Сплавы на основе титана: Характеристики сплавов на основе титана, свойства металла и области применения

Содержание

Марки титановых сплавов | Техника и человек

Поскольку титан представляет собой металл, обладающий хорошей твердостью, но невысокой прочностью в промышленном производстве большее распространение получили сплавы на основе титана. Сплавы с различной структурой зерна, отличаются между собой строением и типом кристаллической решетки.

Их можно получить при обеспечении в процессе производства определенных температурных режимов. А путем добавления к титану различных легирующих элементов можно получать сплавы, характеризующиеся более высокими эксплуатационными и технологическими свойствами.

При добавлении легирующих элементов и различных типах кристаллических решеток в структурах на основе титана можно получить более высокую по сравнению с чистым металлом жаропрочность и прочность. При этом полученные структуры характеризуются небольшой плотностью, хорошими антикоррозионными свойствами и хорошей пластичностью, что расширяет сферу их использования.

Характеристика титана

Титан представляет собой легкий металл, сочетающий в себе

высокую твердость и небольшую прочность, что усложняет его обработку. Температура плавления этого материала в среднем составляет 1665°С. Материал характеризуется невысокой плотностью (4,5г/см3) и хорошей антикоррозионной способностью.

На поверхности материала образуется окисная пленка толщиной в несколько нм, что исключает процессы коррозии титана в морской и пресной воде, атмосфере, окислению под действием органических кислот, процессов кавитации и в конструкциях, находящихся под напряжением.

В обычном состоянии материал не обладает жаропрочностью, для него характерно явление ползучести при комнатных температурах. Однако в условиях холода и глубокого холода материал характеризуется высокими прочностными характеристиками. 

Титан отличается низким значением модуля упругости, это ограничивает его использование для изготовления конструкций, в которых необходима жесткость. В чистом состоянии металл обладает высокими противорадиационными характеристиками и не обладает магнитными свойствами.

Титан характеризуется хорошими пластическими свойствами и легко поддается обработке при комнатных температурах и выше. Сварные швы из титана и его соединений обладают пластичностью и прочностью. Однако, для материала свойственны интенсивные процессы поглощения газов при нахождении в неустойчивом химическом состоянии, возникающем при повышении температуры. Титан в зависимости от газа, с которым соединяется, образует гидридные, оксидные, карбидные соединения, плохо влияющие на его технологические свойства.

Материал характеризуется плохой приспособленностью к обработке резанием, в результате ее проведения он в течение короткого промежутка времени прилипает на инструмент, что снижает его ресурс. Проведение обработки титана резанием возможно с использованием охлаждения интенсивного типа на больших подачах, при низких скоростях обработки и значительной глубине резания. Кроме того в качестве инструмента для обработки выбирается быстрорежущая сталь.

Материал характеризуется высокой химической активностью, что обуславливает использование инертных газов при проведении работ по выплавке, литье титана или проведении дуговой сварки. В процессе использования титановые изделия необходимо защищать от возможного поглощения газов при вероятности повышения эксплуатационных температур.

Титановые сплавы

Широкое распространение получили структуры на основе титана с добавлением таких легирующих элементов, как:

  • алюминий,
  • медь,
  • железо,
  • никель,
  • молибден,
  • олово,
  • ванадий,
  • хром,
  • цирконий.

Структуры, получаемые деформированием сплавов титановой группы, используются для изготовления изделий, проходящих механическую обработку.

По прочности различают:

  • Высокопрочные материалы, прочность которых составляет более 1000МПа;
  • Структуры, обладающие средней прочностью, в диапазоне значений от 500 до 1000МПа;
  • Низкопрочные материалы, с прочностью ниже 500МПа.

По области использования:

  • Структуры, обладающие коррозионной стойкостью.
  • Конструкционные материалы;
  • Жаропрочные структуры;
  • Структуры с высокой стойкостью к действию холода.

Виды сплавов

По входящим в состав легирующим элементам выделяют шесть основных видов сплавов.

Сплавы типа α-сплавы

Сплавы типа α-сплавы на основе титана с применением для легирования

алюминия, олова, циркония, кислорода характеризуются хорошей свариваемостью, понижением границы застывании титана и увеличением его жидкотекучести. Указанные свойства позволяют использовать так называемые α-сплавы для получения заготовок фасонным способом или при отливке деталей. Получаемые изделия этого типа обладают высокой термической стойкостью, что позволяет использовать их для изготовления ответственных деталей, работающих в температурных условиях до 400°С.

При минимальных количествах легирующих элементов соединения называются техническим титаном. Он характеризуется хорошей термической устойчивостью, и обладают отличными сварными характеристиками при проведении сварочных работ на различных аппаратах. Материал обладает удовлетворительными характеристиками по возможности обработки резанием. Не рекомендуется повышение прочности для сплавов этого типа с применением термообработки, материалы этого типа используются после проведения отжига. Сплавы, содержащие цирконий обладают наибольшей стоимостью и отличаются высокой технологичностью.

Формы поставки сплава представлены в виде проволоки, труб, прутков сортового проката, поковок. Наиболее используемым материалом этого класса является сплав ВТ5-1, характеризующийся средней прочностью, жаропрочностью до 450°С и отличными характеристиками при работе в условиях низких и сверхнизких температур. Этот сплав не практикуется упрочнять термическими способами, однако его использование в условиях низких температур предполагает минимальное количество легирующих материалов.

Сплавы типа β-сплавы

Сплавы β-типа получаются при легировании титана ванадием, молибденом, никелем, при этом получаемые структуры характеризуются повышением прочности в диапазоне от комнатных до отрицательных температур по сравнению с α-сплавами. При их использовании увеличивается жаропрочность материала, его температурная стабильность, однако при этом наблюдается снижение пластических характеристик сплавов этой группы.

Для получения устойчивых характеристик сплавы этой группы должны быть легированы значительным количеством указанных элементов. Исходя из высокой стоимости этих материалов, широкого промышленного распространения структуры этой группы не получили. Для сплавов этой группы характерно противодействие ползучести, возможность повышения прочности различными способами, возможность механической обработки. Однако, с увеличением рабочей температуры до 300°С сплавы этой группы приобретают хрупкость.

Псевдо α-сплавы

Псевдо α-сплавы, большую часть легирующих элементов которых составляют компоненты α-фазы с добавлениями до 5% элементов группы β

. Наличие β-фазы в сплавах добавляет к преимуществам легирующих элементов α-группы свойство пластичности. Увеличение жаростойкости сплавов этой группы достигается использованием алюминия, кремния и циркония. Последний из перечисленных элементов оказывает положительное воздействие на растворение β-фазы в структуре сплава. Однако, для этих сплавов характерны и недостатки, среди которых хорошее поглощение титаном водорода и образование гидридов, с возможностью возникновения водородной хрупкости. Водород фиксируется в соединении в форме гидридной фазы, уменьшает вязкость и пластические характеристики сплава и способствует увеличению хрупкости соединения.Одним из наиболее распространенных материалов этой группы является
титановый сплав марки ВТ18
, обладающий жаропрочностью до 600°С, обладает хорошими характеристиками пластичности. Перечисленные свойства позволяют применять материал для изготовления деталей компрессоров в авиастроении. Термическая обработка материала включает отжиг при температурах около 1000°С с дальнейшим воздушным охлаждением или двойной отжиг, позволяющий на 15% увеличить его сопротивление разрыву.

Псевдо β- сплавы

Псевдо β- сплавы характеризуются наличием после проведения закалки или нормализации наличием только β-фазы. В состоянии отжига структура этих сплавов представлена α-фазой со значительным количеством легирующих компонентов группы β

.  Эти сплавы характеризуются самым большим среди титановых соединений показателем удельной прочности, обладают низкой термической стойкостью. Кроме того, сплавы этой группы мало подвержены хрупкости при воздействии водорода, однако обладают высокой чувствительностью к содержанию углерода и кислорода, влияющим на снижение вязких и пластичных свойств сплава. Эти сплавы характеризуются плохой свариваемостью, широким диапазоном механических характеристик, обуславливаемых неоднородностью состава и низкой стабильностью при работе в условиях высоких температур.Форма выпуска сплава представлена листами, поковками, прутками и полосовым металлом, с рекомендуемым использованием в течение длительного времени при температурах не выше 350°С. Примером такого сплава является
ВТ 35
, для которого свойственна обработка давлением при воздействии температуры. После выполнения закалки материал характеризуется высокими пластическими характеристиками и способностью к деформации в холодном состоянии. Проведение операции старения для этого сплава обуславливает многократное упрочнение при наличии высокой вязкости.

Сплавы типа α+β

Сплавы типа α+β с возможными включениями интерметаллидов характеризуются меньшей хрупкостью при воздействии гидритов по сравнению со сплавами 1 и 3 групп. Кроме того, для них свойственна большая технологичность и удобство обработки с использованием различных методов по сравнению со сплавами α-группы. При проведении сварки с использованием материала этого типа для повышения пластичности шва после окончания операции требуется проведение отжига. Материалы этой группы изготавливаются в форме лент, листового металла, поковок, штамповок и прутков. Самым распространенным материалом этой группы является сплав ВТ6, характеризуется хорошей деформируемостью при температурной обработке, сниженной вероятностью водородной хрупкости. Из этого материала производят несущие детали самолетов и жаропрочные изделия для компрессоров двигателей в авиации. Практикуется использование отожженных или упрочненных температурной обработкой сплавов ВТ6. Например, детали тонкостенного профиля или листовые заготовки отжигают при температуре 800°С в дальнейшем охлаждая на воздухе или оставляя в печи.

Сплавы из титана на базе интерметаллидов.

Интерметаллиды — сплав 2ух металлов, один из которых титан.

Получение изделий

Структуры, получаемые литьем, осуществляемым в специальные формы из металла в условиях ограничения доступа активных газов, учитывая высокую активность титановых сплавов при повышении температуры. Сплавы, получаемые при помощи литья, обладают худшими свойствами, по сравнению со сплавами, получающимися методом деформации. Термическая обработка с целью повышения прочности для сплавов этого типа не проводится, поскольку оказывает существенное воздействие на показатели пластичности этих структур.

Титана сплавы — Знаешь как

Сплавы на основе титана. В пром. масштабах используются с 1948. Титана сплавы отличаются высокой   мех.   прочностью, жаропрочностью, значительной коррозионной стойкостью во многих агрессивных средах;  многие из них — хорошей свариваемостью.    Для    повышения прочности сплавы легируют марганцем, железом, алюминием, молибденом, хромом, ванадием, оловом и др. Азот, кислород и водород увеличивают прочность, но резко снижают пластичность,   особенно  высоколегированных    сплавов.  

 

Почти   все титана сплавы легируют  алюминием, который уменьшает удельную массу, повышает удельную прочность, жаропрочность и снижает склонность к водородной хрупкости. Прочность титанов сплава— аддитивна степени легирования: складывается из прочности титана и эффектов упрочнения каждой добавкой» Упрочнение от введения хим. элемента   (1%)   составляет:   марганца — 13   кгс/мм2,   железа — 12,   алюминия — 7, молибдена — 6, хрома — 6, ванадия — 3,5 и олова — 2 кгс/мм2.

 

По структуре титановые сплавы  подразделяют на альфа-сплавы, псевдоальфа-сплавы, альфа + бета-сплавы, псевдобета-сплавы   и   бета-сплавы  . Альфа-сплавы подразделяют на термически неупрочняемые и термически упрочняемые дисперсионно-твердеющие; альфа + бета-сплавы — на твердеющие при закалке и мягкие после закалки. Бета-сплавы- подразделяют на сплавы с механически нестабильной бета-фазой, с механически стабильной бета-фазой и с термодинамически стабильной бета-фазой. По мех. характеристикам различают сплавы высокопластичные-малопрочные, средней прочности, высокопрочные, для эксплуатации при низких т-рах и литейные. К высокопластичным относятся сплавы (марок ОТ4-0, ОТ4-1 и АТ-2) с пределом прочности на растяжение до 70 кгс/мм2, поддающиеся деформации в холодном состоянии. У сплавов средней прочности (марок ОТ4, АТ-3, 4201, НТ-50, ВТ5, ВТ5-1, ВТ6С, ВТ4, АТ-4, TG5, ВТ20 и ОТ4-2) предел прочности на растяжение 75 — 100 кгс/мм2. Они  хорошо свариваются,   отличаются удовлетворительной термической стабильностью.

 

Высокопрочные титана сплавы — термически упрочняемые сплавы (марок ВТ6, АТ-6, ВТЗ-1, ВТ14, ВТ16, ВТ22, ВТ23, ВТ15 и ТСб), содержащие бета-фазу в широких пределах (4—85%), что позволяет получать различные сочетания физико-мех. и технологических свойств. Их высокая прочность (180— 200 кгс/мм2) достигается не только легированием, но и дисперсным упрочнением при закалке и старении , Высокопрочные сплавы отличаются высокой жаростойкостью и жаропрочностью (до т-ры 400° С). Их недостатки — плохая свариваемость, термическая нестабильность,   повышенная чувствительность к концентрации напряжений. К титана сплавы эксплуатируемым при низких т-рах, относятся сплавы марок АТ-2, АТ-3, ОТ4, ВТ5-1 и ВТ6С. Литейные сплавы представляют собой сплавы на основе альфа-фазы с примесью бета-фазы (до 2%) и двухфазные (альфа + бета) сплавы. Они обладают высокой прочностью, но пониженной пластичностью из-за крупнокристаллической литой структуры. Полуфабрикаты из Т. с. в виде листов, лент, прутков, труб, проволоки и профилей изготовляют ковкой, штампованием, холодной и горячей прокаткой, волочением и прессованием.

 

Горячая обработка давлением ведется в интервале т-р 600— 1050° С. Упрочняющая термообработка заключается в фиксации метастабильных фаз (закалки) и последующего их распада при старении. Высокое сопротивление деформированию обусловливается высокой жидкотекучестью сплавов. Титана сплавы выплавляют в индукционных печах в среде нейтральных газов или в вакууме с применением плотнографитовых тиглей, а также в электродуговых печах (с нерасходуемыми или расходуемыми электродами) в среде нейтральных газов или в вакууме. Для устранения неоднородности применяют двойной переплав или ведут гарнисажную плавку. Т. с. применяют в авиационной и космической технике, в хим., нефтяной и пищ. пром-сти, в судостроении и др.

 

Лит.: Еременко В. Н. Многокомпонентные титановые сплавы. К.; Д о б а т к и н В. И. [и др.]

 

Статья на тему Титана сплавы

47. Титан и его сплавы. Материаловедение. Шпаргалка

47. Титан и его сплавы

Титан и сплавы на его основе обладают высокой коррозионной стойкостью и удельной прочностью. Недостатки титана: его активное взаимодействие с атмосферными газами, склонность к водородной хрупкости.

Азот, углерод, кислород и водород, упрочняя титан, снижают его пластичность, сопротивление коррозии, свариваемость. Титан плохо обрабатывается резанием, удовлетворительно – давлением, сваривается в защитной атмосфере. Широкое распространение получило вакуумное литье, в том числе вакуумно-дуговой переплав с расходуемым электродом.

Аллотропические модификации титана: низкотемпературная и высокотемпературная.

Различают две основные группы легирующих элементов в зависимости от их влияния на температуру полиморфного превращения титана (882,5 °C): б-стабилизаторы (элементы, расширяющие область существования б-фазы и повышающие температуру превращения – А1, Оа, С) и в-стабилизаторы (элементы, суживающие б-область и снижающие температуру полиморфного превращения, – V, Мо, Сг).

Легирующие элементы делятся на две основные группы: элементы с большой (в пределе – неограниченной) и ограниченной растворимостью в титане. Элементы с ограниченной растворимостью вместе с титаном могут образовывать интерметаллиды, силициды и фазы внедрения.

Легирующие элементы влияют на эксплуатационные свойства титана (Ре, А1, Мп, Сг), повышают его прочность, но снижают эластичность и вязкость; А1, Zr увеличивают жаропрочность, а Мо, Zr, Та – коррозионную стойкость.

Классификация титановых сплавов. Структура промышленных сплавов титана – это твердые растворы легирующих элементов в б– и в-модификациях титана.

Виды термической обработки титановых сплавов.

Рекристаллизационный (простой) отжиг холоднодеформированных сплавов (650–850 °C).

Изотермический отжиг (нагрев до 780–980 °C с последующим охлаждением в печи до 530–680 °C, выдержка при этой температуре и охлаждение на воздухе), обеспечивающий высокую пластичность и термическую стабильность сплавов.

Двойной ступенчатый отжиг (отличается от изотермического тем, что переход от первой ступени ко второй осуществляется охлаждением сплава на воздухе с последующим повторным нагревом до температуры второй ступени), приводящий к упрочнению сплава и снижению пластичности за счет частичного протекания процессов закалки и старения.

Неполный отжиг при 500–680 °C с целью снятия возникающих при механической обработке остаточных напряжений.

Упрочняющая термическая обработка. Большинство титановых сплавов легировано алюминием, повышающим жесткость, прочность, жаропрочность и жаростойкость материала, а также снижающим его плотность.

?-титановые сплавы термической обработкой не упрочняются; их упрочнение достигается посредством легирования твердого раствора и пластической деформацией.

(? + ?) – титановые сплавы характеризуются смешанной структурой и упрочняются термической обработкой, состоящей из закалки и старения.

Псевдо-?-титановые сплавы характеризуются высоким содержанием ?-стабилизаторов и вызванным этим отсутствием мартенситного превращения. Сплавы характеризуются высокой пластичностью в закаленном состоянии и высокой прочностью в состаренном; они удовлетворительно свариваются аргонодуговой сваркой.

Литейные титановые сплавы. По сравнению с деформируемыми литейные сплавы имеют меньшую прочность, пластичность и выносливость, но более дешевы. Сложность литья титановых сплавов обусловлена активным взаимодействием титана с газами и формовочными материалами. Литейные сплавы ВТ5Л, ВТ14Л и ВТЗ-1Л по составу в основном совпадают с аналогичными деформируемыми сплавами (в то же время сплав ВТ14Л дополнительно содержит железо и хром).

Высокими технологическими свойствами обладает сплав ВТ5Л: он пластичен, не склонен к образованию трещин при литье, хорошо сваривается. Фасонные отливки из сплава ВТ5Л работают при температурах до 400 °C. Недостатком сплава является его невысокая прочность (800 МПа). двухфазный литейный сплав ВТ14Л подвергают отжигу при 850 °C вместо упрочняющей термической обработки, резко снижающей пластичность отливок.

Порошковые сплавы титана. Применение методов порошковой металлургии для производства титановых сплавов позволяет при тех же эксплуатационных свойствах, что и у литого или деформируемого материала, добиться снижения до 50 % стоимости и времени изготовления изделий. Титановый порошковый сплав ВТ6, полученный горячим изостатическим прессованием (ГИП), обладает теми же механическими свойствами, что и деформируемый сплав после отжига. Закаленному и состаренному деформируемому сплаву ВТ6 порошковый сплав уступает в прочности, но превосходит в пластичности.

Применение сплавов титана: обшивки самолетов, морских судов, подводных лодок; корпусов ракет и двигателей; дисков и лопаток стационарных турбин и компрессоров авиационных двигателей; гребных винтов; баллонов для сжиженных газов; емкостей для агрессивных химических сред и др.

Данный текст является ознакомительным фрагментом.

Читать книгу целиком

Поделитесь на страничке

Следующая глава >

Металлургия титана- Реферат | Металлургический портал MetalSpace.ru

В последние годы, в связи с разработкой способов получения технически чистого ковкого титана, положение резко изменилось. Началось усиленное развитие исследования титана и сплавов на его основе. В настоящее время проводиться большая экспериментальная работа по разработке и испытанию сплавов титана, о чем свидетельствует большое количество публикаций по этому вопросу за последние годы в мировой литературе. Большие природные ресурсы и замечательные свойства титана дают основания утверждать, что он станет одним из важнейших конструкционных материалов.

В данной работе рассматриваются вопросы истории открытия и изучения титана, его распространенности в космосе и на Земле, рассказывается о технологии получения титана и его соединений, о свойствах и об использовании человеком, о перспективах его применения в будущем.
В книге Зубкова Л.Б. «Космический металл. Все о титане» освещаются история открытия и изучения титана, его месторождения и добыча.
В работе Еременко В.Н. Титан и его сплавы приведены исчерпывающие данные о строении т свойствах двойных сплавов титана всех систем, исследованных до настоящего времени, а также сообщаются сведения о распространении титана в природе, объеме его производства, о способах получения, уплотнения и обработки металлического титана и его сплавов.

Истории открытия и изучения титана

В учебнике Б.А.Колачева, В.И.Елагина, В.А.Ливанова «Металловедение и термическая обработка цветных металлов и сплавов» изложены основные положения металловедения и термической обработки цветных металлов: алюминия, магния, бериллия, титана, меди, никеля, тугоплавких металлов и сплавов на их основе. Описаны свойства чистых металлов, принципы легирования сплавов, промышленные сплавы и их термическая обработка, области применения цветных металлов и сплавов на их основе.

Первооткрывателем титана считается 28-летний английский монах Уильям Грегор. Для своего времени, а это был конец XVIII в., он был весьма образованным человеком. Окончив Оксфордский университет, он стал бакалавром искусств и магистром наук, увлекался научными исследованиями, в том числе и минералогией. В 1790 г., проводя минералогические изыскания в своем приходе, он обратил внимание на распространенность и необычные свойства черного песка в долине Менакэна на юго-западе Англии и принялся его исследовать. В песке священник обнаружил большое количество мелких зерен черного блестящего минерала, притягивающегося обыкновенным магнитом. Грегор произвел с этим магнитным минералом несколько опытов: растворил его сначала в соляной, затем в серной кислоте, упарил раствор и получил белый порошок, который при прокалке желтел, а при спекании с углем приобретал голубой цвет. Исследованное природное образование черного цвета Грегор принял за новый, неизвестный ранее минерал, а выделенный из него белый порошок за новый элемент. Минералу и элементу дали название по местности, где они были найдены: минерал «менакэнит» и элемент «менакин». Сведения о них были впервые опубликованы через год после открытия, в 1791 г., в «Физическом журнале». По сегодняшним представлениям открытый в 1790 г. «менакэпит» был титаномагнетитом – смесью твердых растворов ильменита и магнетита, а белый порошок «менакин» – диоксидом титана[1, С.6-7].

В том же 1791 г. немецкий исследователь-химик Мартин Генрих Клапрот (1743-1817), академик Берлинской академии наук, а впоследствии почетный академик Российской Академии наук, первооткрыватель многих редких и цветных металлов – урана, циркония, теллура, молибдена, вольфрама, бария, марганца, ознакомился со статьей Грегора, но не заинтересовался этим открытием. Однако через несколько лет, в 1795 г., изучая рутил, именовавшийся тогда красным венгерским шерлом, он выделил из него диоксид нового металла – белый порошок, похожий на описанный ранее Грегором. И хотя до получения чистого металла было еще очень далеко – почти полтора столетия, Клапрот, обладая могучей научной интуицией, опираясь на исследования Грегора и на результаты собственных опытов, известил мир об открытии нового металла, которому дал название «титан». Вопреки распространенному в те времена правилу французских химиков во главе с известным Лавуазье – присваивать новым элементам и соединениям имена, отражающие их свойства, у Клапрота был свой принцип. Он считал, что при открытии и первых исследованиях элемента его свойства трудно определить точно. Часто случалось, что элементы, названные по их первоначальным свойствам, впоследствии, при углубленном изучении, не отвечали своим названиям. Многие из них пришлось переименовать. Поэтому Клапрот, открывший многие элементы, предпочитал давать им имена планет, героев легенд и мифов.

В 1795 г. по поводу присвоения новому элементу названия «титан» Клапрот писал: «Для вновь открываемого элемента трудно подобрать название, указывающее на его свойства, и я нахожу, что лучше всего подбирать такие названия, которые ничего не говорили бы о свойствах и не давали бы таким образом повода для превратных толкований. В связи с этим мне захотелось для данной металлической субстанции подобрать, так же как и для урана, имя из мифологии: поэтому я называю новый металлический осадок титаном, в честь древних обитателей Земли». Это название стало поистине пророческим. Мифические жители – титаны, сыновья богини Земли Ген и бога неба Урана, были огромными, сильными, стойкими, добрыми, бессмертными существами, покорителями огня, земных просторов и недр, морей, рек и гор. И открытый ме¬талл оказался одним из самых твердых, крепких, стойких. Но чтобы познать нес замечательные свойства нового металла и использовать их для своего блага, человечеству потребовалось еще более 150 лет[1, C.7-9].

Титан был получен в чистом виде (всего лишь несколько килограммов) только в 40-х гг. XX в., а промышленное производство его началось в 1957 г. После Грегора и Клапрота, исследовавших минералы и двуокись титана в 1791 – 1795 гг., соединениями титана, выделяемыми, из титаномагнетитовых руд, занимался русский химик-металлург Товий Егорович Лониц. В 1821 г. немецкий химик Генрих Розе синтетическим путем в лабораторных условиях получил двуокись титана, а еще через год, в 1822 – 1823 гг., английский химик Волластон, исследуя черные кристаллики, выделенные им из металлургических шлаков сталеплавильного завода «Мертир-Гидвиль», открыл в них, как он уверял, «металлический титан». В этом его поддержал знаменитый шведский химик Йене Якоб Берцелиус, который в 1825 г. также выделил титан, по его мнению, в чистом виде, восстановив фтортитанат калия. Но образцы титана Волластона и Берцелиуса были еще очень далеки от чистого металла. Они содержали большое количество различных примесей (более 5%), были хрупкими, нековкими, непластичными; по существу, как было установлено позднее, представляли собой нитриды и карбиды титана. Поэтому после исследований Волластона и Берцелиуса почти полвека существовало мнение, что титан – элемент бесполезный, так как сделать из него «что-либо» практически невозможно.

Тем не менее, несмотря на такое ошибочное мнение, работы над получением чистого титана продолжались в течение всего XIX – начала XX вв. Во Франции этим занимались ученые Фридрих Веллер, Шарль Девиль, Леви, Мусман, в Швеции – Нильсон, Петерсои и др. Последние выделили титан натрие-термическим восстановлением четыреххлористого титана в автоклаве (стальном термососуде). Но и этот титан содержал более 5% примесей и не мог раскрыть все свои уникальные свойства.

Наиболее чистый, практически свободный от примесей металл сумел получить впервые русский ученый, профессор Московского университета Дмитрий Кириллович Кириллов. В 1875 г. он опубликовал работу «Исследования над титаном», в которой освещались результаты его опытов по выделению чистого титана. К сожалению, тяжелобольной Кириллов не смог продолжить свои работы и вынужден был прекратить опыты. Образцы наиболее чистого титана удалось получить французскому химику Анри Муассану в 1885 г., который, восстанавливая диоксид титана древесным углем при высокой температуре и последующей перечисткой, сумел довести титан до 98%-ной чистоты. Более поздние исследования этих образцов показали, что в них загрязненный титан (с примесью железа и углерода) образовывал внешнюю оболочку, а внутри металл был очень чистым.

В 1910 г. американскому инженеру Хантеру и его коллегам удалось получить титан, как они определили, чистотой 99,9%. Но и этот образец, выделенный по сложной технологии, с опасностями для жизни самих исследователей (взорвалась стальная бомба), был хрупким, не поддавался ковке и механической обработке. Вероятно, он был загрязнен карбидами и нитридами титана в большей степени, чем считали авторы. Изученные Хантером свойства металла, загрязненного различными примесями не в количестве 0,1%, как он предполагал, а гораздо больше, опять отнесли титан в разряд бесполезных металлов: ведь ни ковать, ни обрабатывать его было практически невозможно.

В 1925 г. голландские химики Ван Аркель и Де Бур получили действительно очень чистый металл, с незначительным (менее 0,1%) количеством примесей. Их образцы титана проявили все замечательные свойства этого металла – низкую плотность, высокую твердость и прочность, не теряемые при высоких температурах (до 500°С и выше), хорошую пластичность, позволяющую деформировать металл в холодном состоянии, прокатывать в листы и даже в тонкую фольгу, вытягивать в тонкую проволоку. Технология голландцев основывалась на разложении йодидного титана. Нагревание йодида до температуры примерно 1300-1500°С приводит к его разложению на титан и йод. Причем парообразный йод соединяется снова с черновым металлом, а титан осаждается на раскаленной поверхности затравки из титана же. Примеси, находящиеся в черновом металле, взаимодействуют с йодом и не попадают на раскаленный чистый титан.

Инженерная мысль пошла по другому пути – по пути восстановления четыреххлористого титана металлическим магнием. Данный способ был разработан в 30-х гг. XX в., Кроллем, и поныне как за рубежом, так и в СССР титан в промышленных условиях получают именно по этой принципиальной технологии.

Промышленной организации производства технически чистого титана предшествовало тщательное технологическое и экономическое исследование всех известных к тому времени способов и методов его получения. Этим занялась горно-геологическая организация США («Горное бюро»), которая, собственно, и определила широчайшие возможности использования титана в новой и новейшей технике, главным образом в авиационной, космической, морской. В городке Боддер-Сити на юге штата Невада в 1942 г. была построена небольшая промышленная установка но получению технического титана. На ней испытывались различные способы его производства. Остановились на способе Кролля – магниетермическом. Ученый был приглашен работать на этой установке и в течение нескольких лет отрабатывал во всех деталях технологию получения технически чистого титана. В 1946 г. эта технология была опробована в промышленных условиях.

В 1947 г. были выпущены первые 45 кг технически чистого титана. Стоимость его, конечно, была баснословно высокой – 10 тыс. долл. за 1 т, т.е. этот новый конструкционный материал был во много раз дороже железа, алюминия, магния. Тем не менее выпуск металлического титана осуществлялся такими гигантскими темпами, каких не знало никакое другое металлургическое производство, в том числе и главных конструкционных металлов – железа, алюминия, магния. В 1951 г., т е. всего через три года, выпуск титановой губки увеличился почти в 300 раз и составил уже 700 т/год.

Титановая губка представляет собой пористый бесформенный хрупкий металл с содержанием примесей до 0,2-0,3%, небольшой плотности – всего около 1 т/м3. Именно титановая губка является исходным сырьем для получения и чистого, титана, и его сплавов. Чтобы металл был плотным и компактным, губку плавят, реже используют методы порошковой металлургии. В основном же применяется метод вакуумной дуговой плавки в печах с расходуемым электродом. Чистый титан вместе с легирующими элементами спрессовывается с расходуемым электродом на гидравлических пpeccax, затем для очистки он дважды переплавляется. Tехнология была разработана английским химиком Л.Росси в 1908 – 1918 гг. и базировалась на методе разложения титановых концентратов серной кислотой. Усовершенствованная и модернизированная сернокислотная технология получения белой двуокиси титана из титановых концентратов существует и по сей день. Мировое производство (без СССР) несоизмеримо выше, чем металлического титана, и сегодня держится на уровне 2 – 2,5 млн т/год. В России впервые был получен наиболее чистый титан. В начале века много усилий было приложено для изыскания, разведок титановых руд и их переработки на диоксид, четыреххлористый титан, ферротитан. Проблемами титанового сырья много занимался русский химик Г.В.Вдовишенский, который, будучи знаком с трудами Кириллова и других ученых и понимая важную практическую роль титана в научно-техническом прогрессе, организовал в самом начале 90-х гг. XIX в. поиски и разведку титановых руд. В те годы в России появился интерес не столько к самому титану, сколько к его соединениям, а объяснялось это следующим. Как оказалось, диоксид титана является самым стойким белым пигментом для окраски военно-морских судов и других сооружений. Кроме того, стало известно, что четыреххлористый титан может применяться как дымовая завеса и для улучшения сортов стали.


В 1916 г. уже были предприняты первые попытки производства четыреххлористого титана. По инициативе и под руководством советского геохимика и минералога А.Е.Ферсмана (1883-1945) была создана специальная подкомиссия по титану при Комиссии военно-технической помощи. А.Е.Ферсман провел большую работу по выявлению сырьевых источников титана. Правда, большого размаха эти исследования не приобрели, по первый шаг был сделан: на Урале были открыты и обследованы пегматитовые месторождения Вишневых и Ильменских гор. По имени последних был, назван новый титановый минерал, основной минерально-сырьевой источник получения титана и его соединений – ильменит.

В конце 20-х гг. XX в. Институт прикладной минералогии, позднее переименованный во Всесоюзный институт минерального сырья (ВИМС), приступил к созданию сырьевой базы титана на Урале, а также к разработке технологии производства титановых белил и получения спецсталей с использованием ферротитана. Развернулись исследования и промышленные испытания различных методов получения ферротитана. Благодаря работам советских ученых С.С.Штейнберга, Н.С.Кусакина, В.П.Елютина, Н.П.Шипулина и др. промышленное производство ферротитана было освоено к концу 30-х гг. XX в. Первые опытные заводы по производству пигментного диоксида титана из ильменитовых концентратов сернокислотным способом были пущены в 1935 – 1939 гг. В конце 40-х гг. XX в., в СССР начались исследования по получению металлического титана, а к 1952 г. окончательно оформилась промышленная технология получения титана хлорированием титановых шлаков[1, C.34-41].

Титан — тугоплавкий металл

Долгое время считалось, что он плавится при 1800 °С, однако в середине 50-х гг. XX в. английские ученые Диардорф и Хеис установили температуру плавления для чистого эле¬ментарного титана. Она составила 1668±3°С. По своей тугоплавкости титан уступает лишь таким металлам, как вольфрам, тантал, ниобий, рений, молибден, платиноиды, цирконий, а среди основных конструкционных металлов он стоит на первом месте:

Важнейшей особенностью титана как металла являются его уникальные физико-химические свойства:

  • низкая плотность,
  • высокая прочность,
  • твердость и др.

Эти свойства не меняются существенно при высоких температурах.

Титан обладает незаменимыми свойства, которые позволяют широко использовать титан как конструкционный материал. Прежде этот всего прочность металла, т.е. его способность сопротивляться разрушению, а также необратимому изменению формы (пластические деформации). В зависимости от вида напряженного состояния – растяжения, сжатия, изгиба и других условий испытания (температура, время) для характеристики прочности металла используются различные показатели: предел текучести, временное сопротивление, предел усталости и др. По всем этим показателям титан значительно превосходит алюминий, железо и даже многие лучшие марки стали.

Удельная прочность сплавов титана может быть повышена в 1,5-2 раза. Его высокие механические свойства хорошо сохраняются при температурах вплоть до нескольких сот градусов. Другие же металлы либо просто не выдерживают таких температур, либо сильно разупрочняются.
Чистый титан – высокопластичный металл, что обусловлено благоприятным соотношением осей «с» и «а» в его гексагональной решетке и наличием в ней множества систем плоскостей скольжения и двойникования. Хотя и считается, что металлы с гексагональной кристаллической решеткой очень пластичны, титан в силу указанных особенностей его кристаллов стоит в одном ряду с высокопластичными металлами, имеющими иной, тип кристаллической решетки. В результате чистый титан пригоден для любых видов обработки в горячем и холодном состоянии: его можно ковать, как железо, вытягивать и даже делать из него проволоку, прокатывать в листы, ленты, в фольгу толщиной до 0,01 мм.

Титан имеет высокий предел текучести – примерно 250 мн/м2. Это выше в 2,5 раза, чем у железа, в 3 раза, чем у меди, и почти в 20 раз, чем у алюминия. Следовательно, титан лучше этих металлов сопротивляется сминающим ударам и другим нагрузкам, способным деформировать титановые детали.

Высока и вязкость титана. Он отлично противостоит воздействию сколовых и сдвиговых ударов и нагрузок. Этой выносливостью объясняется еще одно замечательное свойство титана – исключительная стойкость его в условиях кавитации, т.е. при усиленной «бомбардировке» металла в жидкой среде пузырьками воздуха, которые образуются при быстром движении или вращении металлической детали в жидкой среде. Эти пузырьки воздуха, лопаясь на поверхности металла, вызывают очень сильные микроудары жидкости о поверхность движущегося тела. Они быстро разрушают многие материалы, и металлы в том числе, а титан прекрасно противостоит кавитации.

Титан обладает еще одним удивительным свойством – «памятью». В сплаве с некоторыми металлами (например, с никелем) он «запоминает» форму изделия, которую из него сделали при определенной температуре. Если такое изделие потом деформировать, например свернуть в пружину, изогнуть, то оно останется в таком положении на долгое время. После нагревания до той температуры, при которой это изделие было сделано, оно принимает первоначальную форму.

Титан реагирует со многими металлами

При трении с деталями из более мягкого металла титан может срывать с них металлические частицы и прилеплять к себе металл, а из более твердого, наоборот, частицы титана будут срываться с титановой детали и покрывать другую деталь. Причем никакая жировая или масляная смазка не помогает исключить взаимоналипание частиц. В течение небольшого времени это явление можно ослабить, лишь применив в качестве смазки чешуйчатые молибденит или графит. А вот сваривается титан с другими металлами очень плохо. Практически полностью эта проблема пока не решена, хотя сварка титановых изделий проходит отлично.

Рассмотренные химические и физические свойства титана в целом благоприятствуют широкому использованию этого металла. Однако у титана есть немало и отрицательных качеств. Например, он может самовозгораться, а в некоторых случаях даже и взрываться.

Еще одним недостатком титана является его способность сохранять высокие физико-механические свойства лишь до температуры 400-450°С, а с добавками некоторых легирующих металлов до 600° С, и здесь у него есть серьезные конкуренты – жаропрочные спецстали. Однако в минусовом диапазоне температур титану равных нет. Железо становится хрупким уже при температуре 40°С, специальные низкотемпературные стали ниже -100°С. А вот титан и его сплавы не разрушаются при температурах до 253°С (в жидком водороде) и даже до 269°С (в жидком гелии). Это очень важное свойство титана открывает ему большие перспективы для использования в криогенной технике и для работы в космическом пространстве.
По своей же распространенности во Вселенной титан редким элементом назвать никак нельзя. Он обнаружен в спектре Солнца и в его атмосфере, в атмосфере звезд различных типов. Автоматические космические аппараты зафиксировали наличие титана на Марсе и на Венере, в очень больших количествах в лунных породах, а на нашей планете титан находят во всех типах пород земной коры, в морях и океанах, в атмосфере и даже в растениях и тканях живых организмов.

Цена – вот что сегодня ещё тормозит производство и потребление титана. Собственно, высокая стоимость – не врожденный порок титана. В земной коре его много – 0,63%. Дорогая цена – следствие чрезвычайной сложности извлечение титана из руд. Если принять стоимость титана в концентрате за единицу, то стоимость готовой продукции – титанового листа в сотни раз больше. Объясняется это высоким сродством титана многим элементам и прочностью химических связей в его природных соединениях. Отсюда – сложности технологии. Вот как выглядит магниетермический способ производства титана, разработанный в 1940 г. американским учёным У.Кролем.

Двуокись титана с помощью хлора (в присутствии углерода) переводят в четырёххлористый титан: TiO2+C+2Cl2=TiCl4+CO2
Кажется, ещё недавно титан называли редким металлом – сейчас он важнейший конструкционный материал. Объясняется это только одним: редким в шахтных электропечах при 800-1250°С. Другой вариант – хлорирование в расплаве солей щелочных металлов NaCl и KCl.
Следующая операция (в одинаковой мере важная и трудоёмкая) – очистка TiCl4 от примесей – проводится разными способами и веществами. Четырёххлористый титан в обычных условиях представляет собой жидкость с температурой кипения 136°С. Разорвать связь титана с хлором легче, чем с кислородом. Это можно сделать с помощью магния по реакции: TiCl4+2Mg = Ti+2MgCl2. Эта реакция идёт в стальных реакторах при 900°С. В результате образуется так называемая титановая губка, магнием и хлоридом магния. Их испаряют в герметичном вакуумном аппарате при 950°С, а титановую губку затем спекают или переплавляют в компактный металл.

Натриетермический метод получения металлического титана в принципе мало чем отличается от магниетермического. Эти два метода наиболее широко применяются в промышленности.

Для получения более чистого титана и поныне используется иодидный метод, предложенный нидерландскими химиками ван Аркелем (1893-1976) и де Буром. Металлотермический губчатый титан превращают в иодид TiI4, который затем возгоняют в вакууме. На своём пути пары иодида титана встречают раскалённую до 1400°С титановую проволоку. При этом иодид разлагается, и на проволоке нарастает слой чистого титана. Этот метод производства титана малопроизводителен и дорог, поэтому в промышленности он применяется крайне ограниченно[4].

Полученные в промышленных условиях слитки титана называют техническим титаном. Он имеет практически все те свойства, которыми обладает химически чистый титан. Технический титан в отличие от химически чистого содержит повышенное количество некоторых элементов-примесей. В разных странах в зависимости от технологических особенностей процесса технический титан содержит примеси (в %): железа 0,15-0,3; углерода 0,05-0,1; водорода 0,006-0,013; азота 0,04-0,07; кислорода 0,1-0,4.

Сплавы титана с алюминием

Они наиболее важны в техническом и промышленном отношении. Введение алюминия в технический титан даже в небольших количествах (до 13%) позволяет резко повышать жаропрочность сплава при снижении его плотности и стоимости. Этот сплав — отличный конструкционный материал. Добавка 3-8% алюминия повышает температуру превращения α-титана в β-титан. Алюминий является практически единственным легирующим стабилизатором α-титана, увеличивающим его прочность при постоянстве свойств пластичности и вязкости титанового сплава и повышении его жаропрочности, сопротивления ползучести и модуля упругости. Этим устраняется существенный недостаток титана.

Помимо улучшения механических свойств сплавов при различных температурах, увеличивается их коррозионная стойкость и взрывоопасность при работе деталей из титановых сплавов в азотной кислоте.

Алюминий-титановые сплавы выпускаются нескольких марок и содержат 3-8% алюминия, 0,4-0,9% хрома, 0,25-0,6% железа, 0,25-0,6% кремния, 0,01% бора. Все они коррозионно-стойкие, высокопрочные и жаропрочные сплавы на основе титана. С увеличением содержания алюминия в сплавах температура их плавления несколько снижается, однако механические свойства значительно улучшаются и температура разупрочнения повышается.

Эти сплавы сохраняют высокую прочность до 600°С.

Сплавы титана с железом

Своеобразным сплавом является соединение титана с железом, так называемый ферротитан, представляющий собой твердый раствор TiFe3 в α-железе.

Ферротитан облагораживающе действует на сталь, так как он, активно поглощая кислород, является одним из лучших раскислителей стали. Ферротитан так же активно поглощает из расплавленной стали азот, образуя нитрид титана, другие примеси, способствует равномерному распределению прочих примесей и образованию мелкозернистых структур стали.

Кроме ферротитана, на основе железа и титана производятся и другие сплавы, широко используемые в черной металлургии. Феррокарботитан – железотитановый сплав, содержащий 7-9% углерода, 74-75% железа, 16-17% титана. Ферросиликотитан – сплав, состоящий из железа (около 50%), титана (30%) и кремния (20%). Оба эти сплава также применяются для раскисления сталей.


Сплавы титана с медью

Даже небольшие присадки меди к титану и другим его сплавам повышают их стабильность в процессе эксплуатации, увеличивается и их жаропрочность. Кроме того, 5-12% титана добавляют в медь для получения так называемого купротитана; им пользуются, чтобы очистить расплавленную медь и бронзу от кислорода и азота. Легирование меди титаном производится только очень небольшими его добавками, уже при 5% титана медь становится нековкой.

Сплавы титана с марганцем

Марганец, введенный в технический титан или в его сплавы, делает их прочнее, они сохраняют пластичность и легко обрабатываются при прокатке. Марганец – недорогой и недефицитный металл, поэтому он широко применяется (до 1,5%) при легировании титановых сплавов, предназначенных для листовой прокатки. Богатый марганцем (70%) сплав называется мангантитаном. Оба металла являются энергетическими раскислителями. Этот сплав, как и купротитан, хорошо очищает от кислорода, азота и других примесей медь и бронзу при отливках.
Сплавы титана с молибденом, хромом и другими металлами. Основная цель добавки этих металлов — повысить прочность и жаропрочность титана и его сплавов при сохранении высокой пластичности. Оба металла легируют их в комбинации: молибден предотвращает нестабильность титан-хромовых сплавов, делающихся хрупкими при высоких температурах. Сплавы титана с молибденом по стойкости против коррозии в кипящих неорганических кислотах превосходят технический титан в 1000 раз. Для повышения коррозионной стойкости в титан добавляют некоторые тугоплавкие редкие и благородные металлы: тантал, ниобии, палладий[1, C.94-103].

Значительное количество весьма ценных в научно-техническом отношении композиционных материалов можно производить на основе карбида титана. Это главным образом жаростойкие изделия из металлокерамики, в основе которых лежит карбид титана. В них совмещается твердость, тугоплавкость и химическая стойкость карбида титана с пластичностью и сопротивлением тепловому удару цементирующих металлов – никеля и кобальта. В них можно вводить ниобий, тантал, молибден и тем самым еще больше повышать стойкость и жаропрочность этих композиций па основе карбида титана.

Сейчас известно более 30 различных сплавов титана с другими металлами, удовлетворяющих практически любым техническим требованиям. Это пластичные сплавы с низкой прочностью (300-600 МПа) и рабочей температурой 100-200°С, со средней прочностью (600-900 МПа) и рабочей температурой 200-300°С, конструкционные сплавы с повышенной прочностью (800-1100 МПа) и рабочей температурой 300-450°С, высокопрочные (100-1400 МПа) термомеханически обрабатываемые сплавы с нестабильной структурой и рабочей температурой 300-400°С, высокопрочные (1000-1300 МПа) коррозионно-стойкие и жаропрочные сплавы с рабочей температурой 600-700° С, особо коррозионно-стойкие сплавы со средней прочностью (400-900 МПа) и рабочей температурой 300-500°С.

Технический титан и его сплавы выпускаются в виде листов, плит, полос, лент, фольги, прутков, проволоки, труб, поковок и штамповок. Эти полуфабрикаты являются исходным материалом для изготовления из титана и его сплавов различных изделий. Для этого полуфабрикаты надо обработать ковкой, штамповкой, фасонным литьем, резанием, сваркой и т.п.[5, C.180-193].

Авиационная промышленность была первым потребителем титана. Создание летательных аппаратов со скоростями близкими к скорости звука и превосходящими ее, определило ряд технических и экономических требований к конструкционным материа

Титановые сплавы и их применение в машиностроении :: Книги по металлургии

ПРИМЕНЕНИЕ И ТЕХНОЛОГИЯ ОБРАБОТКИ  ТИТАНОВЫХ СПЛАВОВ

Титан и его сплавы имеют сравнительно короткую историю применения в качестве конструкционных материалов. Несколько лет назад титан был известен лишь как легирующий элемент, с успехом применяемый в сталях и в других сплавах. Титан при­менялся также в виде карбида при производстве твердых сплавов и в виде окисла — в лакокрасочной промышленности для изго­товления титановых белил и эмалей.

Применение титана в качестве основы новых материалов — титановых сплавов — относится к периоду последних 10—15 лет. Тем не менее в этом новом качестве титан получил уже известное распространение. Можно сказать, что по темпам роста приме­нения титан и его сплавы не имеют равных. Конструкционные материалы на основе титана с успехом применяются в различных отраслях машиностроения, в судостроении, а также в производ­стве самолетов и двигателей для них.

Вместе с тем, несмотря на хорошие свойства при различных условиях эксплуатации, титан еще не получил широкого распро­странения в качестве конструкционного материала в общем маши­ностроении. Это объясняется его высокой стоимостью. Исполь­зование титановых сплавов ограничивается пока главным обра­зом различными областями специального машиностроения, например химическим машино- и аппаратостроением, авиацион­ным машиностроением, судостроением и т. д. В этих областях при оценке целесообразности применения нового материала на первый план выступают свойства титана и лишь затем ·— его стоимость. Безусловно, что в дальнейшем, с развитием и совершен­ствованием способов получения и обработки титана-и его сплавов, а также вследствие повышения требований к материалу деталей машин, сплавы на основе титана будут находить все более широкое применение не только в специальном, но и в общем машино­строении.

23. Преимущества титановых сплавов по сравнению с другими конструкционными материалами

Широкое и быстрое распространение титановых сплавов в качестве конструкционных материалов различного назначения объясняется теми преимуществами, которыми обладают титан и его сплавы по сравнению с другими материалами. Как уже отмечалось, к этим преимуществам относятся:

  1. высокая температура плавления, являющаяся необходимым условием повышенной жаропрочности;
  2. высокая прочность, низкий удельный вес и, как следствие этих двух качеств, высокая удельная прочность;
  3. низкий коэффициент теплового расширения, обусловли­вающий хорошую сопротивляемость материала термической уста­лости;
  4. высокая химическая стойкость, обеспечивающая применение титана и его сплавов в различных агрессивных средах;
  5. высокая стойкость против эрозии и кавитации.

По величине предела прочности и модуля упругости, отнесен­ным к удельному весу, титановые сплавы намного превосходят другие конструкционные материалы. На фиг. 104 приведены гра­фики изменения удельной прочности различных материалов в зависимости от температуры. Как видно из этих графиков, титановый сплав ВТ8 имеет самое высокое отношение — во всем  рассматриваемом интервале температур. То же относится и к удельному модулю упругости — (фиг. 105).

По величине этой характеристики сплав ВТ8 в сравнении с дру­гими конструкционными материалами также является наилучшим. Таким образом, невысокое абсолютное значение модуля упругости   Титана, отмечаемой как недостаток, нивелируется пониженным удельным весом этого металла.

Если вспомнить то, что уже говорилось о других преимуще­ствах титана по механическим и физическим свойствам, а также по коррозионной стойкости, то станет ясно, что титановые сплавы имеют значительное превосходство перед другими конструкцион­ными материалами.

В обзоре А. А. Гольденберга [91] приводится интересный пример, иллюстрирующий преимущества титана перед нержавею­щей сталью. В этом примере сравнивается стоимость титана и не­ржавеющей стали на разных этапах производства и эксплуатации изделий.

Титан в 18 раз дороже нержавеющей — стали. Однако по­скольку вес титана, необходимого для изготовления конкрет­ного изделия (название изделия не приводится), меньше веса стали, то титан, идущий на изготовление детали, будет стоить дороже, чем сталь, уже не в 18, а в 10 раз. Далее, поскольку раз­ница в стоимости готовых изделий из титана и исходного мате­риала (титана) ниже, чем для стали, то готовые титановые изде­лия будут стоить больше, чем изделия из стали, уже только в три раза. Наконец, если учесть, что в ряде случаев срок службы изделий из титана во много раз выше срока службы стальных деталей, то применение титана в этих случаях оказывается более выгодным, чем применение стали.

24. Применение титана в специальном  и общем машиностроении

Применение титана и его сплавов в качестве конструкционных материалов для изготовления деталей оборудования, приборов и аппаратов в специальном и общем машиностроении является значительным завоеванием научно-технической мысли и сущест­венным шагом по пути прогресса машиностроения. Поэтому рас­ширение использования титана в машиностроении как непосред­ственно — путем изыскания новых конкретных применений его для деталей машин, так и косвенно — путем совершенствования методов производства и обработки этого металла, имеет очень большое практическое и научное значение.

В настоящее время материалы на основе титана применяются или в форме листов, или в виде поковок. В качестве отливок титан и его сплавы применяются еще весьма ограниченно, чтб объяс­няется трудностью подбора материала для литейных форм. Листы изготовляются из технического титана или из однофазных а-спла- вов, легированных алюминием и оловом.

Техническим называется титан, в котором содержится неко­торое количество примесей (около одного процента), причем эти примеси введены не специально, с целью легирования, а практи­чески неизбежно присутствуют в металле в результате особенностей металлургического процесса. Как уже отмечалось, количество примесей в техническом титане зависит от способа его получения, причем нередко содержание кислорода преднамеренно допускается несколько завышенное с целью некоторого увеличения прочности металла.

Технический титан часто называют малолегированным много­компонентным титановым сплавом. Однако этот сплав в ряде слу­чаев является недостаточно прочным, а повышение прочности за счет увеличения количества примесей вызывает значительное понижение пластичности. Вследствие этого приходится переходить к сплавам, легированным алюминием и оловом. Эти элементы, каждый в отдельности и оба вместе, растворяясь в α-титане, повы­шают его прочность без существенного снижения пластичности, благодаря чему получаемые сплавы могут быть прокатаны в лист, как и технический титан, но имеют значительно более высокую прочность.

Для поковок применяют главным образом двухфазные сплавы, имеющие структуру α + β. Эти сплавы сравнительно легко обра­батываются и могут упрочняться путем термической обработки. Они имеют значительно более высокие свойства прочности при меньшей пластичности по сравнению с однофазными а-сплавами.

Применяемые в настоящее время титановые сплавы по своим технологическим свойствам являются деформируемыми. Вместе с тем в случае необходимости они могут применяться и в качестве литейных.

Деформируемые титановые сплавы подразделяются на две группы:

  1. ковочно-штамповочные и прокатываемые, имеющие доста­точную технологическую пластичность в горячем состоянии; к этой группе относятся сплавы ВТЗ, ВТЗ-1, ВТ6, ВТ8 и др.;
  2. прокатываемые в листы и ленты, имеющие превосходную пластичность в горячем состоянии и способные деформироваться при обычной температуре; к этой группе относятся сплавы ВТ4, ОТ4, ВТ5, ВТ5-

Сплавы титана

  • Главная
  • Терапия
    • Введение в терапевтическую стоматологию
    • История терапевтической стоматологии
    • Нормальная микрофлора полости рта
    • Методы обследования
      • Введение в методы обследования больного
      • Сбор ананмнеза
      • Внешний осмотр
      • Осмотр полости рта
      • Осмотр собственно полости рта
      • Осмотр зубов
      • Перкуссия, пальпация и температурная диагностика
      • Электроодонтодиагностика
      • Рентгенологическое исследование
      • Люминесцентная диагностика
      • Функциональные пробы
      • Функциональные методы исследования
      • Лабораторные методы исследования
    • Обезболевание
      • Обезболивание в терапевтической стоматологии
      • Премедикация
      • Характеристика анестетиков
      • Техника анестезии
    • Кариес зубов
      • Кариес зубов введение
      • Этиология
        • Теории развития кариеса
        • Теория Миллера
        • Теория Энтина
        • Теория Лукомского
        • Теория Шарпенака
        • Теория Шатца и Мартина
        • Теория Платонова
        • Теория Рыбакова
        • Современная концепция этиологии кариеса
      • Патогенез
      • Патанатомия
      • Клиника и дифференциальная диагностика кариеса
        • Начальный кариес
        • Поверхностный кариес
        • Средний кариес
        • Глубокий кариес.
      • Классификация
      • Универсальные стоматологические установки
      • Стоматологические боры
      • Ручные инструменты
      • Препарирование
        • Основные правила препарирования зубов
        • Метод «Пофилактического расширения»
        • Метод «Биологической целесообразности»
        • Метод «Профилактического пломбирования»
        • Способы и принципы препарирования
        • Препарирование полостей I класса по Блеку
        • Препарирование полостей II класса по Блеку
        • Препарирование полостей III класса по Блеку
        • Препарирование полостей IV Класса по Блеку
        • Препарирование полостей V класса по Блеку
        • Препарирование полостей VI класса по Блеку
      • Эргономика в стоматологии
      • Пломбировочные материалы
        • Пломбировочные материалы общие сведения
        • Материалы для временных пломб
        • Изолирующие прокладки
          • Материалы для изолирующих прокладок
          • Цинк-фосфатные цементы
          • Поликарбоксилтные цементы
          • Изолирующие лаки
          • СИЦ
        • Лечебные прокладки
          • Материалы для лечебных прокладок
          • Гидроксид кальция
          • Цинк-эвгенольный цемент
          • Комбинированные лечебные пасты
        • Постоянные пломбировочные материалы
          • Постоянные пломбировочные (реставрационные) материалы
          • Стоматологические цементы
            • Стоматологические цементы: общая характеристика
            • Минеральные цементы
            • Полимерные цементы
          • Полимерные пломбировочные материалы
          • Композитные пломбировочные материалы
            • Композитные пломбировочные материалы. Характеристика
            • Классификация композитов
            • Макронаполненные композиты
            • Микронаполненные композиты
            • Гибридные композиты
            • Мининаполненные композиты
            • Микрогибридные композиты
              • Характеристика микрогибридных композитов
              • «Venus» и «Valux Plus»
              • «Charisma»,«Esthet-Х» и «Spectrum ТРН»
              • «Herculite XRV» и «Prodigy»
              • «Enamel Plus HFO»
            • Нанонаполненные композитоы

      Низкотемпературная пайка титана с использованием присадочных сплавов на основе алюминия

      Пайка титана с использованием присадочных сплавов с низкой температурой плавления является предпочтительным выбором с точки зрения стоимости и сохранения его механических свойств. Однако пайка титана при низкой температуре все еще является проблемой, особенно в отношении присадочных сплавов на основе алюминия. В течение последних лет было разработано несколько методов пайки и наполнителей на основе алюминия для удовлетворения промышленных требований; некоторые из них могут соответствовать некоторым из этих требований.Использование ультразвука при пайке в последнее время привлекает повышенное внимание, что помогает сократить время и необходимость в специальной среде для пайки, что впоследствии снижает стоимость и увеличивает применимость. В обзоре представлена ​​пайка титана ниже температуры превращения с использованием промышленных и экспериментальных наполнителей на основе алюминия различного состава; включая процедуры традиционной и ультразвуковой пайки. Соответственно, исследуется влияние условий пайки и легирующих элементов на механические свойства и образование интерметаллических соединений.

      1. Введение

      Пайка титана при температуре ниже температуры превращения имеет большое значение для предотвращения нежелательных изменений его исходной микроструктуры [1, 2]. Низкая температура пайки особенно важна для тонкостенных паяльных структур аэрокосмических компонентов и теплообменников [3]. Более короткий цикл пайки / меньшая температура пайки помогает предотвратить избыточное взаимодействие между компонентами соединения и рост интерметаллических соединений на границе соединения [2].Титан обладает сильным химическим притяжением кислорода; поэтому даже при комнатной температуре на его поверхности быстро образуется пассивный слой аморфного оксида [4]. Окисление поверхности делает процесс соединения титана сложным с точки зрения установления металлического соединения; кроме того, титан следует защищать от сильного окисления при температурах, превышающих 650 ° C [5]. Помимо склонности к укрупнению зерна и влиянию на прочность / пластичность основных компонентов, высокотемпературная пайка требует специального оборудования, условий и более длительного времени обработки, что приводит к более высокой стоимости обработки по сравнению с низкотемпературной пайкой.

      Титановые соединения широко изучаются [6]. В отличие от пайки, сварка обычно не применяется для титановых сотовых многослойных конструкций [7–10], которые требуют соединения многих точек без деформации. Кроме того, сварочный процесс не подходит для соединения алюминидов титана [11]. Для пайки титановых сплавов разработано и исследовано большое количество припоев-присадок; некоторые из них использовались в коммерческих целях. В 1950-х и 1960-х годах ранние работы были сосредоточены на присадочных сплавах на основе Ag, Au, Cu и Pd для ∼ (316–427 ° C) и присадочных сплавах на основе Al для рабочих температур ∼204 ° C.Позднее были разработаны сплавы на основе Ti и Ti – Zr, которые показали лучшую металлургическую совместимость с титаном [12] и обеспечили более высокую прочность соединения по сравнению с другими системами припоев. В таблице 1 приведены некоторые примеры относительно высокопрочных и температурных паяных соединений с использованием присадочных сплавов на основе Ti и Ti – Zr. Тем не менее, низкотемпературная пайка с более свободными условиями может найти несколько применений: там, где нельзя применять инертную атмосферу, соединяемые детали не могут поместиться в ограниченных и особых условиях, таких как массовое производство путем непрерывной пайки, большие паяные соединения или для пайки на месте.Кроме того, снижение стоимости соединения за счет снижения температуры важно для снижения общей стоимости изготовления и сохранения доли титана в общем конструктивном весе аэрокосмических систем [13].


      Прочность на сдвиг (МПа) Условия Наполнитель Основной металл Каталожные номера

      300 Вакуум + аргон, 880 ° C, 60 мин
      .Информация о марках титана

      — свойства и области применения для всех титановых сплавов и чистых марок

      Марки и сплавы титана: свойства и применение

      Ниже приводится обзор наиболее часто встречающихся титановых сплавов и чистых марок, их свойств, преимуществ и применения в промышленности. Конкретную терминологию см. В разделе «Определения» в конце этой страницы.

      Технически чистый титан марок

      1 класс

      Титан Grade 1 является первым из четырех технически чистых титанов.Это самая мягкая и пластичная из этих марок. Он обладает великолепной формуемостью, отличной коррозионной стойкостью и высокой ударной вязкостью.

      Благодаря всем этим качествам материал Grade 1 является предпочтительным для любого применения, где требуется простота формуемости, и обычно доступен в виде титановой пластины и трубки. К ним относятся:

      • Химическая обработка
      • Производство хлоратов
      • Аноды размерные стабильные
      • Опреснение
      • Архитектура
      • Медицинская промышленность
      • Морская промышленность
      • Автозапчасти
      • Конструкция планера

      2 класс

      Титан Grade 2 называют «рабочей лошадкой» индустрии коммерчески чистого титана благодаря его разнообразным возможностям использования и широкой доступности.Он обладает многими из тех же качеств, что и титан Grade 1, но немного прочнее. Оба одинаково устойчивы к коррозии.

      Этот сплав обладает хорошей свариваемостью, прочностью, пластичностью и формуемостью. Это делает титановые прутки и листы Grade 2 лучшим выбором для многих областей применения:

      • Архитектура
      • Производство электроэнергии
      • Медицинская промышленность
      • Переработка углеводородов
      • Морская промышленность
      • Кожух выхлопной трубы
      • Обшивка планера
      • Опреснение
      • Химическая обработка
      • Производство хлоратов

      класс 3


      Детали из титана 3-го класса

      Этот сорт используется меньше всего из коммерчески чистых марок титана, но это не делает его менее ценным.Сорт 3 прочнее, чем Сорта 1 и 2, аналогичен по пластичности и лишь немного менее пластичен, но обладает более высокими механическими характеристиками, чем его предшественники.

      Grade 3 используется там, где требуется умеренная прочность и высокая коррозионная стойкость. К ним относятся:

      • Аэрокосмические конструкции
      • Химическая обработка
      • Медицинская промышленность
      • Морская промышленность

      класс 4

      Марка 4 известна как самая прочная из четырех марок технически чистого титана.Он также известен своей превосходной коррозионной стойкостью, хорошей формуемостью и свариваемостью.

      Хотя он обычно используется в следующих промышленных приложениях, сорт 4 недавно нашел свою нишу в качестве титана медицинского назначения. Он необходим там, где требуется высокая прочность:

      • Детали планера
      • Сосуды криогенные
      • Теплообменники
      • CPI оборудование
      • Трубка конденсатора
      • Хирургическое оборудование
      • Корзины для травления

      Титановые сплавы

      7 класс

      Grade 7 механически и физически эквивалентен Grade 2, за исключением добавления промежуточного элемента палладия, что делает его сплавом.Марка 7 обладает превосходной свариваемостью и фабричностью, а также самой высокой коррозионной стойкостью среди всех титановых сплавов. Фактически, он наиболее устойчив к коррозии в восстанавливающих кислотах.

      Grade 7 используется в химических процессах и компонентах производственного оборудования.

      11 класс


      Обработка титана Grade 1

      Grade 11 очень похож на Grade 1, за исключением добавления небольшого количества палладия для повышения коррозионной стойкости, что делает его сплавом.Эта коррозионная стойкость полезна для защиты от щелевой эрозии и снижения кислотности в хлоридных средах.

      Другие полезные свойства включают оптимальную пластичность, формуемость в холодном состоянии, полезную прочность, ударную вязкость и отличную свариваемость. Этот сплав можно использовать в тех же областях применения титана, что и сплав 1, особенно там, где существует проблема коррозии, например:

      • Химическая обработка
      • Производство хлоратов
      • Опреснение
      • Морское применение

      Ti 6Al-4V (класс 5)

      Известный как «рабочая лошадка» титановых сплавов, Ti 6Al-4V или титан Grade 5 является наиболее часто используемым из всех титановых сплавов.На его долю приходится 50 процентов от общего объема потребления титана во всем мире.

      Его удобство использования заключается в его многочисленных преимуществах. Ti 6Al-4V можно подвергать термообработке для повышения его прочности. Его можно использовать в сварных конструкциях при рабочих температурах до 600 ° F. Этот сплав отличается высокой прочностью при небольшом весе, полезной формуемостью и высокой коррозионной стойкостью.

      Удобство использования

      Ti 6AI-4V делает его лучшим сплавом для использования в нескольких отраслях промышленности, таких как аэрокосмическая, медицинская, морская и химическая промышленность.Может быть использован при создании таких технических вещей как:

      • Турбины для самолетов
      • Детали двигателя
      • Конструктивные элементы самолета
      • Крепеж для аэрокосмической отрасли
      • Высокопроизводительные детали автоматики
      • Морское применение
      • Спортивное оборудование

      Ti 6AL-4V ELI (класс 23)


      Хирургический титан Grade 23

      Ti 6AL-4V ELI, или Grade 23, является версией Ti 6Al-4V с более высокой степенью чистоты.Из него могут быть катушки, пряди, проволока или плоская проволока. Это лучший выбор для любой ситуации, когда требуется сочетание высокой прочности, небольшого веса, хорошей коррозионной стойкости и высокой прочности. Он имеет более высокую устойчивость к повреждениям по сравнению с другими сплавами.

      Эти преимущества делают Grade 23 лучшим титаном для стоматологии и медицины. Его можно использовать в биомедицинских приложениях, таких как имплантируемые компоненты, благодаря своей биосовместимости, хорошей усталостной прочности и низкому модулю упругости.Его также можно использовать в подробных хирургических процедурах, например:

      • Спицы и винты ортопедические
      • Тросы ортопедические
      • Зажимы для лигатуры
      • Скобы хирургические
      • Пружины
      • Ортодонтические аппараты
      • Замены суставов
      • Сосуды криогенные
      • Аппараты костной фиксации

      сорт 12


      Титан класса 12 Применения

      Титан класса 12 имеет оценку «отлично» за высокое качество свариваемости.Это очень прочный сплав, обеспечивающий большую прочность при высоких температурах. Титан марки 12 обладает характеристиками, аналогичными нержавеющим сталям серии 300.

      Этот сплав может быть подвергнут горячей или холодной штамповке с использованием листогибочного пресса, гидравлического прессования, формования растяжением или метода ударного молота. Его способность формироваться различными способами делает его полезным во многих приложениях. Высокая коррозионная стойкость этого сплава также делает его неоценимым для того производственного оборудования, где существует проблема щелевой коррозии.Grade 12 может использоваться в следующих отраслях и сферах применения:

      • Кожух и теплообменники
      • Гидрометаллургия
      • Химическое производство при повышенных температурах
      • Морские и авиационные компоненты

      Ti 5Al-2.5Sn

      Ti 5Al-2.5Sn — это нетермообрабатываемый сплав, который обеспечивает хорошую свариваемость и стабильность. Он также обладает высокой температурной стабильностью, высокой прочностью, хорошей коррозионной стойкостью и хорошим сопротивлением ползучести.Ползучесть — это явление пластической деформации в течение продолжительных периодов времени, которое происходит при высоких температурах.

      Ti 5Al-2.5Sn в основном используется в самолетах и ​​корпусах самолетов, а также в криогенных приложениях.

      Определения


      Титановый пруток

      Метод ударного молотка — Использование машины, состоящей из наковальни или основания, выровненного с молотком, который поднимается и затем опускается на расплавленный металл, чтобы выковать или штамповать металл.

      Пластичность — способность металла легко вытягиваться в проволоку или тонко забиваться молотком; легко формуются или формируются.

      Фабричность — Относится к способности металла использоваться для создания машин, конструкций и другого оборудования посредством формования и сборки.

      Формуемость — Способность металла превращаться в различные формы и формы.

      Hydropress Forming — Давление, оказываемое резиновой головкой пресса, формирует лист металла в соответствии с конфигурацией инструмента, формируя металл.

      Промежуточные элементы — «примеси» в чистых металлах, иногда улучшающие сплав.

      Листогибочный пресс для формовки — Станок, используемый для гибки листового металла в любую требуемую форму.

      Метод формования растяжением — метод, при котором нагретый металлический лист растягивается по форме и затем охлаждается для придания формы.

      .

      Сплавы на основе титана — Thermo-Calc Software

      По сравнению с эмпирическим регрессионным анализом и искусственными нейронными сетями, подход CALPHAD предлагает уникальное и замечательное преимущество в точном получении всех критических характеристик одновременно для широкого спектра обычных Ti-сплавов.

      Примеры результатов расчета для обычных Ti-сплавов:

      • Температура β-перехода Tβ
      • Чувствительность Tβ к содержанию примесей O, C и N
      • Объемная доля α и β
      • Распределение легирующих элементов между α и β фазами
      • Образование второстепенных фаз, таких как карбиды, фаза Лавеса и α2-Ti3Al
      • α / β К строке

      Знание вышеуказанной информации с помощью вычислительной термодинамики дает нам лучший, более дешевый и быстрый способ адаптировать химический состав материалов, оптимизировать графики термообработки и обеспечить контроль качества.

      Для сплавов на основе γ-TiAl пользователи часто рассчитывают:

      • Температура перехода α
      • Температура эвтектоида α2 + γ
      • Формирование фазы В2
      • Образование малых фаз, таких как Ti5Si3 и т. Д.

      Термодинамические свойства

      В связи с тем, что подход основан на термодинамике, различные важные термодинамические свойства также могут быть легко рассчитаны и использованы в кинетическом моделировании фазового превращения и эволюции микроструктуры, например:

      • Активность или химический потенциал всех элементов
      • Движущая сила зарождения и роста
      • Удельная теплоемкость

      Модуль диффузии (DICTRA)

      Используя модуль диффузии (DICTRA) и комбинируя базы данных термодинамики и кинетики, можно моделировать типичные контролируемые диффузией фазовые превращения в сплавах Ti при любых условиях термообработки.Некоторые примеры приложений:

      • Рост или растворение глобулярной или пластинчатой ​​альфа-фазы
      • Растворение второстепенных фаз, таких как карбиды, фаза Лавеса и т. Д.
      • Азотирование
      • Затвердевание

      .

      сплав на основе титана — определение — английский

      Примеры предложений с «сплавом на основе титана», память переводов

      патент-wipo Сплав на основе титана, патенты-wipoМетод для обработки заготовки из сплава на основе титана EURLex-2 // Легкий титан- сплавы на основе. // 1.4.patents-wipo Титан или сплав на основе титана является особенно подходящим материалом. Patents-wipo Описан метод сварки титана и сплавов на основе титана (100) с черными металлами (200). Patents-wipo Полоски или фольга для пайки имеющий сердечник из сплава на основе титана и метод производства, патенты-wipoМетод и устройство для непрерывного производства металлического титана и сплавов на основе титана, патенты-wipoНовый класс бета-сплавов на основе титана с высокой прочностью и хорошей пластичностью. Сплавы на основе титана WikiMatrix Некоторые сплавы на основе титана Beta также показали аналогичные тенденции повышения прочности за счет быстрого охлаждения.Патенты-wipo Формовочные изделия из сплавов на основе титана и процессы их производстваEurLex-2 // Легкие сплавы на основе титана. патенты-wipo Режущая пластина с покрытием для обработки сплавов на основе титанаOpenSubtitles2018.v3 К счастью, у кого-то хватило ума укрепить структуру. ..с сплавом на основе титана. патенты-wipoMaster сплавы для бета-21s сплавов на основе титана и способ изготовления одинаковых патентов-wipo Формованные в холодном состоянии формованные изделия из сплавов на основе титана. патенты-wipoМетод сварки титана и сплавов на основе титана с черными металлами. -wipo Поверхностная структура на поверхности протезных имплантатов из металлического титана или сплава на основе титанаEurLex-2Light из сплавов на основе титана 1.4.patents-wipo В одном варианте осуществления орбитали очков отливаются по выплавляемым моделям из практически чистого титана или сплава на основе титана EurLex-21. Сплавы на основе никеля или титана в форме алюминидов, как указано ниже, в сырой или полуфабрикатной форме: патент-wipo Альфа-бета сплав на основе титана с улучшенной пластичностью при высоких уровнях прочности по сравнению с коммерчески доступными сплавами, такими как Ti. -17.eurlex Способность прилагать силу # Н или более или крутящий момент # Нм или более при использовании сплавов на основе титана или

      Отображение страницы 1.Найдено 243 предложения с фразой титановый сплав .Найдено за 11 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Найдено за 0 мс.Накопители переводов создаются человеком, но выравниваются с помощью компьютера, что может вызвать ошибки. Они поступают из многих источников и не проверяются. Имейте в виду.

      .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *