Такты двигателя: Принцип работы ДВС. Рабочие циклы двигателя

Содержание

Глава 1 — Двигатель | whatisvehicle

Итак, начнём. Двигатель автомобиля (Engine), что же это такое?

Автомобиль – сложный организм, сродни человеческому. У него много различных механизмов(органов), без которых он не будет работать. Но как и у человека, у автомобиля есть «сердце» и этим сердцем является автомобильный двигатель.

История автомобильного двигателя

Чуть-чуть истории.  Двигатель прошёл долгую историю развития. По сути, первыми двигателями являлись парус и водяное колесо. Водяным колесом широко пользовались в странах Древнего мира(таких как Египет, Китай, Индия) для оросительных систем, а в средние века в Европе использовали как основу энергетической базы производства. Дальше появились двигатели внешнего сгорания. Широкое распространение получили паровые двигатели.

Паровой двигатель(Steam engine) — двигатель ВНЕШНЕГО сгорания, который преобразовывает энергию пара в механическую работу.

Советую почитать очень интересную и непростую историю развития данного двигателя: http://www.bibliotekar.ru/encAuto/5.htm

Далее  в процессе развития двигателей появились двигатели внутреннего сгорания, ДВС. Одним из них, нашедший наибольшее распространение — бензиновый двигатель.

Бензиновые двигатели (petrol engine, gasoline engine) — это класс двигателей внутреннего сгорания, в цилиндрах которых предварительно сжатая смесь топлива(бензина) и воздуха поджигается электрической искрой. Главное преимущество бензинового двигателя заключается в малой массе и быстром запуске, поэтому он вытеснил паровые двигатели, а теперь он широко используется в автомобилях.

Позже появились дизельные двигатели.

Дизельный двигатель — это двигатель внутреннего сгорания, работающий по принципу воспламенения распыленного дизельного топлива от соприкосновения с разогретым сжатым воздухом. Плюсом является экономичность топлива, более высокий крутящий момент. Однако, минусом является сложность систем, дороговизна изготовления и эксплуатации.

Ну и заглянем в будущее автомобилей. Итак, существуют так же

электрические двигатели.

Электрический двигатель — Это установка, в которой электрическая энергия превращается в механическую работу и тепло. Это развивающееся направление в автомобилестроении. Однако, на дорогах большинство машин имеют бензиновый или дизельный двигатель, поэтому, оставим будущее и вернёмся к настоящему.

Принцип действия

Итак, автомобильный двигатель. Прежде чем рассматривать его устройство, давайте чуть-чуть разберёмся с тем, как работает автомобильный двигатель не вдаваясь в детали.

У каждого двигателя есть свой рабочий цикл.

Рабочий цикл двигателя — периодически повторяющиеся процессы в двигателе по преобразованию тепловой энергии в механическую.

У каждого двигателя есть цилиндры, в которых ходят поршни. Это главное место, где происходит самый главный процесс.

ВМТ — Верхняя Мёртвая Точка.

НМТ — Нижняя Мёртвая Точка.

Такт — это движение поршня от ВМТ к НМТ или от НМТ к ВМТ;

Двигатели могут быть двухтактные и четырёхтактные. Двухтактные двигатели на автомобиле не используются, однако предлагаю быстренько ознакомиться с принципом их работы. Для общего образования, так сказать.

Двухтактные двигатель

Перед нами двухтактный двигатель. Здесь всё предельно просто.

Первый такт — Поршень двигателя движется вверх(картинка А), открывает отверстие(1) и сжимает смесь, которая уже находится в цилиндре. После чего, свеча зажигания воспламеняет горючее(картинка В).

Второй такт — После загорания опускающийся поршень(картинка С) сначала открывает выпускное отверстие(2), а затем переходное отверстие(3). После этого через него впускается новая порция воздушно-топливной смеси.

Таким образам поршень также заменяет клапаны двигателя, и в горючее добавляется масло для смазки поршня. Многие двухтактные двигатели снабжены ребрами для воздушного охлаждения цилиндра.

Четырёхтактный двигатель

А теперь вернёмся к четырёхтактном автомобильному двигателю.

Автомобильные двигатели, как мы уже сказали, могут быть бензиновыми и дизельными. И поэтому предлагаю рассмотреть их такты вместе. Несмотря на то, что они схожи, но в них есть так же и различия.

1-й такт впуск (наполнение).

Поршень движется от ВМТ к НМТ, впускной клапан открыт. Под действием перепада давления, возникающего в результате движения поршня:

Бензиновый двигатель: бензовоздушная смесь через впускной канал наполняет цилиндр.

Дизельный двигатель: воздух через впускной канал наполняет цилиндр.

2-й такт сжатие.

Поршень движется от НМТ к ВМТ, все клапана закрыты. Давление и температура в цилиндре поднимаются.

бензиновый двигатель: в конце такта сжатия на свечу зажигания подается высокое напряжение, между электродами свечи проскакивает искра и поджигает бензовоздущную смесь

дизельный двигатель: через форсунку высокого давления подается дизельное топливо, которое воспламеняется от нагретого в процессе сжатия воздуха.

3-й такт рабочий ход. Поршень движется от ВМТ к НМТ, все клапана закрыты. В начале такта продолжается сгорание топлива, начавшееся в конце такта сжатия. Температура и давление газов повышается. Давление передается поршню и перемещает его к НМТ. Тепловая энергия сгоревшего топлива превращается в механическую работу движения поршня.

4-й такт выпуск. Поршень движется от НМТ к ВМТ, выпускной клапан открыт. Происходит выталкивание
отработавших газов из цилиндра.

Для большей наглядности взгляните на следующие рисунки:

Такты бензинового двигателя:

Такты дизельного двигателя:

Таким образом 1 рабочий цикл 4-х тактного двигателя происходит за 2 оборота коленчатого вала (720° его поворота).

Отличие между бензиновым и дизельным двигателем лишь в топливе и способе его воспламенении на такте сжатия. Однако, это вносит свои изменения в применяемые агрегаты, но об этом речь пойдёт потом.

Двигатели почти всех современных автомобилей являются четырёхтактными по своему циклу работы, и энергия, полученная от сжигания топлива, почти полностью преобразовывается в полезную. Цикл Отто, так называется подобный принцип, по имени Николауса Отто, изобретателя двигателя внутреннего сгорания (1867 год).

Основные параметры

Полный объем цилиндра ( Va ) — объем, заключенный между головкой, цилиндром и поршнем при нахождении его в НМТ;

Объем камеры сжатия ( VC ) — объем, заключенный между головкой, цилиндром и поршнем при нахождении его в ВМТ;

Рабочий объем цилиндра ( Vh ) — объем, образующийся при движении поршня от ВМТ к НМТ ( Vh = Va-Vc );

Полный объем двигателя ( iVh ) сумма рабочих объемов всех цилиндров двигателя; Он же литраж двигателя.

Степень сжатия ( E ) отношение полного объема к объему камеры сжатия ( E = Va/Vc = 1 + Vh/Vc )

;

Степень сжатия показывает, во сколько раз сжимают горючую смесь в цилиндре. Чем больше степень сжатия, тем больше будет давление на поршень при сгорании смеси, а следовательно и больше мощность двигателя. Увеличивать степень сжатия очень выгодно — от той же порции топлива можно получить больше полезной работы. Однако при чрезмерном увеличении степени сжатия наступает самовоспламенение рабочей смеси, и смесь сгорает с большой скоростью — происходит детонация топлива. Детонация — это недопустимо быстрое сгорание рабочей смеси, вызывающее неустойчивую работу двигателя. У двигателя при детонации появляется резкий стук, мощность его снижается, из глушителя выходит черный дым. Конструкторы изыскивают способы борьбы с детонацией топлива и постепенно повышают степень сжатия. В зависимости от степени сжатия применяют определенный сорт топлива.

Мощность двигателя

Мощность — это физическая величина, равная отношению работы, совершенной за определенное время, к этому времени. В системе единиц СИ мощность измеряется в Ваттах (Вт). Поднимая груз массой 1 килограмм на высоту 1 метр за 1 секунду, мы развиваем мощность 1 кг x 9,8 м/с2 x 1 м/с = 9,8 Вт.

Мощность автомобильных двигателей обычно измеряют в лошадиных силах.

Термин «лошадиная сила» был введен в конце XVIII в. английским изобретателем Дж. Уаттом. Наблюдая за работой лошадей, вытягивающих из угольных шахт при помощи блоков корзины с углем, ученый измерил общий вес извлеченной ими породы и высоту, на которую он был поднят за определенное время. Уатт рассчитал, что 1 лошадь за 1 минуту с глубины 30 м вытягивает в среднем 150 кг угля. Эта единица мощности и получила название лошадиной силы (horsepower).

После принятия в 1960 г. системы единиц СИ лошадиная сила стала вспомогательной единицей мощности, равной 736 Вт. Средняя мощность человека равна 70—90 Вт, что составляет 0,1 лошадиной силы

1 л.с. = 0,73549875 кВт

Порядок работы цилиндров двигателя

Для наибольшей равномерности нагрузки коленчатого вала многоцилиндрового двигателя необходимо, чтобы рабочие такты в цилиндрах повторялись в определенной последовательности, которая называется порядком работы цилиндров. Порядок работы цилиндров зависит от числа цилиндров двигателя и его тактности; при этом последовательно работающие цилиндры не должны стоять рядом.

Полный цикл у четырехтактного двигателя осуществляется за два оборота вала, т. е. за 720°, у двухтактного за 360°. Для того чтобы в любой момент вал двигателя имел некоторое постоянное усилие от воздействия газов на поршень, колена вала необходимо смещать относительно друг друга на угол ф. Этот угол зависит от числа цилиндров г и тактности двигателя и равен цикловой продолжительности поворота вала в градусах, отнесенной к числу цилиндров. Следовательно, для четырехтактного двигателя ф = 720°/г, для двухтактного ф = 360°/z.
Определим, например, порядок работы цилиндров, расположенных в один ряд, у четырехтактного четырехцилиндрового двигателя. В этом случае ф = 720° : 4 = = 180°. Вал имеет конфигурацию, при которой поршни 1 и 4 перемещаются в направлении, противоположном движению поршней 2 и 3. Получающееся при этом чередование процессов в цилиндрах показано в табл. 8. Если в первом цилиндре осуществляется рабочий ход, то поршень второго цилиндра движется вверх, при этом из двух возможных процессов (сжатие и выпуск) примем выпуск. Тогда поршень третьего цилиндра, также перемещающийся вверх, должен осуществлять сжатие. В четвертом цилиндре поршень движется вниз одновременно с поршнем первого цилиндра, осуществляющим рабочий ход, поэтому в четвертом цилиндре должен быть впуск. Чередование процессов в последующих тактах всех цилиндров определяется цикловой последовательностью. Из табл. 8 видно, что процессы расширения (рабочего хода) будут проходить в цилиндрах в следующем порядке: 1—3—4—2. Если во втором цилиндре в первом такте принять вместо процесса выпуска сжатие, то порядок работы цилиндров изменится и будет 1—2—4—3. Следовательно, для четырехтактного четырехцилиндрового однорядного двигателя возможны два порядка работы цилиндров.

Для более полного усвоения предлагаю визуально взглянуть на следующие рисунки:

а — чередование тактов 1-2-4-3; б — чередование тактов 1-3-4-2

И напоследок, видео ролик о работе(бензиновый и дизельный):

Итак, начальные сведения мы получили. Теперь мы можем приступать к изучению устройства двигателя внутреннего сгорания.

Понравилось это:

Нравится Загрузка…

Как работает двигатель?

Важно ли понимать устройство двигателя для обычного пользователя автомобиля? Это как минимум необходимо для правильной эксплуатации мотора. Например, знаете ли вы про 9-цилиндровый мотор БМВ или что такое объем двигателя? За пять минут расскажем просто обо всем важном.

Виды моторов

Двигатель внутреннего сгорания представляет собой достаточно сложную конструкцию. Существуют двух- и четырехтактные двигатели. Наиболее распространены 4-тактные моторы в автомобилях и мотоциклах. Двухтактники также могут применяться в транспорте, но чаще их используют для некоторых видов водных и даже воздушных судов. Двухтактные моторы устанавливают в мотокосах, бензопилах и прочем строительном бензоинструменте.

Конструкторы успели придумать такое множество агрегатов, попадающих под определение ДВС. Мы будем рассматривать наиболее привычные варианты. Рассмотрим 4-тактный мотор. Чтобы понять порядок и принципы его работы, разберемся, из чего он состоит:

  • цилиндры, в которых располагаются поршни;
  • коленчатый вал;
  • газораспределительный механизм.

К этому добавим системы зажигания, подачи топлива и отвода отработанных газов, а также смазки и охлаждения двигателя.

Основные подходы к классификации силовых установок:

  1. По количеству цилиндров.
  2. По расположению цилиндров.
  3. По виду топлива.

1. Цилиндров чаще всего бывает от одного до шести. Более мощные автомобили могут использовать, например, 8, 12 или 16 цилиндров.

2. В рядном двигателе цилиндры на коленчатом валу располагаются один за другим в ряд. Увеличить мощность двигателя без существенного изменения размеров можно путем удвоения количества цилиндров. При этом один ряд поршней располагается относительно второго ряда под углом 90 градусов. Такой тип двигателя называется V-образным. Существует еще и оппозитный тип мотора, когда два ряда поршней располагаются под углом 180 градусов. Такие двигатели, например, применяются в автомобилях Subaru. За счет особенностей расположения цилиндров автомобиль получает более низкий центр тяжести и вибрацию при работе, а также минимальную высоту капота.

3. ДВС может работать на бензине и дизтопливе. Отличие заключается в том, что в бензиновом моторе топливо подается смешанное с воздухом и зажигается с помощью искры от свечи. У дизельного мотора топливо и воздух подаются раздельно, воспламенение происходит от высокой температуры сжатого газа. Вместо бензина в двигателе со смешанным топливом может использоваться газ, например, метан.

В одной модели автомобиля часто используется целая линейка двигателей с разными характеристиками на выбор покупателя. Например, в популярной BMW 5-й серии (Е60) может использоваться рядный 4-цилиндровый дизельный двигатель (M47), рядный 6-цилиндровый турбодизель (М57) или мощный 10-цилиндровый бензиновый V-образник (S85).

А вот 9-цилиндровый двигатель БМВ ставили на самолеты, и располагались цилиндры относительно друг друга в виде звезды.

Порядок работы двигателя

Вернемся к двух- и четырехтактным двигателям. Конструкции двухтактных моторов могут сильно различаться и быть как проще, так и намного сложнее четырехтактных собратьев. За счет меньшего количества оборотов мощность двухтактников выше, но экономичность хуже. Маленькие по размерам и мощности моторы не требуют сложной системы охлаждения, масло для смазки добавляется непосредственно с топливом в камеру сгорания.

Один такт – это движение поршня внутри цилиндра вверх или вниз. Работа 4-тактного мотора состоит из:

  • впуска;
  • сжатия;
  • рабочего хода;
  • выпуска.

У двухтактной силовой установки впуск происходит во время сжатия (первый такт), а рабочий ход совмещен с выпуском отработанных газов (второй такт).

Теперь подробнее о четырехтактном процессе.

В цилиндре находится поршень, который с помощью шатуна крепится к коленвалу. Сверху цилиндра находятся впускные и выпускные клапаны, а также свеча. Внутренний объем всех цилиндров составляет так называемый объем двигателя.

Поршень может находиться в верхней точке цилиндра (верхняя мертвая точка), нижней (нижняя мертвая точка) или перемещаться между ними.

В первом такте открывается впускной клапан и поршень опускается. Таким образом, цилиндр наполняется либо смесью топлива и воздуха, либо только воздухом (для дизельного мотора).

Во втором такте поршень идет вверх, сжимая содержимое и параллельно увеличивая его давление и температуру. В конце такта свеча зажигания создает искру, в результате чего происходит детонация топливной смеси в бензиновом двигателе. В дизельном же свеча не используется, а топливо подается в последний момент такта, которое возгорается за счет высокого давления и температуры воздуха.

В третьем и основном такте работы мотора высвобождаемая от взрыва энергия двигает поршень вниз. Именно в этот момент создается сила, которая заставляет коленчатый вал вращаться, а от него вращается и маховик двигателя.

На четвертом такте поршень поднимается к верхней мертвой точке при открытом выпускном клапане. При этом удаляются отработанные газы. Далее цикл из четырех тактов повторяется.

Если в двигателе используется несколько цилиндров, движение их поршней управляется газораспределительным механизмом таким образом, чтобы цилиндры одновременно находились на разных тактах. Систем управления газораспределением существует несколько − от механических распредвалов до электронных процессоров.

Все движимые детали обязательно должны охлаждаться и смазываться. Температура в момент детонации достигает нескольких тысяч градусов. Охлаждение, как правило, производится с помощью жидкости, которая отбирает тепло у деталей двигателя. Далее жидкость сама должна охладиться и снова вернуться в мотор. Превышение допустимых температур может привести к практически моментальному разрушению силовой установки.

В легковых автомобилях количество оборотов коленвала может достигать восьми тысяч в минуту. Для минимизации механического износа система смазки должна работать идеально. Поэтому важно следить за уровнем моторного масла и работоспособностью масляного насоса. Системы смазки и охлаждения могут страдать из-за загрязнения, что ведет к сужению или перекрытию каналов движения жидкостей.

Материалы рубрики «Промо» публикуются на правах рекламы.

Что называется тактом четырехтактного двигателя

На чтение 14 мин. Обновлено

Устройство автомобилей

Рабочие циклы двигателей

Рабочий цикл четырехтактного карбюраторного двигателя

Работа двигателя внутреннего сгорания может быть представлена в виде систематически повторяющихся процессов, которые принято называть рабочими циклами. Рабочим циклом двигателя называется ряд последовательных, периодических повторяющихся процессов в цилиндрах, в результате которых тепловая энергия топлива преобразуется в механическую работу. При этом каждый полный рабочий цикл может быть разделен на одинаковые (повторяющиеся) части – такты.

Часть рабочего цикла, совершаемого за время движения поршня от одной мертвой точки до другой, т. е. за один ход поршня, называется тактом . Двигатели, рабочий цикл которых совершается за четыре хода поршня (два оборота коленчатого вала), называются четырехтактными.
В головке блока цилиндров, над камерой сгорания (рис. 1) карбюраторного двигателя устанавливаются впускной 4 и выпускной 6 клапаны, управляемые газораспределительным механизмом, а также свеча зажигания 5.

Рабочий цикл карбюраторного четырехтактного двигателя состоит из последовательных тактов впуска, сжатия, расширения и выпуска.

Такт впуска

В результате вращения коленчатого вала при пуске двигателя (вручную или с помощью специального устройства — например, заводной рукоятки или электродвигателя — стартера) поршень совершает движение от верхней мертвой точки (ВМТ) к нижней мертвой точке (НМТ). При этом впускной клапан 4 открыт, а выпускной клапан 6 закрыт.
Так как объем цилиндра при движении поршня вниз (к НМТ) быстро увеличивается, давление над поршнем уменьшается до 0,07. 0,09 МПа, т. е. внутри цилиндра создается вакуум – избыточное разрежение.
Впускной клапан 3 сообщается со специальным устройством – карбюратором, который приготавливает горючую смесь из топлива и воздуха. Вследствие разности давлений в карбюраторе и цилиндре горючая смесь всасывается через открытый впускной клапан в цилиндр двигателя.

Если двигатель уже работает, то горючая смесь, попадая в цилиндр из карбюратора, смешивается с остаточными продуктами сгорания от предыдущего цикла, и образует рабочую смесь. Смешиваясь с остаточными продуктами сгорания и соприкасаясь с нагретыми деталями цилиндра, рабочая смесь нагревается до температуры 75. 125 ˚С.

Такт сжатия

При подходе поршня к НМТ впускной клапан закрывается. Далее поршень начинает перемещаться вверх (к ВМТ), сжимая смесь воздуха, топлива и остаточных продуктов сгорания, которые не были удалены из цилиндра при выпуске. При движении поршня от НМТ к ВМТ вследствие сокращения объема цилиндра при закрытых клапанах повышаются давление, при этом возрастает температура рабочей смеси (в соответствии с законом Гей-Люссака).
В конце такта сжатия давление внутри цилиндра повышается до 0,9…1,5 МПа, а температура смеси достигает 270-480 ˚С.
В этот момент к электродам свечи зажигания 5 подводится высокое напряжение, которые вызывает между ними искровой разряд, результате чего рабочая смесь воспламеняется и сгорает.
В процессе сгорания топлива выделяется большое количество теплоты, из-за чего температура газов (продуктов сгорания) повышается до 2200-2500 ˚С, и давление внутри цилиндра достигает 3,0…4,5 МПа. Газы начинают расширяться, перемещая поршень вниз, к НМТ.

Такт расширения (рабочий ход)

Под давлением расширяющихся газов поршень движется от ВМТ к НМТ (при этом оба клапана закрыты). В этот промежуток времени (такт) происходит преобразование тепловой энергии в полезную работу, поэтому ход поршня в такте расширения называют рабочим ходом.
При движении поршня к НМТ объем цилиндра увеличивается, вследствие чего давление уменьшается до 0,3…0,4 МПа, а температура газов снижается до 900…1200 ˚С.

Такт выпуска

При подходе поршня к НМТ открывается выпускной клапан 6, в результате чего продукты сгорания рабочей смеси вырываются наружу из цилиндра.
При дальнейшем вращении коленчатого вала поршень начинает перемещаться от НМТ к ВМТ. Выталкивая отработавшие газы через открытый выпускной клапан, выпускной канал 7 и выпускную трубу в окружающую среду. К концу такта выпуска давление в цилиндре составляет 0,11…0,12 МПа, а температура – 600…900 ˚С.

При подходе поршня к ВМТ выпускной клапан закрывается, впускной открывается и начинается такт впуска, дающий начало новому рабочему циклу.

Рабочий цикл четырехтактного дизеля

Рабочий цикл дизельного двигателя принципиально отличается от цикла карбюраторного двигателя тем, что рабочая смесь (смесь топлива, воздуха и остаточных продуктов сгорания) приготовляется внутри цилиндра, поскольку воздух подается в цилиндр отдельно, а топливо отдельно – через форсунку. В дизельном двигателе нет специального устройства для поджигания рабочей смеси – она самовозгорается в результате высокой степени сжатия.
Т. е. в дизеле, в отличие от карбюраторного двигателя, через впускной клапан подается не горючая смесь, а атмосферный воздух, а топливо впрыскивается через форсунку в конце такта сжатия. В цилиндре, как и в случае с карбюраторным двигателем, остаются продукты сгорания рабочей смеси, которые не удалось удалить продувкой.
Смесеобразование (перемешивание воздуха, топлива и остаточных продуктов сгорания) в дизеле протекает внутри цилиндра, что и обуславливает основные отличия череды тактов, составляющих рабочий цикл.

Высокая степень сжатия приводит к тому, что поступивший в цилиндр через впускной клапан воздух, смешивается с остаточными газами и раскаляется (в буквальном смысле этого слова) до высоких температур. И в это время в цилиндр впрыскивается топливо, которое вспыхивает и начинает гореть.

Рабочие процессы в дизельном двигателе протекают в следующей последовательности (рис. 2) :

Такт впуска

В период такта впуска поршень 2 движется от НМТ к ВМТ. При этом впускной клапан 5 открыт, выпускной клапан 6 закрыт. В цилиндре 7 из-за разности давлений в окружающей среде и в цилиндре в конце такта впуска возникает разрежение 0,08. 0,09 МПа, при этом температура внутри цилиндра не превышает 40…70 ˚С.

Такт сжатия

В процессе такта сжатия оба клапана закрыты. Поршень 2 движется от НМТ к ВМТ, сжимая смесь воздуха и отработавших газов. Давление в конце такта сжатия достигает 3…6 МПа, а температура – 450…650 ˚С (превышает температуру самовоспламенения топлива).

При подходе поршня к ВМТ, в цилиндр через форсунку 3 впрыскивается распыленное жидкое топливо. Топливо подается к форсунке (через трубку высокого давления) топливным насосом 1 высокого давления (ТНВД). Форсунка обеспечивает тонкое распыление топлива в сжатом воздухе. Распыленное топливо самовоспламеняется и сгорает. В результате сгорания температура в цилиндре достигает 1600…1900 ˚С, давление – 6…9 МПа.

Такт расширения (рабочий ход)
Такт выпуска

При подходе к нижней мертвой точке (НМТ) выпускной клапан 6 открывается и большая часть отработавших газов под воздействием высокого давления вырывается из цилиндра в атмосферу. Поршень начинает перемещение от НМТ к ВМТ и через открытый выпускной клапан выталкивает оставшиеся в цилиндре отработавшие газы в окружающую среду. К концу такта давление газов в цилиндре составляет 0,11…0,12 МПа, а температура – 600. 700 ˚С.
Далее рабочий цикл повторяется.

Таким образом, в четырехтактном двигателе только один такт – рабочий ход является полезным с точки зрения совершения полезной работы, остальные три вспомогательные, они осуществляются за счет кинетической энергии маховика, закрепленного на конце коленчатого вала.

Рабочий цикл двухтактного двигателя

В двухтактных ДВС рабочий цикл осуществляется за один оборот коленчатого вала.
Схема двухтактного дизеля представлена на рис. 3 .
Воздух насосом 3 нагнетается через впускное (продувочное) окно 4 в цилиндр. В нижней части цилиндра напротив впускного окна имеется выпускное окно 7. В головке 5 блока цилиндра установлены форсунки 6.

Первый такт (рис. 3, а) совершается при движении поршня от НМТ к ВМТ за счет кинетической энергии маховика двигателя. Оба окна открыты. Нагнетаемый через впускное окно 4 воздух вытесняет из цилиндра оставшиеся в нем отработавшие газы, которые выходят через выпускное окно 7. Таким образом происходит очистка цилиндра от отработавших газов (продувка) и заполнение его свежим зарядом.

Движущийся вверх поршень 8 сначала закрывает впускное окно, а затем выпускное окно. С этого момента начинается процесс сжатия, в конце которого через форсунку 6 впрыскивается топливо.
Таким образом, за первую половину оборота коленчатого вала совершаются процессы наполнения и сжатия, и начинается сгорание топлива.

Второй такт (рис. 3. б) происходит при движении поршня ВМТ к НМТ. В результате выделения теплоты при сгорании топлива повышается температура и давление внутри цилиндра. Поршень перемещается вниз, совершая полезную работу.
Как только поршень открывает выпускное окно, отработавшие газы под давлением начинают выходить в окружающую среду. К моменту открытия впускного окна давление внутри цилиндра снижается на столько, что возможна очистка цилиндра путем вытеснения отработавших газов свежим зарядом воздуха, подаваемым в цилиндр насосом 3.
Этот процесс называется продувкой цилиндра. При этом одновременно с вытеснением отработавших газов происходит наполнение цилиндра свежим зарядом. Далее все процессы повторяются в той же последовательности.

Рабочий цикл двухтактного карбюраторного двигателя аналогичен рабочему циклу двухтактного дизеля. Отличие состоит в том, что в цилиндр поступает не чистый воздух, а горючая смесь, и в конце процесса сжатия в цилиндре посредством свечи зажигания подается искра, в результате чего происходит воспламенение горючей смеси.

Одним из преимуществ двухтактного двигателя по сравнению с четырехтактным является то, что каждый рабочий ход здесь протекает в период одного оборота коленчатого вала, а не двух. Очевидно, что снижение количества тактов должно привести к повышению КПД из-за уменьшения паразитических процессов . А поскольку в четырехтактном двигателе за два оборота коленчатого вала протекают четыре такта, из которых полезным является лишь такт рабочего хода (т. е. остальные три такта являются паразитическими), то естественно предположить, что КПД четырехтактного двигателя должен быть ниже, чем КПД четырехтактного двигателя.

Существенными недостатками двухтактных двигателей является их низкая топливная экономичность и меньший срок службы по сравнению с четырёхтактными двигателями. Объясняется этот недостаток тем, что при продувке цилиндра (или цилиндров) свежая горючая смесь частично удаляется вместе с отработавшими газами, поскольку, в отличие от четырехтактного двигателя, выпуск и впуск газов протекает одновременно.
Этими недостатками, а также большей токсичностью отработавших газов объясняется ограниченное применение двухтактных двигателей на автомобилях.

Источник

Четырехтактный двигатель: изобретение века

о значит четырехтактный двигатель и почему четыре такта?

Дорогой друг, сегодня поговорим о том, что значит четырехтактный двигатель. О истории его изобретения, принципе работы, особенностях, технических характеристиках и сферах применения.

Конечно, если у вас есть водительское удостоверение, то вы по крайней мере слышали этот термин, когда учились в автошколе. Но вряд ли тогда стали вникать во все тонкости, поэтому сейчас самое время разобраться, что же там происходит под капотом вашего железного коня.

Как всё начиналось

В 19 веке уже были двигатели, но это были в основном большие механизмы, работающие на пару. Они конечно частично обеспечивали развивающуюся промышленность, но имели много недостатков.

Были тяжелые, имели низкий КПД, большие габариты, требовалось много времени на запуск и остановку, для эксплуатации нужны были квалифицированные рабочие.

Промышленникам нужен был новый агрегат без перечисленных недостатков они уже поняли что значит четырехтактный двигатель. И как при определенных условиях с его помощью можно повысить прибыль.

Его и разработал изобретатель Эжен-Альфонс Бо де Роша, а в 1867 году воплотил в металл Николаус Август Отто.

В то время это было чудо техники. Двигатель внутреннего сгорания отличался низкими эксплуатационными расходами, небольшими размерами и не требовал постоянного присутствия обслуживающего персонала.

Работало устройство по особому алгоритму, который и сейчас называют «цикл Отто». Спустя 8 лет, после запуска первого экземпляра, компания Отто выпускала уже более 600 силовых установок в год.

Очень быстро, из-за автономности и компактности, двигатели внутреннего сгорания получили широкое распространение.

Из чего состоит двигатель

Чтобы понять принцип работы, познакомимся с основными составляющими движка:

  • блок цилиндров;
  • кривошипно-шатунный механизм (включает коленвал, поршни, шатуны) ‒ он необходим для преобразования поступательно-возвратных движений поршня во вращательное движение коленвала;
  • головка блока вместе с газораспределительным механизмом, который открывает впускные и выпускные клапаны, для того чтобы поступала рабочая смесь и выходили отработавшие газы. ГРМ может включать один или более распредвалов, которые состоят из кулачков для толкания клапанов, самих клапанов и клапанных пружин. Для стабильной работы четырехтактного движка существует ряд вспомогательных систем:
  • система зажигания ‒ для поджига горючей смеси в цилиндрах;
  • впускная система ‒ для подачи воздуха и рабочей смеси в цилиндр;
  • топливная система ‒ для непрерывной подачи топлива, получения смеси воздуха и горючего;
  • система смазки – для смазки трущихся деталей, а также одновременного удаления продуктов износа;
  • выхлопная система – для удаления отработанных газов из цилиндров, снижения токсичности выхлопа;
  • система охлаждения – для поддержки оптимальной температуры движка.

Что значит четырехтактный двигатель и почему четыре такта

  1. Теперь, когда вы более-менее представляете устройство четырехтактного двигателя, можно рассмотреть рабочий процесс.
    Он состоит из следующих этапов:впуск – поршень движется вниз, цилиндр заполняется горючей смесью из карбюратора через впускной клапан, который открываются кулачком распределительного вала. При движении поршня вниз, создается отрицательное давление в цилиндре, тем самым происходит всасывание рабочей смеси, а именно воздуха с парами топлива. Впуск продолжается пока поршень не достигнет НМТ (нижняя мертвая точка). В этот момент закрывается впускной клапан;
  2. сжатие или компрессия – после того как будет достигнута НМТ поршень начинает двигаться вверх к ВМТ (верхняя мертвая точка). При движении поршня вверх происходит сжатие, рабочая топливо-воздушная смесь сжимается, давление внутри цилиндра возрастает. Впускной и выпускной клапан закрыты;
  3. рабочий ход или расширение – в конце цикла сжатия (в ВМТ), рабочая смесь воспламеняется от искры в свече зажигания. Поршень от микровзрыва устремляется к НМТ.В процессе движения поршня от ВМТ к НМТ смесь сгорает, а увеличивающиеся в объеме газы толкают поршень, выполняя полезную работу. Именно по этой причине движение поршня в этом такте назвали рабочий ход. Впускной и выпускной клапан закрыты;
  4. выпуск выхлопных газов – в заключительном четвертом такте открывается выпускной клапан, поршень поднимается в верхнюю точку и выталкивает продукты сгорания из цилиндра в выхлопную систему, пройдя через глушитель, они попадают в атмосферу. После достижения поршнем ВМТ выпускной клапан закрывается, затем цикл повторяется. Эти четыре такта представляют собой рабочий цикл мотора. Тактом же именуется движение поршня вверх или вниз. Один оборот коленчатого вала соответствует двум тактам, а два оборота – 4 тактам. Отсюда пошло название четырёхтактного двигателя.

От чего зависит мощность четырехтактного ДВС

Тут вроде бы всё ясно — мощность поршневого двигателя в основном определяется:

  1. объёмом цилиндров;
  2. степенью сжатия рабочей смеси;
  3. частотой вращения.

Поднять мощность четырехтактного двигателя также можно повысив пропускную способность тактов всасывания и выхлопа, увеличив диаметр клапанов (особенно впускных).

Так же максимальная мощность получается при максимальном заполнении цилиндров, для этого используют турбины принудительной подкачки воздуха в цилиндр. В следствии чего повышается давление в цилиндре и соответственно КПД двигателя значительно возрастает.

Применение в настоящее время

Четырёхтактные двигатели бывают бензиновыми и дизельными. Применяются эти двигатели на транспортных или стационарных энергоустановках. Использовать такой двигатель рекомендуется в случаях, когда есть возможность регулировать соотношение оборотов, мощности и крутящего момента.

Например, если двигатель, работает в паре с электрогенератором, то нужно выдерживать нужный диапазон оборотов. А при использование промежуточных передач, четырёхтактный двигатель можно адаптировать к нагрузкам в достаточно широких пределах. То есть использовать в автомобилях.

Вернёмся к истокам его создания. В группе изобретателя Отто работал очень талантливый инженер Готлиб Даймлер, он понял что значит четырехтактный двигатель, его перспективы развития, и предложил на базе четырёхтактного двигателя построить автомобиль. Но шеф не посчитал нужным что-то менять в двигателе, и Даймлер, увлеченный своей идеей, покинул мэтра.

И через некоторое время, вместе с другим энтузиастом Карлом Бенцом в 1889 году создали автомобиль, который приводился в движение именно бензиновым четырехтактным двигателем внутреннего сгорания изобретателя Отто.

Эта технология с успехом используется и сегодня. В случаях, когда силовая установка работает на переходных режимах или режимах со снятием частичной мощности ‒ она незаменима, так как обеспечивает стабильную устойчивость процесса.

Теперь, дорогой друг, ты в общих чертах знаешь что значит четырехтактный двигатель, где он используется. Теперь ты стал на голову выше. Но не скупись полученой информацией, поделись с друзьями. К твоим услугам кнопки социальных сетей.

Да и подписаться можно на наш блог, чтобы всегда быть в курсе интересного материала, а его всегда много и будет еще больше.

До новых встреч!

Источник

Рабочий цикл четырехтактного двигателя — как это работает

В числе процессов, характеризующих работу мощных и производительных машин и механизмов, следует отметить рабочий цикл четырехтактного двигателя. Это совокупность процессов, повторяющихся в определенной последовательности, во время которых цилиндр наполняется рабочей смесью, после чего происходит ее сжатие и воспламенение. Газы, образовавшиеся при сгорании, расширяются, а затем – удаляются из цилиндра.

Рабочий цикл четырехтактного двигателя

Рабочим циклом двигателя называется периодически повторяющийся ряд последовательных процессов, протекающих в каждом цилиндре двигателя и обусловливающих превращение тепловой энергии в механическую работу.

Если рабочий цикл совершается за два хода поршня, т. е. за один оборот коленчатого вала, то такой двигатель называется двухтактным. В настоящее время двухтактные двигатели на автомобилях не применяют, а используют лишь на мотоциклах и как пусковые двигатели на тракторах. Это связано прежде всего с тем, что они имеют сравнительно высокий расход топлива и недостаточное наполнение горючей смеси из-за плохой очистки цилиндров от отработавших газов. Автомобильные двигатели работают, как правило, по четырехтактному циклу, который совершается за два оборота коленчатого вала или четыре хода поршня и состоит из тактов впуска, сжатия, расширения и выпуска. В карбюраторном четырехтактном одноцилиндровом двигателе рабочий цикл происходит следующим образом.

Такт впуска

Поршень находится в в.м.т. и по мере вращения коленчатого вала (за один его полуоборот) перемещается от в.м.т. к н.м.т. При этом впускной клапан открыт, а выпускной клапан закрыт. При движении поршня вниз объем над ним увеличивается, поэтому в цилиндре создается разряжение, равное 0,07—0,095 МПа, в результате чего свежий заряд горючей смеси, состоящей из паров бензина и воздуха, засасывается через впускной трубопровод в цилиндр. От соприкосновения свежего заряда с нагретыми деталями в конце такта впуска он имеет температуру 75—125 °С.

Степень заполнения цилиндра свежим зарядом характеризуется коэффициентом наполнения, который для высокооборотных карбюраторных двигателей находится в пределах 0,65—0,75. Чем выше коэффициент наполнения, тем большую мощность развивает двигатель.

Такт сжатия

После заполнения цилиндра горючей смесью при дальнейшем вращении коленчатого вала поршень перемещается от н.м.т. к в.м.т. Впускной клапан закрывается, а выпускной закрыт. По мере сжатия горючей смеси температура и давление ее повышаются. В зависимости от степени сжатия давление в конце такта сжатия может составлять 0,8—1,5 МПа, а температура газов 300— 450 °С.

Такт расширения, или рабочий ход

В конце такта сжатия горючая смесь воспламеняется от электрической искры, возникающей между электродами свечи, и быстро сгорает, в результате чего температура и давление образующихся газов резко возрастают, поршень при этом перемещается от в.м.т. к н.м.т. Максимальное давление газов на поршень при сгорании для карбюраторных двигателей находится в пределах 3,5—5 МПа, а температура газов 2100—2400 °С.

При такте расширения шарнирно связанный с поршнем шатун совершает сложное движение и через кривошип передает вращение коленчатому валу. При расширении газы совершают полезную работу, поэтому ход поршня при этом такте коленчатого вала называют рабочим ходом. В конце рабочего хода поршня давление в цилиндре снижается до 0,3—0,75 МПа, а температура — до 900—1200 °С.

Такт выпуска

Коленчатый вал через шатун перемещает поршень от н.м.т. к в.м.т. При этом выпускной клапан открыт и продукты сгорания выталкиваются из цилиндра в атмосферу через выпускной трубопровод. В начале процесса выпуска продуктов сгорания давление в цилиндре значительно выше атмосферного, но к концу такта оно падает до 0,105—0,120 МПа, а температура газов в начале такта выпуска составляет 750— 900 °С, понижаясь к его концу до 500—600 °С. Полностью очистить цилиндры двигателя от продуктов сгорания практически невозможно (слишком мало времени), поэтому при последующем впуске свежей горючей смеси она перемешивается с остаточными отработавшими газами и называется рабочей смесью.

Коэффициент остаточных газов характеризует степень загрязнения свежего заряда отработавшими газами и представляет собой отношение массы продуктов сгорания, оставшихся в цилиндре, к массе свежей горючей смеси. Для современных карбюраторных двигателей коэффициент остаточных газов находится в пределах 0,06—0,12. По отношению к рабочему ходу такты впуска, сжатия и выпуска являются вспомогательными.

Двухтактный двигатель – особенности работы

Весь цикл работы двухтактного двигателя происходит за один оборот коленвала. Это позволяет на выходе получать приблизительно в 1,4-1,8 раз большую мощность, с того же рабочего объема, имея те же самые обороты двигателя. Разумеется, коэффициент полезного действия у таких агрегатов значительно ниже, чем у тех же 4 тактных моделей. Это используется при создании тяжелых и низкооборотных двигателей судов. Здесь они напрямую соединяются с гребным валом. Нашли свое применение такие модели и в мотоциклах.

Это так же приводит к тому, что модели, работающие в 2 такта, очень сильно греются. Здесь выделятся большая тепловая энергия. В некоторых случаях приходится подключать к ним дополнительное охлаждение, чтобы агрегат всегда находился в работоспособном состоянии. Однако, можно выделить и плюс подобной технологии. Ввиду того, что работа поршня ограничивается 2 тактами, он совершает гораздо меньше движений за единицу времени, поэтому потери на трение минимальны. Это напрямую отражается на износе основных рабочих деталях двухтактного двигателя.

Еще одной актуальной проблемой для данной модели является тот факт, что постоянно нужно искать компромисс между потерями свежего заряда и качеством продувки. Да, принцип работы заставляет ведущих инженеров и техников трудится над созданием универсальной системы, которая бы сводила к минимуму потери. 4 тактный двигатель вытесняет отработанные газы в тот момент, когда его поршень находится в верхней мертвой точке. Здесь ситуация коренным образом меняется. Вся отработка вылетает в трубу в тот момент, когда цилиндр практически полностью свободен, то есть этот процесс захватывает его объем полностью. Качество обдува играет в этом очень важную роль.

Именно поэтому не всегда удается разделить свежую рабочую смесь от выхлопных газов. В любом случае они будут смешиваться. Особенно отчетливо такая проблема выделяется у карбюраторных моделей моторов, которые напрямую подают готовое к работе горючее в цилиндр. Естественно, в данном случае стоит говорить о большем количестве используемого воздуха. Отсюда возникает необходимость применения сложных по структуре и составу воздушных фильтров. 4 тактный двигатель обделен этим недостатком.

Принцип работы данной модели двигателя говорит о том, что его применение может быть ограничено ввиду особенностей конструкции и большого количества потерь. Однако от 2 тактов еще никто не отказывается, создавая все больше устройств на его основе. Стоит отметить, что сегодня на рынке представлено множество различных механизмов, которые используют как 4 тактный двигатель внутреннего сгорания, так и двухтактный. Кстати, тот экземпляр, о котором мы решили поговорить сегодня, может иметь не только простейшее строение, в некоторых механизмах используются достаточно сложные его варианты.

Рабочий цикл двухтактного двигателя – достоинства и недостатки

Самое главное преимущество двухтактных двигателей – более высокая, по сравнению с четырехтактными, литровая мощность. Дело здесь в том, что при равном количестве цилиндров и количестве оборотов коленчатого вала в минуту, каждый цилиндр совершает рабочий ход вдвое чаще. При этом, за счет того, что фактический рабочий ход двухтактного двигателя короче (он укорочен за счет процессов газообмена), реально объем двигателя увеличивается на 50-60%.

Не менее важное преимущество – компактность. Благодаря этому качеству двухтактные двигатели нашли широкое применение не только в небольших транспортных средствах наподобие снегоходов, но и в садовой технике, а также инструментах (к примеру, в бензопилах). Кроме того, отсутствие газораспределительного механизма заметно делает конструкцию проще и дешевле в производстве. Есть у двухтактных ДВС и существенные недостатки. Они расходуют больше топлива впустую, так как при открытии выпускного окна в систему выхлопа попадает часть несгоревшей смеси. Система смазки классического двухтактного мотора крайне примитивна – бензин смешивается с маслом заранее, и оба эти вещества попадают в камеру сгорания одновременно. Обусловлено это тем, что организовать масляную ванну в картере невозможно – картер участвует в процессе газообмена.

В результате масло, не пошедшее на смазывания стенок цилиндра, сгорает вместе с топливом. Ресурс двухтактного двигателя также значительно меньше, главным образом, за счет высоких оборотов коленвала. По этой причине в двигателях этого типа применяется только специальное высококачественное масло, разработанное для применения в двухтактных двигателях. Экологические параметры также оставляют желать лучшего: в выхлопе, из-за особенностей газораспределения, содержится большое количество СО и СН.

Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.

устройство, принцип работы и классификация


Что такое ДВС?

ДВС (двигатель внутреннего сгорания) – один из самых популярных видов моторов. Это тепловой двигатель, в котором топливо сгорает непосредственно внутри него самого – во внутренней камере. Дополнительные внешние носители не требуются.

ДВС работает  благодаря физическому эффекту теплового расширения газов. Горючая смесь в момент воспламенения смеси увеличивается в объёме, и освобождается энергия.

Вне зависимости от того, о каком из ДВС идёт речь – о ДВС с искровым зажиганием – двигателе Отто (это, прежде всего, инжекторный и карбюраторный бензиновые двигатели) или о ДВС с воспламенением от сжатия (дизельный мотор, дизель) сила давления газов воздействует на поршень ДВС. Без поршня сложно представить большинство современных ДВС. В том числе, он есть даже у комбинированного ДВС. Только в последнем, кроме поршня, мотору работать помогает ещё и лопаточное оборудование (компрессоры, турбины).


Бензиновые, дизельные поршневые ДВС – это двигатели, с которыми мы активно встречаемся на любом транспорте, в том числе легковом, а ДВС, работающие не только за счёт поршня, но и за счёт компрессора, турбины – это решения, без которых сложно представить современные суда, тепловозы, автотракторную технику, самосвалы высокой грузоподъёмности, т.е. транспорт, где нужны двигатели средней (> 5 кВт) или высокой мощности (> 100 кВт).

Без двигателя внутреннего сгорания невозможно представить движение практически любого транспорта (кроме электрического) – автомобилей, мотоциклов, самолётов.

  • Несмотря на то, что технологии, в том числе, в транспортной сфере, развиваются семимильными шагами, ДВС на авто человечество будет устанавливать еще долго. Даже концерн Volkswagen, который, как известно, готовит масштабную программу электрификации модельного ряда своих двигателей, пока не спешит отказываться от ДВС. Открытой является информация, что автомобили с ДВС будут выпускаться не только в ближайшие 5, но и 30 лет. Да, время разработок новых ДВС у концерна уже подходит к финальной стадии, но производство никто сворачивать не будет. Нынешние актуальные разработки будут использоваться и впредь. Некоторые же концерны по производству авто и вовсе не спешат переходить на электромоторы. Это можно обосновать и экономически, и технически. Именно ДВС из всех моторов одни из наиболее надежных и при этом дешёвых, а постоянное совершенствование моделей ДВС позволяет говорить об уверенном прогрессе инженеров, улучшении эксплуатационных характеристик двигателей внутреннего сгорания и минимизации их негативного влияния на атмосферу.
  • Современные дизельные двигатели внутреннего сгорания позволяют снизить расход топлива на 25-30 %. Лучше всего такое уменьшение расхода топлива смогли достигнуть производители дизельных ДВС. Но и производители бензиновых двигателей внутреннего сгорания активно удивляют. Ещё в 2012-м году назад американский концерн Transonic Combustion (разработчик так называемых сверхкритических систем впрыска топлива) впечатлил решением TSCiTM. Благодаря новому подходу к конструкции топливного насоса и инжекторам, бензиновый двигатель стал существенно экономичней.
  • Большие ставки на ДВС делает и концерн Mazda. Он акцентирует внимание на изменении конструкции выпускной системы. Благодаря ей улучшена продувка газов, повышена степень их сжатия, а, вместе с тем, снижены и обороты  (причём сразу на 15%). А это и экономия расхода топлива, и уменьшение вредных выбросов – несмотря на то, что речь идёт о бензиновом двигателе, а не о дизеле.

Устройство двигателя внутреннего сгорания

При разнообразии конструктивных решений устройство у всех ДВС схоже. Двигатель внутреннего сгорания образован следующими компонентами:

  1. Блок цилиндров. Блоки цилиндров – цельнолитые детали. Более того, единое целое они составляют с картером (полой частью). Именно на картер ставят коленчатый вал). Производители запчастей постоянно работают над формой блока цилиндров, его объемом. Конструкция блока цилиндров ДВС должна чётко учитывать все нюансы от механических потерь до теплового баланса.
  2. Кривошипно-шатунный механизм (КШМ) – узел, состоящий из шатуна, цилиндра, маховика, колена, коленвала, шатунного и коренного подшипников. Именно в этом узле прямолинейное движение поршня преобразуется непосредственно во вращательное. Для большинства традиционных ДВС КШМ – незаменимый механизм. Хотя ряд инженеров пытаются найти замену и ему. В качестве альтернативы КШМ может рассматриваться, например, система кинематической схемы отбора мощности (уникальная российская технология, разработка научных сотрудников из «Сколково», направленная на погашение инерции, снижение частоты вращения, увеличение крутящего момента и КПД).
  3. Газораспределительный механизм (ГРМ). Присутствует у четырехтактных двигателей (что это такое, ещё будет пояснено в блоке, посвященном принципу работы ДВС). Именно от ГРМ зависит, насколько синхронно с оборотами коленчатого вала работает вся система, как организован впрыск топливной смеси непосредственно в камеру, под контролем ли выход из нее продуктов сгорания.

    Основным материалом для производства ГРМ выступает кордшнуровая или кордтканевая резина. Современное производство постоянно стремится улучшить состав сырья для оптимизации эксплуатационных качеств и повышения износостойкости механизма. Самые авторитетные производители ГРМ на рынке – Bosch, Lemforder, Contitech (все – Германия), Gates (Бельгия) и Dayco (США).

    Замену ГРМ проводят через каждые 60000 — 90 000 км пробега. Всё зависит от конкретной модели авто (и регламента на неё) и особенностей эксплуатации машины.

    Привод газораспределения нуждается в систематическом контроле и обслуживании. Если пренебрегать такими процедурами, ДВС может быстро выйти из строя.

  4. Система питания. В этом узле осуществляется подготовка топливно-воздушной смеси: хранение топлива, его очистка, подача в двигатель.
  5. Система смазки. Главные компоненты системы – трубки, маслоприемник, редукционный клапан, масляный поддон и фильтр. Для контроля системы современные решения также оснащаются датчиками указателя давления масла и датчиком сигнальной лампы аварийного давления. Главная функция системы – охлаждение узла, уменьшение силы трения между подвижными деталями. Кроме того, система смазки  выполняет очищающую функцию, освобождает двигатель от нагара, продуктов, образованных в ходе износа мотора.
  6. Система охлаждения. Важна для оптимизации рабочей температуры. Включает рубашку охлаждения, теплообменник (радиатор охлаждения), водяной насос, термостат и теплоноситель.
  7. Выхлопная система. Служит для отвода от мотора продуктов сгорания.
    Включает:
    — выпускной коллектор (приёмник отработанных газов),
    — газоотвод (приёмная труба, в народе- «штаны»),
    — резонатор для разделения выхлопных газов и уменьшения их скорости,
    — катализатор (очиститель) выхлопных газов,
    — глушитель (корректирует направление потока газов, гасит шум).
  8. Система зажигания. Входит в состав только бензодвигателей. Неотъемлемые компоненты системы – свечи и катушки зажигания. Самый популярный вариант конструкции – «катушка на свече». У двигателей внутреннего сгорания старого поколения также были высоковольтные провода и трамблер (распределитель). Но современные производители моторов, прежде всего, благодаря появлению конструкции «катушка на свече», могут себе позволить не включать в систему эти компоненты.
  9. Система впрыска. Позволяет организовать дозированную подачу топлива.

В LMS ELECTUDE системе и времени впрыска уделяется особое внимание. Любой автомеханик должен понимать, что именно от исправности системы впрыска, времени впрыска зависит способность оперативно изменять скорость движения авто. А это одна из важнейших характеристик любого мотора.


Тонкий нюанс! При изучении устройства нельзя проигнорировать и такой элемент, как датчик положения дроссельной заслонки. Датчик не является частью ДВС, но устанавливается на многих авто непосредственно рядом с ДВС. 

Датчик эффективно решает такую задачу, как передача электронному блоку управления данных о положении пропускного клапана в определенный интервал времени. Это позволяет держать под контролем поступающее в систему топливо. Датчик измеряет вращение и, следовательно, степень открытия дроссельной заслонки.

А изучить устройство мотора основательно помогает дистанционный курс для самообучения «Базовое устройство двигателя внутреннего сгорания автомобиля», на платформе ELECTUDE. Принципиально важно, что каждый может пошагово продвинуться от теории, связанной с ДВС и его составными частями, до оттачивания сервисных операций по регулировке. Этому помогает встроенный LMS виртуальный симулятор.

Принцип работы двигателя

Принцип работы классических двигателей внутреннего сгорания основан на преобразовании энергии вспышки топлива — тепловой энергии, освобождённой от сгорания топлива, в механическую.

При этом сам процесс преобразования энергии может отличаться.

Самый распространённый вариант такой:

  1. Поршень в цилиндре движется вниз.
  2. Открывается впускной клапан.
  3. В цилиндр поступает воздух или топливно-воздушная смесь. (под воздействием поршня или системы поршня и турбонаддува).
  4. Поршень поднимается.
  5. Выпускной клапан закрывается.
  6. Поршень сжимает воздух.
  7. Поршень доходит до верхней мертвой точки.
  8. Срабатывает свеча зажигания.
  9. Открывается выпускной клапан.
  10. Поршень начинает двигаться вверх.
  11. Выхлопные газы выдавливаются в выпускной коллектор.

Важно! Если используется дизельное топливо, то искра не принимает участие в запуске двигателя, дизельное топливо зажигается при сжатии само.

При этом для понимания принципа работы важно не просто учитывать физическую последовательность, а держать под контролем всю систему управления. Наглядно понять её помогает схема учебного модуля ELECTUDE. 

Обратите внимание, в дистанционных курсах обучения на платформе ELECTUDE при изучении системы управления дизельным двигателем она сознательно разбирается обособленно от системы регулирования впрыска топлива. Очень грамотный подход. Многим учащимся действительно сложно сразу разобраться и с системой управления, и с системой впрыска. И для того, чтобы хорошо усвоить материал, грамотно двигаться именно пошагово.


Но вернёмся к работе самого двигателя. Рассмотренный принцип работы актуален для большинства ДВС, и он надёжен для любого транспорта, включая грузовые автомобили.

Фактически у устройств, работающих по такому принципу, работа строится на 4 тактах (поэтому большинство моторов называют четырёхтактными):

  1. Такт выпуска.
  2. Такт сжатия воздуха.
  3. Непосредственно рабочий такт – тот самый момент, когда энергия от сгорания топлива преобразуется в механическую (для запуска коленвала).
  4. Такт открытия выпускного клапана – необходим для того, чтобы отработанные газы вышли из цилиндра и освободили место новой порции смеси топлива и воздуха

4 такта образуют рабочий цикл.

При этом три такта – вспомогательные и один – непосредственно дающий импульс движению. Визуально работа четырёхтактной модели представлена на схеме.


Но работа может основываться и на другом принципе – двухтактном. Что происходит в этом случае?

  • Поршень двигается снизу-вверх.
  • В камеру сгорания поступает топливо.
  • Поршень сжимает топливно-воздушную смесь.
  • Возникает компрессия. (давление).
  • Возникает искра.
  • Топливо загорается.
  • Поршень продвигается вниз.
  • Открывается доступ к выпускному коллектору.
  • Из цилиндра выходят продукты сгорания.

То есть первый такт в этом процессе – одновременный впуск и сжатие, второй — опускание поршня под давлением топлива и выход продуктов сгорания из коллектора.

Двухтактный принцип работы – распространённое явление для мототехники, бензопил. Это легко объяснить тем, что при высокой удельной мощности такие устройства можно сделать очень лёгкими и компактными.

Важно! Кроме количества тактов есть отличия в механизме газообмена.

В моделей, которые поддерживают 4 такта, газораспределительный механизм открывает и закрывает в нужный момент цикла клапаны впуска и выпуска.

У решений, которые поддерживают два такта, заполнение и очистка цилиндра осуществляются синхронно с тактами сжатия и расширения (то есть непосредственно в момент нахождения поршня вблизи нижней мертвой точки).


Классификация двигателей

Двигатели разделяют по нескольким параметрам: рабочему циклу, типу конструкции, типу подачи воздуха.

Классификация двигателей в зависимости от рабочего цикла

В зависимости от цикла, описывающего термодинамический (рабочий процесс), выделяют два типа моторов: 

  1. Ориентированные на цикл Отто. Сжатая смесь у них воспламеняется от постороннего источника энергии. Такой цикл присущ всем бензиновым двигателям.
  2. Ориентированные на цикл Дизеля. Топливо в данном случае воспламеняется не от искры, а непосредственно от разогретого рабочего тела. Такой цикл лежит в основе работы дизельных двигателей.

Чтобы работать с современными дизельными моторами, важно уметь хорошо разбираться в системе управлениям дизелями EDC (именно от неё зависит стабильное функционирование предпускового подогрева, системы рециркуляции отработанных газов, турбонаддува), особенностях системы впрыска Common Rail (CRD), механических форсунках, лямбда-зонда, обладать навыками взаимодействия с ними.


А для работы с агрегатами, работающими по циклу Отто, не обойтись без комплексного изучения свечей зажигания, системы многоточечного впрыска. Важно отличное знание принципов работы датчиков, каталитических нейтрализаторов.

И изучение дизелей, и бензодвигателей должно быть целенаправленным и последовательным. Рациональный вариант – изучать дизельные ДВС в виде модулей.


Классификация двигателей в зависимости от конструкции

  • Поршневой. Классический двигатель с поршнями, цилиндрами и коленвалом. При работе принципа ДВС рассматривалась как раз такая конструкция. Ведь именно поршневые ДВС стоят на большинстве современных автомобилей.
  • Роторные (двигатели Ванкеля). Вместо поршня установлен трехгранный ротор (или несколько роторов), а камера сгорания имеет овальную форму. У них достаточно высокая мощность при малых габаритах, отлично гасятся вибрации. Но производителям невыгодно выпускать такие моторы. Производство двигателей Ванкеля дорогостоящее, сложно подстроиться под регламенты выбросов СО2, обеспечить агрегату большой срок службы. Поэтому современные мастера СТО при ремонте и обслуживании с такими автомобилями встречаются крайне редко. Но знать о таких двигателях также очень важно. Может возникнуть ситуация, что на сервис привезут автомобили Mazda RX-8. RX-8 (2003 по 2012 годов выпуска) либо ВАЗ-4132, ВАЗ-411М. И у них стоят именно роторные двигатели внутреннего сгорания.

Классификация двигателей по принципу подачи воздуха

Подача воздуха также разделяет ДВС на два класса:

  1. Атмосферные. При движении поршня мотор затягивает порцию воздуха. Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.
  2. Турбокомпрессорные. Организована дополнительная подкачка воздуха в камеру сгорания.

Для вращения турбины и вдувания сжатого воздуха у турбокомпрессорных двигателей внутреннего сгорания используются непосредственно выхлопные газы.


Атмосферные системы активно встречаются как среди дизельных, так и бензиновых моделей. Турбокомпрессорные ДВС – в большинстве своём, дизельные двигатели. Это связано с тем, что монтаж турбонаддува предполагает достаточно сложную конструкцию самого ДВС. И на такой шаг готовы пойти чаще всего производители авто премиум-класса, спорткаров. У них установка турбокомпрессора себя оправдывает. Да, такие решения более дорогие, но выигрыш есть в весе, компактности, показателе крутящего момента, уровни токсичности. Более того! Выигрыш есть и в расходе топлива. Его требуется существенно меньше.

Очень часто решения с турбокомпрессором выбирают автовладельцы, которые предпочитают агрессивный стиль езды, высокую скорость.

Преимущества ДВС

  1. Удобство. Достаточно иметь АЗС по дороге или канистру бензина в багажнике – и проблема заправки двигателя легко решаема. Если же на машине установлен электромотор, зарядка доступна пока ещё не во всех местах.
  2. Высокая скорость заправки двигателя топливом.
  3. Длительный ресурс работы. Современные двигатели внутреннего сгорания легко работают в заявленный производителем период (в среднем 100-150 тыс. км. пробега), а некоторые и 300-350 тыс. км пробега. Впрочем, мировой рекордсмен – пробег и вовсе ~4 800 000 км. И здесь нет лишних нулей. Такой рекорд установлен на двигателе Volvo» P1800. Единственное, за время работы двигатель два раза проходил капремонт.
  4. Компактность. Двигатели внутреннего сгорания существенно компактнее, нежели двигатели внешнего сгорания.

Недостатки ДВС

При использовании двигателя внутреннего сгорания нельзя организовать работу оборудования по замкнутому циклу, а, значит, организовать работу в условиях, когда давление существенно превышает атмосферное.

Большинство ДВС работает за счёт использования невозобновляемых ресурсов (бензина, газа). И исключение – машины, работающие на биогазе, этиловом спирте (на практике встречается редко, так как при использовании такого топлива невозможно добиться высоких мощностей и скоростей).

Существует тесная зависимость работы ДВС от качества топлива. Оно должно обладать определённым определенным цетановым и октановым числами (характеристиками воспламеняемости дизельного топлива, определяющими период задержки горения рабочей смеси и детонационной стойкости топлива), плотностью, испаряемостью.

Автомеханики называют ДВС сердцем авто, инженеры модернизируют ГРМ, а производители бензина не беспокояться о том, что все перейдут на электротранспорт.

Различие между двухтактными и четырехтактными двигателями для лодок

Думаете о том, какой мотор купить для своей лодки: двухтактный или четырехтактный. Чтобы на него ответить и наконец-то определиться с выбором, следует разобраться с отличиями лодочных двигателей 2х и 4х тактов. В чем, собственно, состоит отличие работы механизма на 2х и 4х тактах, какие из них могут развивать большую скорость при одинаковой мощности.

А еще давайте разберемся с качеством выбросов и с тем, на каких водоемах лучше использовать какие лодочные двигатели.

Мы рассмотрим все эти вопросы, после чего вы сами сможете определиться с отличиями и с выбором удобного для вас варианта.

Переход с двухтактных на четырехтактные моторы и насколько это оправдано

Еще несколько десятков лет тому назад гораздо более распространенными были двухтактные лодочные двигатели. В то время 4-тактные двигатели были гораздо более громоздкими и капризными, чем сегодня. Хотя и по сей день с 2-тактными моторами во время эксплуатации, как правило, возникает меньше хлопот, чем с 4-тактными.


Преимущества двухтактных лодочных моторов заключаются в том, что они, как правило, весят гораздо меньше четырехтактных. К тому же имеют относительно высокую удельную мощность (учитывая габариты).

Хотя современные лодочные 4-тактные двигатели начали совершенствоваться и по многим отличиям существенно опередили двухтактные. В частности, по легкому запуску.

Если говорить в общем, ни один профессионал, который действительно разбирается в лодочных двигателях, не сможет сказать наобум, какой, 2х или 4-тактный мотор будет лучше. Это довольно-таки индивидуальный вопрос. Все зависит от типа лодки, условий и частоты ее эксплуатации, характеристики будущего водоема. И чтобы на него ответить, следует разобраться с отличием принципа работы 2х и 4х тактных лодочных моторов.

Отличия по принципу работы двухтактных и четырехтактных лодочных моторов. Экологичность


Давайте разберемся с принципом работы. Двухтактный лодочный двигатель — это мотор внутреннего сгорания, в котором для завершения рабочего цикла необходимо два хода поршня. Четырехтактный лодочный мотор — это также двигатель внутреннего сгорания, но для завершения процесса его работы, то есть цикла, поршню нужно произвести 4 такта. Почему так?

В двухтактном лодочном моторе внутреннего сгорания, в отличие от 4х тактного, масло попадает в камеру сгорания уже с бензином (предварительно смешивается). В 4х тактном — оно попадает с коленчатого вала.

Таким образом в выхлоп, то есть в те отработанные газы, которые выпускает мотор в атмосферу, попадает определенное количество не полностью сгоревшего масла. Соответственно, “полупрогоревшее” масло загрязняет экологию водоема.

Конечно, катастрофы не случится, если лодка сделает несколько кругов по водной глади. Но все-таки, если сравнивать отличия степени экологичности и 2х тактных и 4х тактных лодочных моторов, то последнее одержат уверенную победу.

У двухтактных лодочных двигателей рабочим считается каждый второй такт, а у четырехтактных — каждый четвертый. Из этого следует, что при одинаковом объеме камеры сгорания мощнее будут именно 2х тактные моторы. И здесь мы плавно перешли к мощности, о которой более подробно поговорим в следующем разделе.


Кто одержит победу по параметрам мощности и расходу топлива: двухтактные или четырехтактные лодочные двигатели

Двухтактные лодочные двигатели действительно при одних и тех же базовых параметрах (вес и размер) отличаются мощностью от четырехтактных. Они примерно в 1.5 раза мощнее, чем четырехтактные.

Здесь может показаться, что они более экономные, ведь при одних и тех же параметрах, а значит, возможно, при одном и том же количестве топлива они выдают большую мощность? Это не совсем так.

Как правило, при выходе на глиссирование, то есть на режим скольжения судна по водной глади, лодочный мотор четырехтактный расходует топлива примерно на 20% меньше, чем двухтактный лодочный двигатель. Почему это происходит? Во-первых, двухтактные лодочные моторы часть масла теряют во время выброса его вместе с отработанными выхлопными газами. Именно поэтому “кушают” двухтактники топливо более аппетитно. Хотя по производительности двухтактные лодочные моторы получше четырехтактных.

Что в итоге? А в итоге цена покатушек на 2х тактном двигателе будет не особо отличаться от цены лодочных прогулок на четырехтактном, и вот почему. Дело в том, что 2х тактные традиционно дешевле 4х тактных лодочных двигателей (на примере лодочных подвесных двигателей Suzuki), и порой отличие цены весьма значительно.

Отличия двухтактных и четырехтактных двигателей в вопросах моторесурса, ремонта, обслуживания


Чтобы понять, какие моторы для лодок, двухтактные или четырехтактные, более устойчивы к эксплуатации и в чем отличие, нужно снова обратить внимание на специфику их работы. Если сравнивать отличие 4х и 2х тактов, то сразу можно сказать, что четыре такта менее агрессивно изнашивают детали механизма. Поэтому, что касается моторесурса, то здесь ответ однозначный. Четырехтактные подвесные моторы для лодок гораздо более износостойкие, чем двухтактные.

А вот если произойдет поломка примерно одинаковой степени тяжести у 2х тактного и 4х тактного мотора, то стоимость ремонта первого однозначно будет меньше, чем второго. Как и у любого другого механизма, стоимость ремонта мотора прямо пропорциональна стоимости самого мотора. То есть чем дороже будет движок, тем больше средств понадобится на его “лечение”.

И что касается замены запчастей, на двухтактные двигатели будет таковые найти по низкой цене гораздо легче. А все потому, что двухтактный подвесной двигатель выпускается уже порядка 80 лет, поэтому рынок вторсырья просто изобилует годными деталями от старых лодочных двигателей. А вот с четырехтактным, скорее всего, придется покупать новую деталь у производителя. Хотя, шанс найти на вторичном рынке сломавшуюся деталь и для 4х тактного лодочного мотора тоже имеется.

Ну и опять же, если покупать дорогой и качественный лодочный двигатель, например, мотор Suzuki, то здесь гораздо меньше шансов на то, что его нужно будет вообще когда-нибудь чинить.

Что касается обслуживания, 2х тактные моторы по легкости обслуживания опережают 4х тактные. Они менее прихотливы и в вопросах качества топлива, и в вопросах профилактических чисток.


Подвесные моторы 2х и 4х тактные — неоспоримые лидеры для современных малых плавсредств


И двухтактный, и четырехтактный подвесной лодочный мотор прикрепляется к транцу резиновой лодки. Внешне современные лодочные двигатели 2х и 4х тактные отличий, пожалуй, не имеют.

В целом, подвесные лодочные моторы и 2х, и 4х тактные хороши тем, что не занимают полезный объем лодки, тем самым не загромождают и без того маломерное пространство. Кроме того, неважно, двухтактный это или четырехтактный лодочный мотор, его будет легко демонтировать для ремонта или просто перед тем, как надувную лодку нужно будет спустить. Еще один несомненный плюс подвесных двигателей — это относительно низкий уровень шума. Современные лодочные двигатели, в отличие от прошлых моделей, действительно шумят гораздо меньше, но это не значит, что в лодке на бензиновом моторе можно перемещаться при идеальной тишине.

Подводим итоги: какой лучше мотор, двухтактный или четырехтактный

Конечно, четырехтактные моторы считаются более современными, экономичными и экологичными. Но одновременно с тем, цена двухтактных моторов гораздо ниже. Что ж, давайте кратко перечислим все достоинства и недостатки двухтактных и четырехтактных лодочных двигателей. Из этого сжатого списка вы сможете понять все их отличия и принять единственно правильное решение для себя решение касательно покупки.

Достоинства двухтактных моторов

  • Первым неоспоримым достоинством двухтактного лодочного мотора, в отличие от 4х тактного, является его относительно низкая стоимость.
  • Вторым неоспоримым плюсом двухтактного лодочного мотора, в отличие от четырехтактного, являются его относительно малые габариты и малый вес. При такой же мощности.
  • На 2х тактные лодочные двигатели, в отличие от 4х тактных, довольно легко найти сменные запчасти. Причем, смотря правде в глаза, можно сказать, что многие детали у них взаимозаменяемы. То есть есть большая вероятность, того, что можно безопасно установить ту или иную деталь с такого же, двухтактного мотора, но совершенно другой фирмы. Хотя ни производители, ни опытные мастера этого делать, конечно, не рекомендуют.

Недостатки двухтактных лодочных двигателей

  • 2х тактные лодочные моторы слишком шумные, по сравнению с четырехтактными. Они абсолютно не подходят для тихого перемещения по водной глади.
  • А если мы имеем дело с частыми перевозками или с теми людьми, которые рыбачат от последних льдов до первого снега? Для такого случая себестоимость работы с двухтактным мотором будет выше, чем с его 4х тактным конкурентом. Ведь прожорливость 2х тактных выше 4х тактных примерно на 20%.
  • Двухтактные моторы сильнее загрязняют окружающую среду, чем четырехтактные.
  • 2х тактный мотор работает на топливной смеси: масло + бензин. Ее нужно готовить отдельно перед тем, как запускать мотор.


Достоинства четырехтактных моторов:

  • Относительно малая шумность. Идеальный вариант для троллинга.
  • Неплохо идет на малых оборотах, не глохнет. Четырехтактный лодочный двигатель — это идеальный вариант для плавного перемещения по водной глади, без спешки и лишней суеты.
  • В отличие от 2х тактного лодочного двигателя, не требует заправки топливной смесью. Бензин в четырехтактный двигатель заправляется топливный бак, а масло заливается в картер.

Недостатки четырехтактных моторов:

  • Стоимость четырехтактного мотора одной и той же фирмы гораздо выше, чем двухтактного.
  • При одной и той же мощности, четырехтактный, в отличие от двухтактного, мотор развивает меньшую скорость.
  • Цена запчастей для четырехтактного мотора гораздо выше, чем для двухтактного. А еще считается, что первый более подвержен поломкам. Хотя, если мы говорим о проверенных магазинах именитых производителях, это вопрос спорный.

Итак, давайте подведем окончательные выводы.

Если вам двигатель нужен для того, чтобы использовать его очень часто.

Если повышенная скорость передвижения для вас не приоритетна, вы обращаете больше внимание на плавность.

А ещё, если вы предпочитаете рыбалку с помощью движущиеся приманки, то вам наверняка больше подойдут четырехтактные лодочные моторы.

Если же вы планируете купить двигатель для лодки, чтобы несколько раз за сезон выйти на отдых или на рыбалку, причем вы в настоящее время не готовы тратить большую сумму для покупки лодочного мотора, в таком случае обратите внимание на 2х тактники.

Главное, делать эту покупку только в проверенном и честном интернет-магазине. Aquamania.com.ua идеально пододет для осуществления таких покупок. Приятного отдыха!

Циклы 2-х тактного и 4-х тактного судового дизельного двигателя

Cycles of Diesel EngineРабочие циклы дизельного двигателя
Any internal combustion engine, regardless of principle it operates on, is said to have a four-stroke cycle or a two-stroke cycle. The engines of either type may be single or double acting, trunk-piston type, crosshead type, opposed-piston type.Считается, что любой двигатель внутреннего сгорания, независимо от принципа его работы, имеет четырехтактный или двухтактный цикл. Двигатели любого типа могут быть простого или двойного действия, тронковыми, крейцкопфными, с противоположно- движущимися поршнями.
  • internal combustion engine – двигатель внутреннего сгорания
  • regardless of … – независимо от …
  • is said – говорят, считается
  • to operate – работать, действовать, приводить в движение, запускать, управлять
  • stroke – в двигателях внутреннего сгорания: ход (поршня), такт
  • four-stroke (two-stroke ) cycle – четырехтактный (двухтактный) цикл
  • either type – любой; любой из двух
  • single (double) acting – простого (двойного) действия
  • trunk-piston type – тронковый
  • crosshead type – крейцкопфный
  • opposed-piston type – с противоположно-движущимися (расходящимися) поршнями
The four-stroke cycle consists of: the suction stroke, compression stroke, combustion and expansion stroke and exhaust stroke.Четырехтактный цикл состоит из: такта всасывания, такта сжатия, такта горения и расширения, и такта выпуска.
  • consists of … – состоит из …
  • suction stroke – ход (такт) всасывания
  • compression stroke – ход (такт) сжатия
  • combustion and expansion stroke – ход (такт) сгорания и расширения
  • exhaust stroke – ход (такт) выпуска
The piston starts a downward, suction stroke. The air inlet valve is open and air is being drawn into the cylinder through the air inlet pipe. The exhaust valve, fuel valve are all closed. As the piston reaches the end of the suction stroke the air inlet valve closes …Поршень начинает движение вниз – ход всасывания. Впускной клапан открывается, и воздух втягивается в цилиндр через впускной патрубок. Выпускной клапан, топливный клапан – все закрыты. Когда поршень достигает конца хода всасывания, впускной клапан закрывается, …
  • piston – поршень
  • downward – вниз; upward – вверх  
  • air inlet valve – впускной клапан (воздушный) (inlet – впуск, вход, впускное отверстие; valve – клапан)
  • to draw – тянуть, втягивать, затягивать, вдыхать и т. п.; being drawn – втягивается (буквально: будучи втягиваемым – это пассивная форма глагола)
  • cylinder – цилиндр
  • through – через, сквозь (произносится: сру)
  • air inlet pipe – впускной патрубок (воздушный)
  • exhaust valve – выпускной клапан
  • fuel valve – топливный клапан
  • to reach – достигнуть
… and as the piston rises on the second, or compression stroke, the air in the cylinder is compressed. At the end of this stroke the air has been compressed to about 480 pounds and its temperature has risen to about 1,000 degrees F. The fuel injection valve now opens and the fuel is sprayed into the cylinder under a pressure of 3,550 p.s.i. The high temperature of the compressed air in the cylinder ignites the fuel, and it continues to burn as long as injection is maintained. This burning raises the temperature of the gas to approximately 3,000ºF.… и пока поршень поднимается на второй ход, или ход сжатия, воздух в цилиндре сжимается. В конце этого хода воздух сжат до, примерно, 480 фунтов, и его температура поднята до, примерно, 1000 градусов по Фаренгейту. Теперь открывается форсунка, и топливо распыляется в цилиндр под давлением 3 550 фунтов на квадратный дюйм. Высокая температура сжатого воздуха в цилиндре воспламеняет топливо, и оно продолжает гореть столько, сколько продолжается впрыскивание. Это горение поднимает температуру газа до, приблизительно, 3000 градусов по Фаренгейту.
  • has been compressed – сжат (это настоящее совершенное время в пассивной форме, т.е. начали сжимать в прошлом, и это сжато к настоящему моменту)
  • about – около, приблизительно
  • pound – фунт (1 фунт = 0,454 кг; 1 кг = 2,205 фунта)
  • 1,000.00 = 1 000,00 (в английском письме разряды в цифрах разделяются запятыми, а десятичные доли точкой!!!)
  • degrees F – градусов по Фаренгейту
  • fuel – топливо
  • injection – впрыскивание
  • fuel injection valve – форсунка (дословно: топливо-впрыскивающий клапан)
  • p. s.i. (pounds per square inch) – фунтов на квадратный дюйм (1 psi = 0,07031 кгс/кв. см)
  • to ignite – зажигать, воспламенять
  • as long as – до тех пор, пока; столько, сколько …
  • to maintain – поддерживать (сохранять в том же состоянии)
  • to burn – гореть; burning – горение
  • approximately – приблизительно
In the meantime, the piston has started down on the third, or expansion stroke, with the gas expanding behind it. The injection valve closes shortly after the piston has started down on this stroke. At the end of this stroke the exhaust valve opens and the burned gases in the cylinder, now reduced to about 40 pounds pressure, and correspondingly reduced in temperature, start to flow out through the exhaust pipe.Тем временем, поршень начал движение вниз на третий ход, или ход расширения, а газ расширяется вслед за ним. Форсунка закрывается вскоре после того, как поршень начал опускаться на этот ход. В конце этого хода выпускной клапан открывается, и сгоревшие в цилиндре газы, теперь с давлением, снизившимся до, примерно, до 40 фунтов, и с соответственно понизившейся температурой, начинают выходить через выпускной патрубок.
  • in the meantime – тем временем; между тем
  • shortly after – вскоре после того, как …
  • burned gases – отработанные газы (дословно: сгоревшие газы)
  • correspondingly – соответственно
  • flow out – вытекать (наружу)
  • exhaust pipe – выпускной патрубок
Returning on the fourth, or exhaust stroke, the piston pushes the remaining gas out of the cylinder. At the end of this stroke the exhaust valve closes, the air inlet valve opens and the cycle of operations starts again.Возвращаясь на четвертый, или выпускной ход,  поршень выталкивает оставшийся газ из цилиндра. В конце этого хода выпускной клапан закрывается, открывается впускной клапан, и цикл операций начинается опять.
It is thus seen that one complete cycle requires four strokes of the piston; the four strokes comprise two complete revolutions of the crank.Таким образом, видно, что один полный цикл  требует четыре хода поршня; четыре хода составляют два полных оборота кривошипа.
  • revolution – оборот
  • crank – кривошип, колено
In the 2-cycle, single acting Diesel engine instead of an exhaust valve there is a ring of exhaust ports around the bottom of the cylinder, communicating with the exhaust pipe. The spray valve and starting valve are the same as in the 4-cycle. In place of air inlet valves there are scavenging ports, in place of exhaust valves there are exhaust ports, in uniflow scavenging engines there are exhaust valves. The scavenging ports are in communication with a passage leading to a low pressure scavenging air compressor, operated from the engine.В двухтактном дизельном двигателе простого действия вместо выпускного клапана имеется кольцо выпускных окон вокруг днища цилиндра, сообщающихся с выпускным патрубком. Форсунка и пусковой клапан такие же, как и на четырехтактном. Вместо впускных клапанов имеются продувочные окна, вместо выпускных клапанов имеются выпускные окна, в двигателях с прямоточной продувкой имеются выпускные клапана. Продувочные окна сообщаются с каналом, ведущим к компрессору продувочного воздуха низкого давления, приводимому в движение от двигателя.
  • ring – кольцо, круг
  • port – отверстие, окно, проход, порт
  • exhaust port – выпускное окно
  • communicating; in communication with … – сообщающийся, соединяющийся
  • exhaust pipe – выхлопной патрубок
  • spray valve – форсунка
  • starting valve – пусковой клапан
  • the same as – тот же, что и …; такой же, как …
  • in place of – вместо
  • exhaust valve – выпускной клапан
  • scavenging port – продувочное окно
  • uniflow scavenging – прямоточная продувка
  • passage – проход, канал
When the piston on its downward stroke uncovers the exhaust ports and the cylinder pressure drops to atmospheric, the scavenging ports open and the air, under pressure, flows into the cylinder and pushes the exhaust gases out through these ports. As the piston on its up stroke covers the scavenging ports, the exhaust ports close, leaving the cylinder full of fresh air. The piston moving upward on its compression stroke, compresses this air and at the end of compression fuel injection occurs, just as previously described for the 4-stroke cycle.Когда поршень на его ходу вниз открывает выпускные окна, и давление в цилиндре падает до атмосферного, продувочные окна открываются, и воздух под давлением заходит в цилиндр и выталкивает отработанные газы наружу через эти окна. По мере того, как поршень на его ходу вверх закрывает продувочные окна, выпускные окна закрываются, оставляя цилиндр полным свежего  воздуха. Поршень, двигаясь вверх на его ходу сжатия, сжимает этот воздух, и в конце сжатия происходит воспламенение топлива, точно также как описано ранее для четырехтактного цикла.
  • to cover – закрывать;
  • to uncover – открывать
It is thus seen that the complete series of operations, including fuel injection and combustion, expansion, exhaust, filling cylinder with fresh air and compression, occurs in two strokes of the piston, or one revolution of the crankshaft.Таким образом, видно, что полная серия операций, включая впрыск топлива и сгорание, расширение, выпуск, заполнение цилиндра свежим воздухом и его сжатие происходят за два хода поршня или один поворот коленчатого вала.
  • crankshaft – коленчатый вал

Четырехтактный двигатель внутреннего сгорания

4-тактный двигатель внутреннего сгорания
Гленн

Исследовательский центр

Это анимированный компьютерный рисунок одного цилиндра Райт. Авиадвигатель братьев 1903 года. Этот двигатель приводил в действие первый, тяжелее воздушные, самоходные, маневренные, пилотируемые самолеты; Райт Флаер 1903 года.Двигатель состоял из четырех цилиндры как показано выше, с каждый поршень подключен к общему коленчатый вал. Коленчатый вал был соединен с двумя противоположно вращающимися. пропеллеры который произвел тяга, необходимая для преодоления сопротивление самолета.

Дизайн братьев очень прост по сегодняшним меркам, так что это хороший двигатель для студентов, чтобы изучить основы работа двигателя. Этот тип внутреннее сгорание двигатель называется четырехтактный двигатель , потому что есть четыре движения, или удары поршня перед повторением всей последовательности запуска двигателя.Четыре штриха описаны ниже с некоторыми неподвижными фигурами. В анимации и на всех рисунках мы раскрасили система впуска топлива / воздуха красный, электрическая система зеленый, а вытяжная система синий. Мы также представляем топливно-воздушную смесь и выхлопные газы небольшими цветные шарики, чтобы показать, как эти газы проходят через двигатель. Поскольку мы будем иметь в виду движение различных частей двигателя, вот рисунок, показывающий названия частей:

Ход впуска

Двигатель цикл начинается с впускной ход как поршень тянул в сторону коленчатого вала (на рисунке слева).

Впускной клапан открыт, топливо и воздух проходят через клапан. и в камеру сгорания и цилиндр от впускного коллектора, расположенного в верхней части камеры сгорания. Выпускной клапан закрыт, а электрический контактный выключатель разомкнут. Топливно-воздушная смесь находится на относительно низком уровне. давление (около атмосферного) и окрашен в синий цвет на этом рисунке. В конце такта впуска поршень находится в крайнем левом углу и начинает двигаться назад в сторону верно.

Цилиндр и камера сгорания заполнены топливовоздушной смесью низкого давления. и, когда поршень начинает двигаться вправо, впускной клапан закрывается.

Историческая справка — Открытие и закрытие впускного клапана двигателя Wright 1903 был назван братьями «автоматическим». Он основан на немного более низком давлении внутри в цилиндре во время такта впуска, чтобы преодолеть силу пружины, удерживающей клапан в закрытом состоянии. Современные двигатели внутреннего сгорания делают не работайте так, но используйте кулачки и коромысла, как выхлопную систему братьев. Кулачки и коромысла обеспечивают лучший контроль и время открытия и закрытие клапанов.

Ход сжатия

Когда оба клапана закрыты, комбинация цилиндра и камеры сгорания образуют полностью закрытую емкость, содержащую топливно-воздушную смесь. Как поршень сдвигается вправо, объем уменьшается, а топливно-воздушная смесь сжатый во время ход сжатия.

Во время сжатия нет высокая температура переходит в топливно-воздушную смесь. Поскольку объем уменьшается из-за движения поршня, давление в газе увеличился, как это описано по законам термодинамика.На рисунке смесь окрашена желтый цвет означает умеренное повышение давления. Чтобы создать повышенное давление, мы должны сделать работай на смеси, просто так как вам нужно выполнить работу, чтобы накачать велосипедную шину с помощью насоса. Во время такта сжатия электрический контакт остается разомкнутым. Когда объем самый маленький, и давление самое высокое, как показано на рисунке, контакт замкнут, и поток электричество течет через вилку.

Рабочий ход

В начале рабочего хода электрический контакт размыкается.Внезапное размыкание контакта вызывает искру в камере сгорания, которая воспламеняет топливно-воздушную смесь. Стремительный горение топливных выбросов высокая температура, и производит выхлопные газы в камере сгорания.

Поскольку впускные и выпускные клапаны закрыты, сгорание Топливо находится в полностью закрытом сосуде (и почти постоянного объема). В сгорание увеличивает температура выхлопных газов, остаточного воздуха в камере сгорания, и в самой камере сгорания.От закон идеального газа, повышенная температура газов также приводит к увеличению давление в камере сгорания. Мы покрасили газы в красный цвет на рисунке. для обозначения высокого давления. Высокое давление газов, действующих на лицевой стороной поршня заставляет поршень перемещаться влево, что инициирует рабочий ход.

В отличие от такта сжатия, горячий газ воздействует на поршень во время рабочего такта. Сила на поршне передается штоком поршня на коленчатый вал, где линейный движение поршня преобразуется в угловое движение коленчатого вала.Работа сделано на поршне, затем используется для вращения вала и пропеллеров, и для сжатия газов в такте сжатия соседнего цилиндра. Имея возникла искра зажигания, электрический контакт остается разомкнутым.

Во время рабочего такта объем, занимаемый газами увеличивается из-за движения поршня и нет высокая температура переходит в топливно-воздушную смесь. Поскольку объем увеличивается из-за движения поршня, давление и температура газа уменьшилось.Мы покрасили «молекулы» выхлопных газов в желтый цвет, чтобы обозначить умеренное давление. в конце рабочего хода.

Историческая справка — Способ получения электрической искры братья Райт называли соединением «замыкай и прерывай». Там подвижные части, расположенные внутри камеры сгорания. Современное внутреннее сгорание двигатели не используют этот метод, а вместо этого используют свечу зажигания, чтобы произвести искра зажигания. Свеча зажигания не имеет движущихся частей, что намного безопаснее, чем у свечи зажигания. метод, используемый братьями.

Ход выхлопа

В конце рабочего хода поршень находится в крайнем левом положении. Нагрейте это осталось от рабочего хода сейчас переведен к воде в водная куртка пока давление не приблизится к атмосферному давление. Затем открывается выпускной клапан. кулачком, нажав на коромысло, чтобы начать такт выхлопа.

Назначение выхлопа ход заключается в очистке цилиндра от отработанного выхлопа для подготовки к следующему цикл зажигания.В начале такта выпуска цилиндр и камера сгорания заполнены. продуктов выхлопа при низком давлении (окрашены синим цветом на рисунке выше). Потому что выпускной клапан открыт, выхлопные газы проходят мимо клапана и выходят из двигателя. Впускной клапан закрыт, а электрическая контакт открыт во время этого движения поршня.

В конце такта выпуска выпускной клапан закрывается и двигатель начинается еще один такт впуска.

Историческая справка — Выхлопная система братьев Райт заставлял горячий выхлоп выходить из каждого цилиндра независимо… сразу за пилоту. Этот двигатель тоже был очень громким. Коллекционируют современные автомобили выхлоп из всех цилиндров в выпускной коллектор (точно так же, как впускной коллектор б / у братьев). Выпускной коллектор проходит через выхлоп к каталитическому нейтрализатору для удаления опасных газов, а затем через глушитель, чтобы он не шуметь, и, наконец, выхлопную трубу.

Теперь вы сможете понять анимация вверху этой страницы. Обратите внимание, что коленчатый вал делает два оборотов за каждый оборот кулачков.Это движение контролируется временная цепь. Также обратите внимание, как кулачок перемещает выпускной клапан. в нужный момент и как быстро впускной клапан открывается после выпуска клапан закрыт. В реальной работе двигателя ход выпуска не может вытолкнуть все выхлоп из цилиндра, поэтому настоящий двигатель работает не так хорошо, как идеальный двигатель описан на этой странице. Когда двигатель работает и нагревается, производительность изменения. Современные автомобильные двигатели регулируют соотношение топливо / воздух с компьютерным управлением. топливные форсунки для поддержания высокой производительности.Братьям просто нужно было смотреть мощность их двигателя упала с примерно 16 лошадиных сил, когда двигатель был сначала начал примерно с 12 лошадиных сил, когда он был горячим.


Виды деятельности:

Экскурсии

Навигация ..


Руководство для начинающих Домашняя страница

WÄRTSILÄ Энциклопедия морских технологий

Дизельный двигатель

Тип двигателя внутреннего сгорания, который воспламеняет топливо путем впрыска его в горячий воздух под высоким давлением в камере сгорания.У него нет ни карбюратора, ни системы зажигания. Топливо впрыскивается в камеру сгорания в виде очень тонкой струи через форсунку. Там он воспламеняется от тепла сжатого воздуха, которым была заполнена камера. Дизельный двигатель работает в фиксированной последовательности событий, которая может быть достигнута за четыре или два такта. Двухтактный низкооборотный (то есть от 70 до 120 об / мин) дизель используется в главных силовых установках, так как он может напрямую соединяться с гребным винтом и валом.Среднеоборотный четырехтактный двигатель (250 — 1200 об / мин) используется для вспомогательного оборудования, такого как генераторы переменного тока, а также для главной силовой установки с коробкой передач.

Четырехтактный дизельный двигатель напоминает бензиновый двигатель, поскольку он работает по четырехтактному циклу, а именно: впуск, сжатие, мощность и выхлоп. Когда поршень опускается на такте впуска воздуха, более низкое давление в цилиндре позволяет воздуху поступать в цилиндр через впускной клапан, который открывается непосредственно перед верхней мертвой точкой.

Как только поршень пройдет нижнюю мертвую точку и начинает подниматься, впускной клапан закрывается, и движение поршня вверх сжимает заряд воздуха в цилиндре, вызывая быстрое повышение температуры. До завершения второго такта заправка мазута постепенно впрыскивается в цилиндр форсункой.

При горении топливовоздушного заряда газы расширяются. Они толкают поршень вниз и создают рабочий ход. Прежде чем поршень достиг нижней мертвой точки, выпускной клапан открывается, и когда поршень снова поднимается вверх, сгоревшие газы вытесняются через выпускной клапан.Непосредственно перед верхней мертвой точкой впускной клапан открывается, и цикл начинается снова.

Высокоскоростной дизельный двигатель — Главный поршневой двигатель с номинальной частотой вращения 1400 об / мин или выше.

Среднеоборотный дизельный двигатель — Двигатель поршневого типа с диапазоном частот вращения от 400 до 1200 об / мин.

Низкооборотный дизельный двигатель — Двигатель крейцкопфного типа с номинальной частотой вращения менее 400 об / мин.

Из руководства по проекту Wärtsilä 46:

С диаметром цилиндра 46 см и ходом поршня 58 см номинальная мощность двигателя Wärtsilä 46F составляет 1250 кВт / цилиндр при 600 об / мин. Вспомогательное оборудование, такое как насосы, термостаты и модуль смазочного масла, может быть встроено в двигатель или отдельно. Al-соединения сконцентрированы в нескольких точках, чтобы сократить монтажные работы.

Основные компоненты

1. Блок двигателя

Блок цилиндров изготовлен из чугуна с шаровидным графитом в виде единой детали для всех номеров цилиндров. Крышки коренных подшипников фиксируются снизу двумя винтами с гидравлическим натяжением. Блок двигателя направляет их вбок как вверху, так и внизу.Горизонтальные боковые винты с гидравлическим натяжением поддерживают крышки коренных подшипников.

2. Коленчатый вал

Коленчатый вал выкован цельно. Противовесы установлены на каждой перемычке. Высокая степень балансировки обеспечивает равномерную и толстую масляную пленку для всех подшипников.

3. Шатун

Шатун из легированной стали кован и обработан с круглым сечением. Нижний конец разделен по горизонтали, чтобы можно было снимать поршень и шатун через гильзу цилиндра.Все болты шатуна затянуты гидравлически. Подшипник поршневого пальца — трехметаллический. Масло подается к подшипнику поршневого пальца и к поршню через отверстие в шатуне.

4. Коренные подшипники и подшипники шатуна

Подшипники шатуна трехметаллического типа со стальной задней частью, футеровкой из свинцовой бронзы и мягким и толстым рабочим слоем. В качестве основных подшипников используются как трехметаллические, так и биметаллические подшипники.

5. Гильза цилиндра

Гильза цилиндра центробежного литья имеет высокий и жесткий буртик для минимизации деформаций.Материал футеровки — это специальный сплав серого чугуна, разработанный для обеспечения превосходной износостойкости и высокой прочности. Точный контроль температуры достигается за счет точно расположенных продольных отверстий для охлаждающей воды. Чтобы исключить риск полировки отверстия, гильза оснащена кольцом, препятствующим полировке. Пространство для охлаждающей воды между блоком и футеровкой закрыто двойными уплотнительными кольцами. Вверху гильза снабжена кольцом, препятствующим полировке, чтобы исключить полировку отверстия и снизить расход смазочного масла.

6. Поршень и поршневые кольца

Поршень составной конструкции с юбкой из чугуна с шаровидным графитом и стальной головкой. Юбка поршня смазывается под давлением, что обеспечивает контролируемое распределение масла по гильзе цилиндра при любых условиях эксплуатации. Масло через шатун подается в охлаждающий канал в верхней части поршня. Канавки поршневых колец закалены для обеспечения хорошей износостойкости. Комплект поршневых колец состоит из двух направленных компрессионных колец и одного подпружиненного маслосъемного кольца.Все поршневые кольца имеют износостойкое хромирование.

7. Головка блока цилиндров

Головка блока цилиндров проста в обслуживании и оснащена всего четырьмя гидравлически затянутыми шпильками. Клапанные клетки не используются, что обеспечивает очень хорошую динамику потока в канале выхлопных газов. Седла выпускных клапанов имеют водяное охлаждение, и все клапаны оснащены ротаторами клапанов. Поверхности седел впускных клапанов покрыты стеллитом. Если двигатель предназначен только для работы с ДВП, выпускные клапаны также имеют стеллитовое покрытие.Двигатели, предназначенные для работы на HFO, имеют выпускные клапаны Nimonic.

Дополнительная информация: Руководство по проекту Wärtsilä 46

Вот как работает двигатель вашего автомобиля

Для большинства людей автомобиль — это то, что они заправляют бензином, который перемещает их из точки А в точку Б. Но задумывались ли вы когда-нибудь: как на самом деле может это сделать? Что заставляет его двигаться? Если вы еще не выбрали электромобиль в качестве повседневного водителя, магия в том, как сводится к двигателю внутреннего сгорания — той штуке, которая шумит под капотом. Но как именно работает двигатель?

В частности, двигатель внутреннего сгорания является тепловым двигателем в том смысле, что он преобразует энергию тепла горящего бензина в механическую работу или крутящий момент. Этот крутящий момент применяется к колесам, чтобы заставить машину двигаться. И если вы не водите старинный двухтактный Saab (который звучит как старая бензопила и изрыгает масляный дым из выхлопных газов), ваш двигатель работает по одним и тем же основным принципам, независимо от того, управляете ли вы Ford или Ferrari.

Двигатели имеют поршни, которые перемещаются вверх и вниз внутри металлических трубок, называемых цилиндрами.Представьте, что вы едете на велосипеде: ваши ноги двигаются вверх и вниз, чтобы крутить педали. Поршни соединены стержнями (они похожи на ваши голени) с коленчатым валом, и они перемещаются вверх и вниз, чтобы вращать коленчатый вал двигателя, так же, как ваши ноги вращают велосипед, который, в свою очередь, приводит в действие ведущее колесо велосипеда или ведущие колеса автомобиля. . В зависимости от автомобиля в двигателе обычно бывает от двух до 12 цилиндров, в каждом из которых поршень перемещается вверх и вниз.

Откуда сила двигателя

Эти поршни приводятся в движение вверх и вниз тысячи крошечных контролируемых взрывов, происходящих каждую минуту, создаваемых смешиванием топлива с кислородом и воспламенением смеси.Каждый раз, когда топливо воспламеняется, называется тактом сгорания или силовым ходом. Тепло и расширяющиеся газы от этого мини-взрыва толкают поршень вниз в цилиндре.

Почти все современные двигатели внутреннего сгорания (для простоты, мы сосредоточимся здесь на бензиновых силовых установках) относятся к четырехтактным. Помимо такта сгорания, который толкает поршень вниз от верхней части цилиндра, есть еще три хода: впуск, сжатие и выпуск.

Двигателям для сжигания топлива необходим воздух (а именно кислород).Во время такта впуска клапаны открываются, позволяя поршню действовать как шприц, когда он движется вниз, втягивая окружающий воздух через систему впуска двигателя. Когда поршень достигает нижней точки своего хода, впускные клапаны закрываются, эффективно герметизируя цилиндр для такта сжатия, который находится в направлении, противоположном такту впуска. Движение поршня вверх сжимает всасываемый заряд.

Четыре такта четырехтактного двигателя

Getty Images

В современных двигателях бензин впрыскивается непосредственно в цилиндры в верхней части такта сжатия.(Другие двигатели предварительно смешивают воздух и топливо во время такта впуска.) В любом случае, непосредственно перед тем, как поршень достигнет верхней точки своего хода, известной как верхняя мертвая точка, свечи зажигания воспламеняют смесь воздуха и топлива.

Возникающее в результате расширение горячих горящих газов толкает поршень в противоположном направлении (вниз) во время такта сгорания. Это ход, при котором колеса вашего автомобиля крутятся, как когда вы нажимаете на педали велосипеда. Когда такт сгорания достигает нижней мертвой точки, выпускные клапаны открываются, позволяя газам сгорания откачиваться из двигателя (как шприц, выталкивающий воздух), когда поршень снова поднимается. Когда выхлоп выходит — он проходит через выхлопную систему автомобиля перед выходом из задней части автомобиля — выхлопные клапаны закрываются в верхней мертвой точке, и весь процесс начинается снова.

Этот контент импортирован из {embed-name}. Вы можете найти тот же контент в другом формате или найти дополнительную информацию на их веб-сайте.

В многоцилиндровом автомобильном двигателе циклы отдельных цилиндров смещены друг от друга и равномерно распределены, так что такты сгорания не происходят одновременно, а двигатель является максимально сбалансированным и плавным.

Getty Images

Но не все двигатели одинаковы. Они бывают разных форм и размеров. В большинстве автомобильных двигателей цилиндры расположены по прямой линии, например, в рядном четырехцилиндровом двигателе, или объединены два ряда рядных цилиндров в виде V-образной формы, как в V-6 или V-8. Двигатели также классифицируются по размеру или рабочему объему, который представляет собой совокупный объем цилиндров двигателя.

Различные типы двигателей

Конечно, существуют исключения и незначительные различия среди двигателей внутреннего сгорания, представленных на рынке.Например, двигатели с циклом Аткинсона изменяют фазы газораспределения, чтобы сделать двигатель более эффективным, но менее мощным. Турбонаддув и наддув, сгруппированные вместе с опциями принудительной индукции, нагнетают дополнительный воздух в двигатель, что увеличивает доступный кислород и, следовательно, количество топлива, которое может быть сожжено, что приводит к увеличению мощности, когда вы этого хотите, и большей эффективности, когда вы надеваетесь. не нужна сила. Все это дизельные двигатели обходятся без свечей зажигания. Но независимо от двигателя, если он относится к типу двигателей внутреннего сгорания, основы его работы остаются неизменными.И теперь вы их знаете.

Пора провести весеннюю уборку? Попробуйте продукты Meguiar, которые мы используем в нашем автопарке

Средство для мытья рук и воск Meguiar’s Ultimate

Ultimate Quik Detailer от Meguiar

Полотенце из микрофибры Meguiar’s Water Magnet

Детальщик интерьера Meguiar’s Ultimate

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты.Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

Четырехтактный бензиновый или дизельный двигатель: как это работает, анимация

Главная> Уход за автомобилем> Четырехтактный двигатель: как это работает, анимация

Обновлено: 16 марта 2020 г.

Современные автомобили имеют четырехтактный двигатель. Ход — это движение поршня в цилиндре вверх или вниз между верхним и нижним положениями. Один оборот коленчатого вала равен двум ходам.В четырехтактном двигателе каждый цилиндр «срабатывает» при каждом втором обороте коленчатого вала. Полный цикл сгорания состоит из двух оборотов коленчатого вала и четырех тактов:
1. Такт всасывания
2. Такт сжатия
3. Рабочий ход
4. Такт выпуска.

Для иллюстрации мы создали эти две анимации четырехтактного бензинового и дизельного двигателей с прямым впрыском. Мы выбрали двигатель с прямым впрыском, потому что более половины новых автомобилей с бензиновым двигателем имеют непосредственный впрыск.См. Анимацию четырехтактного дизельного двигателя ниже.

Прямой впрыск бензина отличается от обычного впрыска топлива расположением форсунки: при обычном впрыске топлива форсунка устанавливается во впускном отверстии над впускным клапаном. В бензиновом двигателе с прямым впрыском форсунка выступает в камеру сгорания. Топливо распыляется под очень высоким давлением прямо в камеру сгорания.

1. Ход всасывания

Впускной ход.Коленчатый вал двигателя продолжает вращаться по инерции от предыдущего рабочего такта. Такт впуска всегда считается первым в последовательности. Во время такта впуска поршень движется вниз, создавая над ним вакуум. Распределительный вал открывает впускной (ые) клапан (ы), вытягивая воздух из впускного коллектора. Впускной клапан начинает открываться в конце такта выпуска предыдущего цикла. Когда поршень движется вниз, воздух заполняет цилиндр. Вскоре после того, как поршень достигает нижнего положения, впускной клапан закрывается.Выпускной клапан закрыт во время такта впуска.

2. Ход сжатия

Инсульт сжатия. Во время такта сжатия впускной и выпускной клапаны закрыты. Когда поршень движется вверх, он сжимает воздух, захваченный в цилиндре. Форсунка прямого впрыска впрыскивает бензин под очень высоким давлением в цилиндр во время такта сжатия, когда поршень находится ближе к верху. Непосредственно перед тем, как поршень достигает верхнего положения, искра между электродами свечи зажигания воспламеняет топливно-воздушную смесь.Самое верхнее положение поршня называется верхней мертвой точкой или ВМТ. Сгорание происходит в камере сгорания, которая представляет собой пространство между верхней частью поршня и головкой блока цилиндров.

3. Рабочий ход

Рабочий ход. В рабочем такте давление горячих газов, создаваемое во время сгорания, толкает поршень вниз с большой силой. Рабочий ход обеспечивает энергию для поворота колес автомобиля. После рабочего хода коленчатый вал продолжает вращаться из-за инерции тяжелых компонентов, прикрепленных к коленчатому валу.В автомобилях с механической коробкой передач это маховик. В автомобилях с автоматической коробкой передач это гидротрансформатор. Во время рабочего такта впускные и выпускные клапаны по-прежнему закрыты. Когда поршень приближается к нижнему положению рабочего такта, выпускной клапан начинает открываться, позволяя выходить горячим выхлопным газам. В некоторой литературе рабочий ход называется тактом расширения или тактом сгорания.

4. Ход выхлопа

Ход выхлопа. Во время такта выпуска выпускной клапан открыт, а впускной клапан закрыт.Поршень движется вверх, выталкивая оставшиеся выхлопные газы из цилиндра в выпускной коллектор. Такт выпуска — это последний ход цикла. Когда поршень приближается к верхнему положению (ВМТ), впускной клапан начинает открываться для такта впуска следующего цикла сгорания. Выпускной клапан закрывается сразу после достижения поршнем ВМТ.

Как работает четырехтактный дизельный двигатель:

Анимация четырехтактного дизельного двигателя. Дизельный четырехтактный двигатель работает так же, но в дизельном двигателе нет свечи зажигания.Дизельное топливо воспламеняется из-за высокой температуры сжатого воздуха. По этой причине у дизельного двигателя более высокая степень сжатия достигается за счет уменьшения размера камеры сгорания. Форсунка дизельного топлива впрыскивает топливо под очень высоким давлением в конце такта сжатия. Когда двигатель холодный, электрическая свеча накаливания нагревается, помогая воспламенить дизельное топливо. В дизельном двигателе поршень и другие компоненты сделаны более мощными, чтобы выдерживать более высокую степень сжатия.

Новый взгляд на двухтактный двигатель | MIT Technology Review

EcoMotors International, стартап из Троя, штат Мичиган, предлагает новый подход к старой идее — двухтактный двигатель, который, по его словам, на 50 процентов эффективнее, чем двигатели большинства транспортных средств, и загрязняет гораздо меньше обычный двухтактный двигатель.

Испытания, испытания: EcoMotors построила и протестировала пять поколений своего двигателя OPOC, и в этом месяце планирует начать испытания шестого поколения.

Компания недавно получила в общей сложности 23,5 миллиона долларов инвестиций от Билла Гейтса и Khosla Ventures. Эти деньги пойдут на разработку двигателя EcoMotors с оппозитными поршнями и оппозитными цилиндрами (OPOC). В двигателе используется два движения поршня за цикл вместо четырех, и каждый цилиндр содержит два противоположных поршня вместо одного. Один коленчатый вал находится между парами цилиндров.Конструкция основана на точном компьютеризованном управлении всеми компонентами.

В обычном автомобильном двигателе для прохождения впуска, сжатия, сгорания и выпуска требуется четыре движения поршня или хода поршня. В двухтактном цикле эти этапы завершаются всего двумя движениями поршня, обеспечивая в два раза больше рабочих ходов на оборот и требуя меньшего количества деталей. Но двухтактные двигатели, как правило, выбрасывают больше несгоревшего топлива в выхлопные газы, поэтому четырехтактная конструкция стала более распространенной.

Установка двух поршней внутри каждого цилиндра также означает, что каждый поршень перемещается только наполовину меньше, чем обычно в двухтактном двигателе, что позволяет двигателю работать быстрее. Наличие вдвое меньшего количества деталей по сравнению с обычным двигателем (OPOC не имеет головки блока цилиндров или компонентов клапанного механизма и имеет меньше подшипников) помогает снизить трение и тепловые потери. Эти факторы в сочетании с «длинным списком улучшений на 1-2 процента» в других областях, по словам генерального директора Ecomotors Дона Ранкла, обеспечивают повышение эффективности на 15 процентов.

Ранкл говорит, что несколько технологий помогли снизить выбросы двухтактных двигателей. Во-первых, электрический турбонагнетатель позволяет использовать «переменную степень сжатия», при которой давление на входе, подаваемое в цилиндры двигателя, изменяется для максимального повышения эффективности. Во-вторых, подход, называемый асимметричной синхронизацией портов — открытие впускных и выпускных отверстий в разное время — помогает повысить эффективность газообмена. И в-третьих, впрыск под высоким давлением и компьютеризированное управление впрыском повышают общую эффективность цикла.«Хотя сегодня это не является необычным для других двигателей», — говорит Ранкл, — эта технология сейчас «намного лучше, чем то, что существовало, когда многие из нас пытались заставить работать двухтактные двигатели» в прошлые годы.

Базовый двигатель OPOC состоит из двух цилиндров по обе стороны от коленчатого вала. Несколько двигателей или «модулей» могут использоваться вместе для повышения топливной экономичности транспортного средства на целых 45 процентов. Помимо повышения эффективности самого двигателя, дополнительные модули могут быть отключены, когда они не нужны.Ключом к конструкции является электрически управляемая муфта, которая при необходимости отключает модуль. Некоторые современные двигатели V8 имеют функцию отключения цилиндров, но поршни продолжают вращаться из-за их соединения с коленчатым валом, что приводит к так называемой «паразитной потере».

Разбивка: Каждый модуль двигателя имеет пару противоположных цилиндров и один коленчатый вал между ними. Два поршня в каждом цилиндре движутся в противоположных направлениях.

Джорджио Риццони, директор Центра автомобильных исследований Университета штата Огайо, говорит, что двигатель OPOC «выглядит как комбинация различных идей, ни одна из которых не является абсолютно революционной.«Двигатели с оппозитными поршнями используются в самолетах и ​​мотоциклах, — отмечает он, — а электрические турбокомпрессоры используются уже много лет как способ улучшения характеристик турбомоторов. Что поражает Риццони, так это «синтез старых идей» в новом двигателе в сочетании с двухпоршневой компоновкой.

EcoMotors, заключившая в мае контракт на разработку с китайским поставщиком автомобилей Zhongding на 18 миллионов долларов, является одной из нескольких молодых компаний, работающих над обновлением двигателя внутреннего сгорания в преддверии более строгих стандартов экономии топлива.Некоторые из них, в том числе расположенная в Сан-Диего Achates Power, ориентированы на двухтактные архитектуры. «В середине 90-х люди думали, что двухтактные двигатели действительно не могут соответствовать стандартам выбросов, — говорит генеральный директор Achates Дэвид Джонсон.

Дэйв Херст, старший аналитик компании Pike Research, специализирующейся на энергетических технологиях, говорит, что самая большая проблема для любого запуска двигателей, надеющихся лицензировать инновации для крупных автопроизводителей, заключается в том, что эти потенциальные клиенты считают двигатели своей основной технологией и поэтому более вероятно, что они сами будут разрабатывать новые двигатели.

На данный момент, говорит Ранкл, EcoMotors работает над усовершенствованием процесса сгорания двигателя и определением выбросов, эффективности и мощности во всех возможных обстоятельствах. Он пояснил, что большинство автомобильных компаний захотят ознакомиться с этими данными, прежде чем приступить к внедрению технологии EcoMotors.

Хотя EcoMotors стремится к заключению сделок по лицензированию и совместной разработке, компания также надеется заняться хотя бы некоторым производством самостоятельно. EcoMotors запросила у США ссуды на сумму 208 миллионов долларов.Министерство энергетики США поддерживает эти усилия, и, по словам Ранкл, компания рассчитывает начать производство в течение следующих двух или трех лет.

2-тактный или 4-тактный двигатель — что лучше и в чем разница?

На протяжении всей истории автомобилестроения и проектирования двигателей существовало два основных типа сгорания, работающих на бензине — 2-тактный (или 2-тактный) и 4-тактный (или 4-тактный).

Хотя вы, возможно, слышали об этих терминах, возможно, они заставили вас задуматься, в чем разница? Если вы ищете новый двигатель, вот что вам нужно знать с точки зрения эффективности и технического обслуживания.

Сравнение 2-тактных и 4-тактных двигателей

Когда доходит до основных различий, связанных с 2- и 4-тактными двигателями, основное отличие заключается в их работе. Что касается того, как работает двигатель, вы должны сначала понять концепцию сгорания в небольшом двигателе.

В этом случае для того, чтобы двигатель вырабатывал энергию, должно иметь место сгорание, которое по сути является процессом сжигания чего-либо.Хотя и двухтактный, и четырехтактный двигатель завершают цикл сгорания, они различаются по поршню. Точнее, количество ходов поршня.

Например, для того, чтобы двухтактный двигатель завершил полный цикл сгорания, состоящий из пяти функций (впуск, сжатие, зажигание, сгорание и выпуск), весь этот цикл завершается после двух ходов поршня. Для сравнения, цикл 4-тактного двигателя завершается после четырех тактов поршня — или одного оборота коленчатого вала против двух оборотов коленчатого вала соответственно.

С точки зрения их применения, четырехтактный двигатель будет использоваться в автобусах, легковых и грузовых автомобилях, тогда как двухтактный двигатель будет использоваться в большей степени в скутерах и мопедах. Тем не менее, некоторые инструменты для небольших двигателей и некоторые триммеры теперь предлагаются с 2-тактными или 4-тактными двигателями — в этом случае есть ли большая разница в их производительности и общем необходимом техническом обслуживании?

Что лучше: 2-тактный двигатель или 4-тактный двигатель для небольших инструментов и машин?

При сравнении этих двух типов двигателей у каждого есть свои плюсы и минусы.

Для начала, двухтактные двигатели намного легче и дешевле в производстве. По сравнению с 4-тактными двигателями их легче ремонтировать. Однако ремонт, как правило, требуется чаще, если вы не обслуживаете двигатель активно.

В этом смысле, если вы хотите снизить затраты, используя эффективный станок или инструмент, вам обязательно нужно проявлять упреждающий подход и обеспечивать техническое обслуживание его частей. Если вы все же выберете 2-тактный двигатель, знайте, что, исходя из их конструкции, их легче исправить, но если вам действительно нужно сделать регулярное обслуживание приоритетом, они не прослужат так же долго, как 4-тактный двигатель.Изучите свой двигатель и будьте активны в отношении предотвратимых проблем.

Представляем масло для двухтактных двигателей STA-BIL®

Если вы хотите повысить производительность и продлить срок службы двухтактного двигателя, масло STA-BIL® для 2-тактных двигателей станет идеальным решением. Будучи более экономичным, чем расфасованное топливо, это масло обеспечивает дополнительную смазку, что делает его идеальным выбором для косилки, мотоцикла, квадроцикла, снегохода, бензопилы или любой другой небольшой машины.

Хотя «лучший» вариант обычно сводится к личным предпочтениям и области применения, независимо от того, какой двигатель вы выберете, техническое обслуживание — номер один.Если вы заботитесь о своем двигателе на протяжении всего срока его службы, вы будете вознаграждены более высокими уровнями производительности и большей экономией средств в долгосрочной перспективе.

Клапаны и порты в четырехтактных двигателях

Клапаны и порты в четырехтактных двигателях

Ханну Яэскеляйнен, Магди К. Хаир

Это предварительный просмотр статьи, ограниченный некоторым исходным содержанием. Для полного доступа требуется подписка DieselNet.
Пожалуйста, войдите в систему , чтобы просмотреть полную версию этого документа.

Abstract : Компоненты, расположенные после впускного коллектора в четырехтактных дизельных двигателях, выполняют важные функции по управлению подачей воздуха в цилиндр. Тарельчатые клапаны регулируют синхронизацию потока в цилиндр и из него. Конструкция впускного канала влияет на пропускную способность двигателя, а также на объемное движение воздуха, поступающего в цилиндр.

Клапаны

По мере того, как воздушный поток проходит через различные компоненты и ступени впускной системы, различные свойства и характеристики всасываемого заряда были изменены для достижения общих целей системы управления всасываемым зарядом.Фильтр всасываемого воздуха обеспечивает надлежащую чистоту воздуха, состав наддувочного воздуха и содержание кислорода контролируются путем подачи рециркуляции отработавших газов во всасываемый воздух, а компрессор и охладитель наддувочного воздуха обеспечивают достижение целевых значений давления и температуры во впускном коллекторе и плотность всасываемого заряда. в проектных пределах. Несколько заключительных аспектов управления воздухом достигаются после того, как всасываемый заряд выходит из впускного коллектора и попадает в цилиндр. Клапаны или порты контролируют время подачи воздуха в цилиндр.Кроме того, канал между впускным коллектором и цилиндром может оказывать значительное влияние на поток, когда он входит в цилиндр, и может использоваться для передачи подходящего объемного движения и кинетической энергии заряду для поддержки смешивания воздуха, топлива и промежуточного сгорания. продукты в цилиндре.

В четырехтактных двигателях всасываемый газ поступает в цилиндр через порт, расположенный в головке цилиндра, и мимо клапана, используемого для открытия и закрытия порта. В двухтактных двигателях, обсуждаемых в другом месте, обычно используются отверстия в гильзе цилиндра, которые попеременно закрываются и не закрываются поршнем.

Рисунок 1 . Номенклатура цельного тарельчатого клапана

Поток газа в цилиндр и из цилиндра в 4-тактных двигателях контролируется почти исключительно тарельчатыми клапанами (рис. 1). Хотя использовались или предлагались другие конструкции клапана, кажется, что ни одна из них не может сравниться по надежности и герметизирующей способности с тарельчатым клапаном. Наиболее распространенной конструкцией тарельчатого клапана в автомобильной промышленности является цельный клапан, в котором весь клапан изготовлен из одного и того же материала. Однако доступны и другие варианты, в том числе:

  • Конструкция приварного наконечника имеет отдельный наконечник, приваренный к штоку над канавкой.Наконечник может быть изготовлен из материала, который намного более износостойкий, чем остальная часть клапана.
  • Конструкция, состоящая из двух частей, имеет отдельный шток, приваренный над галтелем, рис. 2 слева.
  • Конструкция с внутренним охлаждением имеет полый шток, содержащий охлаждающую жидкость, такую ​​как металлический натрий или натрий-калиевая смесь, и обычно используется в высокопроизводительных выхлопных клапанах в экстремальных условиях, рис. 2 в центре. Пики температур клапана уменьшаются за счет «вибрирующего эффекта» расплавленного металла, и эти конструкции могут особенно хорошо выдерживать термические нагрузки.Температуру в полой шейке можно снизить примерно на 80–130 К, что снижает общий износ клапана и вкладыша седла клапана.
  • Некоторые конструкции также имеют полую полость в головке клапана, содержащую металлический натрий, рис. 2, справа. Это продолжение классического полого клапана, заполненного натрием, с дополнительной полостью в головке клапана. Это может привести к дополнительным скачкам температуры в головке клапана и еще больше увеличить срок службы клапана.
  • Сварная конструкция поверхности седла имеет седло клапана, которое приварено с твердым покрытием, чтобы лучше выдерживать условия, которые в противном случае привели бы к экстремальному износу седла клапана и / или коррозии.
Рисунок 2 . Примеры конструкций тарельчатого клапана

Слева: Двухкомпонентный клапан со сплошным штоком. Центр: Клапан с полым штоком.
Справа: Клапан с полым штоком с дополнительной полостью на головке клапана.

(Источник: Mahle)

В дополнение к различным стилям конструкции клапаны могут иметь различные усовершенствования конструкции для повышения их долговечности. Деформационное упрочнение поверхности седла может использоваться для умеренного увеличения износостойкости седла в тех случаях, когда сварная конструкция поверхности седла не требуется.Обработка поверхности стержня может использоваться для уменьшения трения и / или износа, особенно если в противном случае может возникнуть адгезионный износ. Алюминирование поверхности седла клапана, а иногда и поверхности сгорания для улучшения коррозионной стойкости в среде оксида свинца когда-то было популярным для двигателей, работающих на этилированном бензине. Крышки наконечников, установленные на конце штока клапана, могут использоваться для повышения износостойкости наконечников, когда сварка разнородных металлов является проблемой.

###

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *