Сварочный трехфазный трансформатор
индустрия »
Электротехника »
Сварочные аппараты »
Сварочный трансформатор
Сварочный трехфазный трансформатор, подобно силовым, может различаться принципом соединения первичных и вторичных обмоток. Наиболее используемые
Сварочный трехфазный трансформатор многопостовой сварки схематично представлен на схеме 1.
- первичная обмотка имеет соединение «треугольником»;
- вторичная обмотка соединена звездой;
- регуляторы тока (дроссели) самостоятельные для каждого поста сварки. Кроме регулировки тока они обеспечивают падающую вольтамперную характеристику.
- сварочные дуги на трех параллельных постах.
- обмотки дросселей на одном магнитопроводе включены последовательно с электродами сварки;
- обмотки дросселей на одном магнитопроводе включены последовательно с электродами сварки;
- обмотка дросселя на изолированном сердечнике подключена к свариваемой детали;
- сварочные электроды;
- сварочные электроды;
В рассматриваемом процессе работают три дуги: две между каждым электродом и деталью, одна между двумя электродами. Катушка контактора обеспечивает разрыв цепи между электродами для гашения дуги. В этом случае электромагнитные системы трех трансформаторов объединены в одну схему.
Обе схемы трехфазных сварочных трансформаторов используются в современных процессах сварных соединений.
Читайте также
- Сварочный трансформатор своими руками
Что необходимо знать и уметь для того, чтобы собрать трансформатор для сварочных работ самостоятельно. …
- Устройство сварочного трансформатора
Детальное знание устройства и маркировки трансформаторов, используемых для сварочных работ позволит лучшим образом подобрать наиболее подходящий для …
Трехфазный сварочный трансформатор — Большая Энциклопедия Нефти и Газа, статья, страница 1
Cтраница 1
Электрическая схема трансформатора СТН. [1] |
Трехфазные сварочные трансформаторы предназначены для сварки трехфазной дугой. Этот метод сварки имеет ряд преимуществ перед однофазной сваркой: повышение производительности сварки, экономия электроэнергии, повышение коэффициента мощности ( cos ф) установки, выравнивание нагрузок между фазами. [2]
Схема сварки трехфазной дугой. [3] |
Трехфазные сварочные трансформаторы предназначены для сварки трехфазной дугой. [4]
Схема сварки трехфазной дугой. [5] |
Трехфазные сварочные трансформаторы предназначены для сварки трехфазной дугой. Этот метод сварки имеет ряд преимуществ перед однофазной сваркой: повышение производительности сварки, экономия электроэнергии, повышение коэффициента мощности ( cos ф) установки, выравнивание нагрузок между фазами. [6]
Принципиальная электрическая схема аргоннодуговой сварки с осциллятором. [7] |
От трехфазного сварочного трансформатора типа ТТС-400 две фазы подводятся к двум толстообмазанным электродам, а третья фаза — к свариваемой детали. В этом случае создаются три дуги: две — между каждым электродом и свариваемой деталью и одна — между электродами. [8]
Аппарат А-372-Р укомплектовывается трехфазным сварочным трансформатором ТШС-ЮОО 3 и аппаратным ящиком с пускорегулирующей электроаппаратурой. [9]
Аппарат А-480 укомплектовывается трехфазным сварочным трансформатором ТШС-3000-3 и шкафом управления с пусковой и регулировочной аппаратурой. [10]
График зависимости между скоростью подачи проволоки и напряжением, при которых обеспечивается оптимальное проплавле-нне кромок, при различных значе. [11] |
Электрошлакоеую сварку осуществляют с применением трехфазных сварочных трансформаторов типа ТШС-1000-3, ТШС-3000-3 и однофазных трансформаторов типа ТШП-10-1, имеющих жесткую вольтамперную характеристику. При технологической необходимости ШМ выполняют с помощью многопостовых генераторов постоянного тока типа ПСМ-1000. В комплектацию установок для ЭШС входят аппаратные шкафы и специальные сварочные аппараты. [12]
Источниками питания электросварки на переменном токе являются однофазные и трехфазные сварочные трансформаторы
Источниками питания многоэлектродных аппаратов для электрошлаковой сварки являются трехфазные сварочные трансформаторы ТШС-1000-3 и ТШС-3000-3 конструкции Института электросварки им. Они обеспечивают в каждой фазе сварочный ток соответственно в 1000 и 3000 А. Первичная и вторичная обмотки трансформаторов состоят из секций с отводами; это позволяет изменять вторичное напряжение от 38 до 54 В. [14]
К этой группе источников питания относятся в основном однофазные и трехфазные сварочные трансформаторы. Электромашинные генераторы повышенной частоты в настоящее время почти не выпускаются. [15]
Страницы: 1 2
WTC — Процесс контактной точечной сварки
|
Главная Продукция компании & Решения Сервис & Поддержка Учебный центр Новости Юридическая информация Свяжитесь с нами Логин | |||||||||||||||||||||||
| |||||||||||||||||||||||
. … Заинтересован в карьере возможности в Welding Technology Corp? | |||||||||||||||||||||||
Поиск: | |||||||||||||||||||||||
Корпорация сварочных технологий | 24775 Двор Крествью | Фармингтон Хиллз, Мичиган, США 48335 | Телефон: +1 248-477-3900Copyright 2010 Welding Technology Corp. Все права защищены. |
Что такое сварочный трансформатор?
Трансформатор, размещенный в сварочном аппарате, используется для преобразования входного высокого напряжения или первичной мощности от настенной розетки, обычно от 208 до 600 вольт, с низким переменным током (AC) от 15 до 55 ампер. Это преобразуется на стороне вторичной мощности в более низкое напряжение до 80 вольт и диапазон сварочных токов до 1000 ампер переменного тока или более, в зависимости от процесса и оборудования.
На рис. 1 показано типичное подключение сварочного аппарата для дуговой сварки в среде защитного газа (SMAW), иллюстрирующее основной источник питания на первичной стороне и вывод на электрододержатель со вторичной стороны трансформатора.
Рис. 1. Схема подключения для типичного процесса дуговой сварки в среде защитного газа
используйте большое количество витков проводов меньшего сечения (N1 на схеме) и меньшее количество витков больших проводов (N2 на схеме) на вторичной стороне. Это выводит низкое напряжение/более высокий ток в зависимости от соотношения витков или количества витков провода на вторичной стороне, как показано на рис. 9.0144 Рис. 2.
Рис. 2. Схема понижающего трансформатора
Провода обмотаны вокруг железного сердечника, который создает магнитный поток от движения электрической энергии через трансформатор. Величина выходной силы тока определяет размер трансформатора. Чем выше выходная сила тока, тем больше трансформатор, и тем тяжелее и больше становится машина. На рис. 3 показан типичный трансформатор, переменный ток высокого напряжения/малого тока входит во входной проводник, а переменный ток низкого/напряжения/высокой силы тока выходит на выходной проводник.
Рисунок 3. Фактический понижающий трансформатор
Первые сварочные аппараты работали только на переменном токе и чередовали положительный и отрицательный электроды до 60 раз в секунду согласно Рисунок 4.
Рисунок 4, Изображение сбалансированной волны переменного тока выбор полярности. Для достижения выхода постоянного тока использовался выпрямительный диод согласно 9.0144 Рисунок 5.
Рисунок 5, Типовой диод
Диод работает, позволяя переменному току проходить через диод, но не позволяя переменному току течь обратно, таким образом создавая постоянный ток (DC). который используется на большинстве сварочных аппаратов сегодня. Эти трансформаторные выпрямители будут использовать ряд диодов в мосте для генерации постоянного тока на выходе, как показано на рис. 6 . Линейная мощность переменного тока будет проходить через сварочный трансформатор и выходить через ряд выпрямительных диодов в мосту и преобразовываться в плавный выходной постоянный ток.
Рис. 6. Технология трансформатор-выпрямитель
Сварочный трансформатор для типичных процессов сварки переменным/постоянным током был очень большим и тяжелым, и было сделано много усовершенствований, чтобы уменьшить размер трансформатора. В конце 1970-х годов начали появляться первые сварочные инверторы. Эта инверторная технология была внедрена с рядом преимуществ. Одним из них был способ преобразования входного сигнала высокого напряжения/низкого тока в выходной сигнал низкого напряжения/высокого тока, что позволило бы уменьшить размер и вес сварочного трансформатора. На рис. 7 показано, как технология инвертора работает внутри источника питания.
Рис. 7. Схема инверторной технологии
Инверсионная технология противоположна выпрямлению, процесс инверсии преобразует постоянный ток в переменный ток высокой частоты с использованием импульсного типа регулирования, состоящего в основном из транзисторных устройств.
Переключение токов выполняется на высоковольтной первичной входной стороне трансформатора, а не на более традиционной вторичной выходной стороне, как описано выше. На рисунке 7 показано, как высокое переменное напряжение поступает и преобразуется в постоянное, переключается на высокочастотный пульсирующий прямоугольный переменный ток, а затем «преобразуется» в низковольтный и сильноточный выпрямленный постоянный ток на выходе. Именно так многие сварочные аппараты сегодня используют эту инверторную технологию, которая снижает потребность в очень больших и тяжелых сварочных трансформаторах и, таким образом, значительно уменьшает размер и вес оборудования.