обнаружили, что наночастицы диоксида титана, обычно содержащиеся в зубной пасте и многих пищевых продуктах, могут еще больше усугубить эту воспалительную реакцию.

    Кроме того, более высокие концентрации частиц диоксида титана могут быть обнаружены в крови пациентов с язвенным колитом. Это означает, что эти частицы могут абсорбироваться из пищи при определенных заболеваниях, объясняют исследователи в пресс-релизе.

    Хотя результаты еще не были подтверждены на людях, исследователи предполагают, что пациентам с колитом следует избегать приема внутрь частиц диоксида титана.

    Титан — легкий и прочный металл, часто используемый в машинах, инструментах, спортивном снаряжении и ювелирных изделиях.(Изображение предоставлено Кристианом Лагереком Shutterstock)

    Текущее исследование

    Диоксид титана имел головокружительный набор функций в мире технологий, от приложений солнечных батарей до биосовместимых датчиков, сказал Джей Нараян, ученый-материаловед из Университета Северной Каролины.

    В 2012 году Нараян и его коллеги сообщили о способе «настройки» диоксида титана, адаптировав его для конкретных приложений. Этот материал имеет две кристаллические структуры, называемые «рутил» и «анатаз», каждая из которых имеет свои свойства и функции.Обычно диоксид титана любит находиться в фазе анатаза при температуре ниже 932 F (500 C) и превращается в фазу рутила при более высоких температурах.

    Выращивая кристалл за кристаллом диоксида титана и выстраивая их на шаблоне из триоксида титана, Нараян и его коллеги смогли установить фазу материала как рутил или анатаз при комнатной температуре, как они сообщили в июне 2012 года в журнал Applied Physics Letters. Сделав еще больший скачок, исследователи смогли интегрировать этот диоксид титана в компьютерные чипы.

    «Оксид титана также является очень хорошим сенсорным материалом, поэтому, если он интегрирован с компьютерным чипом, он действует как интеллектуальный датчик», — сказал Нараян Live Science. Поскольку датчик является частью микросхемы, устройство может реагировать быстрее и эффективнее, чем если бы датчик был отдельным и должен был быть жестко подключен к вычислительной части устройства.

    Вывод продукта на рынок потребует снижения производственных затрат, сказал Нараян, но у «настраиваемого» диоксида титана есть и другие перспективы.Путем воздействия на материал мощных лазерных импульсов исследователи могут создавать небольшие дефекты, называемые кислородными вакансиями, где в материале отсутствуют молекулы кислорода. Затем этот материал можно использовать для расщепления воды (h3O) путем похищения кислорода и оставления водорода, который затем можно использовать для производства водородного топлива.

    «Это дешевый и чистый источник энергии», — сказал Нараян. Новые производственные и инженерные методы расширяют возможности использования титана. В 2012 году Управление военно-морских исследований объявило, что новый метод сварки титана будет использован для производства полноразмерного корпуса корабля; По мнению ВМФ, эта конструкция является прорывом, поскольку титан, как правило, слишком дорог и сложен в производстве для судостроения.Новый метод, называемый сваркой трением с перемешиванием, использует вращающийся металлический штифт для частичного плавления краев двух кусков титана вместе.

    В медицине титановые имплантаты используются для замены или стабилизации сломанной кости. Крошечные титановые имплантаты используются даже для улучшения слуха у людей с некоторыми типами глухоты. Титановый стержень в форме винта просверливается в черепе за ухом и прикрепляется к внешнему блоку обработки звука. Внешний блок улавливает звуки и передает вибрацию через титановый имплант во внутреннее ухо, минуя любые проблемы в среднем ухе.

    В 2010 году исследователи объявили о разработке «Tifoam» — пенополиуретана, пропитанного порошком титана. Согласно исследованию 2013 года, опубликованному в журнале Acta Biomaterialia, пористая структура имитирует человеческую кость и позволяет клеткам человеческой кости проникать в имплант и сливаться с ним по мере заживления человека.

    Дополнительный отчет от Трейси Педерсен, участника Live Science.

    Следуйте за Стефани Паппас на Twitter Google+ .Следуйте за нами @livescience , Facebook и Google+ .

    Дополнительные ресурсы

    .

    применений металлического титана и диоксида титана


    The Titanium Goose

    Разведывательный самолет ЦРУ А-12: Фотография сверхзвукового разведывательного самолета ЦРУ А-12 под названием «Титановый гусь», готовящегося к дозаправке на большой высоте. Название вполне уместно, ведь многие детали сделаны из титана. Изображение Центрального разведывательного управления.

    Что такое титан?

    Титан — это прочный, устойчивый к коррозии и инертный серебряный металл.Это девятый по содержанию элемент в земной коре. Вместо крупных отложений, небольшие количества титана встречаются почти в каждой породе.

    Титан является важным компонентом небольшого количества минералов. Около 90% титана в земной коре содержится в ильмените, минерале, о котором большинство людей никогда не слышали. Это оксид железа-титана с химическим составом FeTiO 3 . Остальная часть приповерхностного титана Земли состоит из таких минералов, как анатаз, брукит, лейкоксен, перовскит, рутил и сфен.

    The Titanium Goose titanium bearings

    Нитинол 60: Нитинол 60 — это сплав, содержащий 60 процентов никеля и 40 процентов титана. Обычно для изготовления подшипников используется нержавеющая сталь, потому что она твердая, но нержавеющая сталь подвержена коррозии. Нитинол 60 решил проблему коррозии без потери прочности и не вступал в реакцию со смазочными материалами подшипников. Изображение НАСА.

    Использование металлического титана

    Титан — знакомый металл.Многие знают, что он используется в украшениях, протезах, теннисных ракетках, вратарских масках, ножницах, велосипедных рамах, хирургических инструментах, мобильных телефонах и других высокопроизводительных продуктах. Титан прочен, как сталь, но весит примерно вдвое меньше. Он вдвое прочнее алюминия, но лишь примерно на 60% тяжелее.

    Титан в сочетании с железом, алюминием, ванадием, никелем, молибденом и другими металлами дает сплавы с высокими эксплуатационными характеристиками. Для реактивных двигателей, космических кораблей, военной техники, подшипников, бронежилетов и других высокотехнологичных продуктов требуются детали, изготовленные из этих сплавов.

    The Titanium Goose titanium aircraft parts

    Титановые детали для самолетов: Металлический титан и его сплавы обеспечивают высокопрочные, легкие, устойчивые к коррозии детали для авиационных двигателей, органов управления и структурных компонентов. Этот NASA F-16XL снабжен титановой перчаткой для исследования ламинарного потока, закрывающей часть его левого крыла. Изображение НАСА, сделанное Джимом Россом.

    titanium dioxide paint

    Белая краска: Большая часть используемых сегодня белых красок содержит диоксид титана в качестве пигмента.Это придает краске стойкий яркий белый цвет, непрозрачность, которую можно покрыть одним слоем, и яркость, отражающую свет. Когда краска высыхает, на стене остается минеральное покрытие из диоксида титана. Правообладатель иллюстрации iStockphoto / Okea.

    Что такое диоксид титана?

    Диоксид титана — яркий, белый, непрозрачный материал с химическим составом TiO 2 . Его получают путем окисления ильменита или других минералов титана при высоких температурах.Затем его измельчают до мелкого порошка, необходимого для его множества применений.

    Примерно в десять раз больше титана используется в форме диоксида титана по сравнению с металлическим титаном. Большинство людей никогда не слышали об использовании титана в такой форме. Это связано с тем, что диоксид титана является ингредиентом продуктов, а не основным материалом.

    rock tumbler polish

    Полировальные пасты: Порошок диоксида титана тщательно классифицируется по размеру частиц и продается как полироль для гранильных и металлических работ.На фотографии изображена только что открытая бочка каменного стакана с густой белой пеной лака.

    Применение диоксида титана

    Чаще всего титан используется в качестве отбеливающего, осветляющего и матирующего средства. Высококачественные белые краски обычно содержат значительное количество диоксида титана, пигмент которого называется «титановый белила». Диоксид титана увеличивает белизну и отражательную способность краски. Когда вы входите в комнату и включаете свет, краска обладает высокой отражающей способностью и делает комнату ярче, потому что больше света отражается от окрашенных поверхностей.Диоксид титана также увеличивает непрозрачность краски, позволяя во многих ситуациях одним слоем покрыть то, что находится ниже.

    В течение почти 2000 лет «свинцово-белый» был важным пигментом, используемым в белых красках. В 1904 году производитель красок Sherwin-Williams сообщил об опасности красок, содержащих свинцовый пигмент. С этого времени производители красок начали отходить от свинцовых пигментов, и титановый пигмент стал наиболее подходящей заменой. Сегодня большая часть производимой белой краски содержит пигмент диоксида титана.

    Диоксид титана вдавливается в волокна высококачественной бумаги, чтобы улучшить их белизну, яркость и текстуру. Его добавляют в обезжиренное молоко, чтобы улучшить его белизну и непрозрачность. По той же причине его добавляют в зубную пасту, резину, пластмассы, косметику, солнцезащитный крем и многие продукты питания. Эти материалы использует почти каждый человек на Земле почти каждый день. Мало кто осознает роль, которую играет в них титан. Его можно использовать в пищевых продуктах, косметике и других продуктах, которые люди потребляют, потому что он инертен.

    Порошок диоксида титана также сортируется по размеру частиц для использования в качестве полировальной пасты. Он используется для полировки драгоценных камней, металлов и других материалов. Часто он менее эффективен, чем другие полироли, но когда он эффективен, он может обеспечить экономию средств.

    heavy mineral sand

    Тяжелый минеральный песок: При раскопках на мелководье Фолли-Бич, Южная Каролина, обнажаются тонкие слои тяжелых минеральных песков. Большая часть ильменита, добываемого сегодня, поступает из песков с высоким содержанием минералов.Фотография Карлтона Берна, Геологическая служба США.

    Откуда берется титан?

    Большая часть титана в мире производится путем добычи тяжелых минеральных песков. Эти пески образуются вниз по градиенту из обнаженных масс магматических пород, таких как габбро, норит и анортозит. Эти породы содержат титансодержащие минералы, такие как ильменит, анатаз, брукит, лейкоксен, перовскит, рутил и сфен.

    Когда эти породы разрушаются в результате выветривания, минералы титана оказываются одними из самых устойчивых.Они концентрируются в результате выветривания и переносятся вниз по течению в виде песчинок и ила. В конце концов, они оседают в виде песка вдоль береговой линии континента. Здесь их обычно выкапывают или добывают. Добыча также происходит во внутренних районах, где титановые минералы откладывались в периоды, когда уровень моря был выше, чем мы знаем сегодня.

    Эти тяжелые минеральные пески могут содержать несколько процентов по весу ильменита и других минералов титана. После добычи песок поступает на обогатительную фабрику, которая извлекает титансодержащие минералы.В то же время могут быть извлечены другие ценные минералы. Затем их перерабатывают или продают для производства металлического титана или диоксида титана. Затем песок возвращается в то место, где он был добыт, и восстанавливается пляж.

    titanium in soils and stream sediments

    Титан в отложениях и почвах ручьев: Карта, показывающая содержание титана в форме диоксида титана в отложениях ручьев и почвах на востоке США. Зона, богатая титаном, соответствующая физиографической провинции Вирджиния Блю-Ридж, показывает значения более 3% по весу диоксида титана, по данным Геологической службы США.

    Производство титана в США

    Соединенные Штаты используют больше минералов титана, чем производят в настоящее время, что делает их нетто-импортером титана. Небольшие дноуглубительные работы проводились у атлантического побережья Флориды. Здесь отложения береговой линии выкачиваются и обрабатываются для удаления тяжелых минеральных песков. Ильменит — основной титансодержащий минерал, извлекаемый в результате этой деятельности.

    Добыча на суше ведется во многих местах Вирджинии.Здесь ильменитсодержащее тело анортозита в физико-географической провинции Голубого хребта подверглось эрозии. Отложения, образовавшиеся в результате этой эрозии, могут локально содержать несколько процентов тяжелых минералов по весу, при этом ильменит является основным минералом, содержащим титан. Эти месторождения были раскопаны и переработаны для удаления тяжелых минералов. Район, где происходит эта добыча, соответствует богатым титаном отложениям и почвам, отобранным, проанализированным и нанесенным на карту Национальной геохимической службой (см. Сопроводительную карту).

    Для удовлетворения своих потребностей в титане Соединенные Штаты импортируют титановые минеральные концентраты. Ведущие производители титана: Австралия, Канада, Китай, Япония, Кения, Мадагаскар, Мозамбик, Норвегия, Россия, Саудовская Аравия, Сенегал, Сьерра-Леоне и Южная Африка.

    The Titanium Goose
    geology store

    Найдите другие темы на Geology.com:


    Rocks
    Скалы: Галереи фотографий вулканических, осадочных и метаморфических пород с описаниями.
    Minerals
    Минералы: Информация о рудных минералах, драгоценных камнях и породообразующих минералах.
    Volcanoes
    Вулканы: Статьи о вулканах, вулканических опасностях и извержениях прошлого и настоящего.
    Gemstones
    Драгоценные камни: Цветные изображения и статьи об алмазах и цветных камнях.
    General Geology
    Общая геология: Статьи о гейзерах, маарах, дельтах, перекатах, соляных куполах, воде и многом другом!
    Geology Store
    Geology Store: Молотки, полевые сумки, ручные линзы, карты, книги, кирки твердости, золотые кастрюли.
    Earth Science Records Diamond
    Алмазы: Узнайте о свойствах алмаза, его многочисленных применениях и открытиях.
    .

    Факты о титане — использование, свойства, элемент Ti, прочность, ювелирные изделия, сплавы

    • Британский пастор Уильям Грегор открыл титан в 1791 году. Позже он был назван немецким химиком Мартином Генрихом Клапротом, который назвал его титаном в честь титанов из греческой мифологии. Только в 1910 году титан с чистотой 99,9% был произведен новозеландцем Мэтью А.Хантера, метод стал известен как Процесс Охотника.

    • Титан имеет температуру плавления 3034 ° F (1668 ° C) и точку кипения 5949 ° F (3287 ° C).

    • Многие элементы, такие как железо, алюминий, никель и ванадий, легированы титаном для получения прочных легких сплавов.Эти титановые сплавы используются в производстве кораблей, космических кораблей, ракет и самолетов, причем около двух третей всего производимого титана используется в авиационных двигателях и корпусах.

    • Превосходство титана

      по соотношению прочности к весу привело к тому, что в последнее время этот металл используется в качестве компонента во многих других продуктах, включая ноутбуки, огнестрельное оружие, теннисные ракетки, клюшки для гольфа, клюшки для лакросса, решетки для футбольных шлемов, рамы для велосипедов, походную посуду и кухонные принадлежности.

    • Около 95% всего титана используется для производства сложного диоксида титана, который представляет собой очень яркий и преломляющий белый пигмент, который используется в красках, пластмассах, зубной пасте, солнцезащитных кремах, спортивном инвентаре и бумаге.

    • Тот факт, что титан прочный, легкий, нетоксичный и не вступает в реакцию с телом, делает его ценным медицинским ресурсом.Его используют для изготовления хирургических инструментов и имплантатов, таких как заменители тазобедренного сустава, которые могут оставаться на месте до 20 лет.

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *