Схема реверсивного включения магнитного пускателя: Схема подключения реверсивного магнитного пускателя

Содержание

Схема подключения реверсивного магнитного пускателя

Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем и сегодня мы рассмотрим еще одну классическую схему подключения магнитного пускателя, которая обеспечивает реверс вращения эл. двигателя.

Такая схема используется в основном, где нужно обеспечить вращение эл. двигателя в обе стороны, например, сверлильный станок, подъемный кран, лифт и т.д.

На первый взгляд может показаться, что эта схема намного сложнее, чем схема с одним пускателем, но это только на первый взгляд.

В схему добавилась еще одна цепь управления, состоящая из кнопки SB3, магнитного пускателя КМ2, и немного видоизменилась силовая часть подачи питания на эл. двигатель. Названия кнопок SB2 и SB3 даны условно.

Для защиты от короткого замыкания в силовой цепи, перед катушками пускателей добавились два нормально-замкнутых контакта КМ1.2 и КМ2.2, взятые от контактных приставок, установленных на магнитных пускателях

КМ1 и КМ2.

Для удобства понимания схемы, цепи управления и силовые контакты пускателей раскрашены в разные цвета. А чтобы визуально не усложнять схему, цифробуквенные обозначения пар силовых контактов пускателей не указываются. Ну а если возникнут вопросы или сомнения, прочитайте еще раз предыдущую часть статьи о подключении магнитного пускателя.

1. Исходное состояние схемы.

При включении автоматического выключателя QF1 фазы «А», «В», «С» поступают на верхние силовые контакты магнитных пускателей КМ1 и КМ2 и там остаются дежурить.

Фаза «А», питающая цепи управления, через автомат защиты цепей управления SF1 и кнопку SB1

«Стоп» поступает на контакт №3 кнопок SB2 и SB3, вспомогательный контакт 13НО пускателей КМ1 и КМ2, и остается дежурить на этих контактах. Схема готова к работе.

На рисунке ниже показана часть реверсивной схемы, а именно, монтажная схема цепей управления с реальными элементами.

2. Работа цепей управления при вращении двигателя влево.

При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.

При замыкании контакта КМ1.1 пускатель встает на самоподхват, а при замыкании силовых контактов

КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.

Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.

На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.

3. Работа цепей управления при вращении двигателя вправо.

Чтобы задать двигателю вращение в противоположную сторону достаточно поменять местами любые две питающие фазы, например, «В» и «С». Вот этим, как раз, и занимается пускатель

КМ2.

Но прежде чем нажать кнопку «Вправо» и задать двигателю вращение в обратную сторону, нужно кнопкой «Стоп» остановить прежнее вращение.

При этом разорвется цепь и управляющая фаза «А» перестанет поступать на катушку пускателя КМ1, возвратная пружина вернет сердечник с контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель М от трехфазного питающего напряжения. Схема вернется в начальное состояние или ждущий режим:

Нажимаем кнопку SB3 и фаза «А» через нормально-замкнутый контакт КМ1.2 поступает на катушку магнитного пускателя

КМ2, пускатель срабатывает и через свой контакт КМ2.1 встает на самоподхват.

Своими силовыми контактами КМ2 пускатель перебросит фазы «В» и «С» местами и двигатель М станет вращаться в другую сторону. При этом контакт КМ2.2, расположенный в цепи питания пускателя КМ1, разомкнется и не даст пускателю КМ1 включиться пока в работе пускатель КМ2.

4. Силовые цепи.

А теперь посмотрим на работу силовой части схемы, которая и отвечает за переброс питающих фаз для осуществления реверса вращения эл. двигателя.

Обвязка силовых контактов пускателя КМ1 выполнена так, что при их срабатывании фаза «А» поступает на обмотку

№1, фаза «В» на обмотку №2, и фаза «С» на обмотку №3. Двигатель, как мы определились, получает вращение влево. Здесь переброс фаз не осуществляется.

Обвязка силовых контактов пускателя КМ2 выполнена таким-образом, что при его срабатывании фазы «В» и «С» меняются местами: фаза «В» через средний контакт подается на обмотку №3, а фаза «С» через крайний левый подается на обмотку №2. Фаза «А» остается без изменений.

А теперь рассмотрим нижний рисунок, где показан монтаж всей силовой части на реальных элементах.

Фаза «А» белым проводом заходит на вход левого контакта пускателя КМ1 и перемычкой заводится на вход левого контакта пускателя

КМ2. Выхода обоих контактов пускателей также соединены перемычкой, и уже от пускателя КМ1 фаза «А» поступает на обмотку №1 двигателя М — здесь переброса фазы нет.

Фаза «В» красным проводом заходит на вход среднего контакта пускателя КМ1 и перемычкой заводится на правый вход пускателя КМ2. С правого выхода КМ2 фаза перемычкой заводится на правый выход КМ1, и тем самым, встает на место фазы «С». И теперь на обмотку №3, при включении пускателя КМ2 будет подаваться фаза «В».

Фаза «С» синим проводом заходит на вход правого контакта пускателя КМ1 и перемычкой заводится на средний

вход пускателя КМ2. С выхода среднего контакта КМ2 фаза перемычкой заводится на средний выход КМ1, и тем самым, встает на место фазы «В». Теперь на обмотку №2, при включении пускателя КМ2 будет подаваться фаза «С». Двигатель будет вращаться в правую сторону.

5. Защита силовых цепей от короткого замыкания или «защита от дурака».

Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок.
И вот представьте ситуацию, когда нет защиты.

Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель

КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».

А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.

6. Заключение.

Конечно, все это с первого раза понять трудно, я и сам, когда начинал осваивать работу эл. приводов, не с первого раза понял принцип реверса. Одно дело прочитать и запомнить схему на бумаге, а другое дело, когда все это видишь в живую. Но если собрать макет и несколько дней посвятить изучению схемы, то успех будет гарантирован.

И уже по традиции посмотрите видеоролик о подключении реверсивного магнитного пускателя.

А у нас еще осталось разобраться с электротепловой защитой эл. двигателя и тема о магнитных пускателях может быть смело закрыта.
Продолжение следует.
Удачи!

Схема подключения реверсивного пускателя (видео, фото)

Электродвигатели используются в подавляющем большинстве для приводных механизмов и самостоятельных агрегатов. Когда требуется изменение направления вращения его вала, для пуска применяют реверсивный пускатель, схема подключения которого является объектом изучения профессионалов и простых обывателей.

Как устроен и для чего нужен пускатель?

Как можно логически определить из названия, это устройство предназначено для пуска электродвигателей различных приводных механизмов и техники. Это специфическое оборудование, которое необходимо для коммутации силовых целей с большими нагрузками, как на постоянном, так и на переменном токе. Пускатель обладает более широким функционалом, нежели базовый контактор и кроме обеспечения частых пусков и остановок, может выступать в роли защитного барьера при перегрузках. Кроме этого, реверсивный и нереверсивный пускатели, например, серии ПМЛ, нашел свое применение при организации дистанционных схем управления, пуска насосных, вентиляционных, крановых агрегатов, кондиционеров и т.д.

Любой магнитный пускатель состоит из следующих основных частей:

  • Электромагнитная часть. Она состоит из катушки и разъединенных магнитопроводов – неподвижного сердечника и подвижного якоря,
  • Блок главных контактов. Они нужны для замыкания/размыкания силовых мощных нагрузок. С учетом параметров пускателя, он может иметь до 5 пар контактов. Одна их половина расположена на траверсе якоря, а другая – на верхней части корпуса,
  • Блокирующие контакты. Они используются при коммутации управляющих цепей схемы, например, когда включение/остановка происходит пусковыми кнопками. Происходит блокировка основных контактов, а значит, устраняется необходимость удерживания кнопки управления,
  • Возвратный механизм. По сути, это просто пружина, которая при размыкании контактов возвращает якорь в исходное положение, обеспечивая необходимый зазор между парами.

Разница между прямым и реверсивным пускателями

Главное отличие нереверсивного и реверсивного пусковых устройств, состоит в схеме подключения. Также меняется комплектация. Контактор прямого типа является одиночным, тогда как реверсивный – блочным, состоящим из двух прямых, объединенных в одном корпусе. Визуальные отличия этих двух реле можно видеть на сравнении моделей ПМЛ-1100 (слева) и ПМЛ-1500 (справа):

При этом, должно соблюдаться одно крайне важное условие: реверсивное соединение пускателей должно полностью исключать возможность их одновременного срабатывания. Это неизбежно приведет к возникновению явления короткого замыкания.

Схема подключения реверсивного магнитного пускателя электродвигателей делится на два основных вида:

  1. Подключение к сети с напряжением 220 В,
  2. Запуск контактора на 380 В.

Далее рассмотрим подробнее каждый из вариантов, опираясь на уже упомянутые модели контакторов ПМЛ серии 1500.

Вид и функционирование реверсивной схемы на 220 В

На этой монтажной схеме можно видеть следующие основные элементы (обозначены цифрами):

  1. Блокирующие или блок-контакты,
  2. Катушки магнитных пускателей, рассчитанные на напряжение питания 220 В,
  3. Контакты тепловой или токовой защиты (релейные элементы),
  4. Силовые контакты пускателей.

Вид реверсивной схемы на 220 В

Кроме этого, буквенно-числовыми обозначениями выделяются:

  • МП-1, МП-2 – магнитные пускатели. Их границы на схеме выделены штриховыми линиями,
  • Стоп, Пуск – органы управления (сам блок выделен штриховой линией). Отдельно выделена лишь кнопка Стоп. Пусковые кнопки (прямой ход и реверс) обозначены, как две пары контактов, связанных с пускателями МП-1 и МП-2,
  • М – электродвигатель.

Принцип функционирования

Как можно видеть, на силовые контакты пускателей подводятся три разноименные фазы от сети 380 В. На приведенной схеме обозначения нет никакого, но в других случаях можно встретить символы А, В, С или L1, L2, L3. Организовывается блочная связка путем прямой перемычки центральных фаз реле, а также диагональных перемычек боковых фаз (условно 1 фаза МП-1 соединяется с 3 фазой МП-2 и т.д).

После этого провода идут на электродвигатель М. На этом промежутке, в разрыв цепи подключается тепловое реле. Оно осуществляет контроль двух из трех фаз, чтобы при перегрузке отключить питание двигателя.

Блок управления с пусковыми кнопками подключается от одной из центральных фаз в разрыв теплового реле, и нулевого провода (заземления) от катушек пускателей ПМЛ. Защита от одновременного включения пускателей организовывается путем перекрестного соединения контактов кнопок пуска/реверса с блокирующими контактами противоположного контактора.

При включении с блока управления прямого хода, замыкаются контакты на первый пускатель, который запускает двигатель. Одновременно, контакты второго пускателя размыкаются, а на катушку не поступает должное напряжение.

Включение реверса происходит после остановки двигателя кнопкой Стоп с последующим нажатием обратного хода. Таким образом, мы имеем на катушках измененные местами боковые фазы, что приводит к вращению двигателя в обратную сторону. Блокирование первого пускателя происходит по аналогичному принципу.

Вид и функционирование реверсивной схемы на 380 В

Здесь мы имеем, фактически, все те же элементы, что используются для ПМЛ на 220 В, но катушки пускателей рассчитаны на более высокое напряжение (имеют больше витков). Кроме того, отличием от предыдущей схемы является подключение блока управления не через одну, а через две фазы, не используя общий ноль.

Вид реверсивной схемы на 380 В

Где еще используются реверсивные пускатели?

Область применения двойных пусковых реле довольно широка. Она не ограничивается одними только электродвигателями. Необходимость изменения направления вращения или перемещения приводных механизмов может возникнуть также в других случаях.

К примеру, каждый человек имеет дома систему водоснабжения, отопления, где всегда есть место различной запорной арматуре. Для промышленных масштабов, при больших расходах, диаметрах трубопроводов, большой точности контроля расхода, обычными кранами не обойтись. Здесь используются задвижки электрической, а также механической системой управления рабочим органом. Вращение диска или перемещение задвижки происходит в разных направлениях, а значит, применение реверсивных схем пуска обосновано.

Не удаляясь далеко, можно найти реверсивные пускатели типа ПМЛ или другие в подъемной системе лифтов. Движение вверх-вниз происходит за счет изменения направления вращения главного барабана.

Изменение направления вращения двигателя, связанных с ним исполнительных механизмов – довольно востребованная процедура. При этом питание от трехфазной сети происходит через промежуточное коммутирующее реле – реверсивный магнитный пускатель типа ПМЛ 1500 или любой другой.

подключение и запуск, настройка реверса

Для переключения вращения электропривода в прямом и обратном направлении применяется схема реверсивного пускателя. Ниже рассмотрены пусковые и рабочие режимы, защитные мероприятия. Дополнительные рекомендации предотвратят ошибки при монтаже и аварии в процессе эксплуатации.

С помощью этих устройств обеспечивается управление электродвигателем

С помощью этих устройств обеспечивается управление электродвигателем

Нереверсивное подключение электродвигателя

Сначала следует рассмотреть относительно простой вариант, когда электрический двигатель выполняет свои функции с вращением только в одном направлении. Такие решения вполне достаточны для насосных станций, компрессорных установок.

Типовая нереверсивная схема

Типовая нереверсивная схема

В этом варианте подключен трехфазный источник питания 220 V последовательно через автомат и магнитный пускатель «КМ». Реле «Р» в нулевой цепи обеспечивает защиту при чрезмерном нагреве силового агрегата. Второй контакт обмотки пускателя подсоединен к одной из фаз «С» через плавкий предохранитель «FU», ограничивающий силу тока. Двумя кнопками устанавливают соответствующие режимы: «Пуск» и «Стоп».

Нереверсивный запуск

Включение автомата – подготовительный этап. Электродвигатель начинает вращение после нажатия кнопки «Пуск». Это действие подключает питание обмоток. Силой магнитной индукции якорь перемещается в нужное положение. Комбинированный контактор пускателя подает напряжение на рабочие обмотки. В этом положении шунт замыкает вспомогательную цепь, что сохраняет питание силового агрегата в рабочем режиме при отжатой кнопке.

Остановка

Для остановки нажимают «Стоп». В этом положении отключается питание катушек пускателя. Пружина перемещает якорь в исходное положение с одновременным размыканием силовых контактов.

Защита двигателя при нереверсивном пуске

При попадании в механический привод посторонних предметов ток в обмотках двигателя увеличивается. Нагрев изгибает биметаллические элементы теплового реле. На определенном уровне повышения температуры цепь нулевого провода разрывается. Контактные группы «КМ» возвращаются в исходное положение. Плавкий предохранитель выполняет свои функции при коротком замыкании между витками катушки индукции магнитного пускателя.

Устройство магнитного пускателя для реверсного пуска

Стандартный пускатель состоит из следующих компонентов:

  • сердечник с закрепленной на нем катушкой индукции;
  • якорь с механизмом перемещения контактных групп;
  • корпус, обеспечивающий целостность конструкции вместе с защитой от внешних воздействий.

При подаче (отключении) тока питания движением якоря замыкаются (отсоединяются) соответствующие контакты силовых цепей. Реверсивные модификации создают из двух обычных пускателей, установленных на одной монтажной панели. Дополнительными проводниками обеспечивается блокировка, препятствующая одновременному включению двух изделий.

Реверсивный пускатель

Реверсивный пускатель

К сведению. В некоторых моделях блокировка организована с применением специальных механических приспособлений.

В этом варианте используют отдельные клавиши, которые инициируют вращение ротора в прямом и обратном направлении. Первый рабочий режим сопровождается шунтированием контактной группой «КМ1» соответствующей цепи. Если нажать после этого клавишу «Назад», ничего не произойдет.

Для активизации обратного вращения следует сначала остановить двигатель, чтобы исключить поломку. Нажатием «Стоп» (С – на рисунке ниже) отключают питающее напряжение 380 V. После можно подать ток в нужные обмотки через силовые контактные группы «КМ2».

 Схема подключения

Схема подключения

Как подключается реверсивный пускатель

Такие пускатели применяют в станках и других устройствах, где необходимо попеременное вращение двигателя в разных направлениях. Принцип подключения однофазной сети аналогичен рассматриваемому варианту. В обоих случаях устанавливают плавкие предохранители для предотвращения повреждения цепей сильными токами.

Как происходит включение

На первой стадии основной выключатель «QF» обеспечивает подачу трех фаз на все входные контакты двух пускателей. Разомкнутая цепь управления отключает питание обмоток двигателя.

Как происходит переключение

Нажатием второй клавиши «Пуск-2» подают ток в обмотки для вращения двигателя в обратном направлении. Как видно по схеме, одновременное включение двух устройств невозможно.

Реверсивное подключение трехфазного двигателя

В остановленном положении система управления готова к работе. Однократным нажатием «Пуск-1» подают питание на обмотки для вращения ротора в прямом направлении. Шунт поддерживает целостность электрической цепи после возврата кнопки пружиной в исходное положение.

Переключение системы при противоположном вращении

Первый пускатель отключается, так как электромагнитный привод второго разрывает цепь контактной группы «КМ2» (схема реверс).

Изменение поворотного движения

Изменение режимов через остановку предотвращает быструю подачу напряжения на другие обмотки электродвигателя. Действие с определенной временной задержкой предотвращает механические повреждения, исключает сильные броски напряжения при подключении к источнику нагрузки с индуктивными характеристиками.

Схема подключения

Далее подробно рассмотрена однолинейная схема подключения реверсивного магнитного пускателя.

Силовая часть и цепи управления

Силовая часть и цепи управления

После включения силового автомата QF питание поступает на верхнюю группу контактов пускателей. Цепь управления подключается к фазе «А» и нейтральному проводнику, но находится в разомкнутом состоянии, которое поддерживается соответствующим положением элементов: SB2 (3), КМ 1.1. (2.1.).

Токи в исходном состоянии

Токи в исходном состоянии

Работа цепей управления при вращении двигателя влево

Однократное нажатие кнопки «Влево» подает питание на катушку для перемещения якоря и замыкания контактов КМ2. Шунт КМ 1.1. поддерживает целостность электрической цепи в рабочем режиме.

Положение управляющих компонентов при вращении двигателя в прямом направлении

Положение управляющих компонентов при вращении двигателя в прямом направлении

Работа цепей управления при вращении двигателя вправо

Для активации противоположного вращения меняют местами две фазы на обмотках двигателя. Предварительно нажимают «Стоп» (SB1), так как без этой промежуточной операции включить второй реверсивный магнитный пускатель не получится.

Изменения при вращении электродвигателя в обратном направлении

Изменения при вращении электродвигателя в обратном направлении

Силовые цепи

На следующих рисунках показано, как именно переключаются обмотки в схеме реверсивного пуска для вращения ротора в одну и другую стороны. Фаза «А» остается на том же месте. Меняются местами «В» и «С».

Подключение двигателя в разных режимах

Подключение двигателя в разных режимах

Защита силовых цепей от короткого замыкания или «защита от дурака»

Если переключение пускателей выполнить без перерыва, две фазы будут одновременно поданы на силовые клеммы КМ1. Короткое замыкание повредит конструкцию. Для предотвращения подобных ситуаций применяют отдельные контактные группы (КМ 2.2. и КМ1.2.), которые устанавливают перед катушками КМ1 и КМ2. При подключении этих устройств, кроме соответствия по нагрузкам, отдельное внимание следует уделить корректному монтажу и защитным мероприятиям.

Следует учитывать особенности решения разных практических задач. Так, асинхронный двигатель подключают через пусковой конденсатор. Обеспечить функциональность пускателя от источника постоянного напряжения можно. Однако в этом случае понадобится ограничить силу тока специальным резистором, чтобы предотвратить повреждение катушки. Придется подобрать оптимальное электрическое сопротивление для сохранения работоспособности привода якоря.

Видео

отличия от обычного, схема устройства, принцип действия

Электромагнитный пускатель являет собой низковольтное комбинированное электромеханическое приспособление, специализированное для запуска трёхфазных электродвигателей, для обеспечения их постоянной работы, для отключения питания, а в некоторых случаях и для охраны цепей электродвигателя и иных подключённых цепей. Определённые двигатели обладают функцией реверса мотора.

По сущности, электромагнитный пускатель — это улучшенный, изменённый контактор. Но более компактный, нежели контактор в обычном понятии: легче по весу и рассчитан непосредственно для работы с двигателями. Определённые модификации магнитных пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Для управления запуском мотора путём замыкания контактов устройства предназначается клавиша или слаботочная группа контактов:

  • с катушкой на определённое напряжение;
  • в некоторых случаях — и то и другое.

В пускателе за коммутирование силовых контактных отвечает непосредственно катушка в металлическом сердечнике, к которой прижимается якорь, давящий на контакты и замыкающий цепь. При выключении питания катушки возвратная пружинка перемещает якорь в противоположное положение — цепь размыкается. Каждый контакт находится в дугогасительной специальной камере.

Реверсивные и нереверсивные пускатели

Устройства бывают различных видов и выполняют все поставленные задачи.

Пускатели бывают двух типов:

  • нереверсивные;
  • реверсионные.

В реверсивном пускателе в одном корпусе существуют два единичных магнитных устройства, имеющих электрическое подсоединение между собой и прикреплённых в совокупном основании, но функционировать может только один из данных пускателей — или только первый, или только второй.

Реверсивный прибор вводится через естественно-закрытые блокировочные контакты, роль которых — устранить синхронное включение двух групп контактов — реверсивной и нереверсивной, для того чтобы не случилось межфазного замыкания. Определённые модификации реверсивных пускателей для предоставления этой же функции имеют защиту. Фазы питания возможно переключать по очереди для того, чтобы выполнялась главная функция реверсивного пускателя — перемена направления вращения электродвигателя. Изменился порядок чередования фаз — поменялось и направление ротора.

Возможности пускателей

Для лимитирования пускового тока трёхфазного двигателя его обмотки могут связываться «звездой», затем, если мотор вышел на номинальные обороты, перейти в «треугольник». При этом магнитные пускатели могут быть: раскрытыми и в корпусе, реверсивными и нереверсивными, с защитой от перегрузок и без защиты от нагрузки.

Каждый электромагнитный пускатель имеет блокировочные и силовые контакты. Силовые коммутируют нагрузки. Блокировочные контакты нужны для управления работой контактов. Блокировочные и силовые контакты бывают естественно-незамкнутыми либо нормально-закрытыми. В принципиальных схемах контакты изображают в их нормальном состоянии.

Удобство использования реверсивных пускателей невозможно пересмотреть. Это и эксплуатационное управление трёхфазными асинхронными моторами разных станков и насосов, и управление системой вентиляции, арматурой, вплоть до замков и вентилей отопительной системы. Особенно примечательна вероятность удалённого управления пускателями, если электрический источник дистанционного управления коммутирует катушки пускателей аналогично реле, а последние безопасно связывают силовые цепи.

Конструкция реверсивного магнитного двигателя

Распространение этих модификаций становится все обширнее с каждым годом, так как они помогают управлять асинхронным двигателем на дистанции. Это приспособление даёт возможность как включать, так и отключать мотор.

Корпус реверсивного пускателя состоит из таких следующих частей:

  1. Контактор.
  2. Тепловое микрореле.
  3. Кожух.
  4. Инструменты управления.

После того как поступила команда «Пуск», цепь замыкается. Далее ток начинает передаваться на катушку. В это же время действует механическое блокирующее приспособление, которое не дает запуститься ненужным контактам. Здесь нужно отметить, что механическая блокировка также закрывает и контакты клавиши, это дает возможность не удерживать её надавленной постоянно, а спокойно освободить. Еще одна важная часть состоит в том, что вторая клавиша этого устройства совместно с пуском всего аппарата будет размыкать электрическую цепь. Благодаря этому даже надавливание не дает практически никакого результата, формируя дополнительную безопасность.

Особенности функционирования модели

При нажатии клавиши «Вперед» действует катушка, и вводятся контакты. Вместе с этим выполняется операция пусковой клавиши постоянно разомкнутыми контактами устройства КМ 1.3, благодаря чему при непосредственном отпускании клавиши питание на катушку действует по шунтированию.

После введения первого пускателя размыкаются именно контакты КМ 1.2, что отключает катушку К2. В итоге при непосредственном нажатии в клавишу «Назад» ничего не происходит. Для того чтобы ввести мотор в обратную сторону необходимо надавить «Стоп» и обесточить К1. Все блокировочные контакты возвратиться могут в противоположное состояние, после этого возможно ввести мотор в противоположном направлении. Аналогично при этом вводится К2 и отключается блок с контактами. Происходит включение катушки 2 пускателя К1. К2 содержит силовые контакты КМ2, а К1- КМ1. К кнопкам для подсоединения от пускателя следует провести пятижильный провод.

Правила подключения

В любой установке, в которой требуется пуск электродвигателя в прямом и в противоположном направлении, непременно существует электромагнитный прибор реверсивной схемы. Подсоединение подобного элемента не считается столь непростой задачей, как может показаться на первый взгляд. К тому же нужность подобных задач возникает довольно часто. К примеру, в сверловочных станках, отрезных конструкциях либо же лифтах, если это не касается домашнего применения.

Принципиальным различием трехфазной схемы от одинарной считается наличие дополнительной цепочки управления и несколько модифицированной энергосиловой части. Кроме того, для реализации переключения подобная установка оборудована клавишей. Подобная система, как правило, защищена от замыкания. Для этого перед самими катушками в цепи предусмотрено присутствие двух нормально-замкнутых силовых контактов (КМ1.2 и КМ2.2), помещённых в позиции (КМ1 и КМ2).

Реверсивное подключение трехфазного двигателя

При работе выключателя QF1, одновременно все без исключения три фазы прилегают к контактам пускателя (КМ1 и КМ2) и находятся в таком состоянии. При этом первая стадия, представляющая собой питание для цепочки управления, протекая через аппарат защиты схемы управления SF1 и клавишу выключения SB1, непосредственно подаёт напряжение в контакты под третьим номером, который относится к SB2, SB3. При этом существующий контакт 13НО приобретает значение основного дежурного. Подобным способом система считается целиком готовой к работе.

Переключение системы при противоположном вращении

Задействовав клавишу SB2, направляем напряжение первой фазы в катушку, что относится к пускателю КМ1. Уже после этого совершается введение нормально-разомкнутых контактов и выключение нормально-замкнутых. Подобным образом, замыкая имеющийся контакт КМ1, совершается эффект самозахвата магнитного устройства. При этом все без исключения три фазы поступают в нужной обмотке двигателя, который, в свою очередь, начинает формировать вращательное перемещение.

Созданная модель предусматривает наличие одного рабочего приспособления. К примеру, может функционировать только лишь КМ1 либо же, напротив, КМ2. Отмеченная цепь обладает действительными элементами.

Изменение поворотного движения

Теперь для придания противоположного направления перемещения вам следует поменять состояние силовых фаз, что удобно совершить при помощи переключателя КМ2. Все совершается благодаря размыканию первой фазы. При этом все без исключения контакты вернутся в исходное состояние, обесточив обмотку мотора. Эта фаза считается ждущим режимом.

Задействование клавиши SB3 приводит в работу электромагнитный пускатель КМ2, который в свою очередь изменяет положение второй и третьей фазы. Это влияние вынуждает мотор вращаться в противоположном направлении. Теперь КМ2 будет ведущим, и пока не случится его разъединение, КМ1 будет не задействован.

Защита цепей от короткого замыкания

Как уже было заявлено прежде, прежде чем осуществить процесс перемены фазности, необходимо прекратить вращение мотора. Для этого в системе учтены нормально-замкнутые контакты. Поскольку при их нехватке невнимательность оператора привела бы к межфазному непосредственному замыканию, которое может случиться в обмотке мотора второй и третьей фазы. Предложенная модель считается оптимальной, поскольку допускает работу только лишь одного магнитного пускателя.

Схема подсоединения реверсивного магнитного пускателя считается ядром управления, так как много электрооборудования функционирует на реверсе, и непосредственно этот аппарат меняет направление верчения мотора.

Реверсивные схемы электромагнитных пускателей устанавливают там, где они на самом деле нужны, поскольку существуют подобные устройства, а обратный процесс недопустим и может вызвать серьёзную поломку автоматического характера.

Реверсивная схема подключения магнитного пускателя

Для того, чтобы запускать электродвигатель в прямом и обратном направлении применяется реверсивная схема управления на магнитном пускателе.

В этой статье подробно рассмотрена пошаговая работа схемы. Схему, в которой двигатель работает только в одном направлении, без реверса, смотрите в статье нереверсивная схема подключения магнитного пускателя.

В заключении этой статьи смотрите видео, демонстрирующее детальную работу схемы реверсного пуска двигателя.

Вначале рассмотрим реверсивную схему подключения с катушкой магнитного пускателя на 220В, а затем работу схемы.

Фазы А,В и С питающего напряжения подводятся к клеммам асинхронного двигателя через:

— 3-х полюсный автоматический выключатель, который защищает всю схему и позволяет отключать питающее напряжение;

— поочередно через три пары силовых контактов магнитных пускателей КМ1 и КМ2;

— тепловое реле Р, которое служит для защиты от перегрузок.

Для того, чтобы изменить направление вращения трехфазного электродвигателя, необходимо поменять местами подключение любых двух фаз!

Для этого в цепь обмотки двигателя включены силовые контакты от двух пускателей, которые подключаются поочередно, меняя чередование фаз. В нашей схеме при вращении вперед последовательность фаз такая — А, В, С. При вращении назад — С, В, А. Т.е. чередование фаз А и С меняется местами.

Катушки магнитных пускателей с одной стороны  подключены к нулевому рабочему проводнику N через нормально-замкнутый контакт теплового реле Р, с другой, через кнопочный пост к фазе С.

Кнопочный пост состоит из 3-х кнопок:

1) нормально-разомкнутой кнопки ВПЕРЕД;

2) нормально-разомкнутой кнопки НАЗАД;

3) нормально-замкнутой кнопки СТОП.

К кнопке ВПЕРЕД параллельно подключен нормально-разомкнутый вспомогательный контакт пускателя КМ1, и соответственно, к кнопке НАЗАД — нормально-разомкнутый вспомогательный контакт пускателя КМ2.

Также в цепь питания обмотки пускателя КМ1 включен нормально-замкнутый контакт пускателя КМ2, а в цепь обмотки пускателя КМ2, включен нормально-замкнутый контакт пускателя КМ1. Это сделано для блокировки, чтобы предотвратить запуск двигателя назад, когда он вращается вперед, и наоборот. Т.е. запустить двигатель в любую из сторон можно только из положения останова.

Работа схемы

Переводим рычаг трехполюсного автоматического выключателя во включенное положение, его контакты замыкаются, схема готова к работе.

Запуск вперед

Нажимаем кнопку ВПЕРЕД.  Цепь питания обмотки магнитного пускателя  КМ1 замыкается, якорь катушки втягивается, замыкает силовые контакты КМ1 и вспомогательный нормально-открытый контакт КМ1, который шунтирует кнопку ВПЕРЕД

Одновременно вспомогательный нормально-замкнутый контакт КМ1 размыкает цепь управления магнитным пускателем КМ2, блокируя тем самым возможность запуска реверса двигателя. 

Три питающих фазы в последовательности А,В,С подаются на обмотки двигателя и он начинает вращаться вперед.

Отпускаем кнопку ВПЕРЕД, она возвращается в исходное нормально-разомкнутое состояние. Теперь  питание на обмотку пускателя КМ1 подается через замкнутый вспомогательный контакт КМ1. Двигатель запущен и вращается вперед.

Останов двигателя из положения ВПЕРЕД

Для остановки двигателя или для запуска в другую сторону, необходимо сначала нажать кнопку СТОП. Питание цепи управления размыкается. Якорь магнитного пускателя КМ1 под действием пружины возвращается в исходное состояние. Силовые контакты размыкаются, отключая питающее напряжение от электродвигателя. Двигатель останавливается.

Одновременно с этим размыкается вспомогательный контакт КМ1 в цепи питания обмотки пускателя КМ1 и замыкается вспомогательный контакт КМ1 в цепи питания пускателя КМ2.

Отпускаем кнопку СТОП. Она возвращается в исходное, нормально-замкнутое положение. Но  поскольку вспомогательный контакт КМ1 разомкнут, питание на обмотку пускателя КМ1 не подается, двигатель остается выключенным и схема готова к следующему запуску.

Реверс двигателя

Чтобы запустить двигатель в обратном направлении, нажимаем кнопку НАЗАД.

Питание подается на обмотку пускателя КМ2. Он срабатывает, замыкая силовые контакты КМ2 в цепи питания двигателя, и вспомогательный контакт КМ2, который шунтирует кнопку НАЗАД. Одновременно с этим, другой вспомогательный контакт КМ2 разрывает цепь питания пускателя КМ1.

На обмотки двигателя подаются три фазы в порядке С,В,А, он начинает вращаться в другую сторону.

Отпускаем кнопку НАЗАД. Она возвращается в исходное положение, но питание на обмотку пускателя КМ2 продолжает поступать через замкнутый вспомогательный контакт КМ2. Двигатель продолжает вращаться в обратном направлении.

Останов двигателя из положения НАЗАД

Для останова повторно нажимаем кнопку СТОП. Цепь питания обмотки пускателя КМ2 размыкается. Якорь возвращается в исходное положение, размыкая силовые контакты КМ2. Двигатель останавливается. Одновременно с этим, вспомогательные контакты КМ2 возвращаются в исходное состояние.

Отпускаем кнопку СТОП, схема готова к следующему пуску.

Защита от перегрузок

Работу теплового реле Р и назначение предохранителя FU я подробно рассмотрел в статье Нереверсивная схема пускателя, поэтому в этой статье описание опускаю. Для пускателей с обмотками, рассчитанными на 380В,  схема подключения будет следующая.

Обмотки пускателей подключается к любым двум фазам, на схеме к фазам В и С.

Для большей наглядности я записал видео, в котором поэтапно показан весь процесс работы схемы.


Если видео понравилось, не забывайте нажать НРАВИТЬСЯ при просмотре на YouTube. Подписывайтесь на мой канал, узнайте первым о выходе новых интересных видео по электрике!

Не забудьте посмотреть новые статьи сайта.

Рекомендую также прочитать:

Нереверсивная схема подключения магнитного пускателя.

Как выбирать автоматические выключатели, УЗО, дифавтоматы?

Номиналы групповых автоматов превышают номинал вводного?

Менять ли автоматический выключатель, если его «выбивает»?

Почему в жару срабатывает автоматический выключатель?

Схемы Подключения Пускателей С Реверсом

Созданная модель предусматривает наличие одного рабочего приспособления.


Напряжение достигает цели, цифра 5, катушка срабатывает, сердечник втягивается под воздействием электромагнита и приводит в движение силовые и вспомогательные контакты, выделенные пунктиром.

Придется подобрать оптимальное электрическое сопротивление для сохранения работоспособности привода якоря. Для управления же пуском двигателя, путем замыкания контактных групп пускателя, служит кнопка или слаботочная контактная группа с катушкой на определенное 12, 24, 36 или вольт напряжение, а иногда — и то и другое.
Как подключить магнитный пускатель, реверсивная схема

Поэтому кнопки управления пускателем, которые называют кнопочным постом, имеют по две пары контактов — нормально открытые разомкнутые, замыкающие, НО, NO и нормально закрытые замкнутые, размыкающие, НЗ, NC Данная универсализация всех кнопок кнопочного поста сделана для того, чтобы предвидеть возможные схемы обеспечения моментального реверса двигателя.

Не путать с блокировкой в реверсивных схемах, см. Принцип подключения однофазной сети аналогичен рассматриваемому варианту.

Пусковая кнопка возвращается в исходное положение, а КМ1 удерживает себя своим контактом.

На катушку пускателя — контакты A1 или A2 — заводится одна из фаз чаще всего фаза С как менее нагруженная , второй контакт подсоединяется к нулевому проводу. Это и оперативное управление трехфазными асинхронными двигателями различных станков и насосов, это и управление вентиляцией, и даже управление запорной арматурой, вплоть до замков и вентилей отопительных систем.

Как правило, они изготавливаются в едином диэлектрическом корпусе, при этом одна из них красного цвета. Принцип работы реверсивных магнитных пускателей такой же как и не реверсивных.

Схема реверса на двух пускателях.

Схемы включения магнитных пускателей

Оба эти контакта находятся в верхней части корпуса смотрите фото. Это возможность разгружать маломощные электрические сети, где установлены обычные автоматические выключатели автоматы. Контакторы имеют мощные дугогасительные камеры.

А также применяются дополнительно блокировки: электрическая и механическая, для того что бы избежать возникновения короткого замыкания или аварийной ситуации при одновременном включении двух пускателей. Произойдет реверсирование электродвигателя.

На малые токи — до 10 А — выпускают исключительно пускатели. Принцип работы реверсивных магнитных пускателей такой же как и не реверсивных.

Также обратите внимание, что провод от кнопки включения вправо или влево подается не сразу на катушку, а через постоянно замкнутые контакты другого пускателя.

И поскольку контакторы запускаются лишь поочередно, то и фазы питания можно переключать поочередно, чтобы выполнялась главная функция реверсивного пускателя — изменение направления вращения электродвигателя. Определённые модификации магнитных пускателей опционально оборудованы тепловым микрореле аварийного отключения и защитой от обрывания фазы.

Кроме того, есть некоторое отличие в назначении. По схеме понятно, что если включатся два пускателя одновременно, то произойдет короткое замыкание.

Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до В постоянного тока и до В переменного.
Схемы управления магнитным пускателем

Исходное положение элементов

Для этого перед самими катушками в цепи предусмотрено присутствие двух нормально-замкнутых силовых контактов КМ1.

Управление реверсивным пуском.

Но у двигателя, мы знаем, пусковой ток намного больше рабочего, а значит обычный бытовой автомат с током в 3А будет срабатывать сразу при пуске такого двигателя.

Но, как вы понимаете, такая схема подключения магнитного пускателя не особо удобна — можно и напрямую проводники от источника питания подать, встроив обычный рубильник. Двигатель останавливается. В первую очередь они отличаются степенью защиты.

Давайте рассмотрим принцип ее работы. Пишите в комментариях! Подгорел контакт. Реверсивные и нереверсивные пускатели Устройства бывают различных видов и выполняют все поставленные задачи.

При этом сердечник под действием пружин возвращается в нормальное состояние, электродвигатель отключается. Каждый контакт расположен в дугогасительной камере.

Устройство и принцип работы Чтобы лучше понимать схемы подключения магнитного пускателя, необходимо разобраться в его устройстве и принципе работы. При превышении допустимого тока нагрузки нихром нагревает пластину, и та, изгибаясь, воздействует на рычажок, отключающий встроенный в тепловое реле контакт. Задействование клавиши SB3 приводит в работу электромагнитный пускатель КМ2, который в свою очередь изменяет положение второй и третьей фазы. В этом случае схема выглядит как на рисунке ниже. Некоторые модели реверсивных пускателей для обеспечения этой же функции имеют механическую защиту.

Электродвигатель подключается к цепи по следующей цепочке: автоматический трехфазный выключатель; силовые клеммы пускателя КМ ; тепловое реле ТР. Чтобы произвести их подключение, нужно правильно соединить группы вспомогательных контактов. Например если катушка магнитного пускателя на вольт — один ее вывод подключается к нейтрале, а другой, через кнопки, к одной из фаз.
схема подключения двигателя по реверсивной схеме.

Устройство магнитного пускателя

Тоже ничего сложного.

Реверсивная схема По сути, данная схема в независимости от величины пускателя работает аналогично предыдущей. Отсюда следуют два других отличия: из-за наличия дугогасителей контакторы имеют большой размер и вес, а также используются в цепях с большими токами.

Схема подключения реверсивного магнитного пускателя является ядром управления, так как много электрооборудования работает на реверсе , и именно этот аппарат изменяет направление вращения двигателя. Сравнение магнитного и гибридного пускателя: Post navigation Реверсивная и нереверсивная схема подключения пускателя Магнитный пускатель — это коммутационный прибор, с помощью которого на расстоянии многократно можно включать и отключать потребителя электродвигатели, электрические ТЭНы, электрокотлы и так далее.

Например приставка ПКИ. Оба устройства собраны на основе электромагнита, работать могут в цепях постоянного и переменного тока разной мощности — от 10 В до В постоянного тока и до В переменного. При схеме включения приведенной выше следует учесть напряжение номинальное катушки.

Читайте также: Пример сметы на электромонтажные

В схеме реализована защита от короткого замыкания, это контакты КМ1. В прорези нижней части магнитопровода устанавливается катушка.

Существуют также катушки на 12, 24, 36, 42, вольт, поэтому, прежде чем подать напряжение на катушку, вы должны точно знать ее номинальное рабочее напряжение. Она подходит к магнитному пускателю КМ1, а также при помощи перемычки с тем же номером контакта на КМ2. Обсудить Редактировать статью Если правильно подключить по схеме реверсивный пускатель, то получится запустить любой электродвигатель и заставить вращаться его не только вперед, но и назад.

На следующем видео реализована схема подключения магнитного пускателя с реверсом на старом стенде с использованием старого оборудования, но общий порядок действий понятен. Подключение пускателя с катушкой В к сети Собственно, вариантов подключения контакторов много, опишем несколько.

Подгорел контакт. Магнитный пускатель представляет собой комбинированное низковольтное электромеханическое устройство, предназначенное для пуска трехфазных как правило электродвигателей, для обеспечения их непрерывной работы, для безопасного отключения питания, а иногда и для защиты цепей электродвигателя и других подключенных цепей.
Схема управления двигателем с двух и трех мест

Схема реверсивного магнитного пускателя с описанием подключения

Реверсивный магнитный пускатель применяется для пуска асинхронного электродвигателя  в двух направлениях вращения- в прямом и обратном. О технических характеристиках и о том, как работает магнитный пускатель рекомендую прочитать в нашей предыдущей статье.

Принцип работы

Реверсивная схема состоит из двух одинаковых пускателей. Один из которых при включении запускает электромотор в одну сторону, а второй- в обратную. По сути подключается также как и два одиночных. С той лишь разницей, что будет одна общая кнопка «стоп» и две пусковые  кнопки «Назад» и «Вперед». А также применяются дополнительно блокировки: электрическая и механическая, для того что бы избежать возникновения короткого замыкания или аварийной ситуации при одновременном включении двух пускателей.

Почему  возникнет КЗ? Для того что бы изменить вращение асинхронного электрического двигателя на противоположное, необходимо две фазы поменять местами. Например, на первом пускателе фазы подключены по очередности «А»- «В» -«С», то на втором что бы поменять направление вращения, нужно подключить по очередности «С»- «В» -«А», или «В»- «А»- «С», либо «А» -«С»- «В». Заменой двух фаз и занимается второй пускатель в схеме. А значит при одновременном выключении двух произойдет межфазное короткое замыкание. Что бы этого избежать, при помощи постоянно замкнутых контактов при включении магнитного пускателя делается разрыв цепи управления второго или электрическая блокировка. Но есть и механическая. Суть ее в том, что при включении одного пускателя- второй при помощи механического устройства блокируется.

Если Вы никогда не подключали пускатели, рекомендую сразу собрать схему состоящую из одного, что бы понять принципы работы, потом гораздо легче будет собрать реверс. Незабываем установить тепловое реле на  фазы, отходящие к электродвигателю для его защиты . Рекомендую прочитать нашу статью «Схема подключения пускателя и теплореле«.

Можно поступить проще, купив в сборе в одном металлическом или пластиковом корпусе собранный реверсивный пускатель с кнопками. Вам останется только подключить провода электропитания и к тепловому реле- кабель на электромотор.

Схема реверсивного магнитного пускателя

Собрать схему несложно будет самостоятельно большинству людей. Единственное Вы должны учитывать, что механическую блокировку своими руками не сделать- необходимо приспособление заводского изготовления. В принципе достаточно будет и правильно собранной электрической блокировки.

Начнем рассматривать описание схемы  с силовой части. На автомат приходит три разноименные фазы. Желтая «А», зеленная «В» и красная «С». Далее они идут на силовые контакты двух пускателей с обозначением КМ1 и КМ2. С другой стороны делаются 3 перемычки между центральными зелеными фазами, и между желтой на первом и красной на втором, а также между красным на первом и на втором желтым.

Далее фазы идут на электродвигатель через тепловое реле, которое контролирует ток только в 2 фазах. В контроле третей нет необходимости, потому что все три фазы тесно взаимосвязаны между собой. Проще говоря, рост тока в одной  вызывает тоже самое в другой. Если ток потребляемый двигателем вырастет за безопасные пределы происходит размыкание цепи питания обоих катушек сразу.

Схема управления выполняет функцию включения-отключения силовых контактов КМ1 и КМ2. Она состоит из кнопок, блок контактов и катушки, которая при подаче на нее напряжения втягивает якорь, замыкающий контакты. При ее отключении  размыкаются  КМ1 или КМ2 под действием возвратной пружины.

Описываемая схема с катушкой на 380 Вольт, которая запитывается от 2 разных фаз. Если на катушке указано рабочее напряжение 220 Вольт, тогда для подключения используйте любую одну фазу и ноль.

В нашем случае одна зеленая фаза через контакт теплового реле идет напрямую на первые контакты обоих катушек.

Другая фаза на вторые контакты идет через общую кнопку «Стоп». И далее делаются перемычки на постоянно разомкнутые контакты кнопок «Вперед» и  «Назад». От туда же на соответствующие пускатели подключаются провода на разомкнутые контакты в выключенном состоянии- КМ 1.3 и КМ 2.3. А со второй стороны этих блок контактов проводами соответственно подключаются ко вторым контактам пусковых кнопок.

Но для того что бы была электрическая блокировка, необходимо провод от пусковых кнопок к катушке не сразу подключать, а через постоянно замкнутые контакты другого пускателя.

При включении постоянно разомкнутые смыкаются, а постоянно сомкнутые наоборот размыкаются. Раньше все блок контакты делались на боковой стороне пускателя. Сегодня же для постоянно разомкнутого используется четвертый рядом с 3 силовыми контактами. А для постоянно замкнутого используется специальная приставка сверху над силовыми. Пример на картинке.

Как работает схема

При нажатии кнопки «Вперед» срабатывает катушка и включаются силовые контакты. Одновременно с этим происходит шунтирование пусковой кнопки постоянно разомкнутыми контактами пускателя КМ 1.3, благодаря чему при отпускании кнопки питание на катушку поступает по шунтированию.

После включения первого пускателя размыкаются контакты КМ 1.2, что обрубает катушку К2. В результате при нажатии на кнопку «Назад» ничего не происходит.

Для того что бы включить двигатель в обратную сторону надо нажать «Стоп» и обесточить К1. Все блок контакты вернуться в обратное положение, после этого можно включить мотор в обратном направлении. Аналогично при этом включается К2 и отключается блок контактами возможность включения катушки другого пускателя К1.

К2 включает силовые контакты КМ2, а К1- КМ1.

К кнопкам для подключения от пускателя необходимо проложить пяти жильный кабель.

Что такое стартер двигателя? Типы пускателей двигателей

Типы пускателей двигателей и способы их запуска

Что такое пускатели двигателей?

Пускатель двигателя — это электрическое устройство, которое используется для безопасного пуска и остановки двигателя. Подобно реле, пускатель двигателя включает / выключает питание и, в отличие от реле, он также обеспечивает защиту от низкого напряжения и перегрузки по току.

Основная функция пускателя двигателя:

  • Для безопасного запуска двигателя
  • Для безопасной остановки двигателя
  • Для изменения направления вращения двигателя
  • Для защиты двигателя от низкого напряжения и перегрузки по току.

Why We Need a Starter with a Motor Why We Need a Starter with a Motor

Пускатель двигателя состоит из двух основных компонентов, которые работают вместе для управления и защиты двигателя;

  • Электрический контактор : Назначение контактора состоит в том, чтобы включать / выключать питание двигателя путем замыкания или размыкания контактных клемм.
  • Схема защиты от перегрузки : Назначение этой схемы — защитить двигатель от возможного повреждения из-за состояния перегрузки. Сильный ток через ротор может повредить обмотку, а также другие устройства, подключенные к источнику питания.Он определяет ток и прерывает подачу питания.

Зачем нужен стартер с двигателем?

Пускатель двигателя необходим для запуска асинхронного двигателя. Это из-за низкого импеданса ротора. Импеданс ротора зависит от скольжения асинхронного двигателя, которое представляет собой относительную скорость между ротором и статором. Импеданс обратно пропорционален скольжению.

Скольжение асинхронного двигателя максимальное, т.е. 1 в состоянии покоя (положение покоя), таким образом, полное сопротивление минимально, и он потребляет большое количество тока, называемого пусковым током.Большой пусковой ток намагничивает воздушный зазор между ротором и статором, что вызывает ЭДС в обмотке ротора. Эта ЭДС создает электрический ток в обмотке ротора, который создает магнитное поле для создания крутящего момента в роторе. По мере увеличения скорости ротора скольжение двигателя уменьшается, и ток, потребляемый двигателем, уменьшается. What is a Motor Starter What is a Motor Starter

Высокий пусковой ток в 5-8 раз превышает нормальный номинальный ток полной нагрузки. Таким образом, такое количество тока может повредить или сжечь обмотки двигателя, что сделает машину бесполезной, и это может вызвать огромное падение напряжения в линии питания, которое может повредить другие устройства, подключенные к той же линии.

Чтобы защитить двигатель от такого огромного количества токов, мы используем стартер, который ограничивает начальный ток на короткое время при запуске, и как только двигатель достигает определенной скорости, нормальное питание двигателя возобновляется. Они также обеспечивают защиту от неисправностей, таких как низкое напряжение и перегрузка по току во время нормальной работы.

Хотя небольшие двигатели мощностью менее 1 л.с. имеют высокое сопротивление и могут выдерживать начальный ток, поэтому им не нужен такой пускатель двигателя, однако им нужна система защиты от перегрузки по току, которую обеспечивают пускатели DOL (Direct On-Line).Приведенное выше объяснение показывает, зачем нам нужен стартер для установки с двигателем?

Как работает стартер двигателя?

Пускатель — это устройство управления, которое используется для переключения двигателя вручную или автоматически. Он используется для безопасного включения / выключения электродвигателей путем замыкания или размыкания его контактов.

Ручной пускатель используется для двигателей меньшего размера, у которых рычаг с ручным управлением приводится в действие вручную (переведите положение контактов) в положение ВКЛ или ВЫКЛ.Недостатком таких стартеров является то, что их необходимо включать после отключения питания. Другими словами, им необходимо ручное управление для каждой операции (включения или выключения). Иногда эта операция может привести к протеканию больших токов в обмотке двигателя, что может привести к сгоранию двигателя. Вот почему в большинстве случаев не рекомендуется использовать другие альтернативные пускатели двигателей с защитой, такие как автоматические пускатели. How Motor Starter Works How Motor Starter Works

С другой стороны, автоматические пускатели, состоящие из электромеханических реле и контакторов, используются для включения / выключения двигателя.Когда ток проходит через катушки контактора, он возбуждает и создает электромагнитное поле, которое тянет или толкает контакты, чтобы соединить обмотки двигателя с источником питания.

Кнопки пуска и останова, подключенные к двигателю и стартеру, могут использоваться для включения и выключения двигателей. Катушки контактора могут быть обесточены нажатием кнопки останова, что приводит к обесточиванию катушки. Таким образом, контакты контактора возвращаются из-за пружинного положения в нормальное положение, что приводит к выключению двигателя.В случае сбоя питания или ручного выключения двигатель не запустится автоматически, пока мы не запустим его вручную, нажав кнопку запуска. На следующей схеме показано, как пускатель двигателя DOL работает в режиме ВКЛ / ВЫКЛ.

Типы пускателей двигателей, основанные на методах и методах пуска

В промышленности для пуска асинхронного двигателя используются различные методы пуска. Прежде чем обсуждать типы двигателей, рассмотрим некоторые методы, используемые в пускателях двигателей.

  • Пускатель полного напряжения или через линию

Такие пускатели напрямую соединяют двигатель с линией питания, обеспечивающей полное напряжение. Двигатели, подключенные через такие пускатели, имеют низкую номинальную мощность, поэтому они не создают большого падения напряжения в линии электропередачи. Они используются в приложениях, где двигатели имеют низкие характеристики и должны вращаться в одном направлении.

  • Реверсивный пускатель полного напряжения

Направление трехфазного асинхронного двигателя можно изменить, поменяв местами любые две фазы.Такой пускатель включает в себя два магнитных контактора с механической блокировкой и переключением фаз для прямого и обратного направления. Он используется в приложении, где двигатель должен работать в обоих направлениях, а контакторы используются для управления им.

Чтобы изменить скорость двигателя переменного тока, вам необходимо изменить частоту источника переменного тока или количество полюсов (путем повторного соединения обмоток в некоторых) двигателя. Такие типы стартеров запускают двигатель на нескольких предварительно выбранных скоростях для соответствия его применению.

Наиболее распространенным методом пуска является снижение напряжения при пуске двигателя для уменьшения пускового тока, который может повредить обмотки двигателя, а также вызвать сильное падение напряжения. Эти пускатели используются для двигателей с высокими номиналами.

What is Motor Starter Types of Motor Starters and Motor Starting Methods What is Motor Starter Types of Motor Starters and Motor Starting Methods

На основе описанных выше технологий в промышленности используются следующие типы пускателей двигателей.

Тип пускателя двигателя:

Мы обсудим следующие типы двигателей и методы их пуска на основе вышеуказанных методов пуска двигателей с преимуществами и недостатками.

  1. Устройство прямого пуска (DOL)
  2. Пускатель сопротивления статора
  3. Пускатель электродвигателя с сопротивлением ротора или скользящим кольцом
  4. Пускатель с автотрансформатором
  5. Пускатель с переключением на треугольник
  6. Преобразователь частоты (VFD)

Пускатели двигателей бывают разных типов, но в основном они подразделяются на два типа.

Этот тип пускателя управляется вручную и не требует никакого опыта.Кнопка используется для выключения и включения двигателя, подключенного к ней. Механизм за кнопкой включает в себя механический переключатель, который размыкает или заставляет цепь останавливать или запускать двигатель.

Они также обеспечивают защиту от перегрузки. Однако эти пускатели не имеют LVP (защиты от низкого напряжения), то есть не размыкают цепь при сбое питания. Это может быть опасно для некоторых приложений, потому что двигатель перезапускается при восстановлении питания. Таким образом, они используются для двигателя малой мощности.Пускатель прямого включения (DOL) — это ручной пускатель, обеспечивающий защиту от перегрузки.

Магнитные пускатели являются наиболее распространенным типом пускателей и в основном используются для двигателей переменного тока большой мощности. Эти пускатели работают в электромагнитном режиме как реле, размыкающее или замыкающее контакты с помощью магнетизма.

Обеспечивает более низкое и безопасное напряжение для запуска, а также включает защиту от низкого напряжения и перегрузки по току. При сбое питания магнитный пускатель автоматически разрывает цепь.В отличие от ручных пускателей, он включает автоматическое и дистанционное управление, исключающее оператора.

Магнитный пускатель состоит из двух цепей;

  • Силовая цепь; эта схема отвечает за подачу питания на двигатель. Он состоит из электрических контактов, которые включают / выключают питание, подаваемое от линии питания к двигателю через реле перегрузки.
  • Цепь управления; : эта схема управляет контактами силовой цепи, чтобы включить или отключить подачу питания на двигатель.Электромагнитная катушка включает или отключает питание, чтобы тянуть или толкать электрические контакты. Таким образом обеспечивается дистанционное управление магнитным пускателем.
Пускатель с прямым подключением к сети (DOL)

Устройство прямого запуска с прямым подключением к сети — это простейшая форма пускателя двигателя, которая подключает двигатель напрямую к источнику питания. Он состоит из магнитного контактора, который соединяет двигатель с линией питания, и реле перегрузки для защиты от перегрузки по току. Для безопасного пуска двигателя нет снижения напряжения.Следовательно, двигатель, используемый с такими стартерами, имеет мощность менее 5 л.с. Он имеет две простые кнопки, запускающие и останавливающие двигатель.

Нажатие кнопки пуска активирует катушку, которая стягивает контакторы вместе, замыкая цепь. А нажатие кнопки останова обесточивает катушку контактора и размыкает его контакты, разрывая цепь. Переключатель, используемый для включения / выключения источника питания, может быть любого типа, например, поворотный, уровень, поплавок и т. Д.

Хотя этот стартер не обеспечивает безопасного пускового напряжения, реле перегрузки обеспечивает защиту от перегрева и перегрузки по току.Реле перегрузки имеет нормально замкнутые контакты, питающие катушку контактора. Когда реле срабатывает, катушка контактора обесточивается и размыкает цепь. Direct Online (DOL) Motor Starter Direct Online (DOL) Motor Starter

Преимущества пускателя двигателя с прямым приводом

  • Он имеет очень простую и экономичную конструкцию.
  • Это очень легко понять и работать.
  • обеспечивает высокий пусковой момент за счет высокого пускового тока.

Недостатки прямого пускателя двигателя

  • Высокий пусковой ток может повредить обмотки.
  • Большой пусковой ток вызывает провал напряжения в линии питания.
  • Не подходит для тяжелых двигателей.
  • Может сократить срок службы двигателя.
Пускатель сопротивления статора

Пускатель сопротивления статора использует метод RVS (пускатель пониженного напряжения) для запуска двигателя. Внешнее сопротивление добавляется последовательно с каждой фазой статора трехфазного асинхронного двигателя. Задача резистора — снизить линейное напряжение (впоследствии уменьшая начальный ток), подаваемое на статор.

Изначально переменный резистор находится в максимальном положении, обеспечивая максимальное сопротивление.Следовательно, напряжение на двигателе минимально (на безопасном уровне) из-за падения напряжения на резисторе. Низкое напряжение статора ограничивает пусковой пусковой ток, который может повредить обмотки двигателя. Когда двигатель набирает скорость, сопротивление уменьшается, и фаза статора напрямую подключается к линиям электропередачи.

Поскольку ток прямо пропорционален напряжению, а крутящий момент изменяется пропорционально квадрату тока, уменьшение напряжения в 2 раза снижает крутящий момент в 4 раза.Таким образом, пусковой крутящий момент при использовании такого стартера очень низкий и его необходимо поддерживать. Stator Resistance starter Stator Resistance starter

Преимущества пускателя электродвигателя сопротивления статора

  • Обеспечивает гибкость в пусковых характеристиках.
  • Источник переменного напряжения обеспечивает плавное ускорение.
  • Его можно подключать к двигателю как по схеме звезды, так и по схеме треугольника.

Недостатки стартера двигателя с сопротивлением статора

  • Резисторы рассеивают мощность
  • Пусковой момент очень низкий из-за снижения напряжения
  • Резисторы довольно дороги для больших двигателей.
Сопротивление ротора или пускатель двигателя с контактным кольцом

Этот тип пускателя двигателя работает по технологии пуска двигателя при полном напряжении. Он работает только на асинхронном двигателе с контактным кольцом, поэтому он также известен как пускатель двигателя с контактным кольцом.

Внешние сопротивления соединены с ротором в звездообразной комбинации через контактное кольцо. Эти резисторы ограничивают ток ротора и увеличивают крутящий момент. Это, в свою очередь, снижает пусковой ток статора. Это также помогает улучшить коэффициент мощности.

Резисторы используются только при запуске двигателя и удаляются, когда двигатель набирает номинальную скорость.Rotor Resistance or Slip Ring Motor Starter Rotor Resistance or Slip Ring Motor Starter

Преимущества пускателя двигателя с сопротивлением ротора

  • Он обеспечивает низкий пусковой ток при использовании полного напряжения.
  • Из-за высокого пускового момента двигатель может запускаться под нагрузкой.
  • Этот метод позволяет повысить коэффициент мощности.
  • Обеспечивает широкий диапазон регулирования скорости.

Недостатки стартера двигателя с сопротивлением ротора

  • Работает только на асинхронном двигателе с контактным кольцом.
  • Ротор дороже и тяжелее.
Автотрансформатор Пускатель

В пускателях такого типа в качестве понижающего трансформатора используется автотрансформатор для уменьшения напряжения, приложенного к статору на этапе пуска. Его можно подключать как к двигателям, подключенным по схеме звезды, так и по схеме треугольника.

Вторичная обмотка автотрансформатора подключена к каждой фазе двигателя. Множество лент автотрансформатора обеспечивают малую часть номинального напряжения. Во время пуска реле находится в исходном положении i.е. точка ответвления, обеспечивающая пониженное напряжение для запуска. Реле переключается между точками ответвления, чтобы увеличить напряжение со скоростью двигателя. Наконец, он подключает его к полному номинальному напряжению.

По сравнению с другими методами снижения напряжения, он предлагает высокое напряжение для определенного пускового тока. Это помогает обеспечить лучший пусковой крутящий момент. Autotransformer Motor Starter Autotransformer Motor Starter

Преимущества автотрансформаторного пускателя

  • Обеспечивает лучший пусковой момент.
  • Применяется для пуска больших двигателей со значительной нагрузкой.
  • Он также предлагает ручное управление скоростью.
  • Он также предлагает гибкие пусковые характеристики.

Недостатки автотрансформатора стартера

  • Из-за больших размеров автотрансформатора такой стартер занимает слишком много места.
  • Схема сложная и относительно дорогая по сравнению с другими пускателями.
Пускатель звезда-треугольник

Это еще один распространенный метод пуска, используемый в промышленности для больших двигателей.Для запуска двигателя обмотки трехфазного асинхронного двигателя переключаются между звездой и треугольником.

Для запуска асинхронного двигателя он соединяется звездой с помощью трехполюсного реле двойного хода. Фазное напряжение при соединении звездой уменьшается в 1 / √3 раза, что снижает пусковой ток, а также пусковой момент на 1/3 от нормального номинального значения.

Когда двигатель ускоряется, реле таймера переключает соединение звездой обмоток статора на соединение треугольником, обеспечивая полное напряжение на каждой обмотке.Двигатель работает с номинальной скоростью. star delta motor starter star delta motor starter

Преимущества Star Delta Starter

  • Его конструкция проста и дешева
  • Не требует обслуживания
  • Обеспечивает низкий импульсный ток.
  • Используется для пуска больших асинхронных двигателей.
  • Лучше всего для длительного разгона.

Недостатки стартера звезда-треугольник

  • Работает на двигателе, подключенном по схеме треугольник.
  • Есть больше проводных соединений.
  • Он обеспечивает низкий пусковой крутящий момент, который невозможно поддерживать.
  • Очень ограниченная гибкость пусковых характеристик.
  • При переключении со звезды на треугольник возникает механический рывок.
Устройство плавного пуска

В устройстве плавного пуска также используется метод снижения напряжения. В нем используются полупроводниковые переключатели, такие как TRIAC, для управления напряжением, а также пусковым током, подаваемым на асинхронный двигатель.

ТРИАК с фазовым управлением используется для обеспечения переменного напряжения.Напряжение варьируется путем изменения угла проводимости или угла включения симистора. Угол проводимости поддерживается минимальным для обеспечения пониженного напряжения. Напряжение постепенно увеличивают за счет увеличения угла проводимости. При максимальном угле проводимости на асинхронный двигатель подается полное линейное напряжение, и он работает с номинальной скоростью.

Обеспечивает постепенное и плавное увеличение пускового напряжения, тока и крутящего момента. Таким образом, отсутствует механический рывок и обеспечивается плавная работа, что увеличивает срок службы машины.soft starter soft starter

Преимущества устройства плавного пуска

  • Он обеспечивает лучший контроль над пусковым током и напряжением.
  • Он предлагает плавное ускорение, без рывков.
  • Уменьшает скачки напряжения в системе.
  • Продлевает срок службы системы
  • Обеспечивает лучшую эффективность и отсутствие необходимости в обслуживании
  • Небольшой размер

Недостатки устройства плавного пуска

  • Это относительно дорого
  • Имеется рассеяние энергии в форма нагрева
Переменная частота Dr ive (VFD)

Как и устройство плавного пуска, частотно-регулируемый привод (VFD) может изменять как напряжение, так и частоту подаваемого тока.Он в основном используется для управления скоростью асинхронного двигателя, так как она зависит от частоты питания.

Переменный ток от линии питания преобразуется в постоянный с помощью выпрямителей. Чистый постоянный ток преобразуется в переменный ток с регулируемой частотой и напряжением с использованием метода широтно-импульсной модуляции через силовой транзистор, такой как IGBT.

Обеспечивает полный контроль скорости двигателя от 0 до номинальной. Опция регулировки скорости с переменным напряжением обеспечивает лучший пусковой ток и ускорение.Variable frequency drive (VFD) based motor starter Variable frequency drive (VFD) based motor starter

Преимущества частотно-регулируемого привода

  • Обеспечивает лучшее и плавное ускорение для большого двигателя.
  • Он предлагает полный контроль скорости с плавным ускорением и замедлением.
  • Увеличивает срок службы из-за отсутствия электрических и механических нагрузок.
  • Предлагает прямую и обратную работу двигателя.

Недостатки частотно-регулируемого привода

  • Это относительно дорого, если не требуется регулирование скорости.
  • Происходит рассеяние тепла.
  • ЧРП создают гармоники в электрических линиях, которые могут повлиять на электронное оборудование и коэффициент мощности.

Похожие сообщения:

.

Что такое магнитная цепь?

Замкнутый путь, по которому проходят магнитные силовые линии, называется магнитной цепью . В магнитной цепи магнитный поток или магнитные силовые линии начинаются из одной точки и заканчиваются в той же точке после завершения своего пути.

Поток создается магнитами, это может быть постоянный магнит или электромагниты.

Магнитная цепь изготовлена ​​из магнитных материалов с высокой магнитной проницаемостью, таких как железо, мягкая сталь и т. Д. Магнитные цепи используются в различных устройствах, таких как электродвигатели, трансформаторы, реле, гальванометры генераторов и т. Д.

Рассмотрим соленоид с N витками, намотанными на железный сердечник. Магнитный поток ø Вебера устанавливается в сердечнике, когда ток в 1 ампер пропускается через соленоид.

Magnetic-circuit

Пусть, l = средняя длина магнитной цепи
A = площадь поперечного сечения сердечника
µr = относительная проницаемость сердечника
Теперь плотность потока в материале сердечника

mag-ckt-eq-1 Сила намагничивания в сердечнике
magnetic-ckt-3- Согласно закону работы, работа, выполняемая при перемещении единичного полюса один раз вокруг магнитной цепи, равна ампер-виткам, заключенным в магнитной цепи.
mag-ckt eq 2
Приведенное выше уравнение объясняет следующие моменты:

  1. Прямо пропорционально количеству витков (N) и току (I).
    Это показывает, что магнитный поток увеличивается, если количество витков или тока увеличивается, и уменьшается, когда любая из двух величин уменьшается. NI — магнитодвижущая сила (МДС).
  2. обратно пропорционально l / a µ 0 µ r , где ( l / a µ 0 µ r) известно как сопротивление .Чем меньше сопротивление, тем выше будет поток, и наоборот.
.

Что такое последовательная магнитная цепь? определение и объяснение -Circuit Globe

Определение: Магнитная цепь серии определяется как магнитная цепь, имеющая ряд частей разных размеров и материалов, несущих одинаковое магнитное поле. Рассмотрим круглую катушку или соленоид других размеров, как показано на рисунке ниже:

series-magnetic-circuit

Ток I проходит через соленоид, имеющий N витков, намотанных на одну секцию круглой катушки.Φ — поток, установленный в сердечнике катушки.

a 1 , a 2 , a 3 — площадь поперечного сечения соленоида.

l 1 , l 2 , l 3 — это длина трех разных змеевиков, имеющих разные размеры, соединенных вместе последовательно.

µr 1 , µr 2 , µr 3 — относительная проницаемость материала круглой катушки.

a g и — площадь и длина воздушного зазора.

Полное сопротивление (S) магнитной цепи составляет

series-magnetic-circuit-eq1

Общий MMF = φ x S …… ..…. (1)

Подставляя значение S в уравнение (1), получаем

series-magnetic-circuit-eq2 (Поскольку B = φ / a), поместив клапан B в уравнение (2), мы получим следующее уравнение для общего MMF
series-magnetic-circuit-eq3
Процедура расчета общего MMF для последовательной магнитной цепи

  1. Магнитная цепь разделена на отдельную секцию или части.
  2. Теперь определите значение плотности потока (B) различных секций. Как мы знаем, B = φ / a, где φ — поток по Веберу, а a — площадь поперечного сечения, м 2
  3. Определите значение намагничивающей силы (H), поскольку мы знаем, что H = B / µ 0 µ r , где B — плотность потока по Веберу / м 2 и µ 0 — абсолютная проницаемость и ее значение равно 4πx10 -7 , а µ r — относительная проницаемость материала, и будет указано ее значение.Если значение µ r не задано, то необходимо вычислить значение из значения H из кривой B-H
  4. Значение силы намагничивания (H) как H 1, H 2 , H 3 , Hg будет индивидуально умножено на длину различных участков, то есть l 1 , l 2 , l 3 и lg соответственно.
  5. Наконец, сложите все значения Hx l , и, следовательно, общий MMF будет

series-magnetic-circuit-eq4
Значение H для части с воздушным зазором всегда будет µ г = B / µ 0.

Кривая B-H

График, построенный между плотностью потока (B) и силой намагничивания (H) любого материала, называется кривой B-H или кривой намагничивания.

Форма кривой B-H в основном нелинейная, это означает, что относительная проницаемость (µ r ) материала изменяется и не является постоянной. Величина относительной проницаемости в основном зависит от величины магнитной индукции.

Но для немагнитных материалов, таких как пластик, резина и т. Д.а для магнитной цепи, имеющей воздушный зазор, его значение является постоянным и обозначается (µ 0 ). Его значение составляет 4πx10 -7 Гн / м и широко известно как абсолютная проницаемость или проницаемость свободного пространства.

B-H-curve

Кривая B-H Вариоу

.

Бесплатные образцы магнитных контакторов и пускателей Заводская цена Электрический обратный стартер Магнитный стартер Цена

7 долларов США.00–40 долларов США / Кусок | 1 шт. / Шт. (Минимальный заказ)

Время выполнения заказа:
Количество (шт.) 1–100000 > 100000
Приблиз.Срок (дни) 30 Торг
Настройка:

Индивидуальная упаковка (Мин.Заказ: 100 шт.)

Настройка графики (Мин. Заказ: 100 шт.)

Подробнее

Индивидуальный логотип (Мин.Заказ: 100 шт.) Меньше

Образцы:
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *