Зарядное устройство для автомобильных аккумуляторов своими руками: схемы изготовления разных устройств
Наверное, каждый автолюбитель сталкивался с проблемой разряженного аккумулятора. Иногда аккумулятор разряжается в самых неожиданных ситуациях, например, когда водитель собирается на работу и торопится, чтобы не опоздать. В такие моменты разряженный аккумулятор может привести к не самым приятным последствиям.
Для того чтобы можно было избегать подобных ситуаций, многие автолюбители прибегают к помощи специальных устройств, которые позволяются зарядить автомобильный аккумулятор. Такие зарядные устройства можно с лёгкостью приобрести в специальных магазинах или на рынках. Ассортимент широкий, цены разные.
Но многие автолюбители хоть раз задумывались об изготовлении зарядного устройства для своих аккумуляторов своими руками. А такая возможность действительно есть. По сути, каждый пользователь может собрать такое устройство своими собственными силами, потратившись разве что на компоненты всего прибора. К тому же, используя все нужные для этого схемы и инструкции, любой автолюбитель может изготовить зарядное устройство для аккумулятора своего автомобиля своими руками, особенно если у него уже есть определённый опыт работы с электротехникой.
Простое зарядное устройство на микросхеме LM317
Для начала можно представить вариант создания зарядного устройства на микросхеме LM137, представляющей из себя линейный стабилизатор напряжениям, способный регулировать выходное напряжения. Этот вариант может называться одним из самых простых, так как само устройство такой самодельной зарядки не является сложным, что позволяет пользователю изготовить его без особых проблем.
В этом варианте устройства будут задействованы целых два стабилизатора. Делается это для того, чтобы один из этих двух стабилизаторов был подключён по схеме стабилизатора тока, в то время как на втором должен быть собран пороговый узел.
Схема
Выше представлена схема такого зарядного устройства. На ней можно заметить, что резисторы R2 и R3, с помощью которых можно выставить необходимое пользователю напряжение на выходе, заменены тут на переменный резистор. Это делается для более удобной подстройки. Заряд аккумулятора будет завершён именно в тот момент, когда напряжение на самом аккумуляторе будет равно напряжения заряда устройства.
Максимально допустимое значение заряда тока равняется 1,5 Ампер. Несмотря на кажущуюся слабость, этого значения зарядного устройства хватит для зарядки аккумуляторов. Получившимся устройством можно будет заряжать бесперебойники, аккумуляторы для мотоциклов и автомобилей. В случае последних, процесс зарядки будет весьма продолжительным, но нужно признать, что вариант такого самодельного зарядного устройства — очень даже рабочий и может, несомненно, пригодиться.
В том случае, если ток с зарядного устройства будет более 500 мА, то микросхему рекомендуется устанавливать на теплоотвод.
Мощное зарядное устройство для аккумуляторов
Выше был указан очень простой вариант самодельного зарядного устройства для автомобильного аккумулятора, слабого, но допустимого. Сейчас будет представлен вариант одного из самых мощных устройств, которое можно сделать своими руками. Ток такого устройства будет равен до 50 Ампер, а выходная мощность — 350-600 ватт в среднем.
Схема
Схема такого устройства весьма проста. За основу берётся всем известная IR253, которая будет выполнять функции задающего генератора. Она будет управлять двумя силовыми ключами. Рекомендуется задействовать мощные N-канальные полевые высоковольтные транзисторы.
Как можно заметить, схема блока являет собой полумост. Сетевое напряжение поступает на выпрямитель через сетевой фильтр. Для ограничения пускового тока используется термистор, имеющий расчётный ток 5 Ампер и сопротивление 5 Ом. Плёночные конденсаторы и дроссель выполняют роль сетевого фильтра для сглаживания помех и сетевых пульсаций.
В качестве мостового выпрямителя можно взять уже готовый мост, но в то же время можно собрать его из четырёх отдельных диодов. В обоих указанных случаях мост должен быть рассчитан на ток 6-10 и напряжение 600-1000 Вольт (рекомендуемые значения). Для этого очень удобно будет использовать готовые сборки диодов, которые уже имеются в блоках питания компьютеров.
Электролиты полумоста имеют эффективную ёмкость 330-470 мкФ и рабочее напряжение, составляющее 200-250 Вольт. В случае если мощность блока будет выше, чем допустимые значения, то следует увеличить ёмкость вышеуказанных конденсаторов, которые, кстати, также можно обнаружить в блоках питания персональных компьютеров. Там же можно найти и готовый трансформатор, который не будет нуждаться в перемотке.
Силовые транзисторы могут быть установлены либо на общий теплоотвод, либо на отдельные. Кстати, в том случае, если пользователь решит подключить силовые транзисторы на теплоотвод общий, то придётся предварительно изолировать его ключи, для того чтобы избежать вероятность возникновения короткого замыкания.
Во время сборки микросхему рекомендуется устанавливать на специальную платформу. Это делается для лёгкой замены микросхем в том случае, если она неожиданно выйдет из строя. На устройство не будут оказывать влияние перепады напряжения в сети, что гарантирует его стабильную работу без каких-либо сбоев и шумов.
Следует запомнить тот момент, что в холостом режиме транзисторы должны быть холодными, даже ледяными. В противном случае это может означать ошибку в монтаже или какой-то компонент сборки не работает.
В качестве диодного выпрямителя на выходе прибора рекомендуется задействовать быстрые, импульсные или ультрабыстрые диоды с большим током (это 30 Ампер), также можно использовать диодные сборки шоттки, работающие на большой мощности. В случае этого устройства лучше не применять обычные выпрямители на 50 Гц, так как на выходе схемы имеется напряжение высокой частоты.
- Внимание нужно заострить на том, что данный блок не оснащён защитой от возможных коротких замыканий, поэтому не следует замыкать провода на выходе, так как в противном случае схема может дать сбой и выйти из строя.
Вся схема довольно компактна и легка, что может обрадовать не самых опытных пользователей, не имеющих определённых навыков и большого опыта в этом деле. Имеющая схема сможет помочь в этом деле.
Импульсное зарядное устройство для аккумуляторов
Можно рассмотреть вариант с изготовлением импульсного зарядного устройства. Принцип создания такого устройства заключается в том, что следует просто заменить трансформаторный блок питания на импульсный. Это довольно компактное и лёгкое зарядное устройство, которое будет подробно рассмотрено ниже. Импульсный источник питания изготавливается посредством применения
Эта схема отличается от других своих аналогов тем, что в данном случае вместо двух конденсаторов, которые подключены со средней точкой, после диодного моста применяется всего один электролит.
Схема
Этот вариант зарядного устройства рассчитан на сравнительно небольшую мощность, что в принципе можно исправить, если заменить некоторые компоненты на более мощные. В результате можно создать более мощное устройство.
В данной схеме могут быть использованы ключи серии 8N50. Эти ключи оснащены изолированным корпусом, так что в случае применения общего теплоотвода, можно не беспокоиться о слюдяных прокладках, так как их можно вообще не использовать.
Диодные мосты, опять же, можно взять от блоков питания от обычных персональных компьютеров, а можно собрать его их четверых выпрямительных диодов.
После можно упомянуть цепочку питания микросхемы. Питание можно взять с переменки, резистор для гашения тока на 18 кОм. После резистора находится простой выпрямитель на одном-единственном диоде и питание поступает сразу на микросхему.На питании также стоит электролит с параллельно подключённым керамическим или плёночным конденсатором, что делается для наилучшего сглаживания помех и пульсаций.
- Кстати, и силовой трансформатор можно взять также из компьютерного блока питания. Он как раз превосходно подходит для таких целей, так как обеспечивает приличный ток на выходе и обеспечивает сразу несколько выходных напряжений.
Выходные выпрямительные диоды обязательно должны быть импульсными, так как обычные не смогут работать из-за повышенной частоты. Сетевой фильтр можно и не ставить, хотя пару ёмкостей и дроссель, представляющих собой фильтр, желательны к установке. Для снижения бросков на входе до фильтра можно использовать термистор Ом на 5, легко вытащить из компьютерного блока питания.
Электролитический конденсатор подбирается с учётом специального отношения 1 Ватт — 1 мкФ. Напряжение такого конденсатора должно быть равно 400 вольт.
Это довольно несложная схема, которая может быть выполнена даже пользователем, не обладающим опытом. К тому же при наличии необходимых схем и советов к созданию такого устройства, можно справиться без особых проблем.
Самодельное импульсное зарядное устройство для автомобильного аккумулятора
Недавно под заказ попросили сделать высоковольтный генератор. Сейчас некоторые спросят себя — какое отношение имеет высоковольтный генератор к зарядному устройству? Должен заметить, что один из самых простых импульсных зарядников можно построить на базе приведенной схемы и в качестве наглядной демонстрации я решил собрать
инвертор на макете и изучить все основные достоинства и недостатки данного инвертора.
Автоэлектрика. Мощное импульсное зарядное устройство для АКБ.
Ранее, я уже выкладывал статью про зарядное устройство на основе полумостового инвертора на драйвере IR2153, в этой статье тот же драйвер, только чуть иная схематика, без использования емкостей полумоста, так, как с ними было много вопросов и многие просили схему без конденсаторов.
Но без конденсаторов и тут не обошлось, он нужен для сглаживания помех и бросков после сетевого выпрямителя, емкость я подобрал 220 мкФ, но можно и меньше — от 47 мкФ, напряжение 450 Вольт в моем случае, но можно ограничиться 330-400 Вольт.
Диодный мост можно собрать из любых выпрямительных диодов с током не менее 2А (желательно в районе 4-6А и более) и с обратным напряжением не менее 400 Вольт, в моем случае был использован готовый диодный мост из компьютерного блока питания, обратное напряжение 600 Вольт при токе 6 Ампер — то, что надо!
Напомню, что это самый простой вариант подключения микросхемы и самый простой ИБП от сети 220 Вольт, который может вообще существовать, если хотите долговечное зарядное устройство, то схему придется доработать.
Для обеспечения нужных параметров питания микросхемы использован резистор 45-55кОм с мощностью 2 ватт, если таковых нет, то можно подключить последовательно 2-3 резисторов, конечное сопротивление которых, будет в пределе указанного.
Диод от 1-ой к 8-ой ножке микросхемы должен быть с током не менее 1 А и с обратным напряжением не ниже 300 Вольт, в моем случае был использован быстрый диод на 1000 Вольт 3 Ампер, но он не критичен, можно использовать диоды HER107, HER207, HER307, FR207 (на крайняк), UF4007 и т.п.
Полевые транзисторы нужны высоковольтные, типа IRF840 или IRF740. Трансформатор был взят готовый, от компьютерного блока питания. На входе питания стоят два пленочных конденсатора до и после дросселя, дроссель взят готовый, он имеет две одинаковые обмотки (независимые друг от друга) каждая по 15 витков провода 0,7мм.
Термистор, предохранитель, резистор на входе — тут только для защиты схемы от резких бросков напряжения, не советую их убрать, но схема и без них прекрасно работает. Выпрямляется выходное напряжение мощным сдвоенным диодом, который тоже можно найти в компьютерном блоке питания.
На выходах трансформатора образуется разное напряжение (3,3/5/12Вольт). Шину 12 Вольт найти очень легко, обычно это два вывода с одного края, нужную обмотку найти легко, если использовать галогенную лампу на 12 Вольт, судя по свечению можно сделать вывод о напряжении.
Готовый блок можно дополнить регулятором мощности и защитой от перегруза и короткого замыкания и получить полноценное зарядное устройство для автомобильного аккумулятора, напомню, что ток с шины 12 Вольт доходит до 8-12 Ампер, зависит от конкретного типа трансформатора.
ВНИМАНИЕ! Данный блок питания не имеет встроенную защиту от короткого замыкания и перегруза на выходе, поэтому при замыкании выходных проводов блок скорее всего выйдет из строя, во избежания дымовых эффектов очень советую ознакомиться с материалом http://xn—-7sbbil6bsrpx.xn--p1ai/blok-zashhity-zaryadnyx-ustrojstv.html, неплохо бы и регулировку напряжения блока, тема про регулятор мощности описана тут http://xn—-7sbbil6bsrpx.xn--p1ai/prostoj-regulyator-moshhnosti-dlya-zaryadnogo-ustrojstva.html
Всего доброго и до новых встреч на страницах сайта.
Разделы сайта
DirectAdvert NEWS
Друзья сайта
Статистика
Импульсное ЗУ для автомобильных аккумуляторов с током до 7 Ампер.
Импульсное зарядное устройство_схема_описание
Для радиолюбителей, отдающих предпочтение импульсной технике, предлагаем ознакомиться с принципиальной схемой малогабаритного зарядного устройства, способного заряжать аккумуляторы током до 7 Ампер, при этом ток потребления устройством от сети 220 Вольт не превышает 2 Ампер, и остается работоспособным при снижении питающего напряжения примерно до 170 Вольт.
Принципиальная схема зарядного устройства изображена на следующем рисунке:
Установив необходимый ток заряда, данным устройством можно заряжать не только автомобильные, но и другие аккумуляторы, например, блоков бесперебойного питания, аккумуляторы электроинструмента, и т.д. Зарядный ток контролируется с помощью встроенного амперметра, в роли которого можно использовать стрелочный индикатор от магнитофона с соответствующим шунтом, и шкалой, отградуированной в амперах.
Вернемся к принципиальной схеме. Входная часть – высоковольтная. На входе стоит выпрямитель D1, рассчитанный на ток до 10 Ампер, и пара сглаживающих емкостей С1 и С2. Выпрямленное напряжение получается порядка 290 Вольт. На транзисторах Т1 и Т2 собран блокинг-генератор, на выходе которого стоит импульсный трансформатор. Обмотка III является нагрузкой генератора, обмотки II и IV обеспечивают поочередное открывание транзисторов генератора, частота которого лежит в пределах 25…30 кГц. Диоды D2 и D3 обеспечивают защиту транзисторных ключей от пробоя обратным напряжением, это связано с индуктивными выбросами, которые могут возникать в импульсном трансформаторе. R2 и R3 стоят как ограничители тока, протекающего через ключи, а резисторы R4 и R5 – ограничители токов баз Т1 и Т2 соответственно.
Далее по схеме идет низковольтная часть. С обмоток импульсного трансформатора V и VI
Переменное напряжение поступает на выпрямитель D4, фильтруется емкостью С4 и поступает на ШИМ-регулятор (транзисторы Т3 и Т4). Переменный резистор изменяет скважность импульсов, которыми управляется полевой транзистор Т5. От номиналов емкостей С6 и С7 зависит частота генерации широтно-импульсного модулятора, она должна лежать в диапазоне 5…7 кГц.
Лампа HL1 – визуальный контроль работы зарядного устройства.
На низковольтном выпрямителе получается порядка 18 Вольт, поэтому последовательно с вентилятором, рассчитанным на напряжение 12 Вольт, включен резистор номиналом 10 Ом.
Чуть не забыли написать про кнопку S1. С ее помощью производится запуск генератора, и, соответственно пуск зарядного устройства в работу. Эта кнопка не фиксированная, запуск осуществляется коротким нажатием, то есть импульсом. Если на выходе будет короткое замыкание, генерация сорвется, и блокинг-генератор прекратит работу. После устранения КЗ пусковая кнопка нажимается заново.
Основой для намотки служит ферритовое кольцо, наружный диаметр которого 30 мм. Параметры намотки следующие:
● Обмотка III – 140 витков, провод ПЭЛ-0,31 мм, мотается первой, далее слой фторопластовой ленты.
● Обмотки I, II, IV – по 2 витка каждая, можно использовать жилы от телефонного кабеля.
● Обмотки V, VI – по 18 витков каждая, диаметр провода 3,6 мм. Для удобства в намотке скрутите жгут из 20-ти жил провода диаметром 0,18 мм, намотать будет гораздо легче. Для скручивания жгута используйте шуруповерт.
В результате должно получиться примерно так:
Импульсный трансформатор для зарядного устройства
Ключевые транзисторы Т1 и Т2 – биполярные, типа MJE13007, устанавливаются на небольшие радиаторы. Можно заменить на EN13007, EN13009.
Транзисторы Т3 и Т4 – биполярные, 2SC1815. Можно заменить на КТ315.
Транзистор T5 – полевой, типа N302AP, тоже можно установить на небольшой радиатор.
Диодный мост D1 – KBP208G, или аналогичный на ток 10 Ампер.
Диоды D2 и D3 – 1N4007, можно заменить на отечественные КД226Д.
Резисторы R1, R4, R5, R7, R8, R9, R10, R11, R12 – типа МЛТ-0,25.
Резисторы R2, R3, R6 – типа МЛТ-0,5.
Конденсаторы С1 и С2 – 33 мкФ, на напряжение не ниже 250 Вольт.
Конденсатор С3 – 2200 пФ на 400 Вольт.
Ниже на снимках показан внешний вид печатной платы:
Печатная плата зарядного устройства
Печатная плата зарядного устройства_сторона элементов
. Печатную плату в формате LAY и принципиальную схему можно скачать одним файлом по прямой ссылке с нашего сайта. Размер файла архива – 0,045 Mb.
Далее на снимках показана собранная печатная плата (вид со стороны элементов, и вид со стороны дорожек):
Импульсное зарядное устройство в сборе
. Будьте аккуратны при отладке зарядного устройства, помните, что входные цепи находятся под напряжением питающей сети, ведь правила электробезопасности еще никто не отменял.
Порой аккумулятор в автомобиле разряжается очень быстро. В итоге приходится использовать различные приборы для того, чтобы завести машину. На сегодняшний день большой популярностью пользуются именно импульсные зарядные устройства. Основными их производителями принято считать компании «Сонар» и «Бош».
Однако некоторые люди не могут себе позволить купить указанные приборы, поскольку они дорого стоят. В такой ситуации можно попробовать самостоятельно собрать модель. Для того чтобы разобраться в импульсных зарядках, необходимо взглянуть на стандартную схему устройства.
Схема обычной зарядной модели
Схемы импульсных зарядных устройств для автомобильных аккумуляторов включают в себя трансформатор с магнитопроводом, а также транзисторы. Для настройки напряжения используются регуляторы, которые подсоединены к модуляторам. Также схема импульсного зарядного устройства включает в себя специальные триггеры. Основной их задачей является повышение стабильности напряжения. Для подключения прибора на зарядке имеются зажимы. Непосредственно само электричество подается через кабель.
Устройство на 6 В: схема и инструкция
Сделать на 6 В импульсное зарядное устройство своими руками довольно просто. С этой целью для трансформатора сооружается небольшая платформа. Также необходимо заранее заготовить изоляторы. Непосредственно трансформатор часто применяют силового типа. Проводимость тока у него в среднем равняется 6 мк. Еще важно отметить, что система способна справляться с повышенным отрицательным сопротивлением. Осцилляторы используются импульсного типа.
Для нормальной работы прибора также потребуется линейный тетрод. Подбирать его следует с обкладкой. Некоторые эксперты настоятельно советуют использовать фильтры. Таким образом, можно стабилизировать напряжение, когда перегрузки в сети превышают отметку в 20 В. По эксплуатации инструкция импульсного зарядного устройства очень простая. Для подключения устройства потребуются зажимы. При этом вилку следует воткнуть в розетку.
Как сделать зарядное на 10 В?
Схемы импульсных зарядных устройств для автомобильных аккумуляторов включают в себя понижающие трансформаторы. Начинать сборку модели следует с поиска качественного трансформатора. В данном случае потребуется мощный магнитопровод. Еще в схемы импульсных зарядных устройств для аккумуляторов входят изоляторы. Многие эксперты устанавливают регуляторы с модуляторами. Таким образом, показатель входного напряжения можно уменьшать или увеличивать. В данном случае многое зависит от мощности автомобильного аккумулятора.
Непосредственно тетроды применяются только с обкладками. Резисторы используются расширительного типа. У некоторых модификаций встречаются триггеры. Данные элементы позволяют справляться с коротковолновыми помехами, которые возникают в сети с переменным током при резком повышении уровня тактовой частоты.
Отзывы о моделях на 12 В
Импульсные зарядные устройства для аккумуляторов на 12 В в наше время пользуются большим спросом. Если верить отзывам экспертов, то для сборки модели используются понижающие трансформаторы. Осциллятор в данном случае потребуется с высокой проводимостью тока. Также важно отметить, что для моделей подходят только подстроечные триггеры.
Тетроды, в свою очередь, используются линейного типа. Параметр допустимой перегрузки в устройствах не превышает 15 Вт. Показатель номинального ток составляет в среднем 4 А. Магнитопроводы у моделей устанавливаются за трансформаторами. Специально для них необходимо подобрать качественные изоляторы. Для подключения зарядного прибора понадобятся зажимы. Если верить экспертам, то следует учесть, что самостоятельно их изготовить будет достаточно сложно.
Однофазные модификации
Сделать однофазное импульсное зарядное устройство своими руками можно на базе понижающего трансформатора. Для их сборки также используются регуляторы. Модуляторы в данном случае подойдут только коммутируемого типа. Непосредственно триггеры устанавливаются с изоляторами. Некоторые эксперты рекомендуют также использовать резиновые подкладки.
Тетроды подбираются с высокой пропускной способностью. Регуляторы устанавливаются над модулятором. Резисторов в данном случае потребуется три. Номинальное напряжение они обязаны выдерживать на отметке в 10 В. Для подключения приора понадобятся металлические фиксаторы.
Двухфазные устройства
Двухфазное автоматическое импульсное зарядное устройство собирается довольно просто. Однако в этой ситуации не обойтись без силового трансформатора. Также для сборки используются только расширительные резисторы. Показатель входного напряжения в сети, как правило, не превышает 12 В. Тиристоры для моделей используются с изоляторами. Непосредственно модулятор устанавливается на подкладку. Регулятор в данном случае подойдет поворотного типа. Для преодоления помех применяются магнитопроводы. Подключаются устройства данного типа через провод. От сети 220 В они работать тоже могут. Для подсоединения к аккумуляторам необходимы зажимы.
Отзывы о трехфазной модификации
Трехфазное импульсное зарядное устройство отзывы от экспертов имеет хорошие. Преимущество моделей заключается в том, что они способны выдерживать больше перегрузки. Магнитопроводы в данном случае устанавливаются с проводимостью на уровне 6 мк. Для стабилизации выходного напряжения применяются линейные резисторы. В некоторых случаях устанавливаются и кодовые аналоги. Однако срок службы у них не большой.
Также важно отметить, что предельное напряжение в устройствах следует регулировать при помощи модуляторов. Устанавливаются они сразу за трансформаторами. Для преодоления магнитных помех применяются подстроечные триггеры. Многие эксперты для сборки зарядных устройств рекомендуют устанавливать фильтры. Указанные элементы помогут значительно уменьшить параметр отрицательного сопротивления в цепи.
Применение импульсного трансформатора РР20
Автомобильные зарядные устройства (импульсные) с данными трансформаторами встречаются часто. В первую очередь следует отметить, что показатель номинального напряжения у них не превышает 10 В. Параметр рабочего тока равняется в среднем 3 А. Осцилляторы для сборки устройства часто используются с не большой проводимостью.
Магнитопроводы в данном случае устанавливаются на подкладках. Расширительные резисторы используются часто. Для регулировки номинального напряжения стандартно применяют модуляторы. У некоторых модификаций используются триггерные блоки. Для нормальной работы системы также не обойтись без линейных тетродов. Зажимы для прибора целесообразнее покупать отдельно. Сделать их самостоятельно очень сложно.
Использование трансформаторов РР22
Зарядные устройства (импульсные) с этими трансформаторами являются довольно распространенными. Для того чтобы самостоятельно собрать модификацию, потребуется найти качественный осциллятор. Также трансформатор будет работать только с магнитопроводом на 3 мк. В данном случае больше всего подходят резисторы расширительного типа. Однако в первую очередь важно заняться установкой регулятора. С этой целью нужно использовать коммутируемый модулятор, который устанавливается на подкладке.
Далее важно заняться полупроводниковым транзистором. Для того чтобы избежать коротких замыканий, многие эксперты рекомендуют использовать стабилизаторы. На рынке представлено множество однополюсных модификаций. В данном случае номинальное напряжение будет находиться в районе 5 В. Показатель рабочего тока составляет примерно 4 А.
Зарядное оборудование с трансформатором РР30
Для того чтобы собрать зарядные устройства (импульсные) с указанными трансформаторами, потребуется мощный магнитопровод. При этом осциллятор целесообразнее применять на 2 мк. Параметр отрицательного сопротивления в цепи обязан быть выше 3 Ом. Устанавливается магнитопровод рядом с трансформатором. Для подсоединения модулятора потребуется два контакта. Также важно отметить, что регуляторы целесообразнее использовать поворотного типа.
Многие эксперты рекомендуют резисторы устанавливать на обкладке. Все это позволит значительно сократить случаи коротких замыканий. Для стабилизации напряжения стандартно применяются фильтры. Триггерные блоки с данными трансфокаторами чаще всего используются подстроечного типа. Однако в наше время их найти сложно. Чаще всего попадаются именно оперативные аналоги. Номинальное напряжение в цепи они способны выдерживать в 15 В.
Применение разделительных трансформаторов
Разделительные трансформаторы очень редко встречаются. Основная их проблема кроется в малой проводимости тока. Также важно отметить, что они способны работать только на кодовых резисторах, которые дорого стоят в магазине. Однако преимущества у моделей есть. В первую очередь это касается повышенного номинального напряжения в цепи. Таким образом, зарядка автомобильного аккумулятора много времени не отнимет.
Также нужно отметить, что эти трансформаторы являются компактными, и в машине не займут много места. Тиристоры в данном случае применяются лишь волнового типа. Устанавливаются они чаще всего на обкладках. Для припайки модулятора применяется изолятор. Транзисторы многие эксперты настоятельно рекомендуют использовать полупроводникового типа. В магазине они представлены с различной проводимостью. В итоге параметр отрицательного сопротивления в цепи не должен превышать 8 Ом. Для подсоединения прибора к автомобильным аккумуляторам используются зажимы.
Модель с трансформатором КУ2
Трансформаторы данной серии имеют большие габариты и способны работать лишь с магнитопроводами на 4 мк. Все это говорит о том, что для нормальной эксплуатации прибора потребуются триггеры. При помощи данных устройств получится стабилизировать выходное напряжение. Также возле трансформаторов потребуется установить два фильтра. Некоторые эксперты настоятельно рекомендуют использовать стабилитроны. Однако данные устройства способны работать только при не больших перегрузках в сети.
Резисторы в данном случае можно смело применять расширительного типа. Для регулировки выходного напряжения используются коммутируемые модуляторы. Непосредственно регуляторы устанавливать следует через дроссель. Если верить отзывам экспертов, то трансформатор для безопасного использования следует располагать на подкладке. В данном случае потребуются два изолятора. Транзистора чаще всего применяются полупроводникового типа.
Зарядное оборудование с трансформатором КУ5
Зарядные устройства (импульсные) с указанными трансформаторами не пользуются большим спросом. В первую очередь это вызвано низким выходным напряжением. Таким образом, зарядка автомобильного аккумулятора занимает много времени. Однако если использовать мощный осциллятор, то ситуацию можно немного поправить. Также многие эксперты рекомендуют устанавливать расширительные резисторы.
В данном случае модулятор подойдет только коммутируемого типа. У некоторых моделей встречаются однополюсные стабилитроны. Однако в этой ситуации трансформатор может не выдержать чрезмерной нагрузки. Триггер часто применятся подстроечного типа. Для борьбы с коротковолновыми помехами не обойтись без фильтров. Чтобы подсоединить устройство к автомобильному аккумулятору используют зажимы.
Модель со сдвоенным дросселем
Зарядные устройства (импульсные) с двоенными дросселями позволяют использовать более двух модуляторов. Таким образом, можно устанавливать цифровые регуляторы напряжения. В данном случае трансформаторы чаще всего подбираются понижающего типа. Непосредственно осцилляторы используют на 3 мк. Резисторы многие эксперты рекомендуют устанавливать расширительного типа. В свою очередь кодовые аналоги не смогут долго прослужить. Тиристорные блоки применяются как волнового, так и оперативного типа.
Подведение итогов
Учитывая все вышесказанное, следует отметить, что наиболее востребованными считают трехфазные модификации. Для того чтобы их собрать, необходимо уметь пользоваться паяльной лампой. Детали для устройства нужно приобретать в специализированных магазинах. Также следует помнить о технике безопасности при подключении прибора к сети.
Импульсное зарядное устройство для автомобильного аккумулятора: схема, инструкция
Широкую популярность получили импульсные зарядные устройства для автомобильных аккумуляторов. Схем таких устройств довольно много – одни предпочитают собирать их из подручных элементов, другие же используют готовые блоки, например от компьютеров. Блок питания персонального компьютера можно без особого труда переделать во вполне качественное зарядное для автомобильного аккумулятора. Буквально за пару часов можно сделать устройство, в котором можно будет проводить замер напряжения питания и тока зарядки. Нужно только добавить в конструкцию приборы для измерения.
Основные характеристики зарядников
Всего существует два типа зарядных устройств для аккумуляторных батарей:
- Трансформаторные – у них очень большой вес и габариты. Причина – используется трансформатор – у него внушительные обмотки и сердечки из электротехнической стали, у которой большой вес.
- Импульсные зарядные устройства для автомобильных аккумуляторов. Отзывы о таких устройствах более положительные – габариты у приборов небольшие, вес тоже маленький.
Именно за компактность и полюбились потребителям зарядные устройства импульсного типа. Но кроме этого, у них более высокий КПД в сравнении с трансформаторными. В продаже можно встретить только такого типа импульсные зарядные устройства для автомобильных аккумуляторов. Схемы у них в целом похожи, отличаются они только используемыми элементами.
Элементы конструкции зарядника
При помощи зарядного устройства восстанавливается работоспособность аккумуляторной батареи. В конструкции используется исключительно современная элементная база. В состав входят такие блоки:
- Импульсный трансформатор.
- Блок выпрямителя.
- Блок стабилизатора.
- Приборы для измерения тока зарядки и (или) напряжения.
- Основной блок, позволяющий осуществлять контроль процесса зарядки.
Все эти элементы имеют маленькие габариты. Импульсный трансформатор небольшой, наматываются его обмотки на ферритовых сердечниках.
Самые простые конструкции импульсных зарядных устройств для автомобильных аккумуляторов Hyundai или других марок машин можно выполнить всего на одном транзисторе. Главное – сделать схему управления этим транзистором. Все компоненты можно приобрести в магазине радиодеталей или же снять с блоков питания ПК, телевизоров, мониторов.
Особенности работы
По принципу работы все схемы импульсных зарядных устройств для автомобильных аккумуляторов можно разделить на такие подгруппы:
- Зарядка аккумулятора напряжением, ток при этом имеет постоянное значение.
- Напряжение остается неизменным, но ток при зарядке постепенно уменьшается.
- Комбинированный метод – объединение двух первых.
Самый «правильный» способ – это изменять ток, а не напряжение. Он подходит для большей части аккумуляторных батарей. Но это в теории, так как зарядники могут осуществлять контролирование силы тока только в том случае, если напряжение на выходе будет иметь постоянное значение.
Особенности режимов зарядки
Если ток остается постоянным, а меняется напряжение, то вы получите массу неприятностей – пластины внутри аккумуляторной батареи будут осыпаться, что приведет к выходу ее из строя. В этом случае восстановить АКБ не получится, придется только покупать новую.
Наиболее щадящим режимом оказывается комбинированный, при котором сначала происходит зарядка при помощи постоянного тока. Под конец процесса происходит изменение тока и стабилизация напряжения. С помощью этого возможность закипания аккумуляторной батареи сводится к минимуму, газов тоже меньше выделяется.
Как подобрать зарядное?
Чтобы АКБ прослужила как можно дольше, необходимо правильно выбрать импульсное зарядное устройство для автомобильного аккумулятора. В инструкциях к ним указываются все параметры: ток зарядки, напряжение, даже схемы в некоторых приводятся.
Обязательно учитывайте, что зарядник должен вырабатывать ток, равный 10 % от суммарной емкости аккумуляторной батареи. Также вам потребуется учесть такие факторы:
- Обязательно учитывайте у продавца, сможет ли конкретная модель зарядника полностью восстановить работоспособность аккумулятора. Проблема в том, что не все устройства способны делать это. Если в вашей машине стоит аккумулятор на 100 А*ч, а вы покупаете зарядник с максимальным током 6 А, то его явно будет недостаточно.
- Исходя из первого пункта, внимательно смотрите, какой максимальный ток может выдать устройство. Не лишним будет обратить внимание и на напряжение – некоторые устройства могут выдавать не 12, а 24 Вольта.
Желательно, чтобы в заряднике присутствовала функция автоматического отключения при достижении полного заряда аккумулятора. С помощью такой функции вы избавите себя от лишних проблем – не нужно будет контролировать зарядку. Как только достигнет зарядка максимума, устройство само отключится.
Несколько советов для работы с зарядниками
Обязательно во время эксплуатации подобного рода приборов могут возникнуть проблемы. Чтобы этого не произошло, нужно придерживаться простых рекомендаций. Главное – добиться того, чтобы в банках аккумуляторной батареи было достаточное количество электролита.
Если его мало, то долейте дистиллированной воды. Заливать чистый электролит не рекомендуется. Обязательно также учитывайте такие параметры:
- Величину напряжения зарядки. Максимальное значение не должно превышать 14,4 В.
- Величину силы тока – эту характеристику можно без особого труда регулировать на импульсных зарядных устройствах для автомобильных аккумуляторов «Орион» и аналогичных. Для этого на передней панели устанавливается амперметр и переменный резистор.
- Длительность зарядки аккумуляторной батареи. При отсутствии индикаторов сложно понять, когда аккумуляторная батарея заряжена, а когда разряжена. Подключите амперметр между зарядным устройством и аккумулятором – если его показания не изменяются и крайне малы, то это свидетельствует о том, что зарядка полностью восстановилась.
Какой бы зарядник вы ни использовали, старайтесь не переборщить – больше суток не держите аккумулятор. В противном случае может произойти замыкание и закипание электролита.
Самодельные устройства
За основу можно взять схему импульсного зарядного устройства для автомобильных аккумуляторов «Аида» или аналогичных. Очень часто в самоделках применяют схему IR2153. Ее отличие от всех остальных, которые используются для изготовления зарядников, в том, что устанавливается не два конденсатора, а один — электролитический. Но у такой схему есть один недостаток – с ее помощью можно сделать только маломощные устройства. Но эта проблема решается установкой более мощных элементов.
Во всех конструкциях применяются транзисторные ключи, например 8N50. Корпус у этих приборов изолирован. Диодные мосты для самодельных зарядников лучше всего использовать те, которые устанавливаются в блоках питания персональных компьютеров. В том случае если готовой мостовой сборки нет, можно сделать ее из четырех полупроводниковых диодов. Желательно, чтобы величина обратного тока у них была выше 10 ампер. Но это для случаев, когда зарядное будет использоваться с аккумуляторными батареями емкостью не более 70-8-0 А*ч.
Цепь питания зарядного устройства
В импульсных зарядных устройствах для автомобильных аккумуляторов Bosch и аналогичных обязательно используется в схеме цепи питания резистор для гашения тока. Если вы решили самостоятельно изготовить зарядник, то потребуется устанавливать резистор сопротивлением около 18 кОм. Далее по схеме находится выпрямительный блок однополупериодного типа. В нем применяется всего один полупроводниковый диод, после которого устанавливается электролитический конденсатор.
Он необходим для того, чтобы отсекать переменную составляющую тока. Желательно использовать керамические или пленочные элементы. По законам Кирхгофа составляются схемы замещения. В режиме переменного тока конденсатор заменяется в ней отрезком проводника. А при работе схемы на постоянном токе – разрывом. Следовательно, в выпрямленном токе после диода будут две составляющие: основная – постоянный ток, а также остатки переменного, их нужно убрать.
Импульсный трансформатор
В конструкции импульсного зарядного устройства для автомобильных аккумуляторов «Кото» используется специальной конструкции трансформатор. Для самоделок можно воспользоваться готовым – снять из блока питания персонального компьютера. В них применяются трансформаторы, которые идеально подходят для реализации схем зарядных устройств – они могут создать высокий уровень тока.
Также они позволяют обеспечить сразу несколько значений напряжений на выходе зарядника. Диоды, которые устанавливаются после трансформатора, должны быть именно импульсными, другие работать в схеме попросту не смогут. Они быстро выйдут из строя при попытке выпрямить высокочастотный ток. В качестве фильтрующего элемента желательно установить несколько электролитических конденсаторов и ВЧ-дроссель. Рекомендуется применить термистор сопротивлением 5 Ом, чтобы обеспечить снижение уровня бросков.
Кстати, термистор тоже можно найти в старом БП от компьютера. Обратите внимание на емкость электролитического конденсатора – ее нужно подбирать исходя из значения мощности всего устройства. На каждый 1 Ватт мощности требуется 1 мкФ. Рабочее напряжение не менее 400 В. Можно применить четыре элемента по 100 мкФ каждый, включенных параллельно. При таком соединении емкости суммируются.
[rssless]
Читайте НАС ВКонтакте
[/rssless]
Зарядное устройство импульсное для автомобильного аккумулятора своими руками: схема ЗУ для АКБ
Автор: Виктор
Разряд аккумуляторной батареи — это довольно распространенная проблема, с которой сталкиваются многие наши соотечественники. Для восстановления работоспособности АКБ ее необходимо зарядить, для этой цели в продаже можно найти множество видов зарядных приборов. Из каких элементов состоит зарядное устройство импульсное для автомобильного аккумулятора и как его соорудить своими руками — подробнее об этом читайте ниже.
Содержание
Открытьполное содержание
[ Скрыть]
Характеристика прибора
Приборы для зарядки аккумулятора могут быть трансформаторными либо импульсными. Первые сегодня практически неактуальны из-за их больших размеров и веса, а также недостатков, соответственно, востребованность импульсных ЗУ для АКБ только растет.
Устройство и принцип работы
Предназначение такого прибора заключается в восстановлении заряда батареи.
Устройство девайса следующее:
- трансформаторный импульсный механизм;
- выпрямительный узел;
- стабилизатор;
- устройства индикации заряда;
- управляющий модуль, осуществляющий контроль за работой ЗУ.
ИЗУ для автомобильной АКБ от производителя BOSCH
Если вы сравните импульсное зарядное устройство с трансформаторным, то увидите, что все компоненты, которые входят в состав первого, значительно меньше по размерам и весу. Именно поэтому приборы такого типа получили популярность среди соотечественников, тем более, что их вполне можно соорудить в домашних условиях.
Если говорить о принципе действия, то непосредственно сам процесс заряда может осуществляться:
- напряжением постоянным током;
- напряжением с неизменными параметрами;
- еще один способ — комбинированный.
Наиболее оптимальным, а также правильным с точки зрения теории является второй вариант, поскольку именно он позволяет полностью контролировать процесс заряда. В том случае, если вы планируете добиться максимального уровня заряда, в ходе процесса также следует учитывать и значение разряда аккумулятора. Метод постоянного тока — не самый лучший способ, поскольку в данном случае речь идет о быстром процессе заряда. При таком напряжении через пластины батареи проходит высокий ток, в результате чего есть вероятность разрушения пластин АКБ. А это, в свою очередь, приведет к ее неработоспособности, ведь восстановить пластины не получится (автор видео — канал deonich tex).
Что касается последнего способа — комбинированного, то он считается одним из самых щадящих для конструкции аккумулятора. В данном случае через батарею в первую очередь проходит постоянный ток, который впоследствии меняется на переменный, когда батарея будет практически заряжена. После этого ток постепенно снижается, его значение уменьшается почти до нуля, что способствует стабилизации напряжения в целом. По утверждению многих электриков, этот вариант дает возможность если не предотвратить, то как минимуму снизить вероятность выкипания раствора электролита в банках батареи. Соответственно, это способствует и предотвращению возможности выделения газов.
Особенности подбора оборудования
Есть несколько особенностей подбора девайса:
- Во-первых, большинство наших соотечественников при покупке рассчитывают на то, что зарядный прибор при необходимости сможет восстановить работоспособность полностью севшего аккумулятора. Несмотря на то, то импульсное зарядное устройство — это довольно технологичный прибор, не факт, что оно сможет выполнить эту функцию. Покупая девайс в магазине, обязательно нужно уточнить, сможет ли ЗУ справиться с задачей восстановления полностью разряженной батареи.
- Во-вторых, необходимо учитывать значение максимального тока, который будет проходит через аккумуляторную батарею во время зарядки. Здесь же необходимо брать во внимание и уровень напряжения, с которым будет осуществляться зарядка АКБ. Покупая импульсное зарядное устройство, желательно, чтобы прибор имел функцию автоматического отключения либо поддержки, она будет активироваться в том случае, когда АКБ зарядится (автор видеообзора импульсной зарядки — канал Oops of ZikValera).
Советы по эксплуатации
Используя зарядные приборы для аккумуляторов автомобилей, необходимо руководствоваться элементарными правилами эксплуатации.
Для начала нужно запомнить, что при использовании ЗУ важно соблюдать последовательность действий:
- Сначала АКБ извлекается из авто.
- Затем проверяется состояние батареи — внешний вид, корпус, при необходимости очищаются клеммы.
- Затем выкручиваются пробки банок батареи, если нужно, уровень электролита в банках восполняется путем добавления в систему дистиллированной воды.
- После этого к клеммам АКБ покдлючаются щупы зарядного прибора с соблюдением полярности.
- И только после этого ЗУ включается в бытовую сеть.
При выставлении настроек ЗУ нужно также учитывать такие моменты:
- Значение силы тока — этот параметр можно отрегулировать, чтобы сделать это, следует учесть, насколько АКБ разряжена. Если уровень разряда составляет всего 25%, то при включении прибора значение силы тока может увеличиться.
- Напряжение. В процессе заряда значение напряжения должно быть не выше 14.4 В, в противном случае это может отразиться на работе автоаккумулятора в дальнейшем.
- Время, на протяжении которого батарея должна заряжаться. Практически все современные ЗУ оснащаются дисплеями, а также световыми индикаторами, по которым можно определить степень заряда устройства. Если же индикаторы отсутствуют, то вычислить время зарядки можно с помощью значения тока. Если вы заметили, что на протяжении 2 часов сила тока остается на одном уровне, это может сказать о том, что АКБ полностью зарядилась.
Заряжать аккумулятор больше суток нельзя, поскольку это приведет к выкипанию раствора электролита в банках. А это, в свою очередь, может стать причиной замыкания на пластинах.
Инструкция по изготовлению импульсного ЗУ своими руками
Простая схема для изготовления импульсной зарядки
Сделать ЗУ для автоаккумуляторов можно в домашних условиях, рассмотрим процесс изготовления девайса со схемой IR2153. В этой схеме нет двух конденсаторных элементов, подключенных к средней точке, вместо них устанавливается электролит. По этой схеме можно изготовить девайс, который изначально рассчитан на невысокую мощность, но если вы хотите получить более мощное ЗУ, то можете немного изменить схему, добавив в нее мощные компоненты.
- Схема импульсного зарядного устройства подразумевает использование ключей 8N50, которые оснащаются защитным корпусом. Также вам потребуются и диодные мосты, их не обязательно покупать в магазине, можно взять со старого БП компьютера. Если у вас нет возможности достать такие диоды, то в принципе, мост можно сделать из выпрямительных диодных элементов, потребуется четыре штуки.
- Не менее важным этапом является обустройство цепи питания, для реализации вам понадобится резисторный элемент для гашения тока, наиболее оптимальным вариантом будет резистор на 18 кОм. За резисторным компонентом устанавливается выпрямитель, который монтируется на диоде. В данном случае питание от бытовой сети будет передаваться на плату, это нам подходит. На самом питании нужно будет установить электролит, а его также надо будет соединить с конденсаторным элементом — можно использовать керамическое устройство или пленочное. Конденсатор в обязательном порядке нужно добавить в схему, поскольку это позволит максимально сгладить возможные помехи в работе ЗУ.
- Трансформаторный узел можно взять из старого компьютерного БП, важно убедиться в том, что он рабочий. Устройства, которые ставятся в блоки питания, оптимально подходят для изготовления ЗУ, так как они выдают хороший ток на выходе. Диодные элементы трансформатора должны быть в любом случае импульсными, так как обычные детали будут не в состоянии работать в условиях высокой частоты.
- Что касается фильтрующего элемента, то его использование не является обязательным, но все же добавить фильтр можно. Также в схему можно добавить термистор на 5 Ом и установить его перед фильтром, это позволит добиться максимального снижения помех. К слову, термистор также можно демонтировать из компьютерного БП.
- Не забудьте установить и электролитический конденсаторный компонент, при его выборе необходимо руководствоваться соотношением 1 Вт — 1 мкФ (автор видео о пошаговом изготовлении ЗУ — канал Паяльник TV).
На первый взгляд эта схема может показаться достаточно сложной, но в целом в ее реализации нет ничего сложного. Если вы все сделаете правильно и учтете все моменты и рекомендации, то процесс изготовления не вызовет сложностей, даже если вы никогда ранее не сталкивались с такой задачей.
Фотогалерея «Схемы для изготовления ЗУ»
Ниже представлены более сложные схемы для изготовления зарядных устройств. Если вы владеете навыками, то можете использовать эти схемы.
- 1. Более сложная схема для импульсного ЗУ
- 2. Схема мощного импульсного прибора
Видео «Простая инструкция по изготовлению импульсного ЗУ своими руками»
В ролике ниже представлена простая и наглядная инструкция по изготовлению импульсного ЗУ в домашних условиях с описанием схемы и всех основных рабочих моментов (автор видео — канал Blaze Electronics).
Импульсное зарядное устройство для автомобильного аккумулятора: схема, инструкция
Широкую популярность получили импульсные зарядные устройства для автомобильных аккумуляторов. Схем таких устройств довольно много – одни предпочитают собирать их из подручных элементов, другие же используют готовые блоки, например от компьютеров. Блок питания персонального компьютера можно без особого труда переделать во вполне качественное зарядное для автомобильного аккумулятора. Буквально за пару часов можно сделать устройство, в котором можно будет проводить замер напряжения питания и тока зарядки. Нужно только добавить в конструкцию приборы для измерения.
Основные характеристики зарядников
Всего существует два типа зарядных устройств для аккумуляторных батарей:
- Трансформаторные – у них очень большой вес и габариты. Причина – используется трансформатор – у него внушительные обмотки и сердечки из электротехнической стали, у которой большой вес.
- Импульсные зарядные устройства для автомобильных аккумуляторов. Отзывы о таких устройствах более положительные – габариты у приборов небольшие, вес тоже маленький.
Именно за компактность и полюбились потребителям зарядные устройства импульсного типа. Но кроме этого, у них более высокий КПД в сравнении с трансформаторными. В продаже можно встретить только такого типа импульсные зарядные устройства для автомобильных аккумуляторов. Схемы у них в целом похожи, отличаются они только используемыми элементами.
Элементы конструкции зарядника
При помощи зарядного устройства восстанавливается работоспособность аккумуляторной батареи. В конструкции используется исключительно современная элементная база. В состав входят такие блоки:
- Импульсный трансформатор.
- Блок выпрямителя.
- Блок стабилизатора.
- Приборы для измерения тока зарядки и (или) напряжения.
- Основной блок, позволяющий осуществлять контроль процесса зарядки.
Все эти элементы имеют маленькие габариты. Импульсный трансформатор небольшой, наматываются его обмотки на ферритовых сердечниках.
Самые простые конструкции импульсных зарядных устройств для автомобильных аккумуляторов Hyundai или других марок машин можно выполнить всего на одном транзисторе. Главное – сделать схему управления этим транзистором. Все компоненты можно приобрести в магазине радиодеталей или же снять с блоков питания ПК, телевизоров, мониторов.
Особенности работы
По принципу работы все схемы импульсных зарядных устройств для автомобильных аккумуляторов можно разделить на такие подгруппы:
- Зарядка аккумулятора напряжением, ток при этом имеет постоянное значение.
- Напряжение остается неизменным, но ток при зарядке постепенно уменьшается.
- Комбинированный метод – объединение двух первых.
Самый «правильный» способ – это изменять ток, а не напряжение. Он подходит для большей части аккумуляторных батарей. Но это в теории, так как зарядники могут осуществлять контролирование силы тока только в том случае, если напряжение на выходе будет иметь постоянное значение.
Особенности режимов зарядки
Если ток остается постоянным, а меняется напряжение, то вы получите массу неприятностей – пластины внутри аккумуляторной батареи будут осыпаться, что приведет к выходу ее из строя. В этом случае восстановить АКБ не получится, придется только покупать новую.
Наиболее щадящим режимом оказывается комбинированный, при котором сначала происходит зарядка при помощи постоянного тока. Под конец процесса происходит изменение тока и стабилизация напряжения. С помощью этого возможность закипания аккумуляторной батареи сводится к минимуму, газов тоже меньше выделяется.
Как подобрать зарядное?
Чтобы АКБ прослужила как можно дольше, необходимо правильно выбрать импульсное зарядное устройство для автомобильного аккумулятора. В инструкциях к ним указываются все параметры: ток зарядки, напряжение, даже схемы в некоторых приводятся.
Обязательно учитывайте, что зарядник должен вырабатывать ток, равный 10 % от суммарной емкости аккумуляторной батареи. Также вам потребуется учесть такие факторы:
- Обязательно учитывайте у продавца, сможет ли конкретная модель зарядника полностью восстановить работоспособность аккумулятора. Проблема в том, что не все устройства способны делать это. Если в вашей машине стоит аккумулятор на 100 А*ч, а вы покупаете зарядник с максимальным током 6 А, то его явно будет недостаточно.
- Исходя из первого пункта, внимательно смотрите, какой максимальный ток может выдать устройство. Не лишним будет обратить внимание и на напряжение – некоторые устройства могут выдавать не 12, а 24 Вольта.
Желательно, чтобы в заряднике присутствовала функция автоматического отключения при достижении полного заряда аккумулятора. С помощью такой функции вы избавите себя от лишних проблем – не нужно будет контролировать зарядку. Как только достигнет зарядка максимума, устройство само отключится.
Несколько советов для работы с зарядниками
Обязательно во время эксплуатации подобного рода приборов могут возникнуть проблемы. Чтобы этого не произошло, нужно придерживаться простых рекомендаций. Главное – добиться того, чтобы в банках аккумуляторной батареи было достаточное количество электролита.
Если его мало, то долейте дистиллированной воды. Заливать чистый электролит не рекомендуется. Обязательно также учитывайте такие параметры:
- Величину напряжения зарядки. Максимальное значение не должно превышать 14,4 В.
- Величину силы тока – эту характеристику можно без особого труда регулировать на импульсных зарядных устройствах для автомобильных аккумуляторов «Орион» и аналогичных. Для этого на передней панели устанавливается амперметр и переменный резистор.
- Длительность зарядки аккумуляторной батареи. При отсутствии индикаторов сложно понять, когда аккумуляторная батарея заряжена, а когда разряжена. Подключите амперметр между зарядным устройством и аккумулятором – если его показания не изменяются и крайне малы, то это свидетельствует о том, что зарядка полностью восстановилась.
Какой бы зарядник вы ни использовали, старайтесь не переборщить – больше суток не держите аккумулятор. В противном случае может произойти замыкание и закипание электролита.
Самодельные устройства
За основу можно взять схему импульсного зарядного устройства для автомобильных аккумуляторов «Аида» или аналогичных. Очень часто в самоделках применяют схему IR2153. Ее отличие от всех остальных, которые используются для изготовления зарядников, в том, что устанавливается не два конденсатора, а один — электролитический. Но у такой схему есть один недостаток – с ее помощью можно сделать только маломощные устройства. Но эта проблема решается установкой более мощных элементов.
Во всех конструкциях применяются транзисторные ключи, например 8N50. Корпус у этих приборов изолирован. Диодные мосты для самодельных зарядников лучше всего использовать те, которые устанавливаются в блоках питания персональных компьютеров. В том случае если готовой мостовой сборки нет, можно сделать ее из четырех полупроводниковых диодов. Желательно, чтобы величина обратного тока у них была выше 10 ампер. Но это для случаев, когда зарядное будет использоваться с аккумуляторными батареями емкостью не более 70-8-0 А*ч.
Цепь питания зарядного устройства
В импульсных зарядных устройствах для автомобильных аккумуляторов Bosch и аналогичных обязательно используется в схеме цепи питания резистор для гашения тока. Если вы решили самостоятельно изготовить зарядник, то потребуется устанавливать резистор сопротивлением около 18 кОм. Далее по схеме находится выпрямительный блок однополупериодного типа. В нем применяется всего один полупроводниковый диод, после которого устанавливается электролитический конденсатор.
Он необходим для того, чтобы отсекать переменную составляющую тока. Желательно использовать керамические или пленочные элементы. По законам Кирхгофа составляются схемы замещения. В режиме переменного тока конденсатор заменяется в ней отрезком проводника. А при работе схемы на постоянном токе – разрывом. Следовательно, в выпрямленном токе после диода будут две составляющие: основная – постоянный ток, а также остатки переменного, их нужно убрать.
Импульсный трансформатор
В конструкции импульсного зарядного устройства для автомобильных аккумуляторов «Кото» используется специальной конструкции трансформатор. Для самоделок можно воспользоваться готовым – снять из блока питания персонального компьютера. В них применяются трансформаторы, которые идеально подходят для реализации схем зарядных устройств – они могут создать высокий уровень тока.
Также они позволяют обеспечить сразу несколько значений напряжений на выходе зарядника. Диоды, которые устанавливаются после трансформатора, должны быть именно импульсными, другие работать в схеме попросту не смогут. Они быстро выйдут из строя при попытке выпрямить высокочастотный ток. В качестве фильтрующего элемента желательно установить несколько электролитических конденсаторов и ВЧ-дроссель. Рекомендуется применить термистор сопротивлением 5 Ом, чтобы обеспечить снижение уровня бросков.
Кстати, термистор тоже можно найти в старом БП от компьютера. Обратите внимание на емкость электролитического конденсатора – ее нужно подбирать исходя из значения мощности всего устройства. На каждый 1 Ватт мощности требуется 1 мкФ. Рабочее напряжение не менее 400 В. Можно применить четыре элемента по 100 мкФ каждый, включенных параллельно. При таком соединении емкости суммируются.
Подбираем импульсное зарядное устройство для аккумулятора
Срочную поездку приходится отменить по банальной причине – не завелась машина. Такая ситуация хотя бы раз, но случается у каждого автомобилиста. И виновником этого очень часто является аккумулятор. Чтобы избежать подобного недоразумения необходимо иметь дома специальное оборудование для восстановления батареи. Это может быть импульсное зарядное устройство для автомобильного аккумулятора. Каким требованиям должен отвечать этот прибор и для чего он нужен? Ответы на эти вопросы узнаем у специалистов.
Почему именно импульсное ЗУ
Оборудование, позволяющее восстанавливать аккумуляторы подразделяется на две основные группы:
- Трансформаторное;
- Импульсное.
Устройства первого типа отличают большие габариты и масса, но при этом у них более низкий КПД, чем у других моделей. Эти особенности привели к снижению спроса на них, как только на рынке появились импульсные ЗУ. Они отличаются компактными габаритами и невысокой ценой и пользуются определенным спросом у автовладельцев.
Однако, как бы не велики были трансформаторные модели они все же имеют ряд преимуществ:
- Надежность;
- Отказоустойчивость.
И именно этих параметров так часто не хватает импульсным устройствам. Но все же они сумели доказать свои неоспоримые преимущества. О них и будет рассказано в этой статье.
Конструктивные особенности
Согласно прилагаемой к прибору документации ЗУ представляет собой электронный прибор, используемый для восстановления аккумуляторов. Он состоит из следующих компонентов:
- Импульсного трансформатора;
- Выпрямителя;
- Стабилизатора;
- Средств индикации;
- Блока для контроля процесса зарядки.
Все детали прибора достаточно миниатюрны по сравнению с громоздкими узлами трансформаторных моделей. Самое простое импульсное зарядное устройство для автомобильного аккумулятора может собираться с использованием недорогой микросхемы, управляющей полевым транзистором. Нагрузкой для него является импульсный трансформатор.
Благодаря столь простой конструкции и доступности элементной базы импульсные устройства пользуются большим спросом.
Принцип действия ЗУ
Процесс зарядки батареи может быть выполнен одним из трех способов:
- Напряжением неизменного значения;
- При постоянном токе;
- Комбинированным.
Если рассматривать работу импульсного зарядного устройства для автомобильного аккумулятора с точки зрения теории, то наиболее правильным представляется первый вариант. Это объясняется возможностью импульсных ЗУ осуществлять контроль за значением силы тока автоматически только в случае постоянного напряжения. Чтобы добиться максимальной зарядки батареи устройство должно учитывать уровень разряда.
Использование второго способа не считается лучшим вариантом. Так как при быстрой зарядке, получаемой при постоянном токе могут осыпаться пластины батареи, восстановить которые невозможно.
Комбинированный способ один из самых щадящих. При его использовании сначала идет постоянный ток и только в конце процесса он меняется на переменный, который снижается до нуля тем самым стабилизируя напряжение. Такой подход делает вероятность закипания батареи и выделение газа минимальными.
Критерии выбора устройства для восстановления батареи
Чтобы добиться эффективной работы аккумулятора необходимо побеспокоиться о приобретении качественного оборудования для его восстановления. Существует перечень критериев, которым должно соответствовать зарядное устройство.
Смотрим видео, выбор устройства:
Первый и самый главный вопрос, который задают покупатели – это способен ли прибор восстановить максимально разряженный аккумулятор? К сожалению, далеко не все модели ЗУ способны справиться с этой задачей. Поэтому приобретая агрегат стоит поинтересоваться у менеджеров имеет ли он такую функцию.
Следующий параметр, на который обращают внимание – это максимальное значение тока, выдаваемого ЗУ в процессе работы, а также напряжения, до которого заряжается батарея. Если вы выбираете импульсный прибор, то в нем должна быть функция автоматического отключения или перехода в режим поддержки.
Следует учитывать и возможность КЗ, которое происходит при попытке зарядки вышедшей из строя батареи. Для таких случаев схема импульсного зарядного устройства для автомобильных аккумуляторов должна включать защиту.
Обзор популярных моделей
Для рассмотрения характеристик мы отобрали несколько моделей с током от 6 до 9 А: На них и были проведены тесты по работе импульсных ЗУ для автомобильных аккумуляторов.
Модель Bosch C7
Среди них такие модели, как:
- Bosch C7;
- KeePower Medium;
- Optimate 6.
Первый прибор выпускается довольно известным зарубежным производителем различной техники.
Он может использоваться в следующих режимах:
- стандартом;
- зимнем;
- для сильно разряженной батареи;
- при выходном токе до 5 А.
Для контроля за процессом используется две группы индикаторов. Одна позволяет получить информацию о ходе работы устройства, а вторая о конкретном режиме.
В комплектацию прибора включен комплект кронштейнов, дополнительный кабель. Он оснащен разъемом и клеммами, расположенными на его концах.
Модель марки KeePower Medium
Импульсное защитное устройство этой марки не требует специальной подготовки к работе. При первом использовании необходимо выбрать удобный вариант подключения провода и необходимый режим. Возможно использование прибора как источника питания.
Одним из простых в эксплуатации является зарядное устройство Optimate 6. Оно прекрасно справляется со своими функциями без контроля со стороны человека и способно работать автономно за что и попало в рейтинг лучших импульсных зарядных устройств для автомобильных аккумуляторов.
Смотрим видео обзор о модели Optimate 6:
Уникальный дизайн прибора отмечен отечественными покупателями. Внешне устройство напоминает небольшую машинку на капоте которой находятся индикаторы. Провода выходят из мест, где у настоящих автомобилей располагаются номерные знаки. Их входы защищены пластиковыми муфтами. Днище машинки – это вентиляционная сетка, а на крыше можно ознакомиться с техническими характеристиками прибора.
В комплектацию ЗУ входят провода для различных способов соединения и тканевый мешок в который упаковывается все содержимое.
Советы по эксплуатации
При зарядке аккумулятора необходимо соблюдать определенную последовательность действий. Сначала снимаются крышки с банок и выворачиваются пробки.
Смотрим видео, правильные советы:
Концентрация электролита должна быть выравнена при помощи дистиллированной воды до зарядки.
Следует учитывать и такие параметры, как:
- Напряжение;
- Силу тока;
- Время восстановления батареи.
Максимальное значением первой характеристики не должно превышать 14,4 В. Сила тока регулируется в зависимости от уровня разрядки аккумулятора. Так если он разряжен на четверть, то при включении возможно возрастание силы тока. Значение этого параметра должно соответствовать одной десятой от емкости батареи.
Если зарядное устройство не оснащено индикаторами, то узнать, заряжен аккумулятор или нет можно по величине тока. Если она остается неизменной на протяжении 3 часов, значит батарея восстановлена.
Нельзя производить зарядку аккумулятора при большом токе более суток. Это может привести к закипанию электролита и даже замыканию между пластинами.
Схемы зарядных устройств для аккумуляторов и батарей (Страница 2)
Зарядное устройство для аккумуляторов емкостью 4-7Ач
Свинцово-кислотные аккумуляторы емкостью 4…7 А-ч, которые применяются в источниках бесперебойного питания, популярны среди путешествующих радиолюбителей, потому что они дешевые, небольшие, у них отсутствует эффект памяти. Один такой аккумулятор позволяет активно работать несколько часов с …
1 3115 0
Зарядно-восстановительное устройство для NiCd и NiMH аккумуляторовКак известно, нет ничего вечного на земле. Но человек всегда стремится продлить жизнь всему, что находится в сфере его интересов. Аккумулятор — сердце любого электрофицированного устройства, поэтому совсем не случайно большое внимание радиолюбители уделяют именно ему. Жизнь малогабаритных …
1 3052 0
Генератор стабильного тока для зарядки аккумуляторов, блок питанияРассматриваемый генератор стабильного тока (ГСТ) хорошо подходит для зарядки аккумуляторов (до 12 В). Величину зарядного тока можно устанавливать в пределах 0…10 А. Однако изготавливался данный ГСТ не столько для зарядки аккумуляторов, сколько для иных целей. Мощный ГСТ позволяет быстро оценить практически любые контактные соединения по величине переходного сопротивления (контакты реле, выключателей и пр.) …
2 4907 0
Схема таймера к зарядному устройству (CD4060)Принципиальная схема простой приставки к зарядному устройству для автомобильного аккумулятора. Сейчас есть самые разные зарядные устройства для автомобильных аккумуляторов, среди них все больше компактных, автоматических «инверторных».Но многие автолюбители по прежнему больше доверяют …
0 4702 0
Схема зарядного устройства для аккумулятора от GSM-телефона (LM317)Приведена принципиальная схема зарядного устройства,именно для аккумулятора, а не для сотового телефона, оно построено на микросхеме-стабилизаторе LM317. Разница в том, что схема зарядки сотового телефона состоит из внешнего блока питания, обычно, напряжением 5-5,5V и внутренней схемы контроллера …
2 4609 0
Автоматическая приставка к зарядному устройству для авто аккумулятораДополнив имеющееся в вашем распоряжении зарядное устройство для автомобильной аккумуляторной батареи предлагаемым автоматом, можете быть спокойны за режим зарядки батареи — как только напряжение ва ее выводах достигнет (14,5±0,2)В, зарядка прекратится. При снижении напряжения до 12,8..13 В зарядка возобновится.
4 5392 7
Схема умного зарядного устройства для Ni-Cd аккумуляторов (MAX713)Традиционная («безопасная») зарядка никель-кадмиевых аккумуляторов током, значение которого в десять раз меньше емкости аккумулятора, удовлетворяет далеко не всех пользователей, поскольку в этом случае для гарантированной полной его зарядки требуется затратить более десяти часов …
0 5434 1
Измеритель заряда для автомобильного аккумулятораАвтомобильные аккумуляторные батареи нередко заряжают устройствами, не имеющими стабилизатора тока. Предлагаемое устройство позволяет и в этом случае объективно определить момент окончания зарядки батареи. Более того, оно выполнит это при произвольных форме и среднем значении зарядного тока. Для…
0 3842 0
Зарядно-пусковое устройство-автомат для автомобильного аккумулятора 12ВПусковые устройства промышленного изготовления нередко обладают малой мощностью и недостаточно надежны в эксплуатации. Простейшие самостоятельно изготовленные схемы автомобильных пусковых устройств, состоящие только из трансформатора и силовых выпрямительных диодов, также обладают рядом…
0 4675 0
Зарядное устройство на основе импульсного инвертора (К1114ЕУ4, КТ886)В основу устройства положен двухтактный полумостовой импульсный преобразователь (инвертор) на мощных транзисторах VT4 и VT5, управляемый широтно-импупьсным контроллером DA1 по низковольтной стороне. Такие преобразователи, устойчивые к повышению питающего напряжения и изменению сопротивления…
0 4491 2
1 2 3 4 5 6 … 8Радиодетали, электронные блоки и игрушки из китая:
Цепи зарядного устройства для свинцово-кислотных аккумуляторовЦепи зарядного устройства для свинцово-кислотных аккумуляторов, описанные в этой статье, можно использовать для зарядки всех типов свинцово-кислотных аккумуляторов с заданной скоростью.
В этой статье рассказывается о нескольких схемах зарядного устройства для свинцово-кислотных аккумуляторов с автоматической перезарядкой и отключением при малой разрядке. Все эти конструкции проходят тщательные испытания и могут использоваться для зарядки всех автомобильных аккумуляторов и аккумуляторов SMF емкостью до 100 Ач и даже 500 Ач.
Введение
Свинцово-кислотные батареи обычно используются в тяжелых условиях, требующих много сотен ампер.Для зарядки этих аккумуляторов нам особенно нужны зарядные устройства, рассчитанные на длительную зарядку при высоком токе. Зарядное устройство для свинцово-кислотных аккумуляторов специально разработано для зарядки аккумуляторов большой мощности с помощью специализированных цепей управления.
5 полезных и высокомощных схем зарядного устройства для свинцово-кислотных аккумуляторов, представленных ниже, могут использоваться для зарядки больших сильноточных свинцово-кислотных аккумуляторов емкостью от 100 до 500 Ач, конструкция полностью автоматическая и переключает питание на аккумулятор, а также после полной зарядки аккумулятора.
ОБНОВЛЕНИЕ: вы также можете создать эти простые схемы зарядного устройства для 12 В 7 Ач аккумуляторной батареи s , проверьте их.
Что означает Ач
Единица Ач или Ампер-час в любой батарее означает идеальную скорость , при которой батарея будет полностью разряжена или полностью заряжена в течение 1 часа. Например, если аккумулятор на 100 Ач заряжался при токе 100 ампер, для полной зарядки аккумулятора потребуется 1 час.Точно так же, если бы аккумулятор был разряжен при токе 100 ампер, время автономной работы продлилось бы не более часа.
Но подождите, никогда не пробуйте этот , так как зарядка / разрядка при полной емкости Ач может иметь катастрофические последствия для вашей свинцово-кислотной батареи.
Единица измерения Ач используется только для того, чтобы предоставить нам эталонное значение, которое можно использовать для определения приблизительного времени заряда / разряда батареи при установленной скорости тока.
Например, когда вышеупомянутый аккумулятор заряжается на 10 ампер, используя значение Ач, мы можем найти время полной зарядки по следующей формуле:
Поскольку скорость зарядки обратно пропорциональна времени, мы имеем:
Время = Ач значение / скорость зарядки
T = 100/10
где 100 — уровень заряда аккумулятора в Ач, 10 — зарядный ток, T — время при 10-амперном токе
T = 10 часов.
Формула предполагает, что в идеале для оптимальной зарядки аккумулятора при токе 10 ампер потребуется около 10 часов, но для реальной батареи это может быть около 14 часов для зарядки и 7 часов для разрядки. Потому что в реальном мире даже новый аккумулятор не будет работать в идеальных условиях, и с возрастом ситуация может ухудшиться.
Важные параметры, на которые следует обратить внимание
Свинцово-кислотные батареи дороги, и вам нужно убедиться, что они прослужат как можно дольше.Поэтому, пожалуйста, не используйте дешевые и непроверенные зарядные устройства, которые могут показаться простыми, но могут медленно повредить аккумулятор.
Большой вопрос в том, необходим ли идеальный способ зарядки аккумулятора? Простой ответ — НЕТ. Потому что, когда мы применяем идеальный метод зарядки, описанный на веб-сайтах «Википедии» или «Университета аккумуляторов», мы стараемся зарядить аккумулятор до максимально возможной емкости. Например, при идеальном уровне 14,4 В ваша батарея может быть полностью заряжена, но делать это обычными методами может быть рискованно.
Чтобы достичь этого без риска, вам, возможно, придется использовать усовершенствованную схему ступенчатого зарядного устройства, которую может быть сложно построить и может потребоваться слишком много вычислений.
Если вы хотите избежать этого, вы все равно можете зарядить аккумулятор оптимально (@ около 65%), убедившись, что аккумулятор отключен на немного более низком уровне. Это позволит батарее всегда находиться в менее напряженном состоянии. То же самое касается уровня и скорости разряда.
В основном он должен иметь следующие параметры для безопасной зарядки, не требующей специальных ступенчатых зарядных устройств:
- Фиксированный ток или постоянный ток (1/10 номинала батареи в Ач)
- Фиксированное напряжение или постоянное напряжение (на 17% выше, чем Напряжение, указанное на батарее)
- Защита от перезарядки (отключение, когда батарея заряжается до указанного выше уровня)
- Плавающая зарядка (необязательно, совсем не обязательно)
Если в вашей системе нет этих минимальных параметров, тогда это может медленно ухудшить производительность и повредить аккумулятор, резко сократив время автономной работы.
- Например, если ваша батарея рассчитана на 12 В, 100 Ач, то фиксированное входное напряжение должно быть на 17% выше, чем напечатанное значение, что равно примерно 14,1 В (не 14,40 В, если вы не используете ступенчатое зарядное устройство) .
- Ток (в амперах) в идеале должен составлять 1/10 от уровня в ампер-часах, указанного на батарее, поэтому в нашем случае это может быть 10 ампер. Чуть более высокий вход усилителя может быть нормальным, поскольку наш полный уровень заряда уже ниже.
- Автоматическое отключение зарядки рекомендуется на вышеуказанном 14.1 В, но это не обязательно, так как у нас уже есть полный уровень заряда чуть ниже.
- Плавающий заряд — это процесс снижения тока до незначительных пределов после того, как аккумулятор полностью зарядился. Это предотвращает саморазряд батареи и постоянно поддерживает ее на полном уровне до тех пор, пока пользователь не извлечет ее для использования. Совершенно необязательно . Это может быть необходимо только в том случае, если вы не используете аккумулятор в течение длительного времени. В таких случаях также лучше вынимать аккумулятор из зарядного устройства и периодически подзаряжать его каждые 7 дней.
Самый простой способ получить фиксированное напряжение и ток — это использовать микросхемы стабилизаторов напряжения, как мы узнаем ниже.
Еще один простой способ — использовать в качестве источника входного сигнала готовый 12-вольтный импульсный блок питания на 10 ампер с регулируемой предустановкой. SMPS будет иметь небольшую предустановку в углу, которая может быть настроена на 14,0 В.
Помните, что вам нужно будет держать батарею подключенной как минимум от 10 до 14 часов или пока напряжение на клеммах батареи не достигнет 14,2 В. Хотя это уровень может выглядеть немного заниженным, чем стандартный 14.Полный уровень 4 В гарантирует, что ваша батарея никогда не перезарядится и гарантирует длительный срок службы батареи.
Все подробности представлены в этой инфографике ниже:
Однако, если вы любитель электроники и хотите построить полноценную схему со всеми идеальными опциями, в этом случае вы можете выбрать следующие комплексные схемы.
[Новое обновление] Автоматическое отключение батареи, зависящее от тока
Обычно во всех обычных схемах зарядного устройства используется автоматическое отключение при обнаружении напряжения или зависящее от напряжения.
Тем не менее, функция определения тока может также использоваться для инициирования автоматического отключения, когда аккумулятор достигает оптимального уровня полной зарядки. Полная принципиальная схема автоматического отключения по току показана ниже:
ПОЖАЛУЙСТА, ПОДКЛЮЧИТЕ РЕЗИСТОР 1K ПОСЛЕ ПРАВОЙ СТОРОНЫ 1N4148 ДИОДПринцип работы
Резистор 0,1 Ом действует как датчик тока, создавая эквивалентную разность потенциалов. через себя. Номинал резистора должен быть таким, чтобы минимальное отклонение потенциала на нем было не менее 0.На 3 В выше, чем падение диода на выводе 3 ИС, пока аккумулятор не достигнет желаемого уровня полного заряда. По достижении полного заряда этот потенциал должен упасть ниже уровня падения диода.
Первоначально, когда батарея заряжается, потребляемый ток развивает отрицательную разность потенциалов, скажем, -1 В на входных контактах ИС. Это означает, что напряжение на контакте 2 теперь становится ниже напряжения на контакте 3 как минимум на 0,3 В. Из-за этого на выводе 6 микросхемы появляется высокий уровень, позволяющий полевому МОП-транзистору проводить и соединять батарею с источником питания.
По мере того, как батарея заряжается до оптимального уровня, напряжение на резисторе измерения тока падает до достаточно низкого уровня, в результате чего разность потенциалов на резисторе становится почти нулевой.
Когда это происходит, потенциал контакта 2 поднимается выше, чем потенциал контакта 3, вызывая низкий уровень на контакте 6 ИС и отключая полевой МОП-транзистор. Таким образом, аккумулятор отключается от источника питания, что приводит к прекращению процесса зарядки. Диод, подключенный к контактам 3 и 6, блокирует или фиксирует цепь в этом положении до тех пор, пока питание не будет отключено и снова включено для нового цикла.
Вышеуказанная схема зарядки, зависящая от тока, также может быть выражена следующим образом:
При включении питания конденсатор емкостью 1 мкФ заземляет инвертирующий вывод операционного усилителя, вызывая мгновенный высокий уровень на выходе операционного усилителя, который включает МОП-транзистор. Это начальное действие подключает батарею к источнику питания через полевой МОП-транзистор и измерительный резистор RS. Ток от батареи вызывает соответствующий потенциал для развития через RS, который поднимает нон-invering вход ОУ над входом опорного инвертирующий (3V).
Теперь выход операционного усилителя фиксируется и заряжает батарею, пока она не будет почти полностью заряжена. Такое положение уменьшает ток через RS таким образом, что потенциал на него падает ниже 3 ссылки V и ОУ выход включается низким уровень, выключая MOSFET и процесс зарядки для аккумулятора.
Вышеупомянутая конструкция системы зарядки аккумуляторной батареи, зависящей от тока, может быть понята более подробно на приведенной ниже исчерпывающей диаграмме, которая может быть использована для очень безопасной зарядки аккумуляторов очень большой емкости от 200 до 500 Ач:
предустановка так, чтобы около 0.3 В или 0,4 В доступны на (-) входе операционного усилителя, и установите блок резисторов R4 — R13 таким образом, чтобы их общее сопротивление составляло:
R = 1 / Максимальный ток зарядки.
Предположим, что батарея на 100 Ач, тогда максимальный ток зарядки будет 10 ампер, следовательно,
R = 1/10 = 0,1 Ом
1) Использование одиночного операционного усилителя
Рассмотрение первой сильноточной цепи для Заряжая большие батареи, мы можем понять идею схемы с помощью следующих простых пунктов:
В показанной конфигурации в основном есть три этапа, а именно: этап источника питания, состоящий из трансформатора и мостовой выпрямительной сети.
Конденсатор фильтра после мостовой схемы был проигнорирован для простоты, однако для лучшего вывода постоянного тока на батарею можно добавить конденсатор 1000 мкФ / 25 В между положительным и отрицательным полюсом моста.
Выходной сигнал источника питания подается непосредственно на аккумулятор, который необходимо зарядить.
Следующий каскад состоит из компаратора напряжения IC на операционном усилителе 741, который сконфигурирован так, чтобы измерять напряжение батареи во время ее зарядки и переключать свой выход на вывод № 6 с соответствующим ответом.
Контакт № 3 ИС подключается к батарее или плюсовому выводу цепи через предустановку 10K.
Предварительная установка настроена таким образом, что ИС меняет свой выходной сигнал на выводе №6, когда батарея полностью заряжается, и достигает примерно 14 вольт, что является напряжением трансформатора при нормальных условиях.
Контакт № 2 ИС фиксируется с фиксированным опорным сигналом через сеть делителя напряжения, состоящую из резистора 10 кОм и стабилитрона на 6 В.
Выходной сигнал ИС подается на каскад драйвера реле, где транзистор BC557 образует основной управляющий компонент.
Первоначально питание схемы инициируется нажатием кнопки «пуск». При этом переключатель обходит контакты реле и мгновенно запитывает цепь.
ИС определяет напряжение батареи, и, поскольку на этом этапе оно будет низким, на выходе ИС появится низкий логический уровень на выходе.
Включает транзистор и реле, реле мгновенно фиксирует питание через соответствующие контакты, так что теперь, даже если переключатель «пуск» отпущен, цепь остается включенной и начинает заряжать подключенную батарею.
Теперь, когда заряд батареи достигает примерно 14 вольт, микросхема определяет это и мгновенно переводит свой выходной сигнал на высокий логический уровень.
Транзистор BC557 реагирует на этот высокий импульс и выключает реле, которое, в свою очередь, переключает питание на схему, размыкая защелку.
Цепь полностью отключается до тех пор, пока кнопка пуска не будет нажата еще раз и подключенная батарея не будет иметь заряд ниже установленной отметки 14 вольт.
Как настроить.
Это очень просто.
Не подключайте аккумулятор к цепи.
Включите питание, нажав кнопку пуска и удерживая ее нажатой вручную, одновременно отрегулируйте предустановку так, чтобы реле просто срабатывало или выключалось при заданном номинальном напряжении трансформатора, которое должно составлять около 14 вольт.
Настройка завершена, теперь подключите полуразряженную батарею к указанным точкам в цепи и нажмите переключатель «пуск».
Из-за разряда батареи теперь напряжение в цепи упадет ниже 14 вольт, и цепь мгновенно защелкнется, инициируя процедуру, как описано в предыдущем разделе.
Принципиальная схема предлагаемого зарядного устройства высокой емкости приведена ниже.
ПРИМЕЧАНИЕ. Не используйте фильтрующий конденсатор поперек моста. Вместо этого оставьте конденсатор 1000 мкФ / 25 В подключенным прямо к катушке реле. Если не удалить конденсатор фильтра, реле может перейти в колебательный режим при отсутствии батареи.2) Зарядное устройство 12 В, 24 В / 20 А с использованием двух операционных усилителей:
Второй альтернативный способ зарядки свинцово-кислотных аккумуляторов с высоким током можно увидеть на следующей диаграмме с использованием пары операционных усилителей:
Работу схемы можно понять по следующим пунктам:
Когда схема запитана без подключенной батареи, схема не реагирует на ситуацию, так как начальное положение реле замыкает цепь, отключая цепь от зарядки. поставлять.
Теперь предположим, что разряженная батарея подключена к точкам батареи. Предположим, что напряжение аккумулятора находится на некотором промежуточном уровне, который может находиться между полным и низким уровнем заряда.
Схема получает питание от этого промежуточного напряжения батареи. Согласно настройке предустановки вывода 6, этот вывод обнаруживает низкий потенциал, чем опорный уровень вывода 5. что заставляет его выходной контакт 7 перейти в высокий уровень. Это, в свою очередь, вызывает активацию реле и подключение источника заряда к цепи и батарее через замыкающие контакты.
Как только это произойдет, уровень заряда также упадет до уровня заряда аккумулятора, и два напряжения сойдутся на уровне напряжения аккумулятора. Теперь аккумулятор начинает заряжаться, и напряжение на его клеммах начинает медленно увеличиваться.
Когда аккумулятор достигает полного уровня заряда, контакт 6 верхнего операционного усилителя становится высоким, чем его контакт 5, в результате чего его выходной контакт 7 становится низким, и это выключает реле, и зарядка прекращается.
Тут происходит другое. Вывод 5 подключен к отрицательному потенциалу на выводе 7 через диод 10k / 1N4148, что еще больше снижает потенциал вывода 5 по сравнению с выводом 6.Это называется гистерезисом, который гарантирует, что даже если батарея сейчас опустится до некоторого более низкого уровня, который не приведет к возврату операционного усилителя в режим зарядки, вместо этого уровень заряда батареи теперь должен значительно упасть до тех пор, пока не будет активирован нижний операционный усилитель.
Теперь предположим, что уровень заряда батареи продолжает падать из-за некоторой подключенной нагрузки, и ее потенциальный уровень достигает минимального уровня разряда. Это обнаруживается контактом 2 нижнего операционного усилителя, потенциал которого теперь ниже его контакта 3, что побуждает его выходной контакт 1 становиться высоким и активировать транзистор BC547.
BC547 полностью заземляет контакт 6 верхнего операционного усилителя. Это приводит к срыву защелки гистерезиса из-за падения потенциала контакта 6 ниже контакта 5.
Это мгновенно приводит к тому, что выходной контакт 7 становится высоким и активирует реле, которое снова инициирует зарядку батареи, и цикл повторяет процедуру. пока аккумулятор остается подключенным к зарядному устройству.
Распиновка LM358
Чтобы узнать больше об автоматических зарядных устройствах, вы можете прочитать эту статью о схемах автоматического зарядного устройства операционных усилителей .
Видеоклип:
Настройка вышеуказанной схемы может быть визуализирована в следующем видео, которое показывает отклики цепи на верхний и нижний пороги напряжения, как зафиксировано соответствующими предустановками операционные усилители
3) Использование IC 7815
В третьем объяснении схемы ниже подробно описывается, как аккумулятор может быть эффективно заряжен без использования какой-либо микросхемы или реле, а просто с помощью BJT, давайте изучим процедуры:
Идея была предложена автор: Mr.Раджа Гилсе.
Зарядка аккумулятора с помощью регулятора напряжения IC
У меня 2N6292. Мой друг посоветовал мне сделать простой сильноточный источник питания постоянного тока с фиксированным напряжением для зарядки аккумулятора SMF. Он привел прилагаемую приблизительную схему. Я ничего не знаю об этом транзисторе. Это так ? Мой вход — трансформатор 18 вольт 5 ампер. Он сказал мне добавить конденсатор 2200 мкФ 50 В после выпрямления. Это работает? Если да, нужен ли какой-либо радиатор для транзистора и / или IC 7815? Он останавливается автоматически, когда батарея достигает 14.5 вольт?
Или требуются другие изменения? Пожалуйста, посоветуйте мне, господин
Зарядка с конфигурацией эмиттерного повторителя
Да, он будет работать и прекратит зарядку аккумулятора, когда на клеммах аккумулятора будет достигнуто около 14 В.
Однако я не уверен насчет номинала базового резистора 1 Ом … его нужно правильно рассчитать.
И транзистор, и ИС могут быть установлены на общем радиаторе с помощью набора слюдяных сепараторов. Это позволит использовать функцию тепловой защиты ИС и защитить оба устройства от перегрева.
Принципиальная схема
Описание схемы
Показанная схема зарядного устройства сильноточной батареи представляет собой умный способ зарядки батареи, а также обеспечивает автоматическое отключение, когда батарея достигает полного уровня заряда.
Схема представляет собой простой каскад на транзисторах с общим коллектором, использующий показанное силовое устройство 2N6292.
Конфигурация также называется эмиттерным повторителем, и, как следует из названия, эмиттер следует за базовым напряжением и позволяет транзистору проводить только до тех пор, пока потенциал эмиттера равен 0.На 7 В ниже приложенного базового потенциала.
В показанной схеме зарядного устройства сильноточной батареи с использованием регулятора напряжения на базу транзистора подается стабилизированное напряжение 15 В от IC 7815, что обеспечивает разность потенциалов около 15 — 0,7 = 14,3 В на эмиттере / земле. транзистора.
Диод не требуется и должен быть удален из базы транзистора, чтобы предотвратить ненужное падение дополнительных 0,7 В.
Указанное выше напряжение также становится зарядным напряжением для подключенной батареи на этих клеммах.
Пока батарея заряжается и напряжение на ее клеммах остается ниже отметки 14,3 В, напряжение базы транзистора продолжает проводить и подавать на батарею необходимое зарядное напряжение.
Однако, как только батарея начинает достигать полного заряда выше 14,3 В, база блокируется из-за падения 0,7 В на эмиттере, что заставляет транзистор перестать проводить, и напряжение зарядки отключается на батарею на время. как только уровень заряда батареи начинает опускаться ниже 14.Отметка 3 В, транзистор снова включается … цикл повторяется, обеспечивая безопасную зарядку подключенного аккумулятора.
Базовый резистор = Hfe x внутреннее сопротивление батареи
Вот более подходящая конструкция, которая поможет достичь оптимальной зарядки с использованием IC 7815 IC
Как вы можете видеть, здесь в режиме эмиттерного повторителя используется 2N6284. Это связано с тем, что 2N6284 — это транзистор Дарлингтона с высоким коэффициентом усиления, который обеспечивает оптимальную зарядку батареи при предполагаемой скорости 10 А.
Это можно еще больше упростить, используя один 2N6284 и потенциометр, как показано ниже:
Убедитесь, что вы настроили потенциометр так, чтобы получить точное значение 14,2 В на эмиттере батареи.
Все устройства должны быть установлены на больших радиаторах.
4) Схема зарядного устройства для свинцово-кислотных аккумуляторов 12 В 100 Ач
Предлагаемая схема зарядного устройства для аккумуляторов 12 В 100 Ач была разработана одним из преданных членов этого блога г-ном Ранджаном, давайте узнаем больше о работе схемы зарядного устройства и о том, как его также можно использовать в качестве схемы постоянного зарядного устройства.
Схема схемы
Я Ранджан из Джамшедпура, Джаркханд. Недавно во время поиска в Google я узнал о вашем блоге и стал его постоянным читателем. Я многому научился из твоего блога. Для личного пользования хочу сделать зарядное устройство.
У меня трубчатый аккумулятор на 80 Ач и трансформатор на 10 ампер, 9–0–9 вольт. Таким образом, я могу получить 10 ампер 18-0 вольт, если я использую два 9-вольтовых вывода трансформатора (трансформатор фактически получается из старого ИБП на 800 ВА).
Я построил принципиальную схему на основе вашего блога. Пожалуйста, взгляните на это и предложите мне. Обратите внимание, что ,.
1) Я живу в очень сельской местности, поэтому есть огромные колебания мощности, они варьируются от 50 В до 250 В. Также обратите внимание, что я буду потреблять очень меньшее количество тока от батареи (обычно использую светодиодные фонари при отключении электроэнергии), примерно 15-20 Вт.
2) 10-амперный трансформатор, я думаю, безопасно заряжает трубчатую батарею 80 Ач
3) Все диоды, используемые для схемы, представляют собой диоды 6A4.
4) Два 78h22a используются как параллельные для получения 5 + 5 = 10 ампер на выходе. Хотя я думаю, что Батарея не должна потреблять полные 10 ампер. поскольку он будет находиться в заряженном состоянии при повседневном использовании, внутреннее сопротивление аккумулятора будет высоким и потреблять меньший ток.
5) Переключатель S1 используется с расчетом на то, что при нормальной зарядке он будет оставаться в выключенном состоянии. и после полной зарядки аккумулятора он переключился во включенное состояние, чтобы поддерживать непрерывный заряд с более низким напряжением.СЕЙЧАС вопрос в том, безопасно ли держать батарею в зарядке долгое время без присмотра.
Пожалуйста, ответьте мне своими ценными предложениями.
Принципиальная схема зарядного устройства 100 Ач, разработанная г-ном Ранджаном Решение запроса цепиУважаемый Ранджан,
Для меня ваша сильноточная схема зарядного устройства VRLA с использованием IC 78h22A выглядит идеально и должна работать, как ожидалось . Тем не менее, для гарантированного подтверждения рекомендуется проверить напряжение и ток практически перед подключением к батарее.
Да, показанный переключатель можно использовать в режиме непрерывной зарядки, и в этом режиме аккумулятор может оставаться постоянно подключенным без присмотра, однако это следует делать только после того, как аккумулятор будет полностью заряжен примерно до 14,3 В.
Обратите внимание, что четыре последовательных диода, подключенные к клеммам GND микросхем, могут быть диодами 1N4007, в то время как остальные диоды должны быть рассчитаны на более 10 ампер, это можно реализовать, подключив два диода 6A4 параллельно в каждом из показанных положений .
Кроме того, настоятельно рекомендуется размещать обе ИС над одним большим общим радиатором для лучшего и равномерного распределения и рассеивания тепла.
Осторожно : Показанная схема не включает цепь отключения полного заряда, поэтому максимальное напряжение зарядки предпочтительно должно быть ограничено в пределах от 13,8 до 14 В. Это гарантирует, что аккумулятор никогда не сможет достичь предельного порога полной зарядки, и, таким образом, останется в безопасности от условий перезарядки.
Однако это также будет означать, что свинцово-кислотная батарея сможет достичь уровня заряда только около 75%, тем не менее, поддержание недостаточно заряженной батареи обеспечит более длительный срок службы батареи и позволит больше циклов зарядки / разрядки.
Использование 2N3055 для зарядки батареи 100 Ач
Следующая схема представляет простой и безопасный альтернативный способ зарядки батареи 100 Ач с использованием транзистора 2N3055. Он также имеет устройство постоянного тока, поэтому батарею можно заряжать правильным количеством тока.
Будучи эмиттерным повторителем, 2N3055 будет почти выключен при полном заряде, что гарантирует отсутствие перезарядки аккумулятора.
Предел тока можно рассчитать по следующей формуле:
R (x) = 0.7/10 = 0,07 Ом
Мощность будет = 10 Вт
Как просто добавить плавающий заряд
Помните, что на других сайтах могут быть представлены излишне сложные объяснения относительно плавающего заряда, что усложняет понимание концепции.
Плавающая зарядка — это просто небольшой регулируемый уровень тока, который предотвращает саморазряд аккумулятора.
Теперь вы можете спросить, что такое саморазряд аккумулятора.
Это снижение уровня заряда аккумулятора, как только исчезает зарядный ток.Вы можете предотвратить это, добавив резистор высокого номинала, такой как 1 кОм 1 ватт, на вход ИСТОЧНИК 15 В и положительный полюс батареи. Это не позволит батарее саморазрядиться и будет поддерживать уровень 14 В, пока батарея подключена к источнику питания.
5) Схема зарядного устройства свинцово-кислотных аккумуляторов IC 555
Пятая концепция ниже объясняет простую, универсальную схему автоматического зарядного устройства. Схема позволит вам заряжать все типы свинцово-кислотных аккумуляторов от 1 Ач до 1000 Ач.
Использование IC 555 в качестве контроллера IC
IC 555 настолько универсален, что может считаться однокристальным решением для любых схемных приложений. Несомненно, он также использовался здесь для еще одного полезного приложения.
Одна микросхема IC 555, горстка пассивных компонентов — это все, что нужно для создания этой выдающейся полностью автоматической схемы зарядного устройства.
Предлагаемая конструкция автоматически распознает и обновляет подключенную батарею.
Аккумулятор, который требуется заряжать, может оставаться подключенным к цепи постоянно, схема будет постоянно контролировать уровень заряда, если уровень заряда превышает верхний порог, схема отключит напряжение зарядки к нему, и в если заряд упадет ниже установленного нижнего порога, схема подключится и инициирует процесс зарядки.
Как это работает
Схему можно понять по следующим пунктам:
Здесь IC 555 настроен как компаратор для сравнения условий низкого и высокого напряжения батареи на контакте №2 и контакте №6 соответственно.
Согласно устройству внутренней схемы, микросхема 555 установит высокий уровень на своем выходном контакте №3, когда потенциал на контакте №2 опустится ниже 1/3 напряжения питания.
Вышеупомянутое положение сохраняется, даже если напряжение на выводе №2 имеет тенденцию немного повышаться.Это происходит из-за внутреннего установленного уровня гистерезиса ИС.
Однако, если напряжение продолжает дрейфовать выше, контакт №6 принимает ситуацию и в момент, когда он обнаруживает разность потенциалов, превышающую 2/3 напряжения питания, он мгновенно меняет выходной сигнал с высокого на низкий на контакте №3.
В предлагаемой схеме это просто означает, что предустановки R2 и R5 должны быть установлены таким образом, чтобы реле просто дезактивировалось, когда напряжение батареи опускается на 20% ниже указанного значения, и активируется, когда напряжение аккумулятора достигает 20% выше указанного значения. .
Нет ничего проще этого.
Блок питания представляет собой обычный мост / конденсаторную сеть.
Номинал диода будет зависеть от величины зарядного тока аккумулятора. Как показывает практика, номинальный ток диода должен быть вдвое больше, чем скорость зарядки аккумулятора, в то время как скорость зарядки аккумулятора должна составлять 1/10 от номинала аккумулятора в ампер-часах.
Это означает, что TR1 должен составлять примерно 1/10 от номинала подключенной батареи Ач.
Номинал контактов реле следует также выбирать в соответствии с номинальным током TR1.
Как установить порог отключения батареи
Первоначально держите питание цепи выключенным.
Подключите регулируемый источник питания к точкам батареи в цепи.
Подайте напряжение, которое может быть точно равным желаемому пороговому уровню низкого напряжения батареи, затем отрегулируйте R2 так, чтобы реле просто деактивировалось.
Затем медленно увеличивайте напряжение до желаемого более высокого порогового значения напряжения батареи, отрегулируйте R5 так, чтобы реле просто снова включилось.
На этом настройка цепи завершена.
Удалите внешний регулируемый источник, замените его любой батареей, которую необходимо зарядить, подключите вход TR1 к сети и включите.
Остальное будет автоматически обработано, то есть теперь аккумулятор начнет заряжаться и отключится, когда он будет полностью заряжен, а также автоматически подключится к источнику питания, если его напряжение упадет ниже установленного нижнего порога напряжения.
Распиновка IC 555
Распиновка IC 7805
Как настроить схему.
Установка пороговых значений напряжения для вышеуказанной схемы может быть выполнена, как описано ниже:
Первоначально оставьте секцию источника питания трансформатора на правой стороне схемы полностью отключенной от схемы.
Подключите внешний источник переменного напряжения к клеммам (+) / (-) батареи.
Отрегулируйте напряжение до 11,4 В и отрегулируйте предустановку на контакте № 2 так, чтобы реле просто сработало.
Вышеописанная процедура устанавливает нижний порог срабатывания аккумулятора.Заклейте заготовку небольшим количеством клея.
Теперь увеличьте напряжение примерно до 14,4 В и отрегулируйте предустановку на контакте № 6, чтобы просто отключить реле из его предыдущего состояния.
Устанавливает верхний порог отключения цепи.
Зарядное устройство готово.
Теперь вы можете снять регулируемый блок питания с аккумуляторных батарей и использовать зарядное устройство, как описано в статье выше.
Выполняйте описанные выше процедуры с большим терпением и обдумыванием
Отзыв от одного из преданных читателей этого блога:
untung suharto 1 января 2017 г., 7:46 утра
Привет, вы сделали ошибку предустановки R2 и R5, они должны быть не 10k, а 100k, я только что сделал один, и он был успешным, спасибо.
Согласно приведенному выше предложению, предыдущая диаграмма может быть изменена, как показано ниже:
ЗавершениеВ приведенной выше статье мы узнали 5 отличных методов, которые можно применить для изготовления зарядных устройств для свинцово-кислотных аккумуляторов. , прямо от 7 Ач до 100 Ач или даже от 200 Ач до 500 Ач, просто обновив соответствующие устройства или реле.
Если у вас есть конкретные вопросы относительно этой концепции, не стесняйтесь задавать их через поле для комментариев ниже.
Зарядка аккумулятора IC 555 в зависимости от тока
Цепь зарядного устройства для свинцово-кислотного аккумулятора IC 555 также может быть построена с использованием датчика тока на его контакте №2.
Полная принципиальная схема показана ниже:
- R1, R3 = 10 кОм
- R2 = 100 кОм
- Светодиодный резистор может быть 1 кОм
- Резистор R4 на выводе 6 может быть закорочен перемычкой
- R5 = 1 / макс. ток зарядки
- Реле = реле 12В для аккумулятора 12В.
- Релейный диод = 1N4007
- T1, T2 = BC547
Как это работает
Схема фактически сконфигурирована как схема защелки установки / сброса.
R4 можно заменить на короткое замыкание.
При запуске, когда подано питание, когда контакт реле находится на НЗ, схема не отвечает.
Нажатие кнопки PB1 инициализирует цепь, на мгновение подавая ток через PB1 на батарею.
Батарея действует как нагрузка и создает падение напряжения на R5, которое запускает T2.
С T2, проводящий контакт №2 ИС удерживается в низком уровне, что побуждает выходной контакт №3 стать высоким и включить реле.
Контакты реле теперь переключаются на точку замыкающего контакта, и цепь замыкается. Таким образом, нажатие PB1 требуется только на мгновение, а затем его можно отпустить.
По мере того, как батарея заряжается, напряжение на R5 продолжает снижаться до момента, когда батарея почти полностью заряжена, когда падение напряжения R5 не может больше удерживать T2 включенным.
T2 выключается, в результате чего контакт № 2 снова становится высоким, а это, в свою очередь, вызывает низкий уровень на контакте № 3, выключает реле и отключает подачу заряда для цепи и аккумулятора.
Ссылки:
Зарядка свинцово-кислотных аккумуляторов
Принципы работы свинцово-кислотных аккумуляторов
О компании Swagatam
Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть какие-либо вопросы, связанные со схемой, вы можете взаимодействовать с ними через комментарии, я буду очень рад помочь!
Импульсное зарядное устройство для восстановления усталых свинцово-кислотных аккумуляторов
Описание
Если у вас есть мотоцикл, дом на колесах, фургон, газонокосилка, круиз на день или, может быть, старинный автомобиль, вам, должно быть, в какой-то момент пришлось списать свинцово-кислотный аккумулятор.Когда аккумулятор неправильно заряжен или саморазрядился, как это происходит во время простоя, кристаллы сульфата накапливаются на пластинах аккумулятора.
Сульфат, не позволяющий полностью зарядить аккумулятор, и поэтому он не может полностью зарядить его. При попытке зарядить аккумулятор в этом состоянии он только нагревается и теряет воду, плотность электролита не увеличивается до нормального состояния «полного заряда». Единственное, что вы делаете — полностью убиваете батарею. Если аккумулятор имеет напряжение покоя не менее 1.8 В / элемент и никакие элементы не закорочены, можно выполнить десульфатацию пластин. Эта схема является дополнением и частью модификации обычного зарядного устройства и решает проблему сульфата.
ВНИМАНИЕ: Перед тем, как начать подобный проект, помните: напряжение в сети опасно, поэтому, если вы не уверены на 100% в том, что делаете, посоветуйтесь с другом, у которого есть навыки, или не делайте этого вообще!
Проект: возьмите старое зарядное устройство, большое или маленькое, на ваш выбор, в зависимости от размера батарей, с которыми вы обычно работаете (чем больше, тем лучше).Есть несколько уловок для повышения производительности, если вам это нужно. Начните с того, что вырвите все, кроме трансформатора и выпрямителя. Некоторые старые зарядные устройства оснащены ребристыми выпрямителями, которые имеют высокое падение напряжения и требуют замены. Замените на прочный мостовой выпрямитель, способный выдерживать большие токи. Вся проводка на вторичной обмотке должна быть короткой и толстой. Выпрямитель должен быть прикручен к шасси болтами, чтобы он не охладился. Если в зарядном устройстве есть переключатель высокого / низкого уровня, это является плюсом, в противном случае вы можете в некоторых случаях добавить несколько витков провода на вторичную обмотку.Схема; 14-ступенчатый счетчик пульсаций и генератор IC 4060 генерируют импульс, который является тактовым импульсом схемы. Импульс подается на таймер 555, который определяет длину активного выхода. С помощью переключателя вы можете выбрать длинный или короткий импульсный выход. Выход таймера 555 запускает через транзистор драйвер симистора оптоизолятора с переходом через нуль MOC 3041. Это обеспечивает плавный пуск трансформатора зарядного устройства через симистор и демпферную цепь. Для схемы необходим небольшой блок питания, состоящий из Т1 трансформатора 15В 0.Вторичная обмотка 1А, мостовой выпрямитель, регулятор и две крышки. Поскольку этот проект включает зарядное устройство (X), результат может отличаться по производительности от одного случая к другому. Однако это не означает, что ваш проект не работает, но эффективность может варьироваться. Некоторые отмечают, что демпфирующий колпачок относится к высоковольтному типу переменного тока (X), а резисторы на стороне сети имеют тип не менее 0,5 Вт. Используйте симистор, который может принимать 400 В + и 10 А +, я использую BTA 25.600, но в большинстве случаев это перебор. Нет печатной платы, извините!
Как это работает
Ну краткая версия.Цель состоит в том, чтобы получить достаточно высокое напряжение элемента, чтобы сульфат растворился без кипячения или плавления батареи. Это достигается за счет применения более высокого напряжения на более короткие периоды времени и за счет того, что батарея некоторое время отдыхает. Импульсы в коротком диапазоне составляют примерно 0,5 с вкл. / 3 с выкл., А длинные импульсы — 1,4 с вкл. / 2 с выкл. Это время может варьироваться в зависимости от допусков компонентов. Начните с длинного импульса и, если вы обнаружите «закипание» (больше, чем при нормальной зарядке) в электролите, переключитесь на короткие импульсы. Не оставляйте процесс без присмотра, по крайней мере, пока вы не узнаете, какова ваша конкретная версия этого проекта.Я построил первую версию этой схемы около 10 лет назад и экспериментировал с ней, но уверен, что кто-то сможет улучшить ее и дальше.
Удачи! Анте
Простые микросхемы зарядного устройства для любой химии
Предпосылки
Для многих устройств с батарейным питанием обычно требуются самые разные источники заряда, химический состав батарей, напряжения и токи. Например, промышленные, высокопроизводительные, многофункциональные потребительские, медицинские и автомобильные схемы зарядных устройств требуют более высоких напряжений и токов, поскольку появляются новые аккумуляторные блоки большой емкости для всех типов батарей.Кроме того, солнечные панели с широким диапазоном уровней мощности используются для питания множества инновационных систем, содержащих перезаряжаемые герметичные свинцово-кислотные (SLA) и литиевые батареи. Примеры включают габаритные огни пешеходного перехода, портативные акустические системы, уплотнители мусора и даже огни морских буев. Более того, некоторые свинцово-кислотные (LA) батареи, используемые в солнечных батареях, представляют собой батареи глубокого цикла, способные выдерживать длительные повторяющиеся циклы зарядки в дополнение к глубоким разрядам. Хороший пример этого — глубоководные морские буи, обязательным условием которых является 10-летний срок эксплуатации.Другой пример — внесетевые (то есть отключенные от электроэнергетической компании) системы возобновляемых источников энергии, такие как солнечная или ветровая энергия, где время безотказной работы имеет первостепенное значение из-за трудностей с близким доступом.
Даже в несолнечных приложениях последние рыночные тенденции означают возобновление интереса к элементам SLA большой емкости. Автомобильные или пусковые элементы SLA недороги с точки зрения соотношения цена / мощность и могут обеспечивать высокие импульсные токи в течение коротких промежутков времени, что делает их отличным выбором для автомобильных и других пусковых устройств транспортных средств.Встраиваемые автомобильные приложения имеют входное напряжение> 30 В, а в некоторых даже выше. Рассмотрим систему определения местоположения GPS, используемую в качестве средства защиты от кражи; Для этого приложения может оказаться полезным линейное зарядное устройство с типичным входным напряжением 12 В с понижением до двух последовательно соединенных литий-ионных аккумуляторов (типовое значение 7,4 В) и требующее защиты от гораздо более высоких напряжений. Аккумуляторы глубокого разряда LA — еще одна технология, популярная в промышленных приложениях. У них более толстые пластины, чем у автомобильных аккумуляторов, и они рассчитаны на разряд до 20% от их общей емкости.Обычно они используются там, где мощность требуется в течение длительного времени, например, в вилочных погрузчиках и тележках для гольфа. Тем не менее, как и их литий-ионные аккумуляторы, аккумуляторы LA чувствительны к перезарядке, поэтому осторожное обращение во время цикла зарядки очень важно.
Решения на основе интегральных схем (IC)покрывают лишь небольшую часть множества возможных комбинаций входного напряжения, напряжения заряда и тока заряда. Громоздкая комбинация микросхем и дискретных компонентов обычно использовалась для покрытия большинства оставшихся, более сложных комбинаций и топологий.Так было только в 2011 году, когда компания Analog Devices обратилась к этому рыночному пространству приложений и упростила его с помощью своего популярного решения для зарядки с двумя микросхемами, состоящего из микросхемы контроллера зарядки аккумулятора LTC4000 и совместимого преобразователя постоянного тока с внешней компенсацией.
Коммутационные и линейные зарядные устройства
ИС для зарядных устройств с традиционной линейной топологией часто ценились за их компактность, простоту и низкую стоимость. Однако к недостаткам этих линейных зарядных устройств относятся ограниченный диапазон входного напряжения и напряжения батареи, более высокое относительное потребление тока, чрезмерное рассеивание мощности, ограниченные алгоритмы прекращения заряда и более низкая относительная эффективность (эффективность ~ [VOUT / VIN] × 100%).С другой стороны, импульсные зарядные устройства для аккумуляторов также являются популярным выбором из-за их гибкой топологии, мультихимической зарядки, высокой эффективности зарядки (которая минимизирует нагрев для обеспечения быстрой зарядки) и широких диапазонов рабочего напряжения. Тем не менее, некоторые из недостатков переключаемых зарядных устройств включают относительно высокую стоимость, более сложную конструкцию на основе индукторов, потенциальное шумообразование и решения, занимающие большую площадь. Современный Лос-Анджелес, беспроводное энергоснабжение, сбор энергии, солнечная зарядка, удаленный датчик и встроенные автомобильные приложения обычно питаются от высоковольтных линейных зарядных устройств по причинам, указанным выше.Однако существует возможность для более современного зарядного устройства с переключаемым режимом, которое устраняет связанные с этим недостатки.
Простое зарядное устройство Buck Battery
Некоторые из более сложных проблем, с которыми сталкивается разработчик на начальном этапе разработки зарядного решения, — это широкий диапазон источников входного сигнала в сочетании с широким диапазоном возможных аккумуляторов, высокая емкость аккумуляторов, которые необходимо заряжать, и высокое входное напряжение.
Источники входного сигнала столь же широки, сколь и разнообразны, но некоторые из наиболее сложных из них, которые имеют дело с системами зарядки аккумуляторов: мощные настенные адаптеры с напряжением от 5 до 19 В и выше, выпрямленные системы 24 В переменного тока, высокое сопротивление солнечные батареи, аккумуляторы для автомобилей и тяжелых грузовиков / Humvee.Следовательно, комбинация химического состава батарей, возможная в этих системах — на основе лития (Li-Ion, Li-Polymer, фосфат лития-железа (LiFePO4)) и на основе LA — еще больше увеличивает перестановки, что делает конструкцию еще более устрашающе.
Из-за сложности конструкции ИС существующие ИС для зарядки аккумуляторов в основном ограничены понижающей (или понижающей) или более сложной топологией SEPIC. Добавьте к этому смесь возможности солнечной зарядки, и вы откроете множество других сложностей. Наконец, некоторые существующие решения заряжают батареи с несколькими химическими соединениями, а некоторые — со встроенной нагрузкой.Однако до сих пор ни одно зарядное устройство для ИС не обеспечивало всех необходимых характеристик производительности для решения этих проблем.
Новые многофункциональные компактные зарядные устройства
Понижающее устройство для зарядки ИС, которое решает проблемы, описанные выше, должно обладать большинством из следующих атрибутов:
- Широкий диапазон входного напряжения
- Широкий диапазон выходного напряжения для работы с несколькими батареями
- Гибкость — возможность заряжать несколько батарей химического состава
- Простая и автономная работа со встроенными алгоритмами прекращения заряда (микропроцессор не требуется)
- Большой ток заряда для быстрой зарядки, большие элементы большой емкости
- Возможность солнечной зарядки
- Усовершенствованная упаковка для улучшения тепловых характеристик и экономии места
Когда несколько лет назад ADI разработала популярную микросхему контроллера зарядки аккумулятора LTC4000 (которая работает вместе с преобразователем постоянного тока с внешней компенсацией, образуя мощное и гибкое решение для зарядки двухчиповых аккумуляторов), она значительно упростила существующий решение, которое было довольно запутанным и громоздким.Чтобы включить управление PowerPath TM , функции повышения / понижения и ограничение входного тока, решения состояли из импульсного регулятора постоянного тока с повышающим постоянным током или контроллера зарядного устройства с понижающим переключением, соединенного с внешним контроллером повышения. , а также микропроцессор, а также несколько микросхем и дискретных компонентов. К основным недостаткам относятся ограниченный диапазон рабочего напряжения, отсутствие возможности подключения солнечной панели, невозможность заряжать аккумулятор любого химического состава и отсутствие прекращения заряда на борту. Перенесемся в настоящее, и теперь доступны более простые и гораздо более компактные монолитные решения для решения этих проблем.Понижающие зарядные устройства LTC4162 и LTC4015 от Analog Devices предоставляют однокристальные решения для понижающей зарядки с различными уровнями тока заряда и полным набором функций.
Зарядное устройство LTC4162
LTC4162 — это высокоинтегрированное синхронное монолитное понижающее зарядное устройство с мультихимическим режимом высокого напряжения и диспетчером PowerPath со встроенными функциями телеметрии и дополнительным отслеживанием точки максимальной мощности (MPPT). Он эффективно передает питание от различных источников ввода, таких как настенные адаптеры, объединительные платы и солнечные панели, для зарядки литий-ионных / полимерных аккумуляторов, LiFePO4 или батарей LA, при этом обеспечивая питание нагрузки системы до 35 В.Устройство обеспечивает расширенный системный мониторинг и управление PowerPath, а также мониторинг состояния батареи. Хотя для доступа к наиболее продвинутым функциям LTC4162 требуется главный микроконтроллер, использование порта I 2 C не является обязательным. Основные характеристики зарядки продукта можно отрегулировать, используя конфигурацию штыревой перемычки и программирующие резисторы. Устройство обеспечивает точность регулирования тока заряда ± 5% до 3,2 А, регулировку напряжения заряда ± 0,75% и работает в диапазоне входного напряжения от 4,5 В до 35 В.Приложения включают портативные медицинские инструменты, устройства USB-питания (USB-C), военное оборудование, промышленные портативные компьютеры и защищенные ноутбуки / планшетные компьютеры.
Рисунок 1. Типовая схема применения LTC4162-L.
LTC4162 (см. Рисунок 1) содержит точный 16-разрядный аналого-цифровой преобразователь (АЦП), который непрерывно отслеживает многочисленные параметры системы по команде, включая входное напряжение, входной ток, напряжение батареи, ток батареи, выходное напряжение, температуру батареи. , температура кристалла и последовательное сопротивление батареи (BSR).Все параметры системы можно контролировать через двухпроводной интерфейс I 2 C, а программируемые и маскируемые предупреждения гарантируют, что только интересующая информация вызовет прерывание. Алгоритм отслеживания активной точки максимальной мощности устройства глобально просматривает входной контур управления пониженным напряжением и выбирает рабочую точку для максимального извлечения энергии из солнечных панелей и других резистивных источников. Кроме того, его встроенная топология PowerPath отделяет выходное напряжение от батареи, тем самым позволяя портативному изделию запускаться мгновенно, когда источник зарядки применяется в условиях очень низкого напряжения батареи.Встроенные профили зарядки LTC4162 оптимизированы для аккумуляторов различного химического состава, включая литий-ионные / полимерные, LiFePO4 и LA. Как напряжение заряда, так и ток заряда могут автоматически регулироваться в зависимости от температуры аккумулятора в соответствии с рекомендациями JEITA или настраиваться индивидуально. Для LA непрерывная температурная кривая автоматически регулирует напряжение батареи в зависимости от температуры окружающей среды. Для любого химического состава может быть задействована дополнительная система регулирования температуры стыка фильеры, предотвращающая чрезмерный нагрев в условиях ограниченного пространства или в условиях высоких температур.См. Рисунок 2 для получения информации об эффективности зарядки литий-ионных аккумуляторов.
Наконец, LTC4162 размещен в 28-выводном корпусе QFN размером 4 мм × 5 мм с открытой металлической площадкой для обеспечения превосходных тепловых характеристик. Устройства класса E и I гарантированно работают от –40 ° C до + 125 ° C.
Рис. 2. Зависимость эффективности зарядки литий-ионных аккумуляторов от входного напряжения по количеству ячеек.
Что делать, если требуется более высокий ток?
LTC4015 также представляет собой высокоинтегрированное, мультихимическое синхронное понижающее зарядное устройство высокого напряжения со встроенными функциями телеметрии.Тем не менее, он имеет архитектуру контроллера с внешними силовыми полевыми транзисторами для более высокого тока заряда (до 20 А или более в зависимости от выбранных внешних компонентов). Устройство эффективно подает питание от входного источника (сетевой адаптер, солнечная панель и т. Д.) На литий-ионный / полимерный аккумулятор, LiFePO4 или батарею LA. Он обеспечивает расширенные функции системного мониторинга и управления, включая подсчет кулонов батареи и мониторинг состояния. Хотя для доступа к наиболее продвинутым функциям LTC4015 требуется главный микроконтроллер, использование его порта I 2 C не является обязательным.Основные характеристики зарядки продукта можно отрегулировать, используя конфигурацию штыревой перемычки и программирующие резисторы.
Рис. 3. Схема зарядного устройства для двухэлементной литий-ионной аккумуляторной батареи 12 В IN на 8 А.
LTC4015 обеспечивает точность регулирования тока заряда ± 2% до 20 А, регулировку напряжения заряда ± 1,25% и работу в диапазоне входного напряжения от 4,5 В до 35 В. Приложения включают портативные медицинские инструменты, военное оборудование, приложения для резервного питания от батарей, промышленные портативные устройства, промышленное освещение, защищенные ноутбуки / планшетные компьютеры, а также системы связи и телеметрии с дистанционным питанием.
LTC4015 также содержит точный 14-битный аналого-цифровой преобразователь (АЦП), а также высокоточный счетчик кулонов. АЦП непрерывно контролирует многочисленные параметры системы, включая входное напряжение, входной ток, напряжение батареи, ток батареи, и по команде сообщает о температуре батареи и последовательном сопротивлении батареи (BSR). Контролируя эти параметры, LTC4015 может сообщать о состоянии аккумулятора, а также о состоянии его заряда. Все параметры системы можно контролировать через двухпроводной интерфейс I 2 C, а программируемые и маскируемые предупреждения гарантируют, что только интересующая информация вызовет прерывание.Профили зарядки на плате LTC4015 оптимизированы для различных типов аккумуляторов, включая литий-ионные / полимерные, LiFePO4 и LA. Конфигурационные штыри позволяют пользователю выбирать между несколькими предопределенными алгоритмами заряда для каждого химического состава батареи, а также несколькими алгоритмами, параметры которых можно регулировать с помощью I 2 C. Как напряжение заряда, так и ток заряда могут быть автоматически отрегулированы в зависимости от температуры батареи в соответствии с требованиями. с рекомендациями JEITA или даже с индивидуальными настройками.См. Рисунок 4 для получения информации об эффективности заряда свинцово-кислотной батареи. LTC4015 размещен в корпусе QFN размером 5 мм × 7 мм с открытой металлической площадкой для обеспечения превосходных тепловых характеристик.
Рис. 4. Эффективность зарядки свинцово-кислотной батареи с LTC4015.
Экономия места, гибкость и более высокие уровни мощности
При равных уровнях мощности (например, 3 А), поскольку это монолитное устройство со встроенными силовыми полевыми МОП-транзисторами, LTC4162 может сэкономить до 50% площади печатной платы по сравнению с LTC4015.Поскольку их наборы функций аналогичны, LTC4015 следует использовать при выходных токах от> 3,2 А до 20 А или более. Ни одно из конкурирующих в отрасли решений для зарядных устройств IC не предлагает такой же высокий уровень интеграции и не может генерировать такие же уровни мощности. Те, которые приближаются к зарядному току (от 2 до 3 А), ограничены только одним химическим составом аккумулятора (литий-ионный) или ограничены по напряжению заряда аккумулятора (максимум 13 В), и поэтому не предлагают уровни мощности или гибкость. из LTC4162 или LTC4015.Кроме того, если учесть количество внешних компонентов, необходимых для ближайшего конкурирующего решения для монолитного зарядного устройства, LTC4162 предлагает до 40% экономии площади печатной платы, что делает его еще более привлекательным выбором для разработки.
Солнечная зарядка
Есть много способов использовать солнечную панель на максимальной мощности (MPP). Один из самых простых способов — подключить аккумулятор к солнечной панели через диод. Этот метод основан на согласовании максимального выходного напряжения панели с относительно узким диапазоном напряжения батареи.Когда доступные уровни мощности очень низкие (примерно менее нескольких десятков милливатт), это может быть лучшим подходом. Однако уровни мощности не всегда низкие. Поэтому в LTC4162 и LTC4015 используется метод MPPT, который определяет максимальное напряжение питания (MPV) солнечной панели при изменении количества падающего света. Это напряжение может резко измениться с 12 В до 18 В, поскольку ток панели изменяется в течение 2 или более десятилетий динамического диапазона. Алгоритм схемы MPPT находит и отслеживает значение напряжения панели, которое обеспечивает максимальный ток заряда для аккумулятора.Функция MPPT не только непрерывно отслеживает точку максимальной мощности, но также может выбрать правильный максимум на кривой мощности для увеличения мощности, получаемой от панели в условиях частичной тени, когда на кривой мощности возникают несколько пиков. В периоды низкой освещенности режим низкого энергопотребления позволяет зарядному устройству подавать небольшой зарядный ток, даже если света недостаточно для работы функции MPPT.
Заключение
Новейшие мощные и полнофункциональные микросхемы для зарядки аккумуляторов и PowerPath Manager от компании, LTC4162 и LTC4015, упрощают очень сложную систему высоковольтной и сильноточной зарядки.Эти устройства эффективно управляют распределением мощности между входными источниками, такими как настенные адаптеры, объединительные платы, солнечные панели и т. Д., А также зарядкой батарей различного химического состава, включая литий-ионные / полимерные, LiFePO4 и SLA. Их простое решение и компактные размеры позволяют им достигать высокой производительности в передовых приложениях, где когда-то единственным вариантом были только более сложные, устаревшие топологии на основе коммутирующих стабилизаторов, такие как SEPIC. Это значительно упрощает задачу разработчика, когда речь идет о схемах зарядного устройства для аккумуляторов средней и высокой мощности.
Каковы 3 ступени интеллектуальных зарядных устройств?
Вы, наверное, слышали, что «вам нужно трехступенчатое зарядное устройство». Мы сказали это и скажем еще раз. Лучшим зарядным устройством для аккумулятора является трехступенчатое зарядное устройство. Их также называют «умными зарядными устройствами» или «зарядными устройствами, управляемыми микропроцессором». По сути, эти типы зарядных устройств безопасны, просты в использовании и не перезаряжают аккумулятор. Почти все зарядные устройства, которые мы продаем, представляют собой трехступенчатые зарядные устройства.
Хорошо, поэтому трудно отрицать, что трехступенчатые зарядные устройства работают, и они работают хорошо. Но вот вопрос на миллион долларов: Каковы 3 этапа? Что делает эти зарядные устройства такими разными и эффективными? Это действительно того стоит? Давайте узнаем, пройдя каждый этап один за другим.
Этап 1 | Массовая зарядка
Основное назначение зарядного устройства для аккумуляторов — подзарядить аккумулятор. На этой первой стадии обычно используется самое высокое напряжение и сила тока, на которые рассчитано зарядное устройство.Уровень заряда, который может быть применен без перегрева батареи, известен как естественная скорость поглощения батареи. Для типичной 12-вольтовой батареи AGM напряжение зарядки, поступающее в батарею, будет достигать 14,6-14,8 вольт, в то время как залитые батареи могут быть даже выше. Для гелевого аккумулятора напряжение должно быть не более 14,2-14,3 вольт. Если зарядное устройство представляет собой зарядное устройство на 10 ампер, и если сопротивление батареи позволяет это, зарядное устройство будет выдавать полные 10 ампер. На этом этапе происходит подзарядка сильно разряженных батарей.На этом этапе нет риска перезарядки, потому что аккумулятор еще даже не полностью заряжен.
Этап 2 | Абсорбционный заряд
Умные зарядные устройстваобнаруживают напряжение и сопротивление аккумулятора перед зарядкой. После считывания данных о батарее зарядное устройство определяет, на какой стадии правильно заряжать. Когда уровень заряда аккумулятора достигает 80% *, зарядное устройство переходит в стадию абсорбции. В этот момент большинство зарядных устройств будут поддерживать постоянное напряжение, в то время как сила тока снижается.Более низкий ток, поступающий в батарею, безопасно заряжает батарею, не перегревая ее.
Этот этап занимает больше времени. Например, последние 20% заряда батареи занимают гораздо больше времени по сравнению с первыми 20% на этапе накопления заряда. Сила тока постоянно снижается, пока аккумулятор почти не достигнет полной емкости.
* Фактическое состояние стадии абсорбции заряда зависит от зарядного устройства
Stage 3 | Плавающий заряд
Некоторые зарядные устройства переходят в плавающий режим уже при уровне заряда 85%, а другие начинают ближе к 95%.В любом случае, плавающий каскад полностью заряжает аккумулятор и поддерживает 100% -ный уровень заряда. Напряжение будет снижаться и оставаться на уровне 13,2-13,4 вольт, что является максимальным напряжением, которое может выдержать батарея на 12 вольт. Сила тока также уменьшится до такой степени, что она будет считаться тонкой струйкой. Отсюда и термин «постоянное зарядное устройство». По сути, это стадия плавающего режима, когда в аккумулятор постоянно поступает заряд, но только с безопасной скоростью, чтобы обеспечить полный уровень заряда и ничего более.Большинство интеллектуальных зарядных устройств в этот момент не выключаются, но совершенно безопасно оставлять аккумулятор в плавающем режиме на месяцы и даже годы.
Для здоровья лучше всего быть полностью заряженным аккумулятором.
Мы говорили это раньше и скажем снова. Лучшее зарядное устройство для аккумулятора — это трехступенчатое интеллектуальное зарядное устройство. Они просты в использовании и не требуют беспокойства. Вам никогда не придется беспокоиться о том, что зарядное устройство будет оставаться на аккумуляторе слишком долго.Фактически, лучше, если вы ДЕЙСТВИТЕЛЬНО оставите его включенным. Когда аккумулятор не полностью заряжен, на пластинах накапливаются кристаллы сульфата, и это лишает вас энергии. Если вы оставляете свой PowerSports в сарае в межсезонье или в отпуске, подключите аккумулятор к трехступенчатому зарядному устройству. Это гарантирует, что ваша батарея будет готова к запуску в любое время. Воспользуйтесь ссылкой ниже, чтобы просмотреть нашу подборку смарт-чейнджеров и зарядных устройств 12/24 В.
Выберите свое интеллектуальное зарядное устройство
Была ли эта информация полезной? Подпишитесь, чтобы получать обновления и предложения.
Услуга зарядки аккумуляторов — поставщик специальных аккумуляторных батарей
Как поставщик аккумуляторных батарей и аккумуляторных блоков по индивидуальному заказу, Epec также предлагает своим клиентам услуги по зарядке на месте. У нас есть стандартное зарядное оборудование, и мы можем создавать индивидуальные программы для удовлетворения всех требований к зарядке.
Это дает Epec уникальную возможность поставлять нашим клиентам аккумуляторные батареи и пакеты, которые полностью заряжены в соответствии с их спецификациями и могут быть немедленно вставлены в конечный продукт.
Основные методы зарядки аккумулятора
Постоянное напряжение
Зарядное устройство постоянного напряжения — это в основном источник питания постоянного тока, который в своей простейшей форме может состоять из понижающего трансформатора от сети с выпрямителем для подачи постоянного напряжения для зарядки аккумулятора. Такие простые конструкции часто встречаются в дешевых зарядных устройствах для автомобильных аккумуляторов. Свинцово-кислотные элементы, используемые для автомобилей и систем резервного питания, обычно используют зарядные устройства постоянного напряжения.Кроме того, в литий-ионных элементах часто используются системы постоянного напряжения, хотя они обычно более сложные с добавленной схемой для защиты как батарей, так и безопасности пользователя.
Постоянный ток
Зарядные устройства постоянного тока изменяют подаваемое на аккумулятор напряжение для поддержания постоянного тока и отключаются, когда напряжение достигает уровня полной зарядки. Эта конструкция обычно используется для никель-кадмиевых и никель-металлогидридных элементов или батарей.
Конический ток
Это зарядка от грубого нерегулируемого источника постоянного напряжения. Это не контролируемый заряд, как в V Taper выше. Ток уменьшается по мере нарастания напряжения элемента (противо-ЭДС). Существует серьезная опасность повреждения элементов из-за перезарядки. Чтобы избежать этого, следует ограничить скорость и продолжительность зарядки. Подходит только для батарей SLA.
Импульсный заряд
Импульсные зарядные устройства подают зарядный ток в батарею импульсами.Скорость зарядки (на основе среднего тока) можно точно контролировать, изменяя ширину импульсов, обычно около одной секунды. Во время процесса зарядки короткие периоды отдыха от 20 до 30 миллисекунд между импульсами позволяют стабилизировать химическое воздействие в батарее за счет выравнивания реакции по всему объему электрода перед возобновлением заряда. Это позволяет химической реакции идти в ногу со скоростью поступления электрической энергии. Также утверждается, что этот метод может уменьшить нежелательные химические реакции на поверхности электрода, такие как газообразование, рост кристаллов и пассивация.При необходимости можно также измерить напряжение холостого хода батареи во время периода покоя.
Burp Зарядка
Также называется Reflex или Зарядка с отрицательным импульсом Используется вместе с импульсной зарядкой, он применяет очень короткий разрядный импульс, обычно в 2–3 раза превышающий зарядный ток в течение 5 миллисекунд, во время периода покоя зарядки для деполяризации элемента. Эти импульсы вытесняют любые пузырьки газа, которые образовались на электродах во время быстрой зарядки, ускоряя процесс стабилизации и, следовательно, общий процесс зарядки.Выпуск и распространение пузырьков газа известно как «отрыжка». Были сделаны противоречивые заявления об улучшении скорости заряда и срока службы батареи, а также об удалении дендритов, которое стало возможным с помощью этого метода. Самое меньшее, что можно сказать, это то, что «не повреждает аккумулятор».
IUI Зарядка
Это недавно разработанный профиль зарядки, используемый для быстрой зарядки стандартных свинцово-кислотных аккумуляторов от определенных производителей.Он подходит не для всех свинцово-кислотных аккумуляторов. Первоначально аккумулятор заряжается с постоянной (I) скоростью, пока напряжение элемента не достигнет заданного значения — обычно напряжения, близкого к тому, при котором происходит газообразование. Эта первая часть цикла зарядки известна как фаза объемной зарядки. По достижении заданного напряжения зарядное устройство переключается в фазу постоянного напряжения (U), и ток, потребляемый батареей, будет постепенно падать, пока не достигнет другого заданного уровня. Эта вторая часть цикла завершает нормальную зарядку аккумулятора с медленно убывающей скоростью.Наконец, зарядное устройство снова переключается в режим постоянного тока (I), и при выключении зарядного устройства напряжение продолжает повышаться до нового более высокого предустановленного значения. Эта последняя фаза используется для выравнивания заряда отдельных ячеек в батарее, чтобы максимально продлить срок ее службы.
Капельный заряд
Капельная зарядка предназначена для компенсации саморазряда аккумулятора. Непрерывный заряд. Долговременная зарядка постоянным током для использования в режиме ожидания.Скорость заряда зависит от частоты разряда. Не подходит для некоторых типов батарей, например NiMH и литий, которые могут выйти из строя из-за перезарядки. В некоторых приложениях зарядное устройство предназначено для переключения на непрерывную зарядку, когда аккумулятор полностью заряжен.
Плавающий заряд
Аккумулятор и нагрузка постоянно подключены параллельно к источнику заряда постоянного тока и поддерживаются при постоянном напряжении ниже верхнего предела напряжения аккумулятора.Используется для систем резервного питания аварийного питания. В основном используется со свинцово-кислотными аккумуляторами.
Случайная зарядка
Все вышеперечисленные приложения включают контролируемую зарядку батареи, однако есть много приложений, в которых энергия для зарядки батареи доступна только или доставляется случайным, неконтролируемым образом. Это относится к автомобильным приложениям, где энергия зависит от частоты вращения двигателя, которая постоянно меняется. Проблема стоит более остро в приложениях EV и HEV, в которых используется рекуперативное торможение, поскольку при торможении возникают большие всплески мощности, которые должна поглощать аккумулятор.Более щадящие применения — солнечные панели, которые можно заряжать только при ярком солнце. Все это требует специальных методов для ограничения зарядного тока или напряжения до уровней, которые может выдержать аккумулятор.
Создание зарядного устройства, управляемого Arduino
Arduino и подключенная схема зарядки могут использоваться для мониторинга и управления зарядкой NiMH аккумуляторных батарей, вот как это сделать:
Готовый приборАккумуляторы — отличный способ питания вашей портативной электроники.Они могут сэкономить вам много денег, а при правильной переработке они намного лучше для окружающей среды. Чтобы максимально использовать возможности аккумуляторных батарей, их необходимо правильно зарядить. Значит, вам нужно хорошее зарядное устройство. Вы можете потратить много денег на коммерческое зарядное устройство, но гораздо интереснее построить его для себя. Итак, вот как создать зарядное устройство, управляемое Arduino.
Во-первых, важно отметить, что не существует универсального метода зарядки, подходящего для всех аккумуляторных батарей.Каждый тип батареи использует свой химический процесс для работы. В результате каждый тип батареи необходимо заряжать по-разному. В этой статье мы не можем охватить все типы аккумуляторов и способы зарядки. Поэтому для простоты мы сосредоточимся на наиболее распространенном типе аккумуляторных батарей AA — никель-металлогидридных (NiMH).
Диаграмма Фритцинга проекта Схема к проектуМатериалы:
Детали в порядке слева направо- Микроконтроллер Arduino
- Держатель батареи AA
- NiMH батарея AA
- Резистор мощности 10 Ом (рассчитан на мощность не менее 5 Вт)
- Резистор 1 МОм
- Конденсатор 1 мкФ
- IRF510 МОП-транзистор
- Датчик температуры TMP36
- Регулируемый источник питания 5 В
- Макетная плата
- Провода перемычки
Как заряжать NiMH аккумуляторы AA
Увеличение скорости C заряжает аккумулятор быстрее, но увеличивает риск его поврежденияЕсть много разных способов зарядить NiMH аккумулятор.Метод, который вы используете, в основном зависит от того, насколько быстро вы хотите зарядить аккумулятор. Скорость заряда (или C-rate) измеряется относительно емкости аккумулятора. Если ваш аккумулятор имеет емкость 2500 мАч и вы заряжаете его током 2500 мА, то вы заряжаете его со скоростью 1С. Если вы заряжаете его током 250 мА, то вы заряжаете его со скоростью C / 10.
При быстрой зарядке аккумулятора (с более высокой скоростью C / 10) вам необходимо внимательно следить за напряжением и температурой аккумулятора, чтобы убедиться, что вы не перезарядите его.Это может серьезно повредить аккумулятор. Однако, когда вы заряжаете аккумулятор медленно (со скоростью C / 10 или меньше), гораздо меньше шансов повредить нашу батарею, если вы случайно перезарядите ее. Из-за этого методы медленной зарядки обычно считаются более безопасными и помогают продлить срок службы батареи. Поэтому для своего зарядного устройства, сделанного своими руками, я решил использовать скорость заряда C / 10.
Цепь зарядки
Схема этого зарядного устройства представляет собой базовый источник питания, управляемый Arduino.Схема питается от источника регулируемого напряжения на 5 В, такого как адаптер переменного тока или компьютерный блок питания ATX. Большинство портов USB не подходят для этого проекта из-за текущих ограничений. Источник 5 В заряжает батарею через силовой резистор 10 Ом и силовой полевой МОП-транзистор. MOSFET устанавливает, сколько тока может проходить в батарею. Резистор включен как простой способ контролировать ток. Это делается путем подключения каждой клеммы к аналоговым входным контактам на Arduino и измерения напряжения на каждой стороне.MOSFET управляется выходным контактом PWM на Arduino. Импульсы сигнала широтно-импульсной модуляции сглаживаются в сигнал постоянного напряжения с помощью резистора 1 МОм и конденсатора 1 мкФ. Эта схема позволяет Arduino отслеживать и контролировать ток, протекающий в батарею.
Датчик температуры
Датчик температуры предотвращает перезарядку аккумулятора и угрозу безопасностиВ качестве дополнительной меры предосторожности я включил датчик температуры TMP36 для контроля температуры батареи.Этот датчик выдает напряжение сигнала, которое напрямую соответствует температуре. Таким образом, он не требует калибровки или балансировки, как термистор. Датчик устанавливается на место путем просверливания отверстия в задней части корпуса аккумулятора и приклеивания датчика таким образом, чтобы при установке он прилегал к боковой стороне аккумулятора. Затем контакты датчика подключаются к 5V, GND и аналоговому входу на Arduino.
Держатель батареи AA до и после установки на макетную платуКод
Код этого проекта достаточно прост.В верхней части кода есть переменные, которые позволяют настраивать зарядное устройство, вводя значения номинальной емкости аккумулятора и точное сопротивление силового резистора. Также существуют переменные для пороговых значений безопасности зарядного устройства. Максимально допустимое напряжение АКБ выставлено 1,6 вольт. Максимальная температура аккумулятора установлена на 35 градусов Цельсия. Максимальное время зарядки установлено на 13 часов. При превышении любого из этих пороговых значений зарядное устройство выключается.
В теле кода вы увидите, что система постоянно измеряет напряжение на выводе силового резистора. Это используется для расчета как напряжения на клеммах батареи, так и тока, протекающего в батарею. Этот ток сравнивается с целевым током, который установлен на C / 10. Если расчетный ток отличается от заданного более чем на 10 мА, система автоматически корректирует выходной сигнал.
Arduino использует инструмент последовательного монитора для отображения всех текущих данных.Если вы хотите контролировать производительность вашего зарядного устройства, вы можете подключить Arduino к USB-порту на вашем компьютере, но это не обязательно, поскольку Arduino питается от источника питания 5 В зарядного устройства.
Вы можете найти загружаемую версию полного кода ниже:
Arduino_Controlled_Battery_Charger_Code.zip
Теперь, когда у вас есть знания, вы можете приступить к работе с собственным зарядным устройством. Обязательно следите за скоростью заряда и используйте протоколы безопасности, так как чрезмерная зарядка аккумулятора может быть опасной.
Попробуйте сами! Получите спецификацию.
Учебное пособие по физике: Требования схемы
Предположим, вам дали небольшую лампочку, электрохимический элемент и оголенный медный провод, и вас попросили найти четыре различных расположения трех элементов, которые приведут к образованию электрической цепи, которая зажгла бы лампочку. Какие четыре схемы приведут к успешному зажиганию лампочки? И что еще более важно, что общего у каждой из четырех схем, что привело бы нас к пониманию двух требований к электрической цепи?Само по себе упражнение является стоящим занятием, и если оно не выполнялось раньше, следует попробовать его, прежде чем читать дальше.Как и во многих других лабораторных занятиях, в фактическом участии в работе есть сила, которую нельзя заменить простым чтением о ней. Когда это упражнение выполняется в классе физики, есть множество наблюдений, которые можно сделать, наблюдая за классом, полным студентов, стремящихся найти четыре схемы. Часто используются следующие меры, которые не приводят к включению лампочки.
После нескольких минут попыток, нескольких здоровых смешков и периодических восклицаний о том, насколько сильно нагревается провод, нескольким ученикам удается зажечь лампочку.В отличие от вышеупомянутых попыток, первая успешная попытка характеризуется созданием полной проводящей петли от положительной клеммы к отрицательной клемме, при этом как батарея, так и лампочка являются частью петли. Как показано на схеме справа, основание лампочки подключается к положительному выводу элемента, а провод проходит от ребристых сторон лампы до отрицательного вывода элемента. Создается полная проводящая петля, в которую входит лампочка.Существует цепь, и заряд течет по всему проводящему пути, зажигая при этом лампочку. Сравните расположение элемента, лампы и провода справа с неудачным расположением, показанным выше. При попытке A провод не возвращается к отрицательному выводу ячейки. При попытке B провод действительно образует петлю, но не возвращается к отрицательному выводу ячейки. В попытке C нет полного цикла. Попытка D похожа на попытку B в том, что есть петля, но не от положительной клеммы к отрицательной.И при попытке E возникает петля, и она идет от положительного вывода к отрицательному; это цепь, но лампочка в нее не входит. ВНИМАНИЕ: При попытке E ваши пальцы нагреваются, когда вы держите оголенный провод, и заряд начинает течь с высокой скоростью между положительной и отрицательной клеммами.
Анатомия лампочкиКак только одна группа студентов успешно зажигает лампочку, многие другие лабораторные группы быстро следуют ее примеру.Но тогда возникает вопрос, какими еще способами можно расположить элемент, лампочку и оголенный провод, чтобы зажечь лампочку. Часто короткий урок анатомии лампочки побуждает лабораторные группы быстро найти одну или несколько оставшихся схем.
Лампочка — это относительно простое устройство, состоящее из нити накала, которая опирается на два провода или каким-то образом прикреплена к ним. Провода и нить накала — это проводящие материалы, которые позволяют заряду проходить через них.Один провод подключается к ребристым сторонам лампочек. Другой провод подключается к нижнему цоколю лампочки. Ребристый край и нижнее основание разделены изоляционным материалом, который предотвращает прямой поток заряда между нижним основанием и ребристым краем. Единственный путь, по которому заряд может пройти от ребристого края к нижнему основанию или наоборот, — это путь, который включает провода и нить накала. Заряд может входить в ребристый край, проходить через нить и выходить из нижнего основания; или он может войти в нижнее основание, пройти сквозь нить и выйти из ребристого края.Таким образом, есть две возможные точки входа и две соответствующие точки выхода.
Успешный способ зажечь лампочку, как показано выше, заключался в размещении нижнего основания лампы на положительной клемме и соединении ребристого края с отрицательной клеммой с помощью провода. Любой заряд, который попадает в лампочку в нижнем основании, выходит из лампы в том месте, где провод соприкасается с ребристым краем. Тем не менее, нижнее основание не обязательно должно быть той частью лампы, которая касается положительной клеммы.Лампа загорится так же легко, если ребристый край поместить поверх положительной клеммы, а нижнее основание соединить с отрицательной клеммой с помощью провода. Последние две схемы, которые приводят к включению лампочки, включают размещение лампы на отрицательном выводе ячейки, либо путем соприкосновения с ребристым краем, либо с нижним основанием. Затем провод должен соединить другую часть лампы с положительной клеммой элемента.
Требование замкнутого проводящего путиЕсть два требования, которые должны быть выполнены, чтобы установить электрическую цепь.Первое наглядно продемонстрировано вышеупомянутой деятельностью. Должен быть замкнутый проводящий путь, который простирается от положительного вывода к отрицательному. Недостаточно просто наличия замкнутого проводящего контура; Сама петля должна проходить от положительного вывода к отрицательному выводу электрохимической ячейки. Электрический контур похож на водяной контур в аквапарке. Поток заряда по проводам аналогичен потоку воды по трубам и горкам в аквапарке.Если труба закупоривается или ломается так, что вода не может пройти полный путь через контур , то поток воды скоро прекратится. В электрической цепи все соединения должны быть выполнены из проводящих материалов, способных переносить заряд . По мере продолжения эксперимента с ячейкой, лампочкой и проводом некоторые студенты исследуют способность различных материалов нести заряд, вставляя их в свои цепи. Металлические материалы являются проводниками и могут быть вставлены в цепь, чтобы успешно зажечь лампочку.С другой стороны, бумага и пластмассы обычно являются изоляторами, и их вставка в цепь будет препятствовать прохождению заряда до такой степени, что ток пропадет и лампочка больше не загорится. Должен быть замкнутый проводящий контур от положительного вывода к отрицательному, чтобы установить цепь и иметь ток.
С пониманием этого первого требования к электрической цепи становится ясно, что происходит, когда лампа накаливания в настольной лампе или торшере перестает работать.Со временем нить накаливания лампочки становится слабой и хрупкой, часто может сломаться или просто ослабнуть. Когда это происходит, цепь разомкнута, разомкнута и замкнутый проводящий контур больше не существует. Без замкнутого проводящего контура не может быть ни цепи, ни потока заряда, ни горящей лампочки. В следующий раз, когда вы обнаружите сломанную лампочку в лампе, осторожно извлеките ее и осмотрите нить. Часто встряхивание снятой лампы вызывает дребезжание; нить накала, вероятно, упала с опорных стоек, на которые она обычно опирается, на дно стеклянного шара.При встряхивании вы услышите стук нити, ударяющейся о стеклянный шар.
Потребность в энергоснабженииВторое требование к электрической цепи, которое является общим для каждой из успешных попыток, продемонстрированных выше, заключается в том, что на двух концах схемы должна быть разность электрических потенциалов. Чаще всего это устанавливается при использовании электрохимической ячейки, набора ячеек (т.е.е., аккумулятор) или какой-либо другой источник энергии. Существенно, что существует некоторый источник энергии, способный увеличивать электрическую потенциальную энергию заряда, когда он перемещается от терминала с низкой энергией к терминалу с высокой энергией. Как обсуждалось в Уроке 1, для перемещения положительного тестового заряда против электрического поля требуется энергия. Применительно к электрическим цепям движение положительного тестового заряда через ячейку от вывода с низким энергопотреблением к выводу с высоким энергопотреблением является движением против электрического поля.Это движение заряда требует, чтобы над ним была проделана работа, чтобы поднять его вверх к терминалу с более высокой энергией. Электрохимическая ячейка выполняет полезную роль в обеспечении энергии для работы с зарядом, чтобы накачать ее или переместить ее через ячейку от отрицательной клеммы к положительной. Таким образом, ячейка устанавливает разность электрических потенциалов на двух концах электрической цепи. (Концепция разности электрических потенциалов и ее применение к электрическим цепям подробно обсуждались в Уроке 1.)
В бытовых электрических цепях энергия подается местной коммунальной компанией, которая отвечает за обеспечение того, чтобы пластины hot и нейтральные в монтажной коробке вашего дома всегда имели разность электрических потенциалов около 110 вольт. 120 Вольт (в США). В типичной лабораторной деятельности электрохимический элемент или группа элементов (то есть батарея) используется для установления разности электрических потенциалов на двух концах внешней цепи около 1.5 Вольт (одна ячейка) или 4,5 Вольт (три ячейки в упаковке). Часто проводят аналогии между электрической цепью и водным контуром в аквапарке или поездкой на американских горках в парке развлечений. Во всех трех случаях что-то движется по полному циклу, то есть по цепи. И во всех трех случаях важно, чтобы в цепь была включена секция, в которой энергия подводится к воде, каботажному кораблю или заряду, чтобы переместить его на в гору против его естественного направления движения от низкопотенциальной энергии к низкоэнергетической. высокая потенциальная энергия.В аквапарке есть водяной насос, который перекачивает воду с уровня земли на вершину горки. Поездка на американских горках оснащена цепью с приводом от двигателя, которая переносит состав вагонов для горок от уровня земли до вершины первого падения. А электрическая цепь имеет электрохимический элемент, батарею (группу ячеек) или какой-либо другой источник энергии, который перемещает заряд с уровня земли (отрицательный вывод) на положительный вывод. Путем постоянной подачи энергии для перемещения заряда от клеммы с низкой энергией и низким потенциалом к клемме с высокой энергией и высоким потенциалом можно поддерживать непрерывный поток заряда.
Устанавливая эту разницу в электрическом потенциале, заряд может течь вниз по внешней цепи. Это движение заряда естественно и не требует энергии. Подобно движению воды в аквапарке или американским горкам в парке развлечений, движение под уклон является естественным и происходит без потребности в энергии из внешнего источника. Разница потенциалов — будь то гравитационный или электрический потенциал — заставляет воду, каботажную машину и заряд двигаться.Эта разность потенциалов требует ввода энергии от внешнего источника. В случае электрической цепи одним из двух требований для создания электрической цепи является источник энергии.
В заключение, есть два требования, которые должны быть выполнены, чтобы установить электрическую цепь. Требования:
- Должен быть источник энергии, способный выполнять работу на зарядке, чтобы переместить его из места с низким энергопотреблением в место с высоким энергопотреблением и, таким образом, установить разность электрических потенциалов на двух концах внешней цепи.
- Во внешней цепи должен быть замкнутый проводящий контур, который простирается от положительной клеммы с высоким потенциалом к отрицательной клемме с низким потенциалом.
1. Если электрическую схему можно сравнить с водным контуром в аквапарке, то …
… батарея будет аналогична ____.… положительный полюс аккумуляторной батареи будет аналогичен ____.
… ток аналогичен ____.
… заряд будет аналогичен ____.
… разность электрических потенциалов аналогична ____.
Выбор:
A. давление воды
млрд. Галлонов воды, стекающей по горке в минуту
С.вода
D. нижняя часть слайда
E. водяной насос
F. верх горки
2. Используйте свое понимание требований к электрической цепи, чтобы определить, будет ли проходить заряд через следующие устройства ячеек, лампочек, проводов и переключателей.Если нет расхода заряда то объясните почему нет.
а. | б. |
Поток заряда: да или нет? Пояснение: | Поток заряда: да или нет? Пояснение: |
c. | d. |
Поток заряда: да или нет? Пояснение: | Поток заряда: да или нет? Пояснение: |
3.На схеме справа показана лампочка, подключенная к автомобильному аккумулятору 12 В. Показаны клеммы + и -.
а. Когда + заряд проходит через батарею от D к A, он ________ (получает, теряет) потенциальную энергию и ________ (получает, теряет) электрический потенциал. Точка максимальной энергии в батарее — это клемма ______ (+, -).г. Когда + заряд движется по внешней цепи от A к D, он ________ (получает, теряет) потенциальную энергию и ________ (получает, теряет) электрический потенциал.Точка максимальной энергии во внешней цепи находится ближе всего к клемме ______ (+, -).
г. Используйте знаки>, <и = для сравнения электрического потенциала (В) в четырех точках цепи.
V A V B V C V D
4.