Принципиальная схема реверсивного пуска двигателя
Реверсивный пуск двигателя необходим для того, чтобы обусловить вращение в обе стороны. Принцип встречается во многих устройствах: сверлильные, токарные, фрезерные станки. А кран-балки? Там все приводы работают в реверсивном режиме для обеспечения возможности хода моста вперед-назад, тельфера влево-вправо, лебедки вверх–вниз. И это далеко не все, где применяется такой режим работы. Именно о схеме реверсивного пуска двигателя можно прочитать в статье ниже.
Чем обусловлено реверсивное включение трехфазного двигателя
Для начала разберемся поверхностно, чем обусловлен реверс? Он обусловлен сменой 2-х проводов местами, как правило, в клейменной коробке двигателя.
На фото: образец клейменной коробки с подключением «звезда».
На рисунке выше мы видим, что начала обмоток (С1, С3, С5) свободны для включения в сеть. Концы обмоток (С2, С4, С6) соединены вместе.
На фото: подключение с прямым включением двигателя в сеть.
На рисунке цветными кругами обозначены контакты для подключения фаз. Желтым цветом обозначена фаза А, и подведена она к контакту С1, зеленым — фаза В (С3), желтым — фаза С (С5).
Соблюдая вышесказанные условия, мы сменим любые 2 фазы местами и подключим следующим образом. Фаза А остается на своем месте, контакте С1, фаза В ставится на контакт С5, а фаза С ставится на контакт С3.
На фото: подключение «звезда» с реверсивным включением.
Таким образом, выходит, что нам необходимо 2 пускателя. Один пускатель необходим для обеспечения прямого включения, а второй — для реверсивного включения.
Определение режима работы
Теперь определимся, как будет работать двигатель: постоянно включен и отключается при нажатии кнопки «стоп». Как, к примеру, в сверлильном, токарном, фрезерном станках. Или же нам нужно, чтобы он работал при удерживании кнопки «пуск-вправо» или «пуск-влево», как, к примеру, в лебедках, электротележках, кран-балках.
Для первого случая необходимо составить схему реверсивного пуска асинхронного двигателя таким образом, чтоб осуществлялось самошунтирование пускателя, а также защитить от случайного включения второго пускателя.
Схема реверсивного включения с блокировкой, и защитой
Описание работы вышеуказанной схемы
Разберем работу принципиальной схемы реверсивного пуска двигателя. Ток поступает от фазы С на нормально замкнутую общую кнопку КнС, кнопка «стоп». После чего проходит через общее реле тока, которое защитит двигатель от перегрузок. Затем при нажатии КнП «право» ток проходит через нормально замкнутый контакт пускателя КМ2. Поступая на катушку пускателя КМ1, сердечник втягивается, замыкая силовые контакты, разрывая питание на пускатель КМ2.
Так необходимо делать для того, чтобы разорвать питание второго пускателя и защитить цепи от короткого замыкания. Ведь реверс обеспечен тем, что 2 любые фазы меняются местами. Таким образом, если при включенном КМ1 нажать кнопку КнП «лево», пуск не произойдет. Самошунтирование обеспечено вспомогательным контактом, изображенным под КнП «право». Когда пускатель включен, замкнут и этот контакт, обеспечивая питание на катушку пускателя.
Для того чтобы остановить двигатель, необходимо нажать КнС («стоп»), вследствие чего катушка пускателя потеряет питание и придет в нормальное состояние. Теперь, когда КМ1 пришел в нормальное состояние, он замкнул нормально замкнутую группу вспомогательных контактов, благодаря чему катушка пускателя КМ2 снова может получать питание, и стало возможно запустить вращение в противоположную сторону. Для этого нажмем КнП «лево», тем самым включая пускатель КМ2. Получая питание, катушка втягивает сердечник и замыкает силовые контакты, включая питание на двигатель, сменив 2 фазы местами.
Разбирая работу данной схемы реверсивного пуска двигателя, можно заметить что шунтирование обеспечено нормально разомкнутым вспомогательным контактом, изображенным под кнопкой КнП «лево», и оно разрывает питание на пускатель КМ1, делая невозможным его включение.
Выше была рассмотрена схема для трехфазного привода. В самом начале схемы сразу после КнС можно увидеть нормально замкнутый контакт от реле тока. В случае потребления двигателем чрезмерного тока, реле срабатывает, разрывая питание на всю цепь управления. Все, что работает в цепи управления, потеряет питание, это и спасет двигатель от выхода из строя.
Подробнее о взаимоблокировке
Электрическая схема реверсивного пуска асинхронного двигателя требует наличия взаимоблокировки. Стоит понимать, что для смены направления вращения асинхронного двигателя нужно сменить любые 2 фазы местами. Для этого входы пускателей соединяются прямо, а выход соединяется накрест любые 2 фазы. В случае включения обоих пускателей одновременно произойдет короткое замыкание, которое, скорее всего, спалит силовые контактные группы на пускателях.
Для того чтобы избежать короткого замыкания при монтаже реверсивного пуска двигателя, нужно исключить одновременную работу обоих пускателей. Именно поэтому необходимо применять схему взаимоблокировки. При включенном первом пускателе разрывается питание на второй пускатель, чем и исключается его случайное включение, к примеру, одновременно нажаты обе кнопки «пуск».
Если так вышло, что при нажатии кнопки, которая должна включить «вращение вправо», а двигатель вращается влево, и, наоборот, при нажатии «вращение влево» двигатель вращается вправо, не стоит собирать заново всю схему. Просто поменяйте местами на вводе 2 провода — вот и все, проблема решена.
Может случиться так, что на вводе это сделать невозможно по каким-либо обстоятельствам. В таком случае смените местами 2 провода в клейменной коробке на двигателе. И снова проблема решена. Кнопка, отвечающая за вращение вправо, запустит вращение вправо, а кнопка, отвечающая за вращение влево, запустит вращение влево.
Монтажная схема реверсивного пуска двигателя асинхронного (однофазного)
Выше показана схема реверсивного подключения однофазного двигателя. Данная схема реверсивного пуска двигателя намного проще предыдущей. Здесь используется 3-позиционный выключатель.
Описание схемы реверсивного подключения однофазного двигателя
В позиции 1 сетевое напряжение передается на левую ножку конденсатора, благодаря чему двигатель вращается, условно говоря, влево. В положении 2 питание поступает на правую ножку конденсатора, благодаря чему двигатель вращается, условно выражаясь, вправо. В среднем положении двигатель остановлен.
РТ здесь устроено намного проще. Как видим, и здесь исключено одновременное включение 3-позиционным выключателем. Для тех, кого интересует вопрос, а что же, все-таки, произойдет при одновременном включении, ответим просто: двигатель выйдет из строя.
Схема реверсивного включения без самошунтирования
Подробнее о схеме управления пуском реверсивного асинхронного двигателя мы расскажем вам так. При нажатии кнопки КнП «право» питание поступает через нормально замкнутый контакт КнП «лево», а благодаря механическому соединению разрывает питание пускателя КМ2, исключая возможность включения КМ2 при одновременном нажатии 2-х кнопок. Далее ток течет к нормально замкнутому контакту пускателя КМ2 на катушку пускателя КМ1, вследствие чего он срабатывает, включая питание на двигатель. Реверс включается КнП «лево», которая так же своими нормально замкнутыми контактами разрывает питание пускателя КМ1, а нормально разомкнутым включает питание пускателя КМ2. Тот, в свою очередь, включает питание на двигатель, но со сменой 2-х фаз местами.
Обратим внимание на схему управления. А точнее, на взаимоблокировку. Она здесь устроена немного по-другому. Питание одного пускателя, мало того что заблокировано нормально замкнутым контактом противоположного пускателя, так еще и блокируется нажатием кнопки. Это сделано для того, чтоб при одновременном нажатии 2-х кнопок за те доли секунды, пока пускатель не разорвет питание второго пускателя, они не включились одновременно.
Для однофазного двигателя схема
При нажатии и удержании одной кнопки происходит разрыв питания на вторую кнопку, питание подходит к 1-й ножке конденсатора. При нажатии второй кнопки питание разрывается после первой кнопки и поступает на 2-ю ножку конденсатора. РТ все так же защищает двигатель от перегрузок.
Заключение
В заключение можно отметить, что, где бы вы ни применяли подобные схемы, обращайте внимание на взаимоблокировку. Это та необходимая мера, которая защитит оборудование от поломки. Кроме того, нужно правильно подбирать пускатели для трехфазных вариантов, и кнопки для однофазных вариантов. Ведь неправильно подобранное оборудование по мощности, току и напряжению, быстро придет в негодность, еще и может вывести из строя двигатель.
«Реверсивный пуск асинхронного электродвигателя». — КиберПедия
Цель:Сформировать умение собирать схему реверсирования асинхронного электродвигателя с короткозамкнутым ротором.
По окончании выполнения лабораторной работы студент должен
знать:
— элементный состав схемы реверсирования асинхронного электродвигателя с короткозамкнутым ротором;
— назначение, устройство и принцип действия каждого элемента схемы;
— безопасные правила эксплуатации;
уметь:
— собирать схему пуска, реверсирования и останова асинхронного электродвигателя с короткозамкнутым ротором.
Основные теоретические положения:
Схема реверса приведена на рисунке 28.
При включении автоматического выключателя QF напряжение подается к цепи управления и к разомкнутым силовым контактам IKMI – IKM3, 2KMI – 2KM3. При нажатии кнопки ISBI, механически связанной с кнопкой ISB2, образуется цепь: точка С, катушка IKM, кнопка ISB4, точка В. По катушке электромагнитного пускателя IKM протекает ток, замыкаются его контакты IKMI –IKM3 в силовой цепи. На двигатель подается напряжение, он начинает вращаться в прямом направлении. Кроме того, замыкается контакт IKM5 в цепи управления, поэтому, независимо от состояния кнопочного выключателя ISBI, катушка IKM остается под напряжением.
Для реверса АД необходимо изменить чередование фаз питающего напряжения, т.е. переключить два линейных провода, подключенных к обмотке статора. Эту функцию выполняют силовые контакты 2KMI – 2KM3. При нажатии кнопки 2SBI, технически связанной с кнопкой 2SB2, размыкается предыдущая цепь и образуется новая цепь: точка С, катушка 2KM, кнопка 2SBI, кнопка 2SB2, контакт 3КК – 4КК, контакт IKM4, контакт IB4. Ток протекает по катушке 2КМ, а катушка IKM обесточивается, силовые контакты IKMI – IKM3 размыкаются, а контакты 2KMI – 2KM3 замыкаются, двигатель тормозится и разгоняется в обратном направлении. При этом контакт 2КМ5 находится в замкнутом состоянии, и ток через катушку 2КМ протекает, независимо от состояния кнопки 2SBI.
В случае недопустимого нагрева двигателя при вращении в прямом или обратном направлении размыкаются контакты теплового реле соответственно IKK-2KK или 3KK – 4KK, катушка IKM или 2КМ обесточивается, двигатель отключается от сети. Для остановки двигателя нажимают кнопку ISB4, цепь управления обесточивается, и силовые контакты IKMI – IKM3 или 2KMI – 2KM3 размыкаются.
Рисунок 28 – Реверсивная схема пуска асинхронного двигателя с короткозамкнутым ротором
Расшифровка кнопок:
— SB1 — «Вперед»;
— SB2 — «Назад»;
— SB3 — «Стоп».
Монтажная схема для лучшего понимания кнопочного поста приведена на рисунке 29.
Рисунок 29 – Монтажная схема к рисунку 28
Порядок выполнения работы:
1. Выполнить задание лабораторной работы.
2. Составить отчет.
3. Ответить на контрольные вопросы.
Ход работы:
Рабочий инструмент: отвертка плоская, бокорезы, монтажный нож, кабель (провод) одножильный, круглогубцы, плоскогубцы, трехфазная вилка с питающим шнуром (рисунок 30).
Рисунок 30 – Рабочий инструмент для сборки схемы
Необходимые машины и аппараты для реализации схемы приведены на рисунке 31.
Рисунок 31 – Элементный состав схемы
Обозначения элементов схемы приведены на рисунке 32.
Рисунок 32 – Элементы схемы реверса асинхронного электродвигателя
Расшифровка кнопок (рисунок 33):
— SB1 – «Вперед»;
— SB2 – «Назад»;
— SB3 – «Стоп».
Рисунок 33 – Расшифровка кнопок кнопочного поста
Виды контактов приведены на рисунке 34.
Рисунок 34 – Виды контактов
Например, контакты на магнитном пускателе ПМЕ-211 (рисунки 35, 36):
Рисунок 35 – Виды контактов магнитного пускателя
Рисунок 36 – Виды контактов магнитного пускателя
Такой же контакт стоит в кнопке «пуск» и «стоп» (рисунки 37, 38).
Рисунок 37 – Виды контактов кнопок
Рисунок 38 – Виды контактов кнопок
Технологический процесс сборки схемы реверса асинхронного двигателя (АД) с короткозамкнутым ротором.
Цепь управления:
1. Питающий кабель присоединяем с фазы «В» на нормально замкнутый контакт (3) кнопки SB3 (рисунки 39-41).
Рисунок 39 – Сборка питающего кабеля на принципиальной схеме
Рисунок 40 – Сборка питающего кабеля на монтажной схеме
Рисунок 41 – Сборка питающего кабеля на стенде
2. С нормально замкнутого контакта (4) кнопки SB3 присоединить перемычку на нормально разомкнутый контакт (1) кнопки SB2 (рисунки 42-44).
Рисунок 42 – Сборка перемычки между кнопками на принципиальной схеме
Рисунок 43 – Сборка перемычки между кнопками на монтажной схеме
Рисунок 44 – Сборка перемычки между кнопками на стенде
3. С нормально замкнутого контакта (4) кнопки SB3 присоединить перемычку на нормально разомкнутый контакт (1) кнопки SB1 (рисунки 45-47).
Рисунок 45 – Сборка перемычки между кнопками на принципиальной схеме
Рисунок 46 – Сборка перемычки между кнопками на монтажной схеме
Рисунок 47 – Сборка перемычки между кнопками на стенде
4. С нормально разомкнутого контакта (2) кнопки SB1 присоединить провод на нормально замкнутый контакт магнитного пускателя КМ2 (рисунки 48-51).
Рисунок 48 – Сборка соединения пусковой кнопки прямого вращения двигателя с блок-контактом магнитного пускателя на принципиальной схеме
Рисунок 49 – Сборка соединения пусковой кнопки прямого вращения двигателя с блок-контактом магнитного пускателя на монтажной схеме
Рисунок 50 – Сборка соединения пусковой кнопки прямого вращения двигателя с блок-контактом магнитного пускателя на стенде
Рисунок 51 – Нормально разомкнутый контакт пусковой кнопки
прямого вращения двигателя
5. С нормально замкнутого контакта магнитного пускателя КМ2 присоединяем провод на катушку К1 магнитного пускателя КМ1 (рисунки 52-54).
Рисунок 52 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на принципиальной схеме
Рисунок 53 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на монтажной схеме
Рисунок 54 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на стенде
6. С нормально разомкнутого контакта (1) кнопки SB1 присоединяем провод на нормально разомкнутый контакт магнитного пускателя КМ1 (рисунки 55-58).
Рисунок 55 – Шунтирование пусковой кнопки прямого вращения двигателя блок-контактом магнитного пускателя на принципиальной схеме
Рисунок 56 – Шунтирование пусковой кнопки прямого вращения двигателя блок-контактом магнитного пускателя на монтажной схеме
Рисунок 57 – Шунтирование пусковой кнопки прямого вращения двигателя блок-контактом магнитного пускателя на стенде
Рисунок 58 – Нормально разомкнутый контакт кнопки
прямого вращения двигателя
7. С нормально разомкнутого контакта магнитного пускателя КМ1, присоединяем перемычку на нормально замкнутый контакт магнитного пускателя КМ2 (рисунки 59-61).
Рисунок 59 – Сборка перемычки между блок-контактами магнитного пускателя схеме прямого вращения двигателя на принципиальной схеме
Рисунок 60 – Сборка перемычки между блок-контактами магнитного пускателя схеме прямого вращения двигателя на монтажной схеме
Рисунок 61 – Сборка перемычки между блок-контактами магнитного пускателя схеме прямого вращения двигателя на стенде
8. С нормально разомкнутого контакта (2) кнопки SВ2 присоединить провод на нормально замкнутый контакт магнитного пускателя КМ1 (рисунки 62-65).
Рисунок 62 – Сборка соединения пусковой кнопки обратного вращения двигателя с блок-контактом магнитного пускателя на принципиальной схеме
Рисунок 63 – Сборка соединения пусковой кнопки обратного вращения двигателя с блок-контактом магнитного пускателя на монтажной схеме
Рисунок 64 – Сборка соединения пусковой кнопки обратного вращения двигателя с блок-контактом магнитного пускателя на стенде
Рисунок 65 – Нормально разомкнутый контакт пусковой кнопки
обратного вращения
9. С нормально замкнутого контакта магнитного пускателя КМ1 присоединяем провод на катушку магнитного пускателя КМ2 (рисунки 66-68).
Рисунок 66 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на принципиальной схеме
Рисунок 67 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на монтажной схеме
Рисунок 68 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на стенде
10. С нормально разомкнутого контакта (1) кнопки SВ2 присоединить провод на нормально разомкнутый контакт магнитного пускателя КМ2 (рисунок 69-72).
Рисунок 69 – Шунтирование пусковой кнопки обратного вращения блок-контактом магнитного пускателя на принципиальной схеме
Рисунок 70 – Шунтирование пусковой кнопки обратного вращения блок-контактом магнитного пускателя на монтажной схеме
Рисунок 71 – Шунтирование пусковой кнопки обратного вращения блок-контактом магнитного пускателя на стенде
Рисунок 72 – Нормально разомкнутый контакт пусковой кнопки
обратного вращения
11. С нормально разомкнутого контакта магнитного пускателя КМ2 присоединяем перемычку на нормально замкнутый контакт магнитного пускателя КМ1 (рисунки 73-75).
Рисунок 73 – Сборка перемычки между блок-контактами магнитного пускателя схеме обратного вращения двигателя на принципиальной схеме
Рисунок 74 – Сборка перемычки между блок-контактами магнитного пускателя схеме обратного вращения двигателя на монтажной схеме
Рисунок 75 – Сборка перемычки между блок-контактами магнитного пускателя схеме обратного вращения двигателя на стенде
12. Закрыть крышку кнопочного поста (рисунок 76).
Рисунок 76 – Сборка кнопочного поста завершена
13. Делаем перемычку между катушками К1 и К2 магнитных пускателей КМ1и КМ2 (рисунки 77, 78).
Рисунок 77 – Сборка перемычки между катушками магнитных пускателей на принципиальной схеме
Рисунок 78 – Сборка перемычки между катушками
магнитных пускателей на стенде
14. От катушки К1 магнитного пускателя КМ1 присоединить провод к замкнутому контакту теплового реле КК (рисунки 79, 80).
Рисунок 79 – Сборка соединения между магнитным пускателем и тепловым реле на принципиальной схеме
Рисунок 80 – Сборка соединения между магнитным пускателем и тепловым реле на стенде
15. С нормально замкнутого контакта теплового реле КК присоединяем провод на фазу «С» (рисунки 81, 82).
Рисунок 81 – Соединение теплового реле с фазой «С» на принципиальной схеме
Рисунок 82 – Соединение теплового реле с фазой «С» на стенде
Силовая цепь:
16. На магнитных пускателях осуществить реверс путём переключения контактов по схеме (рисунки 83, 84).
Со стороны двигателя:
— 3-1;
— 2-2;
— 1-3.
Со стороны подключения кнопочного поста:
— 1-1;
— 2-2;
— 3-3.
Рисунок 83 – Сборка цепей силовых контактов магнитных пускателей на монтажной схеме (подключение к фазам сети)
Рисунок 84 – Сборка цепей силовых контактов магнитных пускателей на стенде (подключение к фазам сети)
17. Подключение двигателя с КЗ-ротором фазой «В» к фазе «В» на магнитный пускатель. Фазу «А» и «С» подключаем к выходным контактам теплового реле КК (рисунок 85).
Рисунок 85 – Подключение двигателя к фазам на стенде
18. С выходных концов теплового реле КК присоединить провода к фазе «А» и к фазе «С» (рисунки 86, 87).
Рисунок 86 – Подключение тепловых реле к фазам «А» и «С» сети
на монтажной схеме
Рисунок 87 – Подключение тепловых реле к фазам «А» и «С» сети
на стенде
19. Подключить трёхфазную вилку к магнитному пускателю на фазы «А», «В» и «С» (рисунки 88-90).
Рисунок 88 – Подключение трехфазной вилки к магнитному пускателю на фазы «А», «В», «С» сети на монтажной схеме
Рисунок 89 – Подключение трехфазной вилки к магнитному пускателю на фазы «А», «В», «С» сети на стенде
Рисунок 90 – Подключение трехфазной вилки к магнитному пускателю на фазы «А», «В», «С» сети на стенде
20. Проверить правильность сборки схемы реверса асинхронного двигателя и только после этого подать напряжение и запустить двигатель.
Задание.
Собрать и запустить схему реверсирования асинхронного электродвигателя с короткозамкнутым ротором по приведенной выше наглядной инструкции.
Контрольные вопросы:
1. Приведите примеры электроприводов электроприемников, в которых требуется реверсирование электродвигателя?
2. Как устроен реверсивный магнитный пускатель?
3. Как устроен кнопочный пост для реверсивной схемы?
4. Зачем в схеме используются тепловые реле?
Лабораторная работа №9
Схема реверсивного пуска асинхронного двигателя
Реверс асинхронного двигателя
Так вышло, что трех фазные асинхронные электродвигатели, а так же их реверс стали самой распространенной электрической машиной.
В зависимости от механизма, который приводится во вращение этим электродвигателем, может возникнуть необходимость в изменении направления вращения механизмов, а, следовательно, и вала двигателя, в нашем случаи трех фазного асинхронного электродвигателя.
Все наверняка известна вот эта схема:
Теоретически, для изменения направления вращения вала ( реверса ) электродвигателя необходимо всего на всего поменять местами две фазы. Стоит отметить, что не имеет значения какие фазы мы будим менять, но на будущее принято менять две крайние фазы, то есть фазу « А » с фазой « В ».
Для выполнения таких манипуляций с электродвигателем, выше предоставленной схеме необходимо видоизменить – переделать, доработать. Для этого понадобится еще один магнитный пускатель, или же контактор (зависит от мощности), а также кнопочная станция, состоящая из трех кнопок, или же три кнопочных контакта два нормально разомкнутых (замыкающих), и один нормально разомкнутый.
Эта схема будит выглядеть следующим образом. Реверс.
Для наглядности каждая фаза выделена своим цветом: желтым фаза «А», зеленым фаза «В» и красным фаза «С», синим цветом выделена цепь управления. Так же линии, окрашенные в черный цвет, не находятся под напряжением.
Как вы уже заметили это схема реверса существенно не отличается от простой схемы пуска асинхронного двигателя. Все изменения сводятся к магнитному пускателю КМ2 , нормально разомкнутому контакту кнопки SB2 . Стоит отметить и наличие электрической блокировки, которая выражается блок контактами магнитных пускателей, включенных в цепь управления.
Как и элементарная схема пуска асинхронного двигателя, схема этого же двигателя состоит из следующих элементов (устройств):
- Вводной автомат АВ1 – через него подается трехфазное напряжение силовой цепи и цепи управления;
- Два магнитных пускателя КМ1 и КМ2 через силовые контакты которых, подается питание на статор. Их блок контакты включены в цепь управления для выполнения подхвата и электрической блокировки. Катушки этих пускателей также включены в цепь управления. Нужно сказать, что каждый из магнитных пускателей отвечает за определенное вращение ротора . Например, питание подаётся через магнитный пускатель КМ1 , то вал электродвигателя будит вращаться по часовой стрелке (вперед), если же питание подаётся через силовые контакты магнитного пускателя КМ2 , то вал асинхронного двигателя будит вращаться против часовой стрелки (назад).
В данной схеме используются катушки магнитных пускателей, рассчитанные на линейное напряжение 380В. Если же катушки магнитных пускателей были рассчитаны на фазное напряжение сети 220В, то схема выглядела следующим образом:
revers dvigatela katuschka 220 volt
- Тепловое реле КК – биметаллические пластины, которого включены последовательно в цепь статора, а блок контакт вцепи управления. Служит для защиты от перегрузки.
- Двухполюсный автомат АВ2 – подает питание в цепь управления. Также совместно с автоматом или без него может устанавливаться ключ бирка.
- Нормально разомкнутые контакты SB1 и SB2 – это кнопки пуск, каждая из которых соответствует направлению вращения вала электродвигателя (вперед и назад).
- Нормально замкнутый контакт SB3 – кнопка стоп.
- Ну и сам трех фазный асинхронный двигатель Д ;
Работа схемы
Для того, чтобы привести схему в готовность к пуску, необходимо включить вводной автомат АВ1 и автомат в цепи управления АВ2.
В таком состоянии схема реверса асинхронного двигателя готова к пуску. При этом напряжение в силовой цепи подается через вводный автоматический выключатель АВ1 на верхние губки магнитных пускателей КМ1 и КМ2 , а в цепи управления, через автомат АВ2 , через нормально замкнутый контакт кнопки SB3 подаётся напряжение на нормально разомкнутые контакты кнопок SB1 и SB2 , а также на нормально разомкнутые блок контакты магнитных пускателей КМ1 и КМ2.
Для запуска необходимо нажать одну из кнопок пуск SB1 или SB2 (допустим была нажата кнопка SB1).
После замыкания контакта кнопки SB1 , напряжение через замкнутый блок контакт блокировки магнитного пускателя КМ2, через катушку магнитного пускателя КМ1 , через блок контакт КК , через автоматы АВ2 и АВ1 выйдет на фазу «С». Образуется замкнутая цепь, по которой начнет протекать переменный ток. Проходя через катушку магнитного пускателя КМ1, она образует магнитное поле, которое втянет якорь магнитного пускателя КМ1 , при этом его силовые контакты замкнутся, вследствие чего асинхронный электродвигатель получит питание, по его обмоткам начнет протекать ток, и он запустится, ротор будит вращаться. При срабатывании магнитного пускателя, его разомкнутый контакт в цепи управления замкнется, он шунтирует кнопку SB1 , то есть ток будит протекать параллельно пусковой кнопки, так что при отпускании пусковой кнопки машина не остановится не остановится. Так же в цепи пусковой кнопки SB2 разомкнется блок контакт магнитного пускателя КМ1 , этим исключит возможность срабатывания второго магнитного пускателя КМ2 , что вызовет межфазное короткое замыкание. Все перечисленное происходило при нажатии кнопки «Пуск», замыкания контакта SB1.
Чтобы остановить двигатель, необходимо нажать кнопку «Стоп», то есть разомкнуть контакт кнопки SB3 .
Вследствие чего цепь, в которую включены катушки будит разомкнута, электрический ток не будит по ним протекать. Магнитный пускатель разомкнет свои силовые контакты, из-за чего двигатель потеряет питание и остановится. При этом нормально разомкнутый блок контакт КМ1 (подхват) разомкнется, это приведет к тому, что при возврате кнопки SB3 двигатель не запуститься снова. Так же нормально замкнутый блок контакт электрической блокировки КМ1 в цепи катушки магнитного пускателя КМ2 замкнется, обеспечивая возможность включения обратного хода. Схема вернется в состояние готовности очередному пуску двигателя.
Если же мы замкнем контакт SB2 , произойдут те же действия что и при замыкании контакта SB1 , но с другим магнитным пускателем КМ2 , и направление вращения вала асинхронного двигателя будит обратным. Мы видим, что магнитный пускатель КМ2 включен в цепи так, что фазы «А» и «С» поменяны местами, это и гарантирует изменение направления вращения вала. Для остановки необходимо так же разомкнуть контакт кнопки SB3 .
Эта схема сложнее схемы обычного пуска асинхронного двигателя, я посоветую для начала разобраться в более легкой, а затем приступать к этой.
Главной особенностью данной схемы управления двигателем является — минимум сложных манипуляций.
Три наиболее популярные схемы управления асинхронным двигателем
Все электрические принципиальные схемы станков, установок и машин содержат определенный набор типовых блоков и узлов, которые комбинируются между собой определенным образом. В релейно-контакторных схемах главными элементами управления двигателями являются электромагнитные пускатели и реле.
Наиболее часто в качестве привода в станках и установках применяются трехфазные асинхронные двигатели с короткозамкнутым ротором. Эти двигатели просты в устройстве, обслуживании и ремонте. Они удовлетворяют большинству требований к электроприводу станков. Главными недостатками асинхронных двигателей с короткозамкнутым ротором являются большие пусковые токи (в 5-7 раз больше номинального) и невозможность простыми методами плавно изменять скорость вращения двигателей.
С появлением и активным внедрением в схемы электроустановок преобразователей частоты такие двигатели начали активно вытеснять другие типы двигателей (асинхронные с фазным ротором и двигатели постоянного тока) из электроприводов, где требовалось ограничивать пусковые токи и плавно регулировать скорость вращения в процессе работы.
Одной из преимуществ использования асинхронных двигателей с короткозамкнутым ротором является простота их включения в сеть. Достаточно подать на статор двигателя трехфазное напряжение и двигатель сразу запускается. В самом простом варианте для включения можно использовать трехфазный рубильник или пакетный выключатель. Но эти аппараты при своей простоте и надежности являются аппаратами ручного управления.
В схемах же станков и установок часто должна быть предусмотрена работа того или иного двигателя в автоматическом цикле, обеспечиваться очередность включения нескольких двигателей, автоматическое изменение направления вращения ротора двигателя (реверс) и т.д.
Обеспечить все эти функции с аппаратами ручного управления невозможно, хотя в ряде старых металлорежущих станков тот же реверс и переключение числа пар полюсов для изменения скорости вращения ротора двигателя очень часто выполняется с помощью пакетных переключателей. Рубильники и пакетные выключатели в схемах часто используются как вводные устройства, подающие напряжение на схему станка. Все же операции управления двигателями выполняются электромагнитными пускателями.
Включение двигателя через электромагнитный пускатель обеспечивает кроме всех удобств при управлении еще и нулевую защиту. Что это такое будет рассказано ниже.
Наиболее часто в станках, установках и машинах применяются три электрические схемы:
схема управления нереверсивным двигателем с использованием одного электромагнитного пускателя и двух кнопок “пуск” и “стоп”,
схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок.
схема управления реверсивным двигателем с использованием двух пускателей (или одного реверсивного пускателя) и трех кнопок, в двух из которых используются спаренные контакты.
Разберем принцип работы всех этих схем.
1. Схема управления двигателем с помощью магнитного пускателя
Схема показана на рисунке.
При нажатии на кнопку SB2 “Пуск” на катушка пускателя попадает под напряжение 220 В, т.к. она оказывается включенной между фазой С и нулем ( N) . Подвижная часть пускателя притягивается к неподвижной, замыкая при этом свои контакты. Силовые контакты пускателя подают напряжение на двигатель, а блокировочный замыкается параллельно кнопке “Пуск”. Благодаря этому при отпускании кнопки катушка пускателя не теряет питание, т.к. ток в этом случае идет через блокировочный контакт.
Если бы блокировочный контакт не был бы подключен параллельно кнопки (по какой-либо причине отсутствовал), то при отпускании кнопки “Пуск” катушка теряет питание и силовые контакты пускателя размыкаются в цепи двигателя, после чего он отключается. Такой режим работы называют “толчковым”. Применяется он в некоторых установках, например в схемах кран-балок.
Остановка работающего двигателя после запуска в схеме с блокировочным контактом выполняется с помощью кнопки SB1 “Стоп”. При этом, кнопка создает разрыв в цепи, магнитный пускатель теряет питание и своими силовыми контактами отключает двигатель от питающей сети.
В случае исчезновения напряжения по какой-либо причине магнитный пускатель также отключается, т.к. это равносильно нажатию на кнопку “Стоп” и созданию разрыва цепи. Двигатель останавливается и повторный запуск его при наличии напряжения возможен только при нажатии на кнопку SB2 “Пуск”. Таким образом, магнитный пускатель обеспечивает т.н. “нулевую защиту”. Если бы он в цепи отсутствовал и двигатель управлялся рубильником или пакетным выключателем, то при возврате напряжения двигатель запускался бы автоматически, что несет серьезную опасность для обслуживающего персонала. Подробнее смотрите здесь – защита минимального напряжения.
Анимация процессов, протекающих в схеме показана ниже.
2. Схема управления реверсивным двигателем с помощью двух магнитных пускателей
Схема работает аналогично предыдущей. Изменение направления вращения (реверс) ротор двигателя меняет при изменении порядка чередования фаз на его статоре. При включении пускателя КМ1 на двигатель приходят фазы – A , B , С, а при включении пускателя KM2 – порядок фаз меняется на С, B , A.
Схема показана на рис. 2.
Включение двигателя на вращение в одну сторону осуществляется кнопкой SB2 и электромагнитным пускателем KM1 . При необходимости смены направления вращения необходимо нажать на кнопку SB1 “Стоп”, двигатель остановится и после этого при нажатии на кнопку SB 3 двигатель начинает вращаться в другую сторону. В этой схеме для смены направления вращения ротора необходимо промежуточное нажатие на кнопку “Стоп”.
Кроме этого, в схеме обязательно использование в цепях каждого из пускателей нормально-закрытых (размыкающих) контактов для обеспечения защиты от одновременного нажатия двух кнопок “Пуск” SB2 – SB 3, что приведет к короткому замыканию в цепях питания двигателя. Дополнительные контакты в цепях пускателей не дают пускателям включится одновременно, т.к. какой-либо из пускателей при нажатии на обе кнопки “Пуск” включиться на секунду раньше и разомкнет свой контакт в цепи другого пускателя.
Необходимость в создании такой блокировки требует использования пускателей с большим количеством контактов или пускателей с контактными приставками, что удорожает и усложняет электрическую схему.
Анимация процессов, протекающих в схеме с двумя пускателями показана ниже.
3. Схема управления реверсивным двигателем с помощью двух магнитных пускателей и трех кнопок (две из которых имеют контакты с механической связью)
Схема показана на рисунке.
Отличие этой схемы от предыдущей в том, что в цепи каждого пускателя кроме общей кнопки SB1 “Стоп”включены по 2 контакта кнопок SB2 и SB 3, причем в цепи КМ1 кнопка SB2 имеет нормально-открытый контакт (замыкающий), а SB 3 – нормально-закрытый (размыкающий) контакт, в цепи КМ3 – кнопка SB2 имеет нормально-закрытый контакт (размыкающий), а SB 3 – нормально-открытый. При нажатии каждой из кнопок цепь одного из пускателей замыкается, а цепь другого одновременно при этом размыкается.
Такое использование кнопок позволяет отказаться от использования дополнительных контактов для защиты от одновременного включения двух пускателей (такой режим при этой схеме невозможен) и дает возможность выполнять реверс без промежуточного нажатия на кнопку “Стоп”, что очень удобно. Кнопка “Стоп” нужна для окончательной остановки двигателя.
Приведенные в статье схемы являются упрощенными. В них отсутствуют аппараты защиты (автоматические выключатели, тепловые реле), элементы сигнализации. Такие схемы также часто дополняются различными контактами реле, выключателей, переключателей и датчиков. Также возможно питание катушки электромагнитного пускателя напряжение 380 В. В этом случае он подключается от двух любых фаз, например, от А и B . Возможно использование понижающего трансформатора для понижения напряжения в схеме управления. В этом случае используются электромагнитные пускатели с катушками на напряжение 110, 48, 36 или 24 В.
Принципиальная схема реверсивного пуска двигателя
Реверсивный пуск двигателя необходим для того, чтобы обусловить вращение в обе стороны. Принцип встречается во многих устройствах: сверлильные, токарные, фрезерные станки. А кран-балки? Там все приводы работают в реверсивном режиме для обеспечения возможности хода моста вперед-назад, тельфера влево-вправо, лебедки вверх–вниз. И это далеко не все, где применяется такой режим работы. Именно о схеме реверсивного пуска двигателя можно прочитать в статье ниже.
Чем обусловлено реверсивное включение трехфазного двигателя
Вам будет интересно: Симплификация – это что такое?
Для начала разберемся поверхностно, чем обусловлен реверс? Он обусловлен сменой 2-х проводов местами, как правило, в клейменной коробке двигателя.
На фото: образец клейменной коробки с подключением «звезда».
На рисунке выше мы видим, что начала обмоток (С1, С3, С5) свободны для включения в сеть. Концы обмоток (С2, С4, С6) соединены вместе.
На фото: подключение с прямым включением двигателя в сеть.
На рисунке цветными кругами обозначены контакты для подключения фаз. Желтым цветом обозначена фаза А, и подведена она к контакту С1, зеленым – фаза В (С3), желтым – фаза С (С5).
Соблюдая вышесказанные условия, мы сменим любые 2 фазы местами и подключим следующим образом. Фаза А остается на своем месте, контакте С1, фаза В ставится на контакт С5, а фаза С ставится на контакт С3.
На фото: подключение «звезда» с реверсивным включением.
Таким образом, выходит, что нам необходимо 2 пускателя. Один пускатель необходим для обеспечения прямого включения, а второй – для реверсивного включения.
Определение режима работы
Теперь определимся, как будет работать двигатель: постоянно включен и отключается при нажатии кнопки «стоп». Как, к примеру, в сверлильном, токарном, фрезерном станках. Или же нам нужно, чтобы он работал при удерживании кнопки «пуск-вправо» или «пуск-влево», как, к примеру, в лебедках, электротележках, кран-балках.
Для первого случая необходимо составить схему реверсивного пуска асинхронного двигателя таким образом, чтоб осуществлялось самошунтирование пускателя, а также защитить от случайного включения второго пускателя.
Схема реверсивного включения с блокировкой, и защитой
Описание работы вышеуказанной схемы
Вам будет интересно: Ликтор – это: суть профессии и исторические факты
Разберем работу принципиальной схемы реверсивного пуска двигателя. Ток поступает от фазы С на нормально замкнутую общую кнопку КнС, кнопка «стоп». После чего проходит через общее реле тока, которое защитит двигатель от перегрузок. Затем при нажатии КнП «право» ток проходит через нормально замкнутый контакт пускателя КМ2. Поступая на катушку пускателя КМ1, сердечник втягивается, замыкая силовые контакты, разрывая питание на пускатель КМ2.
Так необходимо делать для того, чтобы разорвать питание второго пускателя и защитить цепи от короткого замыкания. Ведь реверс обеспечен тем, что 2 любые фазы меняются местами. Таким образом, если при включенном КМ1 нажать кнопку КнП «лево», пуск не произойдет. Самошунтирование обеспечено вспомогательным контактом, изображенным под КнП «право». Когда пускатель включен, замкнут и этот контакт, обеспечивая питание на катушку пускателя.
Для того чтобы остановить двигатель, необходимо нажать КнС («стоп»), вследствие чего катушка пускателя потеряет питание и придет в нормальное состояние. Теперь, когда КМ1 пришел в нормальное состояние, он замкнул нормально замкнутую группу вспомогательных контактов, благодаря чему катушка пускателя КМ2 снова может получать питание, и стало возможно запустить вращение в противоположную сторону. Для этого нажмем КнП «лево», тем самым включая пускатель КМ2. Получая питание, катушка втягивает сердечник и замыкает силовые контакты, включая питание на двигатель, сменив 2 фазы местами.
Разбирая работу данной схемы реверсивного пуска двигателя, можно заметить что шунтирование обеспечено нормально разомкнутым вспомогательным контактом, изображенным под кнопкой КнП «лево», и оно разрывает питание на пускатель КМ1, делая невозможным его включение.
Выше была рассмотрена схема для трехфазного привода. В самом начале схемы сразу после КнС можно увидеть нормально замкнутый контакт от реле тока. В случае потребления двигателем чрезмерного тока, реле срабатывает, разрывая питание на всю цепь управления. Все, что работает в цепи управления, потеряет питание, это и спасет двигатель от выхода из строя.
Подробнее о взаимоблокировке
Электрическая схема реверсивного пуска асинхронного двигателя требует наличия взаимоблокировки. Стоит понимать, что для смены направления вращения асинхронного двигателя нужно сменить любые 2 фазы местами. Для этого входы пускателей соединяются прямо, а выход соединяется накрест любые 2 фазы. В случае включения обоих пускателей одновременно произойдет короткое замыкание, которое, скорее всего, спалит силовые контактные группы на пускателях.
Вам будет интересно: Закон Бойля-Мариотта: формула и пример задачи
Для того чтобы избежать короткого замыкания при монтаже реверсивного пуска двигателя, нужно исключить одновременную работу обоих пускателей. Именно поэтому необходимо применять схему взаимоблокировки. При включенном первом пускателе разрывается питание на второй пускатель, чем и исключается его случайное включение, к примеру, одновременно нажаты обе кнопки «пуск».
Если так вышло, что при нажатии кнопки, которая должна включить «вращение вправо», а двигатель вращается влево, и, наоборот, при нажатии «вращение влево» двигатель вращается вправо, не стоит собирать заново всю схему. Просто поменяйте местами на вводе 2 провода – вот и все, проблема решена.
Может случиться так, что на вводе это сделать невозможно по каким-либо обстоятельствам. В таком случае смените местами 2 провода в клейменной коробке на двигателе. И снова проблема решена. Кнопка, отвечающая за вращение вправо, запустит вращение вправо, а кнопка, отвечающая за вращение влево, запустит вращение влево.
Монтажная схема реверсивного пуска двигателя асинхронного (однофазного)
Выше показана схема реверсивного подключения однофазного двигателя. Данная схема реверсивного пуска двигателя намного проще предыдущей. Здесь используется 3-позиционный выключатель.
Описание схемы реверсивного подключения однофазного двигателя
В позиции 1 сетевое напряжение передается на левую ножку конденсатора, благодаря чему двигатель вращается, условно говоря, влево. В положении 2 питание поступает на правую ножку конденсатора, благодаря чему двигатель вращается, условно выражаясь, вправо. В среднем положении двигатель остановлен.
РТ здесь устроено намного проще. Как видим, и здесь исключено одновременное включение 3-позиционным выключателем. Для тех, кого интересует вопрос, а что же, все-таки, произойдет при одновременном включении, ответим просто: двигатель выйдет из строя.
Схема реверсивного включения без самошунтирования
Подробнее о схеме управления пуском реверсивного асинхронного двигателя мы расскажем вам так. При нажатии кнопки КнП «право» питание поступает через нормально замкнутый контакт КнП «лево», а благодаря механическому соединению разрывает питание пускателя КМ2, исключая возможность включения КМ2 при одновременном нажатии 2-х кнопок. Далее ток течет к нормально замкнутому контакту пускателя КМ2 на катушку пускателя КМ1, вследствие чего он срабатывает, включая питание на двигатель. Реверс включается КнП «лево», которая так же своими нормально замкнутыми контактами разрывает питание пускателя КМ1, а нормально разомкнутым включает питание пускателя КМ2. Тот, в свою очередь, включает питание на двигатель, но со сменой 2-х фаз местами.
Обратим внимание на схему управления. А точнее, на взаимоблокировку. Она здесь устроена немного по-другому. Питание одного пускателя, мало того что заблокировано нормально замкнутым контактом противоположного пускателя, так еще и блокируется нажатием кнопки. Это сделано для того, чтоб при одновременном нажатии 2-х кнопок за те доли секунды, пока пускатель не разорвет питание второго пускателя, они не включились одновременно.
Для однофазного двигателя схема
При нажатии и удержании одной кнопки происходит разрыв питания на вторую кнопку, питание подходит к 1-й ножке конденсатора. При нажатии второй кнопки питание разрывается после первой кнопки и поступает на 2-ю ножку конденсатора. РТ все так же защищает двигатель от перегрузок.
Заключение
В заключение можно отметить, что, где бы вы ни применяли подобные схемы, обращайте внимание на взаимоблокировку. Это та необходимая мера, которая защитит оборудование от поломки. Кроме того, нужно правильно подбирать пускатели для трехфазных вариантов, и кнопки для однофазных вариантов. Ведь неправильно подобранное оборудование по мощности, току и напряжению, быстро придет в негодность, еще и может вывести из строя двигатель.
{SOURCE}
Реверсивный пуск двигателя схема — Морской флот
Практически любой электродвигатель можно заставить вращаться как в одну, так и в другую сторону. Это часто необходимо, особенно при конструировании различных механизмов, например, систем закрывания и открывания ворот. Обычно на корпусе двигателя указывается заводское направление движения вала, которое считается прямым. Кручение в другую сторону в этом случае будет реверсивным.
Что такое реверс
Проще говоря, реверс – это изменение направления движения какого-либо механизма в противоположную сторону от выбранного основного. Схему реверса можно получить несколькими способами:
В первом случае при помощи переключения шестеренчатых связей, соединяющих ведущий вал с ведомым, добиваются вращения последнего в обратную сторону. По такому принципу работают все коробки передач.
Электрический способ подразумевает непосредственное воздействие на сам двигатель, где в изменении движения ротора принимают участие электромагнитные силы. Этот метод выигрывает тем, что не требует применения сложных механических преобразований.
Для того, чтобы получить реверс электродвигателя, необходимо собрать специальную электрическую схему, которая так и называется – схема реверса двигателя. Она будет отличаться для разных типов электрических машин и питающего напряжения.
Где применяется реверс
Легче перечислить случаи, когда реверс не используется. Практически вся механика построена на передаче крутящего момента по часовой стрелке и наоборот. Сюда можно отнести:
- Бытовую технику: стиральные машины, аудиопроигрыватели.
- Электроинструмент: реверсивные дрели, шуруповерты, гайковерты.
- Станки: расточные, токарные, фрезерные.
- Транспортные средства.
- Спецтехнику: крановое оборудование, лебедки.
- Элементы автоматики.
- Робототехнику.
Ситуация, с которой чаще всего сталкивается обычный человек на практике, это необходимость собрать схему подключения реверса электродвигателя асинхронного переменного тока либо коллекторного мотора постоянного тока.
Подключение асинхронного мотора 380 В к трехфазной сети в реверс
Схема подключения асинхронника в прямом направлении имеет определенную последовательность подачи фаз A, B, C на контакты двигателя. Ее возможно доработать, например, добавив переключатель, который бы менял местами любые две фазы. Таким способом можно получить схему реверса электродвигателя. В практических схемах такими фазами принято считать B и A.
- Пускатели магнитного типа (КМ1 и КМ2).
- Станция на три кнопки, где два контакта имеют нормально разомкнутое положение (в исходном состоянии контакт не проводит ток, при нажатии на кнопку происходит замыкание цепи), один нормально замкнутый.
Схема работает следующим образом:
- Включением автоматических предохранителей АВ1 (силовая линия), АВ2 (цепь управления) ток поступает на трехкнопочный переключатель и клеммы магнитных контакторов, которые в исходном состоянии разомкнуты.
- Нажатием кнопки «Вперед» ток проходит на катушку электромагнита контактора 1, который притягивает якорь с силовыми контактами. Одновременно при этом происходит обрыв цепи управления контактора 2, его теперь невозможно включить кнопкой «Реверс».
- Вал двигателя начинает вращаться в основном направлении.
- Нажатием кнопки «Стоп» ток в цепи обмотки управления прерывается, электромагнит отпускает якорь, силовые контакты размыкаются, замыкается блокировочный контакт кнопки «Реверс», и ее теперь можно нажать.
- При нажатии кнопки «Реверс» происходят аналогичные процессы только в цепи контактора 2. Вал двигателя будет вращаться в обратную сторону от основного направления.
Подключение мотора 220В к однофазной сети в реверс
Добиться реверса движения вала двигателя в этом случае возможно, если есть доступ к выводам его пусковой и рабочей обмоток. Эти моторы имеют 4 вывода: два на пусковую обмотку, подключенную с конденсатором, два на рабочую.
Если нет информации о назначении обмоток, ее можно получить методом прозвонки. Сопротивление пусковой обмотки всегда будет больше, чем рабочей за счет меньшего сечения провода, которым она намотана.
В упрощенном варианте схемы подключения мотора 220 В подают на рабочую обмотку, один конец пусковой обмотки на фазу или ноль сети (без разницы). Двигатель начнет вращаться в определенную сторону. Чтобы получить схему реверса, нужно отсоединить конец пусковой обмотки от контакта и туда подключить другой конец той же обмотки.
Чтобы получить полную рабочую схему включения, необходимо оборудование:
- Защитный автомат.
- Пост кнопочный.
- Электромагнитные контакторы.
Схема реверса и прямого хода в этом случае очень похожа на схему подключения трехфазного мотора, но коммутация здесь происходит не фаз, а пусковой обмотки в одном либо другом направлении.
Схема реверса трехфазного двигателя в однофазной сети
Так как трехфазному асинхронному двигателю будет недоставать двух фаз, их нужно компенсировать конденсаторами – пусковым и рабочим, на которые коммутируют обе обмотки. От того, куда присоединить третью, зависит кручение вала в ту или иную сторону.
На схеме ниже видно, что обмотка под номером 3 через рабочий конденсатор подсоединяется к трехпозиционному тумблеру, который и отвечает за режимы работы двигателя вперед/назад. Два других его контакта объединены с обмотками 2 и 1.
При включении двигателя нужно придерживаться следующего алгоритма действий:
- Подать питание на схему через вилку либо рубильник.
- Тумблер для переключения режимов работы перевести в положение вперед или назад (реверс).
- Тумблер питания поставить в положение ON (вкл).
- Нажать кнопку «Пуск» на время, не превышающее трех секунд, чтобы произвести запуск двигателя.
Схема подключения двигателя с реверсом от постоянного тока
Моторы, работающие от постоянного тока, несколько сложнее подключить, нежели электрические машины переменной сети. Затруднение состоит в том, что конструкции таких устройств могут быть разными, а точнее разным является способ возбуждения обмотки. По этому признаку различают двигатели:
- Независимого способа возбуждения.
- Возбуждения самостоятельного (бывают последовательного, параллельного и смешанного подключения).
Касаемо первого типа устройств, то здесь якорь не связан с обмоткой статора, они питаются каждый от своего источника. Этим добиваются огромных мощностей двигателей, используемых на производстве.
В станочном оборудовании и вентиляторах применяют моторы параллельного возбуждения, где энергия источника одна для всех обмоток. Электрические транспортные средства построены на основе последовательного возбуждения обмоток. Реже встречается смешанное возбуждение.
Во всех описанных типах конструкций двигателей возможно запустить ротор в противоположном направлении от основного хода, то есть реверсом:
- При последовательной схеме возбуждения роли не играет, где менять направление тока в якоре или статоре – в обоих случаях двигатель будет стабильно работать.
- В других вариантах возбуждения машин рекомендовано задействовать только обмотку якоря в целях реверсирования. Это связано с опасностью обрыва в статоре, скачка электродвижущей силы (ЭДС) и, как следствие, повреждения изоляции.
Запуск мотора схемой звезда-треугольник
При прямом запуске мощных трехфазных электродвигателей, применяя схему управления реверсом, происходят просадки напряжения в сети. Это связано с большими пусковыми токами, протекающими в этот момент. Чтобы снизить значение тока, применяют постепенный запуск мо
Реверс трехфазного двигателя в однофазной сети
Здравствуйте, уважаемые читатели и гости сайта «Заметки электрика».
Несколько дней назад от одного из читателей сайта я получил письмо с просьбой подробно рассказать о том, как осуществить реверс трехфазного асинхронного двигателя 380/220 (В), подключенного в однофазную сеть 220 (В).
Действительно, я как то упустил этот момент из виду и про реверс совсем забыл. Дело в том, что у меня уже имеется статья, где я рассказывал про выбор емкости рабочих и пусковых конденсаторов, собирал схему подключения трехфазного двигателя в однофазную сеть 220 (В) и даже снял видео на конкретном примере.
Обо всем этом читайте здесь.
А сейчас вернемся к реверсу. Мудрить сложную схему я не буду, а покажу самый простой и самый распространенный вариант с помощью кнопки управления КУ-110111. Эту кнопку еще называют кнопочным выключателем или переключателем.
Вот так она выглядит.
Суть в том, что нам нужно две пары контактов: нормально-разомкнутый и нормально-замкнутый. И самое главное, чтобы управление этими контактами было фиксированным.
Вот как раз таки в этой кнопке имеется две пары контактов:
- (1-2) — нормально-разомкнутый
- (3-4) — нормально-замкнутый
В нашем случае управление контактами осуществляется с помощью рукоятки-переключателя, которая имеет два положения.
Когда переключатель установлен (зафиксирован) в вертикальном положении, то его контакт (1-2) разомкнут, а (3-4) замкнут. И наоборот, когда переключатель находится в горизонтальном положении (поворот рукоятки на 90° по часовой стрелке), то его контакт (1-2) замкнут, а (3-4) — разомкнут.
Номинальный ток контактных пар составляет 10 (А). На это стоит обращать внимание, т.к. при выборе кнопки с заниженным номинальным током контакты могут выгореть.
Вместо кнопки управления КУ-110111 можно использовать тумблеры, ключи управления, кнопки с фиксацией положения и т.п.
Например, для реверса двигателей мощностью до 0,4 (кВт) можно применять тумблер ТВ1-2. У него имеется 4 контактные группы: 2 нормально-разомкнутые и 2 нормально-замкнутые. Номинальный ток контактов составляет 5 (А).
Реверс асинхронного трехфазного двигателя, подключенного в однофазную сеть
Все просто. Реверс осуществляется путем переключения питания конденсаторов с одного полюса питающего напряжения на другой. Это как раз и осуществляется с помощью кнопки управления. На схеме она показана в красном прямоугольнике.
В качестве примера рассмотрим уже известный нам трехфазный двигатель АОЛ 22-4 мощностью 0,4 (кВт) напряжением 220/127 (В). Для его запуска необходим рабочий конденсатор емкостью не ниже 25 (мкФ). Я использовал конденсатор чуть меньшей емкости — МБГО-1, 20 (мкФ), напряжение 500 (В).
Собираем схему.
В моем примере взят двигатель напряжением — 220/127 (В). Т.к. питающая сеть у нас 220 (В), то его обмотки должны быть соединены в звезду. Звезда уже собрана внутри этого двигателя и на клеммник выведено всего 3 вывода.
Для тех кто забыл, то читайте статью о схемах соединения обмоток двигателя (звезда и треугольник).
Сначала я устанавливаю на кнопке управления перемычку между клеммами (2) и (3). Затем к клемме (2) подключаю один вывод конденсатора.
Второй вывод конденсатора подключаю на обмотку электродвигателя, которая не соединена с сетью, т.е. по схеме это вывод С1 (U1).
Теперь нужно соединить переключатель с двигателем. Для этого клемму (1) я соединяю с выводом двигателя С3 (W1), а клемму (4) — с С2 (V1).
Если на Вашем двигателе отсутствует маркировка выводов обмоток, то ее можно найти самостоятельно — вот Вам в помощь моя статья об определении начала и конца обмоток электродвигателя.
Питающее напряжение 220 (В) подводим к С2 (V1) и С3 (W1). Пробуем включать двигатель и проверяем реверс.
Работу реверса смотрите в видеоролике:
P.S. На этом, пожалуй, все. Если у Вас возникли вопросы по материалу статьи, то пишите их в комментариях или мне на почту. Спасибо за внимание.
Если статья была Вам полезна, то поделитесь ей со своими друзьями:
Схема пуска асинхронного двигателя с короткозамкнутым ротором с помощью реверсивного магнитного пускателя (контактора).
Практическое задание
Цель работы – рассмотреть основные понятия и обозначения, изучить схему подключения асинхронного двигателя, изучить компоненты схемы и их принцип работы.
Теоретические сведения
Асинхро́нный электродвигатель — электрический двигатель переменного тока, частота вращения ротора которой не равна частоте вращения магнитного поля, создаваемого током обмотки статора.
Асинхронный электродвигатель с короткозамкнутым ротором, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, это корпус двигателя с обмоткой, ротор — вращающаяся часть с обмоткой замкнутой с торцов и напоминающих «беличью клетку». Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.
Короткозамкнутый ротор «беличья клетка»
Контактор магнитный (КМ) – устройство, состоящиее из катушки с встроенным в неё сердечником, контактными площадками и дугогасящими элементами (катушками). Принцип действия такого устройства: под действием электромагнитного поля сердечник втягивается увлекая за собой контакты и замыкая их. При отключении питания от управляющей цепи контактора возвратная пружина поднимает сердечник и силовая часть контактора (контактная площадка) размыкаются.
Реверсивный магнитный пускатель – устройство, состоящее из 2-х контакторов соединенных между собой механическим приводом (блокировкой двойного включения). При включении одного контактора тут же отключается другой, это сделано для того, чтобы при включении на двигателе реверса не произошло межфазного короткого замыкания.
1) 2
1) Контактор магнитный (КМ) 2) Реверсивный контактор (с
мех.блокировкой 2-го вкл)
Схема пуска асинхронного двигателя с короткозамкнутым ротором с помощью реверсивного магнитного пускателя (контактора).
Условные обозначения:
QF— Выключатель автоматический с теплозащитой (тепловым расцепителем).
КМ 1 и КМ 2 – контакторы магнитные
М – мотор, в нашем случае асинхронный электродвигатель с короткозамкнутым ротором.
А:В:С – фазы.
SF1 – Автомат защищающий управляющие цепи реверсивного пускателя.
SB1 – Контакт нажимной нормально замкнутый.
SB3 и SB2 – контакт нажимной нормально разомкнутый.
13НО и 14НО – контакты отвечающие за «самоподхват».
А1 и А2 – выводы катушки контактора.
КМ 1.2 и КМ 2.2 – контакты соединенные с механическим приводом и отвечающие за защиту от двойного включения.
N – «ноль».
Самоподхват – при нажатии кнопки «Пуск» ток попадает на катушку и замыкает контакты 13НО и 14НО. Эти провода подключаются параллельно кнопке «Пуск». И при её отпускании ток начинает проходить через эти контакты питая катушку и не давая ей отключиться. Отключить контактор можно только кнопкой «Стоп», данная кнопка полностью отключает питание управляющей цепи контактора и последний размыкает силовую часть.
Защита от двойного включения – представляет собой механическое устройство (привод) отвечающее за отключение контактора при включении другого контактора. Данная функция предусматривает защиту от межфазного КЗ.
Реверс на асинхронном электродвигателе включается при переключении 2 –х фаз местами. Например на данной схеме мы можем видеть как фазы B и С поменялись местами и на двигателе включился реверс.
Реверс – обратное вращение ротора двигателя.
Цепь управления – цепь отвечающая за подачу питания на катушки контакторов и те в свою очередь за подачу или отключение питания на электродвигатель.
Силовая часть – состоит из проводов большого сечения ( по сравнению с управляющей частью), силовых контактов, тепловых реле, дугогасящих катушек и непосредственно самого мотора.
Дуга – при разрыве цепи автоматическим выключателем электроны стремятся «догнать» отходящий контакт и в результате этого явления появляется дуга с большим напряжением, которую если не загасить может повредить оборудование.
Т.е. дуга это электрический разряд в газе (в нашем случае воздух).
Дугогасящая катушка – (рассмотрим дугогасящую катушку в обычном АВ –автоматическом выключателе) – это приспособление лабиринтообразного типа в которое попадает дуга и проходя данный лабиринт затухает.
Принцип работы данной схемы
При нажатии кнопки «Влево» происходит втягивание сердечника контактора КМ 1 и замыкание его силовой части, двигатель приходит во вращение.
Если необходимо остановить электродвигатель, то нажимаем кнопку «Стоп», которая в свою очередь полностью обесточивает управляющую цепь контактора и он приходит в исходное положение (разрывает контакты силовой части).
Двигатель отключается.
Если же необходимо включить двигатель в обратную сторону (реверс), то при нажатии кнопки «Вправо» привод отключает контакт КМ1.2 или КМ2.2 (в зависимости от ситуации, что раньше было включено), и после отключения задействуется управляющая цепь другого контактора и на двигателе включается реверсивный режим.
ВАЖНО! – при монтаже управляющих цепей необходимо на клавиши подавать фазу а не ноль. Это необходимо делать в целях безопасности. Ведь в случае обслуживания электрических цепей провода будут под фазным потенциалом.
Контакторы, кабеля и автоматические выключатели необходимо выбирать в соответствии с характеристиками электродвигателя (учитывать пусковые и рабочие токи). Данная информация всегда наносится на сам контактор. А характеристики двигателя вы можете найти на технической табличке приделанной к двигателю.
Также необходимо всегда смотреть на какой ток рассчитана катушка контактора во избежании поломки (сгорания).
Необходимо обращать внимание на схему контактора, ведь они имеют как нормально замкнутые так и нормально разомкнутые контакты. (Нормально разомкнутые чаще всего имеют приставки к контакторам, устанавливаемые сверху).
Классы чувствительности автоматических выключателей (АВ).
А – срабатывает при превышении номинального тока на 30% (применяется для защиты управляющих цепей контакторов).
В – срабатывает при превышении номинального тока на 200%.
С — срабатывает при превышении номинального тока в 5 раз от номинального значения автоматического выключателя.
D — срабатывает при превышении номинального тока в 10 раз от номинального значения автоматического выключателя.
Таблица выбора кабеля по току. (Таблица 1)
На управляющие цепи контакторов подойдут кабеля сечением 1.5 мм2 (Cu) и 2.5 (Al).
Выбор (расчёт) нужного сечения кабеля под нагрузку
Расчёт силы тока исходя из мощности и напряжения
Формула — I = W/U.
Практическая часть
Задача №1
Дан асинхронный двигатель с короткозамкнутым ротором мощностью 2 кВт подключенный к трёхфазной сети 380V. Определите силу тока и подберите кабель соответствующего сечения способного выдержать нагрузку электродвигателя.
Дано:
U=380V
W=2кВт
I=?
Варианты:
Напряжение электродвигателя | Мощность | |
1 | 380V | 4kWt |
2 | 380V | 6k |
3 | 380V | 15kWT |
4 | 380V | 20kWt |
5 | 380V | 40kWt |
6 | 220V | 1.5kWt |
7 | 220V | 8kWt |
8 | 220V | 18kWt |
9 | 220V | 45kWt |
Решение:
Найдём силу тока проходящую через двигатель, переведём киловатты в ватты (1кВт=1000Вт)
1)2кВт*1000Вт = 2000Вт
2) 2000Вт : 380V = 5.26А. (Потребляет асинхронный двигатель в номинальном режиме).
Исходя из Таблицы 1 мы видим, что для нашего двигателя необходим кабель сечением 1.5мм2 (Cu) – (Данный кабель может выдержать 16А при напряжении 380V) или 2.5мм2 (Al) – (Данный кабель может выдержать 19А при напряжении 380V). Оба кабеля способны выдержать нагрузку этого асинхронного двигателя. Кабели выбраны с большим запасом по мощности и способны вынести как номинальный так и пусковой токи.
Задача №2
Дан асинхронный двигатель с короткозамкнутым ротором. При его подключении электрик соединил его обмотки в треугольник и подключил его к сети, после запуска двигателя амперметр начал показывать значение 200А. Определите, какого сечения кабель использовал электрик чтобы подключить данный двигатель и высчитайте его мощность, а также определите от какой сети запитан двигатель.
Варианты:
№ Варианта | Сила тока (I) | Способ соединения обмоток |
1 | 50 | Звезда |
2 | 27 | Треугольник |
3 | 34 | Треугольник |
4 | 58 | Звезда |
5 | 96 | Звезда |
6 | 44 | Треугольник |
7 | 63 | Звезда |
8 | 87 | Звезда |
9 | 21 | Треугольник |
Решение:
При подключении к сети 380V обмотки соединяются в звезду, а при подключении к сети 220V – в треугольник с включением в обмоточный сектор пускового конденсатора.
Т.к электрик соединил обмотки в звезду, то напряжение поданное на двигатель составляет 380V.
Формула мощности
P=U*I
P=220*200=44000Вт=44kWt
Согласно таблице 1 для двигателя мощностью 44kWt необходим кабель с сечением 70мм2 (Cu) и 120мм2 (Al). Сечение берется с небольшим запасом, чтобы кабель работал не на пределе, а также с учётом температуры окр.среды и способа прокладки.
Задача №3.
На фабрику был доставлен асинхронный двигатель мощностью 13kWT. В щит куда он будет подключен находится под напряжением 380V. Определите тип соединения обмоток в двигателе, силу тока в номинальном режиме и рассчитайте сечение кабеля для подключения двигателя к силовой части реверсивного пускателя.
Варианты:
№ Варианта | Напряжение электродвигателя | Мощность |
1 | 380V | 20 kWt |
2 | 220V | 29 kWt |
3 | 220V | 50 kWt |
4 | 380V | 150 kWt |
5 | 220V | 2 kWt |
6 | 380V | 69 kWt |
7 | 220V | 24 kWt |
8 | 380V | 100 kWt |
9 | 380V | 9 kWt |
Решение:
При подключении к сети 380V обмотки соединяются в звезду, а при подключении к сети 220V – в треугольник с включением в обмоточный сектор пускового конденсатора.
В нашем случае 380V. Значит обмотки соединяются в «звезду».
1кВт-1000Вт
1) 13кВт*1000=13000.
2) 13000 : 380 = 34.2А. (Двигатель потребляет в номинальном режиме)
Исходя из Таблицы 1 для асинхронного двигателя потребляющего 34.2 А и работающего от сети 380V необходим кабель сечением 6мм2 (Cu) и 10мм2 (Al).
Вывод: При подключении электродвигателя через реверсивный электромагнитный пускатель необходимо знать схему подключения, знать принцип работы компонентов данной схемы, и уметь делать расчёты для правильного выбора коммутационной аппаратуры (также знать свойства автоматических выключателей), а также для правильной подборки проводника (кабеля).
Реверс двигателя постоянного и переменного тока: схемы подключения
Реверс двигателя — это изменение вращения ротора на противоположное. Изменить направление вращения можно у электродвигателя постоянного тока, асинхронного и коллекторного двигателя переменного тока. Сложно представить себе устройство, в котором не применяется реверсивное вращение электродвигателя. Без изменения вращения невозможно представить работу тельфера, кран-балки, лебедок, грузоподъемных механизмов, лифтов, задвижек и т.п. Исключение составляют такие устройства, как заточные станки, вытяжки и т.д. В этой статье мы расскажем читателям сайта Сам Электрик, как осуществить реверс электродвигателей разных типов.Реверсивное включение двигателей постоянного тока
Наиболее просто осуществить реверс двигателя постоянного тока, у которого статор с постоянными магнитами. Достаточно изменить полярность питания, чтобы ротор начал вращаться в обратную сторону.
Сложнее осуществить реверсирование мотора с электромагнитным возбуждением (последовательным, параллельным). Если просто поменять полярность питающего напряжения, то направление вращения ротора не изменится. Чтобы изменить направление вращения, достаточно поменять полярность только в обмотке возбуждения или только на щетках ротора.
Для осуществления реверса двигателей большой мощности полярность следует менять на якоре. Разрыв обмотки возбуждения на работающем моторе может привести к неисправности, т.к. возникающая ЭДС имеет повышенное напряжение, которое способно повредить изоляцию обмоток. Что приведет к выходу электродвигателя из строя.
Для осуществления обратного направления вращения ротора применяют мостовые схемы на реле, контакторах или транзисторах. В последнем случае можно и регулировать скорость вращения.
На рисунке представлена схема на транзисторах. В качестве иллюстрации работы транзисторы заменены контактами переключателя. Аналогично выполняются мостовые схемы не на биполярных, а на полевых транзисторах.
КПД такой схемы значительно выше, чем на транзисторах. Управление осуществляется микроконтроллером или простыми логическими схемами, предотвращающими одновременную подачу сигналов.
Изменение направления вращения ротора асинхронного двигателя
Наибольшее распространение в промышленности получили асинхронные двигатели, запитанные от трехфазного напряжения 380 вольт. Для того чтобы осуществить реверс, достаточно поменять две любые фазы.
Получила распространение схема подключения, выполненная на двух магнитных пускателях. Собственно для двигателей постоянного тока она аналогична, но используются двухполюсные контакторы или пускатели. Эту схему так и называют «схема реверсивного пускателя» или «реверсивная схема пуска асинхронного трёхфазного электродвигателя».
При включении пускателя КМ1 кнопкой «Пуск 1», происходит прямая подача напряжения на обмотки и блокируется кнопка «Пуск 2» от случайного включения, посредством размыкания нормально-замкнутых контактов КМ-1. Двигатель вращается в одну сторону.
После отключения пускателя КМ1 кнопкой «Стоп» или полным снятием напряжения, можно включить КМ2 кнопкой «Пуск 2». В результате через контакты линия L2 подается напрямую, а L1 и L3 меняются местами. Кнопка «Пуск 1» заблокирована, так как нормально-замкнутые контакты пускателя КМ2 приводятся в движение и размыкаются. Двигатель начинает вращаться в другую сторону.
Схема применяется повсеместно и по сей день для подключения трехфазного двигателя в трехфазной сети. Простота схемного решения и доступность комплектующих — её весомые преимущества.
Наибольшее распространение находят электронные системы управления. Коммутационные схемы, которых собранные на тиристорах без пускателей. Хотя пускатели могут быть и установлены для дистанционного включения или выключения в этой цепи.
Они сложнее, но и надежнее устройств на контакторах. Для управления используется системы импульсно-фазного управления (СИФУ), системы частотного управления. Это многофункциональные устройства, с их помощью можно не только осуществлять реверс асинхронного электродвигателя, но и регулировать частоту вращения.
В домашних условиях возникает необходимость подключения двигателя 380В на 220 с реверсом. Для этого необходимо произвести переключение обмоток звезда треугольник. Подробнее мы рассматривали различия этих схем в статье размещенной на сайте ранее: https://samelectrik.ru/chto-takoe-zvezda-i-treugolnik-v-elektrodvigatele.html.
Однако, если предполагается подключение трехфазного электродвигателя к однофазной сети, то для этого применяется конденсатор, который подключается по нижеприведенной схеме.
При этом чтобы осуществить реверс, достаточно переключить провод сети с В на клемму А, а конденсатор отсоединить от А и подсоединить к клемме В. Удобно это сделать с помощью 6-контактного тумблера. Это типовое включение асинхронного электродвигателя к сети 220В с конденсатором.
Схема подключения коллекторного двигателя с реверсом
Чтобы осуществить реверс коллекторного двигателя, необходимо знать:
- Не на каждом коллекторном моторе можно осуществить реверс. Если на корпусе указана стрелка вращения, то его нельзя применять в реверсивных устройствах.
- Все двигатели, имеющие высокие обороты предназначены для вращения в одну сторону. Например, у электродвигателя, устанавливаемого в болгарках.
- У двигателя, который имеет небольшие обороты, вращение может осуществляться в разные стороны. Такие моторы смонтированы в электроинструментах, например, электродрелях, шуруповертах, стиральных машинах и т.п.
На рисунке представлена схема универсального коллекторного двигателя, который может работать как от постоянного, так и переменного тока.
Чтобы изменилось вращение ротора, достаточно поменять полярность напряжения на обмотке ротора или статора, как и в двигателях постоянного тока, от которых универсальные машины практически не отличаются.
Если просто изменить полярность подводящего напряжения на коллекторном двигателе, направление вращения ротора не изменится. Это необходимо учитывать при подключении электродвигателя к сети.
Также следует знать, что в моторах большой мощности коммутируют обмотку якоря. При переключении обмоток статора возникает напряжение самоиндукции, которое достигает величин, способных вывести двигатель из строя.
Конструктора-любители в своих поделках применяют различные типы двигателей. Зачастую они используют щеточный электродвигатель от стиральной машинки автомат. Это удобные моторчики, которые можно подключать непосредственно к сети 220 вольт. Они не требуют дополнительных конденсаторов, а регулировку оборотов можно легко производить с помощью стандартного диммера. На клеммную колодку выводятся шесть или семь выводов.
Зависит от типа двигателя:
- Два идут на щетки коллектора.
- От таходатчика на колодку приходит пара проводов.
- Обмотки возбуждения могут иметь два или три провода. Третий служит для изменения скорости вращения.
Чтобы выполнить реверс двигателя от стиральной машины, следует поменять местами выводы обмотки возбуждения. Если имеется третий вывод, то его не используют.
Схема реверса электродвигателя на ардуино
В конструировании моделей или робототехнике часто применяются небольшие щеточные электродвигатели постоянного тока, для управления которыми используется программируемый микроконтроллер ардуино.
Если вращение двигателя предполагается только в одну сторону, и мощность электродвигателя небольшая, а напряжение питания от 3,3 до 5 вольт, то схему можно упростить и запитать непосредственно от ардуино, но так делают редко.
В моделях с дистанционным управлением, где необходимо использовать реверс моторов с напряжением более 5В, применяют ключи, собранные по мостовой схеме. В этом случае схема подключения двигателя с реверсом на ардуино будет выглядеть подобно тому что изображено ниже. Такое включение применяется чаще всего.
В мостовой схеме могут применяться полевые транзисторы или специальное согласующее устройство — драйвер, с помощью которого подключаются мощные моторчики.
В заключение отметим, что собирать схему реверса электродвигателя должен подготовленный специалист. Однако, при самостоятельном подключении необходимо соблюдать условия техники безопасности, выбрать подходящую схему соединения и подобрать необходимые комплектующие, строго следуя инструкции по монтажу. В этом случае у конструктора не возникнет трудностей в подключении и эксплуатации электродвигателя.
Теперь вы знаете, что такое реверс электродвигателя и какие схемы подключения для этого используют. Надеемся, предоставленная информация была для вас полезной и интересной!
Материалы по теме:
Запуск двигателя — Введение
Электродвигатель, приводящий в движение насос
Запуск двигателя и связанные с ним проблемы хорошо известны многим людям, которые работали с крупными производственными процессами. Этот пост представляет собой краткое введение в запуск двигателя.
Двигатели используются более 100 лет, и за это время в их работе практически не произошло изменений. Асинхронный двигатель на сегодняшний день является наиболее широко используемым двигателем в промышленности и строительстве.Таким образом, в этой книге основное внимание уделяется применению пуска двигателей в сочетании с асинхронными двигателями.
Асинхронные двигатели используют взаимодействие магнитных полей для преобразования электроэнергии в мощность вращения. Наращивание магнитных полей и противодвижущей силы или противо-эдс во время пуска двигателя вводит в электрическую систему переходные условия. Эти переходные процессы могут повлиять на систему электроснабжения и другое подключенное к ней оборудование.Основными причинами, по которым запуск двигателя уделяется внимание, являются: ограничение переходных процессов; и для обеспечения правильного ускорения двигателя механической нагрузкой.
Время пуска двигателя, пусковой ток и переходные процессы при пуске.
Время пуска двигателя — это период с момента, когда к двигателю подключено электрическое питание, до момента, когда двигатель разгоняется до полной скорости. Продолжительность периода пуска зависит от комбинации двигателя и механической нагрузки и может составлять от долей секунды до 30 секунд и более.
В период запуска требуется высокий уровень тока, который может отрицательно повлиять на систему электроснабжения и другое подключенное к ней оборудование. Продолжительность переходных процессов пуска зависит от характеристик нагрузки и от того, сколько времени требуется двигателю, чтобы набрать скорость.
На рисунке ниже показано, что происходит во время запуска двигателя. В течение периода пуска потребляется ток, значительно превышающий нормальный рабочий ток двигателя при полной нагрузке, магнитные поля внутри двигателя и противоэдс увеличиваются, а механическая нагрузка ускоряется.Пусковой ток может в пять-восемь раз превышать ток полной нагрузки.
Ток двигателя во время запуска и работы
Электрические системы спроектированы с учетом условий установившегося периода работы. Размеры кабелей рассчитаны таким образом, чтобы соответствовать условиям работы в установившемся режиме, а падение напряжения в электрической системе рассчитывается на основе условий работы в установившемся режиме.
Во время пуска двигателя кабели будут пропускать больше тока, чем во время установившегося периода работы.Падение напряжения в системе также будет намного больше во время периода пуска, чем во время периода работы в установившемся режиме — это становится особенно очевидным, когда запускаются большие двигатели и / или если одновременно запускаются многие двигатели.
Если падение напряжения на самом двигателе слишком велико во время периода пуска, двигатель может быть не в состоянии развивать достаточный крутящий момент для ускорения механической нагрузки. Кроме того, падение напряжения в электрической системе может повлиять на другое оборудование, вплоть до отказов.
По мере того, как двигатели стали широко использоваться, инженеры стали беспокоиться о проблемах с запуском двигателей. За прошедшие годы было разработано множество методов и приемов, каждый со своими преимуществами и ограничениями, для решения проблем, связанных с запуском двигателя.
Чаще всего используются следующие методы пуска двигателя:
- Прямой пуск
- Звезда-треугольник
- Автотрансформатор
- Первичное сопротивление
- Сопротивление ротора
- Электронный плавный пуск
Прямое включение и звезда-треугольник На сегодняшний день это наиболее часто используемые методы запуска двигателя.Однако в последнее время были достигнуты огромные успехи в использовании электроники для регулирования подачи электроэнергии на двигатели, и электронный пуск быстро догоняет DOL и звезду-треугольник. Эти достижения можно использовать для того, чтобы двигатель работал с очень специфическими характеристиками ускорения.
Это введение в запуск двигателя — отрывок из моей небольшой вводной книги по этой теме. Если вы хотите углубиться в процесс запуска двигателя и понять, как работают различные типы стартеров, обратитесь к книге.
Оглавление
Введение в запуск двигателя
Пуск от сети
Пуск звезда-треугольник
Пуск с автотрансформатором
Пуск по первичному сопротивлению
Пуск по сопротивлению ротора
Электронный плавный пуск
Приводы с переменной частотой
Сводка методов пуска двигателя
Как рассчитать время запуска двигателя
Полезная техническая информация о двигателе
Типовая информация о конструкции запуска двигателя
Список символов и глоссарий
Книга доступна в формате электронной книги в мягкой обложке во всех магазинах Amazon.
.Цепь плавного пуска двигателя с ШИМдля предотвращения высокого потребления при включении питания
В сообщении объясняется эффективная схема плавного пуска двигателя с ШИМ, которая может использоваться для включения тяжелых двигателей с плавным пуском и, таким образом, предотвращения потребления оборудования опасными высокими токами.
Почему мягкий пуск
Двигатели высокой мощности, такие как двигатели насосов или другие виды двигателей тяжелой промышленности, имеют тенденцию потреблять большой ток во время их первоначального включения питания, что, в свою очередь, воздействует на соответствующие предохранители и переключатели, вызывая их либо перегорание, либо деградировать сверхурочно.Чтобы исправить ситуацию, крайне необходима схема плавного пуска.
В нескольких из моих предыдущих статей мы обсуждали связанные темы, которые вы можете подробно изучить в следующих сообщениях:
Схема плавного пуска для двигателей насосов
Схема плавного пуска для холодильников
Хотя приведенные выше конструкции весьма полезны , с их подходом их можно считать слегка низкотехнологичными.
В этой статье мы увидим, как этот процесс может быть реализован с использованием очень сложной схемы контроллера плавного пуска двигателя на основе ШИМ.
Использование концепции ШИМ
Идея состоит в том, чтобы применять постепенно увеличивающуюся ШИМ к двигателю каждый раз, когда он включается, это действие позволяет двигателю достигать линейно возрастающей скорости от нуля до максимума в течение установленного периода времени, что может быть регулируемым.
Примечание. Используйте конфигурацию Darlington BC547 на выводе № 5 IC2 вместо одного BC547. Это обеспечит более эффективный отклик по сравнению с одним BC547
Пример схемы для регулируемого контроллера мотора 48 В с плавным пуском
## ПОЖАЛУЙСТА, ПОДКЛЮЧИТЕ 1К ОТ КОНТАКТА 5 IC2 К ЗАЗЕМЛЕНИЮ, КОТОРАЯ НЕПРАВИЛЬНО НЕ ПОКАЗАНА В ВЫШЕ ДИЗАЙНЕ ##Как это работает
Как показано на рисунке выше, получение ШИМ с линейным приращением достигается с помощью двух ИС 555, настроенных в их стандартном режиме ШИМ.
Я уже подробно обсуждал эту концепцию в одной из своих предыдущих статей, объясняющих, как использовать IC 555 для генерации ШИМ.
Как видно из схемы, в конфигурации используются две микросхемы 555, причем IC1 подключен как нестабильный, а IC2 — как компаратор.
IC1 генерирует необходимые тактовые сигналы на заданной частоте (определяемой значениями R1 и C2), которые поступают на контакт № 2 IC2.
IC2 использует тактовый сигнал для генерации треугольных волн на своем выводе №7, чтобы их можно было сравнить с потенциалом, имеющимся на его выводе управляющего напряжения №5.
Контакт № 5 получает необходимое управляющее напряжение через каскад эмиттерного повторителя NPN, созданный с помощью T2 и связанных компонентов.
При включении питания на T2 подается линейное или постепенно увеличивающееся напряжение на его базе через R9, и благодаря пропорциональной зарядке C5.
Этот линейный потенциал соответствующим образом дублируется на эмиттере T2 по отношению к напряжению питания на его коллекторе, что означает, что базовые данные преобразуются в постепенно возрастающий потенциал в диапазоне от нуля до почти уровня напряжения питания.
Это нарастающее напряжение на выводе № 5 IC 2 мгновенно сравнивается с имеющейся треугольной волной на выводе № 7 IC2, которая преобразуется в линейно нарастающий ШИМ на выводе № 3 IC2.
Процесс линейного увеличения ШИМ продолжается до тех пор, пока C5 не будет полностью заряжен и база T2 не достигнет стабильного уровня напряжения.
Приведенная выше конструкция обеспечивает генерацию ШИМ при каждом включении питания.
Видеоклип:
В следующем видео показан практический результат тестирования вышеуказанной схемы ШИМ, реализованной на двигателе 24 В постоянного тока.На видео показан отклик регулятора PWM цепи на двигателе, а также реакция светодиода дополнительного индикатора батареи, когда двигатель включен и выключен.
Интеграция контроллера симистора с переходом через ноль
Для реализации эффекта схемы плавного пуска двигателя с ШИМ выходной сигнал от контакта № 3 IC2 необходимо подать на схему драйвера питания симистора, как показано ниже:
На изображении выше показано, как включение ШИМ-управления плавным пуском может быть реализовано на тяжелых двигателях по назначению.
На изображении выше мы видим, как изоляторы драйвера симистора с детектором пересечения нуля могут использоваться для управления двигателями с линейно увеличивающимися ШИМ для выполнения эффекта плавного пуска.
Вышеупомянутая концепция эффективно обеспечивает защиту от перегрузки по току при запуске однофазных двигателей.
Однако в случае трехфазного
.