Схемы зарядное устройство для автомобильного аккумулятора своими руками: Схемы зарядных устройств для автомобильных АКБ: как сделать своими руками

Содержание

как сделать своими руками, схема

Автор Владимир Остапенко На чтение 18 мин Просмотров 18.6к. Опубликовано Обновлено

Во время эксплуатации автомобиля нередко возникает ситуация, когда аккумуляторную батарею (АКБ) приходится снимать и заряжать стационарным зарядным устройством (ЗУ). Его, конечно же, можно купить, а возможно сделать своими руками. В этой статье рассмотрим несколько обычных зарядных устройств для автомобильного аккумулятора, которые несложно повторить даже начинающему радиотехнику.

Содержание

  1. Требования к зарядке АКБ
  2. Как сделать самодельное зарядное устройство для АКБ
  3. Простой “зарядник” с гасящими конденсаторами
  4. Прибор для зарядки и тренировки аккумулятора
  5. Зарядное устройство для АКБ с ШИМ-регулировкой тока
  6. Зарядное устройство с фазоимпульсной регулировкой
  7. Зарядное устройство с регулировкой по высокому напряжению (по первичной обмотке)
  8. Автоматическое зарядное устройство из драйвера для светодиодных лент
  9. Зарядное устройство из блока питания ПК
  10. Как заряжать аккумулятор от самодельного устройства

Требования к зарядке АКБ

Прежде чем сделать зарядное устройство для автомобильного аккумулятора своими руками, рассмотрим .

  1. Зарядный ток не должен превышать рекомендованный производителем батареи. Если зарядный ток не указан (неизвестен), то он не должен превышать 10 % от принятой ёмкости аккумулятора.
  2. В конце процесса зарядки ток желательно уменьшить, чтобы .
  3. Недопустима перезарядка АКБ. Как только напряжение на клеммах заряжаемой батареи достигнет значения 13,8 ± 0,15 В, зарядку стоит прекратить. Это будет существенно для AGM и гелевых батарей.
  4. При пропадании сетевого напряжения не должна происходить разрядка батареи через зарядное устройство. Глубокий разряд для свинцовой АКБ губителен.

Исходя из вышесказанного, определяем требования к зарядному устройству:

  1. Должно обеспечивать регулировку зарядного тока.
  2. Потребуется наличие встроенных измерительных приборов – амперметра и вольтметра, – позволяющих контролировать ток заряда и .
  3. Обязательно наличие цепей, предотвращающих разряд АКБ через зарядное устройство при пропадании сетевого напряжения.

Полезно. Первый и второй пункты могут выполняться оператором вручную, но существуют и автоматические ЗУ, самостоятельно регулирующие ток во время зарядки и отключающие батарею, как только она полностью зарядится. Третий пункт должен выполняться независимо от сложности схемы ЗУ.

Как сделать самодельное зарядное устройство для АКБ

А теперь рассмотрим несколько схем разной сложности, которые отвечают вышеперечисленным требованиям к ЗУ и не особо сложны для повторения.

Простой “зарядник” с гасящими конденсаторами

Это несложное устройство позволяет заряжать аккумуляторы ёмкостью до 100 А·ч произвольным током, который регулируется в интервале 1–10 А с шагом 1 А, что будет достаточно для качественного обслуживания любого автомобильного аккумулятора.

  

Схема простого зарядного устройства с гасящими конденсаторами

В ЗУ встроен понижающий трансформатор Тр1, сетевое напряжение на него подаётся через блок гасящих конденсаторов С1-С4. Каждый из конденсаторов имеет собственный переключатель, включающий его в цепь питания трансформатора. Ёмкости конденсаторов подстроены таким образом, что переключатели S1–S4 имеют вес 1, 2, 4, 8 А соответственно.

Комбинируя положения переключателей, можно выбрать произвольный ток зарядки в диапазоне 1-10 А, с шагом 1 А. К примеру, если необходимо выставить ток 6 А, то нужно замкнуть переключатели S3 и S2. Ток в 5 А обеспечит включение переключателей S3 и S1.

Пониженное трансформатором напряжение подаётся на диодный мост, выпрямляется и выходит на клеммы Х3 и Х4, к которым подключается заряжаемая батарея. Ток зарядки измеряют амперметром PA1, а вольтметр PV1 выдаёт напряжение на клеммах батареи. Цепей защиты от разряда батареи через зарядное устройство в случае пропадания сетевого напряжения в этой схеме ЗУ нет, поскольку их роль исполняет диодный мост.

О деталях. Конденсаторы С1–С4 подбирают неполярные типа МБГО, МБГП, МБЧГ, КБГ-МН, МБМ или МБГЧ с рабочим напряжением не менее 300 В для МБГЧ и КБГ-МН и не более 600 В для приборов остальных типов.

Категорически недопустимо использование электролитических конденсаторов, даже если они рассчитаны на соответствующее напряжение. “Электролит” — полярный прибор, работающий только в цепях постоянного тока. При подключении в цепь переменного тока он просто взорвётся.

Вместо диодов Д242 можно применять любые другие, выдерживающие ток не менее 10 А и обратное напряжение не ниже 25 В. Подходят, например, диоды Д214 или германиевые Д305. При любых условиях их нужно поставить на радиаторы. Трансформатор Тр1 обычный сетевой с выходным напряжением 24–26 В, способный обеспечить хотя бы полуторный зарядный ток. Приборы PA1 и PV2 — амперметр с пределом измерения 10–15 А и вольтметр на напряжение 20 В соответственно.

Указанное зарядное устройство можно применять и для зарядки батарей с другим напряжением (например, 6-вольтовых), но здесь необходимо учитывать, что «вес» тумблеров S1–S4 будет другой, и придётся определяться по амперметру.

Прибор для зарядки и тренировки аккумулятора

Это самодельное зарядное устройство заряжает аккумулятор пульсирующим током, причём в паузах между импульсами зарядки батарея разряжается током порядка 0,5 А. Это позволяет не только качественно зарядить батарею, но и успешно , осуществляя тренировку АКБ. Зарядный ток в импульсе может достигать 10 А, регулировка тока плавная.

Электрическая схема зарядного устройства для тренировки батарей

Сетевое напряжение понижается трансформатором Т1 до величины 25 В и подаётся на однополупериодный выпрямитель, собранный на диодах D1 и D2, включенных параллельно для увеличения мощности. Регулировка тока происходит при помощи ключа, встроенного на транзисторе VТ1, включенного в минусовую цепь зарядки. Степень открытия транзистора, а значит, и зарядный ток — регулируется с помощью переменного резистора R1. Питание резистор получает от простейшего параметрического стабилизатора R1, D3.

По окончании каждого положительного полупериода диоды запираются, и до начала следующего — батарея разряжается через балластный резистор R4. Ток разрядки фиксированный и, как было сказано выше, составляет 500 мА. Зарядный ток контролируется при помощи амперметра PA1, а напряжение на батарее вольтметром PV1.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Контролируя зарядный ток, необходимо учитывать, что его часть (около 10 %) течёт через балластный резистор R4. Кроме того, прибор показывает усреднённое значение, тогда как зарядка батареи производится только в половину периода. Поэтому, к примеру, при импульсном зарядном токе в 5 А амперметр с учётом потерь на R4 покажет 1,8 А.

Для предупреждения глубокого разряда батареи через балластный резистор при пропадании сетевого напряжения введён узел защиты, собранный на реле К1. Пока зарядное устройство работает, его обмотка находится под напряжением, а контакты К1.1 и К1.2 (включены параллельно для увеличения мощности) подключают батарею к ЗУ.  При пропадании сетевого напряжения реле отпускает, и его контакты отключают заряжаемый аккумулятор.

О деталях. На месте Т1 может работать любой силовой трансформатор, выдающий 22–25 В при токе в 5 А. Диоды D1 D2 — любые десятиамперные, выдерживающие обратное напряжение не ниже 40 В. Они установлены на общий радиатор. VТ1 — транзистор серии КТ827 с любой буквой. Его тоже нужно поставить на радиатор. Если корпус прибора металлический, то в качестве радиатора может выступать и он.

Стабилитрон D3 — любой маломощный с напряжением стабилизации 7,5–12 В. Резисторы R3 и R4 — С5-16МВ и ПЭВ-15 соответственно. В качестве К1 используется реле переменного тока РПУ-0 на напряжение срабатывания 24 В. Каждая группа его контактов выдерживает ток до 6 А.

 Полезно. При необходимости можно применять реле постоянного тока, но тогда его обмотку придётся подключить к схеме через выпрямительный мост.

Зарядное устройство для АКБ с ШИМ-регулировкой тока

Эта схема способна обеспечить зарядный ток до 6 А и выделяется небольшими габаритами, поскольку использует широтно-импульсный метод регулирования (ШИМ), а управляющий током зарядки транзистор работает в ключевом режиме, что существенно снижает рассеиваемую на нём мощность.

Электросхема зарядного устройства с ШИМ

Задающий генератор блока регулировки тока собран на элементах DD1.1, DD1.2 микросхемы К561ЛА7, элементы DD1.3, DD1.4 — буферные. Частота генератора — 13 кГц, скважность плавно регулируется с помощью переменного резистора R3. С генератора сигнал поступает на регулирующий элемент — мощный полевой транзистор VT1, работающий в ключевом режиме.

В зависимости от положения движка переменного резистора отношение времени открытия транзистора к его закрытому состоянию меняется, а значит, изменяется и средний ток зарядки батареи, который можно контролировать при помощи амперметра PA1.

Питание микросхема получает от простейшего параметрического стабилизатора, собранного на элементах R1, VD4. Сам стабилизатор подключен к выпрямительному мосту, обеспечивающему напряжение зарядки. Из соображений компактности, диодный мост собран на полупроводниках Шоттки с незначительным падением напряжения. Лампа EL1 — индикаторная.

О деталях. Вторичная обмотка трансформатора Т1 должна обеспечивать ток 6–7 А при напряжении 16–20 В. Если использовать трансформатор, у вторичной обмотки которого есть отвод от середины, то выпрямитель можно собрать по схеме, приведённой ниже, сократив число выпрямительных диодов вдвое.

Двухполупериодный выпрямитель на двух диодах

В мостовом выпрямителе используется диодная сборка VD1.1 VD1.2 и два отдельных диода VD3 и VD4. Все элементы установлены на общий радиатор 160х45 мм через слюдяные прокладки. При необходимости диоды Шоттки можно заменить обычными выпрямительными, но габариты устройства при этом увеличатся, поскольку понадобится радиатор большего размера. При замене необходимо учитывать, что диоды должны выдерживать ток 10 А и обратное напряжение не менее 40 В.

Если зарядный ток не будет превышать 5 А, то транзистор VT1 устанавливать на радиатор не нужно. При большем токе понадобится радиатор — медная или алюминиевая пластина размером 50х50х1 мм.

В качестве амперметра используется индикатор записи магнитофона М476/2, включенный параллельно с шунтом. Шунт представляет собой кусок медного обмоточного провода ПЭВ-2 1,5, намотанный на оправку диаметром 8 мм. Количество витков — 16, сопротивление — около 0,1 Ом.

Зарядное устройство с фазоимпульсной регулировкой

Это мощное зарядное устройство славится тем, что собрано из доступных советских деталей, которые наверняка найдутся у любого радиотехника. Прибор обеспечивает плавную регулировку тока в пределах 0 … 10 А и пригоден для зарядки аккумуляторов ёмкостью до 100 А·ч.

Схема зарядного устройства для автомобильных аккумуляторов с фазоимпульсной регулировкой

Это обычный тиристорный регулятор напряжения с фазоимпульсным управлением. Роль элемента управления выполняет аналог однопереходного транзистора, сделанный на двух биполярных приборах VT1 и VT2. Изменяя сопротивление переменного резистора R1, мы меняем время задержки открывания тиристора относительно начала полупериода, а значит, и ток зарядки, который контролируется по показаниям амперметра PA1. Для измерения напряжения на клеммах батареи служит прибор PV1. Питается устройство от мостового выпрямителя VD1–VD4, подключенного к понижающему трансформатору Т1.

О деталях. Вместо заданного на схеме тиристора КУ202В можно использовать КУ202 с буквами Г–Е, а также более мощные Т-160 и Т-250. Диоды VD1–VD4 — обычные выпрямительные с обратным напряжением не менее 40 В и выдерживающие ток 10 А. Подойдут, например, Д242, Д243, Д245, КД203, КД210, КД213 и т. п.

Тиристор и выпрямительные диоды необходимо установить на радиаторы с эффективной площадью рассеяния 100 см2 каждый. Если используется мощный тиристор серии «Т», то на радиатор его ставить не нужно. В качестве Т1 можно использовать любой силовой трансформатор, обеспечивающий ток 10 А при напряжении 18–22 В. Отлично подойдёт, к примеру ТН-61, имеющий три обмотки по 6,3 В при токе 8 А. Этого вполне достаточно для зарядки батареи ёмкостью до 80 А·ч.

Транзистор КТ361А можно заменить на КТ361б – КТ361Е, КТ502В, КТ3107А, КТ501Ж – КТ501К, КТ502Г. На месте VT2 может работать КТ315А-КТ315Д, КТ3102А, КТ312Б. Вместо диода КД 105Д подойдут КД105Г, КД105В, Д226 (с любым индексом). Измерительный прибор PA1 — амперметр с пределом измерения 10–15 А или микроамперметр с соответствующим шунтом. PV1 — вольтметр с пределом измерения 15–20 В.

Зарядное устройство с регулировкой по высокому напряжению (по первичной обмотке)

Это устройство отличается от предыдущих тем, что тиристорный регулятор зарядного тока расположен в цепи первичной обмотки силового трансформатора. При помощи этого ЗУ можно заряжать батареи током до 6 А. Поскольку коммутируемые токи по напряжению 220 В будут намного меньше, чем по низкому, радиатор регулирующему элементу не нужен. Кроме того, амперметр PA1 не имеет громоздкого шунта, а значит, устройство получается несколько компактнее.

Зарядное устройство с регулировкой по высокому напряжению

В этой схеме используется всё тот же фазоимпульсный метод. Поскольку тиристор не может работать в цепях переменного тока, он включен через диодный мост  VD1–VD4. Управляет тиристором однопереходный транзистор VT1. Задержка его открывания от начала полупериода зависит от положения движка переменного резистора R5. Именно им и регулируется зарядный ток.

В момент открытия тиристор шунтирует диодный мост, и всё сетевое напряжение прикладывается к первичной обмотке T1. При этом со вторичной обмотки снимается напряжение определённой величины (0–20 В, в зависимости от положения движка переменного резистора R5) и, пройдя через выпрямитель VD5–VD8, поступает на клеммы заряжаемого аккумулятора. Узел измерения тока собран на микроамперметре, зашунтированном резистором R1. Резистор R2 служит для калибровки прибора. Лампа HL1 — индикаторная.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

Вольтметра это зарядное устройство не имеет, поэтому контролировать напряжение на клеммах заряжаемого аккумулятора придётся внешним вольтметром, к примеру, тестером. Впрочем, ничего не мешает просто встроить вольтметр в прибор.

О деталях. На месте VD1–VD4 могут работать диоды Д231–Д234, Д245, Д247 с любым буквенным индексом, КД202 с буквами К, М, Р. Радиаторы им, как и тиристору, не нужны. Вместо германиевых Д305 в низковольтном выпрямителе можно использовать Д231–Д233 без буквенного индекса или с буквой А. Их придётся установить на радиаторы с площадью поверхности 100 см2.

Конденсатор С1 должен иметь по возможности меньший ТКЕ, иначе при прогреве устройства зарядный ток «поплывёт». Подойдут конденсаторы типа К73-17 или К73-24. Трансформатор Т1 должен обеспечивать на вторичной обмотке напряжение 18–22 В при токе нагрузки 6–7 А. Микроамперметр (PA1) можно взять любой с током полного отклонения 100 мкА.

Важно! Все элементы зарядного устройства, включенные в цепь первичной обмотки, во время работы прибора находятся под опасным для жизни напряжением. Перед любой перепайкой или изменением схемы обязательно отключаем конструкцию от сети, а на шток переменного резистора R5 надеваем ручку из изоляционного материала.

Автоматическое зарядное устройство из драйвера для светодиодных лент

Драйвер для питания светодиодных лент, если он достаточно мощный (не менее 100 Вт), — готовое зарядное устройство для автомобильного аккумулятора. Единственное, что нас не устраивает — это выходное напряжение. Драйвер выдаёт 12 вольт, конечное напряжение зарядки свинцово-кислотного аккумулятора — 13,8 В. Если учесть падение напряжения на зарядных проводах, то нам нужно заставить выдавать блок питания 14,0–14,4 вольта (зависит от толщины проводов). Этим и займёмся.

Для эксперимента возьмём драйвер мощностью 110 Вт — он сможет развить зарядный ток в 7,6 А — более чем достаточно для любого автомобильного аккумулятора. Взглянем на типовую схему драйвера китайского производства:

Типовая схема драйвера для светодиодной ленты китайского производства

Нас интересует подстроечный резистор P1 (справа вверху на блоке «Выпрямитель 12 В»). Подключаем к выходу устройства вольтметр, само устройство подключаем к сети. Небольшой отвёрткой вращаем ползунок подстроечного резистора (на плате он обозначен “VR”), пытаясь поднять напряжение до 14,0–14,4 В. Скорее всего, сделать это не удастся — слишком велика разница. На нашем блоке напряжение удалось вытянуть лишь до 13,26 В.

Диапазона регулировки подстроечного резистора нам не хватило

Тут есть два варианта:

  1. Заменить подстроечный резистор другим, большего номинала.
  2. Заменить постоянный резистор R37, стоящий в делителе, другим, меньшего номинала.

Воспользуемся вторым вариантом. Но тут возникает непредвиденная проблема — нумерация элементов на нашем блоке и на схеме не совпадают. «Пляшем» от подстроечного резистора, разбираясь в дорожках, и выясняем, что на нашей плате этот резистор обозначен “R30”.

Нас интересует резистор R30

На схеме он имеет номинал 2,2 кОм, но мы рисковать не будем, поскольку схема явно не родная — выпаиваем его и измеряем сопротивление омметром. Результат — 5 кОм.

Номинал нашего R30 составил 5 кОм

Берём переменный резистор того же номинала, впаиваем на место R30, выводим движок на максимальное сопротивление и включаем блок питания в сеть. Постепенно уменьшая сопротивление, устанавливаем необходимую величину выходного напряжения.

Напряжение на выходе составляет 14,5 В

Здесь оно несколько выше нужного, но позже мы подгоним его более точно штатным подстроечным резистором VR.

Важно! Движок переменного резистора крутим очень осторожно, стараясь не поднимать напряжение выше 15 В, поскольку сглаживающие конденсаторы в фильтре драйвера рассчитаны на максимальное напряжение в 16 В.

Выпаиваем переменный резистор, измеряем его сопротивление.

Нам нужен постоянный резистор сопротивлением 4,5 кОм

Такого номинала не существует, устанавливаем ближайший — 4,6 кОм. Снова включаем устройство, штатным подстроечным резистором VR выставляем выходное напряжение 14,0– 14,4 В. Собираем блок — и у нас в руках готовое зарядное устройство со стабилизированным выходным напряжением.

Особая прелесть такого решения состоит в том, что устройство является автоматическим и никогда не перезарядит батарею, даже если мы забудем вовремя снять её с зарядки. Идеальное решение для AGM и гелевых батарей, которые очень боятся перезаряда.

Зарядное устройство из блока питания ПК

Это устройство тоже является автоматическим — оно, как и предыдущая конструкция, не даст перезарядить аккумуляторную батарею, поскольку работает в режиме стабилизации напряжения и по окончании зарядки ток через аккумулятор падает до 0. Доработке будет подвергаться блок питания персонального компьютера, собранный на ШИМ-микросхеме TL494 или её аналогах, список которых приведён в табличке ниже.

Аналоги микросхемы TL494 

Прибор

Описание

Прибор

Описание

GL494Зарубежный полный аналогM5T494PЗарубежный полный аналог
IR9494NMB3759
MB3759UA494PC
NE5561UC494
UPC494UC494CN
XR494UPC494C
ECG1729MB3759
IR3M02UA494DM
IR9494IR9494
MB3759MB3759
UPC494C1114ЕУ3Отечественный полный аналог
UA494DC1114ЕУ4
ECG17291114ЕУЗ
HA11794К1114ЕУ3
IR3M02КР1114ЕУ4

Итак, разбираем блок, вынимаем из корпуса плату. Из платы выпаиваем все питающие провода, кроме зеленого. Он служит для запуска БП материнской платой. Нам подобное управление не нужно, а потому этот провод мы просто припаиваем к площадкам, к которым раньше припаивались чёрные провода (иначе говоря — замыкаем на минус), чтобы блок питания запускался сразу после подачи на него 220 В.

Зелёный провод управления припаиваем к минусовой шине питания

Теперь к площадкам, к которым подпаивались жёлтые и чёрные провода, припаиваем два толстых провода с «крокодилами» для подключения к аккумулятору. Тот, который подпаивается вместо жёлтых, будет плюсовым, а вместо чёрных — минусовым.

Теперь нужно заставить БП выдавать вместо 12 В нужные для зарядки свинцового аккумулятора 13,8–14 В (14,4 с учётом падения напряжения на проводах под нагрузкой). Делаем это точно так же, как и в предыдущей конструкции, — заменой резистора на прибор другого номинала.

Находим первый вывод микросхемы TL494 или её аналога, ориентируясь по ключу-выемке на корпусе прибора. На фото ниже первый вывод помечен красной, а сам ключ — зелёными стрелками.

Нумерация выводов ведётся от ключа против часовой стрелки

Переворачиваем плату и по дорожке, ведущей от этого вывода, определяем, что к нему подпаяны три резистора. Нас интересует тот, который вторым выводом подключен к шине +12 В. На фото ниже он помечен красным лаком.

Нас интересует этот резистор

Номинал этого резистора нужно изменить (увеличить), но на сколько? Выпаиваем его и замеряем сопротивление. В нашем случае сопротивление составило 38 кОм. Берём переменный резистор примерно вчетверо большего номинала, выставляем движком сопротивление 38 кОм и впаиваем его вместо того, который выпаяли. Плавно увеличивая сопротивление, выставляем выходное напряжение на значение 14,4 В.

Установка выходного напряжения при помощи переменного резистора

Важно! Для каждого блока питания номинал этого резистора будет разный, т. к. схемы и детали в блоках разные, но алгоритм изменения напряжения один для всех. При поднятии напряжения свыше 15 В, может быть сорвана генерация ШИМ. После этого блок придётся перезагружать, предварительно уменьшив сопротивление переменного резистора.

Выпаиваем переменный резистор, измеряем его сопротивление, подбираем постоянный ближайшего номинала, впаиваем. Проверяем наше зарядное устройство, нагрузив его лампочкой от автомобильной фары и контролируя выходное напряжение под нагрузкой. Оно должно остаться практически тем же — 14 В.

Под нагрузкой выходное напряжение “просело” на несколько десятых — это нормально

Как заряжать аккумулятор от самодельного устройства

Зарядка аккумулятора самодельным устройством ничем не отличается от зарядки промышленным прибором.

  1. Выводим регулятор тока в «0».
  2. Подключаем заряжаемый аккумулятор к клеммам ЗУ.
  3. Подаём питание на ЗУ.
  4. Устанавливаем необходимый ток зарядки.
  5. При напряжении 13,2–13,4 В на клеммах батареи уменьшаем ток вдвое.
  6. При напряжении на клеммах 13,8 В выводим регулятор тока в «0», выключаем питание ЗУ, отключаем аккумулятор.

Мнение эксперта

Алексей Бартош

Специалист по ремонту, обслуживанию электрооборудования и промышленной электроники.

Задать вопрос

В двух последних конструкциях контролировать напряжение на батарее не нужно — как только аккумулятор зарядится, ток зарядки станет равным нулю.

Вот в принципе и всё о самодельных зарядных устройствах. Прочитав этот материал, мы без труда сможем подобрать наиболее подходящую схему зарядного устройства и повторить её.

Сейчас читают:

Зарядное устройство для автомобильного аккумулятора своими руками

Проблемы с аккумуляторами — не такое уж редкое явление. Для восстановления работоспособности необходима дозарядка, но нормальная зарядка стоит приличных денег, а сделать ее можно из подручного «хлама». Самое главное — найти трансформатор с нужными характеристиками, а сделать зарядное устройство для автомобильного аккумулятора своими руками — дело буквально пары часов (при наличии всех необходимых деталей).  

Содержание статьи

  • 1 Немного теории
    • 1.1 Виды зарядных устройств для аккумуляторных батарей
    • 1.2 Как определить нужные параметры при зарядке постоянным током
  • 2 Схемы зарядного устройства для авто АБ
    • 2.1 Простые схемы
    • 2.2 Схемы с возможностью регулировки
  • 3 Видео по теме

Немного теории

Процесс заряда аккумуляторов должен проходить по определенным правилам. Причем процесс заряда зависит от вида батареи. Нарушения этих правил приводит к уменьшению емкости и срока эксплуатации. Потому параметры зарядного устройства для автомобильного аккумулятора подбираются для каждого конкретного случая. Такую возможность предоставляет сложное ЗУ с регулируемыми параметрами или купленное специально под эту батарею. Есть и более практичный вариант — сделать зарядное устройство для автомобильного аккумулятора своими руками. Чтобы знать, какие параметры должны быть, немного теории.

Перед началом заряда надо измерить напряжение

Виды зарядных устройств для аккумуляторных батарей

Заряд аккумулятора — процесс восстановления израсходованной емкости. Для этого на клеммы аккумулятора подается напряжение, немного превышающее рабочие показатели АБ. Подаваться может:

  • Постоянный ток. Время заряда — не менее 10 часов, в течении всего этого времени подается фиксированный ток, напряжение изменяется от 13,8-14,4 В в начале процесса до 12,8 В в самом конце. При таком виде заряд накапливается постепенно, держится дольше. Недостаток этого способа — необходимо контролировать процесс, вовремя отключить зарядное устройство, так как при перезаряде электролит может закипеть, что существенно снизит его рабочий ресурс.
  • Постоянное напряжение. При заряде постоянным напряжением, ЗУ выдает все время напряжение 14,4 В, а ток изменяется от больших значений в первые часы заряда, до очень небольших — в последние. Потому перезаряда АБ не будет (разве что вы оставите его на несколько суток). Положительный момент этого способа — время заряда уменьшается (90-95% можно набрать за 7-8 часов) и заряжаемый аккумулятор можно оставить без присмотра.
    Но такой «экстренный» режим восстановления заряда плохо влияет на срок службы. При частом использовании постоянным напряжением АБ быстрее разряжается.

Графики изменения параметров ЗУ в разных режимах

В общем, если нет необходимости спешить, лучше использовать заряд постоянным током. Если надо за короткое время восстановить работоспособность аккумулятора — подавайте постоянное напряжение. Если говорить о том, какое лучше сделать зарядное устройство для автомобильного аккумулятора своими руками, ответ однозначен — подающее постоянный ток. Схемы будут простые, состоящие из доступных элементов.

Как определить нужные параметры при зарядке постоянным током

Опытным путем установлено, что заряжать автомобильные свинцовые кислотные аккумуляторы (их большинство) необходимо током, который не превышает 10% от емкости батарей. Если емкость заряжаемой АБ 55 А/ч, максимальный ток заряда будет 5,5 А; при емкости 70 А/ч — 7 А и т.д. При этом можно ставить чуть меньший ток. Заряд будет идти, но медленнее. Он будет накапливаться даже если ток заряда будет 0,1 А. Просто для восстановления емкости потребуется очень много времени.

Так как в расчетах принимают, что ток заряда составляет 10%, получаем минимальное время заряда — 10 часов. Но это — при полном разряде аккумулятора, а его допускать нельзя. Потому фактическое время заряда зависит от «глубины» разряда. Определить глубину разряда можно, замерив вольтаж на АБ до начала заряда:

Чтобы рассчитать примерное время заряда АБ, надо узнать разницу между максимальным зарядом батареи (12,8 В) и текущим ее вольтажом. Умножив цифру на 10 получим время в часах. Например, напряжение на аккумуляторе перед зарядом 11,9 В. Находим разницу: 12,8 В — 11,9 В = 0,8 В. Умножив эту цифру на 10, получаем что время заряда будет около 8 часов. Это при условии, что подавать будем ток, который составляет 10% от емкости батареи.

Схемы зарядного устройства для авто АБ

Для заряда аккумуляторов обычно используется бытовая сеть 220 В, которая преобразуется в пониженное напряжение при помощи преобразователя.

Простые схемы

Наиболее простой и эффективный способ — использование понижающего трансформатора. Именно он понижает 220 В до требуемых 13-15 В. Такие трансформаторы можно найти в старых ламповых телевизорах (ТС-180-2), компьютерных блоках питания, найти на «развалах» блошиного рынка.

Но на выходе трансформатора получается переменное напряжение, которое необходимо выпрямить. Делают это при помощи:

В приведенных схемах присутствуют также предохранители (1 А) и измерительные приборы. Они дают возможность контролировать процесс заряда. Их из схемы можно исключить, но придется периодически использовать для контроля мультиметр. С контролем напряжения это еще терпимо (просто приставлять к клеммам щупы), то контролировать ток сложно — в этом режиме измерительный прибор включают в разрыв цепи. То есть, придется каждый раз выключать питание, ставить мультиметр в режиме измерения тока, включать питание. разбирать измерительную цепь в обратном порядке. Потому, использование хотя-бы амперметра на 10 А — очень желательно.

Недостатки этих схем очевидны — нет возможности регулировать параметры заряда.  То есть, при выборе элементной базы выбирайте параметры так, чтобы на выходе сила тока была те самые 10% от емкости вашего аккумулятора (или чуть меньше). Напряжение вы знаете — желательно в пределах 13,2-14,4 В. Что делать, если ток получается больше желаемого? Добавить в схему резистор. Его ставят на плюсовом выходе диодного моста перед амперметром. Сопротивление подбираете «по месту», ориентируясь на ток, мощность резистора — побольше, так как на них будет рассеиваться лишний заряд (10-20 ВТ или около того).

И еще один момент: зарядное устройство для автомобильного аккумулятора своими руками, сделанное по этим схемам, скорее всего, будет сильно греться. Потому желательно добавить куллер. Его можно вставить в схему после диодного моста.

 

 

Схемы с возможностью регулировки

Как уже говорили, недостаток всех этих схем — в невозможности регулировки тока. Единственная возможность — менять сопротивления. Кстати, можно поставить тут переменный подстроечный резистор. Это будет самый простой выход. Но более надежно реализована ручная регулировка тока в схеме с двумя транзисторами и подстроечным резистором.

Схема зарядного устройства для автомобильного аккумулятора с возможностью ручной регулировки тока заряда

Ток заряда изменяется переменным резистором. Он стоит уже после составного транзистора VT1-VT2, так что ток через него протекает небольшой. Потому мощность может быть порядка 0,5-1 Вт. Его номинал зависит от выбранных транзисторов, подбирается опытным путем (1-4,7 кОм).

Трансформатор мощностью 250-500 Вт, вторичная обмотка 15-17 В. Диодный мост собирается на диодах с рабочим током 5А и выше.

Транзистор VT1 — П210, VT2 выбирается из нескольких вариантов: германиевые П13 — П17; кремниевые КТ814, КТ 816. Для отвода тепла устанавливать на металлической пластине или радиаторе (не менее 300 см2).

Предохранители: на входе ПР1 — на 1 А, на выходе ПР2 — на 5 А. Также в схеме есть сигнальные лампы — наличия напряжения 220 В (HI1) и тока заряда (HI2). Тут можно ставить любые лампы на 24 В (в том числе и светодиоды).

Видео по теме

Зарядное устройство для автомобильного аккумулятора своими руками — популярная тема для автолюбителей. Откуда только не извлекают трансформаторы — из блоков питания, микроволновок.. даже мотают сами. Схемы реализуются не самые сложные. Так что даже без навыков в электротехнике можно справиться самостоятельно.

Как подключить солнечную панель к батарее: 5 шагов (с видео)

Эти инструкции с помощью пошаговых видеороликов покажут вам один из основополагающих навыков создания систем солнечной энергии своими руками: как подключить солнечная панель к аккумулятору.

К концу вы будете заряжать свою 12-вольтовую батарею — или выше — бесплатной солнечной энергией .

(Если это не заставит вашу кровь биться быстрее… Я не знаю, что будет .)

Хорошо. Давайте приступим!

Материалы и инструменты

Материалы

Примечание: Я перечислил размеры, которые я использовал, и дал ссылку либо на точные материалы, которые я купил для своей установки, либо на материалы, совместимые с ней. Не стесняйтесь копировать мою установку. В противном случае отрегулируйте размеры ваших компонентов в соответствии с величиной тока, который будет протекать через вашу систему.

  • Солнечная панель, 100 Вт, 12 В
  • Аккумулятор, 12 В
  • Контроллер заряда Renogy Wanderer 30A от солнечной батареи
  • Провод 12 калибра
  • Соединители проводов 12 калибра
  • Адаптерные кабели MC4 для солнечных батарей
  • Удлинительные кабели MC4 для солнечных батарей (при необходимости)
  • Встроенный предохранитель MC4 на 15 А
  • Встроенный держатель предохранителя с термоусадочной трубкой на 20 А
  • Перчатки
  • Защитные очки

Инструменты

  • Отвертка
  • Инструмент для зачистки проводов
  • Обжимной инструмент
  • Кусачки
  • 7 Тепловой пистолет

    40014 Шаг 1. Знакомство со схемой подключения

    Вот схема подключения солнечной панели к аккумулятору:

    Важно понимать следующее:

    • Не подключайте солнечную панель напрямую к аккумулятору. Это может привести к повреждению аккумулятора. Вместо этого подключите аккумулятор и солнечную панель к контроллеру заряда солнечной батареи.
    • Рекомендуется перепрошить вашу систему. Советы по технике безопасности! Поместите один предохранитель между положительной клеммой аккумулятора и контроллером заряда. Поместите другой между положительным проводом солнечной панели и контроллером заряда.

    Шаг 2. Изготовление кабелей аккумулятора

    У меня не было готовых кабелей аккумулятора. Поэтому я решил сэкономить немного денег и сделать свой собственный.

    Оказывается, это довольно просто. Вот как я это сделал:

    Отрежьте два куска провода нужной длины и зачистите оба конца. (Я сделал один немного короче, чтобы учесть предохранитель, который я собираюсь к нему прикрепить.)

    Поместите предохранитель в держатель предохранителя. Используйте наш калькулятор размера предохранителя, чтобы найти правильный размер предохранителя.

    Подсоедините один из проводов держателя предохранителя к более короткому кабелю аккумуляторной батареи с помощью выбранного разъема. (Я использовал соединитель для стыкового соединения калибра 12-10.)

    Оберните разъем термоусадочной трубкой и термофеном.

    Наденьте кусок термоусадочной трубки на каждый кабель батареи ( перед , обжимая клеммные соединители… не забудьте до тех пор, как я сделал 😅).

    Затем обожмите разъемы клемм аккумулятора на кабелях аккумулятора и оберните соединения термоусадочной пленкой. Посмотрите на клеммы аккумулятора, чтобы узнать, какой размер разъемов использовать. У меня используются кольцевые клеммы 1/4″.

    Кабели батареи в сборе!

    Теперь они готовы к подключению. ⚡

    Шаг 3: Подсоедините аккумулятор к контроллеру заряда

    Примечание: На этом этапе я надел перчатки и защитные очки, потому что такие места, как Advanced Auto Parts, рекомендуют носить их при работе с аккумуляторами.

    Следуйте инструкциям в руководстве вашего контроллера заряда для подключения его к аккумулятору. Я покажу вам, как подключить контроллер заряда, который я использовал, Renogy Wanderer:

    Подключите отрицательный кабель аккумулятора, тот, что без предохранителя, к «-» клемме аккумулятора на контроллере заряда.

    Подсоедините положительный кабель аккумуляторной батареи, тот, что с предохранителем, к «+» клемме аккумуляторной батареи. (Renogy рекомендует подсоединять кабели аккумулятора к контроллеру заряда перед их подключением к аккумулятору.)

    Подсоедините кабели аккумулятора к клеммам аккумулятора — сначала к отрицательному, затем к положительному. Перед подключением положительного кабеля я люблю прикасаться им к положительной клемме аккумулятора, потому что иногда возникает небольшая искра.

    Контроллер заряда должен включиться или загореться, чтобы указать, что батарея подключена правильно. Например, у меня горит свет.

    Теперь аккумулятор подключен!

    На этом этапе ваше руководство может рассказать вам, как запрограммировать контроллер заряда для вашего типа батареи, напряжения и т. д.

    У моего есть кнопка, которую я могу нажать, чтобы указать тип батареи. По умолчанию используется герметичная свинцово-кислотная батарея, которую я использую. Так что я просто оставил его в настройках, которые были включены.

    Шаг 4: Подключите солнечную панель к контроллеру заряда

    Далее — подключение солнечной панели!

    Большинство кабелей для солнечных панелей поставляются с предварительно прикрепленными разъемами MC4. Чтобы подключить солнечную панель к контроллеру заряда, вам потребуются кабели солнечного адаптера MC4. Кабели солнечного адаптера

    MC4 необходимы для подключения солнечной панели к контроллеру заряда

    (в основном это отрезок солнечного фотоэлектрического провода, который имеет разъем MC4 на одном конце и зачищен на другом. Для моей установки я сделал свой собственный путем сборки штекерного и гнездового разъемов MC4. Я также купил солнечные удлинители MC4. Удлинительные кабели не являются обязательными в зависимости от того, насколько далеко друг от друга находятся ваша солнечная панель и контроллер заряда.)

    К положительному кабелю панели подсоедините встроенный предохранитель MC4, положительный удлинительный кабель (если используется), а затем адаптерный кабель MC4.

    Для отрицательного кабеля панели подсоедините отрицательный удлинительный кабель (если используется), а затем адаптерный кабель MC4. Не допускайте соприкосновения оголенных проводов!

    Следуйте инструкциям в руководстве вашего контроллера заряда для подключения его к солнечной панели. Я покажу вам, как я подключил свой:

    Сначала подключите отрицательный солнечный кабель к контроллеру заряда, затем подключите положительный. Ваш контроллер заряда должен включиться или загореться, чтобы указать, что панель правильно подключена.

    Теперь все соединено вместе!

    Еще один шаг…

    Шаг 5. Поместите солнечную панель на солнце

    Поместите солнечную панель под прямыми солнечными лучами под оптимальным для вашего местоположения углом наклона (это легко сделать с помощью моего самодельного крепления для солнечной панели за 11 долларов). ).

    Как только вы это сделаете, ваш контроллер заряда должен показать, что аккумулятор заряжается. У меня есть индикатор, который мигает, когда батарея заряжается нормально.

    Вот так, готово. 🥳

    Теперь вы знаете, как зарядить аккумулятор с помощью солнечной батареи!

    Расслабьтесь и дайте панели собрать всю эту бесплатную солнечную энергию. Контроллер заряда прекратит зарядку аккумулятора, когда он полностью заполнится.

    Сколько времени требуется для зарядки аккумулятора с помощью солнечной панели?

    Используйте наш калькулятор времени зарядки солнечной батареи, чтобы узнать. Ответ зависит от многих факторов.

    В качестве примера, вот характеристики установки, которую я использовал:

    • Свинцово-кислотный аккумулятор 12 В, 33 Ач
    • Глубина разряда аккумулятора 50 %
    • Солнечная панель 100 Вт
    • ШИМ-контроллер заряда

    Согласно нашему калькулятору, при такой настройке для полной зарядки потребуется около 4,5 пиковых солнечных часов батарея.

    Но измените любую часть установки — например. замените солнечную панель на 50 Вт, литиевую батарею или контроллер заряда MPPT — и время зарядки будет другим.

    Так что да, определенно рекомендую калькулятор для этого вопроса.

    Попробуйте:

    Рассчитайте время зарядки

    3 самодельных проекта солнечной энергии, которые вы можете построить прямо сейчас

    То, что вы только что построили, было вашей первой установкой солнечной батареи. Это большое дело!

    Теперь, когда вы прошли этот этап, вот еще несколько проектов, которые, я думаю, вам будут интересны:

    1. Зарядное устройство для автомобильных аккумуляторов на солнечных батареях на самом деле сделал зарядное устройство для солнечной батареи 12V. Автомобильные аккумуляторы — это 12-вольтовые аккумуляторы, поэтому вы можете так же легко использовать систему, которую вы только что сделали — или почти идентичную, описанную в этом руководстве — для зарядки автомобильного аккумулятора от солнечной энергии.

    2. Самодельные 12-вольтовые светодиодные фонари на солнечных батареях

    В этих светодиодных фонарях на солнечных батареях используется практически та же система, которую вы только что построили. Все, что вам нужно сделать сейчас, это подключить несколько светодиодных лент к аккумулятору, и все готово.

    3. Солнечное зарядное устройство для электровелосипеда

    Вы можете собрать модифицированную версию системы солнечной зарядки, которую вы только что сделали, для зарядки электровелосипеда от солнечной энергии. Или просто подключите инвертор к 12-вольтовой батарее и подключите зарядное устройство для электровелосипеда, как обычно.

    Зарядка автомобильного аккумулятора без зарядного устройства

    Большинство людей знают, что автомобильный аккумулятор постоянно заряжается от бортовой сети автомобиля. На самом деле нет причин вытаскивать аккумулятор для каких-либо других целей. Однако автомобильные аккумуляторы также используются для других целей, помимо стандартного автомобиля. Теперь сложно понять, как зарядить аккумулятор без зарядного устройства. С легкостью заряжайте компоненты автомобильного аккумулятора, следуя этим простым инструкциям.

    Собрать части

    Прежде чем искать в Интернете «зарядка автомобильного аккумулятора без зарядного устройства», сначала подумайте о факторе безопасности.

    Работа с автомобильным аккумулятором означает, что через клеммы проходит значительное напряжение и ток.

    Соберите эти предметы вместе, например:

    • Защитные очки
    • Прочные перчатки
    • Проволочные щупы с зажимами
    • Три праздничных огонька

    Все эти предметы помогут вам заряжать компоненты автомобильного аккумулятора, уделяя первостепенное внимание безопасности. Праздничный свет или лампочки также являются средствами безопасности, поскольку освещение дает сигналы для текущего контроля.

    Выберите источник питания

    Должен быть источник питания в той или иной форме, чтобы мог происходить процесс медленной зарядки автомобильного аккумулятора. Подумайте о запасах энергии, которые у вас есть под рукой. На рабочем столе техника может быть источник питания. У домашнего мастера тоже могут быть эти устройства.

    Подойдет и другой аккумулятор с таким же напряжением, как автомобильный аккумулятор. Убедитесь, что источник питания надежный. Разряженная батарея   создаст проблемы с зарядкой.

    Проверка выходной мощности

    В идеале вы хотите медленно заряжать компоненты автомобильного аккумулятора, если у вас нет зарядного устройства. Эффект струйки гарантирует, что батарея не перезарядится, не задымится и не взорвется. Из-за этих нестабильных условий Battery University рекомендует всегда контролировать сеанс зарядки.

    Проверьте выходную мощность источника питания с помощью проволочных щупов. Проверьте напряжение и ток. Пока у вас есть щупы, проверьте напряжение на сомнительном автомобильном аккумуляторе. Вы будете иметь представление о том, сколько времени займет сеанс зарядки с учетом этих значений.

    Добавьте свет

    Разместите источник питания и батарею как можно дальше друг от друга, инструктирует Пеп Бойз . На этом расстоянии можно безопасно заряжать компоненты автомобильного аккумулятора. В противном случае между двумя устройствами может образоваться искра.

    Подключите три праздничных фонаря между источником питания и автомобильным аккумулятором. Эти индикаторы дают вам визуальный сигнал о том, что ток течет. Они также потребляют интенсивный ток, так что у вас есть эффективное зарядное устройство, которое только течет.

    Соедините зажимы

    Вы готовы соединить вместе источник питания, свет и автомобильный аккумулятор. Обязательно размещайте установку вдали от других людей. Где заряжать компоненты автомобильного аккумулятора — ключевой элемент безопасности. Сначала подключите отрицательный зажим к источнику питания. Замкните цепь, присоединив другой отрицательный зажим к автомобильному аккумулятору. Повторите этот процесс с положительной стороной. В этот момент должна течь сила.

    Смотреть установку

    Помните, что через эту установку вы будете получать только энергию. Автомобильный аккумулятор может набрать всего несколько вольт за 10 или 20 минут зарядки. Вы можете проверить прогресс с помощью мультиметра, подключенного к клеммам аккумулятора.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *