Силового трансформатора схема: Схемы соединений обмоток трехфазных трансформаторов

Содержание

Схемы соединений обмоток трехфазных трансформаторов

При соединении обмоток трехфазных трансформаторов как двухобмоточных, так и трехобмоточных применяют различные схемы соединения. Однако в силовых трансформаторах как повышающих, так и понижающих, главных образом применяются схемы соединения в звезду, треугольник и зигзаг—звезду. Для практических целей в энергосистемах не требуется большого количества схем соединений обмоток. Так, для мощных трансформаторов применяется одно соединение обмоток ВН и СН— в звезду с выведенной нейтралью (Y0), а для обмоток НН — в треугольник (А).
ГОСТ 12022-66 предусматривает для трансформаторов мощностью 25, 40, 63 и 100 кВА с ПБВ (с переключением ответвлений обмотки трансформатора без возбуждения — т. е. после отключения всех обмоток трансформатора от сети) и для трансформаторов мощностью 63, 100, 160 и 250 кВА с ПБВ и РПН (с регулированием напряжения путем переключения ответвлений обмотки трансформатора под нагрузкой при следующем сочетании напряжений па стороне ВН и НН (кВ)  на стороне обмотки низшего напряжения соединение в зигзаг—звезду.


Соединение в зигзаг — звезду дает возможность при несимметрии нагрузки на стороне НН сглаживать на стороне ВН эту неравномерность. Кроме того, схема зигзага допускает иметь три напряжения, например 127, 220 и 380 е.
Другие схемы соединений обмоток для силовых трансформаторов применяются крайне редко. Область применения таких схем ограничивается трансформаторами специального назначения (электропечными, для питания ртутных выпрямительных установок, для преобразования частоты, числа фаз переменного тока, электросварочными и др.).
а) Соединение обмоток в звезду
Если соединить концы или начала обмоток трех фаз вместе, то получится соединение в звезду. На рис. 3,а показаны обмотки НН, соединенные в звезду. В нулевой точке соединены все концы обмоток у, z, а к началам а, Ьу с— подводится напряжение от трехфазной сети или генератора. На рис. 3,6 показано то же соединение обмоток НН в звезду, но только в нулевую точку соединены другие концы обмоток, которые прежде присоединялись к сети.
При независимой друг от друга работе трансформаторов подобное «переворачивание» одной из обмоток, соединенной в звезду, не имеет значения, по параллельная работа таких трансформаторов, как это будет доказано далее, невозможна. В звезду могут быть соединены различные обмотки трансформатора как ВН и СН, так и НН. Нулевая точка звезды может быть выведена на крышку трансформатора (рис. 3,б).
По схеме звезда или звезда с выведенной нулевой точкой соединяются обычно обмотки ВН как повышающих, так и понижающих трансформаторов различной мощности.

Рис. 3. Соединение обмотки НН в звезду.
а — одна схема соединения; б — другая схема соединения; в — соединение в звезду с выведенной нулевой точкой; г — векторная диаграмма линейных э. д с.
Обмотки ВН при напряжениях 110 кВ и выше предпочтительно соединять в звезду с выведенной нулевой точкой, что дает возможность заземления нейтрали. При этом можно выполнить один конец каждой из фаз, прилегающий к нейтрали, с пониженной изоляцией.
Обмотки СН соединяются большей частью по схеме Y0.
Обмотки НН соединяются в звезду с выведенной нулевой точкой у понижающих трансформаторов тогда, когда напряжение этой обмотки 230 или 400 в при мощностях до 560 кВА. В звезду без выведения нулевой точки обмотки НН соединяются крайне редко, например, у понижающих трансформаторов мощностью 1 000—5 600 кВА при сочетании напряжений обмоток ВН и НН 10 000/6 300 е.
Обычно обмотки НН повышающих трансформаторов, а также большей части понижающих мощных соединяются в треугольник.
Векторная диаграмма линейных э. д. с. для соединения обмоток в звезду строится следующим образом. Откладываем в масштабе вектор ах (рис. 3,г). Так как мы знаем, что концы обмоток л*, //, г электрически соединены, то из точки х под углом 120° к ах откладываем в том же масштабе вектор by. Далее из точки у под углом 120° к вектору by откладываем вектор сг.
При соединении обмотки в звезду с выведенной пулевой точкой можно получить два напряжения (фазное и лилейное). Если измерять напряжение между нулем и какой-либо фазой, то получим напряжения, называемые фазными ((Уф). На рис. 3,г они изображены векторами ха, yb и гс.
Напряжения, измеренные между фазами а и ft, b и с, с и а, называются линейными (междуфазными) напряжениями (U). Эти напряжения па рис. 5-3,г изображены в масштабе ab, be и са. Так как в треугольнике abx угол между векторами ха и yb равен 120°, то зависимость между линейным и фазным напряжениям  будет U = = Uфv3 , т. е. линейное напряжение в v3 раз больше фазного. Если трансформатор, обмотки НН которого включены в звезду, имеет линейное напряжение 220 в, то фазное напряжение будет:

б) Соединение обмоток в треугольник
Если соединить конец фазы а (точку х) с началом фазы с, конец фазы с (точка z) с началом фазы b и конец фазы b (точка у) с началом фазы а, то получится соединение в треугольник (рис. 4,а). Соединение в треугольник можно осуществить (рис. 4,6) иначе, соединяя конец фазы а с началом фазы b, конец фазы b с началом фазы с и конец фазы с с началом фазы а.

Векторная диаграмма линейных э. д. с. при соединении обмоток в треугольник по схеме рис. 4,а будет равносторонним треугольником рис. 4,в и г. При соединении в треугольник фазные напряжения будут равны линейным.
В мощных трансформаторах принято одну из обмоток всегда соединять в треугольник. Делается это по следующим соображениям:
Как известно, намагничивающий ток трансформатора имеет несинусоидальную форму, т. е. содержит высшие гармонические. Наибольший удельный вес имеет третья гармоническая. Если все обмотки трансформатора соединить в звезду, то третья гармоническая в намагничивающем токе образоваться не может, так как она будет направлена во всех фазах одинаково: (3 • 120° = 360° = = 0°) и поэтому форма кривой фазного напряжения исказится, что может привести к нежелательным явлениям в эксплуатации. По этим соображениям принято одну из обмоток обязательно соединять в треугольник. Если же почему-либо требуется построить мощный двухобмоточный трансформатор или автотрансформатор с соединением обмоток звезда — звезда (например, трехфазный автотрансформатор), то он снабжается дополнительной третьей обмоткой, соединенной в треугольник, которая в некоторых случаях может даже не иметь внешних выводов.


Рис. 4. Соединение обмоток НН в треугольник.
а — первая схема соединения обмоток в треугольник, б — вторая схема соединения обмоток в треугольник; в — вектора линейных э. д. с фаз a, b и с; г —векторная диаграмма линейных э д с

Обычно в треугольник соединяется обмотка низшего напряжения.
В мощных трансформаторах номинальный ток обмотки НН часто составляет несколько тысяч ампер и конструктивно бывает легче выполнить соединение обмотки в треугольник, так как фазный ток при той же мощности получается в v 3 раз меньшим, чем при соединении в звезду.

В треугольник соединяются обмотки НН всех повышающих и понижающих двухобмоточных и трехобмоточных трехфазных трансформаторов мощностью 5 600 кВА и больше, понижающих трансформаторов мощностью до 5 600 кВА, имеющих на стороне НН напряжения 38,5; 11; 10,5; 6,6; 6,3; 3,3; 3,15 и 0,525 кВ, а также обмотки НН всех мощных однофазных двухобмоточных и трехобмоточных трансформаторов, предназначающихся для соединения в трехфазные группы. Обмотки ВН и СН силовых повышающих и понижающих трансформаторов обычно в треугольник не соединяются.
в) Соединение обмоток в зигзаг — звезду (равноплечий и неравноплечий зигзаг)
Равноплечий зигзаг может быть получен, если соединить по одной из трех схем рис. 5,а, бив концы и начала шести полуобмоток с одинаковыми числами витков (а следовательно, и э. д. е.), расположенных по две полуобмотки на каждой фазе трансформатора.

Рис. 5. Соединение обмотки НН в равноплечий зигзаг.
а —первая схема соединения; б — вторая схема соединения; в — третья схема соединения; г — векторная диаграмма э. д. с. звезды нижних полукатушек; д — векторная диаграмма линейных э. д. с.
Построим векторную диаграмму соединений обмоток в зигзаг согласно схеме рис. 5,а. Начнем построение с нижних полуобмоток, соединенных в звезду. Векторная диаграмма для этих полуобмоток представлена на рис. 5,г. Согласно схеме рис. 5,а начало а’ нижней полуобмотки электрически соединено с концом zr верхней.
Вектор г’с должен пойти в направлении, противоположном вектору zc’, а потому из точки а’г’ (рис. 5,д) откладываем вектор zrc в направлении, противоположном вектору zc’.

Аналогичным образом строим векторы остальных частей обмоток. Обмотка при соединении в зигзаг обычно выполняется двухслойной, причем каждый слой имеет свободные начала и концы.
Один из слоев обмотки наматывают правой намоткой, другой — левой. Делается это для удобства выполнения соединений в зигзаг. При соединении обмотки в зигзаг мы можем получить три различных напряжения.

Схема равноплечего зигзага применяется для нормальных силовых понижающих трансформаторов, для мощностей 25, 40, 63, 100, 160 и 250 кВА в случае, когда при большой несимметрии нагрузок фаз необходимо на стороне питания иметь схему звезды.
Неравноплечий зигзаг получается, если по схемам а, б и в (рпс. 5-5) соединить концы и начала полуобмоток с неодинаковым числом витков. На рис. 6,а и б даны две схемы соединения в неравноплечий зигзаг при отношении числа витков в полуобмотках 1 : 2.


Схема неравноплечего зигзага применяется иногда иностранными фирмами для трансформаторов специального назначения. В нормальных силовых трансформаторах наши заводы эту схему не применяют.
г) Соединение обмоток по схеме А
Если соединить обмотки трансформатора, как показано на рис. 7,а, то получится соединение по схеме А. Схему, как это видно из векторной диаграммы

Рис. 7. Соединение обмотки по схеме А.
а — схема соединений обмоток; б — векторная диаграмма.
(рис. 7,6), можно представить как треугольник а’Ьс’, у которого две стороны а’b и cfb имеют дополнительные витки (а’а и с’с).
Для того чтобы получить соединения обмоток, отвечающих векторной диаграмме рис. 7,6, принимают соотношения числа витков на фазах трансформатора, которые должны удовлетворять следующим трем условиям:

т. е. обмотка фазы с должна иметь 2/3 числа витков обмоток фаз а и b.
Нулевой вывод берется от середины обмотки фазы с, и, кроме того, число витков дополнительных участков фаз а и b должно быть одинаково и составлять Уз общего числа витков этих фаз.

Рис. 8. Соединение обмоток в скользящий треугольник.
а — схема соединений обмоток; б—векторная диаграмма.
Эта схема не имеет применения в нормальных силовых трансформаторах и применяется только там, где необходимо иметь соединение обмоток в треугольник и в то же время требуется иметь нулевую точку.
д) Соединение обмоток в скользящий треугольник
На рис. 8 даны схема соединения обмотки и векторная диаграмма скользящего треугольника. Из рассмотрения схемы видно, что изменяя положение концов

а’b’с’ (рис. 8,а) и «скользя» ими по обмотке из крайнего верхнего положения к нижнему, можно перейти от треугольника к звезде. При этом могут быть получены все промежуточные положения. Это дает возможность, так же как в схеме неравноплечего зигзага, иметь различные углы сдвига фаз (ф).
Схема скользящего треугольника применяется иногда для трансформаторов, питающих электрические печи. В силовых трансформаторах эта схема не применяется.

Принципиальная схема силового трансформатора

В этой статье мы поговорим о трансформаторах, устройствах способных повышать или понижать напряжение при переменном токе. Существуют различные по конструкции и предназначению трансформаторы. Например есть как однофазные, так и трехфазные. На фото изображен однофазный трансформатор:


Трансформатор напряжения соответственно будет называться повышающим, если на выходе со вторичной обмотки напряжение выше, чем в первичной, и понижающим, если, напряжение во вторичной обмотке ниже, чем в первичной. На рисунке ниже изображена схема работы трансформатора:

Принципиальная схема трансформатора

Красным (на рисунке ниже) обозначена первичная обмотка, синим вторичная, также изображен сердечник трансформатора, собранный из пластин специальной электротехнической стали. Буквами U1 обозначено напряжение первичной обмотки. Буквами I1 обозначен ток первичной обмотки. U2 обозначено напряжение на вторичной обмотке, I2 ток во вторичной. В трансформаторе две или более обмоток индуктивно связаны. Также трансформаторы могут использоваться для гальванической развязки цепей.

Принцип работы трансформатора

Принцип действия трансформатора


Коэффициент трансформации – формула

Если коэффициент трансформации меньше единицы, то трансформатор повышающий, если больше единицы, понижающий. Разберем на небольшом примере: w1 количество витков первичной обмотки равно условно равно 300, w2 количество витков вторичной обмотки равно 20. Делим 300 на 20, получаем 15. Число больше единицы, значит трансформатор понижающий. Допустим, мы мотали трансформатор с 220 вольт, на более низкое напряжение, и нам теперь нужно посчитать, какое будет напряжение на вторичной обмотке. Подставляем цифры: U2=U1кт = 22015 = 14.66 вольт. Напряжение на выходе с вторичной обмотки будет равно 14.66 вольт.

Трансформаторы на схемах

Обозначается на принципиальных схемах трансформатор так:

Обозначение трансформатора на схемах

На следующем рисунке изображен трансформатор с несколькими вторичными обмотками:

Трансформатор с двумя вторичными обмотками

Цифрой «1» обозначена первичная обмотка (слева), цифрами 2 и 3 обозначены вторичные обмотки (справа).

Сварочные трансформаторы

Существуют специальные сварочные трансформаторы.

Сварочный трансформатор предназначен для сварки электрической дугой, он работает как понижающий трансформатор, снижая напряжение на вторичной обмотке, до необходимой величины для сварки. Напряжение вторичной обмотки бывает не более 80 Вольт. Сварочные трансформаторы рассчитаны на кратковременные замыкания выхода вторичной обмотки, при этом образуется электрическая дуга, и трансформатор при этом не выходит из строя, в отличие от силового трансформатора.

Силовые трансформаторы


Фото высоковольтный трансформатор

Трансформаторы с 6-10 киловольт на 380 вольт расположены вблизи потребителей. Такие трансформаторы стоят на трансформаторных подстанциях расположенных во многих дворах. Они поменьше размерами, но вместе с ВН (выключателями нагрузки) которые ставятся перед трансформатором и вводными автоматами и фидерами могут занимать двух этажное здание.

Трансформатор 6 киловольт

У трехфазных трансформаторов обмотки соединяются не так, как у однофазных трансформаторов. Они могут соединяться в звезду, треугольник и звезду с выведенной нейтралью. На следующем рисунке приведена как пример одна из схем соединения обмоток высокого напряжении и низкого напряжения трехфазного трансформатора:

Пример соединения обмоток силового трансформатора

Трансформаторы существуют не только напряжения, но и тока. Такие трансформаторы применяют для безопасного измерения тока при высоком напряжении. Обозначаются на схемах трансформаторы тока следующим образом:

Изображение на схемах трансформатор тока

На фото далее изображены именно такие трансформаторы тока:

Трансформатор тока – фото

Существуют также, так называемые, автотрансформаторы. В этих трансформаторах обмотки имеют не только магнитную связь, но и электрическую. Так обозначается на схемах лабораторный автотрансформатор (ЛАТР):

Лабораторный автотрансформатор – изображение на схеме

Используется ЛАТР таким образом, что включая в работу часть обмотки, с помощью регулятора, можно получить различные напряжения на выходе. Фотографию лабораторного автотрансформатора можно видеть ниже:

В электротехнике существуют схемы безопасного включения ЛАТРа с гальванической развязкой с помощью трансформатора:

Безопасный ЛАТР изображение на схеме

Для согласования сопротивления разных частей схемы служит согласующий трансформатор. Также находят применение измерительные трансформаторы для измерения очень больших или очень маленьких величин напряжения и тока.

Тороидальные трансформаторы

Промышленность изготавливает и так называемые тороидальные трансформаторы. Один из таких изображен на фото:

Фотография – тороидальный трансформатор

Преимущества таких трансформаторов по сравнению с трансформаторами обычного исполнения заключаются в более высоком КПД, меньше звуковой дребезг железа при работе, низкие значения полей рассеяния и меньший размер и вес.

Сердечники трансформаторов, в зависимости от конструкции могут быть различными, они набираются из пластин магнитомягкого материала, на рисунке ниже приведены примеры сердечников:

Сердечники трансформаторов – рисунок

Вот в кратце и вся основная информация о трансформаторах в радиоэлектронике, более подробно разные частные случаи можно рассмотреть на форуме. Автор AKV.

Раздел: Электротехника

Трансформатором называется статический электромагнитный аппарат, предназначенный для преобразования системы переменного тока одних параметров в систему переменного тока с другими параметрами.

Принцип действия трансформатора

Простейший трансформатор состоит из магнитопровода и двух расположенных на нем обмоток. Обмотки электрически не связаны друг с другом. Одна из обмоток — первичная, подключена к источнику переменного тока. К другой обмотке — вторичной подключают потребитель.

Принципиальная схема трансформатора

Действие трансформатора основано на явлении электромагнитной индукции. При подключении первичной обмотки к источнику переменного тока в витках этой обмотки протекает переменный ток I1, который создает в магнитопроводе переменный магнитопоток Ф. Замыкаясь в магнитопроводе, этот поток пронизывает обе обмотки, индуцируя в них ЭДС:

Из этих формул следует, что вычисленные ЭДС е1 и е2 могут отличаться друг от друга числами витков в обмотках. Применяя обмотки с различным соотношением витков, можно изготовить трансформатор на любое отношение напряжений.

При подключении ко вторичной обмотке нагрузки zн в цепи потечет ток I2 и на выводах вторичной обмотки установится напряжение U2.

Обмотка трансформатора, подключенная к сети c более высоким напряжением, называется обмоткой высшего напряжения (ВН). А обмотка, присоединенная к сети меньшего напряжения — обмоткой низшего напряжения (НН).

Таким образом, трансформаторы — обратимые аппараты, то есть могут работать как повышающими, так и понижающими.

При транспортировке электроэнергии на большие расстояния для снижения потерь используется принцип трансформации. Для этого электричество, вырабатываемое генераторами, поступает на трансформаторную подстанцию. На ней повышается амплитуда напряжения, поступающего в линию электропередачи.

Второй конец ЛЭП подключен на ввод удаленной подстанции. На ней для распределения электричества между потребителями осуществляется понижение напряжения.

На обеих подстанциях трансформацией электроэнергии больших мощностей занимаются специальные силовые устройства:

Они имеют много общих признаков и характеристик, но отличаются определенными принципами работы. Эта статья описывает только первые конструкции, у которых передача электроэнергии между разделенными обмотками происходит за счет электромагнитной индукции. При этом изменяющиеся по амплитуде гармоники тока и напряжения сохраняют частоту колебаний.

Силовые трансформаторы в энергетике устанавливаются на заранее подготовленные стационарные площадки с прочными фундаментами. Для размещения на грунте могут монтироваться рельсы и катки.

Общий вид одного из многочисленных типов силовых трансформаторов, работающего с системами напряжений 110/10 кВ и обладающего величиной полной мощности 10 МВА, показан на фотографии ниже.

Отдельные ярко выраженные элементы его конструкции снабжены подписями. Более подробно устройство основных частей и их взаимное расположение демонстрирует чертеж.

Электрическое оборудование трансформатора размещается внутри металлического корпуса, изготовленного в форме герметичного бака с крышкой. Он заполнен специальным сортом трансформаторного масла, которое обладает высокими диэлектрическими свойствами и, одновременно, используется для отвода тепла от деталей, подвергаемых большим токовым нагрузкам.

Гидравлическая схема трансформатора

Упрощенно состав и взаимодействие ее основных элементов показано на картинке.

Для залива/слива масла используются специальные задвижки и вкручивающаяся пробка, а запорный вентиль, расположенный внизу бака, предназначен для отбора проб масла и последующего проведения его химического анализа.

В силовом трансформаторе образовано два контура циркуляции масла:

Первый контур представлен радиатором, состоящим из верхнего и нижнего коллекторов, соединенных системой металлических трубок. Через них проходит нагретое масло, которое, находясь в магистралях охладителя, остывает и возвращается в бак.

Внутри бака циркуляция масла может производиться:

принудительно за счет создания давления в системе насосами.

Часто поверхность бака увеличивается за счет создания гофр — специальных металлических пластин, улучшающих теплообмен между маслом и окружающей атмосферой.

Забор тепла от радиатора в атмосферу может выполняться обдувом системой вентиляторов или без них за счет свободной конвекции воздуха. Принудительный обдув эффективно повышает теплосъем с оборудования, но увеличивает затраты энергии на эксплуатацию системы. Они могут снизить нагрузочную характеристику трансформатора до 25%.

Тепловая энергия, выделяемая современными трансформаторами повышенной мощности, достигает огромных величин. Об ее размере может служить тот факт, что сейчас за ее счет стали реализовывать проекты отопления промышленных зданий, расположенных рядом с постоянно работающими трансформаторами. В них поддерживаются оптимальные условия работы оборудования даже в зимнее время.

Контроль уровня масла в трансформаторе

Масло постоянно циркулирует внутри бака. Его температура зависит от целого комплекса воздействующих факторов. Поэтому объем его все время изменяется, но поддерживается в определенных границах. Для компенсации объемных отклонений масла служит расширительный бачок. В нем удобно наблюдать текущий уровень.

Для этого используется маслоуказатель. Наиболее простые устройства изготавливают по схеме сообщающихся сосудов с прозрачной стенкой, заранее проградуированной в единицах объема.

Подключения такого маслоуказателя параллельно расширительному баку вполне достаточно для контроля эксплуатационных характеристик. На практике встречаются и другие, отличные от этого принципа работы маслоуказатели.

Защита от проникновения влаги

Поскольку верхняя часть расширительного бака контактирует с атмосферой, то в ней устанавливают осушитель воздуха, препятствующий проникновению влаги внутрь масла и снижению его диэлектрических свойств.

Защита от внутренних повреждений

Важным элементом масляной системы является газовое реле. Его монтируют внутри трубопровода, соединяющего основной бак трансформатора с расширительным. За счет этого все газы, выделяемые при нагреве из масла и органической изоляции, проходят через емкость с чувствительным элементом газового реле.

Этот датчик отстроен от работы на очень маленькое, допустимое газообразование, но срабатывает при его увеличении в два этапа:

1. на выдачу светового/звукового предупредительного сигнала обслуживающему персоналу о возникновении неисправности при достижении уставки первой величины;

2. на отключение силовых автоматических выключателей со всех сторон трансформатора для снятия напряжения при бурном газообразовании, свидетельствующем о начале мощных процессов разложения масла и органической изоляции, начинающихся при коротких замыканиях внутри бака.

Дополнительная функция газового реле — контроль уровня масла в баке трансформатора. При снижении его до критической величины газовая защита может отработать в зависимости от настройки:

только на сигнал;

на отключение с выдачей сигнала.

Защита от аварийного повышения давления внутри бака

На крышке трансформатора так монтируется выхлопная труба, чтобы ее нижний конец сообщался с емкостью бака, а масло поступало внутрь до уровня в расширителе. Верхняя часть трубы возвышается над расширителем и отводится в сторону, немного загибается вниз. Ее конец герметично закрыт стеклянной предохранительной мембраной, которая разрушается при аварийном повышении давления из-за возникновения нерасчетного нагрева.

Другая конструкция подобной защиты основана на монтаже клапанных элементов, которые открываются при повышении давления и закрываются при его сбросе.

Еще один вид — сильфонная защита. Она основана на быстром сжатии сильфона при резком повышении газа. В результате сбивается защелка, удерживающая боек, который в нормальном положении находится под воздействием сжатой пружины. Освобожденный боек разбивает стеклянную мембрану и тем самым осуществляет сброс давления.

Электрическая схема силового трансформатора

Внутри корпуса бака размещаются:

остов с верхней и нижней балкой;

обмотки высокого и низкого напряжения;

регулировочные ответвления обмоток;

низковольтный и высоковольтный отводы

нижняя часть вводов высокого и низкого напряжения.

Остов вместе с балками служит для механического закрепления всех составных деталей.

Конструкция внутренних элементов Магнитопровод служит для снижения потерь магнитному потоку, проходящему через обмотки. Его изготавливают из сортов электротехнической стали шихтованным способом.

По обмоткам фаз трансформатора протекает ток нагрузки. Материалами для их изготовления выбирают металлы: медь или алюминий с круглым либо прямоугольным сечением. Для изоляции витков используют специальные сорта кабельной бумаги или хлопчатобумажную пряжу.

Концентрические намотанные обмотки выполняют в виде цилиндров, расположенных один в другом. Для стороны высокого напряжения (ВН) создается непрерывная или многослойная обмотка, а для низкого (НН) — винтовая и цилиндрическая.

Обмотку НН располагают ближе к стержню: так легче выполнить слой для ее изоляции. Затем на нее устанавливают специальный цилиндр, обеспечивающий изоляцию между сторонами высокого и низкого напряжения, а на него монтируют обмотку ВН.

Описанный способ монтажа показан на левой части нижерасположенной картинки с концентрическим размещением обмоток на стержне трансформатора.

С правой стороны картинки показан способ размещения чередующихся обмоток, разделяемых изоляционным слоем.

Для повышения электрической и механической прочности изоляции обмоток их поверхность пропитывают специальным сортом глифталевого лака.

Для подключения обмоток одной стороны напряжения между собой используют схемы:

При этом концы каждой обмотки маркируют буквами латинского алфавита, как показано в таблице.

Тип трансформатора Сторона обмотки
Низкого напряжения Среднего напряжения Высокого напряжения
начало конец нейтраль начало конец нейтраль начало конец нейтраль
Однофазный а X Ат Хт А X
Две обмотки три фазы a Х А X
b Y B Y
с г C Z
Три обмотки три фазы a X Ат Хт А X
b Y Y т B Y
c Z Хт C Z

Выводы от обмоток подключают к соответствующим токоотводам, которые монтируются на шпильки проходных изоляторов, расположенных на крышке бака трансформатора.

Для осуществления возможности регулировки величины выходного напряжения на обмотках делают ответвления. Один из вариантов выполнения регулировочных ответвлений показан на схеме.

Систему регулирования напряжения создают с возможностью изменения номинальной величины в пределах ±5%. Для этого выполняют пять ступеней по 2,5% в каждой.

У мощных силовых трансформаторов регулирование обычно создают на обмотке высокого напряжения. Это упрощает конструкцию переключателя ответвлений и позволяет повышать точность выходных характеристик за счет большего числа витков на этой стороне.

Для многослойных цилиндрических обмоток регулировочные ответвления выполняют на внешнем стороне слоя у окончания обмотки и компонуют их симметрично на одинаковой высоте относительно ярма.

У отдельных конструкций трансформаторов ответвления делают в средней части. При использовании оборотной схемы одна половина обмотки выполняется с правой намоткой, а вторая — с левой.

Для коммутации ответвлений используют трехфазный переключатель.

У него есть система неподвижных контактов, которые подключены к ответвлениям обмоток, и подвижных, осуществляющих коммутацию схемы за счет создания различных электрических цепей с неподвижными контактами.

Если ответвления сделаны около нулевой точки, то одним переключателем управляют работой сразу всех трех фаз. Это можно делать потому, что между отдельными частями переключателя напряжение не превышает 10% линейной величины.

Когда ответвления выполнены в средней части обмотки, то для каждой фазы используется свой, индивидуальный переключатель.

Способы регулирования выходного напряжения

Существуют два типа переключателей, позволяющие изменять количество витков на каждой обмотке:

1. с отключением нагрузки;

2. под нагрузкой.

Первый способ требует больше времени на выполнение и не пользуется популярностью.

Переключения под нагрузкой обеспечивают более легкое управление электрическими сетями за счет беспрерывного электроснабжения подключенных потребителей. Но, для его выполнения необходимо иметь усложненную конструкцию переключателя, который наделяется дополнительными функциями:

осуществление переходов между ответвлениями без разрыва токов нагрузки за счет подключения двух соседних контактов на момент переключения;

ограничение тока короткого замыкания внутри обмотки между подключаемыми ответвлениями во время их одновременного включения.

Техническое решение этих вопросов заключается в создании переключающих устройств, работающих от дистанционного управления с применением токоограничивающих реакторов и резисторов.

На фотографии, показанной в начале статьи, у силового трансформатора используется автоматическое регулирование выходного напряжения под нагрузкой за счет создания конструкции АРН, сочетающей релейную схему управления электродвигателя с приводным механизмом и контакторами.

Принцип и режимы работы

В основу работы силового трансформатора заложены те же законы, что и у обычного:

Проходящий по входной обмотке электрический ток с изменяющейся по времени гармоникой колебаний наводит внутри магнитопровода меняющееся магнитное поле.

Изменяющийся магнитный поток, пронизывая витки второй обмотки, наводит в них ЭДС.

При эксплуатации и проверках силовой трансформатор может оказаться в рабочем или аварийном режиме.

Рабочий режим создается подключением источника напряжения к первичной обмотке, а нагрузки — ко вторичной. При этом величина тока в обмотках не должна превышать расчетных допустимых значений. В этом режиме силовой трансформатор должен длительно и надежно питать все подключенные к нему потребители.

Разновидностями рабочего режима являются опыт холостого хода и короткого замыкания, создаваемые для проверок электрических характеристик.

Холостой ход создается размыканием вторичной цепи для исключения протекания в ней тока. Он используется для определения:

потерь в стали на намагничивание сердечника.

Опыт короткого замыкания , создается шунтированием накоротко выводов вторичной обмотки, но с заниженным напряжением на входе в трансформатор до величины, способной создать вторичный номинальный ток без его превышения. Этот способ используют для определения потерь в меди.

К аварийным режимам трансформатора относятся любые нарушения его работы, приводящие к отклонению рабочих параметров за границы допустимых для них значений. Особенно опасным считается короткое замыкание внутри обмоток.

Аварийные режимы приводят к пожарам электрооборудования и развитию необратимых последствий. Они способны причинить огромный ущерб энергосистеме.

Поэтому для предотвращения подобных ситуаций все силовые трансформаторы снабжаются устройствами автоматики, защит и сигнализации, которые предназначены для поддержания нормальной работы первичной схемы и быстрого отключения ее со всех сторон при возникновении неисправностей.

Силовой трансформатор: принцип работы устройства

На сегодняшний день трансформаторы считаются главными электрическими устройствами. Они используются не только на производстве, но и в быту. В этой статье вы найдете информацию про силовые трансформаторы. Силовой трансформатор – это электрическое устройство, которое передает энергию между своими контурами. Весь этот процесс происходит благодаря законам магнитной индукции.

Их применяют как приборы, которые могут повышать, или понижать напряжение. Эта уникальная способность может обеспечивать максимальную передачу тока.

Параметры силового трансформатора

Силовой трансформатор имеет номинальное напряжение. Оно может рассчитываться в зависимости от конструкции. В зависимости от конструкции он будет рассчитываться либо:

  • Между фазой и землей.
  • Между фазами.

Вот основные элементы, из которых состоит силовой трансформатор:

  1. Первичная обмотка (W1).
  2. Вторичная обмотка (W2).
  3. Стержень магнитоотвода.
  4. Ярмо магнитоотвода.

Силовой масляный трансформатор обычно состоит из двух обмоток и проволоки, которая содержит в себе изоляцию. Сердечник должен изготавливаться из железа.

Виды силовых трансформаторов

Силовой трансформатор в зависимости от области применения может иметь несколько видов:

  1. Силовое понижающее устройство. Его часто используют для понижения напряжения.
  2. Трехфазный и однофазный трансформатор. Достаточно часто их используют в трехфазной электрической системе. Вам предпочтительно будет применять три однофазных трансформатора. Они необходимо для того чтобы обеспечивать предприятие постоянным током.
  3. Электрический силовой трансформатор. Его используют для распределения нагрузки. Эти устройства применяют для защиты системы электроснабжения.
  4. Силовой автотрансформатор. Используется на тех предприятиях, где разница между высоким и низким напряжением не превышает 2%.
  5. Открытый трансформатор. Его используют для установки на улице. Он способен работать даже при минусовых температурах.

Силовой трансформатор и его принцип работы

Переменный ток должен пройти через обмотку и произвести постоянно меняющийся ток. Этот поток постоянно будет меняться по своей амплитуде и направлению. Согласно закону Фарадея ЭДС должно индуцироваться за одну секунду. Он имеет такой же принцип работы как и трансформатор Тесла. Это время считается оптимальным. Если цепь в последней обмотке будет закрыта, тогда через нее сможет пройти электрический ток.

Если силовой трансформатор использует переменный ток, тогда он будет окружать катушку. Но если рядом расположить еще одну катушку, тогда потокосцепление станет направленным.

Ремонт и защита силового трансформатора тока

Отремонтировать силовой трансформатор достаточно сложно. Этот процесс отнимает не только много времени, но и денег. Выполнять этот процесс должен только специалист со стажем. Если в его конструкции будут неправильные соединения, то это может поставить вашу жизнь под угрозу. Существует немного заводов, которые могут выполнить его ремонт. Вот основные компании, которые могут взяться за эту работу:

Дифференциальная защита должна обеспечиваться в силовом трансформаторе. Она считается более эффективной, чем релейная защита. Для того чтобы надежно защитить современные силовые трансформаторы можно использовать специальную программу Transformer Designer.

Дифференциальное реле должно сравнивать между собою мощность первичного и вторичного тока. Если в вашем трансформаторе образуется дисбаланс, то реле активизируется, и будет защищать реакторы. Вторичная обмотка должна быть подключена к текущей катушке реле. Защита трансформатора должна быть пропорциональна смещению и или отклонению коэффициента разности токов.

Обмотку трансформатора можно провести самостоятельно. В обмотке должен находиться четный слой обмотки. Провод должен быть выведен обратно через выходное отверстие. Между слоями обмотки необходимо устанавливать хлопковые полосы, которые будут использованы от перегревания. Следить за повышением температуры можно также с помощью специальной жидкости, которая будет пропитывать слой изоляции. Собирать силовой трансформатор можно только опытным электрикам. Многие изготовители трансформаторов заботятся о том, чтобы вы самостоятельно смогли определить причину поломки. Определить поломку можно с помощью релейной защиты.

Схемы соединения обмоток силовых трансформаторов

В первичной обмотке каждая фаза должна распределяться под углом в 120 градусов. Первичная обмотка должна магнитно быть связана с вторичной через нейтральные точки. Ток может иметь значительное количество нечетных составляющих. Если силовые трансформаторы соединены с каждой фазой, то они смогут возвращаться в нормальное положение. Благодаря этой схеме вы узнаете как сделать трансформатор своими руками.

Эта схема обмотки считается наиболее простой. Также иногда часто может искажаться уровень выходящего напряжения. Технология линейного соединения может использоваться крайне редко. На сегодняшний день выбор силовых трансформаторов значительно увеличился.

Читайте также: измерительные трансформаторы.

Группы соединения обмоток силовых трансформаторов

Мы уже рассмотрели соединение трансформаторов в треугольник, звезду и зигзаг. Теперь остановимся более подробно на группах соединения трансформаторов. Обмотки низкого, среднего и высокого напряжения трансформаторов могут соединяться по-разному – в треугольник, звезду, реже зигзаг, образуя схему соединения обмоток трансформатора.

Схема соединения – это сочетание схем соединения обмоток высшего и низшего напряжения для двухобмоточного трансформатора или обмоток высшего, среднего и низшего для трехобмоточного трансформатора. Однако, несмотря на различное соединение обмоток, схемы могут давать одинаковый сдвиг между одноименными векторами напряжения. Несколько схем, дающих одинаковый по величине угол сдвига фаз, образуют группу соединения.

Основных групп может быть 12. Для удобства представляют циферблат стрелочных часов. Каждой группе соответствует угол кратный 30 градусам от 0 до 360 градусов. Они отмечаются на циферблате часов, через один час, каждому часу соответствует сдвиг в 30 градусов. 360 градусов – 12 часов.

Групп 12 и имеется следующая закономерность – четные группы (2,4,6,8,10,12) образуются, если с высокой и низкой стороны одинаковое соединение (треугольник-треугольник, звезда-звезда). Нечетные группы (1,3,5,7,9,11) образуются, если с высокой и низкой сторон различное соединение (треугольник-звезда).

В ГОСТ 30830-2002 пишется, что вектор фазы А ВН откладывается параллельно и сонаправленно стрелке на 12 часов. Порядок фаз идет А-В-С, движение векторов на циферблате осуществляется против часовой стрелки.

Чтобы построить треугольник, сначала надо построить звезду, а потом вписать ее в треугольник.

Вот, например, двухобмоточный трехфазный трансформатор со схемой Y/Д-11, для примера. Где Y-значит звезда с высокой стороны, Д-треугольник с низкой стороны, между ними угол 360 градусов.

Если трансформатор трехобмоточный, то может быть (возьмем ради примера) Y0/Y/Д-12-5. Все как и в прошлом примере, только добавилась обмотка среднего напряжения. В этом примере обмотка ВН – звезда с нулем, СН – звезда, НН – треугольник. Сдвиг между обмотками ВН и СН – 12 часов, между ВН и НН – 11 часов (или 0 часов). Между СН и НН – 11 часов, про это писалось выше.

Существуют определенные действия с выводами обмоток, выполнив которые, можно добиться определенного результата группами трансформаторов.

  • если по-порядку циклически перемаркировать фазы А-В-С(а-b-c) на В-С-А(b-c-a), то группа изменится на 4 (как в большую, так и в меньшую сторону)
  • двойная перемаркировка двух фаз, на стороне ВН и НН, изменяют нечетную группу на плюс минус 2
  • если поменять местами две фазы на одной из сторон (ВН или НН), то трансформатор потеряет группу и его запрещено будет включать на параллельную работу с другим трансформатором

Схемы групп соединения обмоток 3ф. 2обм. трансформаторов

Существует огромное множество схем соединения обмоток, некоторые из них образуют группы соединения трансформаторов. Рассмотрим некоторые из них, а именно схемы со звездой и треугольником с группами от 1 до 12.

Также схематично представим обозначения вводов на крышке трансформатора и векторные диаграммы.

12 группа (Y/Y-12, Д/Д-12)

Рисунок 1 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 12

11 группа (Y/Д-11, Д/Y-11)

Рисунок 2 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 11

10 группа (Д/Д-10, Y/Y-10)

Рисунок 3 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 10

9 группа (Y/Д-9, Д/Y-9)

Рисунок 4 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 9

8 группа (Y/Y-8, Д/Д-8)

Рисунок 5 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 8

7 группа (Y/Д-7, Д/Y-7)

Рисунок 6 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 7

6 группа (Y/Y-6, Д/Д-6)

Рисунок 7 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 6

5 группа (Y/Д-5, Д/Y-5)

Рисунок 8 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 5

4 группа (Y/Y-4, Д/Д-4)

Рисунок 9 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 4

3 группа (Y/Д-3, Д/Y-3)

Рисунок 10 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 3

2 группа (Y/Y-2, Д/Д-2)

Рисунок 11 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 2

1 группа (Y/Д-1, Д/Y-1)

Рисунок 12 – схема соединения обмоток, векторная диаграмма и расположение выводов на крышке трансформатора для схем группы 1

Укажем некоторые особенности отдельных схем:

Схема Y0/Y-12 получается из схемы Y/Y-12 соединением нулевого ввода трансформатора с нейтралью звезды;

Схема Д/Д-12 – обе обмотки выполнены левыми, если же одну из обмоток выполнить правой, то выйдет схема Д/Д-6.

Схема Д/Д-10 – обе обмотки левые, если одну из обмоток выполнить правой, то получится схема Д/Д-4;

Схему Д/Д-8 можно получить, если в схеме Д/Д-2 одну из обмоток выполнить правой.

Схему Y/Д-5 можно получить, если в схеме Y/Д-11 одну из обмоток выполнить правой, а вторую левой.

Далеко не все из представленных схем широко распространены, однако, их знание не будет лишним.

Самое популярное


Схемы соединения обмоток силовых трансформаторов

Город

Регион/Область

Срок доставки

Майкоп

Республика Адыгея

3-4 дней

Уфа

Республика Башкортостан

1-3 дней

Улан-Удэ

Республика Бурятия

5-15 дней

Горно-Алтайск

Республика Алтай

1-2 дней

Минск — Козлова

Минск

1-2 дней

Назрань

Республика Ингушетия

1-2 дней

Нальчик

Кабардино-Балкарская Республика

1-2 дней

Элиста

Республика Калмыкия

1-2 дней

Черкесск

Республика Карачаево-Черкессия

1-2 дней

Петрозаводск

Республика Карелия

1-2 дней

Сыктывкар

Республика Коми

1-2 дней

Йошкар-Ола

Республика Марий Эл

1-2 дней

Саранск

Республика Мордовия

1-2 дней

Якутск

Республика Саха (Якутия)

1-2 дней

Владикавказ

Республика Северная Осетия-Алания

1-2 дней

Казань

Республика Татарстан

5-7 дней

Кызыл

Республика Тыва

5-7 дней

Ижевск

Удмуртская Республика

5-7 дней

Абакан

Республика Хакасия

5-7 дней

Чебоксары

Чувашская Республика

5-7 дней

Барнаул

Алтайский край

5-7 дней

Краснодар

Краснодарский край

5-7 дней

Красноярск

Красноярский край

5-7 дней

Владивосток

Приморский край

5-7 дней

Ставрополь

Ставропольский край

5-7 дней

Хабаровск

Хабаровский край

7-12 дней

Благовещенск

Амурская область

7-12 дней

Архангельск

Архангельская область

7-12 дней

Астрахань

Астраханская область

7-12 дней

Белгород

Белгородская область

7-12 дней

Брянск

Брянская область

7-12 дней

Владимир

Владимирская область

7-12 дней

Волгоград

Волгоградская область

7-12 дней

Вологда

Вологодская область

7-12 дней

Воронеж

Воронежская область

7-12 дней

Иваново

Ивановская область

7-12 дней

Иркутск

Иркутская область

7-12 дней

Калининград

Калиниградская область

7-12 дней

Калуга

Калужская область

4-7 дней

Петропавловск-Камчатский

Камчатская область

4-7 дней

Кемерово

Кемеровская область

4-7 дней

Киров

Кировская область

4-7 дней

Кострома

Костромская область

4-7 дней

Курган

Курганская область

4-7 дней

Курск

Курская область

1-3 дней

Санкт-Петербург

Ленинградская область

1-3 дней

Липецк

Липецкая область

1-3 дней

Магадан

Магаданская область

1-3 дней

Москва

Московская область

1-3 дней

Мурманск

Мурманская область

1-3 дней

Нижний Новгород

Нижегородская область

1-3 дней

Новгород

Новгородская область

1-3 дней

Новосибирск

Новосибирская область

1-3 дней

Омск

Омская область

1-3 дней

Оренбург

Оренбургская область

1-3 дней

Орел

Орловская область

1-3 дней

Пенза

Пензенская область

1-3 дней

Пермь

Пермская область

1-3 дней

Псков

Псковская область

1-3 дней

Ростов-на-Дону

Ростовская область

1-3 дней

Рязань

Рязанская область

1-3 дней

Самара

Самарская область

1-3 дней

Саратов

Саратовская область

1-3 дней

Южно-Сахалинск

Сахалинская область

1-3 дней

Екатеринбург

Свердловская область

1-3 дней

Смоленск

Смоленская область

1-2 дней

Тамбов

Тамбовская область

1-2 дней

Тверь

Тверская область

1-2 дней

Томск

Томская область

1-2 дней

Тула

Тульская область

1-2 дней

Тюмень

Тюменская область

1-2 дней

Ульяновск

Ульяновская область

1-2 дней

Челябинск

Челябинская область

1-2 дней

Чита

Читинская область

1-2 дней

Ярославль

Ярославская область

1-2 дней

Москва

г. Москва

1-2 дней

Санкт-Петербург

г. Санкт-Петербург

1-2 дней

Биробиджан

Еврейская автономная область

1-2 дней

пгт Агинское

Агинский Бурятский авт. округ

1-2 дней

Кудымкар

Коми-Пермяцкий автономный округ

1-2 дней

пгт Палана

Корякский автономный округ

1-2 дней

Нарьян-Мар

Ненецкий автономный округ

1-2 дней

Дудинка

Таймырский (Долгано-Ненецкий) автономный округ

1-2 дней

пгт Усть-Ордынский

Усть-Ордынский Бурятский автономный округ

1-2 дней

Ханты-Мансийск

Ханты-Мансийский автономный округ

1-2 дней

Анадырь

Чукотский автономный округ

1-2 дней

пгт Тура

Эвенкийский автономный округ

1-2 дней

Салехард

Ямало-Ненецкий автономный округ

1-2 дней

Грозный

Чеченская Республика

1-2 дней

Схемы и группы соединения обмоток трансформаторов | Справка

Стандартами установлены условное графическое изображение обмоток, схем их соединения между собой и буквенные обозначения (рис. 1, а, б, в).
Начала фазных обмоток ВН трехфазных трансформаторов обозначают прописными латинскими буквами А, В, С, концы — буквами X, Y, Z. Чередование фаз А, В, С принято считать слева направо, если смотреть на трансформатор со стороны отводов ВН. Начала обмоток НН обозначают строчными латинскими буквами. a, b, с, концы — буквами, х, у, z.
Для трехобмоточных трансформаторов начала обмоток среднего напряжения СН обозначают буквами Ат, Вт, Ст, концы — буквами Хт,
Начала и концы обмоток однофазных трансформаторов обозначают так же, как обмотки первых фаз трехфазных трансформаторов: А—X, Ат—Хт, а—х.
Обмотки, размещенные на стержнях двухстержневой магнитной системы однофазного трансформатора, могут быть соединены параллельно или последовательно. Однако при этом учитывают направление намотки витков обмоток и магнитного поля, которое в стержнях возбужденной магнитной системы направлено противоположно. Если, например, первичной обмоткой является обмотка ВН и подведенным к ней напряжением возбуждена магнитная система, то для получения удвоенной эдс (напряжения) на зажимах а—х последовательно соединенных обмоток направление намотки витков в каждой обмотке должно быть одинаковым и они должны быть соединены по схеме, изображенной на рис. 1, а, а при обмотках с разным направлением намотки витков — по схеме рис. 1,6. При параллельном соединении обмоток с разнонаправленными витками для получения на зажимах а—х эдс (напряжения), индуцированной в одной обмотке, соединение должно быть выполнено по схеме рис. 1, в, а с одинаковым направлением намотки — по схеме рис. 2, г.


Рис. 1. Графическое изображение и буквенное обозначение начал и концов фазных обмоток трехфазного трансформатора: а — обмоток ВН, б — обмоток СН, в — обмоток НН

Если при указанных направлениях намотки витков обмоток схемы с последовательным или параллельным соединением (ошибочно) поменять местами, то результирующее напряжение (эдс) на зажимах а—х будет равно нулю. Такой же результат получится, если схемы соединения оставить без изменения, а на одном из стержней в обмотке изменить направление намотки витков на противоположное. Отсюда следует, что при сборке схемы трансформатора следует внимательно проверять правильность намотки витков обмоток и соответствие их стержням.

Рис. 2. Возможные схемы соединения обмоток    Рис. 3. Обмотки левой (а) одного из напряжений однофазного трансформатора  и правой (б) намоток (а, б, в, г)

Для исключения ошибок обмотки трансформаторов подразделяют по направлению на левые и правые.
Левыми называют обмотки, у которых обход витков от начала обмотки идет против часовой стрелки, если смотреть на нее сверху, правыми — по часовой стрелке (рис. 3).
При сборке схем обмоток трансформатора большое значение придается не только получению результирующего напряжения
на его зажимах, но и направлению векторов напряжений первичной и вторичной обмоток, определяющих группу соединения трансформатора, которая является одним из условий возможности включения трансформатора на параллельную работу с другим трансформатором.
Стандартом предусмотрены группы соединений обмоток трансформаторов: нулевая (0) и 11-я.

Таблица  1 Схема и группа соединения обмоток однофазного двухобмоточного трансформатора

За единицу группы принят угол смещения вектора линейного напряжения обмотки НН относительно соответствующего вектора линейного напряжения обмотки ВН, равный 30°. Смещение отсчитывают от вектора линейного напряжения ВН по часовой стрелке. Группа 0 обозначает совпадение векторов линейных напряжений обмоток НН и ВН, а группа 11 —смещение их на 330° (11X30°). В однофазных трансформаторах группу определяет смещение векторов фазных напряжений.
Получение той или иной группы зависит от направления намотки и схемы соединения обмоток, последовательности соединения фазных обмоток и чередования фаз при сборке схем. При этом большое значение придается направлению намотки обмоток, так как от этого зависит направление эдс, индуцированной в обмотке.
В табл. 1 показано обозначение схемы стандартной — нулевой группы соединения обмоток однофазных двухобмоточных трансформаторов.
Ранее применяемую группу 6 в трансформаторах пересоединяют в нулевую; для этого достаточно обмотки одного из напряжений одного направления заменить на обмотки другого направления, например правые на левые, или перемаркировать их — начало обмотки считать концом, конец — началом.
Фазные обмотки трехфазных трансформаторов (рис. 8) могут быть соединены в звезду — Y , треугольник — А, или зигзаг — эти схемы в тексте обозначают соответственно буквами Y, Д и Z.
Схема соединения в звезду получается, если концы фазных обмоток, например ВН, X, Y, Z трехфазной системы токов, соединить гальванически между собой (рис. 3).
Фазные напряжения Uao, Ubo и UCo обмоток возбужденной магнитной системы (диаграмма справа) определяются разностью
потенциалов между их началами и концами. На векторной диаграмме рисунка они изображены тремя отрезками ЛО, 50 и СО под углом 120° друг к другу, основываясь на том, что в трехфазной симметричной системе токов переменные эдс, токи и напряжения сдвинуты по фазе (времени) на угол 120°. Потенциал точки гальванического соединения концов фазных обмоток равен нулю; ее принято называть нейтралью и обозначать буквой н или 0. Исходящие из нейтрали векторы фазных напряжений (эдс) как бы образуют трехлучевую звезду, отсюда и название схемы — «звезда». Если от нейтрали сделано ответвление проводником, имеющим наружный зажим, то на векторных диаграммах ее обозначают кружком, а на схемах — буквой О (см. рис. 4).


Рис.  3,   Соединение   фазных обмоток в звезду и векторная диаграмма их напряжений

Рис. 4. Соединение фазных обмоток в треугольник и векторная диаграмма их напряжений: а — а—у, b—2, с—х; b — a—z, b—x, с—у
Линейные (междуфазные) напряжения UA, UB и Uc обмоток (рис. 3) определяются разностью потенциалов между началами соответствующих фазных обмоток или, что то же самое, геометрической разностью векторов фазных напряжений; они в ѵ3 раза больше фазных — это легко доказывается математически и геометрическим построением.
Схему соединения в треугольник можно получить двумя способами: соединением фазных обмоток, например НН, в последовательности а—у, b—z, с—х (рис. 4, а) или а—г9. b—х, с—у (рис. 4,6). Как видно на диаграммах, разница в соединениях приводит к изменению направлений векторов линейных напряжений (в треугольнике они же и фазные) на 180°. Это обстоятельство имеет существенное значение для получения требуемой группы в трехфазных трансформаторах.
Получение нулевой группы при соединении первичных и вторичных обмоток трансформатора в звезду, показано на рис. 4, а, при этом имеется в виду, что обмотки ВН и НН одного направления.
На векторных диаграммах стрелками обозначены векторы фазных и линейных напряжений, обмоток ВН и НН, на третьей диаграмме (рисунок справа)—векторы линейных напряжений, для примера, фаз В и b при условном совмещении точек А и а диаграмм «звезд». Совпадение их направлений указывает на нулевую группу.

Рис. 5. Схемы и группы соединений обмоток трехфазного двухобмоточного трансформатора: а — соединение звезда — звезда в нулевую   группу;   б — соединение   звезда — треугольник в одиннадцатую группу

Получение группы 11 при соединении обмоток ВН в звезду, а НН в треугольник показано на рис. 5, б. На диаграммах видно, что векторы линейных напряжений обмоток ВН и НН сдвинуты друг относительно друга по фазе на 330°, это указывает на то, что трансформатор имеет группу 11. В условном обозначении схемы (рис. 5, а) индекс «Н» указывает на то, что от нейтрали сделано ответвление (отвод проводником) на внешний зажим. Построением векторных диаграмм по аналогии можно показать получение групп и схем при соединении фазных обмоток в зигзаг (табл. 2).
Исходя из приведенных пояснений и рисунков следует, что при одних и тех же схемах соединения обмоток можно получать разные группы: при схеме звезда — звезда с нулевой группой легко образуется группа 6; для этого достаточно у обмоток ВН или НН сделать перемаркировку начал и концов, или скажем для примера, обмотки левого направления поменять на правые; при схеме звезда — треугольник с группой 11 получается группа
5, если соединение фазных обмоток треугольника в последовательности а—у; b—z\ с—х заменить соединением а—z\ b—х; с—у, а концы х, yf z перемаркировать в «начала» — а, b, с.

Аналогичным пересоединением обмоток можно перейти с группы 5 на 11. Заметим, что группы 6 и 5 устарели, однако часть трансформаторов с этими группами еще имеется в эксплуатации, и при ремонтах их следует пересоединять в стандартные группы.

Таблица 2. Схемы соединения обмоток, векторные диаграммы напряжений и условные обозначения трехфазных двухобмоточных силовых трансформаторов общего назначения (ГОСТ 11677-85)


Комбинирование направления намотки обмоток, чередования фаз, последовательности соединения начала и концов обмоток при сборке схем позволяет получить двенадцать групп соединения. Чтобы исключить ошибки, соединению обмоток для получения требуемых схем и групп уделяют особое внимание.
Группы соединения обмоток параллельно работающих трансформаторов должны быть одинаковыми. Включение на параллельную работу трансформаторов с разными группами недопустимо, так как это приводит к большим уравнительным токам.
Приведенные выкладки в равной степени относятся к трехобмоточным трансформаторам, автотрансформаторам и трансформаторам специального назначения.

Испытания силовых трансформаторов | Наладка оборудования электрических подстанций | Архивы

Страница 2 из 22

I. ПРОВЕРКА И ИСПЫТАНИЯ ЭЛЕКТРООБОРУДОВАНИЯ ПОДСТАНЦИЙ
1. ИСПЫТАНИЯ СИЛОВЫХ ТРАНСФОРМАТОРОВ

наружный осмотр

При наружном осмотре проверяют целостность бака, радиаторов и изоляторов, а также пломбы и закраску головок болтов (гаек) у заглушки крана, отсутствие следов подтекания масла и уровень масла, залитого в трансформатор, который должен быть в пределах отметок маслоуказателя. Подтягивать уплотняющие болты до проверки герметичности не разрешается. Необходимо обратить внимание на наличие заземления бака трансформатора.

определение увлажненности обмоток

Трансформаторы всех мощностей и напряжений могут вводиться в эксплуатацию без предварительной сушки, если результаты испытаний изоляции, произведенных на монтаже, при сопоставлении с данными заводских испытаний соответствуют требованиям «Инструкции по контролю состояния изоляции трансформаторов перед вводом в эксплуатацию» СН 171—61. Ниже приводится методика отдельных измерений, по совокупности которых определяют возможность включения трансформатора в эксплуатацию без сушки.

Измерение сопротивления изоляции.

Сопротивление изоляции между каждой обмоткой и корпусом и между обмотками трансформатора измеряют мегомметром на напряжение 2500 в.
Для исключения влияния токов утечки по поверхности изоляторов, особенно при измерениях во влажную погоду, накладывают экранные кольца из голой медной проволоки, соединяемые с зажимом «экран» мегомметра (рис. 1).
Перед началом измерения сопротивления изоляции испытуемую обмотку трансформатора заземляют на 2—3 мин и тщательно протирают поверхность вводов. Показания мегомметра отсчитывают через 15 и 60 сек после начала вращения рукоятки, что соответствует значениям R15 и R60. Рукоятку мегомметра следует вращать равномерно со скоростью 110—120 об/мин. Желательно применять мегомметр с моторным приводом типа ПМ-89 или с кенотронной выпрямительной приставкой.
По этим замерам определяют также коэффициент абсорбции, т. е. отношение R15 / R60., являющийся одним из показателей степени увлажнения обмоток.
Для трансформатора напряжением до 35 кВ включительно, мощностью менее 10 МВА при различной температуре обмотки величина сопротивления изоляции должна быть не менее указанных величин:
Температура обмотки в °С . 10 20 30 40 50 60 70
R60 в Мои.   450 300 200 130 90 60 40
Измеренную величину сопротивления изоляции сопоставляют со значением сопротивления изоляции по данным завода-изготовителя (по протоколу заводских испытаний).
Перед сопоставлением значение R60, измеренное на заводе, приводят к температуре измерения на монтаже путем умножения на коэффициент пересчета K1.


Рис. 1. Измерение сопротивления изоляции обмоток трансформатора с наложением экранных колец
Значение коэффициента К\ в зависимости от разности температур при заводских испытаниях (f2) и при измерении на монтаже (t\):

Сопротивление изоляции на монтаже должно быть не ниже 70% сопротивления изоляции по данным протокола заводских испытаний. Значение коэффициента абсорбции R60 / R15.
Должно быть не ниже 1,3 при температуре 10— 30° С.

Измерение величины отношения АС/С.

Одним из методов измерения влажности обмоток является метод «емкость — время», по которому измеряют прирост емкости ( АС) к емкости (С), за определенный промежуток времени. Отношение этих величин (А С/С) характеризует степень увлажненности изоляции обмоток трансформатора: с увеличением влажности отношение А С/С возрастает. Отношение А С/С измеряют специальным прибором типа ЕВ-3, на трансформаторах, не залитых маслом. Обычно эти измерения производят в начале ревизии трансформатора, после подъема выемной части и в конце ревизии, до погружения керна трансформатора в масло. Отношение А С/С измеряют для каждой обмотки при соединенных с заземленным корпусом свободных обмотках. Перед измерением испытуемую обмотку заземляют на 2—3 мин. Провода, соединяющие прибор с испытуемой обмоткой, должны быть возможно короче.
Таблица 1


Мощность и класс напряжения обмотки высшего напряжения (ВН)

Температура в  С

10 | 20.

30

40

50

До 35 кВ включительно мощностью менее 10 МВА

Отношение Д С/С в конце ревизии в %

13

20

30

45

75

Разность между величиной А С/С в конце и начале ревизии в %

4

6

9

13,5

22

Величина отношения А С/С в %, измеренная в конце ревизии, и разность в % между величиной Д С/С в конце и начале ревизии должны быть в пределах величин, приведенных в табл. 1.
Величина отношения Л С/С увеличивается с повышением температуры. Поэтому, если за время ревизии трансформатора изменилась температура выемной части и измерения отношения Д С/С в конце и начале ревизии производились при различных температурах, их необходимо перед сопоставлением привести к одной температуре. Пересчет значения Д С/С, измеренного в конце ревизии при температуре t\, к температуре обмотки в начале ревизии t2 производится путем умножения на коэффициент температурного пересчета К2
Значения коэффициента температурного пересчета

Измерение емкостей обмоток при различных температурах. Емкость увлажненной изоляции возрастает при повышении температуры значительно быстрее, чем емкость неувлажненной изоляции, поэтому по отношению емкостей обмоток трансформатора, измеренных при различных температурах, можно судить о степени увлажненности их изоляции. Емкость измеряют на трансформаторе, залитом маслом, при помощи моста переменного тока типа
МД-16, а при его отсутствий для трансформаторов мощностью менее 10 МВА, напряжением до 35 кВ методом амперметр-вольтметра. Емкость обмотки измеряют при нагретом трансформаторе до температуры обмотки не ниже 70° С (Сгор ) и при температуре на 50° С ниже (Схол).
Величина отношения Стор/Схол для трансформаторов мощностью менее 10 МВА напряжением до 35 кВ включительно не должна превышать 1,1.

Измерение емкости обмоток при различных частотах.

Степень увлажнения обмоток трансформатора может быть также определена путем измерения их емкости при различных частотах (метод емкость — частота). Емкость обмоток измеряют при частоте 50 Гц (С50) и при частоте 2 Гц (Сг) специальным прибором контроля влажности типа ПКВ на трансформаторе, залитом маслом, между каждой обмоткой и корпусом при заземленных свободных обмотках. Перед измерением испытуемая обмотка должна быть заземлена на 2—3 мин. Чем больше увлажнена изоляция обмоток трансформатора, тем больше отношение С2/С50. Оно увеличивается также при повышении температуры обмоток трансформатора, поэтому измерения производят при температуре обмоток 10—30° С.
Величина отношения С2/С50 зависит и от тангенса угла диэлектрических потерь (tg б) масла, залитого в трансформатор: с увеличением tg б масла отношение С2/С50 возрастает.
Для трансформаторов напряжением до 35 кВ включительно и мощностью менее 10 МВА величина С2/С50 обмоток при различной температуре не должна превышать   следующих — величин:
Температура обмотки в ° С                10 20 30
Отношение С2/С5о                            1,1 1,2 1,3
Измерение тангенса угла диэлектрических потерь (tg6 ). Увлажнение изоляции обмоток трансформатора, а также ряд других дефектов ведут к увеличению диэлектрических потерь и, как следствие этого, к увеличению тангенса угла диэлектрических потерь (tg6).

Рис. 2. Принципиальная схема моста
МД-16 (перевернутая) Тн — испытательный трансформатор; Сх — испытуемый объект; Сд,-— образцовый конденсатор; Г — гальванометр; R2  — переменное сопротивление; Rt — постоянное сопротивление; С  — магазин емкостей; Э — экран; Р — разрядник

Измерение tg б производят мостом переменного тока типа МД-16. Обычно применяется так называемая «перевернутая» схема моста (рис. 2), позволяющая производить измерения без снятия вводов с трансформатора. Измерение тангенса угла диэлектрических потерь обязательно для трансформаторов напряжением 35 кВ, но может производиться и для трансформаторов более низкого класса напряжения, если по результатам других измерений нельзя дать окончательного заключения о состоянии изоляции.
Тангенс угла диэлектрических потерь измеряют при температуре не ниже +10° С на трансформаторах, залитых маслом, при напряжении   переменного тока, не превышающем 60% заводского испытательного напряжения, но не выше 10 кВ.
Тангенс угла диэлектрических потерь в изоляции трансформатора зависит от tg6 масла, залитого в трансформатор. С увеличением tg6 масла возрастает itg6 обмоток. Величина tg6 изоляции обмоток трансформатора не должна превышать значений, приведенных в табл. 2.
Таблица 2


Мощность трансформатора н класс напряжения обмотки ВН

в % ПРИ температуре обмотки в е С

10

20

30

40

50

60

| 70

До 35 кВ включительно мощностью менее 2 500 кВА   

1,5

2

2,6

3,4

4,6

6

8

До 35 кВ включительно мощностью менее 10 000 кВА 

1,2

1,5

2

2,6

3,4

4,5

6

Значения tg 6 , указанные в таблице, относятся ко всем обмоткам данного трансформатора. Величина tg6 на монтаже не должна превышать 130% значения, указанного в протоколе заводских испытаний. Значения tg6 измеренные на заводе при температуре t2, приводят к температуре измерения на монтаже путем деления на коэффициент К2.
Значения коэффициента температурного пересчета


Разность температур tz—tiB °С

5

10

15

20

25

30

35

Значение коэффициента Кз

1,15

1,31

1,51

1.75

2

2.3

2,65

Разность температур іг — tі в °С

40

45

50

55

60

65

70

Значение коэффициента К,

3

3,5

4

4.6

5.3

6.1

7

Отбор пробы масла. Пробу масла отбирают из нижней части бака при температуре отбираемого масла не ниже + 5°С. Посуда, в которую отбирается проба, должна быть чистой и хорошо высушенной. Отобранное масло подвергают сокращенному лабораторному анализу на отсутствие влаги, содержание механических примесей, реакцию водной вытяжки и определение кислотного числа. Помимо этого, определяют электрическую прочность масла на аппаратах типа АМИ-60 или АИИ-70 в стандартном разряднике.
Пробивное напряжение масла должно быть не ниже 25 кВ для трансформаторов напряжением до 15 кВ включительно и не ниже 30 кВ для трансформаторов напряжением до 35 кВ включительно.

испытание изоляции обмоток трансформаторов повышенным напряжением переменного тока

Испытание повышенным напряжением переменного тока промышленной частоты является основным, подтверждающим исправное состояние изоляции обмоток трансформатора и наличие необходимого запаса их электрической прочности. Этому испытанию подвергают каждую обмотку трансформатора по отношению к корпусу, к которому на время испытания присоединяют остальные, предварительно закороченные обмотки.
Трансформаторы малой мощности испытывают при помощи аппарата типа АИИ-70, а трансформаторы большей мощности — при помощи специального повысительного трансформатора.
Испытательное напряжение повышают плавно с быстротой, допускающей возможность уверенного отсчета показаний измерительных приборов. Длительность испытания 1 мин, после чего напряжение плавно снижают до нуля.
Величину испытательного напряжения допускается измерять по вольтметру, включенному с низкой стороны испытательного трансформатора.
Величина испытательного напряжения принимается не более 90% испытательного напряжения на заводе-изготовителе. Величина заводских испытательных напряжений (.по ГОСТ 1516—60) приведена в табл. 3.
Повреждения изоляции при испытании выявляются по резким толчкам стрелок приборов, измеряющих испытательное напряжение и ток установки, по характерному звуку разрядов внутри бака трансформатора или выделению дыма из дыхательной пробки, либо по отключению автомата со стороны питания испытательной установки.
Таблица 3


Тип изоляции трансформатора

Испытательное напряжение в в при номинальном напряжении обмоток в кВ

до 0,525

3

6

10

15

20

30

Нормальная .

5

18

25

35

45

55

85

Облегченная .

3

10

16

24

37

 

 


После окончания испытания необходимо повторно измерить сопротивление изоляции обмоток трансформатора мегомметром.

измерение сопротивления обмоток трансформатора постоянному току

Измерение сопротивления обмоток трансформатора постоянному току производится  с целью выявления обрывов обмотки и ответвлений, плохих контактов, нарушения паек и обнаружения витковых замыканий в катушках. Сопротивление обмоток измеряют мостовым методом или методом падения напряжения. 

Сопротивления величиной до 1 Ом измеряют двойным мостом типа МД-6 либо мостом типа Р-316, пригодным также для измерения сопротивления величиной более 1 Ом.
При измерениях методом падения напряжения схему измерения выбирают также в зависимости от величины измеряемого сопротивления (рис. 3).
Во избежание повреждения экстратоками вольтметр необходимо включать при установившемся значении тока, а отключать до выключения тока.
Приборы, применяемые для измерения, должны быть класса точности не ниже 0,5. Величина тока при измерениях не должна превышать 20%  номинального тока обмотки, чтобы не внести дополнительной погрешности в измерения за счет нагрева обмотки.

Сопротивления следует измерять при установившейся температуре; температура, при которой произведены измерения, должна быть замерена и указана в протоколе испытания.
Измеряют линейные сопротивления всех обмоток трансформатора, а при наличии переключателя ответвлений — на всех его положениях.

Рис. 3. Измерение сопротивления обмотки трансформатора постоянному току методом падения напряжения
а — для малых сопротивлений; б — для больших сопротивлений; Б — аккумуляторная батарея 6—12 в\ R — реостат; К — кнопка включения вольтметра
Полученные величины необходимо сопоставить между собой и с данными заводских испытаний. При сравнении величин сопротивлений их необходимо привести к одной температуре по формулам:
для обмоток из медного провода;
—  для обмоток из алюминиевого провода,
где R2 — сопротивление, приводимое к температуре 4; Ri — сопротивление, измеренное при температуре т1.

Величины сопротивлений отдельных фаз трансформатора не должны отличаться одна от другой и от заводских данных более чем на 2%. Если расхождение с заводскими данными превышает 2%, но одинаково для всех фаз, следует искать ошибку в измерениях.

определение коэффициента трансформации

Коэффициент трансформации определяют для трансформаторов после их капитального ремонта со сменой обмоток, импортных и не имеющих паспорта.
Коэффициентом трансформации трансформатора называется отношение напряжения на обмотке высшего напряжения (ВН) к напряжению на обмотке низшего напряжения (НН) при холостом ходе:

где кт — коэффициент трансформации;
Uі — напряжение на обмотке ВН;
U2~ напряжение на обмотке НН.
Коэффициент трансформации определяют на всех ответвлениях обмоток, доступных для переключения и для всех фаз. Для трехобмоточных трансформаторов достаточна проверка коэффициента трансформации только для двух пар обмоток. Измерения производят методом двух вольтметров (рис. 4). Напряжение подают на обмотку ВН.
Для трансформаторов малой мощности величина подводимого напряжения должна составить 20—30%  номинального напряжения, а для мощных трансформаторов достаточно 1-5% .
При испытании трехфазных трансформаторов к одной обмотке подают симметричное трехфазное напряжение и одновременно измеряют напряжение между соответствующими одноименными линейными выводами обеих проверяемых обмоток.
При отсутствии трехфазного симметричного напряжения коэффициент трансформации можно определять при однофазном возбуждении, если возможно измерить фазовые напряжения, а также для трансформаторов, у которых хотя бы одна обмотка соединена в «треугольник».
Коэффициент трансформации измеряют при поочередном закорачивании одной из фаз по схемам, приведенным на рис. 5, а, б, в. Коэффициент трансформации при этом методе будет равным 2/Сф (при схеме Y/Д ) или /Сф/2 (при схеме Д/Y ), где Кф— фазовый коэффициент трансформации.
Если в обмотке, соединенной в «звезду», выведена нулевая точка, то измерение коэффициента трансформации может быть произведено без закорачивания фаз по схемам, приведенным на рис. 6 а, б, в. В этом случае измеряют непосредственно фазовый коэффициент трансформации. Для измерений следует пользоваться приборами класса точности не ниже 0,5.

Рис. 4. Измерение коэффициента трансформации трансформатора
Измеренный коэффициент трансформации не должен отличаться более чем на 1—2% от коэффициента трансформации на том же ответвлении на других фазах и от паспортных данных трансформатора.

Рис. 5. Пофазное измерение коэффициента трансформации трехфазного трансформатора при однофазном возбуждении с закорачиванием фазы


Рис. 6. Пофазное измерение коэффициента трансформации трехфазного трансформатора при однофазном возбуждении без закорачивания фазы

ПРОВЕРКА ГРУППЫ СОЕДИНЕНИЯ ОБМОТОК


Рис. 8. Проверка группы соединения обмоток однофазного трансформатора методом импульсов постоянного тока
Эта проверка производится также для трансформаторов, прошедших капитальный ремонт со сменой обмоток, импортных и не имеющих паспорта.


Рис. 7. Проверка группы соединения обмоток трехфазного трансформатора фазометром — фазометр; U — реостат
Б — батарея или аккумулятор 2—12 е; К — кнопка; Г — гальванометр с нулем посередине шкалы

Группа соединения обмоток характеризует угол между векторами напряжений обмоток ВН и НН одноименных фаз трансформатора.
Проверка группы соединения обмоток может быть произведена несколькими методами.
Метод фазометра. При этом методе последовательную обмотку однофазного фазометра через реостат подключают к зажимам одной из обмоток трансформатора, а параллельную обмотку — к одноименным зажимам другой обмотки трансформатора (рис. 7). К одной из обмоток подводят пониженное напряжение, достаточное для работы фазометра, и реостатом устанавливают номинальный ток в последовательной обмотке фазометра.
Фазометр показывает угловое смещение векторов напряжений в градусах. Во избежание возможных ошибок при измерениях лучше пользоваться фазометром с четырехквадрантной шкалой типа Э-500. Для трехфазных трансформаторов рекомендуется повторять измерения на двух парах выводов. Например АВ-ab и АС-ас — при этом в обоих случаях результаты должны быть одинаковыми.

Метод импульсов постоянного тока.

Определение группы соединения обмоток трансформаторов этим методом производится при помощи гальванометра с нулем посередине шкалы или магнитоэлектрического вольтметра.
Для однофазных трансформаторов схема проверки приведена на рис. 8.
Напряжение постоянного тока 2—12 в от батареи или аккумулятора подводят к зажимам А — X обмотки высшего напряжения.
Если при включении тока полярность зажимов а—х окажется одинаковой с полярностью зажимов А—X, то группа соединения обмоток этого трансформатора 12, в противном случае — 6.
Для трехфазных трансформаторов определение группы производится по схеме (рис. 9), где отклонения стрелки гальванометра составлены для случая соединения обмоток по схеме Y/Y — группа 12.
При указанной на схеме полярности подключения источника постоянного тока и гальванометра отклонения стрелки вправо (при включении тока) обозначаются плюсом ( + ), отклонение стрелки влево—минусом (—). Для нечетных групп соединения имеют место нулевые показания гальванометра.
Отклонения гальванометра при проверке наиболее распространенных групп соединения обмоток приведены в табл. 4.
Результаты проверки записывают по такой же форме и по совпадению показаний с данными таблицы устанавливают группу соединения обмоток проверяемого трансформатора.


Рис. 9. Проверка группы соединения обмоток трехфазного трансформатора методом импульсов постоянного тока

Таблица 4


Группа

12

6

11

1

Фазы —

аЬ

be

са

аЬ

be

са

аЬ

be

са

аЬ

be

са

А-В . . .

+

 

 

_

+

+

+

0

_

+

 

0

В—С . . .

+

+

+

+

0

0

+

С—А . . .

+

+

+

0

+

0

+

измерение величины тока холостого хода

Для измерения величины тока холостого хода к обмотке низшего напряжения при разомкнутых остальных обмотках .подводят номинальное напряжение. Для трехфазных трансформаторов подводимое трехфазное напряжение должно быть практически симметричным.
Ток холостого хода можно также измерять после включения трансформатора под рабочее напряжение. В этом случае для измерения величины тока холостого хода используют стационарные трансформаторы тока, во вторичную обмотку которых включают контрольный прибор. Не следует пользоваться для этих измерений приборами детекторной системы, так как форма кривой тока холостого хода значительно отличается от синусоиды, что приводит к погрешностям при измерениях.
Величину тока холостого хода трехфазных трансформаторов измеряют во всех трех фазах и определяют как среднее арифметическое этих величин. Величина тока холостого хода трансформатора не нормируется.

Силовые трансформаторы

  • Изучив этот раздел, вы сможете описать:
  • • Отводы.
  • • Силовые трансформаторы с многослойным и тороидальным сердечником.
  • • Изоляция.
  • • Автотрансформаторы.
  • • Импульсные трансформаторы питания.
  • • Неисправности трансформатора.

Рис. 11.3.1 Силовой трансформатор с ламинированным сердечником.

Силовые трансформаторы с ламинированным сердечником

Задача силового трансформатора в электронной системе состоит в том, чтобы обеспечить эту систему несколькими источниками переменного тока различных напряжений и подходящих значений тока от высокого напряжения электроснабжения общего пользования. Кроме того, может потребоваться электрическая изоляция между электронной схемой и внешним источником питания общего пользования.Типичная конструкция силового трансформатора с многослойным сердечником показана на рис. 11.3.1.

Сердечник из тонкой стальной пластинки E и I используется для уменьшения воздействия вихревых токов. Они зажимаются вместе, и первичная и вторичная обмотки намотаны на каркас, расположенный вокруг центрального плеча сердечника. Обмотки могут быть разделены, как показано, или, часто, для большей эффективности, намотаны концентрически слоями (первичная, вторичная, первичная, вторичная и т. Д.). Трансформаторы часто изготавливаются специально для конкретного приложения или оборудования, в котором они используются.Поэтому для правильной идентификации обмоток может потребоваться ссылка на данные производителя.

Рис. 11.3.2 Принципиальная схема силового трансформатора с ответвлениями


.

Отводы.

Чтобы трансформаторы могли подавать различные вторичные напряжения в различные части цепи, силовые трансформаторы обычно имеют «обмотки с ответвлениями». То есть обмотки разделяются на различные секции с использованием ряда соединений, выведенных из одной обмотки, каждое из которых имеет определенное количество витков вдоль обмотки, как показано на схематической диаграмме символов Рис.3.2 ниже.

Это обеспечивает выбор различных соотношений витков между первичной и вторичной обмотками, позволяя использовать разные входные напряжения и получить диапазон различных выходных напряжений.

При использовании обмотки с центральным отводом, например 9В 0В 9В, может быть обеспечен сбалансированный источник питания, дающий два равных напряжения (9В) противоположной полярности, или один источник питания 18В.

Тороидальные силовые трансформаторы

Рис. 11.3.3 Тороидальный силовой трансформатор

Популярная конструкция силовых трансформаторов основана на тороидальном сердечнике, показанном на рис. 11.3.3, (Тороид — это просто сердечник в форме ореха). Такая конструкция обеспечивает отличную связь между первичной и вторичной обмотками, поскольку обе катушки намотаны друг на друга вокруг одного и того же сердечника, а не отдельных обмоток, используемых на сердечниках трансформатора E-I. Потери на вихревые токи в тороидальном сердечнике поддерживаются на низком уровне за счет изготовления сердечника из спиральной полосы из стали с ориентированной зернистостью или литья сердечника из материала сердечника феррита с высокой проницаемостью. Конструкция тороидального трансформатора, хотя обычно более дорогая, чем типы с многослойным стальным сердечником E-I-образной формы, тороидальный сердечник обеспечивает меньший и более легкий трансформатор, чем для данной номинальной мощности, вместе с более высоким КПД и меньшей утечкой магнитного поля вокруг трансформатора.

Изоляция.

Одним из преимуществ трансформаторов (кроме автотрансформаторов) является отсутствие электрического соединения между входной цепью, подключенной к первичной обмотке, и выходной цепью, соединенной с вторичной обмоткой; поэтому их можно использовать для гальванической развязки двух цепей.

Изолирующие трансформаторы сети (линии)

используются для повышения безопасности пользователей электрического оборудования, такого как наружные электроинструменты, а также для технических специалистов, обслуживающих оборудование, где возможно прикосновение к токоведущим проводам и компонентам, путем обеспечения входных и выходных клемм, которые электрически изолированы от главная цепь.

Большие разделительные трансформаторы обычно способны выдерживать выходную мощность около 250-500 ВА (вольт-амперы) без перегрузки. Их первичная обмотка подключена непосредственно к источнику питания, и для обеспечения выходного напряжения сети (или линии) их соотношение витков составляет 1: 1, как показано на рис. 11.3.4. Они также имеют заземленный металлический экран между первичной и вторичной обмотками для предотвращения прохождения переменного тока электростатическим (емкостным), а также индуктивной связи между двумя обмотками.

Рис. 11.3.4 Разделительный трансформатор сети.

Использование изолирующего трансформатора значительно снижает риск поражения электрическим током человека, одновременно касающегося токоведущего проводника и земли, поскольку вторичная цепь не имеет заземления и, следовательно, не имеет непрерывной цепи для протекания тока. Изолирующий трансформатор НЕ защищает от поражения электрическим током при прикосновении к фазе и нейтрали одновременно.

Изолирующие трансформаторы гораздо меньшего размера используются в оборудовании для передачи голоса и данных, таком как факсимильные аппараты и модемы, где их задача — безопасно изолировать оборудование, которое в условиях неисправности может допускать наличие высокого напряжения на их интерфейсе с общественной телефонной системой.Они также используются для согласования импеданса входов и выходов оборудования с полными сопротивлениями телефонных линий.

Рис. 11.3.5 Принципиальная схема Автотрансформатора


.

Автотрансформаторы.

Это трансформатор особого типа, имеющий только одну обмотку. Он часто используется для преобразования между различными сетевыми (линейными) напряжениями, что позволяет использовать электрическое оборудование во всем мире. Одиночная непрерывная обмотка разделена на несколько «ответвлений», как показано на рис.11.3.5 для получения различных напряжений. Соответствующее количество витков обеспечивается между каждым ответвлением для создания необходимого напряжения на основе соотношения витков между полной обмоткой и ответвлением. Полезный метод расчета неизвестных напряжений на автотрансформаторе, если известно количество витков на различных ответвлениях, заключается в использовании метода вольт на виток, описанного на странице «Основные операции трансформатора». В отличие от обычного трансформатора с первичной и вторичной обмотками, автотрансформатор не обеспечивает развязки между входом и выходом.

Автотрансформаторы

также используются для обеспечения очень высоких напряжений, необходимых для таких приложений, как автомобильные системы зажигания и приводы электронно-лучевых трубок в ЭЛТ-телевизорах и мониторах.

Часть имени «Авто» в данном случае не означает «автоматический», но имеет значение «Один — действует самостоятельно», как в auto nomous.

Импульсные трансформаторы питания

Трансформаторы с многослойным сердечником в настоящее время менее распространены из-за использования импульсных источников питания (SMPS).Эти схемы работают на гораздо более высоких частотах, чем более старые источники питания 50-60 Гц. Помимо большей эффективности, SMPS имеют то преимущество, что многие компоненты в цепи источника питания могут быть физически намного меньше и легче, включая трансформатор. В трансформаторах SMPS, работающих на частоте около 500 кГц, как в примере на рис. 11.3.6 в телевизионном приемнике, вместо ламинированных сердечников используется феррит, поскольку потери в феррите на высоких частотах намного меньше, чем в ламинированных сердечниках. Сигналы, обрабатываемые трансформаторами в SMPS, помимо высокой частоты, обычно имеют прямоугольную форму.Из-за этого они будут содержать много гармоник на еще более высоких частотах. Это создает проблему из-за «скин-эффекта»; высокочастотные токи, протекающие по проводам, имеют тенденцию течь только по внешней обшивке проводов, что усложняет обычные вычисления площади поперечного сечения проводов. Поскольку эффективная площадь поперечного сечения изменяется в зависимости от частоты, соответственно изменяется и эффективная индуктивность обмотки. Кроме того, компоновка компонентов по отношению к трансформаторам SMPS требует тщательного проектирования, поскольку электромагнитные помехи на высоких частотах выше.

Рис. 11.3.6 Импульсный источник питания


Трансформатор.

Неисправности трансформатора

Трансформаторы в целом отличаются высокой надежностью; их очень высокий КПД означает, что в нормальных условиях небольшая мощность рассеивается в виде тепла (во многих компонентах это самый большой убийца!). Как и в случае с любым другим электронным устройством, именно те, которые работают с наибольшей мощностью, являются наименее надежными, поэтому силовые трансформаторы, особенно те, которые работают с высоким напряжением, более подвержены пробоям, чем трансформаторы других типов.

Перегрев, вызванный внутренней неисправностью или перегрузкой, может привести к опасным, даже полным ситуациям «расплавления». По этой причине многие силовые трансформаторы могут быть оснащены плавким предохранителем или автоматическим выключателем. В маловероятном случае выхода этого устройства из строя первичная обмотка обычно оказывается разомкнутой. Часто бывает трудно или невозможно удалить и / или отремонтировать предохранитель, который находится глубоко внутри обмоток. Также очень вероятно, что это будет неразумно, поскольку трансформатор перегреется по одной из двух возможных причин:

  • 1.Трансформатор был серьезно перегружен в течение длительного времени; в этом случае могло произойти внутреннее повреждение изоляции. Самый безопасный вариант — заменить трансформатор.
  • 2. В трансформаторе произошло внутреннее короткое замыкание. Это означает, что нарушена изоляция между двумя витками обмотки. В результате получается обмотка с одним витком. Коэффициент трансформации сейчас огромен! Представьте трансформатор с 1000 витками на первичной обмотке и 100 витками на вторичной обмотке, имеющей короткое замыкание на вторичной обмотке.Передаточное число только что изменилось с 10: 1 до 1000: 1! Результат — очень низкое вторичное напряжение, но огромный ток. В этом случае опять же единственное решение — замена.

Единственная неисправность, с которой я лично столкнулся и регулярно встречался за 26 лет обслуживания электроники, — это пробой изоляции на трансформаторах очень высокого напряжения; тип, используемый для генерации нескольких тысяч вольт в телевизионных приемниках. Большинство из этих неисправностей произошло летом в субботу днем, причина? Люди, возвращающиеся из отпуска, часто делали это в субботу днем, а телевизор не использовался в течение недели или больше.За это время влага проникла в обмотки трансформатора, и когда снова было приложено высокое напряжение, возникла дуга, и трансформатор сразу же замкнул виток.

При любой неисправности, в которой подозревается трансформатор (любого типа), вероятность того, что он является виновником, очень низка в списке вероятностей.

трансформаторов | Физика

Цели обучения

К концу этого раздела вы сможете:

  • Объясните, как работает трансформатор.
  • Рассчитайте напряжение, ток и / или количество витков с учетом других величин.

Трансформаторы делают то, что подразумевает их название — они преобразуют напряжения из одного значения в другое (используется термин «напряжение», а не ЭДС, потому что трансформаторы имеют внутреннее сопротивление). Например, многие сотовые телефоны, ноутбуки, видеоигры, электроинструменты и небольшие приборы имеют встроенный трансформатор (как на рис. 1), который преобразует 120 В или 240 В переменного тока в любое напряжение, используемое устройством.Трансформаторы также используются в нескольких точках систем распределения электроэнергии, таких как показано на рисунке 2. Мощность передается на большие расстояния при высоком напряжении, потому что для данного количества мощности требуется меньший ток, а это означает меньшие потери в линии, как это было раньше. обсуждалось ранее. Но высокое напряжение представляет большую опасность, поэтому трансформаторы используются для получения более низкого напряжения в месте нахождения пользователя.

Рис. 1. Подключаемый трансформатор становится все более знакомым с увеличением количества электронных устройств, которые работают от напряжений, отличных от обычных 120 В переменного тока.Большинство из них находятся в диапазоне от 3 до 12 В. (кредит: Shop Xtreme)

Рис. 2. Трансформаторы изменяют напряжение в нескольких точках системы распределения электроэнергии. Электроэнергия обычно вырабатывается при напряжении более 10 кВ и передается на большие расстояния при напряжениях более 200 кВ, иногда даже 700 кВ, для ограничения потерь энергии. Распределение электроэнергии по районам или промышленным предприятиям осуществляется через подстанцию ​​и передается на короткие расстояния с напряжением от 5 до 13 кВ. Оно снижено до 120, 240 или 480 В для безопасности на месте отдельного пользователя.

Тип трансформатора, рассматриваемый в этом тексте (см. Рисунок 3), основан на законе индукции Фарадея и очень похож по конструкции на устройство, которое Фарадей использовал для демонстрации того, что магнитные поля могут вызывать токи. Обе катушки называются первичной и вторичной катушками . При нормальном использовании входное напряжение подается на первичную обмотку, а вторичная обмотка создает преобразованное выходное напряжение. Мало того, что железный сердечник улавливает магнитное поле, создаваемое первичной катушкой, его намагниченность увеличивает напряженность поля.Поскольку входное напряжение переменного тока, изменяющийся во времени магнитный поток направляется во вторичную обмотку, вызывая ее выходное переменное напряжение.

Рис. 3. Типичная конструкция простого трансформатора имеет две катушки, намотанные на ферромагнитный сердечник, ламинированный для минимизации вихревых токов. Магнитное поле, создаваемое первичной обмоткой, в основном ограничивается и увеличивается сердечником, который передает его вторичной обмотке. Любое изменение тока в первичной обмотке вызывает ток во вторичной обмотке.

Для простого трансформатора, показанного на рисунке 3, выходное напряжение В, , , , почти полностью зависит от входного напряжения, В, , , и соотношения количества витков в первичной и вторичной катушках.Закон индукции Фарадея для вторичной обмотки дает наведенное выходное напряжение В с равным

[латекс] {V} _ {\ text {s}} = — {N} _ {\ text {s}} \ frac {\ Delta \ Phi} {\ Delta t} \\ [/ latex],

, где N s — количество витков во вторичной катушке, а Δ Φ / Δ t — скорость изменения магнитного потока. Обратите внимание, что выходное напряжение равно индуцированной ЭДС ( В с = ЭДС с ), при условии, что сопротивление катушки невелико (разумное предположение для трансформаторов).Площадь поперечного сечения катушек одинакова с обеих сторон, как и напряженность магнитного поля, поэтому Δ Φ / Δ t одинаковы с обеих сторон. Входное первичное напряжение В p также связано с изменением магнитного потока на

[латекс] {V} _ {p} = — {N} _ {\ text {p}} \ frac {\ Delta \ Phi} {\ Delta t} \\ [/ latex].

Причина этого немного более тонкая. Закон Ленца говорит нам, что первичная катушка противодействует изменению магнитного потока, вызванному входным напряжением В p , отсюда знак минус (это пример самоиндукции , тема, которая будет исследована в некоторых подробнее в следующих разделах).Предполагая пренебрежимо малое сопротивление катушки, правило петли Кирхгофа говорит нам, что наведенная ЭДС в точности равна входному напряжению. Соотношение этих двух последних уравнений дает полезное соотношение:

[латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{ N} _ {\ text {p}}} \\ [/ latex]

Это известно как уравнение трансформатора , и оно просто утверждает, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества контуров в их катушках.Выходное напряжение трансформатора может быть меньше, больше или равно входному напряжению, в зависимости от соотношения количества витков в их катушках. Некоторые трансформаторы даже обеспечивают переменный выход, позволяя выполнять подключение в разных точках вторичной обмотки. Повышающий трансформатор — это тот, который увеличивает напряжение, тогда как понижающий трансформатор снижает напряжение. Если предположить, что сопротивление незначительно, выходная электрическая мощность трансформатора равна его входной.На практике это почти верно — КПД трансформатора часто превышает 99%. Уравнивание входной и выходной мощности,

P p = I p V p = I s V s = P s .

Перестановка условий дает

[латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{I} _ {\ text {p}}} {{ I} _ {\ text {s}}} \\ [/ latex].

В сочетании с [латексом] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}} } {{N} _ {\ text {p}}} \\ [/ latex], мы находим, что

[латекс] \ frac {{I} _ {\ text {s}}} {{I} _ {\ text {p}}} = \ frac {{N} _ {\ text {p}}} {{ N} _ {\ text {s}}} \\ [/ latex]

— это соотношение между выходным и входным токами трансформатора.Таким образом, если напряжение увеличивается, ток уменьшается. И наоборот, если напряжение уменьшается, ток увеличивается.

Пример 1. Расчет характеристик повышающего трансформатора

Портативный рентгеновский аппарат имеет повышающий трансформатор, входное напряжение которого 120 В преобразуется в выходное напряжение 100 кВ, необходимое для рентгеновской трубки. Первичная обмотка имеет 50 петель и потребляет ток 10,00 А. а) Какое количество петель во вторичной обмотке? (b) Найдите текущий выходной сигнал вторичной обмотки.

Стратегия и решение для (а)

Решаем [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{N} _ {\ text {p}}} \\ [/ latex] для [latex] {N} _ {\ text {s}} \\ [/ latex] для N s , число петель во вторичной обмотке и введите известные значения.{4} \ end {array} \\ [/ latex].

Обсуждение для (а)

Для создания такого большого напряжения требуется большое количество петель во вторичной обмотке (по сравнению с первичной). Это справедливо для трансформаторов с неоновой вывеской и трансформаторов, подающих высокое напряжение внутри телевизоров и электронно-лучевых трубок.

Стратегия и решение для (b)

Аналогичным образом мы можем найти выходной ток вторичной обмотки, решив [latex] \ frac {{I} _ {\ text {s}}} {{I} _ {\ text {p}}} = \ frac {{N } _ {\ text {p}}} {{N} _ {\ text {s}}} \\ [/ latex] для [латекса] {I} _ {\ text {s}} \\ [/ latex] для I s и ввод известных значений.{4}} = 12,0 \ text {mA} \ end {array} \\ [/ latex].

Обсуждение для (б)

Как и ожидалось, текущий выходной сигнал значительно меньше входного. В некоторых зрелищных демонстрациях используются очень большие напряжения для получения длинных дуг, но они относительно безопасны, поскольку выход трансформатора не обеспечивает большой ток. Обратите внимание, что потребляемая мощность здесь составляет P p = I p V p = (10,00 A) (120 В) = 1.20 кВт. Это равняется выходной мощности P p = I s V s = (12,0 мА) (100 кВ) = 1,20 кВт, как мы предполагали при выводе используемых уравнений.

Тот факт, что трансформаторы основаны на законе индукции Фарадея, проясняет, почему мы не можем использовать трансформаторы для изменения постоянного напряжения. Если нет изменений в первичном напряжении, значит, во вторичной обмотке нет напряжения. Одна из возможностей — подключить постоянный ток к первичной катушке через переключатель.Когда переключатель размыкается и замыкается, вторичная обмотка вырабатывает напряжение, подобное показанному на рисунке 4. На самом деле это не практичная альтернатива, и переменный ток обычно используется везде, где необходимо увеличивать или уменьшать напряжения.

Рис. 4. Трансформаторы не работают для входа чистого постоянного напряжения, но если он включается и выключается, как показано на верхнем графике, выход будет выглядеть примерно так, как на нижнем графике. Это не тот синусоидальный переменный ток, который нужен большинству устройств переменного тока.

Пример 2. Расчет характеристик понижающего трансформатора

Зарядное устройство, предназначенное для последовательного подключения десяти никель-кадмиевых аккумуляторов (суммарная ЭДС 12.5 В постоянного тока) должен иметь выход 15,0 В для зарядки аккумуляторов. В нем используется понижающий трансформатор с первичной обмоткой на 200 контуров и входным напряжением 120 В. а) Сколько витков должно быть во вторичной катушке? (б) Если ток зарядки составляет 16,0 А, каков ток на входе?

Стратегия и решение для (а)

Вы ожидаете, что вторичный узел будет иметь небольшое количество петель. Решение [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{ N} _ {\ text {p}}} \\ [/ latex] для [latex] {N} _ {\ text {s}} \\ [/ latex] для N s и ввод известных значений дает

[латекс] \ begin {array} {lll} {N} _ {\ text {s}} & = & {N} _ {\ text {p}} \ frac {{V} _ {\ text {s} }} {{V} _ {\ text {p}}} \\ & = & \ left (\ text {200} \ right) \ frac {15.0 \ text {V}} {120 \ text {V}} = 25 \ end {array} \\ [/ latex]

Стратегия и решение для (b)

Текущие входные данные могут быть получены путем решения [latex] \ frac {{I} _ {\ text {s}}} {{I} _ {\ text {p}}} = \ frac {{N} _ {\ text {p}}} {{N} _ {\ text {s}}} \\ [/ latex] для I p и ввод известных значений. Это дает

[латекс] \ begin {array} {lll} {I} _ {\ text {p}} & = & {I} _ {\ text {s}} \ frac {{N} _ {\ text {s} }} {{N} _ {\ text {p}}} \\ & = & \ left (16.0 \ text {A} \ right) \ frac {25} {200} = 2.00 \ text {A} \ end {array} \\ [/ latex]

Обсуждение

Количество петель во вторичной обмотке невелико, как и ожидалось для понижающего трансформатора. Мы также видим, что небольшой входной ток дает больший выходной ток в понижающем трансформаторе. Когда трансформаторы используются для управления большими магнитами, они иногда имеют небольшое количество очень тяжелых контуров во вторичной обмотке. Это позволяет вторичной обмотке иметь низкое внутреннее сопротивление и производить большие токи. Заметим еще раз, что это решение основано на предположении о 100% эффективности — или выходная мощность равна мощности ( P p = P s ), что является разумным для хороших трансформаторов.В этом случае первичная и вторичная мощность составляют 240 Вт. (Убедитесь в этом сами для проверки согласованности.) Обратите внимание, что никель-кадмиевые батареи необходимо заряжать от источника постоянного тока (как и аккумулятор на 12 В). Таким образом, выход переменного тока вторичной катушки необходимо преобразовать в постоянный ток. Это делается с помощью так называемого выпрямителя, в котором используются устройства, называемые диодами, которые пропускают только односторонний ток.

Трансформаторы

находят множество применений в системах электробезопасности, которые обсуждаются в разделе «Электробезопасность: системы и устройства».

Исследования PhET: Генератор

Генерируйте электричество с помощью стержневого магнита! Откройте для себя физику, лежащую в основе этого явления, исследуя магниты и узнайте, как с их помощью загорается лампочка.

Щелкните, чтобы загрузить симуляцию. Запускать на Java.

Сводка раздела

  • Трансформаторы используют индукцию для преобразования напряжения из одного значения в другое.
  • Для трансформатора напряжения на первичной и вторичной обмотках связаны соотношением

    [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{ N} _ {\ text {p}}} \\ [/ latex],

    , где V p и V s — напряжения на первичной и вторичной катушках, имеющих N p и N s витков.

  • Токи I p и I s в первичной и вторичной катушках связаны соотношением [латекс] \ frac {{I} _ {\ text {s}}} {{I} _ {\ текст {p}}} = \ frac {{N} _ {\ text {p}}} {{N} _ {\ text {s}}} \\ [/ latex].
  • Повышающий трансформатор увеличивает напряжение и снижает ток, тогда как понижающий трансформатор снижает напряжение и увеличивает ток.

Концептуальные вопросы

1. Объясните, что вызывает физические вибрации в трансформаторах при частоте, в два раза превышающей используемую мощность переменного тока.

Задачи и упражнения

1. Подключаемый трансформатор, показанный на рисунке 4, подает 9,00 В в систему видеоигр. (a) Сколько витков во вторичной обмотке, если ее входное напряжение составляет 120 В, а первичная обмотка имеет 400 витков? (б) Какой у него входной ток, когда его выход 1,30 А?

2. Американская путешественница в Новой Зеландии несет трансформатор для преобразования стандартных 240 В в Новой Зеландии в 120 В, чтобы она могла использовать в поездке небольшие электроприборы.а) Каково соотношение витков первичной и вторичной обмоток ее трансформатора? (б) Каково отношение входного тока к выходному? (c) Как новозеландец, путешествующий по Соединенным Штатам, мог использовать этот же трансформатор для питания своих устройств на 240 В от 120 В?

3. В кассетном магнитофоне используется подключаемый трансформатор для преобразования 120 В в 12,0 В с максимальным выходным током 200 мА. (а) Каков текущий ввод? б) Какая потребляемая мощность? (c) Является ли такое количество мощности приемлемым для небольшого прибора?

4.(а) Каково выходное напряжение трансформатора, используемого для аккумуляторных батарей фонарика, если его первичная обмотка имеет 500 витков, вторичная — 4 витка, а входное напряжение составляет 120 В? (b) Какой входной ток требуется для получения выходного сигнала 4,00 А? (c) Какая потребляемая мощность?

5. (a) Подключаемый трансформатор для портативного компьютера выдает 7,50 В и может обеспечивать максимальный ток 2,00 А. Каков максимальный входной ток, если входное напряжение составляет 240 В? Предположим 100% эффективность. (b) Если фактический КПД меньше 100%, потребуется ли входной ток больше или меньше? Объяснять.

6. Многоцелевой трансформатор имеет вторичную катушку с несколькими точками, в которых может быть снято напряжение, давая на выходе 5,60, 12,0 и 480 В. (a) Входное напряжение составляет 240 В на первичную катушку с 280 витками. Какое количество витков в частях вторичной обмотки используется для создания выходного напряжения? (b) Если максимальный входной ток составляет 5,00 А, каковы максимальные выходные токи (каждый из которых используется отдельно)?

7. Крупная электростанция вырабатывает электроэнергию напряжением 12,0 кВ.Его старый трансформатор когда-то преобразовывал напряжение до 335 кВ. Вторичная обмотка этого трансформатора заменяется, так что его выходная мощность может составлять 750 кВ для более эффективной передачи по пересеченной местности на модернизированных линиях электропередачи. (а) Каково соотношение оборотов в новой вторичной системе по сравнению со старой? (b) Каково отношение нового текущего выхода к старому выходу (при 335 кВ) при той же мощности? (c) Если модернизированные линии передачи имеют одинаковое сопротивление, каково отношение потерь мощности в новых линиях к старым?

8.Если выходная мощность в предыдущей задаче составляет 1000 МВт, а сопротивление линии составляет 2,00 Ом, каковы были потери в старой и новой линии?

9. Необоснованные результаты Электроэнергия на 335 кВ переменного тока из линии электропередачи подается в первичную обмотку трансформатора. Отношение количества витков вторичной обмотки к количеству витков первичной обмотки составляет N с / N p = 1000. (a) Какое напряжение индуцируется во вторичной обмотке? б) Что неразумного в этом результате? (c) Какое предположение или предпосылка ответственны?

10. Создайте свою проблему Рассмотрим двойной трансформатор, который будет использоваться для создания очень больших напряжений. Устройство состоит из двух этапов. Первый — это трансформатор, который выдает намного большее выходное напряжение, чем его входное. Выход первого трансформатора используется как вход для второго трансформатора, который дополнительно увеличивает напряжение. Постройте задачу, в которой вы вычисляете выходное напряжение последней ступени на основе входного напряжения первой ступени и количества витков или петель в обеих частях обоих трансформаторов (всего четыре катушки).Также рассчитайте максимальный выходной ток последней ступени на основе входного тока. Обсудите возможность потерь мощности в устройствах и их влияние на выходной ток и мощность.

Глоссарий

трансформатор:
Устройство, преобразующее напряжение из одного значения в другое с помощью индукции
уравнение трансформатора:
уравнение, показывающее, что отношение вторичного напряжения к первичному в трансформаторе равно отношению количества витков в их катушках; [латекс] \ frac {{V} _ {\ text {s}}} {{V} _ {\ text {p}}} = \ frac {{N} _ {\ text {s}}} {{N} _ {\ text {p}}} \\ [/ latex]
повышающий трансформатор:
трансформатор, повышающий напряжение
понижающий трансформатор:
трансформатор, понижающий напряжение

Избранные решения проблем и упражнения

1.(а) 30.0 (б) 9.75 × 10 −2 A

3. (а) 20,0 мА (б) 2,40 Вт (в) Да, такая мощность вполне разумна для небольшого прибора.

5. (a) 0,063 A (b) Требуется больший входной ток.

7. (а) 2,2 (б) 0,45 (в) 0,20, или 20,0%

9. (a) 335 МВ (b) слишком высокое, намного выше напряжения пробоя воздуха на разумных расстояниях (c) входное напряжение слишком высокое

Для чего нужен трансформатор?

Трансформаторы можно найти везде, где используется электрическая энергия переменного тока.Трансформатор — это электрическое устройство, которое меняет напряжение на ток в цепи, не влияя при этом на общую электрическую мощность. Это означает, что он принимает электричество высокого напряжения с небольшим током и преобразует его в электричество низкого напряжения с большим током, или наоборот. Одна вещь, которую нужно знать о трансформаторах, заключается в том, что они работают только с переменным током (AC), который вы получаете от розеток, а не с постоянным током (DC).

Трансформаторы

могут использоваться либо для увеличения напряжения, также известного как повышение напряжения, либо они могут уменьшать напряжение, также известное как понижение напряжения.В трансформаторах используются две катушки с проводами, каждая с сотнями или тысячами витков, намотанных на металлический сердечник. Одна катушка предназначена для входящего электричества, а другая — для исходящего электричества. Переменный ток во входящей катушке создает переменное магнитное поле в сердечнике, которое затем генерирует переменный ток в исходящей катушке.

Энергия теряется в процессе передачи электроэнергии на большие расстояния, например, во время поездки от электростанции до вашего дома. При очень высоком напряжении теряется меньше энергии.Обычно электрические компании используют высокое напряжение в проводах для передачи на большие расстояния. Однако такое высокое напряжение слишком опасно для домашнего использования. В случае с электрическими сетями в домах они используют трансформаторы для изменения напряжения электричества, когда оно движется от электростанции к вашему дому.

Сначала с помощью трансформатора напряжение электричества, поступающего от электростанции, «повышается» до нужного уровня для передачи на большие расстояния. Поскольку ток высокого напряжения может вызвать дугу, повышающие трансформаторы, называемые катушками зажигания, используются для питания свечей зажигания.Динамо на электростанциях генерируют большие токи, но не большое напряжение. Это электричество повышается до высокого напряжения для передачи по проводам, поскольку электричество более эффективно распространяется при высоком напряжении.

Позже напряжение понижается, прежде чем оно попадет в ваш дом — снова с помощью трансформаторов. Понижающий трансформатор преобразует 440-вольтовое электричество в линиях электропередачи на 120-вольтное электричество, которое вы используете в своем доме. Затем ток либо используется на этом уровне для таких устройств, как лампочки, либо преобразуется в постоянный ток с помощью адаптера переменного / постоянного тока для таких устройств, как портативные компьютеры.

С момента появления первых трансформаторов постоянного напряжения в 1885 году трансформаторы стали незаменимыми для передачи, распределения и использования электрической энергии переменного тока во всех сферах применения энергии. В Power Temp Systems мы специализируемся на производстве инновационного оборудования, которое эффективно и безопасно распределяет и использует энергию для любого проекта.

Электромонтаж силового трансформатора управления для цепей управления двигателем

Зачем использовать силовой трансформатор управления?

Ответвительная цепь двигателя обычно является сегментом более крупной электрической распределительной сети на промышленном предприятии.Цепь двигателя подает необходимую мощность на различные устройства управления , чтобы они могли работать . В некоторых случаях различные устройства управления работают от того же напряжения, что и двигатель.

Использование трансформатора мощности управления для цепей управления двигателем

Иногда напряжение, необходимое для работы двигателя, слишком велико для безопасной работы схемы управления, особенно в отношении безопасности персонала.

Чтобы снизить напряжение двигателя до более безопасного уровня управляющего напряжения, мы используем устройство, известное как трансформатор управляющей мощности.

Первичная обмотка соединена с силовой цепью — Вторичная обмотка соединена со схемой управления

Типичный управляющий трансформатор показан на Рисунке 1 ниже. Он состоит из двух отдельных витков провода (обмоток), размещенных рядом друг с другом на общем железном сердечнике. Обратите внимание, что первичная обмотка подключена к источнику питания. Вторичная обмотка подключена к цепи управления. Трансформатор предназначен для передачи электроэнергии из первичной цепи во вторичную.

Трансформатор либо снижает (понижает), либо увеличивает (повышает) напряжение в соответствии с требованиями схемы управления.

Рисунок 1 — Типовой управляющий трансформатор

Магнитное поле от первичной обмотки индуцирует напряжение во вторичной обмотке .

Подача переменного напряжения на первичную обмотку трансформатора вызывает протекание переменного тока в обмотке .

Это создает магнитное поле, выходящее за пределы обмотки в форме концентрических петель, как показано на рисунке 2.Магнитное поле колеблется при изменении направления переменного тока. Эти магнитные линии пересекают проводники вторичной обмотки и индуцируют напряжение.

Рисунок 2 — Поток переменного тока в обмотках

Напряжения в зависимости от количества витков на обеих обмотках.

Отношение напряжения на первичной обмотке к напряжению на вторичной обмотке прямо пропорционально количеству витков на обеих обмотках. Например, 100 оборотов на первичной обмотке и 10 витков на вторичной — это соотношение 10: 1.Если на первичной обмотке 500 вольт, мы получим 50 вольт на вторичной.

Он называется понижающим трансформатором .

Чаще всего они используются в цепях управления , где напряжение двигателя составляет 480 В, 600 В или выше . Понижающий управляющий трансформатор снизит напряжение на кнопках или ПЛК до 120 В или даже 24 В.

Трансформатор с обратной пропорцией большего числа витков на вторичной обмотке, чем на первичной, называется трансформатором StepUp .Это увеличит напряжение в соответствии с соотношением витков.

Первичный подключается к цепи питания — Вторичный подключается к цепи управления.

Условное обозначение трансформатора представлено двумя группами «гребешков», обращенными друг к другу. Они представляют собой первичную и вторичную обмотки. Обмотка с большим числом витков должна иметь больше гребешков, чем другая, чтобы идентифицировать ее как понижающий или повышающий трансформатор.

На рисунке 3 показана основная схема управления с добавленным понижающим трансформатором. Обратите внимание, что основная цепь двигателя работает при напряжении 480 В, а цепь управления — при 120 В.

Первичная обмотка трансформатора подключена к двум фазам силовой цепи. Вторичная обмотка подключена к цепи управления.

Рисунок 3 — Цепь управления с трансформатором управляющей мощности (CPT)

Цепь управления Подключение CPT

Магнитная катушка и контрольные лампы рассчитаны на то же напряжение, что и вторичная обмотка трансформатора.

При установке трансформатора управляющей мощности в пускатель необходимо убедиться, что катушка магнита рассчитана на такое же напряжение, как и вторичная обмотка трансформатора. Кроме того, все контрольные лампы в этой цепи должны иметь такое же напряжение, как и вторичная обмотка.

Блоки двойного напряжения поставляются с соединениями, рассчитанными на более высокое напряжение.

При использовании управляющего силового трансформатора с двойной первичной обмоткой проверьте соединения трансформатора, чтобы убедиться, что они соответствуют напряжению вашего источника питания.

Например, трансформаторы Cutler-Hammer с двумя первичными обмотками напряжения (т.е. 480 В и 240 В) поставляются с трансформаторными соединениями, рассчитанными на подачу более высокого напряжения. Если для вашего приложения требуется более низкое первичное напряжение, измените соединения, как показано на паспортной табличке трансформатора.

Отсоедините провод «C» от ​​цепи управления стартера, если он есть. Как обсуждалось ранее в этом буклете, если к пускателю подключен провод «C» (напряжение на катушке магнита больше 120 В), его необходимо удалить.Это преобразует стартер из общего управления в раздельное управление.

Рисунок 4 — Схема электрических соединений силового трансформатора управления

Провода от первичной обмотки трансформатора подключены к L1 и L2 на пускателе. Таким образом, на первичную обмотку трансформатора подается то же напряжение, что и на цепь питания / двигателя стартера. Провода от вторичной обмотки трансформатора подключены к клемме 1 устройства дистанционного управления и клемме 96 реле перегрузки серии Freedom (см. Рисунок 4 выше)


Eaton Cutler-Hammer Установка управляющего силового трансформатора в закрытых элементах управления

Ссылка // Базовая проводка для управления двигателем от EATON

Как работают электрические трансформаторы?

Как работают электрические трансформаторы? — Объясни это Рекламное объявление

Криса Вудфорда.Последнее изменение: 27 мая 2020 г.

Могучие линии электропередач, которые пересекаются наша сельская местность или незаметное шевеление под улицами города несут электричество при очень высоких напряжениях от источника питания растения в наши дома. Для линии электропередачи нет ничего необычного в рейтинге. от 400000 до 750000 вольт! Но бытовая техника в наших домах использует напряжения в тысячи раз меньше — обычно всего от 110 до 250 вольт. Если вы пытались включить тостер или телевизор от опоры электричества, мгновенно взорваться! (Даже не думайте пытаться, потому что электричество в воздушных линиях почти наверняка убьет вас.) Так что должно быть какой-то способ уменьшить высоковольтное электричество от электростанций до электричество более низкого напряжения, используемое фабриками, офисами и домами. Устройство, которое это делает, гудит от электромагнитных волн. энергия, как она идет, называется трансформатором. Давайте подробнее разберемся, как это работает!

Фото: Взрыв из прошлого: Трансформатор странной формы на плотине Чикамауга недалеко от Чаттануги, Теннесси. Сфотографировано в 1942 году Альфредом Т. Палмером, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Почему мы используем высокое напряжение?

Фото: Спуск: Эта старая подстанция (понижающий трансформатор) снабжает энергией маленькую английскую деревню, где я живу. Его высота составляет около 1,5 м (5 футов), и его задача — преобразовывать несколько тысяч вольт входящей электроэнергии в сотни вольт, которые мы используем в наших домах.

Ваш первый вопрос, наверное, такой: если наши дома и офисы с помощью копировальных аппаратов, компьютеры стиральные машины и электробритвы рассчитаны на 110–250 вольт, почему бы электростанциям просто не передавать электричество при таком напряжении? Почему они используют такое высокое напряжение? К Объясните это, нам нужно немного узнать о том, как распространяется электричество.

Как электричество течет по металлу проволока, электроны, которые несут свою энергию покачиваться сквозь металлическую конструкцию, ударяясь и разбиваясь о обычно тратит энергию, как непослушный школьники бегут по коридору. Вот почему провода нагреваются, когда через них проходит электричество (что очень полезно в электрических тостерах и других приборы, использующие ТЭНы). Оказывается, что чем выше напряжение электричества, которое вы используете, и тем ниже ток, тем меньше энергии тратится таким образом.Итак, электричество, которое приходит от электростанций передается по проводам под очень высоким напряжением в экономия энергии.

Но есть и другая причина. Промышленные предприятия имеют огромные фабрики машины, которые намного больше и более энергоемкие, чем все, что вы есть дома. Энергия, которую использует прибор, напрямую связана (пропорциональна) к используемому напряжению. Таким образом, вместо того, чтобы работать от 110–250 вольт, энергоемкие машины могут использовать 10 000–30 000 вольт. Небольшим предприятиям и механическим цехам может потребоваться источники питания на 400 вольт или около того.Другими словами, разное электричество пользователям нужны разные напряжения. Имеет смысл отгружать высоковольтные электричество от электростанции, а затем преобразовать его в более низкое напряжение при достижении различных пунктов назначения. (Даже в этом случае централизованные электростанции по-прежнему очень неэффективны. Около двух третей энергии, поступающей на электростанцию, в виде сырого топлива, тратится на самом заводе и по пути к вам домой.)

На фото: изготовление больших электрических трансформаторов на заводе Westinghouse во время Второй мировой войны.Фото Альфреда Т. Палмера, Управление военного управления, любезно предоставлено Библиотекой Конгресса США.

Рекламные ссылки

Как работает трансформатор?

Трансформатор основан на очень простом факте об электричестве: когда колеблющийся электрический ток течет по проводу, он создает магнитное поле (невидимый образец магнетизма) или «магнитный поток» все вокруг него. Сила магнетизма (которая имеет довольно техническое название плотности магнитного потока) непосредственно связанный с величина электрического тока.Так что чем больше ток, тем сильнее магнитное поле. Теперь есть еще один интересный факт о электричество тоже. Когда магнитное поле колеблется вокруг куска провод, он генерирует электрический ток в проводе. Итак, если мы поставим вторая катушка проволоки рядом с первой, и посылает колеблющийся электрический ток в первую катушку, мы создадим электрический ток во втором проводе. Ток в первой катушке обычно называется первичным током, а ток во втором проводе это (сюрприз, сюрприз) вторичный ток.Что мы сделали вот пропустить электрический ток через пустое пространство от одной катушки провод к другому. Это называется электромагнитным индукция, потому что ток в первой катушке вызывает (или «индуцирует») ток во второй катушке. Мы можем сделать так, чтобы электрическая энергия передавалась более эффективно от одной катушки к другой, обернув их вокруг стержня из мягкого железа (иногда называемого сердечником):

Чтобы сделать катушку из проволоки, просто скручиваем проволоку в петли или («повороты», как их любят называть физики).Если вторая катушка имеет такое же количество витков, что и первая катушка, электрический ток в вторая катушка будет практически такого же размера, как и первая. катушка. Но (и вот что самое интересное), если у нас будет больше или меньше ходов во второй катушке мы можем сделать вторичный ток и напряжение больше или меньше, чем первичный ток и напряжение.

Важно отметить, что этот трюк работает, только если электрический ток каким-то образом колеблется. Другими словами, у вас есть использовать тип постоянно меняющегося электричества, называемый переменным ток (переменный ток) с трансформатором.Трансформаторы не работают с постоянным током (DC), где постоянный ток постоянно течет в одном и том же направление.

Трансформаторы понижающие

Если у первой катушки больше витков, чем у второй, вторичная напряжение меньше, чем первичное напряжение:

Это называется понижающей трансформатор. Если вторая катушка имеет половину столько витков, сколько первая катушка, вторичное напряжение будет вдвое меньше величина первичного напряжения; если во второй катушке на одну десятую меньше оказывается, он имеет одну десятую напряжения.В целом:

Вторичное напряжение ÷ Первичное напряжение = Число витков вторичной обмотки ÷ Число витков в начальной

Ток преобразуется в обратную сторону — увеличивается в размере — в понижающий трансформатор:

Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичной обмотки

Итак, понижающий трансформатор со 100 витками в первичной обмотке и 10 катушки во вторичной обмотке снизят напряжение в 10 раз, но одновременно умножьте ток в 10 раз.Сила в электрический ток равен току, умноженному на напряжение (Вт = вольт x ампер — один из способов запомнить это), так что вы можете увидеть мощность в вторичная катушка теоретически такая же, как мощность в первичная обмотка. (На самом деле между первичный и вторичный, потому что часть «магнитного потока» просачивается наружу. сердечника часть энергии теряется из-за его нагрева и т. д.)

Повышающие трансформаторы

Изменяя ситуацию, мы можем сделать шаг вперед трансформатор, который увеличивает низкое напряжение в высокое:

На этот раз у нас больше витков на вторичной катушка, чем первичная.По-прежнему верно, что:

Вторичное напряжение ÷ Первичное напряжение = Количество витков в вторичный ÷ Количество витков первичной обмотки

и

Вторичный ток ÷ Первичный ток = Количество витков в первичный ÷ Количество витков вторичной обмотки

В повышающем трансформаторе мы используем больше витков во вторичной обмотке, чем в первичный, чтобы получить большее вторичное напряжение и меньшее вторичное Текущий.

Рассматривая как понижающие, так и повышающие трансформаторы, вы можете видеть, что это общее правило: катушка с наибольшим числом витков имеет наибольшее напряжение, а катушка с наименьшим числом витков имеет самый высокий ток.

Трансформаторы в вашем доме

Фото: Типичные домашние трансформаторы. Против часовой стрелки слева вверху: модем-трансформер, белый трансформер в iPod. зарядное устройство и зарядное устройство для мобильного телефона.

Как мы уже видели, в городах много огромных трансформаторов. и города, где высоковольтная электроэнергия от входящих линий электропередачи преобразуется в более низкое напряжение. Но есть много трансформаторов в Ваш дом тоже. Большие электрические приборы, такие как стиральные и посудомоечные машины, используют относительно высокое напряжение. 110–240 вольт, но электронные устройства, такие как портативные компьютеры и зарядные устройства для MP3-плееров и мобильных телефонов, используют относительно крошечные напряжения: ноутбуку нужно около 15 вольт, зарядному устройству iPod — 12 вольт, а мобильному телефону обычно требуется менее 6 вольт, когда вы зарядить его аккумулятор.Такие электронные приборы имеют небольшие размеры. встроенные в них трансформаторы (часто устанавливаются в конце силового свинца) для преобразования 110–240 вольт бытовой питание на меньшее напряжение, которое они могут использовать. Если вы когда-нибудь задумывались, почему у таких вещей, как мобильные телефоны, есть большие толстые короткие шнуры питания, потому что они содержат трансформаторы!

Фотографии: электрическая зубная щетка, стоящая на зарядном устройстве. Батарея в щетке заряжается за счет индукции: нет прямого электрического контакта между пластиковой щеткой и пластиковым зарядным устройством в основании.Индукционное зарядное устройство — это особый вид трансформатора, разделенный на две части: одна в основании, а другая — в щетке. Невидимое магнитное поле связывает две части трансформатора вместе.

Зарядные устройства индукционные

Многие домашние трансформаторы (например, те, что используются в iPod и сотовые телефоны) предназначены для зарядки аккумуляторных батарей. Вы можете точно увидеть, как они работают: течет электричество в трансформатор из розетки на стене, попадает преобразуется в более низкое напряжение и перетекает в аккумулятор в вашем iPod или телефон.Но что происходит с чем-то вроде электрической зубной щетки, у которой нет кабель питания? Он заряжается немного другим типом трансформатор, одна из катушек которого находится в основании щетки, и другой в зарядном устройстве, на котором стоит щетка. Вы можете узнать О том, как работают подобные трансформаторы, читайте в нашей статье об индукционных зарядных устройствах.

Трансформаторы на практике

Если у вас есть дома некоторые из этих зарядных устройств для трансформаторов (обычные или индукционные), вы заметите, что они нагреваются после того, как пробыли какое-то время.Поскольку все трансформаторы выделяют некоторое количество отработанного тепла, ни один из них не является полностью эффективным: вторичная обмотка вырабатывает меньше электроэнергии, чем мы подаем в первичную, и именно отработанное тепло составляет большую часть разницы. На небольшом домашнем зарядном устройстве для мобильного телефона потери тепла довольно минимальны (меньше, чем у старомодной лампы накаливания), и обычно не о чем беспокоиться. Но чем больше трансформатор, тем больший ток он несет и тем больше тепла он производит.Для трансформатора подстанции, подобного изображенному на нашем верхнем фото, ширина которого примерно равна ширине небольшого автомобиля, отходящее тепло может быть действительно значительным: оно может повредить изоляцию трансформатора, серьезно сократить срок его службы и сделать его гораздо менее надежным (давайте не забывайте, что сотни или даже тысячи людей могут зависеть от мощности от одного трансформатора, который должен надежно работать не только изо дня в день, но из года в год). Вот почему вероятное повышение температуры трансформатора во время работы является очень важным фактором в его конструкции.Необходимо учитывать типичную «нагрузку» (насколько интенсивно он используется), сезонный диапазон наружных (окружающих) температур и даже высота (которая снижает плотность воздуха и, следовательно, эффективность его охлаждения) — все это необходимо учитывать. выяснить, насколько эффективно будет работать наружный трансформатор.

На практике большинство больших трансформаторов имеют встроенные системы охлаждения, использующие воздух, жидкость (масло или вода) или и то, и другое для отвода любого отходящего тепла. Обычно основная часть трансформатора (сердечник, а также первичная и вторичная обмотки) погружается в масляный бак с теплообменником, насос и охлаждающие ребра прикреплены.Горячее масло перекачивается из верхней части трансформатора через теплообменник (который охлаждает его) и обратно в нижнюю часть, чтобы повторить цикл. Иногда масло перемещается по охлаждающему контуру только за счет конвекции без использования отдельного насоса. Некоторые трансформаторы имеют электрические вентиляторы, которые обдувают охлаждающие ребра теплообменника воздухом для более эффективного рассеивания тепла.

Изображение: Большие трансформаторы имеют встроенную систему охлаждения. В этом случае сердечник и катушка трансформатора (красный) находятся внутри большого масляного бака (серый).Горячее масло, взятое из верхней части резервуара, циркулирует через один или несколько теплообменников, которые отводят отработанное тепло с помощью охлаждающих ребер (зеленые), прежде чем возвращать масло в тот же резервуар внизу. Иллюстрация из патента США 4 413 674: Конструкция охлаждения трансформатора Рэндалла Н. Эйвери и др., Westinghouse Electric Corp., любезно предоставлено Управлением по патентам и товарным знакам США.

Что такое твердотельные трансформаторы?

Из прочтения выше вы поняли, что трансформаторы могут быть очень большими, очень неуклюжими, а иногда и очень неэффективными.С середины 20 века всевозможные аккуратные электрические трюки, которые раньше выполнялись крупными (а иногда и механическими) компоненты были сделаны электронным способом, с использованием так называемой «твердотельной» технологии. Так, например, поменяли местами переключающее и усилительное реле. для транзисторов, в то время как магнитные жесткие диски все чаще заменяются флэш-памятью (в таких вещах, как твердотельные накопители, твердотельные накопители и карты памяти USB).

В течение последних нескольких десятилетий инженеры-электронщики работали над разработкой так называемых твердотельных трансформаторов (SST).По сути, это компактные высокомощные высокочастотные полупроводниковые схемы, которые повышают или понижают напряжение с большей надежностью и КПД по сравнению с традиционными трансформаторами; они также намного более управляемы, поэтому больше реагировать на изменения спроса и предложения. «Умные сети» (будущие системы передачи электроэнергии, питаемые от прерывистых источников возобновляемые источники энергии, такие как ветряные турбины и солнечные фермы), поэтому будут основным приложением. Несмотря на огромный интерес, SST технологии по-прежнему используются относительно мало, но, вероятно, будут самая захватывающая область проектирования трансформаторов будущего.

Рекламные ссылки

Узнать больше

На сайте

На других сайтах

Книги

Для читателей постарше
  • Конструкция и применение трансформаторов Роберт М. Дель Веккио и др. CRC Press, 2018. Подробное руководство по трансформаторам питания.
  • «Справочник по проектированию трансформаторов и индукторов», составленный полковником Уильямом Т. Маклайманом. CRC Press, 2011. Подробное практическое руководство по проектированию электрических машин с использованием индуктивности.
  • «Электрические трансформаторы и силовое оборудование» Энтони Дж. Пансини. Fairmont Press, 1999. Объясняет теорию, конструкцию, установку и техническое обслуживание трансформаторов и различных типов трансформаторов перед тем, как перейти к описанию соответствующих силовых устройств, таких как автоматические выключатели, предохранители и защитные реле.
  • Трансформеры и моторы Джорджа Патрика Шульца. Newnes, 1997. Эта книга гораздо более практическая, чем некоторые другие книги, перечисленные здесь; он предназначен больше для электриков и людей, которым приходится работать с трансформаторами, чем для тех, кто хочет их проектировать.
  • Трансформаторы и индукционные машины М. В. Бакши и У. А. Бакши. Технические публикации, 2009 г. Объясняет различные типы трансформаторов и связанное с ними электрическое оборудование, работающее по индукции.
Книги общего характера для младших читателей
  • Д.К. Свидетель: Электричество Стива Паркера. Дорлинг Киндерсли, 2005. Исторический взгляд на электричество и то, как люди применяют его на практике.
  • Сила и энергия Криса Вудфорда. Факты в файле, 2004.В одной из моих собственных книг описывается, как люди использовали энергию (включая электричество) на протяжении всей истории.

Патенты

Существуют сотни патентов на электрические трансформаторы различных типов. Вот несколько особенно интересных (ранних) из базы данных Управления по патентам и товарным знакам США:

  • Патент США 351,589: Система распределения электроэнергии Люсьена Голлара и Джона Гиббса, 26 октября 1886 г. Голлард и Гиббс описывают, как можно использовать трансформаторы для повышения и понижения напряжения для эффективного распределения энергии — основы современного электроснабжения. система по всему миру.
  • Патент США 433702: Электрический трансформатор или индукционное устройство. Автор Никола Тесла, 5 августа 1890 года. Тесла описывает трансформатор со сдвигом фаз (такой, который может создавать разность фаз между первичным и вторичным токами).
  • Патент США 497113: Трансформаторный двигатель, автор Отто Титус Блати, 9 мая 1893 г. Комбинированный трансформатор и двигатель, произведенный одним из изобретателей трансформатора.
  • Патент США 1422653: Электрический трансформатор для регулирования или изменения напряжения тока, подаваемого от него, Эдмунд Берри, 11 июля 1922 г.Трансформатор с циферблатом, позволяющим регулировать выходное напряжение.

Новостные статьи

Пожалуйста, НЕ копируйте наши статьи в блоги и другие сайты

Статьи с этого сайта зарегистрированы в Бюро регистрации авторских прав США. Копирование или иное использование зарегистрированных работ без разрешения, удаление этого или других уведомлений об авторских правах и / или нарушение смежных прав может привести к серьезным гражданским или уголовным санкциям.

Авторские права на текст © Крис Вудфорд 2007, 2020.Все права защищены. Полное уведомление об авторских правах и условиях использования.

Следуйте за нами

Сохранить или поделиться этой страницей

Нажмите CTRL + D, чтобы добавить эту страницу в закладки на будущее, или расскажите об этом своим друзьям с помощью:

Цитировать эту страницу

Вудфорд, Крис. (2007/2020) Трансформаторы электрические. Получено с https://www.explainthatstuff.com/transformers.html. [Доступ (укажите дату здесь)]

Подробнее на нашем сайте…

ТРАНСФОРМАТОРЫ — прикладное промышленное электричество

Что такое повышающие и понижающие трансформаторы

Это действительно очень полезное устройство. С его помощью мы можем легко умножить или разделить напряжение и ток в цепях переменного тока. Действительно, трансформатор сделал передачу электроэнергии на большие расстояния реальностью, поскольку напряжение переменного тока может быть «повышено», а ток «понижен» для снижения потерь мощности сопротивления проводов вдоль линий электропередач, соединяющих генерирующие станции с нагрузками.На обоих концах (как на генераторе, так и на нагрузках) уровни напряжения снижаются трансформаторами для более безопасной работы и менее дорогостоящего оборудования.

Трансформатор, который увеличивает напряжение от первичной к вторичной (больше витков вторичной обмотки, чем витков первичной обмотки), называется повышающим трансформатором .

Напротив, трансформатор, предназначенный для работы с точностью до наоборот, называется понижающим трансформатором .

Давайте еще раз рассмотрим фотографию, показанную в предыдущем разделе:

Рисунок 8.1 Поперечное сечение трансформатора, показывающее первичную и вторичную обмотки, имеет высоту несколько дюймов (приблизительно 10 см).

Это понижающий трансформатор, о чем свидетельствует большое число витков первичной обмотки и низкое число витков вторичной обмотки. В качестве понижающего блока этот трансформатор преобразует низковольтную слаботочную мощность в низковольтную сильноточную мощность. Провод большего сечения, используемый во вторичной обмотке, необходим из-за увеличения тока. Первичная обмотка, которая не должна проводить такой большой ток, может быть сделана из провода меньшего сечения.

Обратимость работы трансформатора

Если вам интересно, может ли работать с любым из этих типов трансформатора в обратном направлении (питание вторичной обмотки от источника переменного тока и передача питания первичной обмотке нагрузки) для выполнения противоположной функции: может функционировать повышающий как понижение и виза-верса.

Однако, как мы видели в первом разделе этой главы, эффективная работа трансформатора требует, чтобы индуктивности отдельных обмоток были спроектированы для определенных рабочих диапазонов напряжения и тока, поэтому, если трансформатор будет использоваться «в обратном направлении», как это должны использоваться в пределах исходных проектных параметров напряжения и тока для каждой обмотки, чтобы не оказаться неэффективным (или чтобы не был поврежден чрезмерным напряжением или током!).

Этикетки для изготовления трансформаторов

Трансформаторы

часто сконструированы таким образом, что не очевидно, какие провода ведут к первичной обмотке, а какие — к вторичной. В электроэнергетике, чтобы избежать путаницы, в электроэнергетике используются обозначения «H» для обмотки более высокого напряжения (первичная обмотка в понижающем блоке; вторичная обмотка в повышающем) и «X». обозначения низковольтной обмотки. Следовательно, у простого силового трансформатора будут провода с маркировкой «H 1 », «H 2 », «X 1 » и «X 2 ».Обычно это важно для нумерации проводов (H 1 по сравнению с H 2 и т. Д.), Которую мы рассмотрим немного позже в этой главе.

Практическое значение повышающих и понижающих трансформаторов

Тот факт, что напряжение и ток «скачкообразно меняются» в противоположных направлениях (одно вверх, другое вниз), имеет смысл, если вспомнить, что мощность равна напряжению, умноженному на ток, и понять, что трансформаторы не могут производить мощность , а только преобразовывают ее. .Любое устройство, которое может выдавать больше энергии, чем потребляет, нарушит закон сохранения энергии в физике, а именно, что энергия не может быть создана или уничтожена, а только преобразована. Как и в случае с первым рассмотренным нами примером трансформатора, эффективность передачи энергии от первичной к вторичной стороне устройства очень хорошая.

Практическое значение этого становится более очевидным, когда рассматривается альтернатива: до появления эффективных трансформаторов преобразование уровня напряжения / тока могло быть достигнуто только за счет использования двигателей / генераторных установок.Чертеж двигателя / генераторной установки показывает основной принцип: (рисунок ниже)

Рисунок 8.2 Мотор-генератор иллюстрирует основной принцип работы трансформатора.

В такой машине двигатель механически соединен с генератором, который предназначен для выработки требуемых уровней напряжения и тока при скорости вращения двигателя. Хотя и двигатели, и генераторы являются довольно эффективными устройствами, использование обоих таким образом усугубляет их неэффективность, так что общий КПД находится в диапазоне 90% или меньше.Кроме того, поскольку для двигателей / генераторных установок, очевидно, требуются движущиеся части, механический износ и балансировка являются факторами, влияющими как на срок службы, так и на производительность. С другой стороны, трансформаторы способны преобразовывать уровни переменного напряжения и тока с очень высоким КПД без движущихся частей, что делает возможным широкое распространение и использование электроэнергии, которую мы считаем само собой разумеющимся.

Справедливости ради следует отметить, что двигатели / генераторные установки не обязательно были заменены трансформаторами для всех приложений .Хотя трансформаторы явно превосходят мотор-генераторные установки для преобразования переменного напряжения и уровня тока, они не могут преобразовывать одну частоту переменного тока в другую или (сами по себе) преобразовывать постоянный ток в переменный или наоборот. Электродвигатели / генераторные установки могут выполнять все эти задачи с относительной простотой, хотя и с уже описанными ограничениями эффективности и механических факторов.

Мотор-генераторные установки также обладают уникальным свойством накопления кинетической энергии: то есть, если подача питания двигателя на мгновение прерывается по какой-либо причине, его угловой момент (инерция этой вращающейся массы) будет поддерживать вращение генератора на короткое время. длительность, таким образом изолируя любые нагрузки, питаемые от генератора, от «сбоев» в основной энергосистеме.

Анализ работы повышающего и понижающего трансформатора

Обмотка с большей индуктивностью имеет более высокое напряжение и меньший ток, чем другая. Поскольку две катушки индуктивности намотаны вокруг одного и того же материала сердечника в трансформаторе (для наиболее эффективной магнитной связи между ними), параметры, влияющие на индуктивность для двух катушек, равны, за исключением количества витков в каждой катушке. Если мы еще раз посмотрим на нашу формулу индуктивности, мы увидим, что индуктивность пропорциональна квадрату числа витков катушки:

[латекс] L = \ frac {N ^ 2µA} {I} [/ латекс]

Где,

[латекс] L = \ text {индуктивность катушки Генри} [/ латекс]

[латекс] N = \ text {Количество витков в катушке провода (прямой провод = 1)} [/ латекс]

[латекс] \ mu = \ text {Проницаемость основных материалов (абсолютная, а не относительная)} [/ латекс]

[латекс] A = \ text {Площадь рулона в квадратных метрах} [/ латекс]

[латекс] I = \ text {Среднее значение рулона в метрах} [/ латекс]

Итак, должно быть очевидно, что наши две катушки индуктивности должны иметь отношение витков катушки 10: 1, поскольку 10 в квадрате равняется 100.Это похоже на то же соотношение, которое мы обнаружили между первичным и вторичным напряжениями и токами (10: 1), поэтому мы можем, как правило, сказать, что коэффициент трансформации напряжения и тока равен отношению витков обмотки между первичной и вторичной обмотками.

Рисунок 8.3 Пример понижающего трансформатора.

Понижающий трансформатор: (много витков: несколько витков).

Повышающий / понижающий эффект отношения витков катушки в трансформаторе аналогичен передаточному отношению зубьев шестерни в механических зубчатых передачах, преобразуя значения скорости и крутящего момента во многом таким же образом:

Рисунок 8.4 Редукторная передача снижает крутящий момент, одновременно увеличивая скорость.

Повышающие и понижающие трансформаторы для целей распределения энергии могут быть гигантскими по сравнению с показанными ранее силовыми трансформаторами, причем некоторые блоки могут быть высотой с дом. На следующей фотографии показан трансформатор подстанции высотой около двенадцати футов:

Рисунок 8.5 Трансформатор подстанции.

Существуют приложения, в которых необходима гальваническая развязка между двумя цепями переменного тока без какого-либо преобразования уровней напряжения или тока.В этих случаях используются трансформаторы под названием изолирующие трансформаторы с коэффициентами трансформации 1: 1. Настольный изолирующий трансформатор показан на рисунке ниже.

Рисунок 8.6 Разделительный трансформатор изолирует питание от линии питания.

Поскольку трансформаторы по сути являются устройствами переменного тока, нам необходимо знать фазовые соотношения между первичной и вторичной цепями. Мы можем изобразить формы волны для первичной и вторичной цепей и увидеть фазовые соотношения.

Рисунок 8.7 Вторичное напряжение V (3,5) синфазно с первичным напряжением V (2) и понижено в десять раз.

Вторичное напряжение V (3,5) синфазно с первичным напряжением V (2) и понижено в десять раз.

При переходе от первичной обмотки V (2) к вторичной обмотке V (3,5) напряжение снижалось в десять раз, а ток повышался в десять раз. Формы сигналов как тока, так и напряжения являются синфазно при переходе от первичного к вторичному.

Рисунок 8.8 Первичный и вторичный токи синфазны. Вторичный ток увеличивается в десять раз.

Условные обозначения трансформатора

Похоже, что напряжение и ток двух обмоток трансформатора синфазны, по крайней мере, для нашей резистивной нагрузки. Это достаточно просто, но было бы неплохо узнать , каким образом мы должны подключить трансформатор, чтобы обеспечить правильное соотношение фаз. В конце концов, трансформатор — это не что иное, как набор индукторов с магнитной связью, а на индукторах обычно нет какой-либо маркировки полярности.Если бы мы посмотрели на немаркированный трансформатор, у нас не было бы способа узнать, как подключить его к цепи, чтобы получить синфазное (или не синфазное на 180 °) напряжение и ток:

Рисунок 8.9 На практике полярность трансформатора может быть неоднозначной.

Поскольку это практическая проблема, производители трансформаторов разработали своего рода стандарт маркировки полярности для обозначения фазовых соотношений. Он называется условным обозначением точек и представляет собой не что иное, как точку, помещенную рядом с каждым соответствующим плечом обмотки трансформатора:

Рисунок 8.10 Пара точек указывает полярность.

Обычно трансформатор поставляется с какой-то схематической диаграммой, на которой отмечены выводы проводов для первичной и вторичной обмоток. На схеме будет пара точек, похожая на то, что видно выше. Иногда точки будут опускаться, но когда метки «H» и «X» используются для обозначения проводов обмотки трансформатора, предполагается, что нижние индексы обозначают полярность обмотки. Провода «1» (H 1 и X 1 ) показывают, где обычно размещаются точки маркировки полярности.

Подобное расположение этих точек рядом с верхними концами первичной и вторичной обмоток говорит нам о том, что любая мгновенная полярность напряжения, наблюдаемая на первичной обмотке, будет такой же, как и на вторичной обмотке. Другими словами, фазовый сдвиг от первичного к вторичному будет равен нулю градусов.

С другой стороны, если точки на каждой обмотке трансформатора не совпадают , а не , фазовый сдвиг будет 180 ° между первичной и вторичной обмотками, например:

Рисунок 8.11 Не в фазе: основной красный — точка, дополнительный черный — точка.

Конечно, условное обозначение точек указывает только на то, какой конец каждой обмотки является каким относительно другой обмотки (ей). Если вы хотите самостоятельно изменить соотношение фаз, все, что вам нужно сделать, это поменять местами соединения обмотки следующим образом:

Рисунок 8.12 В фазе: первичный красный — точка, вторичный красный — точка.

Трансформаторы «повышают» или «понижают» напряжение в соответствии с соотношением витков первичной и вторичной обмоток.

[латекс] \ text {Коэффициент передачи напряжения} = \ frac {N_ {вторичный}} {N_ {первичный}} [/ латекс]

[латекс] \ text {Текущий коэффициент передачи} = \ frac {N_ {primary}} {N_ {secondary}} [/ latex]

Где,

[латекс] N = \ text {Количество витков в обмотке} [/ латекс]

  • Трансформатор, предназначенный для увеличения напряжения от первичной до вторичной, называется повышающим трансформатором .Трансформатор, предназначенный для понижения напряжения с первичной обмотки на вторичную, называется понижающим трансформатором .
  • Коэффициент трансформации трансформатора будет равен квадратному корню из отношения его первичной индуктивности к вторичной индуктивности (L).

[латекс] \ text {Коэффициент передачи напряжения} = \ sqrt {\ frac {L_ {вторичный}} {L_ {первичный}}} [/ латекс]

  • Имея возможность передавать мощность от одной цепи к другой без использования соединительных проводов между двумя цепями, трансформаторы обеспечивают полезную функцию гальванической развязки .
  • Трансформаторы, предназначенные для обеспечения гальванической развязки без скачков напряжения и тока вверх или вниз, называются изолирующими трансформаторами .
  • Фазовое соотношение напряжения и тока между первичной и вторичной цепями трансформатора прямое: в идеале нулевой сдвиг фазы.
  • Условное обозначение точек — это тип маркировки полярности для обмоток трансформатора, показывающий, какой конец обмотки находится относительно других обмоток.

Трансформаторы с несколькими вторичными обмотками

Трансформаторы

— очень универсальные устройства. Базовая концепция передачи энергии между взаимными индукторами достаточно полезна между одной первичной и одной вторичной обмотками, но трансформаторы не обязательно должны быть сделаны с двумя наборами обмоток. Рассмотрим схему трансформатора:

Рисунок 8.13. Трансформатор с несколькими вторичными обмотками обеспечивает несколько выходных напряжений.

Здесь три катушки индуктивности имеют общий магнитный сердечник, магнитно «связывая» или «связывая» их вместе.Связь между коэффициентами витков обмотки и отношениями напряжений, наблюдаемая с одной парой взаимных индукторов, все еще сохраняется здесь для нескольких пар катушек.

Вполне возможно собрать трансформатор, подобный приведенному выше (одна первичная обмотка, две вторичные обмотки), в котором одна вторичная обмотка является понижающей, а другая — повышающей. Фактически, такая конструкция трансформатора была довольно распространена в цепях питания вакуумных ламп, которые требовались для подачи низкого напряжения на нити ламп (обычно 6 или 12 вольт) и высокого напряжения для пластин ламп (несколько сотен вольт) от источника питания. номинальное первичное напряжение 110 вольт переменного тока.

С таким трансформатором возможны не только напряжения и токи совершенно разных величин, но все цепи электрически изолированы друг от друга.

Рисунок 8.14 Фотография многообмоточного трансформатора с шестью обмотками, первичной и пятью вторичными обмотками.

Трансформатор на рисунке выше предназначен для обеспечения высокого и низкого напряжения, необходимого в электронной системе с использованием электронных ламп. Низкое напряжение требуется для питания нитей вакуумных трубок, в то время как высокое напряжение требуется для создания разности потенциалов между пластиной и катодными элементами каждой трубки.Одного трансформатора с несколькими обмотками достаточно, чтобы обеспечить все необходимые уровни напряжения от одного источника 115 В. Провода для этого трансформатора (их 15!) На фотографии не показаны, они скрыты от глаз.

Если электрическая изоляция между вторичными цепями не имеет большого значения, аналогичный эффект может быть получен путем «постукивания» одной вторичной обмотки в нескольких точках по ее длине, как показано на рисунке ниже.

Рис. 8.15. Вторичная обмотка с одним ответвлением обеспечивает несколько напряжений.

Многополюсный коммутационный трансформатор

Ответвитель — это не что иное, как соединение проводов, сделанное в некоторой точке обмотки между концами. Неудивительно, что соотношение витков обмотки / величины напряжения обычного трансформатора сохраняется для всех сегментов обмотки с ответвлениями. Этот факт можно использовать для производства трансформатора с несколькими передаточными числами:

Рис. 8.16. Вторичная обмотка с ответвлениями, использующая переключатель для выбора одного из многих возможных напряжений.

Переменный трансформатор

Продолжая концепцию отводов обмотки, мы получаем «регулируемый трансформатор», в котором скользящий контакт перемещается по длине открытой вторичной обмотки и может соединяться с ней в любой точке по ее длине.Эффект эквивалентен наличию отвода обмотки на каждом витке обмотки и переключателя с полюсами на каждом положении отвода:

Рисунок 8.17 Скользящий контакт на вторичной обмотке непрерывно изменяет вторичное напряжение.

Одно из потребительских применений переменного трансформатора — это регуляторы скорости для модельных поездов, особенно поездов 1950-х и 1960-х годов. Эти трансформаторы были по существу понижающими блоками, максимальное напряжение, получаемое от вторичной обмотки, было существенно меньше, чем первичное напряжение от 110 до 120 вольт переменного тока.Контакт с регулируемой разверткой обеспечивает простое средство управления напряжением с небольшими потерями энергии, намного более эффективное, чем управление с использованием переменного резистора!

Подвижно-скользящие контакты слишком непрактичны для использования в больших промышленных силовых трансформаторах, но многополюсные переключатели и отводы обмотки являются обычным явлением для регулировки напряжения. В энергосистемах необходимо периодически производить регулировку, чтобы приспособиться к изменениям нагрузок в течение месяцев или лет во времени, и эти схемы переключения представляют собой удобные средства.Как правило, такие «переключатели ответвлений» не предназначены для работы с током полной нагрузки, а должны срабатывать только тогда, когда трансформатор обесточен (отсутствует питание).

Автотрансформатор

Принимая во внимание, как мы можем отвести любую обмотку трансформатора, чтобы получить эквивалент нескольких обмоток (хотя и с потерей гальванической развязки между ними), имеет смысл полностью отказаться от гальванической развязки и построить трансформатор из одной обмотки. Действительно, это возможно, и получившееся устройство называется автотрансформатором :

. Рисунок 8.18 Этот автотрансформатор повышает напряжение с помощью одинарной ответвленной обмотки, экономя медь и жертвуя изоляцией.

Автотрансформатор, изображенный выше, выполняет функцию повышения напряжения. Понижающий автотрансформатор будет выглядеть примерно так, как показано на рисунке ниже.

Рисунок 8.19. Этот автотрансформатор понижает напряжение с помощью одной обмотки с ответвлениями для экономии меди. Автотрансформаторы

находят популярное применение в приложениях, требующих небольшого повышения или понижения напряжения на нагрузке. Альтернативой обычному (изолированному) трансформатору было бы либо иметь правильное соотношение первичной / вторичной обмоток, предназначенное для работы, либо использовать понижающую конфигурацию с вторичной обмоткой, подключенной последовательно («повышающий») или последовательно. противодействующая («вздрагивающая») мода.Для иллюстрации того, как это будет работать, приведены первичные, вторичные напряжения и напряжения нагрузки.

Конфигурации автотрансформатора

Во-первых, «повышающая» конфигурация. На рисунке ниже полярность вторичной катушки ориентирована так, что ее напряжение напрямую складывается с первичным напряжением.

Рисунок 8.20. Обычный трансформатор, подключенный как автотрансформатор для повышения сетевого напряжения.

Далее, «раскряжевочная» конфигурация. На рисунке ниже полярность вторичной катушки ориентирована так, что ее напряжение напрямую вычитается из первичного напряжения:

Рисунок 8.21 Обычный трансформатор, подключенный как автотрансформатор для понижения напряжения в сети.

Основным преимуществом автотрансформатора является то, что та же функция повышения или понижения достигается только с одной обмоткой, что делает его более дешевым и легким в производстве, чем обычный (изолирующий) трансформатор, имеющий как первичную, так и вторичную обмотки.

Автотрансформатор с регулируемым приводом

Как и у обычных трансформаторов, обмотки автотрансформатора могут иметь ответвления для изменения передаточного числа.Кроме того, их можно сделать бесступенчато регулируемыми с помощью скользящего контакта, чтобы постучать по обмотке в любой точке по ее длине. Последняя конфигурация достаточно популярна, чтобы заслужить собственное имя: Variac . (рисунок ниже)

Рис. 8.22. Вариак — это автотрансформатор со скользящим ответвлением.

Маленькие вариаторы для настольного использования — это популярное оборудование для экспериментаторов в области электроники, поскольку они могут понижать (а иногда и повышать) напряжение переменного тока в домашних условиях с широким и точным диапазоном регулировки простым поворотом ручки.

  • Трансформаторы могут быть оснащены более чем одной парой первичной и одной вторичной обмоток. Это позволяет использовать несколько коэффициентов повышения и / или понижения в одном устройстве.
  • Обмотки трансформатора также могут иметь «ответвления»: то есть пересекаться во многих точках для разделения одной обмотки на секции.
  • Переменные трансформаторы могут быть изготовлены с помощью подвижного плеча, который перемещается по длине обмотки, контактируя с обмоткой в ​​любой точке по ее длине.Обмотка, конечно, должна быть оголенной (без изоляции) в области движения плеча.
  • Автотрансформатор — это одинарная катушка индуктивности с ответвлениями, используемая для повышения или понижения напряжения, как трансформатор, за исключением гальванической развязки.
  • A Variac — регулируемый автотрансформатор.

Поскольку трехфазные сети так часто используются в системах распределения электроэнергии, вполне логично, что нам потребуются трехфазные трансформаторы, чтобы иметь возможность повышать или понижать напряжение.Это верно лишь частично, поскольку обычные однофазные трансформаторы могут быть объединены вместе для преобразования мощности между двумя трехфазными системами в различных конфигурациях, устраняя необходимость в специальном трехфазном трансформаторе. Однако для этих задач созданы специальные трехфазные трансформаторы, которые могут работать с меньшими требованиями к материалам, меньшими размерами и меньшим весом, чем их модульные аналоги.

Обмотки и соединения трехфазного трансформатора

Трехфазный трансформатор состоит из трех наборов первичной и вторичной обмоток, каждый набор намотан на одну ногу узла железного сердечника.По сути, это выглядит как три однофазных трансформатора, совместно использующих объединенный сердечник, как показано на рисунке ниже.

Рисунок 8.23 ​​Сердечник трехфазного трансформатора имеет три набора обмоток.

Эти наборы первичной и вторичной обмоток будут соединены в конфигурации Δ или Y, чтобы сформировать единый блок. Различные комбинации способов, которыми эти обмотки могут быть соединены вместе, будут в центре внимания этого раздела.

Независимо от того, используются ли комплекты обмоток с общим сердечником или каждая пара обмоток представляет собой отдельный трансформатор, варианты подключения обмоток одинаковы:

Первичная — Вторичная

  • Y — Y
  • Y — Δ
  • Δ — Y
  • Δ — Δ

Причины выбора конфигурации Y или Δ для соединений обмоток трансформатора те же, что и для любого другого трехфазного приложения: соединения Y обеспечивают возможность нескольких напряжений, в то время как соединения Δ имеют более высокий уровень надежности (если одна обмотка выходит из строя в открытом состоянии, два других могут поддерживать полное линейное напряжение нагрузки).

Вероятно, наиболее важным аспектом соединения трех наборов первичной и вторичной обмоток для формирования трехфазного блока трансформаторов является уделение внимания правильному фазированию обмоток (точки, используемые для обозначения «полярности» обмоток). Помните правильное соотношение фаз между фазными обмотками Δ и Y: (рисунок ниже)

Рисунок 8.24 (Y) Центральная точка «Y» должна связывать либо все «-», либо все «+» точки намотки вместе. (Δ) Полярности обмоток должны складываться вместе (от + до -).

Правильная настройка фазировки, когда обмотки не показаны в стандартной конфигурации Y или Δ, может быть непростой задачей. Позвольте мне проиллюстрировать это, начиная с рисунка ниже.

Рисунок 8.23. Входы A1, A2, A3 могут быть подключены к «Δ» или «Y», как и выходы B1, B2, B3.

Разводка фаз для трансформатора «Y-Y»

Три отдельных трансформатора должны быть соединены вместе для преобразования энергии из одной трехфазной системы в другую. Сначала я покажу электрические соединения для конфигурации Y-Y:

Рисунок 8.25 Разводка фаз для трансформатора «Y-Y».

Обратите внимание на рисунок выше, как все концы обмотки, отмеченные точками, подключены к своим соответствующим фазам A, B и C, в то время как концы без точек соединены вместе, образуя центры каждой буквы «Y». Соединение первичной и вторичной обмоток по схеме «Y» позволяет использовать нейтральные проводники (N 1 и N 2 ) в каждой энергосистеме.

Разводка фаз для трансформатора «Y-Δ»

Теперь посмотрим на конфигурацию Y-Δ:

Рисунок 8.26 Подключение фаз для трансформатора «Y-Δ».

Обратите внимание на то, как вторичные обмотки (нижний набор, рисунок выше) соединены в цепочку, сторона «точки» одной обмотки соединена со стороной «без точки» следующей, образуя петлю Δ. В каждой точке соединения между парами обмоток выполняется подключение к линии второй энергосистемы (A, B и C).

Фазовая проводка для трансформатора «Δ-Y»

Теперь давайте рассмотрим систему Δ-Y на рисунке ниже.

Рисунок 8.27. Схема подключения фаз для трансформатора «Δ-Y».

Такая конфигурация (рисунок выше) позволит обеспечить несколько напряжений (между фазой или между фазой и нейтралью) во второй энергосистеме от исходной энергосистемы, не имеющей нейтрали.

Фазовая проводка для трансформатора «Δ-Δ»

И, наконец, перейдем к конфигурации Δ-Δ:

Рисунок 8.28. Схема подключения фаз для трансформатора «Δ-Δ».

Когда нет необходимости в нейтральном проводе во вторичной энергосистеме, предпочтительны схемы подключения Δ-Δ (рисунок выше) из-за присущей надежности конфигурации Δ.

Фазовая проводка для трансформатора «V» или «открытый Δ»

Учитывая, что Δ-конфигурация может удовлетворительно работать без одной обмотки, некоторые разработчики энергосистем предпочитают создавать батарею трехфазных трансформаторов только с двумя трансформаторами, представляя конфигурацию Δ-Δ с отсутствующей обмоткой как на первичной, так и на вторичной стороне:

Рис. 8.29 «V» или «разомкнутый Δ» обеспечивает питание 2-φ только с двумя трансформаторами.

Эта конфигурация называется «V» или «Open-Δ». Конечно, каждый из двух трансформаторов должен быть большего размера, чтобы выдерживать такое же количество мощности, как три в стандартной Δ-конфигурации, но общие размеры, вес и стоимость часто того стоят.Однако следует иметь в виду, что при отсутствии одного набора обмоток в форме Δ эта система больше не обеспечивает отказоустойчивость нормальной системы Δ-Δ. Если один из двух трансформаторов выйдет из строя, это определенно повлияет на напряжение и ток нагрузки.

Пример из реальной жизни

На следующей фотографии (рисунок ниже) показан блок повышающих трансформаторов на плотине гидроэлектростанции Гранд-Кули в штате Вашингтон. С этой точки зрения можно увидеть несколько трансформаторов (зеленого цвета), которые сгруппированы по три: по три трансформатора на гидроэлектрический генератор, соединенные вместе проводом в той или иной форме трехфазной конфигурации.

На фотографии не показаны соединения первичной обмотки, но похоже, что вторичные обмотки соединены по Y-образной схеме, так как из каждого трансформатора выступает только один большой высоковольтный изолятор. Это говорит о том, что другая сторона вторичной обмотки каждого трансформатора имеет потенциал земли или близок к нему, что может быть верно только в системе Y. В здании слева находится электростанция, в которой размещены генераторы и турбины. Справа наклонная бетонная стена — нижняя поверхность плотины:

Рисунок 8.Плотина гидроэлектростанции Гранд-Кули, 30

Мощность

Как уже отмечалось, трансформаторы должны быть хорошо спроектированы, чтобы обеспечить приемлемую связь по мощности, точное регулирование напряжения и низкие искажения тока возбуждения. Кроме того, трансформаторы должны быть спроектированы так, чтобы без проблем передавать ожидаемые значения тока первичной и вторичной обмоток. Это означает, что проводники обмотки должны быть изготовлены из проволоки соответствующего калибра, чтобы избежать проблем с нагревом.

Идеальный трансформатор

Идеальный трансформатор должен иметь идеальную связь (без индуктивности рассеяния), идеальное регулирование напряжения, идеально синусоидальный ток возбуждения, отсутствие гистерезиса или потерь на вихревые токи и достаточно толстый провод, чтобы выдерживать любой ток.К сожалению, идеальный трансформатор должен быть бесконечно большим и тяжелым, чтобы соответствовать этим целям проектирования. Таким образом, при разработке практического трансформатора необходимо идти на компромиссы.

Кроме того, изоляция проводов обмотки является проблемой там, где встречаются высокие напряжения, как это часто бывает в повышающих и понижающих распределительных трансформаторах. Обмотки должны быть не только хорошо изолированы от стального сердечника, но и каждая обмотка должна быть достаточно изолирована от другой, чтобы поддерживать электрическую изоляцию между обмотками.

Номинальные характеристики трансформатора

С учетом этих ограничений трансформаторы рассчитаны на определенные уровни напряжения и тока первичной и вторичной обмоток, хотя номинальный ток обычно выводится из номинального значения вольт-ампер (ВА), присвоенного трансформатору. Например, возьмите понижающий трансформатор с номинальным напряжением первичной обмотки 120 В, номинальным напряжением вторичной обмотки 48 В и номинальной мощностью 1 кВА (1000 ВА) в ВА. Максимальные токи обмотки можно определить как таковые: кВА (1000 ВА).Максимальные токи обмоток можно определить как таковые:

[латекс] \ text {Максимальный ток обмотки} [/ латекс]

[латекс] \ tag {8.1} I_ {Max} = \ frac {S} {E} [/ latex]

Иногда обмотки имеют номинальный ток в амперах, но это обычно наблюдается на небольших трансформаторах. Большие трансформаторы почти всегда рассчитываются по напряжению обмотки и

ВА или кВА.

Потери энергии

Трансформаторы передают мощность с минимальными потерями.Как было сказано ранее, КПД современных силовых трансформаторов обычно превышает 95%. Однако хорошо знать, куда уходит часть этой утраченной силы и что вызывает ее потерю.

Конечно, есть потери мощности из-за сопротивления обмоток проводов. Если не используются сверхпроводящие провода, всегда будет рассеиваться мощность в виде тепла через сопротивление проводников с током. Поскольку трансформаторы требуют таких длинных проводов, эти потери могут быть существенным фактором.Увеличение диаметра обмоточного провода — один из способов минимизировать эти потери, но только при значительном увеличении стоимости, размера и веса.

Вихретоковые потери

Помимо резистивных потерь, большая часть потерь мощности трансформатора связана с магнитными эффектами в сердечнике. Возможно, наиболее значительным из этих «потерь в сердечнике» являются потери на вихревые токи , которые представляют собой рассеивание резистивной мощности из-за прохождения индуцированных токов через железо сердечника. Поскольку железо является проводником электричества, а также отличным «проводником» магнитного потока, в железе будут индуцироваться токи так же, как есть токи, индуцированные во вторичных обмотках из переменного магнитного поля.Эти индуцированные токи — как описано в пункте о перпендикулярности закона Фарадея — стремятся проходить через поперечное сечение сердечника перпендикулярно виткам первичной обмотки. Их круговое движение дало им необычное название: как водовороты в потоке воды, которые циркулируют, а не движутся по прямым линиям.

Железо является хорошим проводником электричества, но не так хорошо, как медь или алюминий, из которых обычно изготавливаются обмотки проводов. Следовательно, эти «вихревые токи» должны преодолевать значительное электрическое сопротивление, когда они циркулируют по сердечнику.Преодолевая сопротивление утюга, они рассеивают энергию в виде тепла. Следовательно, у нас есть источник неэффективности трансформатора, который трудно устранить.

Индукционный нагрев

Это явление настолько ярко выражено, что его часто используют как средство нагрева черных (железосодержащих) материалов. На фотографии ниже показан блок «индукционного нагрева», повышающий температуру большого участка трубы. Петли из проволоки, покрытые высокотемпературной изоляцией, охватывают окружность трубы, вызывая вихревые токи внутри стенки трубы за счет электромагнитной индукции.Чтобы максимизировать эффект вихревых токов, используется высокочастотный переменный ток, а не частота линии электропередачи (60 Гц). Блоки в правой части изображения вырабатывают высокочастотный переменный ток и регулируют величину тока в проводах, чтобы стабилизировать температуру трубы на предварительно определенном «заданном значении».

Рисунок 8.31 Индукционный нагрев: Первичная изолированная обмотка наводит ток во вторичную железную трубу с потерями.

Снижение вихревых токов

Основная стратегия уменьшения этих расточительных вихревых токов в сердечниках трансформаторов состоит в том, чтобы сформировать железный сердечник в виде листов, каждый из которых покрыт изолирующим лаком, чтобы сердечник был разделен на тонкие пластинки.В результате ширина сердечника очень мала для циркуляции вихревых токов:

Рисунок 8.32 Разделение стального сердечника на тонкие изолированные пластинки сводит к минимуму потери на вихревые токи.

Ламинированные сердечники , подобные показанному здесь, входят в стандартную комплектацию почти всех низкочастотных трансформаторов. Напомним, что на фотографии трансформатора, разрезанного пополам, железный сердечник состоял из множества тонких листов, а не из одной цельной детали. Потери на вихревые токи увеличиваются с увеличением частоты, поэтому трансформаторы, предназначенные для работы от высокочастотной энергии (например, 400 Гц, используемой во многих военных и авиационных приложениях), должны использовать более тонкие пластинки, чтобы снизить потери до приемлемого минимума.Это имеет нежелательный эффект увеличения стоимости изготовления трансформатора.

Другой аналогичный метод минимизации потерь на вихревые токи, который лучше подходит для высокочастотных приложений, — это изготовление сердечника из железного порошка, а не из тонких листов железа. Подобно ламинированным листам, эти гранулы железа индивидуально покрыты электроизоляционным материалом, который делает сердечник непроводящим, за исключением ширины каждой гранулы. Сердечники из порошкового железа часто используются в трансформаторах, работающих с радиочастотными токами.

Магнитный гистерезис

Еще одна «потеря в сердечнике» связана с магнитным гистерезисом . Все ферромагнитные материалы имеют тенденцию сохранять некоторую степень намагниченности после воздействия внешнего магнитного поля. Эта тенденция оставаться намагниченным называется «гистерезисом», и требуются определенные затраты энергии, чтобы преодолеть это противодействие, изменяющееся каждый раз, когда магнитное поле, создаваемое первичной обмоткой, меняет полярность (дважды за цикл переменного тока).

Этот тип потерь может быть уменьшен за счет правильного выбора материала сердечника (выбор сплава сердечника с низким гистерезисом, о чем свидетельствует «тонкая» гистерезисная кривая B / H) и проектирования сердечника с минимальной магнитной индукцией (большая площадь поперечного сечения ).

Скин-эффект на высоких частотах

Потери энергии в трансформаторе увеличиваются с увеличением частоты. Скин-эффект внутри проводников обмотки уменьшает доступную площадь поперечного сечения для потока электрического заряда, тем самым увеличивая эффективное сопротивление при повышении частоты и создавая большие потери мощности из-за резистивной диссипации. Потери в магнитном сердечнике также увеличиваются из-за того, что более высокие частоты, вихревые токи и эффекты гистерезиса становятся более серьезными. По этой причине трансформаторы значительных размеров предназначены для эффективной работы в ограниченном диапазоне частот.

В большинстве систем распределения электроэнергии, где частота сети очень стабильна, можно подумать, что чрезмерная частота никогда не будет проблемой. К сожалению, это происходит в виде гармоник, создаваемых нелинейными нагрузками.

Как мы видели в предыдущих главах, несинусоидальные сигналы эквивалентны аддитивным сериям нескольких синусоидальных сигналов с разными амплитудами и частотами. В энергосистемах эти другие частоты являются целыми числами, кратными основной (линейной) частоте, что означает, что они всегда будут выше, а не ниже проектной частоты трансформатора.В значительной степени они могут вызвать серьезный перегрев трансформатора. Силовые трансформаторы могут быть спроектированы для обработки определенных уровней гармоник энергосистемы, и эта способность иногда обозначается рейтингом «K-фактор».

Паразитная емкость и индуктивность

Помимо номинальной мощности и потерь мощности, трансформаторы часто имеют другие нежелательные ограничения, о которых следует знать разработчикам схем. Подобно их более простым аналогам — индукторам — трансформаторы обладают емкостью из-за изоляционного диэлектрика между проводниками: от обмотки к обмотке, от витка к витку (в одной обмотке) и от обмотки к сердечнику.

Частота резонанса трансформатора

Обычно эта емкость не имеет значения в приложениях питания, но приложения с малыми сигналами (особенно с высокой частотой) могут плохо переносить эту причуду. Кроме того, эффект наличия емкости наряду с расчетной индуктивностью обмоток дает трансформаторам способность резонировать с на определенной частоте, что определенно является проблемой проектирования в приложениях с сигналами, где приложенная частота может достигать этой точки (обычно резонансная частота мощности трансформатор находится далеко за пределами частоты переменного тока, для которой он был разработан).

Удерживание флюса

Сдерживание потока (обеспечение того, чтобы магнитный поток трансформатора не ускользнул, чтобы создать помехи другому устройству, и убедиться, что магнитный поток других устройств экранирован от сердечника трансформатора) — еще одна проблема, которую разделяют как индукторы, так и трансформаторы.

Индуктивность утечки

Тесно связана с проблемой сдерживания флюса индуктивность рассеяния. Поскольку индуктивность рассеяния эквивалентна индуктивности, последовательно соединенной с обмоткой трансформатора, она проявляется как последовательное сопротивление с нагрузкой.Таким образом, чем больше ток потребляет нагрузка, тем меньше напряжения на выводах вторичной обмотки. Обычно при проектировании трансформатора требуется хорошее регулирование напряжения, но есть и исключительные области применения. Как указывалось ранее, для схем разрядного освещения требуется повышающий трансформатор с «слабым» (плохим) регулированием напряжения для обеспечения пониженного напряжения после возникновения дуги в лампе. Один из способов выполнить этот критерий проектирования — спроектировать трансформатор с путями рассеяния магнитного потока в обход вторичной (ых) обмотки (ов).Результирующий поток рассеяния будет создавать индуктивность рассеяния, которая, в свою очередь, приведет к плохому регулированию, необходимому для разрядного освещения.

Насыщенность ядра

Трансформаторы

также ограничены в своей работе из-за ограничений магнитного потока сердечника. Для трансформаторов с ферромагнитным сердечником необходимо учитывать пределы насыщения сердечника. Помните, что ферромагнитные материалы не могут поддерживать бесконечную плотность магнитного потока: они имеют тенденцию «насыщаться» на определенном уровне (продиктованном материалом и размерами сердечника), а это означает, что дальнейшее увеличение силы магнитного поля (ммс) не приводит к пропорциональному увеличению магнитного поля. поток поля (Φ).

Когда первичная обмотка трансформатора перегружается из-за чрезмерного приложенного напряжения, магнитный поток сердечника может достигать уровней насыщения в пиковые моменты цикла синусоидальной волны переменного тока. Если это произойдет, напряжение, индуцированное во вторичной обмотке, больше не будет соответствовать форме волны, как напряжение, питающее первичную катушку. Другими словами, перегруженный трансформатор будет искажать форму волны от первичной до вторичной обмоток, создавая гармоники на выходе вторичной обмотки. Как мы уже обсуждали ранее, содержание гармоник в энергосистемах переменного тока обычно вызывает проблемы.

Пиковые трансформаторы

Специальные трансформаторы, известные как трансформаторы максимального напряжения , используют этот принцип для создания коротких импульсов напряжения вблизи пиков формы волны напряжения источника. Ядро рассчитано на быстрое и резкое насыщение при уровнях напряжения значительно ниже пикового. Это приводит к сильно обрезанной форме волны синусоидального потока и вторичным импульсам напряжения только при изменении потока (ниже уровней насыщения):

Рис. 8.33. Осциллограммы напряжения и магнитного потока для пикового трансформатора.

Работа на частотах ниже нормы

Другой причиной ненормального насыщения сердечника трансформатора является работа на частотах ниже нормы. Например, если силовой трансформатор, предназначенный для работы на частоте 60 Гц, вынужден работать на частоте 50 Гц, поток должен достигать более высоких пиковых уровней, чем раньше, чтобы создать такое же противоположное напряжение, необходимое для балансировки с напряжением источника. Это верно, даже если напряжение источника такое же, как и раньше.

Рисунок 8.34. Магнитный поток выше в сердечнике трансформатора, работающем на 50 Гц, по сравнению с 60 Гц для того же напряжения.

Поскольку мгновенное напряжение обмотки пропорционально скорости изменения мгновенного магнитного потока в трансформаторе, форма волны напряжения, достигающая того же пикового значения, но требующая больше времени для завершения каждого полупериода, требует, чтобы магнитный поток поддерживал та же скорость изменения, что и раньше, но на более длительные периоды времени. Таким образом, если поток должен расти с той же скоростью, что и раньше, но в течение более длительных периодов времени, он поднимется до более высокого пикового значения.

С математической точки зрения, это еще один пример исчисления в действии.Поскольку напряжение пропорционально скорости изменения потока, мы говорим, что форма волны напряжения — это производная формы волны потока, «производная» — это операция вычисления, определяющая одну математическую функцию (форму волны) с точки зрения скорости: замены другого. Однако, если мы возьмем противоположную точку зрения и свяжем исходную форму волны с ее производной, мы можем назвать исходную форму волны интегралом производной формы волны. В этом случае форма волны напряжения является производной формы волны магнитного потока, а форма волны магнитного потока является интегралом формы волны напряжения.

Интеграл любой математической функции пропорционален площади, накопленной под кривой этой функции. Поскольку каждый полупериод сигнала 50 Гц накапливает большую площадь между ним и нулевой линией графика, чем будет форма сигнала 60 Гц — а мы знаем, что магнитный поток является интегралом напряжения, — поток будет достигать более высоких значений в рисунок ниже.

Рис. 8.35. Изменение потока с той же скоростью возрастает до более высокого уровня при 50 Гц, чем при 60 Гц.

Еще одна причина насыщения трансформатора — наличие постоянного тока в первичной обмотке.Любая величина постоянного напряжения, падающего на первичную обмотку трансформатора, вызовет дополнительный магнитный поток в сердечнике. Это дополнительное «смещение» или «смещение» потока будет подталкивать форму волны переменного магнитного потока ближе к насыщению в одном полупериоде, чем в другом.

Рис. 8.36. Постоянный ток в первичной обмотке сдвигает пики формы сигнала в сторону верхнего предела насыщения.

Для большинства трансформаторов насыщение сердечника является очень нежелательным эффектом, и его можно избежать за счет хорошей конструкции: проектируя обмотки и сердечник так, чтобы плотности магнитного потока оставались значительно ниже уровней насыщения.Это гарантирует, что соотношение между mmf и Φ будет более линейным на протяжении всего цикла потока, что хорошо, поскольку способствует меньшим искажениям в форме волны тока намагничивания. Кроме того, проектирование сердечника для низких плотностей магнитного потока обеспечивает безопасный запас между нормальными пиками магнитного потока и пределами насыщения сердечника, чтобы приспособиться к случайным, ненормальным условиям, таким как изменение частоты и смещение постоянного тока.

Пусковой ток

Когда трансформатор первоначально подключен к источнику переменного напряжения, может возникнуть значительный скачок тока через первичную обмотку, называемый пусковым током .Это аналогично пусковому току, проявляемому электродвигателем, который запускается при внезапном подключении к источнику питания, хотя бросок тока трансформатора вызван другим явлением.

Мы знаем, что скорость изменения мгновенного потока в сердечнике трансформатора пропорциональна мгновенному падению напряжения на первичной обмотке. Или, как указывалось ранее, форма волны напряжения является производной формы волны магнитного потока, а форма волны магнитного потока является интегралом формы волны напряжения.В непрерывно работающем трансформаторе эти две формы сигнала сдвинуты по фазе на 90 °. Поскольку поток (Φ) пропорционален магнитодвижущей силе (mmf) в сердечнике, а mmf пропорционален току обмотки, форма волны тока будет синфазной с формой волны магнитного потока, и оба будут отстать от формы волны напряжения на 90 °:

Рисунок 8.37. Непрерывный установившийся режим: магнитный поток, как и ток, отстает от приложенного напряжения на 90 °.

Предположим, что первичная обмотка трансформатора внезапно подключается к источнику переменного напряжения в точный момент времени, когда мгновенное напряжение достигает своего положительного пикового значения.Чтобы трансформатор создавал противоположное падение напряжения, чтобы уравновеситься с этим приложенным напряжением источника, должен создаваться магнитный поток быстро возрастающей величины. В результате ток в обмотке увеличивается быстро, но на самом деле не быстрее, чем при нормальных условиях:

Рисунок 8.38. Подключение трансформатора к линии при пиковом напряжении переменного тока: поток быстро увеличивается от нуля, как и в установившемся режиме.

И магнитный поток сердечника, и ток катушки начинаются с нуля и достигают тех же пиковых значений, которые наблюдаются при непрерывной работе.Таким образом, в этом сценарии нет «всплеска», «броска» или тока.

В качестве альтернативы, давайте рассмотрим, что произойдет, если подключение трансформатора к источнику переменного напряжения произойдет в точный момент времени, когда мгновенное напряжение равно нулю. Во время непрерывной работы (когда трансформатор был запитан в течение некоторого времени), это момент времени, когда и магнитный поток, и ток обмотки достигают своих отрицательных пиков, испытывая нулевую скорость изменения (dΦ / dt = 0 и di / dt = 0). По мере того, как напряжение достигает своего положительного пика, формы волны магнитного потока и тока нарастают до своих максимальных положительных скоростей изменения и повышаются до своих положительных пиков по мере того, как напряжение опускается до нулевого уровня:

Рисунок 8.39 Запуск при e = 0 В — это не то же самое, что непрерывный запуск на рисунке выше. Эти ожидаемые формы сигналов неверны — Φ и i должны начинаться с нуля.

Однако существует значительная разница между работой в непрерывном режиме и условием внезапного пуска, предполагаемым в этом сценарии: во время непрерывной работы уровни магнитного потока и тока были на своих отрицательных пиках, когда напряжение было в нулевых точках; Однако в трансформаторе, который простаивает, и магнитный поток, и ток обмотки должны начинаться с ноль .

Когда магнитный поток увеличивается в ответ на возрастающее напряжение, он будет увеличиваться от нуля вверх, а не от ранее отрицательного (намагниченного) состояния, как это обычно бывает в трансформаторе, который какое-то время находится под напряжением. Таким образом, в трансформаторе, который только что «запускается», магнитный поток будет примерно в два раза превышать нормальную пиковую величину, поскольку он «интегрирует» область под первым полупериодом формы волны напряжения:

Рис. 8.40. Начиная с e = 0 В, Φ начинается с начального состояния Φ = 0, увеличиваясь в два раза по сравнению с нормальным значением, если предположить, что это не насыщает активную зону.

Начиная с e = 0 В, Φ начинается с начального состояния Φ = 0, увеличиваясь в два раза по сравнению с нормальным значением, если предположить, что это не насыщает сердечник.

В идеальном трансформаторе ток намагничивания также увеличился бы примерно в два раза по сравнению с нормальным пиковым значением, генерируя необходимый mmf для создания этого потока, превышающего нормальный. Однако большинство трансформаторов не спроектированы с достаточным запасом между нормальными пиками магнитного потока и пределами насыщения, чтобы избежать насыщения в таких условиях, и поэтому сердечник почти наверняка будет насыщаться в течение этого первого полупериода напряжения.Во время насыщения для генерации магнитного потока необходимо непропорционально большое количество ммс. Это означает, что ток обмотки, который создает МДС, вызывающую магнитный поток в сердечнике, непропорционально возрастет до значения , легко превышающего , вдвое превышающего его нормальный пик:

Рисунок 8.41 Начиная с e = 0 В, ток также увеличивается в два раза по сравнению с нормальным значением для ненасыщенного сердечника или значительно выше в случае (рассчитанном на) насыщение.

Это механизм, вызывающий пусковой ток в первичной обмотке трансформатора при подключении к источнику переменного напряжения.Как видите, величина пускового тока сильно зависит от точного времени электрического подключения к источнику. Если трансформатор имеет некоторый остаточный магнетизм в его сердечнике в момент подключения к источнику, бросок тока может быть еще более серьезным. Из-за этого устройства максимальной токовой защиты трансформатора обычно бывают «медленного действия», чтобы выдерживать такие скачки тока без размыкания цепи.

Тепло и шум

Помимо нежелательных электрических эффектов, трансформаторы могут также проявлять нежелательные физические эффекты, наиболее заметными из которых являются выделение тепла и шума.Шум — это прежде всего неприятный эффект, но нагрев — потенциально серьезная проблема, поскольку изоляция обмотки будет повреждена, если будет допущен перегрев. Нагрев можно свести к минимуму за счет хорошей конструкции, гарантирующей, что сердечник не приближается к уровням насыщения, что вихревые токи сведены к минимуму, и что обмотки не будут перегружены или работают слишком близко к максимальной допустимой нагрузке.

У больших силовых трансформаторов сердечник и обмотки погружены в масляную ванну для передачи тепла и глушения шума, а также для вытеснения влаги, которая в противном случае может нарушить целостность изоляции обмотки.Теплоотводящие «радиаторные» трубки на внешней стороне корпуса трансформатора обеспечивают конвективный путь потока масла для передачи тепла от сердечника трансформатора к окружающему воздуху:

Рисунок 8.42. Большие силовые трансформаторы погружены в теплоизолирующее масло.

Безмасляные или «сухие» трансформаторы часто оцениваются с точки зрения максимального «повышения» рабочей температуры (превышения температуры окружающей среды) в соответствии с системой буквенных классов: A, B, F или H. Эти буквенные коды: расположены в порядке от наименьшей термостойкости до наибольшей:

  • Класс A: Повышение температуры обмотки не более чем на 55 ° C при температуре окружающего воздуха 40 ° C (максимум).
  • Класс B: Повышение температуры обмотки не более чем на 80 ° Цельсия при температуре окружающего воздуха 40 ° Цельсия (максимальной).
  • Класс F: Повышение температуры обмотки не более чем на 115 ° Цельсия при температуре окружающего воздуха 40 ° Цельсия (максимальной).
  • Класс H: Повышение температуры обмотки не более чем на 150 ° Цельсия при температуре окружающего воздуха 40 ° Цельсия (максимальной).

Слышимый шум — это эффект, в основном возникающий из явления магнитострикции : небольшое изменение длины, проявляемое ферромагнитным объектом при намагничивании.Знакомый «гул», слышимый вокруг больших силовых трансформаторов, — это звук расширения и сжатия железного сердечника с частотой 120 Гц (в два раза выше частоты системы, которая в США составляет 60 Гц) — один цикл сжатия и расширения сердечника для каждого пика напряжения. форма волны магнитного потока плюс шум, создаваемый механическими силами между первичной и вторичной обмотками. Опять же, поддержание низких уровней магнитного потока в сердечнике является ключом к минимизации этого эффекта, что объясняет, почему феррорезонансные трансформаторы, которые должны работать в режиме насыщения для большей части формы волны тока, работают как в горячем состоянии, так и с шумом.

Потери из-за наматывающих магнитных сил

Еще одно шумовое явление в силовых трансформаторах — это физическая сила реакции между первичной и вторичной обмотками при большой нагрузке. Если вторичная обмотка разомкнута, через нее не будет тока и, следовательно, не будет создаваемой ею магнитодвижущей силы (ммс). Однако, когда вторичная обмотка «загружена» (в настоящее время подается на нагрузку), обмотка генерирует МДС, которой противодействует «отраженная» МДС в первичной обмотке, чтобы предотвратить изменение уровней магнитного потока сердечника.Эти противоположные МДС, возникающие между первичной и вторичной обмотками в результате вторичного (нагрузочного) тока, создают физическую силу отталкивания между обмотками, которая заставляет их вибрировать. Конструкторы трансформаторов должны учитывать эти физические силы при конструкции катушек обмотки, чтобы обеспечить адекватную механическую опору для выдерживания напряжений. Однако в условиях большой нагрузки (высокого тока) эти напряжения могут быть достаточно большими, чтобы вызвать слышимый шум, исходящий от трансформатора.

  • Силовые трансформаторы ограничены по мощности, которую они могут передавать от первичной обмотки (обмоток) ко вторичной. Большие блоки обычно имеют номинальные значения в ВА (вольт-амперы) или кВА (киловольт-амперы).
  • Сопротивление в обмотках трансформатора снижает эффективность, поскольку ток рассеивает тепло, тратя энергию.
  • Магнитные эффекты в железном сердечнике трансформатора также способствуют снижению эффективности. Среди эффектов — вихревые токи , (циркулирующие индукционные токи в железном сердечнике) и гистерезис , (потеря мощности из-за преодоления тенденции железа к намагничиванию в определенном направлении).
  • Повышенная частота приводит к увеличению потерь мощности в силовом трансформаторе. Присутствие гармоник в энергосистеме является источником частот, значительно превышающих нормальные, что может вызвать перегрев больших трансформаторов.
  • И трансформаторы, и катушки индуктивности обладают определенной неизбежной емкостью из-за изоляции проводов (диэлектрика), отделяющей витки обмотки от стального сердечника и друг от друга. Эта емкость может быть достаточно значительной, чтобы дать трансформатору естественную резонансную частоту , что может быть проблематичным в сигнальных приложениях.
  • Индуктивность утечки возникает из-за того, что магнитный поток не на 100% связан между обмотками трансформатора. Любой поток, не связанный с , передающий энергию от одной обмотки к другой, будет накапливать и выделять энергию, как и работает (само) индуктивность. Индуктивность утечки имеет тенденцию ухудшать регулировку напряжения трансформатора (вторичное напряжение «проседает» больше при заданной величине тока нагрузки).
  • Магнитное насыщение сердечника трансформатора может быть вызвано чрезмерным первичным напряжением, работой на слишком низкой частоте и / или наличием постоянного тока в любой из обмоток.Насыщение можно минимизировать или избежать с помощью консервативной конструкции, которая обеспечивает достаточный запас прочности между пиковыми значениями плотности магнитного потока и пределами насыщения сердечника.
  • Трансформаторы часто испытывают значительные пусковые токи при первоначальном подключении к источнику переменного напряжения. Пусковой ток наиболее велик, когда подключение к источнику переменного тока выполняется в момент, когда мгновенное напряжение источника равно нулю.
  • Шум — обычное явление, проявляемое трансформаторами, особенно силовыми трансформаторами, и в первую очередь вызвано магнитострикцией сердечника.Физические силы, вызывающие вибрацию обмотки, также могут создавать шум в условиях большой (сильноточной) нагрузки вторичной обмотки.

Что такое электрические трансформаторы? | Triad Magnetics

Трансформаторы — это электрические устройства, способные изменять уровень напряжения переменного тока в цепи. Они работают только с цепями переменного тока, а не с цепями постоянного тока (DC). Основные компоненты трансформатора — это две отдельные катушки с проволокой, намотанные на один сердечник.Катушка, подключенная к входному источнику или источнику напряжения, является первичной катушкой, катушка, подключенная к выходному выходу или выходу напряжения, является вторичной катушкой, а сердечник представляет собой электромагнитное устройство, которое препятствует (ограничивает) или усиливает (увеличивает) поток напряжения в соответствии с требованиями к выходу. .

Более глубокое исследование того, как работают трансформаторы, их различные типы и общие области применения, помогает лучше понять критически важную функцию, которую они выполняют, обеспечивая полезную мощность для работы компьютеров, бытовой техники, осветительных приборов и многих других электрические и электронные устройства.


Как работают трансформаторы и их различные типы

Трансформаторы не вырабатывают электроэнергию. Вместо этого они передают его из одной цепи переменного тока в другую. Этот процесс передачи начинается, когда электрический ток входит в трансформатор. Ток поступает через соединение с первичной обмоткой (также называемой обмоткой, потому что она наматывается на часть сердечника). Эта обмотка вокруг сердечника преобразует электрическую энергию в магнитное поле, которое затем течет через сердечник в обмотки вторичной катушки.Вторичная катушка превращает электромагнитный поток обратно в электрическую энергию с необходимым выходным напряжением.

Как указано выше, основной трансформатор состоит из четырех основных компонентов:

  • Входные соединения: Также называемое первичной стороной, входное соединение — это место, где мощность поступает на трансформатор.
  • Выходные соединения: Выходное соединение — или вторичная сторона — трансформатора передает преобразованную мощность (повышенную или пониженную) за пределы трансформатора на нагрузку.
  • Обмотки трансформатора: В большинстве случаев первичная и вторичная обмотки представляют собой не отдельные катушки, а несколько катушек, связанных с их основным входным или выходным источником для уменьшения магнитного потока (мера силы электрического поля через заданную поверхность). Величина увеличения или уменьшения напряжения зависит от соотношения витков первичной и вторичной обмоток или количества витков каждой катушки вокруг сердечника. Например, трансформатор с соотношением витков 3: 1 преобразует 3 вольта в 1 вольт в понижающем трансформаторе, а коэффициент 3: 5 преобразует 3 вольта в 5 вольт в повышающем трансформаторе.
  • Сердечники трансформатора: Сердечник трансформатора усиливает магнитную связь между первичной и вторичной цепями. Он обеспечивает контролируемый путь магнитного потока через трансформатор от первичной обмотки ко вторичной обмотке. Сердечники — это не сплошной стальной стержень. Вместо этого они состоят из множества тонких ламинированных листов стали. Эта конструкция помогает ограничить или исключить накопление тепла внутри трансформатора. В трансформаторах используются два типа сердечников — сердечник и корпус, которые отличаются друг от друга расположением первичной и вторичной катушек.Обмотки наматываются вокруг сердечника в варианте с сердечником, в то время как в варианте с оболочкой сердечник окружает обмотки.

Доступно много различных типов трансформаторов, и Triad Magnetics предлагает широкий ассортимент этих стандартных продуктов для самых разных применений. Различные категории трансформаторов включают:

Силовые трансформаторы

Силовые трансформаторы увеличивают или уменьшают линейное напряжение и, если это необходимо для работы интегральной схемы или других специализированных схем, могут помочь с преобразованием напряжения переменного тока в напряжение постоянного тока.Эти трансформаторы работают на одной из трех частот, измеряемых в герцах (Гц), или на количестве циклов в секунду. Хотя некоторые импульсные силовые трансформаторы работают на частотах 2,5 мегагерца и выше, стандартные линейные силовые трансформаторы работают на частотах 50, 60 и 400 Гц.

Поскольку частота остается постоянной от источника к выходу в силовом трансформаторе, герц является важным измерением, которое влияет на размер сердечника и количество тепла, выделяемого трансформатором.Это измерение, наряду с первичным напряжением, вторичным среднеквадратичным напряжением и током, монтажными характеристиками и, иногда, пробивным напряжением между первичной обмоткой, необходимо учитывать при проектировании или покупке силового трансформатора.

Разделительные трансформаторы и автотрансформаторы

Разделительные трансформаторы и автотрансформаторы — это два противоположных типа силовых трансформаторов.

Изолирующие трансформаторы состоят из первичной и вторичной обмоток, которые не соединены, поскольку они намотаны независимо друг от друга.Такая конструкция позволяет этим устройствам изолировать части схемы, предотвращая сотрясение.

С другой стороны, автотрансформаторы используют часть первичной обмотки как часть вторичной обмотки, которая создает прямое соединение между двумя линиями с помощью медного провода. Эти устройства используют меньше меди в катушках, что делает их менее дорогими и более компактными. Их основное применение — в устройствах американского производства, предназначенных для зарубежных рынков, где напряжение в сети составляет 230 В, а устройство должно работать при 115 В.

Аудио трансформаторы

Аудиотрансформатор выполняет другую функцию, чем силовой или развязывающий трансформатор. Аудио преобразователи преобразуют электрические сигналы, несущие звук. Катушки в аудиопреобразователях имеют различные уровни импеданса (сопротивление электрической цепи, измеряемое в омах) в диапазоне частот от 20 Гц до 100 000 Гц. Различные уровни импеданса в аудиокомпонентах возникают из-за изменений материала сердечника или коэффициента трансформации трансформатора и влияют на качество звука.

Импульсные трансформаторы

Этот тип трансформатора обрабатывает импульсы электрических токов очень высокой частоты без искажения сигнала. Разработка импульсного трансформатора для одновременного повышения или понижения импульса связана с соотношением витков катушек. Этот тип трансформатора может передавать импульс переменного тока от одной цепи к другой, одновременно блокируя сигналы постоянного тока.


Применение и использование трансформаторов

Силовые трансформаторы и изолированные трансформаторы присутствуют на различных этапах распределения электроэнергии, от электростанции до розеток в доме или офисе.Повышающие трансформаторы преобразуют мощность электростанции в более высокое напряжение для улучшения передачи, в то время как понижающие трансформаторы на подстанциях и барабанах трансформаторов снижают напряжение для общего использования. Хотя это их наиболее распространенный вариант использования, существует бесчисленное множество других электрических и электронных применений трансформаторов, в том числе:

  • Настенные трансформаторы (например, зарядные электронные устройства)
  • Электростанции и возобновляемые источники энергии
  • Средства автоматизации и управления промышленной обработкой
  • Системы освещения
  • Мелкая бытовая техника (например, компьютеры, телевизоры, тостеры, микроволновые печи)
  • Крупная бытовая техника (например, стиральные машины, сушилки, копировальные аппараты)
  • Усилители звука и динамики
  • Медицинские приборы (включая оборудование для МРТ и компьютерной томографии, кислородные насосы и контроллеры капельницы)

Наиболее оптимальный тип трансформатора зависит от технических характеристик конкретного приложения.Некоторые из характеристик, которые следует учитывать, включают:

  • входное напряжение (т.е. первичное напряжение),
  • выходное напряжение (т.е. вторичное напряжение),
  • выходной ток,
  • уровня мощности и
  • Размер трансформатора
  • (от рисового зерна до большого полуприцепа).

Свяжитесь с Triad Magnetics сегодня для ваших нужд трансформатора

Трансформаторы

, в их различных типах и формах, позволяют безопасно использовать широкий спектр электрических и электронных устройств.Это простое устройство с относительно простой функцией, но они являются важным элементом электроснабжения домов и рабочих мест.

Компания Triad Magnetics поставляет различные трансформаторы для широкого спектра применений. Свяжитесь с нами, чтобы узнать больше о широком ассортименте трансформаторов, которые у нас есть, или запросите смету на трансформатор, который наилучшим образом соответствует вашим потребностям, у одного из наших экспертов.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *