Схема тиристорная: Тиристорные коммутаторы нагрузки (10 схем)

Содержание

Тиристоры и схемы коммутации мощной нагрузки

Тиристоры выступают твердотельными электронными устройствами, обладающими высокой скоростью коммутации. Эти приборы допустимо использовать для управления всевозможными маломощными электронными компонентами. Однако наряду с маломощной электроникой, посредством тиристоров успешно управляется силовое оборудование. Рассмотрим классические схемы включения тиристора под управление достаточно высокими нагрузками, например, электролампами, электромоторами, электрическими нагревателями и т. п.

СОДЕРЖИМОЕ ПУБЛИКАЦИИ :

Тиристор – краткий обзор полупроводника

Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод «У». Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода «K», с точки зрения регенеративной фиксации.

Как правило, триггерный импульс для электрода У должен иметь длительность в несколько микросекунд.

Однако чем длиннее импульс, тем быстрее происходит внутренний лавинный пробой. Также увеличивается время открывания перехода. Но максимальный ток затвора превышать не допускается.

После переключения и полной проводки, падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения. Тем не менее, следует помнить: как только полупроводник начинает проводить, этот процесс продолжается даже при отсутствии управляющего сигнала «У».

Продолжается такое состояние до момента, когда ток анода уменьшится до величины меньше допустимо минимальной. Лишь на этом уровне и ниже происходит автоматическая блокировка перехода. Иначе работают лишь новые тиристоры структуры «MCT».

ТИРИСТОРНЫЙ

Инновационная разработка в группе тиристоров. Управляемая структура MCT (MOSFET Controled thyristor): 1 — управление 1; 2 — анод; 3 — управление 2; 4 — катод; 5 — подложка металл; OFF-FET — канал типа n-канал; ON-FET — канал типа p-канал

Этот фактор показывает, что в отличие от биполярных транзисторов и полевых транзисторов, тиристоры, по сути, невозможно использовать для усиления или контролируемого переключения.

Таким образом, напрашивается логичный вывод: тиристоры как полупроводниковые приборы специально разработаны для использования в составе схем коммутации высокой мощности.

Эти полупроводники могут работать только в режиме переключения, где они действуют как открытый или закрытый коммутатор. Как только этот коммутатор срабатывает, он остаётся в состоянии проводника.

Поэтому в цепях постоянного напряжения и некоторых сильно индуктивных цепях переменного напряжения, значение тока необходимо искусственно уменьшать при помощи отдельного переключателя или схемы отключения.

Тиристор в цепи постоянного напряжения

При условии питания схемы постоянным напряжением, тиристор эффективен в качестве переключателя мощной нагрузки. Здесь прибор действует подобно электронной защелке, поскольку после активации остается в состоянии «включено», вплоть до сброса этого состояния вручную. Рассмотрим практическую схему.

3CT065E

Схема 1: КН1, КН2 — кнопки нажимные без фиксации; Л1 — нагрузка в виде лампы накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Эта простая схема включения/выключения применяется для управления лампой накаливания. Между тем схему вполне допустимо использовать в качестве коммутатора электродвигателя, нагревателя и любой другой нагрузки, рассчитанной на питание постоянным напряжением.

Здесь тиристор имеет прямое смещённое состояние перехода и включается в режим короткого замыкания нормально разомкнутой кнопкой КН1. Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. Если значение R1 установить слишком высоким относительно питающего напряжения, устройство не сработает.

Стоит только активировать (нажать) кнопку КН1, тиристор переключается в состояние прямого проводника и остаётся в этом состоянии независимо от дальнейшего положения кнопки КН1. При этом токовая составляющая нагрузки показывает большее значение, чем ток фиксации тиристора.

Преимущества и недостатки использования тиристора

Одним из основных преимуществ использования этих полупроводников в качестве переключателя видится очень высокий коэффициент усиления по току. Тиристор — это устройство, фактически управляемое током.

 

Катодный резистор R2 обычно включается с целью уменьшения чувствительности электрода У и увеличения возможностей соотношения напряжение-ток, что предотвращает ложное срабатывание устройства.

Когда тиристор защелкнется и останется в состоянии «включено», сбросить это состояние возможно только прерыванием питания или уменьшения анодного тока до нижнего значения удержания.

Поэтому логично использовать нормально замкнутую кнопку КН2, чтобы разомкнуть цепь, уменьшая до нуля ток, протекающий через тиристор, заставляя прибор перейти в состояние «выключено».

Однако схема имеет также недостаток. Механический нормально замкнутый переключатель КН2 должен быть достаточно мощным — соответствовать мощности всей схемы.

В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем. Один из способов преодолеть проблему с мощностью — подключить коммутатор параллельно тиристору.

KP2500A

Схема 2: КН1, КН2 — кнопки нажимные без фиксации; Л1 — лампа накаливания 100 Вт; R1, R2 — резисторы постоянные 470 Ом и 1 кОм

Доработка схемы — включение нормально разомкнутого переключателя малой мощности параллельно переходу А-К, даёт следующий эффект:

  • активация КН2 создаёт «КЗ» между электродами А и К,
  • уменьшается ток фиксации до минимального значения,
  • устройство переходит в состояние «выключено».

Тиристоры в цепи переменного тока

При подключении к источнику переменного тока тиристор работает несколько иначе. Это связано с периодическим изменением полярности переменного напряжения.

Поэтому применение в схемах с питанием переменным напряжением автоматически будет приводить к состоянию обратного смещения перехода. То есть в течение половины каждого цикла прибор будет находиться в состоянии «отключено».

Для варианта с переменным напряжением схема тиристорного запуска аналогична схеме с питанием постоянным напряжением. Разница незначительная — отсутствие дополнительного переключателя КН2 и дополнение диода D1.

Благодаря  диоду D1, предотвращается обратное смещение по отношению к управляющему электроду У. Положительным полупериодом синусоидальной формы сигнала устройство смещено прямо вперёд. Однако при выключенном переключателе КН1 к тиристору подводится нулевой ток затвора и прибор остается «выключенным».

В отрицательном полупериоде устройство получает обратное смещение и также останется «выключенным», независимо от состояния переключателя КН1.

YZ140EAA

Схема 3: КН1 — переключатель с фиксацией; D1 — диод любой под высокое напряжение; R1, R2 -резисторы постоянные 180 Ом и 1 кОм, Л1 — лампа накаливания 100 Вт

Если переключатель КН1 замкнуть, вначале каждого положительного полупериода полупроводник останется полностью «выключенным». Но в результате достижения достаточного положительного триггерного напряжения (возрастания  тока управления) на электроде У, тиристор переключится в состояние «включено».

Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается. Очевидный момент, учитывая падение тока анода ниже текущего значения.

На момент следующего отрицательного полупериода, устройство полностью «отключается» до прихода следующего положительного полупериода. Затем процесс вновь повторяется.

Получается, нагрузка имеет только половину доступной мощности источника питания. Тиристор действует как выпрямляющий диод и проводит переменный ток лишь во время положительных полуциклов, когда переход смещен вперед.

Тиристоры и управление половинной волной

Фазовое управление тиристором является наиболее распространенной формой управления мощностью переменного тока. Пример базовой схемы управления фазой показан ниже. Здесь напряжение затвора тиристора формируется цепочкой R1C1 через триггерный диод D1.

На момент положительного полупериода, когда переход смещен вперед, конденсатор C1 заряжается через резистор R1 от напряжения питания схемы. Управляющий электрод У активируются только тогда, когда уровень напряжения в точке «x» вызывает срабатывание диода D1.

Конденсатор C1 разряжается на управляющий электрод У, устанавливая прибор в состояние «включено». Длительность времени положительной половины цикла, когда открывается проводимость, контролируется постоянной времени цепочки R1C1, заданной переменным резистором R1.

ZP300A

Схема 4: КН1 — переключатель с фиксацией; R1 — переменный резистор 1 кОм; С1 — конденсатор 0,1 мкф; D1 — диод любой на высокое напряжение; Л1 — лампа накаливания 100 Вт; П — синусоида проводимости

Увеличение значения R1 приводит к задержке запускающего напряжения, подаваемого на тиристорный управляющий электрод, что, в свою очередь, вызывает отставание по времени проводимости устройства.

В результате доля полупериода, когда устройство проводит, может регулироваться в диапазоне 0 -180º. Это означает, что половинная мощность, рассеиваемая нагрузкой (лампой), поддаётся регулировке.

Существует масса способов достижения полноволнового управления тиристорами. Например, можно включить один полупроводник в схему диодного мостового выпрямителя. Этим методом легко преобразовать переменную составляющую в однонаправленный ток тиристора.

Однако более распространенным методом считается вариант использования двух тиристоров, соединенных инверсной параллелью. Самым практичным подходом видится применение одного симистора. Этот полупроводник допускает переход в обоих направлениях, что делает симисторы более пригодными для схем переключения переменного тока.

Тиристоры — полный технический расклад на видео

Видеоматериал, представленный здесь — продолжение знакомства с тиристорами непосредственно глазами. Совмещение текстовой и видео информации открывает способ лучшего понимания темы. Поэтому, рекомендовано смотреть «кино» о тиристорах:


По материалам: Electronics-tutorials

Тиристоры. Виды и устройство. Работа и применение. Особенности

Тиристоры — это разновидность полупроводниковых приборов. Они предназначены для регулирования и коммутации больших токов. Тиристор позволяет коммутировать электрическую цепь при подаче на него управляющего сигнала. Это делает его похожим на транзистор.

Как правило, тиристор имеет три вывода, один из которых управляющий, а два других образуют путь для протекания тока. Как мы знаем, транзистор открывается пропорционально величине управляющего тока. Чем он больше, тем больше открывается транзистор, и наоборот. А у тиристора все устроено иначе. Он открывается полностью, скачкообразно. И что самое интересное, не закрывается даже при отсутствии управляющего сигнала.

Принцип действия

Рассмотрим работу тиристора по следующей простой схеме.

К аноду тиристора подключается лампочка или светодиод, а к ней подсоединяется плюсовой вывод источника питания через выключатель К2. Катод тиристора подключен к минусу питания. После включения цепи на тиристор подается напряжение, однако светодиод не горит.

Если нажать на кнопку К1, ток через резистор поступит на управляющий электрод, и светодиод начал светиться. Часто на схемах его обозначают буквой «G», что обозначает gate, или по-русски затвор (управляющий вывод).

Резистор ограничивает ток управляющего вывода. Минимальный ток срабатывания данного рассматриваемого тиристора составляет 1 мА, а максимально допустимый ток 15 мА. С учетом этого в нашей схеме подобран резистор сопротивлением 1 кОм.

Если снова нажать на кнопку К1, то это не повлияет на тиристор, и ничего не произойдет. Чтобы перевести тиристор в закрытое состояние, нужно отключить питание выключателем К2. Если же снова подать питание, то тиристор вернется в исходное состояние.

Этот полупроводниковый прибор, по сути, представляет собой электронный ключ с фиксацией. Переход в закрытое состояние происходит и тогда, когда напряжение питания на аноде уменьшается до определенного минимума, примерно 0,7 вольта.

Особенности устройства

Фиксация включенного состояния происходит благодаря особенности внутреннего устройства тиристора. Примерная схема выглядит таким образом:

Обычно он представляется в виде двух транзисторов разной структуры, связанных между собой. Опытным путем можно проверить, как работают транзисторы, подключенные по такой схеме. Однако, имеются отличия в вольтамперной характеристике. И еще нужно учитывать, что приборы изначально спроектированы так, чтобы выдерживать большие токи и напряжения. На корпусе большинства таких приборов имеется металлический отвод, на который можно закрепить радиатор для рассеивания тепловой энергии.

Тиристоры выполняются в различных корпусах. Маломощные приборы не имеют теплового отвода. Распространенные отечественные тиристоры выглядят следующим образом. Они имеют массивный металлический корпус и выдерживают большие токи.

Основные параметры тиристоров
  • Максимально допустимый прямой ток. Это максимальное значение тока открытого тиристора. У мощных приборов оно достигает сотен ампер.
  • Максимально допустимый обратный ток.
  • Прямое напряжение. Это падение напряжения при максимальном токе.
  • Обратное напряжение. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности.
  • Напряжение включения. Это минимальное напряжение, приложенное к аноду. Здесь имеется ввиду минимальное напряжение, при котором вообще возможна работа тиристора.
  • Минимальный ток управляющего электрода. Он необходим для включения тиристора.
  • Максимально допустимый ток управления.
  • Максимально допустимая рассеиваемая мощность.
Динамический параметр

Время перехода тиристора из закрытого состояния в открытое при поступлении сигнала.

Виды тиристоров

По способу управления разделяют на:
  • Диодные тиристоры, или по-другому динисторы. Они открываются импульсом высокого напряжения, которое подается на катод и анод.
  • Триодные тиристоры, или тринисторы. Они открываются током управления электродом.
Триодные тиристоры в свою очередь разделяются:
  • Управление катодом – напряжение, образующее ток управления, поступает на электрод управления и катод.
  • Управление анодом – управляющее напряжение подходит на электрод и анод.
Запирание тиристора производится:
  • Уменьшением анодного тока – катод меньше тока удержания.
  • Подачей напряжения запирания на электрод управления.
По обратной проводимости тиристоры делятся:
  • Обратно-проводящие – имеют малое обратное напряжение.
  • Обратно-непроводящие – обратное напряжение равно наибольшему прямому напряжению в закрытом виде.
  • С ненормируемым обратным значением напряжения – изготовители не определяют значение этой величины. Такие приборы применяются в местах, где обратное напряжение исключено.
  • Симистор – пропускает токи в двух направлениях.

Используя симисторы, нужно знать, что они действуют условно симметрично. Основная часть симисторов открывается, когда на электрод управления поступает положительное напряжение по сравнению с катодом, а на аноде может быть любая полярность. Но если на анод приходит отрицательное напряжение, а на электрод управления положительное, то симисторы не открываются, и могут выйти из строя.

По быстродействию разделяют по времени отпирания (включения) и времени запирания (отключения).

Разделение тиристоров по мощности

При действии тиристора в режиме ключа наибольшая мощность коммутируемой нагрузки определяется напряжением на тиристоре в открытом виде при наибольшем токе и наибольшей рассеиваемой мощности.

Действующая величина тока на нагрузку не должна быть выше наибольшей рассеиваемой мощности, разделенной на напряжение в открытом виде.

Простая сигнализация на основе тиристора

На основе тиристора можно сделать простую сигнализацию, которая будет реагировать на свет, издавая звук с помощью пьезоизлучателя. На управляющий вывод тиристора подается ток через фоторезистор и подстроечный резистор. Свет, попадая на фоторезистор, уменьшает его сопротивление. И на управляющий вывод тиристора начинает поступать отпирающий ток, достаточный для его открывания. После этого включается пищалка.

Подстроечный резистор предназначен для того, чтобы настроить чувствительность устройства, то есть, порог срабатывания при облучении светом. Самое интересное, что даже при отсутствии света тиристор продолжает оставаться в открытом состоянии, и сигнализирование не прекращается.

Если напротив светочувствительного элемента установить световой луч так, чтобы он светил немного ниже окошечка, то получится простейший датчик дыма. Дым, попадая между источником и приемником света, будет рассеивать свет, что вызовет запуск сигнализации. Для этого устройства обязательно нужен корпус, для того, чтобы на приемник света не поступал свет от солнца или искусственных источников света.

Открыть тиристор можно и другим способом. Для этого достаточно кратковременно подать небольшое напряжение между управляющим выводом и катодом.

Регулятор мощности на тиристоре

Теперь рассмотрим использование тиристора по прямому назначению. Рассмотрим схему простого тиристорного регулятора мощности, который будет работать от сети переменного тока напряжением 220 вольт. Схема простая и содержит всего пять деталей.

  • Полупроводниковый диод VD.
  • Переменный резистор R1.
  • Постоянный резистор R2.
  • Конденсатор С.
  • Тиристор VS.

Их рекомендованные номинальные значения показаны на схеме. В качестве диода можно использовать КД209, тиристор КУ103В или мощнее. Резисторы желательно использовать мощностью не менее 2 ватт, конденсатор электролитический на напряжение не менее 50 вольт.

Эта схема регулирует лишь один полупериод сетевого напряжения. Если представить, что мы из схемы убрали все элементы, кроме диода, то он будет пропускать только полуволну переменного тока, и на нагрузку, к примеру, на паяльник или лампу накаливания поступит лишь половина мощности.

Тиристор позволяет пропускать дополнительные, условно говоря, кусочки полупериода, срезанного диодом. При изменении положения переменного резистора R1 напряжение на выходе будет меняться.

К положительному выводу конденсатора включен управляющий вывод тиристора. Когда напряжение на конденсаторе возрастает до напряжения включения тиристора, он открывается и пропускает определенную часть положительного полупериода. Переменный резистор будет определять скорость зарядки конденсатора. А чем быстрее он зарядится, тем раньше откроется тиристор, и успеет до смены полярности пропустить часть положительного полупериода.

На конденсатор отрицательная полуволна не поступает, и напряжение на нем одной полярности, поэтому не страшно, что он имеет полярность. Схема позволяет изменять мощность от 50 до 100%. Для паяльника это в самый раз подходит.

Тиристор пропускает ток в одном направлении от анода к катоду. Но существуют разновидности, которые пропускают ток в обоих направлениях. Они называются симметричные тиристоры или симисторы. Они используются для управления нагрузкой в цепях переменного тока. Существует большое количество схем регуляторов мощности на их основе.

Похожие темы:

Тиристоры для чайников / Хабр

Добрый вечер хабр. Поговорим о таком приборе, как тиристор. Тиристор — это полупроводниковый прибор с двумя устойчивыми состояниями, имеющий три или больше взаимодействующих выпрямляющих перехода. По функциональности их можно соотнести к электронным ключам. Но есть в тиристоре одна особенность, он не может перейти в закрытое состояние в отличие от обычного ключа. Поэтому обычно его можно найти под названием — не полностью управляемый ключ.

На рисунке представлен обычный вид тиристора. Состоит он из четырех чередующихся типов электро-проводимости областей полупроводника и имеет три вывода: анод, катод и управляющего электрод.
Анод — это контакт с внешним p-слоем, катод — с внешним n-слоем.
Освежить память о p-n переходе можно тут.

Классификация


В зависимости от количества выводов можно вывести классификацию тиристоров. По сути все очень просто: тиристор с двумя выводами называется динисторами (соответственно имеет только анод и катод). Тиристор с тремя и четырьмя выводами, называются триодными или тетродными. Также бывают тиристоры и с большим количеством чередующихся полупроводниковых областей. Одним из самых интересных является симметричный тиристор (симистор), который включается при любой полярности напряжения.

Принцип работы



Обычно тиристор представляют в виде двух транзисторов, связанных между собой, каждый из которых работает в активном режиме.

В связи с таким рисунком можно назвать крайние области — эмиттерными, а центральный переход — коллекторным.
Чтобы разобраться как работает тиристор стоит взглянуть на вольт-амперную характеристику.

К аноду тиристора подали небольшое положительное напряжение. Эмиттерные переходы включены в прямом направлении, а коллекторный в обратном. (по сути все напряжение будем на нем). Участок от нуля до единицы на вольт-амперной характеристике будет примерно аналогичен обратной ветви характеристики диода. Этот режим можно назвать — режимом закрытого состояния тиристора.
При увеличении анодного напряжения происходит происходит инжекция основных носителей в области баз, тем самым происходит накопление электронов и дырок, что равносильно разности потенциалов на коллекторном переходе. С увеличением тока через тиристор напряжение на коллекторном переходе начнет уменьшаться. И когда оно уменьшится до определенного значения, наш тиристор перейдет в состояние отрицательного дифференциального сопротивления (на рисунке участок 1-2).
После этого все три перехода сместятся в прямом направлении тем самым переведя тиристор в открытое состояние (на рисунке участок 2-3).
В открытом состоянии тиристор будет находится до тех пор, пока коллекторный переход будет смещен в прямом направлении. Если же ток тиристора уменьшить, то в результате рекомбинации уменьшится количество неравновесных носителей в базовых областях и коллекторный переход окажется смещен в обратном направлении и тиристор перейдет в закрытое состояние.
При обратном включении тиристора вольт-амперная характеристика будет аналогичной как и у двух последовательно включенных диодов. Обратное напряжение будет ограничиваться в этом случае напряжением пробоя.

Общие параметры тиристоров


1. Напряжение включения — это минимальное анодное напряжение, при котором тиристор переходит во включенное состояние.
2. Прямое напряжение — это прямое падение напряжения при максимальном токе анода.
3. Обратное напряжение — это максимально допустимое напряжение на тиристоре в закрытом состоянии.
4. Максимально допустимый прямой ток — это максимальный ток в открытом состоянии.
5. Обратный ток — ток при максимальной обратном напряжении.
6. Максимальный ток управления электрода
7. Время задержки включения/выключения
8. Максимально допустимая рассеиваемая мощность

Заключение


Таким образом, в тиристоре существует положительная обратная связь по току — увеличение тока через один эмиттерный переход приводит к увеличению тока через другой эмиттерный переход.
Тиристор — не полностью управляющий ключ. То есть перейдя в открытое состояние, он остается в нем даже если прекращать подавать сигнал на управляющий переход, если подается ток выше некоторой величины, то есть ток удержания.

Источники:
ru.wikipedia.org
electricalschool.info

Тиристоры Электрическая Схема — tokzamer.ru

У мощных приборов оно достигает сотен ампер. Если в обоих направлениях или обрыв, или небольшое сопротивление — элемент поврежден.


Для борьбы с перегревом тиристора используется активная или пассивная система охлаждения. Причем оба состояния устойчивые, то есть переход происходит только при определенных условиях.

В некоторый момент в результате перезарядки конденсатора С2 высокий уровень на выводе 8 элемента DD1.
Зарядное устройство на тиристорах

Существует масса способов достижения полноволнового управления тиристорами.

Тиристор — краткий обзор полупроводника Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У.

Поэтому я и решил представить эту схему.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Когда тиристор пропускает ток нагрузки в прямом направлении, электрод анода A является положительным по отношению к электроду катода K, с точки зрения регенеративной фиксации.

Практические примеры для повторения Наибольшей популярностью среди радиолюбителей пользуются схемы, предназначенные для управления яркостью светильника и изменения мощности паяльника. Тиристорный регулятор напряжения своими руками Нельзя сказать о том, что данная схема не обеспечит гальваническую развязку от источника питания, поэтому есть определённая опасность поражения электрическими разрядами тока.

Бюджетные сварочные полуавтоматы#4 подключение тиристора и конденсаторов

Применение тиристора

Виды и устройство. Контроллер нагрева паяльника Управление мощностью паяльника не только положительно сказывается на сроке его службы, предотвращая жало и внутренние его элементы от перегревания, но и позволяет выпаивать радиоэлементы, критичные к температуре устройства.

Таким образом, напряжение будет полноценно регулироваться на коллекторном двигателе, который оборудован специальным щелочным узлом. В принципе, можно было бы просто заменить полупроводник мощным механическим выключателем.

А это может произойти только в отрицательном полупериоде сетевого напряжения, поступающего на вывод 13 элемента DD1.

Фото — тиристор кун Цена тиристора зависит от его марки и характеристик.

Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1. В этом месте находится ферритовый фильтр высокочастотных помех.

Они могли легко увидеть, что число оборотов в таких изделиях зависит, главным образом, от общей глубины нажатия на кнопку-курок в устройстве. Управляемый электрод.

Фиксация состояния удержания остаётся стабильной при положительном полупериоде и автоматически сбрасывается, когда положительный полупериод заканчивается.
Тиристорный модуль SKKT92-12E

Читайте дополнительно: Прокладка кабельных линий в земле снип

Виды современных устройств

Эта кнопка соединяет управляющий электрод У с источником питания через резистор R1.

Рассеиваемая мощность. Регулировать яркость свечения светильников, в которых установлены энергосберегающие или светодиодные лампочками, не получится, так как в таких лампочках вмонтированы электронные схемы, и регулятор просто будет нарушать их нормальную работу. На чертеже ниже представлена цоколевка и основные детали тиристора.

Распространенные отечественные тиристоры выглядят следующим образом.

Если регулируемое устройство будет расположено на стационарном уровне, то имеет определённой смысл осуществить его подключение через выключатель с особым регулятором уровня яркости света. Вот так можно описать, как работает тиристор для чайников. Прибор, содержащий один управляющий электрод, называют триодным тиристором или тринистором [1] иногда просто тиристором, хотя это не совсем правильно. Тиристорная схема регулятора не излучающая помехи Главное отличие схемы представляемого регулятора мощности паяльника от выше представленных, это полное отсутствие радиопомех в электрическую сеть, так как все переходные процессы происходят во время, когда напряжение в питающей сети равно нулю.

У VT1 он должен быть Управляемый электрод.


R 2 — это резистор, который обладает особым показателем переменного тока около 30 кОм. Реостат — довольно универсальное приспособление. В общем много привычных устройств построены на тиристорах. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку.

Для большей мощности необходим более мощный симистор, например, ТС Это хорошо демонстрирует схема управления тиристорами, а также любой справочник электриков например, в библиотеке можно бесплатно почитать книгу автора Замятин. Тиристор — краткий обзор полупроводника Включение полупроводника в открытое состояние возможно путём подачи импульса пускового тока небольшой величины на управляющий электрод У. Предлагаемая ниже схема позволит снизить мощность любого нагревательного электроприбора.

Симметричный тринистор называется также симистором или триаком от англ. Если при помощи такого прибора, как тиристор со временем подключать нагрузку в строго определённое время, то показатель действующего напряжения будет довольно низким, так как половина от напряжения действующее значение, которое и воспроизводит нагрузку будет намного меньше, чем световое. Само переключение происходит очень быстро, хоть и не мгновенно. Важное отличие симисторных схем от тиристорных состоит в том, что нет необходимости в выпрямительном устройстве. Вторую часть полупериода тиристор начнёт проводить ток и на выходе регулятора будет возникать особое входное напряжение.
Простой регулятор напряжения на тиристоре

Принцип действия тиристора

Так что в схемах постоянного тока есть два варианта использования тиристора — с удержанием открытого состояния и без.

Покопавшись нашел импортные симисторы BTA К основным параметрам, характеризующим регуляторы электрической энергии, относят: плавность регулировки; рабочую и пиковую подводимую мощность; диапазон входного рабочего сигнала; КПД. Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ?

Значение тока, который может протекать через анод-катод. У мощных приборов оно достигает сотен ампер. Он позволяет коммутировать ток 25 А.

После переключения и полной проводки , падение напряжения на участке анод- катод держится постоянным на уровне около 1 вольта, при всех значениях анодного тока от нуля до номинального значения. Он располагается как последовательно, так и параллельно подключённой нагрузке. При большой регулируемой мощности симистор VS1 необходимо установить на радиатор. Тиристоры выполняются в различных корпусах.

См. также: Подключение участка к электричеству vfnthbfk

Область использования тиристорных устройств

На правом рисунке сопротивление небольшое, так как подано прямое напряжение смещения между анодом и управляющим электродом Обратите внимание, что величина сопротивления у разных серий разная — на это не стоит обращать особого внимания. Это максимально допустимое напряжение на тиристоре в закрытом состоянии, при котором тиристор может работать без нарушения его работоспособности. Стабилитрон VD1 ограничивает напряжение питания на уровне 15 В. Схема собиралась не раз, работает без наладки и других проблем.

Главным отличием является более широкий спектр напряжений. В результате получается генератор прямоугольных импульсов. Вот только напряжение должно быть достаточным для того, чтобы засветить лампочку. Схемы на тиристорах Регулировать общую мощность паяльника можно довольно просто, если использовать для этого аналоговые или же цифровые паяльные станции. В результате на выходе 11 DD1.

Данная особенности заключена в том, что в нормальных производственных условиях на нагрузку могут воздействовать примерные показатели напряжения бытовой сети, которая будет меняться в соответствии с синусоидальным законом. Обычно правильной работы симистора удается добиться установкой транзистора VT2 с большим значением коэффициента передачи тока. Другое их название — диммеры. Полный технический расклад тиристора.

С вывода 1 микросхемы DD2. Один управляющий и два, через которые протекает ток.
Симистор (тиристор) вместо реле.

объяснение принципа работы, устройства и подключения

Мигающая наружная реклама украшает городские кварталы. Забавный световой эффект «бегущие огни» сопровождает выступления эстрадных артистов. Новогодняя гирлянда на ёлке создаёт праздничное настроение. Маленькая деталь, которая управляет огромными электронными приборами, называется тиристор.

Принцип работы

Радиотехнический термин thyristor составлен из двух частей. В начале употреблено слово thyra, что означает на греческом языке «дверь» или «вход». Затем использовано окончание английского слова resistor, которое переводится как «сопротивление».

Тиристором называется полупроводниковое устройство, где на базе монокристалла собираются более двух p — n переходов. Суть электронно-дырочного соединения пары химических элементов — так расшифровывается понятие «p — n переход» — состоит в том, что при подключении прямого тока на выводах появляется разность потенциалов. При обратном токе совершается блокировка носителей заряда.

В устройство коммутируется сигнальный контакт, назначение которого состоит в управлении током пробоя границы разнозаряженных зон. На электрических схемах обозначение тиристора почти совпадает со значком диода. Различие состоит в том, что к катодному выводу пририсована стрелка управляющего электрода.

Конструкция прибора

Полупроводниковый прибор представляет собой структуру, которую образуют четыре слоя разной полярности, соединённых последовательно. Образуется цепочка p — n — p — n типа. К наружному слою с положительным зарядом подключён анодный вывод, к отрицательному полупроводнику — катод. К внутренним прослойкам допустимо присоединение до двух управляющих контактов.

Основообразующим элементом тиристора является кристалл кремния с заданной толщиной. Для формирования p-слоя применяются примеси бора и алюминия. Чтобы получить n-область используется фосфор. Нанесение добавок происходит с помощью диффузионной технологии. При температуре от 1000° C до 1300° C создаётся переходный слой глубиной 60 Мкм.

Внешний вид современных устройств непохож на детали, изготовленные два десятка лет назад. Раньше они выглядели как «летающие тарелки». Минусовый электрод и сигнальный контакт располагались на торце, а анодный вывод устанавливался с противоположной стороны или сбоку изделия. Сейчас тиристор представляет собой небольшой пластмассовый коробок с тремя электродами внизу. Расположение контактов указывается в описании устройства.

Режимы работы

Принцип действия тиристора характеризуется работой в двух устойчивых состояниях. Положение «закрыто» свидетельствует о низкой проводимости. Значение «открыто» указывает высокую электропроводность.

Как работает тиристор, для чайников объяснит диаграмма зависимости силы тока от напряжения. В исходной позиции полупроводниковый элемент заперт.

Даже значительное увеличение разности потенциалов на контактах не приведёт устройство в рабочее состояние. Линия графика почти горизонтальна.

Но стоит подать ток на управляющий вывод, как тиристор откроется. В этот момент линейный отрезок на графике круто изменяет угол наклона, близкий к вертикальному положению. От величины сигнального тока зависит уровень пробойного напряжения. Вольт-амперная характеристика объясняет, зачем требуется применение управляющего электрода. После обнуления командного сигнала устройство останется открытым, пока напряжение не уменьшится до уровня удержания.

Работа транзистора также основана на взаимодействии p — n переходов. От полупроводникового триода, который, как вентиль, плавно регулирует напряжение, тиристорный элемент отличается скачкообразным ростом разности потенциалов после появления сигнала управления. Своеобразный электронный ключ по команде открывает дорогу питанию электрической цепи.

Классификация тиристоров

Существует два варианта управления полупроводником: через катод или анод. Это зависит от полярности слоя, к которому подключено управление. Поэтому различают тиристоры с катодным или анодным управлением.

Возможен вариант отсутствия управляющего электрода. Такой прибор называется диодным тиристором, и включение устройства производит напряжение, подаваемое на основные контакты. Отсюда классификация на динисторы, не имеющие вывода управления, и тринисторы, у которых есть управляющий контакт.

По способностям пропускать ток в том или ином направлении тиристоры подразделяются на симметричные и асимметричные устройства. Симметричные полупроводники, которые профессионалы называют симисторами, способны проводить ток в обоих направлениях. В сущности, симистор — это пара тиристоров, включённых по встречно-параллельной схеме.

Асимметричные приборы пропускают ток только в одну сторону:

  • прямонаправленные устройства заперты при подключении напряжения обратного направления;
  • приборы, пропускающие обратный ток, открываются при подаче напряжения противоположной полярности.

В электронных схемах также используются запираемые тиристоры. Устройство открывается, когда на управляющий электрод подаётся ток. В положение «закрыто» прибор переходит при изменении полярности тока управления.

Технические характеристики

Области применения полупроводника разнообразны. В зависимости от того, для чего нужен тиристор, подбирается деталь с требуемыми техническими данными. Выбрать необходимый тип полупроводникового триода помогут рабочие параметры устройства:

  1. Максимальный ток от анода к катоду.
  2. Наибольшая величина обратного тока указывается только для типов, обладающих такой функцией.
  3. Максимальное прямоточное напряжение в положении «открыто».
  4. Минимальные напряжение и сила тока раскрытия p — n перехода.
  5. Предельный уровень сигнального тока, приводящий к пробою тиристора.
  6. Ток удержания определяет уровень, ниже которого наступает состояние «закрыто».
  7. Мощность указывает величину допустимой нагрузки.
  8. Время срабатывания.

Контроль работоспособности

Перед установкой тиристора в схему необходимо убедиться в его исправности. Целостность детали проверяется мультиметром или лампочкой, подключённой к источнику питания.

На измерительном приборе устанавливают функцию прозвонки. Сначала щупы присоединяют к аноду и катоду попеременно в прямом и обратном направлении. Цифра «1» на дисплее укажет, что ток не проходит, и деталь исправна. Затем прозванивают линию от анода до сигнального контакта.

Одна из цепей должна быть оборвана, а другая покажет небольшое сопротивление. Если в обоих случаях мультиметр обнаружит одинаковый результат, то тиристор неисправен.

Работоспособность детали можно проверить, собрав простую электрическую цепь. Анодный контакт присоединяют к «плюсовому» зажиму батарейки. Катод замыкают на «минус» источника питания через лампочку. Куском провода кратковременно смыкаются анодный и управляющий выводы. Лампа должна загореться и не гаснуть после разрыва цепочки «анод — управляющий электрод».

Работающий осветительный прибор указывает на исправность тиристора. При проверке необходимо учитывать величину подаваемого напряжения, которая должна быть достаточной для включения лампы.

Практическое применение

Благодаря принципу работы тиристор используют в преобразователях напряжения и выпрямителях тока. Вместе с силовым трансформатором полупроводник способен изменять уровень тока. На этой основе собраны зарядные устройства автомобильных аккумуляторов, а также мощные электросварочные аппараты. Способность прибора изменять переменное напряжение на постоянное напряжение используется в преобразователях.

В устройствах сигнализации тиристор включается командой от внешнего датчика, изменяющего напряжение на управляющем электроде. Конструкции, которые контролируют окружающую обстановку, могут реагировать на изменение температурного режима или объёмного наполнения пространства. За освещённостью объекта наблюдает оптотиристор.

Полупроводниковый тиристор предназначен для управления большими токами слаботочным сигналом. С помощью диммерных блоков, на которые подаётся команда от светового пульта, управляются театральные прожекторы и светильники.

Поддержание заданного температурного режима в печи обеспечивается регулятором мощности дуги горения. В электрических двигателях скорость вращения ведущего вала контролирует тиристорный регулятор частоты хода.

Архимед обещал перевернуть Землю, если бы у него была точка опоры. Управляемый тиристорный полупроводник является тем рычагом, который расширяет области применения электронных устройств. Небольшая радиодеталь умножает возможности человека в развитии научно-технического прогресса.

Схема тиристорного устройствоа плавного пуска асинхронного электродвигателя

Александр Ситников (Кировская обл.)


Рассматриваемая в статье схема позволяет осуществить безударный пуск и торможение электродвигателя, увеличить срок службы оборудования и снизить нагрузку на электросеть. Плавный пуск достигается путём регулирования напряжения на обмотках двигателя силовыми тиристорами.


Устройства плавного пуска (УПП) широко применяются в различных электроприводах. Структурная схема разработанного УПП приведена на рисунке 1, а диаграмма работы УПП – на рисунке 2. Основой УПП являются три пары встречно-параллельных тиристоров VS1 – VS6, включенных в разрыв каждой из фаз. Плавный пуск осуществляется за счёт постепенного

увеличения прикладываемого к обмоткам электродвигателя сетевого напряжения от некоторого начального значения Uначдо номинального Uном. Это достигается путём постепенного увеличения угла проводимости тиристоров VS1 – VS6 от минимального значения до максимального в течение времени Тпуск, называемого временем пуска.

Обычно значение Uначсоставляет 30…60% от Uном, поэтому пусковой момент электродвигателя существенно меньше, чем в случае подключения электродвигателя на полное напряжение сети. При этом происходит постепенное натяжение приводных ремней и плавное зацепление зубчатых колес редуктора. Это благоприятно сказывается на снижении динамических нагрузок электропривода и, как следствие, способствует продлению срока службы механизмов и увеличению интервала между ремонтами.

Применение УПП также позволяет снизить нагрузку на электросеть, поскольку в этом случае пусковой ток электродвигателя составляет 2 – 4 номинала тока двигателя, а не 5 – 7 номиналов, как при непосредственном пуске. Это важно при питании электроустановок от источников энергии ограниченной мощности, например, дизель-генераторных установок, источников бесперебойного питания и трансформаторных подстанций малой мощности

(особенно в сельской местности). После завершения пуска тиристоры шунтируются байпасом (обходным контактором) К, благодаря чему в течение времени Траб на тиристорах не рассеивается мощность, а значит, экономится электроэнергия.

При торможении двигателя процессы происходят в обратном порядке: после отключения контактора К угол проводимости тиристоров максимален, напряжение на обмотках электродвигателя равно сетевому за вычетом падения напряжения на тиристорах. Затем угол проводимости тиристоров в течение времени Тторм уменьшается до минимального значения, которому соответствует напряжение отсечки Uотс, после чего угол проводимости тиристоров становится равным нулю и напряжение на обмотки не подается. На рисунке 3 приведены диаграммы тока одной из фаз двигателя при постепенном увеличении угла проводимости тиристоров.

На рисунке 4 приведены фрагменты принципиальной электрической схемы УПП. Полностью схема приведена на сайте журнала. Для её работы требуется напряжение трех фаз А, В, С стандартной сети 380 В частотой 50 Гц. Обмотки электродвигателя при этом могут быть соединены как «звездой», так и „треугольником“.

В качестве силовых тиристоров VS1 – VS6 применены недорогие приборы типа 40TPS12 в корпусе ТО-247 с прямым током Iпр= 35 А. Допустимый ток через фазу составляет Iдоп= 2Iпр= 70 А. Будем считать, что максимальный пусковой ток составляет 4Iном, откуда следует, что Iном < Iдоп/4 = 17,5 А. Просматривая стандартный ряд мощностей электродвигателей, находим, что к УПП допустимо подключать двигатель мощностью 7,5 кВт с номинальным током фазы Iн= 15 А. В случае, если пусковой ток превысит Iдоп (по причине подключения двигателя большей мощности или слишком малого времени пуска), процесс пуска будет остановлен, поскольку сработает автоматический выключатель QF1 со специально подобранной характеристикой.

Параллельно тиристорам подключены демпфирующие RC-цепочки R48, C20, C21, R50, C22, C23, R52, C24, C25, предотвращающие ложное включение тиристоров, а также варисторы R49, R51 и R53, поглощающие импульсы перенапряжения свыше 700 В. Обходные реле К1, К2, К3 типа TR91-12VDC-SC-C с номинальным током 40 А шунтируют силовые тиристоры после завершения пуска.

Питание системы управления осуществляется от трансформаторного блока питания, запитанного от межфазного напряжения Uав. В блок питания входят понижающие трансформаторы TV1, TV2, диодный мост VD1, токоограничивающий резистор R1, сглаживающие конденсаторы С1, С3, С5, помехоподавляющие конденсаторы С2, С4, С6 и линейные стабилизаторы DA1 и DA2, обеспечивающие напряжение 12 и 5 В соответственно.

Система управления построена с применением микроконтроллера DD1 типа PIC16F873. Микроконтроллер выдаёт импульсы управления тиристорами VS1 – VS6 путём «зажигания» оптосимисторов ОРТ5-ОРТ10 (MOC3052). Для ограничения тока в цепях управления тиристоров VS1 – VS6 служат резисторы R36 – R47. Импульсы управления подаются одновременно на два тиристора с задержкой относительно начала полуволны межфазного напряжения. Цепи синхронизации с сетевым напряжением состоят из трёх однотипных узлов, состоящих из зарядных резисторов R13, R14, R18, R19, R23, R24, диодов VD3 – VD8, транзисторов VT1 – VT3, накопительных конденсаторов С17 – С19 и оптопар OPT2 – OPT4. C выхода 4 оптопар OPT2, OPT3, OPT4 на входы микроконтроллера RC2, RC1, RC0 поступают импульсы длительностью примерно 100 мкс, соответствующие началу отрицательной полуволны фазных напряжений Uab, Ubc, Uca.

Диаграммы работы узла синхронизации приведены на рисунке 5. Если принять верхний график за сетевое напряжение Uав, то среднийграфик будет соответствовать напряжению на конденсаторе С17, а нижний – току через фотодиод оптопары ОРТ2. Микроконтроллер регистрирует поступающие на его входы синхроимпульсы, определяет наличие, порядок чередования, отсутствие «слипания» фаз, а также производит расчёт времени задержки импульсов управления тиристорами. Входы цепей синхронизации защищены от перенапряжения варисторами R17, R22 и R27.

С помощью потенциометров R2, R3, R4 задаются параметры, соответствующие диаграмме работы УПП, приведённой на рисунке 2; соответственно R2 – Tпуск, R3 – Тторм, R4 – Uначи Uотс. Напряжения уставок с движков R2, R3, R4 поступают на входы RA2, RA1, RA0 микросхемы DD1 и преобразуются с помощью АЦП. Время пуска и торможения регулируется в пределах от 3 до 15 с, а начальное напряжение – от нуля до напряжения, соответствующего углу проводимости тиристора в 60 электрических градусов. Конденсаторы С8 – С10 – помехоподавляющие.

Команда «ПУСК» подаётся путём замыкания контактов 1 и 2 разъёма XS2, при этом на выходе 4 оптопары OPT1 появляется лог. 1; конденсаторы С14 и С15 производят подавление колебаний, возникающих вследствие „дребезга“ контактов. Разомкнутому положению контактов 1 и 2 разъёма XS2 соответствует команда „СТОП“. Коммутацию цепи управления запуском можно реализовать кнопкой с фиксацией, тумблером или контактами реле.

Силовые тиристоры защищены от перегрева термостатом B1009N с нормально-замкнутыми контактами, размещёнными на теплоотводе. При достижении температуры 80°С контакты термостата размыкаются, и на вход RC3 микроконтроллера поступает уровень лог. 1, свидетельствующий о перегреве.

Светодиоды HL1, HL2, HL3 служат индикаторами следующих состояний:

  • HL1 (зелёный) «Готовность» – отсутствие аварийных состояний, готовность к запуску;
  • HL2 (зелёный) «Работа» – мигающий светодиод означает, что УПП производит пуск или торможение двигателя, постоянное свечение – работа на байпасе;
  • HL3 (красный) «Авария» – свидетельствует о перегреве теплоотвода, отсутствии или „слипании“ фазных напряжений.

Включение обходных реле К1, К2, К3 производится путём подачи микроконтроллером лог. 1 на базу транзистора VT4.

Программирование микроконтроллера – внутрисхемное, для чего используется разъём XS3, диод VD2 и микропереключатель Дж1. Элементы ZQ1, C11, C12 образуют цепь запуска тактового генератора, R5 и С7 – цепь сброса по питанию, С13 осуществляет фильтрацию помех по шинам питания микроконтроллера.

На рисунке 6 приведён упрощённый алгоритм работы УПП. После инициализации микроконтроллера вызывается подпрограмма Error_Test, которая определяет наличие аварийных ситуаций: перегрев теплоотвода, невозможность синхронизироваться с сетевым напряжением вследствие потери фазы, неверного подключения к сети или сильных помех. Если аварийная ситуация не фиксируется, то переменной Error присваивается значение «0», после возврата из подпрограммы зажигается светодиод „Готовность“, и схема переходит в режим ожидания команды „ПУСК“. После регистрации команды „ПУСК“ микроконтроллер производит аналого!цифровое преобразование напряжений уставок
на потенциометрах и расчёт параметров Тпуск и Uнач, после чего выдаёт импульсы управления силовыми тиристорами. По окончании пуска включается байпас. При торможении двигателя процессы управления выполняются в обратном
порядке.

SCR Выпрямитель с кремниевым управлением »Примечания по электронике

Тиристорные или тиристорные цепи используются во многих областях управления мощностью от управления освещением до силовых двигателей переменного тока и других коммутационных приложений.


Конструкция схемы тиристора Включает:
Праймер для разработки схемы тиристора Схема работы Конструкция цепи запуска / запуска Лом перенапряжения Цепи симистора


Тиристорный или кремниевый выпрямитель, SCR, является особенно полезным компонентом и находит множество применений в таких областях, как управление мощностью, где эти компоненты могут использоваться для переключения высоких напряжений и токов.Тиристоры взяли на себя большинство приложений переключения мощности, которые когда-то выполнялись с помощью реле, хотя контакторы очень высокого напряжения все еще используются.

Тиристорный или кремниевый выпрямитель, конструкция тиристора может быть реализована просто. Устройства, хотя и немного необычные, следуют тем же основным правилам проектирования схем, которые регулируют и другие компоненты.

Основная проблема заключается в том, чтобы убедиться, что все компоненты имеют соответствующие характеристики, поскольку часто тиристорные схемы используются в приложениях с высокой мощностью.

Тиристор, основы схемы SCR

Тиристорный или кремниевый выпрямитель работает иначе, чем стандартный биполярный транзистор или полевой транзистор.

Тиристор имеет два электрода, которые подключены к главной цепи управления. Эти два электрода называются анодом и катодом.

Третий электрод, называемый затвором, используется для управления тиристором в цепи.

Обозначение тиристора или цепи тиристора
Примечание по тиристорной технологии:

Тиристоры или тиристоры основаны на уникальной структуре PNPN-структуры и имеют три электрода: анод, катод и затвор.Когда затвор получает ток срабатывания, он запускает тиристор, позволяя току течь, пока напряжение между анодом и катодом не будет снято. Это позволяет тиристору переключать высокие напряжения и токи, хотя это только половина цикла. Два могут использоваться для покрытия обеих половин цикла.

Подробнее о Тиристорная техника

Чтобы понять, как SCR работает в цепи, лучше всего взглянуть на его эквивалентную схему.Из этого видно, что SCR можно рассматривать как состоящий из двух соединенных между собой транзисторов.

В начальных условиях проводимость между анодом и катодом отсутствует. Однако, если на затвор подается ток, заставляющий TR2 проводить ток, тиристор включится, но только в одном направлении. Эта проводимость будет сохраняться, даже если ток затвора будет удален. Таким образом, ток затвора можно рассматривать как импульс запуска.

Чтобы остановить проводимость, напряжение между анодом и катодом должно быть уменьшено до уровня ниже уровня падения.Это происходит, когда один или оба транзистора достигают своего режима отсечки. В этот момент проводимость всего устройства прекратится, и ворота нужно будет повторно запустить.

Эквивалентная схема тиристора

Как можно понять, тиристор SCR проводит только в одном направлении. При использовании с сигналом переменного тока его необходимо повторно запускать для каждого полупериода проводимости.

Когда тиристор SCR находится в полностью проводящем состоянии, падение напряжения на устройстве обычно составляет около 1 В для всех значений анодного тока вплоть до его номинального значения.

SCR затем продолжает проводить, пока анодный ток остается выше удерживающего тока для устройства, которое обычно обозначается как IH. Ниже этого значения SCR перестает проводить. Следовательно, в цепях постоянного тока и некоторых высокоиндуктивных цепях переменного тока должны быть средства отключения устройства, так как тиристор будет продолжать проводить.

Схема тиристорного затвора

Чтобы предотвратить перегрузку затвора, а также ложное срабатывание, некоторые резисторы часто помещают в цепь затвора.

Схема тиристора с дополнительными резисторами затвора

При разработке схемы SCR часто используются два резистора затвора.

В схему включен R1 для ограничения тока затвора до приемлемого уровня. Этот резистор выбран таким образом, чтобы обеспечить достаточный ток для срабатывания тринистора, не создавая при этом такой большой нагрузки, чтобы затворный переход находился под напряжением.

Второй резистор R2 — это резистор катода затвора, иногда обозначаемый как RGK, включенный для предотвращения ложного срабатывания.Это эффективно снижает чувствительность ворот.

Иногда этот резистор может быть включен в сам корпус SCR, и внешний резистор может не потребоваться. Необходимо свериться с даташитом производителя, чтобы определить, что необходимо.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Срабатывание и срабатывание тиристора SCR »Примечания по электронике

Цепь запуска является одной из ключевых областей конструкции схемы тиристора или тиристора — ключевым моментом является обеспечение того, чтобы кремниевый управляемый выпрямитель срабатывал при необходимости и не срабатывал ложно.


Конструкция схемы тиристора Включает:
Праймер для разработки схемы тиристора Схема работы Конструкция цепи запуска / запуска Лом перенапряжения Цепи симистора


При проектировании тиристорной схемы тиристора особое внимание необходимо уделить схеме запуска.Работа всей области схемы тиристорного или кремниевого выпрямителя в значительной степени зависит от способа ее запуска.

Обеспечение отсутствия ложных срабатываний, а также обеспечение срабатывания тиристоров, когда это необходимо, требует особого внимания при проектировании схемы.

При срабатывании тиристоров или тиристоров важны различные аспекты, включая требования к управлению затвором, если используется запуск затвора, время запуска, при котором необходимо выдерживать время приложенного триггерного стимула для фиксации схемы и другие.Важность различных параметров зависит от используемой формы запуска SCR.

Сводка срабатываний / срабатываний SCR

Существует несколько способов срабатывания или срабатывания тиристора или тиристора.

  • Запуск гейта: Эта форма запуска SCR наиболее часто встречается в различных используемых схемах. Это простой, надежный, эффективный, а также простой в реализации для большинства приложений — может быть применен простой сигнал запуска с соответствующей обработкой, если требуется.Это означает, что другие электронные схемы могут использоваться для получения подходящего сигнала запуска, который затем может быть применен к SCR.

    Для использования тринистора на затворе, тиристор должен работать ниже своего напряжения пробоя, и соответствующий запас безопасности также должен допускать любые переходные процессы, которые могут возникнуть. В противном случае может возникнуть прямое напряжение или срабатывание пробоя.

    Для включения SCR, положительное напряжение затвора между затвором и катодом. Это приводит к возникновению тока затвора, при котором заряды вводятся во внутренний p-слой устройства.Это эффективно снижает напряжение, при котором происходит прямое переключение. Можно сделать вывод, что ток затвора определяет прямое напряжение, при котором устройство переключается в проводящее состояние. Чем выше ток затвора, тем ниже напряжение прямого пробоя.

    Есть много простых методов подачи сигнала запуска. Возможно, одна из самых простых схем показана на схеме ниже.
    Схема тиристора с дополнительными резисторами затвора Здесь видно, что резисторов два.Первый — это R1, который включен для ограничения тока затвора до приемлемого уровня. Этот резистор выбирается таким образом, чтобы обеспечить ток, достаточный для срабатывания тринистора, при сохранении его в безопасных пределах для устройства. Его легко рассчитать, используя номиналы устройства и закон Ома.

    Второй резистор R2 является резистором катода затвора. Иногда его обозначают как RGK и включают для предотвращения ложного срабатывания. Действие резистора можно увидеть по сравнению с двухтранзисторным аналогом SCR.Это показывает, что низкое внешнее сопротивление между затвором и катодом пропускает некоторый ток вокруг затворного перехода. Соответственно, для инициирования и поддержания проводимости требуется более высокий анодный ток. В частности, обнаружено, что низкотоковые высокочувствительные тиристоры срабатывают при очень низких уровнях тока, и поэтому требуется внешнее сопротивление затвор-катод для предотвращения срабатывания термически генерируемого тока утечки в области затвора. Однако сопротивление катода затвора частично пропускает внутренний анодный ток, вызванный быстрой скоростью изменения анодного напряжения (dv / dt).Он также увеличивает прямое напряжение переключения за счет снижения эффективности области транзистора NPN, что требует несколько более высокого эффекта лавинного умножения для инициирования срабатывания триггера. Ток, который идет в обход затворного перехода, также влияет на токи фиксации и удержания.

    Таким образом, можно видеть, что эффекты использования резистора байпаса катодного затвора включают:

    • Увеличение допустимых значений dv / dt.
    • Сохраните демпфирование затвора, чтобы обеспечить максимальное повторяющееся пиковое напряжение в закрытом состоянии VDRM.
    • Повышение уровней тока фиксации и удержания
    • Уменьшить время выключения, tq.
    Хотя простая схема, показанная выше, подходит для многих приложений, где требуется более управляемый механизм запуска, необходимо учитывать характеристики затвора до запуска, во время запуска и после. Это необходимо, поскольку характеристики затвора изменяются в результате изменений тока в устройстве.
  • Прямое напряжение на аноде и катоде Запуск SCR: Эта форма запуска или зажигания SCR происходит, когда напряжение между анодом и катодом вызывает лавинную проводимость.То, как это происходит, можно увидеть в сочетании со структурой SCR.
    Структура тиристора Когда прямое напряжение между анодом и катодом увеличивается, диодный переход J2 испытывает повышенное напряжение, поскольку он смещен в обратном направлении. В конечном итоге градиент напряжения будет увеличиваться за пределами точки пробоя, и произойдет лавинный пробой, запускающий SCR. Напряжение, при котором это происходит, известно как напряжение прямого отключения VB0.

    Когда переход J2 выходит из строя, течет ток, переводя тиристор в проводящее состояние.Переходы J1, J3 уже смещены в прямом направлении, и поэтому пробой перехода J2 позволяет потоку носителей через все три перехода, обеспечивая протекание тока нагрузки. Как и в случае с другими формами запуска SCR, устройство остается в проводящем состоянии.

    Использование этого метода включения устройства не рекомендуется, поскольку превышение значения VB0 может привести к повреждению устройства. Любая схема должна быть спроектирована таким образом, чтобы избежать этого метода срабатывания, учитывая максимум возможных скачков напряжения.

  • Запуск dv / dt: Запуск SCR также может происходить без какого-либо тока затвора, если скорость нарастания анодного и катодного напряжения превышает определенные пределы для конкретного устройства.
  • Запуск по температуре: Эта форма запуска SCR может иметь место при некоторых обстоятельствах. Это может вызвать неожиданные отклики, и поэтому его последствия следует учитывать как часть любого процесса проектирования.

    Температурное срабатывание SCR или тиристоров происходит, когда напряжение на переходе J2 и любой ток утечки может повысить температуру перехода.Повышение температуры дополнительно увеличивает температуру, что, в свою очередь, увеличивает ток утечки. Этот кумулятивный процесс может быть достаточным для запуска SCR, хотя он имеет тенденцию происходить только при высокой температуре устройства.

  • Легкое срабатывание: Эта форма срабатывания или срабатывания SCR часто используется с системами высокого напряжения. Здесь электрическое соединение от пускового механизма не требуется, и можно использовать изолированный источник света.

    Там, где должен использоваться легкий запуск SCR, доступны специально изготовленные SCR. Срабатывание света во внутреннем P-типе происходит позже. Когда эта область освещается светом, генерируются свободные носители заряда, и, как и при подаче стробирующего сигнала, запускается SCR.

    Для достижения максимального поглощения света используются специализированные структуры SCR, часто имеющие углубление во внутреннем P-типе позже, чтобы обеспечить максимальный доступ к свету.

    Для включения срабатывания светового сигнала свет часто направляется в нужную точку тиристора / тиристора с помощью оптического волокна.Когда свет превышает определенную интенсивность, происходит переключение. SCR этого типа часто называют активированным светом SCR или LASCR. Эти LASCR использовались в коммутационных центрах распределения электроэнергии высокого напряжения. Оптическое переключение позволяет достичь очень высокого уровня изоляции, сохраняя при этом возможность переключения с использованием схемы низкого уровня.

Особенно важно понимать все аспекты срабатывания тиристоров или тиристоров. Таким образом, если возникают какие-либо ложные срабатывания, это помогает отследить, как это может произойти.Также, если тиристор не срабатывает при необходимости, это тоже может помочь решить проблему.

Срабатывание тиристоров — один из наиболее интересных аспектов проектирования схем, использующих эти устройства. Если эта область дизайна может быть успешно завершена, то остальная часть дизайна должна быть относительно легко выполнена.

Другие схемы и схемотехника:
Основы операционных усилителей Схемы операционных усилителей Цепи питания Конструкция транзистора Транзистор Дарлингтона Транзисторные схемы Схемы на полевых транзисторах Условные обозначения схем
Вернуться в меню «Конструкция схемы».. .

Обзор схем, типов и применений тиристоров

На коммерческой основе первые тиристорные устройства были выпущены в 1956 году. С помощью небольшого устройства тиристоры могут управлять большими значениями напряжения и мощности. Широкий спектр применения в регуляторах освещенности, регулировании мощности и скорости электродвигателя. Раньше тиристоры использовались для реверсирования тока для выключения устройства. На самом деле он требует постоянного тока, поэтому его очень сложно применить к устройству.Но теперь, используя управляющий сигнал строба, новые устройства можно включать и выключать. Тиристоры можно использовать для полного включения и выключения. Но транзистор находится между состояниями включения и выключения. Таким образом, тиристор используется в качестве переключателя и не подходит в качестве аналогового усилителя. Пожалуйста, перейдите по ссылке для: Методы связи тиристоров в силовой электронике

Что такое тиристор?

Тиристор — это четырехслойный твердотельный полупроводниковый прибор из материала P- и N.Всякий раз, когда затвор получает ток срабатывания, он начинает проводить до тех пор, пока напряжение на тиисторном устройстве не окажется под прямым смещением. Таким образом, в этом состоянии он действует как бистабильный переключатель. Чтобы контролировать большую величину тока двух выводов, мы должны спроектировать трехпроводной тиристор, комбинируя малую величину тока с этим током. Этот процесс известен как контрольное отведение. Если разность потенциалов между двумя выводами находится под напряжением пробоя, то для включения устройства используется двухпроводной тиристор.


Тиристор

Обозначение цепи тиристора

Обозначение схемы тиристора приведено ниже. Он имеет три вывода: анод, катод и затвор.

TRIAC Symbol

Тиристор имеет три состояния.

  • Режим блокировки обратного хода — В этом режиме работы диод блокирует подаваемое напряжение.
  • Режим прямой блокировки — В этом режиме напряжение, приложенное в одном направлении, заставляет диод проводить. Но здесь не будет проводимости, потому что тиристор не сработал.
  • Режим прямой проводимости — Тиристор сработал, и ток будет течь через устройство, пока прямой ток не достигнет значения ниже порогового значения, известного как «ток удержания».

Схема слоев тиристора

Тиристор состоит из трех pn-переходов , а именно J1, J2 и J3. Если анод находится под положительным потенциалом по отношению к катоду и вывод затвора не срабатывает никаким напряжением, то J1 и J3 будет находиться в состоянии прямого смещения.В то время как переход J2 будет находиться в состоянии обратного смещения. Таким образом, переход J2 будет в выключенном состоянии (проводимости не будет). Если повышение напряжения на аноде и катоде превышает V BO (напряжение пробоя), то для J2 происходит лавинный пробой, и тогда тиристор переходит в состояние ВКЛ (начинает проводить).

Если к клемме затвора приложено напряжение В G (положительный потенциал), то на переходе J2 произойдет пробой, которая будет иметь низкое значение В AK .Тиристор можно переключить в состояние ВКЛ, выбрав соответствующее значение В G . В условиях лавинного пробоя тиристор будет работать непрерывно без учета напряжения затвора до тех пор, пока не будет снят потенциал V AK или

  • Удерживающий ток больше, чем ток, протекающий через устройство
  • Здесь В G — Импульс напряжения, который является выходным напряжением релаксационного генератора UJT.

    Схема слоев тиристоров
    Цепи переключения тиристоров
    • Цепь тиристора постоянного тока
    • Цепь тиристора переменного тока
    Цепь тиристора постоянного тока

    При подключении к источнику постоянного тока для управления большими нагрузками постоянного тока и током мы используем тиристоры. Основное преимущество тиристора в цепи постоянного тока в качестве переключателя дает высокий коэффициент усиления по току. Небольшой ток затвора может управлять большим количеством анодного тока, поэтому тиристор известен как устройство, работающее от тока.

    Цепь тиристора постоянного тока
    Цепь тиристора переменного тока

    При подключении к источнику переменного тока тиристор действует иначе, поскольку он не такой, как цепь, подключенная к постоянному току. В течение половины цикла тиристор используется в качестве цепи переменного тока, вызывая его автоматическое выключение из-за состояния обратного смещения.

    Тиристорная цепь переменного тока

    Типы тиристоров

    В зависимости от возможностей включения и выключения тиристоры подразделяются на следующие типы:

    • Тиристоры с кремниевым управлением или тиристоры
    • Тиристоры отключения затвора или GTO
    • Тиристоры отключения эмиттера ETO
    • Тиристоры с обратной проводкой или RCT
    • Двунаправленные триодные тиристоры или TRIAC
    • MOS отключают тиристоры или MTO
    • Тиристоры с двунаправленным фазовым управлением или BCT
    • Тиристоры с быстрым переключением или кремниевые выпрямители с SCR
    • 900ET91 управляемые тиристоры или FET-CTH
    • Тиристоры с интегрированным затвором или IGCT

    Для лучшего понимания этой концепции здесь мы объясняем некоторые типы тиристоров.

    Кремниевый управляемый выпрямитель (SCR)

    Кремниевый управляемый выпрямитель также известен как тиристорный выпрямитель. Это четырехслойное твердотельное устройство с контролем тока. SCR могут проводить ток только в одном направлении (однонаправленные устройства). SCR могут нормально запускаться током, который подается на клемму затвора. Чтобы узнать больше о SCR. Пожалуйста, перейдите по ссылке, чтобы узнать больше о: Основы и характеристики учебника по SCR

    Тиристоры отключения затвора (GTO)

    Одним из особых типов полупроводниковых устройств большой мощности является GTO (тиристоры отключения затвора).Терминал ворот управляет включением и выключением переключателей.

    GTO Symbol

    Если положительный импульс приложен между катодом и выводами затвора, то устройство будет включено. Выводы катода и затвора ведут себя как PN-переход, и между выводами существует небольшое напряжение относительно. Он ненадежен как SCR. Чтобы повысить надежность, мы должны поддерживать небольшой положительный ток затвора.

    Если импульс отрицательного напряжения приложен между выводами затвора и катода, устройство выключится.Чтобы вызвать напряжение катода затвора, часть прямого тока украдена, что, в свою очередь, может упасть наведенный прямой ток, и GTO автоматически перейдет в состояние блокировки.

    Приложения

    • Электроприводы с регулируемой скоростью
    • Инверторы большой мощности и тяговое усилие
    Применение GTO на частотно-регулируемом приводе

    Существует две основные причины использования привода с регулируемой скоростью — это обмен и управление технологической энергией. И это обеспечивает более плавную работу.В этом приложении доступен высокочастотный обратнопроводящий GTO.

    GTO Application
    Тиристор выключения эмиттера

    Тиристор выключения эмиттера — это один из типов тиристоров, который включается и выключается с помощью полевого МОП-транзистора. Он включает в себя как преимущества MOSFET, так и GTO. Он состоит из двух вентилей — один вентиль используется для включения, а другой вентиль с последовательным MOSFET используется для выключения.

    Emitter Turn OFF Thyristor

    Если на затвор 2 подается некоторое положительное напряжение, он включает полевой МОП-транзистор, который соединен последовательно с клеммой катода тиристора PNPN.МОП-транзистор, подключенный к клемме затвора тиристора , выключится, когда мы подадим положительное напряжение на затвор 1.

    Недостатком полевого МОП-транзистора, подключенного последовательно с клеммой затвора, является то, что общее падение напряжения увеличивается с 0,3 В до 0,5 В и потери, соответствующие Это.

    Приложения

    Устройство ETO используется для ограничителя тока короткого замыкания и полупроводникового выключателя из-за его высокой способности прерывания тока, высокой скорости переключения, компактной конструкции и низких потерь проводимости.

    Эксплуатационные характеристики ETO в твердотельном автоматическом выключателе

    По сравнению с электромеханическим распределительным устройством твердотельные выключатели могут обеспечить преимущества в сроке службы, функциональности и скорости. Во время переходного процесса при выключении мы можем наблюдать рабочие характеристики полупроводникового переключателя ETO .

    Приложение ETO
    Тиристоры с обратной проводимостью или RCT

    Обычный тиристор большой мощности отличается от тиристора с обратной проводимостью (RCT).RCT не может выполнить обратную блокировку из-за обратного диода. Если мы будем использовать обгонный диод или обратный диод, то это будет более выгодно для этих типов устройств. Потому что диод и SCR никогда не будут проводить, и они не могут одновременно выделять тепло.

    RCT Symbol

    Приложения

    RCT или обратнопроводящие тиристоры в преобразователях частоты и преобразователях, используемых в контроллере переменного тока с использованием схемы демпфера.

    Применение в контроллере переменного тока с использованием демпферов

    Защита полупроводниковых элементов от перенапряжения осуществляется путем индивидуального размещения конденсаторов и резисторов параллельно переключателям.Таким образом, компоненты всегда защищены от перенапряжения.

    RCT Application
    Двунаправленные триодные тиристоры или TRIAC

    TRIAC — это устройство для управления током, которое представляет собой трехконтактное полупроводниковое устройство . Он образован от названия «Триод для переменного тока». Тиристоры могут проводить только в одном направлении, но TRIAC может проводить в обоих направлениях. Есть два варианта переключения формы сигнала переменного тока для обеих половин: один — с помощью TRIAC, а другой — с тиристорами, подключенными к обратной стороне.Чтобы включить одну половину цикла, мы используем один тиристор, а для работы другого цикла мы используем тиристоры с обратным подключением.

    Симистор

    Применения

    Используется в диммерах домашнего освещения, регуляторах малых двигателей, регуляторах скорости электрических вентиляторов, управлении небольшими бытовыми силовыми приборами переменного тока.

    Применение в бытовом диммере

    При использовании отсекающих частей переменного напряжения диммер будет работать. Это позволяет лампе пропускать только части сигнала.Если dim больше, чем прерывание формы волны, также больше. В основном передаваемая мощность будет определять яркость лампы. Обычно для изготовления диммера используется TRIAC.

    Применение симистора

    Это все о типах тиристоров и их применении. Мы считаем, что информация, представленная в этой статье, поможет вам лучше понять этот проект. Кроме того, с любыми вопросами относительно этой статьи или любой помощью в реализации проектов в области электротехники и электроники вы можете свободно обращаться к нам, связавшись с нами в разделе комментариев ниже.Вот вам вопрос, какие бывают тиристоры?

    Фото:

    1. Символ тиристора wikimedia
    2. Схема слоев тиристора tumblr
    3. DC Thyristor Circuit electronics-tutorials
    4. GTO thinkelectronics
    5. TRIAC electronicrepairguide
    6. 9001 Управление двигателем с помощью тиристора

    Тиристоры — это полупроводниковые устройства, предназначенные для коммутации высокой мощности.Как и тиристоры, транзисторы также используются в качестве переключающих устройств. Транзисторы — это крошечный электронный компонент, который изменил мир, мы можем найти их в каждом устройстве, таком как телевизоры, мобильные телефоны, ноутбуки, калькуляторы, наушники и т. Д. Транзисторы адаптируемы и универсальны, мы можем использовать их в качестве усилительного и переключающего устройства, но они не могут работать с более высокими текущий. Основное различие между транзистором и тиристором — это , транзистору требуется непрерывное переключение питания, чтобы оставаться включенным, но в случае тиристора нам нужно запустить его только один раз, и он остается включенным.Для таких приложений, как цепь аварийной сигнализации, которая должна сработать один раз и оставаться включенной навсегда, мы не можем использовать транзистор. Итак, чтобы преодолеть эти проблемы, мы используем тиристор .

    Тиристор работает только в коммутационном режиме. Тиристор может использоваться для управления высокими постоянными токами и нагрузками. Тиристор ведет себя как электронная защелка при использовании в качестве переключателя, потому что при срабатывании один раз он остается в состоянии проводимости до тех пор, пока не будет сброшен вручную. В этом проекте мы покажем вам , как управлять нагрузкой или двигателем постоянного тока с помощью тиристора .Вы можете заменить двигатель постоянного тока любой другой нагрузкой постоянного тока и управлять любой цепью постоянного тока.

    Необходимые материалы

    • Источник постоянного тока 9 В
    • Тиристор — TYN612
    • Двигатель постоянного тока (как нагрузка постоянного тока)
    • Резистор (510, 1кОм)
    • Переключатель
    • Кнопка
    • Соединительные провода

    Принципиальная схема

    Переключатель S1 в цепи используется для сброса цепи или выключения тиристора.Кнопка S2 Push используется для запуска тиристора путем подачи через него стробирующего импульса. Положение переключателя S1 может быть заменено нормально разомкнутым переключателем на тиристоре.

    Тиристор — TYN612

    Здесь, в названии тиристора TYN612 , «6» указывает значение повторяющегося пикового напряжения в закрытом состоянии, V DRM и V RRM равно 600 В, а «12» указывает значение RMS во включенном состоянии. ток, I T (RMS) составляет 12 А.Тиристор TYN612 подходит для всех режимов управления, таких как защита ломом от перенапряжения, схема управления двигателем, цепи ограничения пускового тока, цепи зажигания емкостного разряда и цепи регулирования напряжения. Диапазон тока срабатывания затвора (I GT ) составляет от 5 мА до 15 мА. Диапазон рабочих температур от -40 до 125 ° C.

    Распиновка тиристора TYN612

    Конфигурация выводов тиристора TYN612

    Контакт NO.

    Имя контакта

    Описание

    1

    К

    Катод тиристора

    2

    А

    Анод тиристора

    3

    г

    Затвор тиристора, используемый для запуска

    Управление двигателем постоянного тока с помощью тиристорной цепи

    Первоначально переключатель S1 и S2 остается в нормально замкнутом и нормально разомкнутом состоянии соответственно.При включении питания тиристоры остаются смещенными в обратном направлении до тех пор, пока не будет подан импульс затвора. Для обеспечения стробирующего импульса мы должны использовать кнопку S2. Когда переключатель S2 замыкается, SCR включается и фиксируется, даже когда мы отпускаем кнопку S2.

    Когда тиристор автоматически переходит в состояние ВКЛ, единственный способ остановить тиристор от проводимости — это отключить подачу питания. Для этого мы используем переключатель S1, который отключает питание схемы, и тиристор сбрасывается или выключается.

    Сопротивление R1 используется для обеспечения достаточного тока затвора для включения тиристора.Сопротивление R2 используется для уменьшения чувствительности затвора и увеличения способности dv / dt. Следовательно, это предотвращает ложное срабатывание тиристора. Узнайте больше о тиристоре и способах его запуска здесь.

    Тиристоры (SCR)

    • Изучив этот раздел, вы должны уметь:
    • Распознать типичные пакеты SCR:
    • Опишите типичную конструкцию SCR:
    • Ознакомьтесь со схемами типичных характеристик SCR:
    • Понимать соображения безопасности при демонстрации SCR.

    Тиристорные блоки (SCR)

    Рис. 6.0.1 Типичные пакеты SCR

    Тиристор — это общее название ряда высокоскоростных переключающих устройств, часто используемых при управлении мощностью переменного тока и переключении переменного / постоянного тока, включая симисторы и тиристоры (выпрямители с кремниевым управлением). SCR — это очень распространенный тип тиристоров, и несколько примеров распространенных корпусов SCR показаны на рисунке 6.0.1. Доступны многие типы, которые могут переключать нагрузки от нескольких ватт до десятков киловатт.Условное обозначение схемы SCR показано на рисунке 6.0.2. и предполагает, что SCR действует в основном как КРЕМНИЙНЫЙ ВЫПРЯМИТЕЛЬНЫЙ диод с обычными соединениями анода и катода, но с дополнительной клеммой CONTROL, называемой GATE. Отсюда и название выпрямитель с кремниевым управлением.

    Триггерное напряжение, приложенное к затвору, когда анод более положительный, чем катод, включает тиристор, чтобы позволить току течь между анодом и катодом. Этот ток будет продолжать течь, даже если триггерное напряжение будет удалено, пока ток между анодом и катодом не упадет почти до нуля из-за внешних воздействий, таких как отключение цепи, или форма волны переменного тока, проходящая через нулевое напряжение как часть его цикл.

    Рис. 6.0.2 Типовая конструкция SCR
    и обозначение схемы

    Выпрямитель с кремниевым управлением (SCR)

    SCR, в отличие от обычных двухслойных выпрямителей с PN-переходом, состоят из четырех слоев кремния в структуре P-N-P-N, как можно увидеть в разрезе SCR на рис. 6.0.2. Добавление затвора к этой структуре позволяет переключать выпрямитель из непроводящего состояния с прямой блокировкой в ​​состояние с низким сопротивлением и прямой проводимостью (см.также рис.6.0.3). Таким образом, небольшой ток, приложенный к затвору, может включить гораздо больший ток (также при гораздо более высоком напряжении), приложенный между анодом и катодом. Когда тиристор проводит ток, он ведет себя как обычный кремниевый выпрямитель; ток затвора может быть удален, и устройство останется в проводящем состоянии.

    SCR заставляется проводить, подавая пусковой импульс на вывод затвора, в то время как выводы основного анода и катода смещены в прямом направлении. Когда устройство смещено в обратном направлении, стробирующий импульс не действует.Чтобы выключить SCR, ток между анодом и катодом должен быть уменьшен ниже определенного критического значения «тока удержания» (близкого к нулю).

    Обычно тиристоры применяются в коммутации мощных нагрузок. Они являются переключающим элементом во многих домашних регуляторах освещенности, а также используются в качестве элементов управления в регулируемых или регулируемых источниках питания.

    Рис. 6.0.3 Характеристики SCR

    Характеристики SCR

    На рис. 6.0.3 показана типичная характеристическая кривая для SCR.Видно, что в области обратной блокировки он ведет себя аналогично диоду; весь ток, за исключением небольшого тока утечки, блокируется до тех пор, пока не будет достигнута область обратного пробоя, и в этот момент изоляция из-за истощенных слоев на переходах разрушится. В большинстве случаев обратный ток, протекающий в области пробоя, может разрушить тиристор.

    Однако, когда тиристор смещен в прямом направлении, в отличие от обычного диода, ток не начинает течь, когда чуть больше 0.При подаче напряжения 6В ток не течет, кроме небольшого тока утечки. Это называется режимом прямой блокировки, который распространяется на сравнительно высокое напряжение, называемое «прямое напряжение переключения». SCR обычно работает при напряжениях, значительно меньших, чем перенапряжение прямого прерывания, так как любое напряжение, превышающее перенапряжение прямого прерывания, приведет к неконтролируемой проводимости SCR; затем SCR внезапно показывает очень низкое прямое сопротивление, позволяя протекать большому току.Этот ток «фиксируется» и будет продолжать течь до тех пор, пока либо напряжение на аноде и катоде не уменьшится до нуля, либо прямой ток не уменьшится до очень низкого значения, меньшего, чем «ток удержания», показанный на рис. 6.0.3. . Однако прямой разрыв по проводимости может произойти, если SCR используется для управления напряжением переменного тока (например, от сети или сети), и возникает внезапный всплеск напряжения, особенно если он совпадает с пиковым значением переменного тока (или близок к нему). Если SCR случайно переведен в режим прямого прерывания, это может вызвать внезапный, но кратковременный скачок максимального тока, который может иметь катастрофические последствия для других компонентов в цепи.По этой причине часто обнаруживается, что в SCR есть какой-либо метод подавления выбросов, включенный либо в конструкцию SCR, либо в качестве внешних компонентов, обычно называемых «демпфирующей схемой».

    Правильный способ инициировать включение SCR — подать ток на затвор SCR, пока он работает в «области прямой блокировки», тогда SCR «срабатывает», и его прямое сопротивление падает до очень низкая стоимость. Это создает «ток фиксации», который из-за низкого прямого сопротивления SCR в этом режиме позволяет очень большим (несколько ампер) токам течь в «прямой проводящей области» без каких-либо изменений прямого напряжения (примечание что характеристическая кривая после срабатывания SCR практически вертикальна).В этой области будет течь ток, который может изменяться, но если прямой ток упадет ниже значения «удерживающего тока» или напряжение между анодом и катодом уменьшится почти до 0 В, устройство вернется в свою зону прямой блокировки, эффективно поворачивая выпрямитель. выключен, пока он не сработает еще раз. Использование затвора для запуска проводимости таким образом позволяет контролировать проводимость, что позволяет использовать SCR во многих системах управления переменного и постоянного тока.

    Рис. 6.0.4 Двухтранзисторная модель SCR

    Как работает SCR

    Модель SCR на двух транзисторах

    Фактическую работу SCR можно описать со ссылкой на рис.6.0.4 (a) и (b), где показаны упрощенные схемы структуры SCR с помеченными слоями P и N и переходами. Чтобы понять работу SCR, четыре уровня SCR теоретически можно представить как небольшую схему, состоящую из двух транзисторов (один PNP и один NPN), как показано на рис. 6.0.4 (b). Обратите внимание, что слой P2 образует как эмиттер Tr1, так и базу Tr2, а слой N1 формирует базу Tr1 и коллектор Tr2.

    Состояние «выключено»

    Ссылаясь на Рис.6.0.4 (c), при отсутствии сигнала затвора и затворе (g) с тем же потенциалом, что и катод (k), любое напряжение (меньше, чем перенапряжение прямого размыкания), приложенное между анодом (a) и катодом (k ), так что анод положительный по отношению к катоду не будет создавать ток через SCR. Tr2 (NPN-транзистор) имеет 0В, приложенное между базой и эмиттером, поэтому он не будет проводить, и поскольку его напряжение коллектора обеспечивает базовое возбуждение для Tr1 (PNP-транзистор), его переход база / эмиттер будет смещен в обратном направлении.Таким образом, оба транзистора выключены, и между анодом SCR и катодом не будет протекать ток (за исключением небольшого обратного тока утечки), и он работает в области прямой блокировки.

    Запуск SCR

    Когда SCR работает в области прямой блокировки (см. Характеристики SCR на рис. 6.0.3), если затвор и, следовательно, база Tr2, см. Рис. 6.0.4 (c), становятся положительными по отношению к катоду (также эмиттер Tr2) путем применения стробирующего импульса, так что небольшой ток, обычно от нескольких мкА до нескольких мА в зависимости от типа тиристора, вводится в базу Tr2, Tr2 включается, и напряжение на его коллекторе падает.Это вызовет протекание тока в PNP-транзисторе Tr1 и быстрое повышение напряжения на коллекторе Tr1 и, следовательно, на базе Tr2. Базовый эмиттерный переход Tr2 станет еще более смещенным вперед, быстро включив Tr1. Это увеличивает напряжение, прикладываемое к базе Tr2, и сохраняет проводимость Tr2 и Tr1, даже если исходный стробирующий импульс или напряжение, которое запустило процесс включения, теперь удаляются. Теперь между слоями анода P1 (a) и катода N2 (k) будет протекать большой ток.

    Сопротивление между анодом и катодом падает почти до нуля, так что теперь ток тринистора ограничивается только сопротивлением любой цепи нагрузки.Описанное действие происходит очень быстро, поскольку включение Tr2 с помощью Tr1 является формой положительной обратной связи, когда каждый коллектор транзистора подает большие изменения тока на базу другого.

    Поскольку коллектор Tr1 соединен с базой Tr2, действие включения Tr1 фактически подключает базу Tr2 (вывод затвора) к высокому положительному напряжению на аноде (a). Это гарантирует, что Tr2 и, следовательно, Tr1 остаются проводящими, даже когда стробирующий импульс удален. Чтобы выключить транзисторы, напряжение на аноде (a) и катоде (k) должно иметь обратную полярность, как это произошло бы в цепи переменного тока в то время, когда положительный полупериод волны переменного тока достигал 0 В, прежде чем стать отрицательным. на вторую половину его цикла или в цепи постоянного тока ток, протекающий через тиристор, отключается.В любом из этих случаев ток, протекающий через тиристор, будет снижен до очень низкого уровня, ниже уровня удерживающего тока (показанного на рис. 6.0.3), поэтому переходы база-эмиттер больше не имеют достаточного прямого напряжения для поддержания проводимости.

    Рис. 6.0.5 Низковольтное питание SCR

    Демонстрация работы SCR

    Поскольку SCR обычно используются для управления высокомощными высоковольтными нагрузками, это представляет значительный риск поражения электрическим током для пользователей в любых экспериментальных или образовательных средах.Однако схемы, описанные на следующих веб-страницах Модуля 6, предназначены для демонстрации различных методов управления, используемых с тиристорами с использованием переменного тока низкого напряжения (12 В, RMS, ), как показано на рис. 6.0.5, вместо того, чтобы подвергать пользователя опасностям. использования сетевого (линейного) напряжения. Обратите внимание, что схемы, показанные в этом модуле, предназначены только для демонстрации низкого напряжения, а не как рабочие схемы управления для сетевых (линейных) цепей. Для реальных рабочих примеров вы должны обратиться к инструкциям по применению, выпущенным производителями SCR.

    Часть схемы, содержащая SCR (SCR C106M), вместе с токоограничивающим резистором 33R и лампой 12 В 100 мА, построена на небольшом куске Veroboard (прототипной платы), который можно легко прикрепить к макетной плате с помощью ‘Blu Tack ‘или аналогичный временный клей, позволяющий экспериментально конструировать различные схемы управления на макетной плате. На SCR подается переменный ток через двухполюсный переключатель и изолирующий трансформатор с 230 В на 12 В (идеален небольшой медицинский изолирующий трансформатор) с предохранителем 250 мА во вторичной цепи, все они помещены в коробку с двойной изоляцией.

    Рис. 6.0.6 Низковольтные цепи питания тиристоров

    Мостовой выпрямитель находится в отдельном изолированном корпусе с резистором с проволочной обмоткой 1K8, подключенным к выходу, чтобы обеспечить постоянную нагрузку. Это гарантирует, что формы выходных сигналов двухполупериодного выпрямленного выхода 12 В могут быть надежно отображены на осциллографе. Эти отдельные схемы, показанные на рис. 6.0.6, просто сконструированы и представляют собой полезный набор для демонстрации и экспериментов с различными типами SCR или работы источника питания при низком напряжении.

    Тиристоры | ВИШАЙ (ИК) — DACPOL

    • ТОВАРЫ
      • Полупроводники
      • Электрические преобразователи
      • Электрические измерения (шунты,
        зонды, измерители, трансформаторы)
      • Пассивные компоненты
      • Реле и контакторы
      • Сердечники и другие индуктивные компоненты
      • Радиаторы, варисторы, тепловая защита
      • Вентиляторы
      • Кондиционер, аксессуары для электрических шкафов
        , охладители
      • Источники питания и инверторы
      • Аккумуляторы, зарядные устройства, буферное питание
        Источники питания и инверторы
      • Автоматика
      • Кабели, литц-провода, кабелепроводы, гибкие
        соединения
      • Изоляционные материалы
      • Электрические соединители
      • Инфракрасные лампы, УФ-лампы и светодиоды
        Освещение
      • Промышленное светодиодное освещение
      • Подузлы оборудования силовой электроники
      • Промышленные корпуса, клавиатуры,
        Защита от электромагнитных / радиопомех
      • Разные
      • Компоненты для опасных зон и взрывоопасных сред
        [Ex]
      • ПОКАЗАТЬ ВСЕ КАТЕГОРИИ ТОВАРОВ
    • заявка
    • МАГАЗИН
      • Полупроводники
      • Электрические преобразователи
      • Электрические измерения (шунты,
        зонды, измерители, трансформаторы)
      • Пассивные компоненты
      • Реле и контакторы
      • Вентиляторы
      • Кондиционер, аксессуары для электрических шкафов
        , охладители
      • Источники питания и инверторы
      • Аккумуляторы, зарядные устройства, буферное питание
        Источники питания и инверторы
      • Автоматика
      • Кабели, литц-провода, кабелепроводы, гибкие
        соединения
      • Электрические соединители
      • Инфракрасные лампы, УФ-лампы и светодиоды
        Освещение
      • Промышленное светодиодное освещение
      • Промышленные корпуса, клавиатуры,
        Защита от электромагнитных / радиопомех
      • Разные
      • Компоненты для опасных зон и взрывоопасных сред
        [Ex]
    • СЕРВИС DACPOL
    .

    Добавить комментарий

    Ваш адрес email не будет опубликован.