Содержание: Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя. Подключение 3х фазного двигателя на 220 без конденсаторовКак правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении. Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка.
При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа. Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней.
Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 1200С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов. Подключение электродвигателя 380в на 220в через конденсаторДля нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.
Такого усилия совершенно недостаточно для сдвига и вращения ротора. Поэтому для того чтобы сдвинуть фазу полюсного тока, необходимо воспользоваться фазосдвигающими конденсаторами. Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора. Расчет конденсатора для трехфазного двигателя в однофазной сети:
В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора. Подключение 3х фазного двигателя на 220 без потери мощностиНаиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором. Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети. При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. После этого конденсатор сразу же отключается и разряжается.
|
Многие хозяева, особенно владельцы частных домов или дач, используют оборудование с двигателями на 380 В, работающими от трехфазной сети. Если к участку подведена соответствующая схема питания, то никаких сложностей с их подключением не возникает. Однако довольно часто возникает ситуация, когда питание участка осуществляется только одной фазой, то есть подведено лишь два провода – фазный и нулевой. В таких случаях приходится решать вопрос, как подключить трехфазный двигатель к сети 220 вольт. Это можно сделать различными способами, однако следует помнить, что подобное вмешательство и попытки изменить параметры, приведет к падению мощности и снижению общей эффективности работы электродвигателя. Подключение 3х фазного двигателя на 220 без конденсаторовКак правило, схемы без конденсаторов применяются для запуска в однофазной сети трехфазных двигателей малой мощности – от 0,5 до 2,2 киловатта. Времени на запуск тратится примерно столько же, как и при работе в трехфазном режиме. В этих схемах применяются симисторы, под управлением импульсов с различной полярностью. Здесь же присутствуют симметричные динисторы, подающие сигналы управления в поток всех полупериодов, имеющихся в питающем напряжении. Существует два варианта подключения и запуска. Первый вариант используется для электродвигателей, с частотой оборотов менее чем 1500 в минуту. Соединение обмоток выполнено треугольником. В качестве фазосдвигающего устройства используется специальная цепочка. Обратите внимание При достижении в конденсаторе уровня напряжения необходимого для переключения, происходит срабатывание динистора и симистора, вызывающее активацию силового двунаправленного ключа. Второй вариант используется при запуске двигателей, частота вращения которых составляет 3000 об/мин. В эту же категорию входят устройства, установленные на механизмах, требующих большого момента сопротивления во время запуска. В этом случае необходимо обеспечение большого пускового момента. С этой целью в предыдущую схему были внесены изменения, и конденсаторы, необходимые для сдвига фаз, были заменены двумя электронными ключами. Первый ключ последовательно соединяется с фазной обмоткой, приводя к индуктивному сдвигу тока в ней. Данная схема подключения учитывает обмотки двигателя, смещенные в пространстве между собой на 1200С. При настройке определяется оптимальный угол сдвига тока в обмотках фаз, обеспечивающий надежный пуск устройства. При выполнении этого действия вполне возможно обойтись без каких-либо специальных приборов. Подключение электродвигателя 380в на 220в через конденсаторДля нормального подключения следует знать принцип действия трехфазного двигателя. При включении в трехфазную сеть, по его обмоткам в разные моменты времени поочередно начинает идти ток. То есть в определенный отрезок времени ток проходит через полюса каждой фазы, создавая так же поочередно магнитное поле вращения. Он оказывает влияние на обмотку ротора, вызывая вращение путем подталкивания в разных плоскостях в определенные моменты времени.
Нормальная работа трехфазного электродвигателя во многом зависит от правильного выбора конденсатора. Расчет конденсатора для трехфазного двигателя в однофазной сети:
В случае необходимости обеспечить вращение в разные стороны, выполняется установка дополнительного тумблера, переключающего направление вращения ротора. Первый основной выход тумблера подключается к конденсатору, второй – к нулевому, а третий – к фазному проводу. Если подобная схема способствует падению мощности или слабому набору оборотов, в этом случае может потребоваться установка дополнительного пускового конденсатора. Подключение 3х фазного двигателя на 220 без потери мощностиНаиболее простым и эффективным способом считается подключение трехфазного двигателя в однофазную сеть путем подключения третьего контакта, соединенного с фазосдвигающим конденсатором. Наибольшая выходная мощность, которую возможно получить в бытовых условиях, составляет до 70% от номинальной. Такие результаты получаются в случае использования схемы «треугольник». Два контакта в распределительной коробке напрямую соединяются с проводами однофазной сети. Соединение третьего контакта выполняется через рабочий конденсатор с любым из первых двух контактов или проводов сети. При отсутствии нагрузок, трехфазный двигатель возможно запускать с помощью только рабочего конденсатора. Однако при наличии даже небольшой нагрузки, обороты будут набираться очень медленно, или двигатель вообще не запустится. В этом случае потребуется дополнительное подключение пускового конденсатора. Он включается буквально на 2-3 секунды, чтобы обороты двигателя могли достигнуть 70% от номинальных. После этого конденсатор сразу же отключается и разряжается. |
Как подобрать конденсатор для однофазного электродвигателя или трехфазного
Что делать, если требуется подключить двигатель к источнику, рассчитанному на другой тип напряжения (например, трехфазный двигатель к однофазной сети)? Такая необходимость может возникнуть, в частности, если нужно подключить двигатель к какому-либо оборудованию (сверлильному или наждачному станку и пр.). В этом случае используются конденсаторы, которые, однако, могут быть разного типа. Соответственно, надо иметь представление о том, какой емкости нужен конденсатор для электродвигателя, и как ее правильно рассчитать.
Что такое конденсатор
Конденсатор состоит из двух пластин, расположенных друг напротив друга. Между ними помещается диэлектрик. Его задача – снимать поляризацию, т.е. заряд близкорасположенных проводников.
Существует три вида конденсаторов:
- Полярные. Не рекомендуется использовать их в системах, подключенных к сети переменного тока, т.к. вследствие разрушения слоя диэлектрика происходит нагрев аппарата, вызывающий короткое замыкание.
- Неполярные. Работают в любом включении, т.к. их обкладки одинаково взаимодействуют с диэлектриком и с источником.
- Электролитические (оксидные). В роли электродов выступает тонкая оксидная пленка. Считаются идеальным вариантом для электродвигателей с низкой частотой, т.к. имеют максимально возможную емкость (до 100000 мкФ).
Как подобрать конденсатор для трехфазного электродвигателя
Задаваясь вопросом: как подобрать конденсатор для трехфазного электродвигателя, нужно принять во внимание ряд параметров.
Чтобы подобрать емкость для рабочего конденсатора, необходимо применить следующую расчетную формулу: Сраб.=k*Iф / U сети, где:
- k – специальный коэффициент, равный 4800 для подключения «треугольник» и 2800 для «звезды»;
- Iф – номинальное значение тока статора, это значение обычно указывается на самом электродвигателе, если же оно затерто или неразборчиво, то его измеряют специальными клещами;
- U сети – напряжение питания сети, т.е. 220 вольт.
Таким образом вы рассчитаете емкость рабочего конденсатора в мкФ.
Еще один вариант расчета – принять во внимание значение мощности двигателя. 100 Ватт мощности соответствуют примерно 7 мкФ емкости конденсатора. Осуществляя расчеты, не забывайте следить за значением тока, поступающего на фазную обмотку статора. Он не должен иметь большего значения, чем номинальный показатель.
В случае, когда пуск двигателя производится под нагрузкой, т.е. его пусковые характеристики достигают максимальных величин, к рабочему конденсатору добавляется пусковой. Его особенность заключается в том, что он работает примерно в течение трех секунд в период пуска агрегата и отключается, когда ротор выходит на уровень номинальной частоты вращения. Рабочее напряжение пускового конденсатора должно быть в полтора раза выше сетевого, а его емкость – в 2,5-3 раза больше рабочего конденсатора. Чтобы создать необходимую емкость, вы можете подключить конденсаторы как последовательно, так и параллельно.
Как подобрать конденсатор для однофазного электродвигателя
Асинхронные двигатели, рассчитанные на работу в однофазной сети, обычно подключаются на 220 вольт. Однако если в трехфазном двигателе момент подключения задается конструктивно (расположение обмоток, смещение фаз трехфазной сети), то в однофазном необходимо создать вращательный момент смещения ротора, для чего при запуске применяется дополнительная пусковая обмотка. Смещение ее фазы тока осуществляется при помощи конденсатора.
Итак, как подобрать конденсатор для однофазного электродвигателя?
Чаще всего значение общей емкости Сраб+Спуск (не отдельного конденсатора) таково: 1 мкФ на каждые 100 ватт.
Есть несколько режимов работы двигателей подобного типа:
- Пусковой конденсатор + дополнительная обмотка (подключаются на время запуска). Емкость конденсатора: 70 мкФ на 1 кВт мощности двигателя.
- Рабочий конденсатор (емкость 23-35 мкФ) + дополнительная обмотка, которая находится в подключенном состоянии в течение всего времени работы.
- Рабочий конденсатор + пусковой конденсатор (подключены параллельно).
Если вы размышляете: как подобрать конденсатор к электродвигателю 220в, стоит исходить из пропорций, приведенных выше. Тем не менее, нужно обязательно проследить за работой и нагревом двигателя после его подключения. Например, при заметном нагревании агрегата в режиме с рабочим конденсатором, следует уменьшить емкость последнего. В целом, рекомендуется выбирать конденсаторы с рабочим напряжением от 450 В.
Как выбрать конденсатор для электродвигателя – вопрос непростой. Для обеспечения эффективной работы агрегата нужно чрезвычайно внимательно рассчитать все параметры и исходить из конкретных условий его работы и нагрузки.
Включение 3-фазного двигателя в однофазную сеть
Среди различных способов запуска трехфазных электродвигателей в однофазную сеть наиболее простой базируется на подключении третьей обмотки через фазосдвигающий конденсатор. Полезная мощность, развиваемая двигателем в этом случае, составляет 50…60% от его мощности в трехфазном включении.
Электрическая принципиальная схема подключения 3-х фазного двигателя.
Не все трехфазные электродвигатели, однако, хорошо работают при подключении к однофазной сети. Среди таких электродвигателей можно выделить, например, модель с двойной клеткой короткозамкнутого ротора серии МА.
В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.
Для нормальной работы электродвигателя с конденсаторным пуском необходимо, чтобы емкость используемого конденсатора менялась в зависимости от числа оборотов. На практике это условие выполнить довольно сложно, поэтому используют двухступенчатое управление двигателем. При пуске двигателя подключают два конденсатора, а после разгона один конденсатор отключают и оставляют только рабочий конденсатор.
Расчет параметров и элементов электродвигателя
Рисунок 1. Принципиальная схема включения трехфазного электродвигателя в сеть 220 В: С р – рабочий конденсатор; С п – пусковой конденсатор; П1 – пакетный выключатель.
Если, например, в паспорте электродвигателя указано напряжение его питания 220/380 В, то двигатель включают в однофазную сеть по схеме, представленной на рис. 1.
После включения пакетного выключателя П1 замыкаются контакты П1.1 и П1.2, после этого необходимо сразу же нажать кнопку “Разгон”.
После набора оборотов кнопка отпускается. Реверсирование электродвигателя осуществляется путем переключения фазы на его обмотке тумблером SA1.
Емкость рабочего конденсатора Ср в случае соединения обмоток двигателя в “треугольник” определяется по формуле:
, где
- Ср – емкость рабочего конденсатора, в мкФ;
- I – потребляемый электродвигателем ток, в А;
- U -напряжение в сети, В.
А в случае соединения обмоток двигателя в “звезду” определяется по формуле:
, где
- Ср – емкость рабочего конденсатора, в мкФ;
- I – потребляемый электродвигателем ток, в А;
- U -напряжение в сети, В.
Потребляемый электродвигателем ток в вышеприведенных формулах, при известной мощности электродвигателя, можно вычислить из следующего выражения:
, где
- Р – мощность двигателя, в Вт, указанная в его паспорте;
- h – КПД;
- cos j – коэффициент мощности;
- U -напряжение в сети, В.
Рисунок 2. Принципиальная схема соединения электролитических конденсаторов для использования их в качестве пусковых конденсаторов.
Емкость пускового конденсатора Сп выбирают в 2…2,5 раза больше емкости рабочего конденсатора. Эти конденсаторы должны быть рассчитаны на напряжение в 1,5 раза больше напряжения сети.
Для сети 220 В лучше использовать конденсаторы типа МБГО, МБПГ, МБГЧ с рабочим напряжением 500 В и выше. При условии кратковременного включения в качестве пусковых конденсаторов можно использовать и электролитические конденсаторы типа К50-3, ЭГЦ-М, КЭ-2 с рабочим напряжением не менее 450 В.
Для большей надежности электролитические конденсаторы соединяют последовательно, соединяя между собой их минусовые выводы, и шунтируют диодами (рис. 2)
Общая емкость соединенных конденсаторов составит:
На практике величину емкостей рабочих и пусковых конденсаторов выбирают в зависимости от мощности двигателя. Значение емкостей рабочих и пусковых конденсаторов трехфазного электродвигателя в зависимости от его мощности при включении в сеть 220 В.
Мощность трехфазного
двигателя, кВт:
- 0,4;
- 0,6;
- 0,8;
- 1,1;
- 1,5;
- 2,2.
Минимальная емкость рабочего
конденсатора Ср, мкФ:
- 40;
- 60;
- 80;
- 100;
- 150;
- 230.
Минимальная емкость пускового
конденсатора Ср, мкФ:
- 80;
- 120;
- 160;
- 200;
- 250;
- 300.
Следует отметить, что у электродвигателя с конденсаторным пуском в режиме холостого хода по обмотке, питаемой через конденсатор, протекает ток, на 20…30 % превышающий номинальный. В связи с этим, если двигатель часто используется в недогруженном режиме или вхолостую, емкость конденсатора Ср следует уменьшить. Может случиться, что во время перегрузки электродвигатель остановился, тогда для его запуска снова подключают пусковой конденсатор, сняв нагрузку вообще или снизив ее до минимума.
Емкость пускового конденсатора Сп можно уменьшить при пуске электродвигателей на холостом ходу или с небольшой нагрузкой. Для включения, например, электродвигателя АО2 мощностью 2,2 кВт на 1420 об./мин можно использовать рабочий конденсатор емкостью 230 мкФ, а пусковой – 150 мкФ. В этом случае электродвигатель уверенно запускается при небольшой нагрузке на валу.
Переносной универсальный блок для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В
Рисунок 3. Принципиальная схема переносного универсального блока для пуска трехфазных электродвигателей мощностью около 0,5 кВт от сети 220 В без реверса.
Для запуска электродвигателей различных серий мощностью около 0,5 кВт от однофазной сети без реверсирования можно собрать переносной универсальный пусковой блок (рис. 3).
При нажатии на кнопку SB1 срабатывает магнитный пускатель КМ1 (тумблер SA1 замкнут) и своей контактной системой КМ 1.1, КМ 1.2 подключает электродвигатель М1 к сети 220 В.
Одновременно с этим третья контактная группа КМ 1.3 замыкает кнопку SB1.
После полного разгона двигателя тумблером SA1 отключают пусковой конденсатор С1.
Остановка двигателя осуществляется нажатием на кнопку SB2.
Детали
В устройстве используется электродвигатель А471А4 (АО2-21-4) мощностью 0,55 кВт на 1420 об./мин и магнитный пускатель типа ПМЛ, рассчитанный на переменный ток напряжением 220 В. Кнопки SB1 и SB2 – спаренные типа ПКЕ612. В качестве переключателя SA1 используется тумблер Т2-1. В устройстве постоянный резистор R1 – проволочный, типа ПЭ-20, а резистор R2 типа МЛТ-2. Конденсаторы С1 и С2 типа МБГЧ на напряжение 400 В. Конденсатор С2 составлен из параллельно соединенных конденсаторов по 20 мкФ 400 В. Лампа HL1 типа КМ-24 и 100 мА.
Рисунок 4. Схема пускового устройства в металлическом корпусе размером 170х140х50 мм.
Пусковое устройство смонтировано в металлическом корпусе размером 170х140х50 мм (рис. 4):
- 1- корпус;
- 2 – ручка для переноски;
- 3 – сигнальная лампа;
- 4 – тумблер отключения пускового конденсатора;
- 5 -кнопки “Пуск” и “Стоп”;
- 6 – доработанная электровилка;
- 7- панель с гнездами разъема.
На верхней панели корпуса расположены кнопки “Пуск” и “Стоп” – сигнальная лампа и тумблер для отключения пускового конденсатора. На передней панели корпуса устройства находится разъем для подключения электродвигателя.
Для отключения пускового конденсатора можно использовать дополнительное реле К1, тогда надобность в тумблере SA1 отпадает, а конденсатор будет отключаться автоматически (рис.5).
Рисунок 5. Принципиальная схема пускового устройства с автоматическим отключением пускового конденсатора.
При нажатии на кнопку SB1 срабатывает реле К1 и контактной парой К1.1 включает магнитный пускатель КМ1, а К1.2 – пусковой конденсатор Сп. Магнитный пускатель КМ1 самоблокируется с помощью своей контактной пары КМ 1.1, а контакты КМ 1.2 и КМ 1.3 подсоединяют электродвигатель к сети.
Кнопку “Пуск” держат нажатой до полного разгона двигателя, а после отпускают. Реле К1 обесточивается и отключает пусковой конденсатор, который разряжается через резистор R2. В это же время магнитный пускатель КМ 1 остается включенным и обеспечивает питание электродвигателя в рабочем режиме.
Для остановки электродвигателя следует нажать кнопку “Стоп”. В усовершенствованном пусковом устройстве по схеме рис.5 можно использовать реле типа МКУ-48 или ему подобное.
Использование электролитических конденсаторов в схемах запуска электродвигателей
При включении трехфазных асинхронных электродвигателей в однофазную сеть, как правило, используют обычные бумажные конденсаторы. Практика показала, что вместо громоздких бумажных конденсаторов можно использовать оксидные (электролитические) конденсаторы, которые имеют меньшие габариты и более доступны в плане покупки.
Рисунок 6. Принципиальная схема замены бумажного конденсатора (а) электролитическим (б, в).
Схема замены обычног бумажного конденсатора дана на рис. 6.
Положительная полуволна переменного тока проходит через цепочку VD1, С2, а отрицательная VD2, С2. Исходя из этого можно использовать оксидные конденсаторы с допустимым напряжением в два раза меньшим, чем для обычных конденсаторов той же емкости.
Например, если в схеме для однофазной сети напряжением 220 В используется бумажный конденсатор на напряжение 400 В, то при его замене по вышеприведенной схеме можно использовать электролитический конденсатор на напряжение 200 В. В приведенной схеме емкости обоих конденсаторов одинаковы и выбираются аналогично методике выбора бумажных конденсаторов для пускового устройства.
Включение трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов
Схема включения трехфазного двигателя в однофазную сеть с использованием электролитических конденсаторов приведена на рис.7.
В приведенной схеме SA1 – переключатель направления вращения двигателя, SB1 – кнопка разгона двигателя, электролитические конденсаторы С1 и С3 используются для пуска двигателя, С2 и С4 – во время работы.
Подбор электролитических конденсаторов в схеме рис. 7 лучше производить с помощью токоизмерительных клещей. Измеряют токи в точках А, В, С и добиваются равенства токов в этих точках путем ступенчатого подбора емкостей конденсаторов. Замеры проводят при нагруженном двигателе в том режиме, в котором предполагается его эксплуатация.
Рисунок 7. Принципиальная схема включения трехфазного двигателя в однофазную сеть при помощи электролитических конденсаторов.
Диоды VD1 и VD2 для сети 220 В выбираются с обратным максимально допустимым напряжением не менее 300 В. Максимальный прямой ток диода зависит от мощности двигателя. Для электродвигателей мощностью до 1 кВт подойдут диоды Д245, Д245А, Д246, Д246А, Д247 с прямым током 10 А.
При большей мощности двигателя от 1 кВт до 2 кВт нужно взять более мощные диоды с соответствующим прямым током или поставить несколько менее мощных диодов параллельно, установив их на радиаторы.
Следует обратить внимание на то, что при перегрузке диода может произойти его пробой и через электролитический конденсатор потечет переменный ток, что может привести к его нагреву и взрыву.
Включение мощных трехфазных двигателей в однофазную сеть
Конденсаторная схема включения трехфазных двигателей в однофазную сеть позволяет получить от двигателя не более 60% от номинальной мощности, в то время как предел мощности электрифицированного устройства ограничивается 1,2 кВт. Этого явно недостаточно для работы электрорубанка или электропилы, которые должны иметь мощность 1,5…2 кВт. Проблема в данном случае может быть решена использованием электродвигателя большей мощности, например 3…4 кВт. Такого типа двигатели рассчитаны на напряжение 380 В, их обмотки соединены «звездой», и в клеммной коробке содержится всего 3 вывода.
Включение такого двигателя в сеть 220 В приводит к снижению номинальной мощности двигателя в 3 раза и на 40 % при работе в однофазной сети. Такое снижение мощности делает двигатель непригодным для работы, но может быть использовано для раскрутки ротора вхолостую или с минимальной нагрузкой. Практика показывает, что большая часть электродвигателей уверенно разгоняется до номинальных оборотов, и в этом случае пусковые токи не превышают 20 А.
Доработка трехфазного двигателя
Наиболее просто можно осуществить перевод мощного трехфазного двигателя в рабочий режим, если переделать его на однофазный режим работы, получая при этом 50 % номинальной мощности. Переключение двигателя в однофазный режим требует небольшой его доработки.
Рисунок 8. Принципиальная схема коммутации обмоток трехфазного электродвигателя для включения в однофазную сеть.
Вскрывают клеммную коробку и определяют, с какой стороны крышки корпуса двигателя подходят выводы обмоток. Отворачивают болты крепления крышки и вынимают ее из корпуса двигателя. Находят место соединения трех обмоток в общую точку и подпаивают к общей точке дополнительный проводник с сечением, соответствующим сечению провода обмотки. Скрутку с подпаянным проводником изолируют изолентой или поливинилхлоридной трубкой, а дополнительный вывод протягивают в клеммную коробку. После этого крышку корпуса устанавливают на место.
Схема коммутации электродвигателя в этом случае будет иметь вид, показанный на рис. 8.
Во время разгона двигателя используется соединение обмоток «звездой» с подключением фазосдвигающего конденсатора Сп. В рабочем режиме в сеть остается включенной только одна обмотка, и вращение ротора поддерживается пульсирующим магнитным полем. После переключения обмоток конденсатор Сп разряжается через резистор Rр. Работа представленной схемы была опробована с двигателем типа АИР-100S2Y3 (4 кВт, 2800 об./мин), установленном на самодельном деревообрабатывающем станке, и показала свою эффективность.
Детали
В схеме коммутации обмоток электродвигателя в качестве коммутационного устройства SA1 следует использовать пакетный переключатель на рабочий ток не менее 16 А, например переключатель типа ПП2-25/Н3 (двухполюсный с нейтралью, на ток 25 А). Переключатель SA2 может быть любого типа, но на ток не менее 16 А. Если реверс двигателя не требуется, то этот переключатель SA2 можно исключить из схемы.
Недостатком предложенной схемы включения мощного трехфазного электродвигателя в однофазную сеть можно считать чувствительность двигателя к перегрузкам. Если нагрузка на валу достигнет половины мощности двигателя, то может произойти снижение скорости вращения вала вплоть до полной его остановки. В этом случае снимается нагрузка с вала двигателя. Переключатель переводится сначала в положение «Разгон», а потом в положение «Работа», после чего продолжают дальнейшую работу.
Для того чтобы улучшить пусковые характеристики двигателей, кроме пускового и рабочего конденсатора можно использовать еще и индуктивность, что улучшает равномерность загрузки фаз.
Как подключить трехфазный — Стройпортал Biokamin-Doma.ru
Подключение трехфазного двигателя к трехфазной сети
Работа трехфазных электродвигателей считается гораздо более эффективной и производительной, чем однофазных двигателей, рассчитанных на 220 В. Поэтому при наличии трех фаз, рекомендуется подключать соответствующее трехфазное оборудование. В результате, подключение трехфазного двигателя к трехфазной сети обеспечивает не только экономичную, но и стабильную работу устройства. В схему подключения не требуется добавление каких-либо пусковых устройств, поскольку сразу же после запуска двигателя, в обмотках его статора образуется магнитное поле. Основным условием нормальной эксплуатации таких устройств является правильное выполнение подключения и соблюдение всех рекомендаций.
Схемы подключения
Магнитное поле, создаваемое тремя обмотками, обеспечивает вращение ротора электродвигателя. Таким образом, электрическая энергия преобразуется в механическую.
Подключение может выполняться двумя основными способами – звездой или треугольником. Каждый из них имеет свои достоинства и недостатки. Схема звезды обеспечивает более плавный пуск агрегата, однако мощность двигателя падает примерно на 30% от номинальной. В этом случае подключение треугольником имеет определенные преимущества, поскольку потеря мощности отсутствует. Тем не менее, здесь тоже есть своя особенность, связанная с токовой нагрузкой, которая резко возрастает во время пуска. Подобное состояние оказывает негативное влияние на изоляцию проводов. Изоляция может быть пробита, а двигатель полностью выходит из строя.
Особое внимание следует уделить европейскому оборудованию, укомплектованному электродвигателями, рассчитанными на напряжения 400/690 В. Они рекомендованы к подключению в наши сети 380 вольт только методом треугольника. В случае подключения звездой, такие двигатели сразу же сгорают под нагрузкой. Данный метод применим только к отечественным трехфазным электрическим двигателям.
В современных агрегатах имеется коробка подключения, в которую выводятся концы обмоток. Их количество может составлять три или шесть. В первом случае схема подключения изначально предполагается методом звезды. Во втором случае электродвигатель может включаться в трехфазную сеть обоими способами. То есть, при схеме звезда три конца, расположенные в начале обмоток соединяются в общую скрутку. Противоположные концы подключаются к фазам сети 380 В, от которой поступает питание. При варианте треугольник все концы обмоток последовательно соединяются между собой. Подключение фаз осуществляется к трем точкам, в которых концы обмоток соединяются между собой.
Использование схемы «звезда-треугольник»
Сравнительно редко используется комбинированная схема подключения, известная как «звезда-треугольник». Она позволяет производить плавный пуск при схеме звезда, а в процессе основной работы включается треугольник, обеспечивающий максимальную мощность агрегата.
Данная схема подключения довольно сложная, требующая использования сразу трех магнитных пускателей, устанавливаемых в соединения обмоток. Первый МП включается в сеть и с концами обмоток. МП-2 и МП-3 соединяются с противоположными концами обмоток. Подключение треугольником выполняется ко второму пускателю, а подключение звездой – к третьему. Категорически запрещается одновременное включение второго и третьего пускателей. Это приведет к короткому замыканию между фазами, подключенными к ним. Для предотвращения подобных ситуаций между этими пускателями устанавливается блокировка. Когда включается один МП, у другого происходит размыкание контактов.
Работа всей системы происходит по следующему принципу: одновременно с включением МП-1, включается МП-3, подключенный звездой. После плавного пуска двигателя, через определенный промежуток времени, задаваемый реле, происходит переход в обычный рабочий режим. Далее происходит отключение МП-3 и включение МП-2 по схеме треугольника.
Трехфазный двигатель с магнитным пускателем
Подключение трехфазного двигателя с помощью магнитного пускателя, осуществляется также, как и через автоматический выключатель. Просто эта схема дополняется блоком включения и выключения с соответствующими кнопками ПУСК и СТОП.
Одна нормально замкнутая фаза, подключенная к двигателю, соединяется с кнопкой ПУСК. Во время нажатия происходит смыкание контактов, после чего ток поступает к двигателю. Однако, следует учесть, что в случае отпускания кнопки ПУСК, контакты окажутся разомкнутыми и питание поступать не будет. Чтобы не допустить этого, магнитный пускатель оборудуется еще одним дополнительным контактным разъемом, так называемым контактом самоподхвата. Он выполняет функцию блокировочного элемента и препятствует разрыву цепи при выключенной кнопке ПУСК. Окончательно разъединить цепь можно только с помощью кнопки СТОП.
Таким образом, подключение трехфазного двигателя к трехфазной сети может быть выполнено различными способами. Каждый из них выбирается в соответствии с моделью агрегата и конкретными условиями эксплуатации.
Асинхронные трехфазные двигатели, а именно их, из-за широкого распространения, часто приходится использовать, состоят из неподвижного статора и подвижного ротора. В пазах статора с угловым расстоянием в 120 электрических градусов уложены проводники обмоток, начала и концы которых (C1, C2, C3, C4, C5 и C6) выведены в распределительную коробку. Обмотки могут быть соединены по схеме «звезда» (концы обмоток соединены между собой, к их началам подводится питающее напряжение) или «треугольник» (концы одной обмотки соединены с началом другой).
В распределительной коробке контакты обычно сдвинуты — напротив С1 не С4, а С6, напротив С2 — С4.
При подключении трехфазного двигателя к трехфазной сети по его обмоткам в разный момент времени по очереди начинает идти ток, создающий вращающееся магнитное поле, которое взаимодействует с ротором, заставляя его вращаться. При включении двигателя в однофазную сеть, вращающий момент, способный сдвинуть ротор, не создается.
Среди разных способов подключения трехфазных электродвигателей в однофазную сеть наиболее простой — подключение третьего контакта через фазосдвигающий конденсатор.
Частота вращения трехфазного двигателя, работающего от однофазной сети, остается почти такой же, как и при его включении в трехфазную сеть. К сожалению, этого нельзя сказать о мощности, потери которой достигают значительных величин. Точные значения потери мощности зависят от схемы подключения, условий работы двигателя, величины емкости фазосдвигающего конденсатора. Ориентировочно, трехфазный двигатель в однофазной сети теряет около 30-50% своей мощности.
Не все трехфазные электродвигатели способны хорошо работать в однофазных сетях, однако большинство из них справляются с этой задачей вполне удовлетворительно — если не считать потери мощности. В основном для работы в однофазных сетях используются асинхронные двигатели с короткозамкнутым ротором (А, АО2, АОЛ, АПН и др.).
Асинхронные трехфазные двигатели рассчитаны на два номинальных напряжения сети — 220/127, 380/220 и т.д. Наиболее распространены электродвигатели с рабочим напряжением обмоток 380/220В (380В — для «звезды», 220 — для «треугольника). Большее напряжение для «звезды», меньшее — для «треугольника». В паспорте и на табличке двигателей кроме прочих параметров указывается рабочее напряжение обмоток, схема их соединения и возможность ее изменения.
Обозначение на табличке А говорит о том, что обмотки двигателя могут быть подключены как «треугольником» (на 220В), так и «звездой» (на 380В). При включении трехфазного двигателя в однофазную сеть желательно использовать схему «треугольник», поскольку в этом случае двигатель потеряет меньше мощности, чем при подключении «звездой».
Табличка Б информирует, что обмотки двигателя подсоединены по схеме «звезда», и в распределительной коробке не предусмотрена возможность переключить их на «треугольник» (имеется всего лишь три вывода). В этом случае остается или смириться с большой потерей мощности, подключив двигатель по схеме «звезда», или, проникнув в обмотку электродвигателя, попытаться вывести недостающие концы, чтобы соединить обмотки по схеме «треугольник».
Начала и концы обмоток (различные варианты)
Самый простой случай, когда в имеющемся двигателе на 380/220В обмотки уже подключены по схеме «треугольник». В этом случае нужно просто подсоединить токоподводящие провода и рабочий и пусковой конденсаторы к клеммам двигателя согласно схеме подключения.
Если в двигателе обмотки соединены «звездой», и имеется возможность изменить ее на «треугольник», то этот случай тоже нельзя отнести к сложным. Нужно просто изменить схему подключения обмоток на «треугольник», использовав для этого перемычки.
Определение начал и концов обмоток. Дело обстоит сложнее, если в распределительную коробку выведено 6 проводов без указания об их принадлежности к определенной обмотке и обозначения начал и концов. В этом случае дело сводится к решению двух задач (Но прежде чем этим заниматься, нужно попробовать найти в Интернете какую-либо документацию к электродвигателю. В ней может быть описано к чему относятся провода разных цветов.):
- определению пар проводов, относящихся к одной обмотке;
- нахождению начала и конца обмоток.
Первая задача решается «прозваниванием» всех проводов тестером (замером сопротивления). Если прибора нет, можно решить её с помощью лампочки от фонарика и батареек, подсоединяя имеющиеся провода в цепь последовательно с лампочкой. Если последняя загорается, значит, два проверяемых конца относятся к одной обмотке. Таким способом определяются три пары проводов (A, B и C на рисунке ниже) относящихся к трем обмоткам.
Вторая задача (определение начала и конца обмоток) несколько сложнее и требует наличия батарейки и стрелочного вольтметра. Цифровой не годится из-за инертности. Порядок определения концов и начал обмоток показан на схемах 1 и 2.
К концам одной обмотки (например, A) подключается батарейка, к концам другой (например, B) — стрелочный вольтметр. Теперь, если разорвать контакт проводов А с батарейкой, стрелка вольтметра качнется в ту или иную сторону. Затем необходимо подключить вольтметр к обмотке С и проделать ту же операцию с разрывом контактов батарейки. При необходимости меняя полярность обмотки С (меняя местами концы С1 и С2) нужно добиться того, чтобы стрелка вольтметра качнулась в ту же сторону, как и в случае с обмоткой В. Таким же образом проверяется и обмотка А — с батарейкой, подсоединенной к обмотке C или B.
В итоге всех манипуляций должно получиться следующее: при разрыве контактов батарейки с любой из обмоток на 2-х других должен появляться электрический потенциал одной и той же полярности (стрелка прибора качается в одну сторону). Теперь остается пометить выводы одного пучка как начала (А1, В1, С1), а выводы другого — как концы (А2, В2, С2) и соединить их по необходимой схеме — «треугольник» или «звезда» (если напряжение двигателя 220/127В).
Извлечение недостающих концов. Пожалуй, самый сложный случай — когда двигатель имеет соединение обмоток по схеме «звезда», и нет возможности переключить ее на «треугольник» (в распределительную коробку выведено всего лишь три провода — начала обмоток С1, С2, С3) (см. рисунок ниже). В этом случае для подключения двигателя по схеме «треугольник» необходимо вывести в коробку недостающие концы обмоток С4, С5, С6.
Чтобы сделать это, обеспечивают доступ к обмотке двигателя, сняв крышку и, возможно, удалив ротор. Отыскивают и освобождают от изоляции место спайки. Разъединяют концы и припаивают к ним гибкие многожильные изолированные провода. Все соединения надежно изолируют, крепят провода прочной нитью к обмотке и выводят концы на клеммный щиток электродвигателя. Определяют принадлежность концов началам обмоток и соединяют по схеме «треугольник», подсоединив начала одних обмоток к концам других (С1 к С6, С2 к С4, С3 к С5). Работа по выводу недостающих концов требует определенного навыка. Обмотки двигателя могут содержать не одну, а несколько спаек, разобраться в которых не так-то и просто. Поэтому если нет должной квалификацией, возможно, не останется ничего иного, как подключить трехфазный двигатель по схеме «звезда», смирившись со значительной потерей мощности.
Схемы подключения трехфазного двигателя в однофазную сеть
Обеспечение пуска. Пуск трехфазного двигателя без нагрузки можно осуществлять и от рабочего конденсатора (подробнее ниже), но если электродвигатель имеет какую-то нагрузку, он или не запустится, или будет набирать обороты очень медленно. Тогда для быстрого пуска необходим дополнительный пусковой конденсатор Сп (расчет емкости конденсаторов описан ниже). Пусковые конденсаторы включаются только на время пуска двигателя (2-3 сек, пока обороты не достигнут примерно 70% от номинальных), затем пусковой конденсатор нужно отключить и разрядить.
Удобен запуск трехфазного двигателя с помощью особого выключателя, одна пара контактов которого замыкается при нажатой кнопке. При ее отпускании одни контакты размыкаются, а другие остаются включенными — пока не будет нажата кнопка «стоп».
Реверс. Направление вращения двигателя зависит от того, к какому контакту («фазе») подсоединена третья фазная обмотка.
Направлением вращения можно управлять, подсоединив последнюю, через конденсатор, к двухпозиционному тумблеру, соединенному двумя своими контактами с первой и второй обмотками. В зависимости от положения тумблера двигатель будет вращаться в одну или другую сторону.
На рисунке ниже представлена схема с пусковым и рабочим конденсатором и кнопкой реверса, позволяющая осуществлять удобное управление трехфазным двигателем.
Подключение по схеме «звезда». Подобная схема подключения трехфазного двигателя в сеть с напряжением 220В используется для электродвигателей, у которых обмотки рассчитаны на напряжение 220/127В.
Конденсаторы. Необходимая емкость рабочих конденсаторов для работы трехфазного двигателя в однофазной сети зависит от схемы подключения обмоток двигателя и других параметров. Для соединения «звездой» емкость рассчитывается по формуле:
Для соединения «треугольником»:
Где Ср — емкость рабочего конденсатора в мкФ, I — ток в А, U — напряжение сети в В. Ток рассчитывается по формуле:
Где Р — мощность электродвигателя кВт; n — КПД двигателя; cosф — коэффициент мощности, 1.73 — коэффициент, характеризующий соотношение между линейным и фазным токами. КПД и коэффициент мощности указаны в паспорте и на табличке двигателя. Обычно их значение находится в диапазоне 0,8-0,9.
На практике величину емкости рабочего конденсатора при подсоединении «треугольником» можно посчитать по упрощенной формуле C = 70•Pн, где Pн — номинальная мощность электродвигателя в кВт. Согласно этой формуле на каждые 100 Вт мощности электродвигателя необходимо около 7 мкФ емкости рабочего конденсатора.
Правильность подбора емкости конденсатора проверяется результатами эксплуатации двигателя. Если её значение оказалось больше, чем требуется при данных условиях работы, двигатель будет перегреваться. Если емкость оказалась меньше требуемой, выходная мощность электродвигателя будет слишком низкой. Имеет резон подбирать конденсатор для трехфазного двигателя, начиная с малой емкости и постепенно увеличивая её значение до оптимального. Если есть возможность, лучше подобрать емкость измерением тока в проводах подключенных к сети и к рабочему конденсатору, например токоизмерительными клещами. Значение тока должно быть наиболее близким. Замеры следует производить при том режиме, в котором двигатель будет работать.
При определении пусковой емкости исходят, прежде всего, из требований создания необходимого пускового момента. Не путать пусковую емкость с емкостью пускового конденсатора. На приведенных выше схемах, пусковая емкость равна сумме емкостей рабочего (Ср) и пускового (Сп) конденсаторов.
Если по условиям работы пуск электродвигателя происходит без нагрузки, то пусковая емкость обычно принимается равной рабочей, то есть пусковой конденсатор не нужен. В этом случае схема включения упрощается и удешевляется. Для такого упрощения и главное удешевления схемы, можно организовать возможность отключения нагрузки, например, сделав возможность быстро и удобно изменять положение двигателя для ослабления ременной передачи, или сделав для ременной передачи прижимной ролик, например, как у ременного сцепления мотоблоков.
Пуск под нагрузкой требует наличия дополнительной емкости (Сп) подключаемой на время запуска двигателя. Увеличение отключаемой емкости приводит к возрастанию пускового момента, и при некотором определенном ее значении момент достигает своего наибольшего значения. Дальнейшее увеличение емкости приводит к обратному результату: пусковой момент начинает уменьшаться.
Исходя из условия запуска двигателя под нагрузкой близкой к номинальной, пусковая емкость должна быть в 2-3 раза больше рабочей, то есть, если емкость рабочего конденсатора 80 мкФ, то емкость пускового конденсатора должна быть 80-160 мкФ, что даст пусковую емкость (сумма емкости рабочего и пускового конденсаторов) 160-240 мкФ. Но если двигатель имеет небольшую нагрузку при запуске, емкость пускового конденсатора может быть меньше или, как писалось выше, его вообще может не быть.
Пусковые конденсаторы работают непродолжительное время (всего несколько секунд за весь период включения). Это позволяет использовать при запуске двигателя наиболее дешевые пусковые электролитические конденсаторы, специально предназначенные для этой цели (http://www.platan.ru/cgi-bin/qweryv.pl/0w10609.html).
Отметим, что у двигателя подключенного к однофазной сети через конденсатор, работающего без нагрузки, по обмотке, питаемой через конденсатор, идет ток на 20-30% превышающий номинальный. Поэтому, если двигатель используется в недогруженном режиме, то емкость рабочего конденсатора следует уменьшить. Но тогда, если двигатель запускался без пускового конденсатора, последний может потребоваться.
Лучше использовать не один большой конденсатор, а несколько поменьше, отчасти из-за возможности подбора оптимальной емкости, подсоединяя дополнительные или отключая ненужные, последние можно использовать в качестве пусковых. Необходимое количество микрофарад набирается параллельным соединением нескольких конденсаторов, исходя из того, что суммарная емкость при параллельном соединении подсчитывается по формуле: Cобщ = C1 + C1 + . + Сn.
В качестве рабочих используются обычно металлизированные бумажные или пленочные конденсаторы (МБГО, МБГ4, К75-12, К78-17 МБГП, КГБ, МБГЧ, БГТ, СВВ-60). Допустимое напряжение должно не менее чем в 1,5 раза превышать напряжение сети.
Схемы подключения трехфазного двигателя. К 3-х и 1-о фазной сети
Схемы подключения трехфазного двигателя — двигатели, рассчитанные на работу от трехфазной сети, имеют производительность гораздо выше, чем однофазные моторы на 220 вольт. Поэтому, если в рабочем помещении проведены три фазы переменного тока, то оборудование необходимо монтировать с учетом подключения к трем фазам. В итоге, трехфазный двигатель, подключенный к сети, дает экономию энергии, стабильную эксплуатацию устройства. Не нужно подключать дополнительные элементы для запуска. Единственным условием хорошей работы устройства является безошибочное подключение и монтаж схемы, с соблюдением правил.
Схемы подключения трехфазного двигателяИз множества созданных схем специалистами для монтажа асинхронного двигателя практически используют два метода:
- Схема звезды.
- Схема треугольника.
Названия схем даны по методу подключения обмоток в питающую сеть. Чтобы на электродвигателе определить, по какой схеме он подключен, необходимо посмотреть указанные данные на металлической табличке, которая установлена на корпусе двигателя.
Даже на старых образцах моторов можно определить метод соединения статорных обмоток, а также напряжение сети. Эта информация будет верна, если двигатель уже был в эксплуатации, и никаких проблем в работе нет. Но иногда нужно произвести электрические измерения.
Схемы подключения трехфазного двигателя звездой дают возможность плавного запуска мотора, но мощность оказывается меньше номинального значения на 30%. Поэтому по мощности схема треугольника остается в выигрыше. Существует особенность по нагрузке тока. Сила тока резко увеличивается при запуске, это отрицательно сказывается на обмотке статора. Возрастает выделяемое тепло, которое губительно воздействует на изоляцию обмотки. Это приводит к нарушению изоляции, и поломке электродвигателя.
Много европейских устройств, поставленных на отечественный рынок, имеют в комплекте европейские электродвигатели, действующие с напряжением от 400 до 690 В. Такие 3-фазные моторы необходимо монтировать в сеть 380 вольт отечественного напряжения только по треугольной схеме обмоток статора. В противном случае моторы сразу будут выходить из строя. Российские моторы на три фазы подключаются по звезде. Изредка производится монтаж схемы треугольника для получения от двигателя наибольшей мощности, применяемой в специальных видах промышленного оборудования.
Изготовители сегодня дают возможность подключать трехфазные электромоторы по любой схеме. Если в монтажной коробке три конца, то произведена заводская схема звезды. А если есть шесть выводов, то мотор можно подключать по любой схеме. При монтаже по звезде нужно три вывода начал обмоток объединить в один узел. Остальные три вывода подать на фазное питание напряжением 380 вольт. В схеме треугольника концы обмоток соединяют последовательно по порядку между собой. Фазное питание подсоединяется к точкам узлов концов обмоток.
Проверка схемы подключения мотораПредставим худший вариант выполненного подключения обмоток, когда на заводе не обозначены выводы проводов, сборка схемы проведена во внутренней части корпуса мотора, и наружу выведен один кабель. В этом случае необходимо разобрать электродвигатель, снять крышки, разобрать внутреннюю часть, разобраться с проводами.
Метод определения фаз статораПосле разъединения выводных концов проводов применяют мультиметр для измерения сопротивления. Один щуп подключают к любому проводу, другой подносят по очереди ко всем выводам проводов, пока не найдется вывод, принадлежащий к обмотке первого провода. Аналогично поступают на остальных выводах. Нужно помнить, что обязательна маркировка проводов, любым способом.
Если в наличии нет мультиметра или другого прибора, то используют самодельные пробники, сделанные из лампочки, проводов и батарейки.
Полярность обмотокЧтобы найти и определить полярность обмоток, необходимо применить некоторые приемы:
- Подключить импульсный постоянный ток.
- Подключить переменный источник тока.
Оба способа действуют по принципу подачи напряжения на одну катушку и его трансформации по магнитопроводу сердечника.
Как проверить полярность обмоток батарейкой и тестеромНа контакты одной обмотки подключают вольтметр с повышенной чувствительностью, который может отреагировать на импульс. К другой катушке быстро присоединяют напряжение одним полюсом. В момент подключения контролируют отклонение стрелки вольтметра. Если стрелка двигается к плюсу, то полярность совпала с другой обмоткой. При размыкании контакта стрелка пойдет к минусу. Для 3-й обмотки опыт повторяют.
Путем изменения выводов на другую обмотку при включении батарейки определяют, насколько правильно сделана маркировка концов обмоток статора.
Проверка переменным токомДве любые обмотки включают параллельно концами к мультиметру. На третью обмотку включают напряжение. Смотрят, что показывает вольтметр: если полярность обеих обмоток совпадает, то вольтметр покажет величину напряжения, если полярности разные, то покажет ноль.
Полярность 3-й фазы определяют путем переключения вольтметра, изменения положения трансформатора на другую обмотку. Далее, производят контрольные измерения.
Схема звездыЭтот тип схемы подключения трехфазного двигателя образуется путем соединения обмоток в разные цепи, объединенные нейтралью и общей точкой фазы.
Такую схему создают после того, как проверена полярность обмоток статора в электромоторе. Однофазное напряжение на 220В через автомат подают фазу на начала 2-х обмоток. К одной врезают в разрыв конденсаторы: рабочие и пусковые. На третий конец звезды подводят нулевой провод питания.
Величину емкости конденсаторов (рабочих) определяют по эмпирической формуле:
С = (2800 · I) / UДля схемы запуска емкость повышают в 3 раза. В работе мотора при нагрузке нужно контролировать величину токов обмоток измерениями, корректировать емкость конденсаторов по средней нагрузке привода механизма. В противном случае произойдет, перегрев устройства, пробой изоляции.
Подключение мотора в работу хорошо делать через выключатель ПНВС, как показано на рисунке.
В нем уже сделана пара контактов замыкания, которые вместе подают напряжение на 2 схемы путем кнопки «Пуск». Во время отпускания кнопки цепь разрывается. Такой контакт применяют для запуска цепи. Полное отключение питания делают, нажав на «Стоп».
Схема треугольникаСхемы подключения трехфазного двигателя треугольником является повтором прошлого варианта в запуске, но имеет отличие методом включения обмоток статора.
Токи, проходящие в них, больше значений цепи звезды. Рабочие емкости конденсаторов нуждаются в повышенных номинальных емкостях. Они рассчитываются по формуле:
С = (4800 · I) / UПравильность выбора емкостей также вычисляют по отношению токов в катушках статора путем измерения с нагрузкой.
Двигатель с магнитным пускателемТрехфазный электродвигатель работает через магнитный пускатель по аналогичной схеме с автоматическим выключателем. Такая схема имеет дополнительно блок включения и выключения, с кнопками Пуск и Стоп.
Одна фаза, нормально замкнутая, соединенная с мотором, подключается к кнопке Пуск. При ее нажатии контакты замыкаются, ток идет к электромотору. Необходимо учитывать, что при отпускании кнопки Пуск, клеммы разомкнутся, питание отключится. Чтобы такой ситуации не произошло, магнитный пускатель дополнительно оборудуют вспомогательными контактами, которые называют самоподхватом. Они блокируют цепь, не дают ей разорваться при отпущенной кнопке Пуск. Выключить питание можно кнопкой Стоп.
В результате, 3-фазный электромотор можно подключать к сети трехфазного напряжения совершенно разными методами, которые выбираются по модели и типу устройства, условиям эксплуатации.
Подключение мотора от автоматаОбщий вариант такой схемы подключения выглядит как на рисунке:
Здесь показан автомат защиты, который выключает напряжение питания электромотора при чрезмерной нагрузке по току, и по короткому замыканию. Автоматический защитный выключатель – это простой 3-полюсный выключатель с тепловой автоматической характеристикой нагруженности.
Для примерного расчета и оценки нужного тока тепловой защиты, необходимо мощность по номиналу двигателя, рассчитанного на работу от трех фаз, увеличить в два раза. Номинальная мощность указывается на металлической табличке на корпусе мотора.
Такие схемы подключения трехфазного двигателя вполне могут работать, если нет других вариантов подключения. Длительность работы нельзя прогнозировать. Это тоже самое, если скрутить алюминиевый провод с медным. Никогда не знаешь, через какое время скрутка сгорит.
При применении схемы подключения трехфазного двигателя нужно аккуратно выбрать ток для автомата, который должен быть на 20% больше тока работы мотора. Свойства тепловой защиты выбрать с запасом, чтобы при запуске не сработала блокировка.
Если для примера, двигатель на 1,5 киловатта, наибольший ток 3 ампера, то автомат нужен минимум на 4 ампера. Преимуществом этой схемы соединения мотора является низкая стоимость, простое исполнение и техобслуживание.
Схема подключения трехфазного электродвигателя к трехфазной сети
Всем электрикам известно, что трехфазные электродвигатели работают эффективнее, чем однофазные на 220 вольт. Поэтому если в вашем гараже проведена подводка питающего кабеля на три фазы, то оптимальный вариант – установить любой станок с мотором на 380 вольт. Это не только эффективно в плане экономичности работы, но и в плане стабильности.
При этом нет необходимости добавлять в схему подключения какие-то пусковые устройства, потому что магнитное поле будет образовываться в обмотках статора сразу же после пуска двигателя. Давайте рассмотрим один вопрос, который сегодня встречается часто на форумах электриков. Вопрос звучит так: как правильно провести подключение трехфазного электродвигателя к трехфазной сети?
Схемы подключения
Начнем с того, что рассмотрим конструкцию трехфазного электродвигателя. Нас здесь будут интересовать три обмотки, которые и создают магнитное поле, вращающее ротор мотора. То есть, именно так и происходит преобразование электрической энергии в механическую.
Существует две схемы подключения:
Сразу же оговоримся, что подключение звездой делает пуск агрегата более плавным. Но при этом мощность электродвигателя будет ниже номинальной практически на 30%. В этом плане подключение треугольником выигрывает. Мощность подключенный таким образом мотор не теряет.
Но тут есть один нюанс, который касается токовой нагрузке. Эта величина резко возрастает при пуске, что негативно влияет на обмотку. Высокая сила тока в медном проводе повышает тепловую энергию, которая влияет на изоляцию провода. Это может привести к пробивке изоляции и выходу из строя самого электродвигателя.
Хотелось бы обратить ваше внимание на тот факт, что большое количество европейского оборудования, завезенного на просторы России, укомплектовано европейскими электрическими двигателями, которые работают под напряжением 400/690 вольт. Кстати, снизу фото шильдика такого мотора.
Так вот эти трехфазные электродвигатели надо подключать к отечественной сети 380В только по схеме треугольник. Если подключить европейский мотор звездой, то под нагрузкой он сразу же сгорит.
Отечественные же трехфазные электродвигатели к трехфазной сети подключаются по схеме звезда. Иногда подключение производят треугольником, это делается для того, чтобы выжать из мотора максимальную мощность, необходимую для некоторых видов технологического оборудования.
Производители сегодня предлагают трехфазные электродвигатели, в коробке подключения которых сделаны выводы концов обмоток в количестве трех или шести штук. Если концов три, то это значит, что на заводе внутри мотора уже сделана схема подключения звезда.
Если концов шесть, то трехфазный двигатель можно подключать к трехфазной сети и звездой, и треугольником. При использовании схемы звезда необходимо три конца начала обмоток соединить в одной скрутке. Три остальных (противоположных) подключить к фазам питающей трехфазной сети 380 вольт.
При использовании схемы треугольник нужно все концы соединить между собой по порядку, то есть последовательно. Фазы подключаются к трем точкам соединения концов обмоток между собой. Внизу фото, где показаны два вида подключения трехфазного двигателя.
Схема звезда-треугольник
Такая схема подключения к трехфазной сети используется достаточно редко. Но она существует, поэтому есть смысл сказать о ней несколько слов. Для чего она используется? Весь смысл такого соединения основан на позиции, что при пуске электродвигателя используется схема звезда, то есть плавный пуск, а для основной работы используется треугольник, то есть выжимается максимум мощности агрегата.
Правда, такая схема достаточно сложная. При этом обязательно устанавливаются в соединение обмоток три магнитных пускателя. Первый соединяется с питающей сетью с одной стороны, а с другой стороны к нему подсоединяются концы обмоток. Ко второму и третьему подключаются противоположные концы обмоток. Ко второму пускателю производится подсоединение треугольником, к третьему звездой.
Внимание! Одновременно включать второй и третий пускатели нельзя. Произойдет короткое замыкание между подключенными к ним фазами, что приведет к сбрасыванию автомата. Поэтому между ними устанавливается блокировка. По сути, все будет происходить так – при включении одного, размыкаются контакты у другого.
Принцип работы таков: при включении первого пускателя временное реле включает и пускатель номер три, то есть, подключенного по схеме звезда. Происходит плавный пуск электродвигателя. Реле времени задет определенный промежуток, в течение которого мотор перейдет в обычный режим работы. После чего пускатель номер три отключается, а включается второй элемент, переводя на схему треугольник.
Подключение электрического двигателя через магнитный пускатель
В принципе, схема подключения 3 фазного двигателя через магнитный пускатель практически точно такая же, как и через автомат. Просто в нее добавляется блок включения и выключения с кнопками «Пуск» и «Стоп».
Одна из фаз подключения к электродвигателю проходит через кнопку «Пуск» (она нормально замкнутая). То есть, при ее нажатии смыкаются контакты, и ток начинает поступать на электродвигатель. Но тут есть один момент. Если отпустить Пуск, то контакты разомкнуться, и ток поступать не будет по назначению.
Поэтому в магнитном пускателе есть еще один дополнительный контактный разъем, который называется контактом самоподхвата. По сути, это блокировочный элемент. Он необходим для того чтобы при отжатой кнопке «Пуск» цепь подачи электроэнергии на электродвигатель не прерывалась. То есть, разъединить ее можно было бы только кнопкой «Стоп».
Что можно дополнить к теме, как подключить трехфазный двигатель к трехфазной сети через пускатель? Обратите внимание вот на какой момент. Иногда после долгой эксплуатации схемы подключения трехфазного электродвигателя кнопка «пуск» перестает работать. Основная причина – подгорели контакты кнопки, ведь при пуске двигателя появляется пусковая нагрузка с большой силой тока. Решить эту проблему можно очень просто – почистить контакты.
Схемы подключения трехфазных электродвигателей
ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.
Условные обозначения на схемахМагнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.
У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.
Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.
В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке реверсивной схемы пуска электродвигателя), на магнитный пускатель сверху дополнительно устанавливается приставка с дополнительными блок-контактами (блок контактов) которая, как правило, имеет четыре дополнительных блок-контакта (к примеру два нармально-замкнутых и два нормально-разомкнутых).
Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.
Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».
Схема прямого включения электродвигателяДанная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.
Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.
Схема подключения электродвигателя через магнитный пускательЭту схему так же часто называют схемой простого пуска электродвигателя, в ней, в отличии от предыдущей, кроме силовой цепи появляется так же цепь управления.
При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.
Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:
При необходимости частой смены направления вращения электродвигателя применяется реверсивная схема подключения электродвигателя:
В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.
При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.
Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели.
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Схема подключения трехфазного электродвигателя
Здравствуйте. Информацию по этой теме трудно не найти, но я постараюсь сделать данную статью наиболее полной. Речь пойдет о такой теме, как схема подключения трехфазного двигателя на 220 вольт и схема подключения трехфазного двигателя на 380 вольт.Для начала немного разберемся, что такое три фазы и для чего они нужны. В обычной жизни три фазы нужны только для того, чтобы не прокладывать по квартире или по дому провода большого сечения. Но когда речь идет о двигателях, то здесь три фазы нужны для создания кругового магнитного поля и как результат, более высокого КПД. Двигатели бывают синхронные и асинхронные. Если очень грубо, то синхронные двигатели имеют большой пусковой момент и возможность плавной регулировки оборотов, но более сложные в изготовлении. Там, где эти характеристики не нужны, получили распространение асинхронные двигатели. Нижеизложенный материал подходит для обоих типов двигателей, но в бóльшей степени относится к асинхронным.
Что нужно знать о двигателе? На всех моторах есть шильдики с информацией, где указаны основные характеристики двигателя. Как правило, двигатели выпускаются сразу на два напряжения. Хотя если у вас двигатель на одно напряжение, то при сильном желании его можно переделать на два. Это возможно из-за конструктивной особенности. Все асинхронные двигатели имеют минимум три обмотки. Начала и концы этих обмоток выводятся в коробку БРНО (блок расключения (или распределения) начал обмоток) и в неё же, как правило, вкладывается паспорт двигателя:
Если двигатель на два напряжения, то в БРНО будет шесть выводов. Если двигатель на одно напряжение, то вывода будет три, а остальные выводы расключены и находятся внутри двигателя. Как их оттуда «достать» в этой статье мы рассматривать не будем.
Итак, какие двигатели нам подойдут. Для включения трёхфазного двигателя на 220 вольт подойдут только те, где есть напряжение 220 вольт, а именно 127/220 или 220/380 вольт. Как я уже говорил, двигатель имеет три независимых обмотки и в зависимости от схемы соединения они способны работать на двух напряжениях. Схемы эти называются «треугольник» и «звезда»:
Думаю, даже не нужно объяснять, почему они так называются. Нужно обратить внимание, что у обмоток есть начало и конец и это не просто слова. Если, к примеру, лампочке неважно, куда подключить фазу, а куда ноль, то в двигателе при неправильном подключении возникнет «короткое замыкание» магнитного потока. Сразу двигатель не сгорит, но как минимум не будет вращаться, как максимум потеряет 33% своей мощности, начнёт сильно греться и, в итоге, сгорит. В то же время, нет чёткого определения, что «вот это начало», а «вот это конец». Тут речь идет скорее об однонаправленности обмоток. Дам небольшой пример.
Представим, что у нас есть три трубки в некоем сосуде. Примем за начала этих трубок обозначения с заглавными буквами (A1, B1, C1), а за концы со строчными (a1, b1, c1) Теперь, если мы подадим воду в начала трубок, то вода закрутится по часовой стрелке, а если в концы трубок, то против часовой. Ключевое слово здесь «примем». То есть, от того назовём мы три однонаправленных вывода обмотки началом или концом меняется только направление вращения.
А вот такая картина будет, если мы перепутаем начало и конец одной из обмоток, а точнее не начало и конец, а направление обмотки. Эта обмотка начнёт работать «против течения». В итоге, неважно, какой именно вывод мы называем началом, а какой концом, важно, чтобы при подаче фаз на концы или начала обмоток не произошло замыкания магнитных потоков, создаваемых обмотками, то есть, совпало направление обмоток, или ещё точнее, направление магнитных потоков, которые создают обмотки.
В идеале, для трёхфазного двигателя желательно использовать три фазы, потому что конденсаторное включение в однофазную сеть даёт потерю мощности порядка 30%.
Ну, а теперь непосредственно к практике. Смотрим на шильдик двигателя. Если напряжение на двигателе 127/220 вольт, то схема соединения будет «звезда», если 220/380 – «треугольник». Если напряжения другие, например, 380/660, то для включения двигателя в сеть 220 вольт такой двигатель не подойдет. Точнее, двигатель напряжением 380/660 можно включить, но потери мощности здесь уже будут более 70%. Как правило, на внутренней стороне крышки коробки БРНО указано, как надо соединить выводы двигателя, чтобы получить нужную схему. Посмотрите ещё раз внимательно на схему соединения:
Что мы здесь видим: при включении треугольником напряжение 220 вольт подаётся на одну обмотку, а при включении звездой — 380 вольт подаётся на две последовательно соединённых обмотки, что в результате даёт те же 220 вольт на одну обмотку. Именно за счёт этого и появляется возможность использовать для одного двигателя сразу два напряжения.
Существует два метода включения трехфазного двигателя в однофазную сеть.
- Использовать частотный преобразователь, который преобразует одну фазу 220 вольт в три фазы 220 вольт (в этой статье мы рассматривать такой метод не будем)
- Использовать конденсаторы (этот метод мы и рассмотрим более подробно).
Схема включения трехфазного двигателя на 220 вольт
Для этого нам потребуются конденсаторы, но не абы какие, а для переменного напряжения и номиналом не менее 300, а лучше 350 вольт и выше. Схема очень простая.
А это более наглядная картинка:
Как правило, используется два конденсатора (или два набора конденсаторов), которые условно называются пусковые и рабочие. Пусковой конденсатор используется только для старта и разгона двигателя, а рабочий включен постоянно и служит для формирования кругового магнитного поля. Для того, чтобы рассчитать ёмкость конденсатора применяются две формулы:
Ток для расчёта мы возьмём с шильдика двигателя:
Здесь, на шильдике мы видим через дробь несколько окошек: треугольник/звезда, 220/380V и 2,0/1,16А. То есть, если мы соединяем обмотки по схеме треугольник (первое значение дроби), то рабочее напряжение двигателя будет 220 вольт и ток 2,0 ампера. Осталось подставить в формулу:
Ёмкость пусковых конденсаторов, как правило, берётся в 2-3 раза больше, здесь всё зависит от того, какая нагрузка находится на двигателе – чем больше нагрузка, тем больше нужно брать пусковых конденсаторов, чтобы двигатель запустился. Иногда для запуска хватает и рабочих конденсаторов, но это обычно случается, когда нагрузка на валу двигателя мала.
Чаще всего, на пусковые конденсаторы ставят кнопку, которую нажимают в момент запуска, а после того, как двигатель набирает обороты, отпускают. Наиболее продвинутые мастера ставят полуавтоматические системы запуска на основе реле тока или таймера.
Есть ещё один способ определения ёмкости, чтобы получилась схема включения трёхфазного двигателя на 220 вольт. Для этого потребуется два вольтметра. Как вы помните, из закона Ома, сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Сопротивление двигателя можно считать константой, следовательно, если мы создадим равные напряжения на обмотках двигателя, то автоматически получим требуемое круговое поле. Схема выглядит так:
Суть метода, как я уже говорил, заключается в том, чтобы показания вольтметра V1 и вольтметра V2 были одинаковые. Добиваются равенства показаний изменением номинала ёмкости «Cраб»
Подключение трехфазного двигателя на 380 вольт
Здесь вообще нет ничего сложного. Есть три фазы, есть три вывода двигателя и рубильник. Нулевую точку (где соединяются три обмотки, началами или концами – как я уже говорил выше, абсолютно неважно, как мы назовём выводы обмоток) при схеме соединения обмоток звездой, подключать к нулевому проводу не надо. То есть, для включения трехфазного двигателя в трехфазную сеть 380 вольт (если двигатель 220/380) нужно соединить обмотки по схеме звезда, и подать на двигатель только три провода с тремя фазами. А если двигатель 380/660 вольт, то схема соединения обмоток будет треугольник, ну а там точно нулевой провод некуда подключать.
Смена направления вращения вала трехфазного двигателя
Независимо от того, будет это конденсаторная схема включения или полноценная трехфазная, для смены вращения вала нужно поменять местами две любые обмотки. Другими словами поменять местами два любых провода.
На чём хочется остановиться более подробно. Когда мы считали ёмкость рабочего конденсатора, то мы использовали номинальный ток двигателя. Проще говоря, такой ток в двигателе будет только тогда, когда он будет полностью нагружен. Чем меньше нагружен двигатель, тем меньше будет ток, поэтому ёмкость рабочего конденсатора, полученная по этой формуле будет МАКСИМАЛЬНО ВОЗМОЖНОЙ ёмкостью для данного двигателя. Чем плохо использовать максимальную емкость для недогруженного двигателя – это вызывает повышенный нагрев обмоток. В общем, чем-то приходится жертвовать: маленькая ёмкость не даёт двигателю набрать полную мощность, большая ёмкость при недогрузке вызывает повышенный нагрев. Обычно в этом случае я предлагаю такой выход – сделать рабочие конденсаторы из четырёх одинаковых конденсаторов с переключателем или набором переключателей (что будет доступнее). Допустим, мы посчитали ёмкость 40 мкФ. Значит, для работы нам надо использовать 4 конденсатора по 10 мкФ (или три конденсатора 10, 10 и 20 мкФ) и в зависимости от нагрузки использовать 10, 20, 30 или 40 мкФ.
Ещё один момент по пусковым конденсаторам. Конденсаторы для переменного напряжения стоят гораздо дороже конденсаторов для постоянного. Использовать конденсаторы для постоянного напряжения в сетях с переменным, крайне не рекомендуется по причине того, что конденсаторы взрываются. Однако, для двигателей существует специальная серия конденсаторов Starter, предназначенная именно для работы, как пусковые. Использовать конденсаторы серии Starter в качестве рабочих тоже запрещено.
И в завершение нужно отметить такой момент – добиваться идеальных значений нет смысла, поскольку это возможно только, если нагрузка будет стабильной, например, если двигатель будет использоваться в качестве вытяжки. Погрешность в 30-40% это нормально. Другими словами, конденсаторы надо подбирать так, чтобы был запас по мощности в 30-40%.
Схемы подключения электрических трехфазных двигателей к однофазной сети: Инструкция +Фото и Видео
На приусадебных или дачных участках использование электродвигателя не редкое явление, основными характеристиками которого считается его мощность и напряжение сети, от которой он работает. В основном все электрические двигатели осуществляют свою работу от трехфазной сети на 380 Вольт.
Если у вас имеется подведение трех фаз, то здесь проблем не возникнет. А вот как подключить двигатель 380 на 220 В, если однофазное подключение, т. е. подведение 2 проводов — нуля и фазы.
Для решения данного вопроса существуют различные схемы подключения.
Общие сведения
Заметка: При любом вторжении в устройство агрегата, появляется риск снижения качества работы.
Выделяют следующие схемы:
- звезда-треугольник;
- с помощью конденсатора.
Как правило, подключение к однофазной сети выполняется с помощью схем звезда или треугольник.
Схема «треугольник»
Наиболее эффективная схема треугольник, т. к. выходная мощность в этом варианте будет отличаться от трехфазного на пятьдесят процентов. Многие отечественные электрические моторы уже имеют схему звезда, вам остается только собрать треугольник, т. е. подключить три фазы и сделать звезду из 6 оставшихся обмоток.
Это соединение отличается максимальной выработкой мощности двигателя. На больших производствах ее используют крайне редко. Потому, что эта схема является сложной и в большом производстве нет необходимости создавать такие трудные соединения. Для введения схемы в работу необходимо будет наличие трех пускателей.
Устройство схемы:
- 1 пускатель подключают к источнику тока и к статору;
- К свободным концам статора будут подключаться 2 и 3 пускатель;
- Обмотки второго пускателя подключают к другим фазам, образовывая треугольник;
- При подсоединении третьего пускателя к фазе, другие концы следует немного укоротить, тем самым делая схему звезда.
Важно: Не рекомендуется подключать одновременно 3 и 2 пускатели на магнитах, что может создать короткое замыкание и как следствие аварийное отключение автомата.
Для избежания таких ситуаций делают своеобразную электроблокировку. Суть работы которой заключается в том, что когда включается один пускатель, происходит автоматическое выключение второго, то есть размыкание цепи контактов.
Принцип работы
- При запуске 1 пускателя, действием реле времени электрического двигателя включается
- После этого происходит пуск двигателя по схеме звезда и начинается более мощная работа.
- Через определенное время отключается 3 пускатель и включается Теперь работа двигателя происходит по схеме треугольник с немного сниженной скоростью.
- Если необходимо отключить питание, происходит включение 1 пускателя, затем схема периодически повторяется.
Второй тип схемы
Электродвигатель имеет три выходящих провода. К одному подключают фазу питающего провода, ко второму — ноль, а подключение третьего происходит к сети с помощью конденсатора. Направление движения электрического двигателя будет определяться проводом, с которым соединен конденсатор. Для изменения направления вращательного элемента нужно просто изменить подключение проводов.
Третьим показателем считается значение частоты вращения, которое будет равно номинальному. Например, при подключении через трехфазную сеть вращение мотора составляет 1300 об. мин , то при однофазном подключении значение вращения будет аналогичным.
О конденсаторах
Значение конденсатора в сети
Вполне возможно подключить трехфазный асинхронный мотор через однофазную сеть. Движение вала будет производиться, но не с той силой как при трехфазном. В статоре происходит накладывание электромагнитных полей трех обмоток, помимо того, что там происходит вращение магнитного тока. Ими и определяется значение силы и крутящего момента вала.
В штатном режиме подключение через трехфазную сеть может быть осуществлено только одним из вариантов схем, т. е звезда или треугольник. Именно поэтому режим электросети подключенный по схеме треугольник допускает напряжение 380 как номинальное. В случае однофазного его величиной будет 220 вольт. Эта величина будет ниже, чем в схеме треугольник и поэтому считается безопасным для электрического режима. Однако при уменьшении напряжения происходит снижение таких показателей, как электрическая мощность и мощность вала движка.
Так одна из обмоток должна подсоединяться напрямую к электрической сети. Чтобы от остальных обмоток была максимальная отдача, их нужно использовать совмещенно при подключении с использованием конденсатора, который образует сдвиги фазы напряжения на них. И как результат мы получаем подключение как по схеме треугольник, но с однофазной цепью.
Также здесь не маленькое значение будет играть значение емкости конденсатора, т. к. им создается перемещение магнитного поля для вращения ротора.
На заметку: Движек с тремя фазами способен к перемещению максимального магнитного поля до120гр. А с помощью конденсатора перемещение будет не более девяносто градусов.
Так при запускании движка может не хватить емкости конденсатора. Для увеличения пускового момента необходимо увеличить его емкость. Но в процессе возможно, что эта добавленная емкость лишняя и при наименьшем значении работа проходила эффективнее. Поэтому для оптимизации этих показателей лучше использовать 2 теплообменника. Один должен быть постоянно подключен к сети, а второй подсоединяется тогда, когда электрический двигатель запускается.
Еще одна особенность конденсатора при подключении к трехфазной сети это его отношение к обмоткам, фазному и нулевому проводам. Его можно подключить или к нулевой фазе и обмотке или к фазе и обмотке. В зависимости от того, какое подключение было использовано, зависит в какую сторону вращается ротор. Так при добавлении в цепь всего одного переключателя, вы можете управлять движением вала.
Такой параметр электросети, как индуктивность, также имеет отношение к фазовому сдвигу. Индуктивность создается другим соотношением показателей напряжения и тока. Однако, если на месте конденсатора будет подключен дроссель. То он будет способствовать значительному уменьшению действия тока в пусковой обмотке, чем создастся слабое магнитное поле обмотками и запуск двигателя не состоится.
Поэтому конденсатор является единственным элементом пригодным для эффективного перемещения магнитных полей статора в двигателе, подключенного к однофазной сети.
Виды конденсаторов
Для подключения электрических агрегатов 380 на 220 Вольт в основном используют следующие бумажного типа конденсаторы с металлическим корпусом — МБГО, КБП, МБГП. Однако все эти виды очень габаритного размера и обладают небольшой емкостью.
Еще существует такой вид, как электролитические конденсаторы. Они имеют совершенно иную схему подключения. Здесь добавлены, усложняющие схему элементы — диоды и резисторы. Если диод выходит из строя, то появляется возможность взрыва конденсатора, т. е. в этот момент им начинается перемещение тока с большой силой.
Есть и третий вид — конденсаторы СВВ. Они бывают круглые и пластинчатые. Обладают высокими качествами, имеют большую емкость, по размеру не большие. Именно этот вид и рекомендуется специалистами использовать при подключении электро-двигателя 380 на 220.
Как соединить 3 фазный двигатель на 220
С такой проблемой приходится сталкиваться многим рачительным хозяевам, которые привыкли все, по максимуму, делать своими руками. В том числе, и собирать различную технику для хозяйственных нужд; например, циркулярную пилу на участке, эл/наждак, небольшой подъемник в гараже и тому подобное.
Учитывая, сколько стоит электродвигатель, лучше приспособить имеющийся под рукой 3-фазный образец к работе от 1ф, тем самым адаптировав его к домашней эл/сети, чем приобретать новый. Нужно лишь понимать, как и какой электродвигатель лучше переделать с 380 вольт на 220, чтобы дополнительно не тратить деньги, и разбираться в существующих схемах их включения.
Что учесть
- Переделка с 380 на 220 имеет смысл, если речь идет об эл/двигателе сравнительно небольшой мощности – до 2,5, но не более (это максимум) 3 кВт. В принципе, ограничений по данной характеристике нет. Но при этом, скорее всего, понадобится провести ряд мероприятий и потратить некоторую сумму денег и время.
- Переложить вводной кабель эл/питания, к тому же придется заниматься согласованиями с поставщиком электроэнергии в плане повышения лимита. Не следует забывать, что для частных домовладений установлен предел эн/потребления; как правило, в 15 кВт. «Впишется» ли в него новая нагрузка в виде мощного электродвигателя? Выдержит ли ее изначально заложенный кабель?
- Для такого прибора нужно прокладывать отдельную линию от силового щита и ставить индивидуальный автомат, как минимум. Просто так подключить его через розетку вряд ли получится; лучше не экспериментировать.
- Практика переделок показывает, что даже если все сделано грамотно, возникнет еще одна проблема, с запуском. «Старт» мощного электродвигателя будет тяжелым, с длительной раскачкой, бросками напряжения. Такая перспектива мало кого устроит, тем более, если что-то собирается не на загородном участке, а на территории, прилегающей к жилому строению. Пока будет функционировать самодельная установка на основе этого двигателя, начнутся сбои в работе бытовых приборов. Проверено, и не раз.
- Порядок работы по переделке зависит от внутренней схемы электродвигателя. В некоторых моделях в клеммную коробку выводится всего 3 провода, в других – 6.
В чем разница? В первом случае обмотки уже соединены по одной их традиционных схем – «звездой» или «треугольником», поэтому для маневра (в плане модификации) возможностей несколько меньше.
Вариантов немного – оставить изначальное включение или произвести разборку двигателя и перекоммутировать вторые концы. Если же выведены все шесть, то можно их соединять по любой из схем, без ограничений. Главное – грамотно выбрать ту, которая будет оптимальной для конкретной ситуации (мощность электродвигателя, специфика его применения). .
Как переделать электродвигатель
Схема
Учитывая, что мощность электродвигателя небольшая (значит, не придется при пуске его «срывать»), а запитывать его планируется от сети 220, то оптимальной схемой является «треугольник». То есть, здесь не нужно ориентироваться на высокие пусковые токи (их не будет), а потеря мощности практически сводится к нулю (можно не учитывать). Все сказанное наглядно демонстрирует рисунок.
Если в электродвигателе схема изначально собрана по «треугольнику», то переделывать в нем вообще ничего не нужно.
Расчет рабочих емкостей
Так как вместо 3-х фаз теперь будет лишь одна, она и подается на каждую из обмоток, но с небольшим сдвигом синусоиды. По сути, включением конденсаторов производится имитация питания электродвигателя от источника 380/3ф. Формулы для расчетов рабочих конденсаторов показаны на рисунках ниже.
Ставить их по принципу «больше – лучше», что часто и делают домашние умельцы, не особенно разбирающиеся в электротехнике, не следует. Только на основании вычислений требуемого номинала. Иначе возможен перегрев эл/двигателя. Если он стоит на заводском оборудовании (например, переделке подвергается газонокосилка), то придется или устраивать постоянные перерывы в работе, или готовиться к незапланированному ремонту и неоправданным финансовым тратам на новый «движок».
Примечание:
- Емкости к обмоткам электродвигателя подбираются не только по номиналу, но и по рабочему напряжению. Раз речь идет о переделке с 380 на 220, то U р должно быть не меньше 400 В.
- Немаловажен и такой фактор, как разновидность конденсаторов. Во-первых, они должны быть однотипными. Во-вторых, только не электролитическими. Оптимально, бумажные; например, устаревшей серии КГБ, МБГ (и их модификации) или ее современные аналоги. Они удобны в креплении (имеются проушины) и легко выдерживают скачки температуры, тока, напряжения.
Для схемы «звезда»
Для схемы «треугольник»
Наглядно весь процесс в действии можно посмотреть на видео:
На практике инженерными расчетами мало кто из людей сведущих занимается. Есть определенные пропорции, позволяющие довольно точно подобрать рабочий конденсатор к конкретному электродвигателю.
Соотношение легко запомнить: на каждые 100 Вт мощности «движка» – 7 мкф рабочей емкости. То есть, для изделия на 2 кВт понадобится в обмотки включить конденсаторы по 7 х 20 = 140 мкф.
В чем сложность? Найти емкость с таким номиналом вряд ли получится. Есть простое решение – взять несколько конденсаторов и соединить параллельно. В результате небольших вычислений несложно подобрать нужное их количество с суммарной емкостью требуемой величины. Тем, кто забыл школу, можно подсказать – при таком способе соединения конденсаторов их емкости складываются.
Пусковой
Эта емкость нужна не всегда. Она ставится в схему лишь в том случае, если при пуске на вал двигателя создается значительная нагрузка. Примеры – мощное вытяжное устройство, циркулярная пила. А вот для той же газонокосилки вполне хватит и рабочих конденсаторов.
Расчет простой – номинал Сп должен превышать Ср в 2,5 (плюс/минус). Здесь предельной точности не требуется; величина пусковой емкости определяется примерно. Дальнейший анализ работы электродвигателя на разных режимах подскажет, увеличить ее или уменьшить.
Кстати, это относится и к рабочим конденсаторам. Дело в том, что все расчеты априори предполагают, что электродвигатель новый, ни разу не бывший в эксплуатации. А так как переделываются в основном изделия б/у, то в процессе работы выяснится, что не устраивает пользователя. Вариантов много – плохой запуск, быстрый нагрев корпуса и так далее.
Вывод – подобрать емкости для переделки эл/двигателя с 380 на 220, это еще не все. В первое время нужно внимательно следить за его работой в различных режимах. Только так, опытным путем, производя замену конденсаторов по номиналам, можно подобрать идеальное значение емкости для конкретного изделия.
Как организовать реверс
Иногда необходимо изменять направление вращения вала без дополнительных переделок. Это вполне возможно и для электродвигателя на 380, переведенного на питание 220. Как видно из рисунка, ничего сложного в этом нет, понадобится лишь переключатель на 2 позиции.
Вы решили самостоятельно подключить трехфазный двигатель к одной фазе, и вы не являетесь электриком, тогда эта статья для вас. Трехфазный двигатель вполне успешно работает и в однофазной сети, но ожидать от него полной рабочей мощности при работе с конденсаторами не нужно. Мощность в лучшем случае будет не более 70% от номинальной, пусковой момент зависит от пусковой емкости, также имеется сложность при подборе рабочей емкости при постоянно изменяющейся нагрузке. Трехфазный двигатель для однофазной сети это компромисс, но во многих случаях это является единственным выходом.
Нам понадобится такой инструмент:
Стрелочный вольтметр, паяльник, отвертка.
Нам понадобится такой материал:
Электродвигатель 220/380 В., рабочие конденсаторы, пусковой конденсатор, кнопка пуска 220 В., провода, олово, канифоль или кислота, изолента.
Способы подключения электродвигателя своими руками:
Подключения по схеме звезда: начала или концы (понятие условное) всех обмоток соединяем вместе и это будет ноль, остальные выходы подключаем к фазам. На схеме изображения обмоток похожи на звезду (катушки направлены из центра).
Подключения по схеме треугольник: начало (понятие условное) одной обмотки соединяем с концом следующей обмотки по кругу. Наши соединения обмоток соединяем попарно и подключаем к трем фазам (трехжильному кабелю). Нулевой выход эта схема не имеет, т.к. обмотки на схеме соединены в треугольник. Для смены направления вращения электродвигателя нужно поменять местами любые две фазы в месте подсоединения питания к электродвигателю.
Начало и конец обмотки это условно, здесь важно, чтобы направления обмоток совпадали, т. е. по схеме звезда нулевой точкой могут являться как концы, так и начала обмоток, а в схеме треугольник обмотки обязаны быть связаны последовательно, т. е. конец одной с началом следующей.
Поиск обмоток двигателя:
Если у двигателя имеется только одна связка 3 вывода, нужно разобрать двигатель: снять крышку со стороны колодки и в обмотках найти соединение трёх обмоточных проводов, которое является нулевой точкой звезды (все остальные провода соединены по 2). Эти 3 провода нужно размотать и припаять к ним выводные провода объединив их в одну связку. И так мы имеем 2 связки по 3 провода в каждой, которые соединяем по схеме треугольника. Если имеется 6 выводов, и они не объединены в связки, то воспользуйтесь схемой приведенной слева. К выводу обмотки A1 подключаем 1 провод вольтметра в режиме омметра и вторым проводом прикасаемся к другим выводам. В случае если стрелку вольтметра начнет клонить вправо, значит это А2. Также делаем и с остальными и расставляем провода по схеме. Проверяем всё ещё раз с самого начала. И так у нас получилось следующее.Теперь выводы, находящиеся в одной связке пометим как начала, а выводы, находящиеся в другой связке как концы. Все можно подсоединять по схеме треугольник.
Расчет емкости рабочего конденсатора:
Расчет производится на номинальную мощность, а двигатель редко работает в таком режиме и если его недогружать, двигатель нагреется из-за излишней емкости рабочего конденсатора и вследствие увеличения тока в обмотке.
Для двигателей, подключаемых в сеть 220 В. с соединением проводов обмоток по схеме треугольник, применим такую формулу: С мкФ = 4800 I / U
Для двигателей, подключаемых в сеть 220 В. с соединением проводов обмоток по схеме звезда, применим такую формулу: С мкФ = 2800 I / U
Конечно это самый точный способ, но требующий измерения тока в цепи двигателя. Располагая сведениями о номинальной мощности двигателя, для расчета ёмкости рабочего конденсатора лучше использовать следующую формулу:
С мкФ = 66·Р ном , где Р ном является номинальной мощностью электродвигателя.
К примеру, двигатель с мощностью 1.7 кВт нуждается в емкости конденсатора составляющего 112 мкФ. Выходит, что на каждых 0.1 кВт. используем 6.6 мкФ. Емкость конденсатора можно набрать несколькими конденсаторами, соединив их параллельно, друг с другом, но они должны быть рассчитаны на напряжение не менее 380 В. После расчета ёмкости рабочего конденсатора можно узнать ёмкость пускового, которая должна быть в 2-3 раза больше емкость рабочего.
Трёхфазные электродвигатели асинхронного типа с короткозамкнутым ротором доминируют над однофазными и двухфазными собратьями в применении, т.к. имеют более высокую эффективность, а также включаются в сеть без помощи пусковых устройств. По номинальному питанию отечественные электродвигатели делятся на два типа: напряжением 220 / 380 и 127 / 220 Вольт. Последний тип электромоторов небольшой мощности применяется значительно реже.
В шильдике, размещенном на корпусе электродвигателя, обозначена необходимая информация — напряжение питания, мощность, ток потребления, КПД, возможные варианты включения и
коэффицент мощности, количество оборотов.
Схемы подключения ЗВЕЗДА и ТРЕУГОЛЬНИК
Производители предлагают трехфазные электродвигатели как с возможностью изменять схему подключения, так и без таковой.
Более раннему обозначению выводов обмоток С1 — С6 соответствует современное U1 — U2, W1 — W2 и V1 — V2. В распред. коробке выведены провода в количестве трёх (заводом изготовителем по умолчанию осуществлена схема подключения *звезда*) или шести (двигатель можно подключать к трехфазной сети как звездой, так и треугольником). В первом случае необходимо начала обмоток (W2, U2, V2) соединить в единой точке, три оставшихся провода (W1, U1, V1) подключить к фазам питающей сети (L1, L2, L3).
Преимущество метода звезда — плавный запуск мотора и мягкая работа (обусловленная щадящим режимом и благоприятно сказывающаяся на эксплуатационном сроке агрегата),
а также меньший пусковой ток.
Недостаток — потеря по мощности примерно в полтора раза и меньший крутящий момент. Применяется для оборудования, имеющего на валу свободно вращающуюся нагрузку – вентиляторы, центробежные насосы, валы станков, центрифуг и другого оборудования, не требовательного к крутящему моменту.
Схему треугольник применяют для электродвигателей, изначально имеющих на валу неинерционную нагрузку,
такую как вес груза лебедки или сопротивление поршневого компрессора.
Для снижения пускового тока осуществляют комбинированный тип включения (применим для электромоторов мощностью от 5 кВт) — сочетающий в себе преимущества первых двух схем — пуск происходит по схеме звезда, а после вхождения электромотора в рабочее состояние происходит автоматическое (реле времени) или ручное переключение (пакетник) — мощность возрастает до номинальной.
Включение трёхфазного двигателя в однофазную сеть через конденсатор (380 на 220)
На практике часто приходится подключать трёхфазный двигатель к сети 220 вольт; хотя КПД при этом падает до 50 % (в лучшем случае до 70%),
такая переделка бывает оправданной. Фактически мотор начинает работать как двухфазный, используя фазосдвигающий элемент.
Конденсатор подбирают исходя из мощности двигателя — на каждые 100Вт потребуется ёмкость 6, 5 мкф , по рабочему напряжению должен быть больше питающего минимум в 1,5 раза, иначе от скачков напряжения в момент включения и выключения они могут выйти из строя; тип — МБГО, МБГ4, К78-17 МБГП, К75-12, БГТ, КГБ, МБГЧ. Хорошо себя зарекомендовали металлизированные полипропиленовые конденсаторы типа СВВ5, СВВ60, СВВ61.
В случае применения конденсатора бОльшей ёмкости двигатель будет перегреваться, меньшей — будет работать в недогруженном режиме либо вообще не запустится.
В схеме ниже Сп — пусковой, Ср — конденсатор рабочий.
Пусковой конденсатор при наличии нагрузки на валу двигателя
В случае, если на валу имеется нагрузка, либо мощность превышает 1,5 кВт, движок может не запуститься или медленно набирать обороты. *Поправить* это можно применением рабочего и пускового конденсатора, служащих для сдвига фазы и разгона. Кнопку разгона нужно удерживать пока обороты не достигнут примерно 70% от номинальных (2 — 3 секунды), после чего отпустить.
Ёмкость пускового кондера должна превышать рабочую в 2..3 раза в зависимости от нагрузки на валу. Если проблематично достать вышеуказанные конденсаторы нужной ёмкости, возможно применение электролитических, спаянных по особой схеме с диодами. Однако для работы мощных станков следует избегать подобной замены и рекомендовать её лишь для временного включения.
Важно!
Не рекомендуется подключать электродвигатель мощностью более 3 кВт к домашней сети ввиду её невысокой нагрузочной способности.
Автоматический выключатель в цепи питания электродвигателя должен быть с время — токовой характеристикой C или D ввиду существенного кратковременного пускового тока, превышающего номинальный в 3 и 5 раз (звезда / треугольник) соответственно.
Если 3 — фазный электродвигатель будет долго работать без нагрузки от однофазной сети, он сгорит!
Выбирая правильное соединение или переключение, необходимо учитывать особенности электрической сети, силовой мощности электродвигателя и варианты подключения. В каждом случае следует ознакомиться с техническими характеристиками мотора и оборудования, для которого он предназначен.
Стоимость подключения электродвигателя специалистом — 800….2000р. в зависимости от сложности, варианта подключения, условий работы.
Большинство асинхронных двигателей, предназначенных для работы в трехфазной сети 380 В можно спокойно переделать для работы в домашнем хозяйстве, например для точильного станка или сверлильного, где напряжение сети обычно составляет 220 В. На практике чаще всего применяется схема подключения в однофазную сеть с помощью конденсаторов.
При этом стоит отметить, что при таком подключении мощность электродвигателя составит 50-60% от его номинальной мощности, но и этого зачастую будет вполне достаточно.
Не все трехфазные электродвигатели хорошо работают при подключении к однофазной сети. Проблемы возникают, например, у двигателей серии МА с двойной клеткой короткозамкнутого ротора. В связи с этим при выборе трехфазных электродвигателей для работы в однофазной сети следует отдать предпочтение двигателям серий А, АО, АО2, АПН, УАД и др.
Для чего нам нужны конденсаторы? Если вспомнить теорию, обмотки в асинхронном двигателе имеют фазовый сдвиг в 120 градусов, благодаря чему создаётся вращающееся магнитное поле. Вращающееся магнитное поле, пересекая обмотки ротора, индуцирует в них электродвижущую силу, что приводит к возникновению электромагнитной силы, под действием которой ротор начинает вращаться. Но это действительно только для трехфазной сети.
При подключении в однофазную сеть трехфазного двигателя вращающий момент будет создаваться только одной обмоткой и этого усилия будет недостаточно для вращения ротора. Чтобы создать сдвиг фазы относительно питающей фазы и применяют фазосдвигающие конденсаторы.
Наиболее распространенными схемами подключения трехфазного двигателя к однофазной сети являются схема «треугольник» и схема «звезда». При подключении в «треугольник» выходная мощность электродвигателя будет больше чем у «звезды», поэтому в быту обычно применяют ее.
Для того, чтобы определить по какой схеме выполнено подключение двигателя, надо снять крышку клеммника и посмотреть каким образом установлены перемычки.
В случае подключения «треугольником» все обмотки должны быть соединены последовательно, т. е. конец одной обмотки с началом следующей.
Если в клеммник выведено только 3 вывода, значит придется разбирать двигатель и находить общую точку подключения трех концов обмоток. Это соединение надо разорвать, к каждому концу припаять отдельный провод, после чего вывести их на клеммную колодку. Таким образом мы получим уже 6 проводов, которые соединим по схеме «треугольник».
После того как определились со схемой подключения, необходимо подобрать емкость конденсаторов. Емкость рабочего конденсатора можно определить по формуле С раб = 66·Р ном , где Р ном — номинальная мощность двигателя. То есть берем на каждые 100 Вт мощности берем примерно 7 мкФ емкости рабочего конденсатора. Если конденсатора необходимой емкости нет в наличии, можно набрать из нескольких конденсаторов, подключая их в параллель. Конденсаторы можно применять любого типа, кроме электролитических. Неплохо зарекомендовали себя конденсаторы типа МБГО , МБГП . Емкость пускового конденсатора должна быть примерно в в 2-3 раза больше, чем емкость рабочего конденсатора. Рабочее напряжение конденсаторов должно быть в 1,5 раза больше напряжения сети.
Если двигатель после запуска начнет перегреваться, значит расчетная емкость конденсаторов завышена. Если емкости конденсаторов недостаточно, будет происходить сильное падение мощности двигателя. При правильном подборе емкости конденсаторов ток в обмотке, подключенной через рабочий конденсатор, будет одинаков или незначительно отличаться от тока, потребляемого двумя другими обмотками. Рекомендуют подбирать емкости, начиная с наименьшего допустимого значения, постепенно увеличивая емкость до необходимого значения.
В случае подключения маломощных двигателей, работающих первоначально без нагрузки, можно обойтись одним рабочим конденсатором.
Рис.1 Подключение с одним рабочим конденсатором
Рис.2 Схема подключения трехфазного двигателя в однофазную сеть
Сп — Пусковой конденсатор Ср — Рабочий конденсатор SB — кнопка SA — тумблер
При развитии любой гаражной мастерской, может возникнуть необходимость подключить трёхфазный электродвигатель в однофазную сеть на 220 вольт. Это не удивительно, так как промышленные трёхфазные двигатели на 380 в более распространены, чем однофазные (на 220 в), особенно больших габаритов и мощности. И изготовив какой нибудь станочек, или купив готовый (например токарный) любой гаражный мастер сталкивается с проблемой подключения трёхфазного электромотора к обычной гаражной розетке на 220 вольт. В этой статье мы и рассмотрим варианты подключения, а так же что для этого понадобится.
Для начала следует внимательно изучить шильдик (табличку) электродвигателя, чтобы узнать его мощность, так как от этой мощности будет зависеть ёмкость или количество конденсаторов, которые нужно будет купить. И прежде чем отправляться на поиски и покупку конденсаторов, для начала следует вычислить, какая ёмкость потребуется именно для вашего двигателя.
Расчёт ёмкости.
Ёмкость нужного конденсатора напрямую зависит от мощности вашего электродвигателя и высчитывается по простой формуле:
С = 66 Р мкФ.
Буква С означает ёмкость конденсатора в мкФ (микрофарад), а буква Р означает номинальную мощность электродвигателя в кВт (киловатт). Из этой простой формулы видно, что на каждые 100 ватт мощности трёхфазного двигателя, потребуется чуть менее 7 мкФ (если быть точным, то 6,6 мкФ) электрической ёмкости конденсатора. Например для эл. двигателя мощностью 1000 ватт (1 Квт) потребуется конденсатор ёмкостью 66 мкФ, а для эл. двигателя на 600 ватт нужен будет конденсатор ёмкостью примерно 42 мкФ.
Так же следует учесть, что потребуются конденсаторы, рабочее напряжение которых в 1,5 — 2 раза больше, чем напряжение в обычной однофазной сети. Обычно на базаре попадаются конденсаторы небольших ёмкостей (8 или 10 мкФ), но необходимую ёмкость легко собрать из нескольких параллельно соединённых конденсаторов маленькой ёмкости. То есть например 70 мкФ можно легко получить из семи параллельно спаянных конденсаторов по 10 мкФ.
Но всё же всегда следует стараться найти по возможности один конденсатор ёмкостью 100 мкФ, чем 10 конденсаторов по 10 мкФ, так надёжнее. Ну и рабочее напряжение, как я уже говорил, должно быть как минимум в 1,5 — 2 раза больше рабочего, а лучше в 3 — 4 раза больше (чем больше напряжение, на которое рассчитан конденсатор, тем надёжнее и долговечнее). Рабочее напряжение всегда пишется на корпусе конденсатора (как и мкФ).
Правильно вы подобрали (рассчитали) ёмкость конденсатора или нет, можно и на слух. При вращении мотора, должен быть слышен только шум от подшипников, ну и шум вентилятора воздушного охлаждения. Если же к этим шумам прибавляется и вой двигателя, нужно чуть уменьшить ёмкость (Ср) рабочего конденсатора. Если же звук нормальный, то можно наоборот немного увеличить ёмкость (так будет мощнее мотор), но только чтобы мотор работал тихо (до появления воя).
Проще говоря, нужно поймать момент, меняя ёмкость, когда к нормальному шуму от подшипников и крыльчатки, начнёт прибавляться еле слышимый посторонний вой. Это и будет необходимая ёмкость рабочего конденсатора. Это важно, так как если рабочая ёмкость конденсатора окажется больше необходимой, то мотор будет перегреваться, а если ёмкость будет меньше нужной, то мотор потеряет свою мощность.
Покупать лучше конденсаторы типа МБГЧ, БГТ, КБГ, ну а если не найдёте таких в продаже, можно применить и электролитические конденсаторы. Но при подключении электролитических конденсаторов, их корпуса нужно хорошо соединить между собой и изолировать от корпуса станка или ящика (если он металлический, но лучше использовать ящик для конденсаторов из диэлектрика — пластик, текстолит и т.п.).
При подключении трёхфазного двигателя к сети 220 вольт, частота вращения его вала (ротора) почти не изменится, а вот мощность его всё же немного уменьшится. И если подключить электродвигатель по схеме треугольник (рис 1), то мощность его уменьшится примерно процентов на 30 и будет составлять 70 — 75 % от его номинальной мощности (при звезде чуть меньше). Но можно подключить и по схеме звезда (рис 2), и при подсоединении звездой, мотор легче и быстрее запускается.
Чтобы подключить трёхфазный электродвигатель по схеме звезда, нужно его две фазные обмотки подключить в однофазную сеть, а третью фазную обмотку двигателя, подключить через рабочий конденсатор Ср к любому из проводов сети 220 в.
Чтобы подключить трёхфазный электромотор мощностью до полтора киловатта (1500 ватт), хватает только рабочего конденсатора необходимой ёмкости. Но при включении больших моторов (более 1500 ватт), движок либо очень медленно набирает обороты, либо вообще не запускается. В таком случае необходим пусковой конденсатор (Сп на схеме), ёмкость которого в два с половиной раза (лучше в 3 раза) больше ёмкости рабочего конденсатора. Лучше всего подходят в качестве пусковых конденсаторов электролитические (типа ЭП), но можно использовать и такого же типа как и рабочие конденсаторы.
Схема подсоединения трёхфазного мотора с пусковым конденсатором показана на рисунке 3 (а так же пунктирной линией на рисунках 1 и 2). Пусковой конденсатор включают только во время пуска двигателя, и когда он запустится и наберёт рабочие обороты (обычно хватает 2 секунд), пусковой конденсатор отключают и разряжают. В такой схеме используются кнопка и тумблер. При пуске аключается тумблер и кнопка одновременно и после запуска двигателя, кнопка просто отпускается и пусковой конденсатор отключается. Чтобы разрядить пусковой конденсатор, достаточно выключить двигатель (после окончания работы) и затем на короткое время нажать кнопку пускового конденсатора, и он разрядится через обмотки электродвигателя.
Определение фазных обмоток и их выводов.
При подключении необходимо знать, где какая обмотка электродвигателя. Как правило выводы обмоток статора электромоторов маркируют различными бирками с обозначением начала или конца обмоток, или помечают буквами на корпусе распределительной коробочки двигателя (или клеммной колодки). Ну а если же маркировка стёрлась или её вообще нет, то нужно прозвонить обмотки с помощью (мультиметра), установив его переключатель на прозвонку, или с помощью обычной лампочки и батарейки.
Для начала следует узнать принадлежность каждого из шести проводов к отдельным фазам обмотки статора. Для этого следует взять любой из проводов (в клеммной коробочке) и подсоединить его к батарейке, например к её плюсу. Минус батарейки подсоедините к контрольной лампе, а второй вывод (провод) от лампочки, по очереди подсоединяйте к оставшимся пяти проводам двигателя, пока контрольная лампочка не загорится. Когда на каком то проводе лампочка загорится, это будет означать, что оба провода (тот что от батарейки и тот к которому подсоединили провод от лампы и лампа загорелась) принадлежат одной фазе (одной обмотке).
Теперь эти два провода пометьте картонными бирками (или малярным скотчем) п напишите на них маркероа начало первого провода С1, а второй провод обмотки С4. С помощью лампы и батарейки (или тестера) аналогично находим и помечаем начало и конец оставшиеся четырёх проводов (двух оставшихся фазных обмоток).Начало и конец второй фазной обмотки помечаем как С2 и С5, и начало и конец третьей фазной обмотки С3 и С6.
Далее следует точно определить, где начало и конец статорных обмоток. Я опишу далее способ, который поможет определить начало и конец статорных обмоток для двигателей до 5 киловатт. Да больше и не надо, так как однофазная сеть (проводка) гаража рассчитана на мощность 4 киловата, а если мощнее, то штатные провода не выдерживают. И вообще то редко кто использует двигатели в гараже, мощнее 5 киловатт.
Для начала соединим все начала фазных обмоток (С1, С2 и С3)в одну точку (согдасно помеченным бирками выводам), по схеме «звезда». И затем включим двигатель в сеть 220 в с использованием конденсаторов. Если при таком подключении, электродвигатель без гудения сразу раскрутится до рабочих оборотов, это значит, что вы попали в одну точку всеми началами или всеми концами фазных обмоток.
Ну а если же при включении в сеть, электродвигатель загудит и не сможет раскрутиться до рабочих оборотов, то в первой фазной обмотке нужно поменять местами выводы С1 и С4 (поменять местами начало и конец). Если это не поможет, то верните выводы С1 и С4 в первонаальное положение и попробуйте теперь поменять местами выводы С2 и С5. Если двигатель опять не набирает обороты и гудит, то верните назад выводы С2 и С5 поменяйте местами выводы третьей пары С3 и С6.
При всех вышеописанных манипуляциях с проводами, строго соблюдате правила техники безопасности. Провода держите только за изоляцию, лучше плоскогубцами с ручками из диэлектрика. Ведь электромотор имеет общий стальной магнитопровод и на зажимах остальных обмоток, может возникнуть довольно большое напряжение, опасное для жизни.
Изменение вращения вала электродвигателя (ротора).
Часто бывает, что вы например сделали шлифовальный станочек, с лепестковым кругом на валу. И лепестки из наждачной бумаги расположены под определённым углом, против которого вращается вал, а нужно в другую сторону. Да и опилки летят не на пол а наоборот вверх. Значит необходимо поменять вращение вала двигателя в другую сторону. Как это сделать?
Чтобы изменить вращение трёхфазного двигателя, включенного в однофазную сеть на 220 вольт по схеме «треугольник», нужно третью фазную обмотку W (см. рисунок 1,б) подключить через конденсатор к резьбовой клемме второй фазной обмотки статора V.
Ну а чтобы изменить вращение вала трёхфазного двигателя, подключенного по схеме «звезда», необходимо третью фазную обмотку статора W (см. рисунок 2,б) подключить через конденсатор к резьбовой клемме второй обмотки V.
Ну и напоследок хочу сказать, что шум двигателя от длительной его работы (несколько лет) может возникнуть со временем, и не следует путать его с гулом от неправильного подключения. Так же со временем может возникнуть и вибрация мотора. А бывает даже ротор трудно вращать вручную. Причиной этого как правило является выработка подшипников — их дорожки и шарики износились, да и сепаратор тоже. От этого возникают повышенные зазоры между деталями подшипников и они начинают шуметь, и со временем могут даже заклинить.
Этого допускать нельзя, и дело даже не только в том, что вал труднее будет вращаться и мощность двигателя упадёт, а ещё и в том, что между статором и ротором довольно маленький зазор, и при сильном износе подшипников, ротор может начать цеплять за статор, а это уже куда серьёзнее. Детали двигателя могут испортиться и восстановить их не всегда удаётся. Поэтому намного проще заменить зашумевшие подшипники новыми, от какой то авторитетной фирмы (как выбрать подшипник читаем ), и электродвигатель снова будет работать долгие годы.
Надеюсь данная статья поможет гаражным мастерам, без проблем подключить трёхфазный двигатель какого то станка к однофазной гаражной сети на 220 вольт, ведь с применением различных станочков (шлифовальных, сверлильных, токарных, и т.д.) намного упрощается процесс доводки деталей при тюнинге или ремонте.
Напряжение— Как мне успешно подключить трехфазный двигатель с однофазным напряжением 220 В? Напряжение
— Как мне успешно подключить трехфазный двигатель с однофазным напряжением 220 В? — Обмен электротехнического стекаСеть обмена стеков
Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 701 раз
\ $ \ begingroup \ $У меня есть дробилка для пластика с трехфазным двигателем, и я хотел бы использовать ее с однофазным 220 В.
Может ли кто-нибудь помочь мне с инструкциями по подключению?
Также я хочу знать, буду ли я использовать два конденсатора? (пусковой конденсатор и рабочий конденсатор)
Могу ли я узнать точное значение конденсатора (ей), которое мне потребуется?
Я приложил изображение этикетки двигателя, изображение контактора двигателя и изображение проводки двигателя.
Заранее спасибо.
Дэниел К67922 серебряных знака1111 бронзовых знаков
Создан 05 июл.
Ммади1111 бронзовый знак
\ $ \ endgroup \ $ 1 \ $ \ begingroup \ $Если ваш бюджет позволяет, вам следует приобрести VFD (частотно-регулируемый привод).Он может создавать трехфазные сигналы с разными фазовыми сдвигами и частотами, что дает вам возможность контролировать скорость, направление, мощность и т. Д. Вашего двигателя. Их можно найти на eBay по умеренным ценам, чем они мощнее, тем дороже. Вероятно, есть и другие варианты, но, учитывая, что три фазы имеют решающее значение для работы двигателя, я не думаю, что вы можете просто подключить его к одной фазе без какого-либо контроллера двигателя.
винни7,27366 золотых знаков3131 серебряный знак4545 бронзовых знаков
Создан 05 июля ’19 в 11: 542019-07-05 11:54
\ $ \ endgroup \ $ \ $ \ begingroup \ $Существует три основных подхода к работе трехфазного двигателя от однофазного источника питания.Ни один из них не так удобен, как покупка однофазного двигателя в первую очередь.
- Преобразователь статической фазы. Это включает в себя индивидуальное расположение конденсаторов для сдвига фазы. Вот коммерческий поставщик. Он не дает полного крутящего момента и имеет относительно низкую эффективность , поэтому я думаю, что он не подходит для дробилки с высокими пиковыми нагрузками. Есть много способов сделать своими руками, вы можете погуглить, если хотите повозиться. Будет два ограничения пробега плюс стартовый предел.Изображение ниже взято с этого веб-сайта, на котором есть подробная информация о том, как рассчитать номиналы конденсаторов.
Поворотный фазовый преобразователь. Это включает в себя запуск (часто более крупного) трехфазного холостого двигателя в качестве генератора от однофазного источника питания. Вот коммерческий поставщик. Это не так безумно, как кажется, поскольку (бывшие в употреблении) трехфазные двигатели часто можно купить по цене, близкой к цене лома. Опять же, есть много самостоятельных подходов, которые вы можете использовать в Google — раньше это был популярный способ привести в действие промышленный фрезерный станок Bridgeport в гараже любителя.Иногда двигатель оснащен подходящим стартером, иногда используется веревка на валу двигателя (в противном случае не нагруженном) (для меня это звучит немного опасно). Схема аналогична статическому фазовому преобразователю, за исключением того, что параллельно двигателю имеется холостой двигатель и обычно пускатель контактора и таймер.
VFD (частотно-регулируемый привод). Это блок, который преобразует входящую мощность (одно- или трехфазную, в зависимости от конструкции) в постоянный ток, а затем использует IGBT или MOSFET для преобразования постоянного тока обратно в трехфазный переменный ток с переменной частотой.Это имеет то преимущество, что позволяет изменять число оборотов двигателя. Их количество упало совсем немного за последние годы, и очень недорогие доступны из Азии. Выше относительно низкого диапазона мощности им обычно требуется трехфазная входная мощность для получения постоянного тока. Ваш двигатель составляет около 7,5 л.с., поэтому, если вы пойдете по этому пути, убедитесь, что вы указали , который обеспечивает однофазную входную мощность . Некоторые из них допускают однофазную или трехфазную входную мощность, но значительно снижают максимальную мощность при использовании одной фазы.Электроника слишком сложна (а коммерческие продукты относительно дешевы), чтобы подходы «сделай сам» были практичными. Схема — это только включение и выключение питания плюс заземление.
Создан 05 июл.
Спехро Пефани5k1212 золотых знаков239239 серебряных знаков599599 бронзовых знаков
\ $ \ endgroup \ $ 5 \ $ \ begingroup \ $Старомодной альтернативой современному ЧРП, как упоминалось в другом ответе, был бы «роторный инвертор».Роторный инвертор — это просто электродвигатель, приводящий в действие генератор переменного тока. Использование однофазного двигателя и трехфазного генератора переменного тока даст требуемый результат.
Создан 05 июля ’19 в 14: 342019-07-05 14:34
Саймон Б.Симон Б.11k11 золотой знак1717 серебряных знаков3232 бронзовых знака
\ $ \ endgroup \ $ \ $ \ begingroup \ $Двигатель уже подключен в треугольник, поэтому, если на заводской табличке указано 380 В, теперь это 220 В.Подключите конденсатор, как показано. Значение зависит от протянутого тока. Ток через конденсатор будет меньше (примерно 1/2) при запуске, а не больше, поэтому, если вы запускаете его под нагрузкой, вам понадобится конденсатор большего размера при запуске (может быть, до 10x). Характеристики крутящего момента не будут такими хорошими, как у 3-фазного. Используйте номинальный ток 220 В, указанный на паспортной табличке, в качестве ориентира для расчета емкости конденсатора, затем вы можете отрегулировать значение, чтобы ток был равен другим фазам. Используйте конденсатор, рассчитанный на работу двигателя, или конденсатор (ы) коррекции коэффициента мощности.Я не знаю, какое сочетание рейтингов у этого мотора. Даже производитель не знает. Двигатель с частотой 50 Гц не работает со скоростью 1680 об / мин, а двигатель с частотой 60 Гц обычно не рассчитан на 220 В (если только он не из Южной Америки). Кроме того, у двигателя такого размера не так много пробуксовки. На 60 Гц он будет работать со скоростью около 1750 об / мин.
Создан 27 окт.
\ $ \ endgroup \ $ \ $ \ begingroup \ $Из-за стоимости подходящего колпачка с сеткой из полиуретана. Сопротивления и импедансы двигателя больше, чем у частотно-регулируемого привода, ищите только наиболее подходящий для ваших нужд по току в решении с частотным регулированием.Затраты в вашем диапазоне составляют ~ <10 долларов США в год для трехфазных частотно-регулируемых приводов. До 25 долларов за штуку. например https://www.ato.com/single-phase-to-three-phase-vfd. Это не значит, что это предпочтительный источник, а просто пример хорошего.
Два человека проголосовали против этого правильного ответа. -2 неверны и молчат. Предупреждаем читателей.
Статические емкостные преобразователи фазыНЕ РЕКОМЕНДУЮТСЯ для ТЯЖЕЛЫХ ПРИМЕНЕНИЙ, таких как ДРОБИЛКА ДЛЯ ПЛАСТИКОВ. Причина в том, что ВЫ ПОЛУЧАЕТЕ ТОЛЬКО <50% НАИМЕНОВАННОЙ ЛОШАДИ.Поэтому ответы, предлагающие СТАТИЧЕСКИЕ ПРЕОБРАЗОВАТЕЛИ примерно по той же цене, что и хороший ЧРП, НЕ РЕКОМЕНДУЮТСЯ.
Создан 05 июля ’19 в 14: 592019-07-05 14:59
Тони Стюарт EE75 Тони Стюарт EE7510k33 золотых знака3838 серебряных знаков147147 бронзовых знаков
\ $ \ endgroup \ $ 1 Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Создание фазового преобразователя | MetalWebNews.com
Многие качественные бывшие в употреблении промышленные машины с трехфазными электродвигателями доступны по привлекательным ценам.Большинство жилых домов не имеют доступа к трехфазной электроэнергии по разумной цене. Если строитель домашнего магазина решит использовать эти машины, он должен либо заменить трехфазные двигатели однофазными двигателями, либо найти способ использовать однофазную мощность в своем доме для их работы. В этой статье объясняется, как построить вращающийся фазовый преобразователь, который преобразует вашу однофазную электрическую мощность 220 В переменного тока в трехфазную 220 В переменного тока для питания ваших промышленных машин.
Безопасность должна быть вашей первой заботой, и любая электрическая проводка должна соответствовать вашим местным нормам и правилам.При этом для начала будут описаны некоторые типичные размеры проводов, методы защиты от перегрузки и короткого замыкания. Также следует заземлить металлический каркас двигателей и ваших машин. Это защитное заземление обычно не проводит электричество. Он присутствует в случае, если токопроводящий проводник случайно касается металлического каркаса. Это обеспечивает путь с низким сопротивлением для прохождения электричества вместо того, чтобы проходить через ваше тело на землю.
На рынке представлены два основных типа фазовых преобразователей, которые позволяют трехфазным двигателям работать с однофазным входом преобразователя.Эти типы называются статическими и поворотными. Статический преобразователь — это, по сути, только пусковая схема, которая после запуска двигателя отключается и позволяет двигателю работать на однофазной мощности. Недостатком этого метода является то, что токи обмотки двигателя будут очень несбалансированными, и двигатель не сможет развивать мощность, превышающую примерно две трети своей номинальной мощности. Роторный преобразователь обеспечивает ток во всех 3 фазах и, хотя и не идеален, позволяет двигателю обеспечивать полную или почти всю свою номинальную мощность.Если коэффициент обслуживания двигателя составляет от 1,15 до 1,25, вы сможете использовать полную номинальную мощность. Сервисный коэффициент указан на паспортной табличке двигателя и обычно обозначается аббревиатурой S.F. Причины, по которым электрическая мощность не идеальна, носят очень технический характер и могут включать небольшой дисбаланс напряжения и тока, а также несовершенные фазовые углы между фазами. Балансировка напряжения и тока проста, если у вас есть доступ к вольтметру или, предпочтительно, амперметру с зажимами.Но даже если у вас нет этих измерителей, используя приблизительные значения рабочих конденсаторов, указанные в этой статье, токи должны быть близкими, и вы сможете получить почти полную мощность от своих трехфазных двигателей.
Терминология, используемая для описания частей фазового преобразователя, требует пояснения. Вращающаяся часть вращающегося фазового преобразователя представляет собой стандартный трехфазный электродвигатель, называемый холостым электродвигателем. Он называется так, потому что обычно он не имеет механической нагрузки, связанной с его валом.Поскольку подача однофазного питания к трехфазному двигателю не приведет к его вращению, необходимо средство для запуска холостого двигателя, вращающегося со скоростью, близкой к номинальной. Это можно сделать несколькими способами. Можно использовать трос, небольшой однофазный электродвигатель или пусковой конденсатор. Если используются механические средства, мощность на холостой ход не подается до тех пор, пока двигатель не начнет вращаться и трос или питание однофазного двигателя не будет отключено. Для уравновешивания напряжений и токов на трехфазном выходе можно использовать пару рабочих конденсаторов.Выключатель-разъединитель требуется большинством местных правил электротехники для каждой единицы оборудования. Если для подключения питания к оборудованию используется вилка и розетка, это соответствует требованиям к отключению. Защита от перегрузки требуется для каждого двигателя. Он может быть встроен в двигатель или предоставлен отдельно. Проверьте паспортную табличку двигателя, если на ней не указано «встроенная защита от перегрузки», то ее необходимо поставить отдельно. Обычно для управления двигателем используются реле тепловой перегрузки и магнитный контактор.Магнитный контактор — это сверхмощное реле для включения и выключения двигателей. Он разработан для работы с высокими пусковыми токами двигателей. Также доступны механические (ручные) контакторы с тепловой защитой от перегрузки в составе переключателя. Для целей этой статьи два провода, по которым подается однофазное питание 220 В переменного тока, будут называться линиями 1 и 2. Они подключены к клеммам 1 и 2 холостого двигателя соответственно. Провод, идущий от третьего вывода холостого двигателя, будет называться линией 3.
Чтобы построить вращающийся фазовый преобразователь, следуйте общей схеме, показанной ниже.
Однофазный вход 220 В переменного тока подключен к линиям 1 и 2, обозначенным L1 и L2 на рисунке 1. Предохранители картриджа с выдержкой времени используются для защиты от короткого замыкания. 1R-1 и 1R-2 — главные контакты магнитного контактора (силового реле). Катушка этого реле обозначена 1R. Рабочие конденсаторы подключаются между линиями 1-3 и 2-3. Перегрузки являются частью теплового реле перегрузки с нормально замкнутым контактом, обозначенным OL-1.Этот контакт размыкается при срабатывании перегрузки. Размыкание этого контакта отключает прохождение тока через цепь управления 120 В переменного тока, обесточивая катушку 1R. Клеммы холостого двигателя имеют маркировку T1, T2 и T3. Схема пуска использует реле 2R и его контакт 2R-1 для подключения пускового конденсатора к линиям 1 и 3, пока кнопка пуска удерживается нажатой. В проводке управления вспомогательный контакт реле 1, обозначенный 1R-X, поддерживает питание. к катушке 1R после отпускания кнопки пуска.Трехфазная выходная мощность подключается после главных контактов (1R-1 и 1R-2), так что питание от линий 1 и 2 не подключается к выходу, если фазовый преобразователь не работает.
Более простая альтернатива, которая устраняет отдельную схему пуска, а также исключает набор рабочих конденсаторов между линиями 2-3, называется самозапускающимся фазовым преобразователем. Этот дизайн обсуждается далее в этой статье.
Выберите размер провода в зависимости от тока, протекающего в проводе.Таблица 1 может использоваться в качестве руководства и основана на трехфазных двигателях 220 В переменного тока и 125% тока двигателя, указанного на паспортной табличке. Используйте только медный провод сечением не менее 14. Допускается использование провода большего диаметра, чем указано в таблице 1.
Таблица 1.
Минимальные предлагаемые сечения проводов.
Провод двигателя двигателя Текущий размер HP ---- ------- -------- 1/2 2.0 # 14 3/4 2.8 # 14 1.0 3.6 # 14 2,0 6,8 # 14 3,0 9,6 # 14 5,0 15,2 # 12 7,5 22,0 # 10
Если используется провод длиной более 50 футов, например, от панели автоматического выключателя до фазового преобразователя, выберите размер провода, чтобы падение напряжения в проводе не превышало 3 процентов. Не забудьте добавить токи всех устройств, которые будут получать энергию от этого питающего провода.Таблица 2 может использоваться в качестве руководства и основана на медном проводе.
Таблица 2.
Минимальный рекомендуемый размер провода для низкого падения напряжения.
Текущая длина провода в футах: Амперы 60 150180210 5 # 14 # 14 # 14 # 14 # 14 # 14 6 # 14 # 14 # 14 # 14 # 14 # 12 7 # 14 # 14 # 14 # 14 # 12 # 12 8 # 14 # 14 # 14 # 12 # 12 # 12 9 # 14 # 14 # 12 # 12 # 10 # 10 10 # 14 # 14 # 12 # 12 # 10 # 10 12 # 14 # 12 # 12 # 10 # 10 # 10 14 # 12 # 12 # 10 # 10 # 10 # 8 16 # 12 # 12 # 10 # 10 # 10 # 8 18 # 10 # 10 # 10 # 8 # 8 # 8 20 # 10 # 10 # 10 # 8 # 8 # 8 25 # 10 # 10 # 8 # 8 # 6 # 6 30 # 8 # 8 # 8 # 6 # 6 # 6
Выбор холостого двигателя — это первый шаг.Это должен быть трехфазный двигатель, рассчитанный на работу при доступном сетевом напряжении и частоте, обычно 220 В переменного тока, 60 Гц. Фазовые преобразователи, испытанные здесь, имели звездообразную обмотку. Некоторые двигатели имеют треугольную обмотку. Многие двигатели имеют более 3 выводов, поэтому их можно подключить более чем к одному напряжению. Двигатели с двойным напряжением обмотки обычно имеют 9 выводов, как показано на рис. 2. Рисунок 2
Проверьте паспортную табличку двигателя, если для напряжения указано 220/440, то его можно подключить в одну сторону для 220 вольт, а в другую — для 440 вольт.Если вы не уверены, отсоедините все провода и измерьте сопротивление между проводами и сравните с рисунком 2. У того же двигателя будет сила тока, указанная как 15 / 7,5, что означает, что он потребляет 15 ампер при подключении для 220 В переменного тока и 7,5 ампер при подключении для 440 В переменного тока. Рейтинг скорости не важен; от 1100 до 3600 об / мин все в порядке. Более высокая скорость может привести к немного лучшим фазовым углам, но на более низкой скорости, как правило, легче начать. Рекомендуются двигатели на шариковых подшипниках, а не двигатели с подшипниками скольжения.Если у двигателя есть масляные колпачки, это подшипник скольжения, если у него есть пресс-масленки или вообще нет штуцеров, это подшипник шарикового типа. Проверните двигатель, чтобы убедиться, что подшипники в порядке. Кроме того, при покупке бывшего в употреблении двигателя подключите омметр между каждым проводом и корпусом, чтобы убедиться в отсутствии коротких замыканий. Это признак того, что изоляция внутри двигателя неисправна. Для справки: стоимость бывшего в употреблении трехфазного двигателя мощностью 2 лошадиные силы или меньше должна составлять около 20 долларов; для более крупных двигателей используйте около 10 долларов за каждую лошадиную силу.Номинальная мощность холостого двигателя должна быть такой же или выше, чем у самого большого трехфазного двигателя, который вы будете использовать. Если у вас есть оборудование, которое запускается с нагруженным двигателем, например воздушный компрессор, то рекомендуется в 1,5 раза больше мощности двигателя.
Пусковой конденсатор должен быть рассчитан минимум на 250 В переменного тока. Можно использовать недорогой электролитический тип. Если мощность холостого двигателя составляет 1 л.с. или меньше, можно также использовать более дорогой маслонаполненный тип, используемый для рабочих конденсаторов, потому что небольшой размер не слишком дорог.В самозапускающемся фазовом преобразователе используется один и тот же набор масляных конденсаторов как для пусковых, так и для рабочих конденсаторов. Электролитический тип со временем теряет емкость, поэтому его следует покупать новым. Его можно узнать по круглому черному пластиковому корпусу. Рейтинг в микрофарадах следует выбирать исходя из номинальной мощности холостого двигателя. Поскольку холостой электродвигатель запускается без механической нагрузки, размер не имеет решающего значения, и для руководства подойдет любое значение от 50 до 100 микрофарад на лошадиную силу.Чем выше номинал, тем быстрее двигатель набирает скорость и потребляет больше тока при запуске. Пусковой конденсатор 220–250 В переменного тока, 270–324 микрофарад продается за новый примерно за 15 долларов.
Рабочие конденсаторы не являются обязательными. Преобразователь будет нормально работать и без них, однако вы можете получить только около 80% мощности от своих трехфазных двигателей из-за низкого тока в третьей линии. Рабочие конденсаторы обычно рассчитаны на 330 или 370 В переменного тока. Необходимо использовать маслонаполненный тип. Они рассчитаны на непрерывный режим работы переменного тока, в то время как электролитический тип не работает и может взорваться.Маслонаполненный тип не потеряет емкость с годами, и поэтому его можно купить подержанным или излишним. Новый рабочий конденсатор на 50 мкФ может стоить 50 долларов при использовании или всего 7 долларов в избытке. Его можно определить по металлическому корпусу и овальной форме (иногда прямоугольной или даже круглой). Назначение рабочих конденсаторов — уравновешивать напряжение и ток в трех фазных линиях. Один набор подключается между линиями 1 и 3. Другой подключается между линиями 2 и 3. Набор может потребоваться, потому что, если требуется более 50 микрофарад, два или более отдельных конденсатора должны быть подключены параллельно для получения желаемого значения. .Наилучший способ их определения — это методом проб и ошибок использование амперметра клещевого типа на трехфазных линиях при работающем трехфазном двигателе. Для идеального баланса каждый набор может иметь разное значение. Для руководства или если идеальная балансировка токов не требуется, рейтинг в микрофарадах можно оценить по номинальной мощности холостого двигателя. Использование одинаковой емкости от 12 до 16 микрофарад на каждую лошадиную силу должно привести к удовлетворительному балансу.
Рисунок 3 Рисунок 4
Влияние рабочих конденсаторов на напряжение и ток в трехфазных линиях показано на на рисунке 3, и на рисунке 4. На рисунке 3 холостому двигателю мощностью 3/4 лошадиных сил требуется около 18 микрофарад между линиями 1-3 и 2-3. На рисунке 4 холостому двигателю мощностью 5 лошадиных сил требуется около 70 микрофарад между фазами. Этот холостой ход был лучше всего сбалансирован с 80 микрофарадами между линиями 1-3 и 60 микрофарадами между линиями 2-3, хотя 70 микрофарад между ними были лишь немного хуже. Рисунок 5 Рисунок 6
Во время испытаний на балансировку тока трехфазный двигатель вращал только шпиндель на токарном станке, металл не резался.Это было сделано для получения повторяемой, хотя и небольшой нагрузки. В таблице 3 показан баланс тока с использованием различных рабочих конденсаторов.
Самозапускающийся фазовый преобразователь использует емкость только между одной фазой (1-3) вместо использования двух наборов, как здесь рекомендуется. Результат попытки этого с тем же фазовым преобразователем мощностью 5 лошадиных сил показан на рисунке 5. Баланс напряжений и токов улучшился по сравнению с отсутствующими конденсаторами, но не так хорошо, как включение емкости между линиями 1-3 и линиями 2-3.В любом случае, в качестве побочного преимущества, потребление однофазного тока, которое включает в себя как фазовый преобразователь, так и потребляемую мощность двигателя нагрузки, также будет значительно снижено, как показано на рисунке 6. Когда 3-фазные двигатели не работали, а работал только холостой ход. во время работы однофазный ток без рабочих конденсаторов составлял 14,8 ампер, а с рабочими конденсаторами он составлял всего 4,4 ампера, как показано треугольниками на рисунке 6. Это 70-процентное снижение тока впечатляет, но из-за изменения коэффициента мощности фактическое Потребляемая мощность изменилась всего с 379 Вт до 295 Вт или 22%.
Таблица 3.
Только токарный шпиндель с токарным двигателем мощностью 1/2 л.с.
Однофазная линия Трехфазная линия Амперы Вольт пФ Вт ----- Амперы ------ Емкость Линия1 Линия2 Линия3 пФ Вт 1-3 2-3 17,22 246,2 0,16 685 2,37 2,42 0,43 0,45 289 0 0 15,85 246,7 0,16 627 2,27 2,33 0,59 0,43 279 10 10 10,13 246,6 0,22 545 1,91 2,09 1,29 0,39 279 50 50 8.67 246,2 0,26 557 1,83 2,06 1,52 0,37 279 60 60 7,15 245,6 0,29 512 1,68 2,00 1,72 0,32 240 70 70 7,13 245,6 0,29 504 1,81 1,88 1,76 0,32 249 80 60
Чтобы гарантировать, что размер рабочих конденсаторов не будет слишком большим при резке металла, была взята пара точек данных при скорости вращения шпинделя 130 об / мин и скорости подачи 0,004 дюйма / оборот при уменьшении диаметра куска мягкого материала. стали. Первоначальный диаметр составлял 1,850 дюйма.Первый проход 0,030 уменьшил диаметр вдвое до 1,790. Второй проход 0,060 начался с диаметра 1,790 и уменьшился до 1,670. В таблице 4 перечислены результаты, которые показывают баланс, аналогичный тому, когда использовалась такая же емкость, а шпиндель не резал металл.
Таблица 4.
60 мкФ между строками 1-3 и 2-3.
Однофазная линия Трехфазная линия Амперы Вольт пФ Вт ----- Амперы ------ Линия 1 Линия 2 Линия 3 пФ Вт 8.67 246,2 0,26 557 1,83 2,06 1,52 0,37 279 Только шпиндель 8,71 247,1 0,26 565 1,83 2,08 1,53 0,40 303 0,030 дюйма 8,85 247,1 0,30 648 1,90 2,18 1,58 0,50 387 0,060 дюйма резка
На схеме ниже показаны два реле.
Реле № 1 является главным силовым реле и должно иметь номинальную мощность двигателя, соответствующую размеру холостого двигателя. Их часто называют магнитными контакторами. Он имеет два основных полюса для переключения однофазных линий 220 В переменного тока и вспомогательный набор контактов, используемых для фиксации катушки реле, находящегося под напряжением, когда главные контакты замкнуты.Ролик отключается нажатием кнопки останова, которая размыкает цепь катушки, вызывая размыкание контактора. Реле номер 2 используется для подключения пускового конденсатора к цепи. Используется реле, чтобы высокие пусковые токи не проходили через кнопку. Можно использовать реле с номинальным током двигателя или, если используется реле с номинальным током, выберите его, чтобы оно выдерживало как минимум в 2 раза превышающий ток, указанный на паспортной табличке. Фактический ток зависит от размера пускового конденсатора и может быть оценен с помощью следующего уравнения.6 = 24,9 ампер
Электрические нормы требуют отключения для каждой единицы оборудования. Выключатель (или вилка) отделяет все токоведущие проводники от напряжения сети. Для однофазных систем 220 В переменного тока это 2 провода (2-полюсный переключатель), для 3-фазных систем — 3 провода (3-полюсный переключатель). Поскольку на преобразователь фазы подается однофазное питание, он может использовать 2-полюсный разъединитель или 2 из 3 полюсов 3-полюсного переключателя. Каждая единица оборудования, использующая трехфазное питание, также должна иметь собственный трехполюсный выключатель.Многие из них имеют предохранители как часть переключателя и называются разъединителями с плавкими предохранителями. Для двигателей это полезно, поскольку перегрузки двигателя не обеспечивают достаточной защиты от коротких замыканий, как предохранители. Использование предохранителей с выдержкой времени, патронных предохранителей является общим для цепей двигателя. Некоторые местные нормы и правила разрешают использовать разъединитель параллельной цепи или автоматический выключатель в качестве рабочего разъединителя для оборудования, если он находится в пределах видимости оборудования. Отключение фазового преобразователя часто может удовлетворить это требование в домашних магазинах.
Холостой двигатель запускается первым и обычно остается включенным, в то время как трехфазные двигатели в цехе включаются и выключаются по мере необходимости. Одновременно можно управлять более чем одним двигателем, и каждый работающий двигатель будет действовать как фазовый преобразователь для других, поэтому общая работающая мощность в лошадиных силах может в 2-3 раза превышать мощность холостого двигателя в лошадиных силах. Если вместо магнитного контактора используется ручной переключатель, то перед включением ручного переключателя необходимо удерживать кнопку включения пускового конденсатора.Когда холостой двигатель запускается (около 1 секунды или меньше), кнопка пускового конденсатора отпускается.
Коммерческие поставщики статических преобразователей позволяют использовать статический преобразователь для запуска холостого двигателя, чтобы несколько двигателей могли работать одновременно. Однако некоторые из этих коммерческих устройств используют реле напряжения или тока для включения пускового конденсатора. Если запускается двигатель, размер которого близок к размеру холостого хода (для которого рассчитан статический преобразователь), пусковой ток может на долю секунды понизить линейное напряжение и привести к включению пускового конденсатора.Это может привести к перегрузке статического преобразователя, поскольку другие двигатели работают. Рекомендуемая здесь конструкция не имеет этого ограничения, поскольку пусковой конденсатор включается только тогда, когда оператор нажимает кнопку пуска.
Самозапускающийся преобразователь фазы
Самозапускающийся фазовый преобразователь проще и дешевле, чем преобразователь. Схема самозапуска показана на рис. 7. Однако баланс тока и напряжения на трехфазном выходе больше изменяется в зависимости от нагрузки, так что присутствует некоторый дисбаланс. при нагрузках, отличных от той, для которой была выбрана емкость.Рисунок 7
Для многих цехов допустима небольшая величина дисбаланса, и большинство коммерческих вращающихся фазовых преобразователей являются самозапускающимися. Внутри одного коммерческого вращающегося фазового преобразователя мощностью 2 лошадиных силы было два конденсатора по 30 мкФ, включенные параллельно, что фактически составляет 60 мкФ. Поскольку между батареей конденсаторов и двигателем было только два провода, они должны быть подключены только к одной фазе. В преобразователе на 3 л.с. другого производителя использовались три конденсатора по 40 мкФ (всего 120 мкФ.)
Для простейшего преобразователя без отдельной пусковой схемы использование 25-30 мкФ на мощность холостого хода между одной из входных линий и третьей (генерируемой) линией обеспечит приемлемый фазовый преобразователь. Если емкость слишком мала, холостой ход либо не заводится, либо запускается очень медленно. Поскольку предохранители с выдержкой времени, обычно используемые для защиты двигателя от короткого замыкания, допускают некоторую перегрузку по току для запуска в течение примерно 5 секунд, рекомендуется использовать достаточную емкость для запуска холостого хода быстрее, чем это значение.Избыточная емкость приведет к тому, что трехфазное напряжение превысит входное линейное напряжение, особенно когда холостой ход не нагружен. В таблицах 5 и 6 показаны напряжения с различной емкостью для фазового преобразователя мощностью 5 и 3 л.с. соответственно. Токарный станок, используемый для нагружения преобразователя для испытаний, указанных в таблицах 5 и 6, имеет двигатель мощностью 1/2 л.с. используемый сверлильный станок имеет двигатель мощностью 3/4 л.с. По мере увеличения 3-фазной нагрузки напряжения на линиях 1-3 и 2-3 снижались, как показано в таблицах. В таблицах 5 и 6 также показано время, необходимое для запуска холостого хода.Вернитесь назад и сравните , рис. 4, , и , рис. 5, и решите, стоит ли улучшение выходной балансировки дополнительных усилий отдельной пусковой схемы, которая требуется, если к обеим линиям 1-3 и 2-3 подключена одинаковая емкость.
Таблица 5.
Самозапускающийся холостой ход 5 л.с.
Время пуска, 3-фазные напряжения Секунды L1-L2 L1-L3 L2-L3 120 мкФ: 2,6 247,1 262,8 238,7 Без нагрузки 246.9 255,4 231,0 Токарный станок 247.1 251.0 227.2 Токарный и сверлильный станок 130 мкФ: 1,6 246,9 264,8 243,7 Без нагрузки 246,6 258,6 234,8 Токарный станок 246,2 253,7 229,8 Токарный и сверлильный станок 150 мкФ: 1,0 247,9 270,3 253,6 Без нагрузки 246,6 263,2 244,0 Токарный станок 247,8 259,2 238,8 Токарный и сверлильный станок
Таблица 6.
Самозапускающийся холостой ход 3 л.с.
Время пуска, 3-фазные напряжения Секунды L1-L2 L1-L3 L2-L3 50 мкФ: 0,8 245,6 249,4 225,0 Без нагрузки 245,6 239,0 220,0 Токарный станок 70 мкФ: 0,8 245,5 260,4 238,7 Без нагрузки 100 мкФ: 0,6 246,1 277,7 256,1 Без нагрузки 245,9 262,5 245,6 Токарный станок 245,6 255,9 236,6 Токарный и сверлильный станок 120 микрофарад: 0.6 245,5 288,0 265,7 Без нагрузки 245,7 270,3 254,9 Токарный станок 245,3 261,5 245,9 Токарный и сверлильный станок
Автор — Джим Ханрахан.
Как создать вращающийся фазовый преобразователь для преобразования одной фазы в трехфазную
Если вы читаете это, то это, скорее всего, связано с тем, что вы приобрели (или думаете о приобретении) списанное промышленное торговое оборудование, которое питается от трехфазного двигателя, но в вашем магазине есть только однофазное питание.Если вы действительно не понимаете, в чем разница между трехфазным и однофазным, посмотрите здесь. Вы, наверное, слышали, что можно каким-то образом подключить трехфазный двигатель к однофазному току для выработки трехфазной энергии. Этот — это , потому что асинхронный двигатель и индукционный генератор — это в основном одно и то же. Двигатель, который вы используете в качестве генератора (вращающийся фазовый преобразователь), называется холостым, и он должен иметь номинальную мощность на 20-30% выше, чем самый большой двигатель оборудования, которое вы будете использовать, и должен быть рассчитан на 220- 240 вольт.
Чтобы сделать простой вращающийся фазовый преобразователь из трехфазного двигателя
Подключите однофазное питание 230 В к клеммам (или проводам) питания T1 и T2 двигателя, который вы используете в качестве преобразователя. Получите вращение (например, с веревкой, обернутой вокруг вала двигателя), чтобы запустить его — он не запустится сам по себе. Отключите трехфазное питание от клемм T1, T2 и T3, чтобы запитать трехфазное торговое оборудование.Это действительно так просто, если вы понимаете ограничения такого простого устройства.
Как бы то ни было, он по-прежнему будет работать, и есть вещи, которые решительный самодельщик (сделай сам) может сделать, чтобы улучшить работу системы, например, использовать рабочие конденсаторы между ножками L1-L3 и L2-L3 для выровнять баланс напряжений. Вы также должны использовать пусковой конденсатор, чтобы вам не приходилось вручную раскручивать холостой ход при запуске.Если вы будете использовать трехфазное питание только изредка и не обеспокоены другими ограничениями этого метода, возможно, это именно то, что вам нужно.
Добавьте выключатель пускателя магнитного двигателя — Магнитный выключатель содержит электромагнит, который удерживает выключатель во включенном положении при протекании тока и намного безопаснее как для оператора, так и для оборудования в случае сбоя питания, потому что после подачи питания восстановлено, оборудование останется выключенным, пока вы не активируете его повторно.Это, очевидно, безопаснее для персонала магазина, но также помогает защитить оборудование и предотвратить возгорание. Правильный пускатель двигателя также защищает вращающийся фазовый преобразователь от перегрузки по току — автоматический выключатель не предназначен для использования в качестве переключателя включения / выключения или для защиты двигателей. Добавьте пусковой конденсатор — Пусковой конденсатор должен быть рассчитан на минимум 250 вольт и от 50 до 100 микрофарад на номинальную мощность вашего холостого хода. Пусковой конденсатор (ы) находится между соединениями холостого хода T1 и T3.Вы можете подключить пусковой конденсатор через его собственный переключатель мгновенного действия или использовать клеммы мгновенного действия магнитного переключателя, чтобы включить его, или вы можете использовать конфигурацию самозапуска. В любом случае вы хотите, чтобы в цепи был только пусковой конденсатор, пока холостой ход не начнет вращаться. Существуют конфигурации, в которых один и тот же конденсатор используется как пусковой, так и рабочий конденсатор. Добавьте рабочие конденсаторы — Преобразователь фазы будет нормально работать без рабочих конденсаторов, но он в некоторой степени повысит производительность и эффективность.Рабочие конденсаторы должны быть рассчитаны на продолжительную работу при высоком напряжении (330–370 В) и должны быть постоянно подключены между соединениями T1-T3 и T2-T3. Идеального баланса напряжений трудно достичь без какой-либо динамической регулировки, потому что разные состояния нагрузки потребуют разных конфигураций рабочих конденсаторов. Но в большинстве случаев для моторных нагрузок это не имеет большого значения. Как правило, просто используйте около 12-16 микрофарад на номинальную мощность холостого хода. Безопасность прежде всего , само собой разумеется, что вы можете быть ранены или убиты высоковольтным электрическим оборудованием, или вы можете сжечь свой магазин или повредить оборудование, которое вы подключаете к зверю вроде этого.Если в этом руководстве недостаточно информации, чтобы вы могли разобраться в деталях самостоятельно, вам, вероятно, следует пересмотреть этот проект.Советы
Чем выше номинальная мощность вашего холостого двигателя, тем лучше он будет работать, но также система будет потреблять больше тока и, следовательно, будет дороже в эксплуатации. Если у вас есть несколько единиц оборудования, которые питаются от трехфазных двигателей, все двигатели, которые работают одновременно, будут действовать как вращающиеся преобразователи фазы и улучшат качество электроэнергии.Просто подключите их все, включая ваш холостой ход, через одну трехфазную вспомогательную панель и запитайте две ноги вспомогательной панели однофазным напряжением 240 — другая ветвь будет получать питание от фазового преобразователя и любых других двигателей, которые у вас работают на холостом ходу. Прервите все (включая холостой ход) с помощью прерывателя нормального размера для отдельных двигателей. Затем, если у вас есть одно оборудование, которое потребляет большой ток, вы можете запустить фазовый преобразователь, а затем запустить другой двигатель и дать ему поработать в дополнение к фазовому преобразователю, в то время как вы используете оборудование с высоким потреблением тока.Излишне говорить, что вам нужно учитывать все последствия для безопасности одновременного включения нескольких машин. Бесплатной поездки не существует. Вы должны подавать достаточно однофазного тока для питания оборудования, которое вы используете, и для удовлетворения паразитного энергопотребления вращающегося фазового преобразователя (ов). Подбирайте провода и прерыватели соответственно. Если вы собираетесь создать вращающийся фазовый преобразователь, сделайте его из высококачественного двигателя, чтобы он прослужил долго.Если возможно, вам нужен хороший большой двигатель TEFC с высококачественными герметичными подшипниками.Статьи по теме
Наденьте клемму на втором проводе пусковых конденсаторов на общую клемму рабочих конденсаторов, часто обозначаемую c com, провод, подключенный к клемме запуска двигателя, обозначенный буквой r на схеме подключения двигателей, и провод, идущий к клемме под напряжением на стороне нагрузки. контактор также подключается к этой клемме рабочего конденсатора.Интересно, как можно использовать конденсатор для запуска однофазного двигателя.
Схемы подключения однофазного конденсаторного двигателя Электропроводка
Каждый компонент следует размещать и соединять с другими частями определенным образом.
Схема электрических соединений конденсатора двигателя . Также прочтите о характеристиках скорости и момента этих двигателей, а также о его различных типах. Схема подключения однофазного двигателя с конденсатором Схема подключения однофазного двигателя Baldor с конденсатором Схема подключения однофазного двигателя вентилятора с конденсатором Схема подключения однофазного двигателя с конденсатором Каждая электрическая схема состоит из различных уникальных частей.Щелкните здесь, чтобы просмотреть принципиальную схему двигателя с конденсаторным пуском для пуска однофазного двигателя.
Пусковой конденсатор Рабочий конденсатор или постоянный конденсатор. Пусковые конденсаторы управляют конденсаторами электродвигателей. Инструкции по запуску электродвигателя для конденсатора.
В этой статье приведены инструкции по подключению пускового конденсатора электродвигателя для конденсаторов электродвигателя, предназначенных для запуска электродвигателя, такого как компрессор переменного тока, компрессор теплового насоса или двигатель вентилятора, а также способы подключения компрессора кондиционера с жестким запуском.Запустите конденсатор и почему бы не использовать его в удлинителе. Как подключить пусковой электродвигатель или пусковой конденсатор.
Как подключить рабочий конденсатор к конденсатору вентилятора двигателя. На приведенном выше рисунке показаны не все типы проводки двигателя, имеющиеся на рынке, однако схема двигателя и конденсатора представляет собой обширную схему подключения электродвигателя с конденсатором. Лучшая схема подключения конденсатора однофазного двигателя. диаграмма gooddy org. Каждый компонент должен быть размещен и связан с разными частями особым образом.Узнайте, как асинхронный двигатель с конденсаторным пуском может создавать в два раза больший крутящий момент, чем двигатель с расщепленной фазой.
Тем не менее, некоторые люди все еще испытывают трудности с подключением электромотора к конденсатору. Схема подключения конденсатора двигателя переменного тока Схема подключения конденсатора запуска двигателя переменного тока Схема подключения конденсатора запуска двигателя pdf схема подключения индукционного двигателя запуска конденсатора Каждая электрическая структура состоит из различных частей. Вы узнаете, как определить основную и вспомогательную обмотку и изменить направление вращения двигателя.
В противном случае структура не будет работать в должном порядке. Как подключить большинство двигателей для инструментов в магазине и для поделок. Как подключить однофазный двигатель к конденсатору.
Как подключить рабочий конденсатор к электродвигателю нагнетателей конденсаторов иногда, когда электродвигатель нагнетателя или вентилятора конденсатора выходит из строя, у техника или даже мастера возникают проблемы с подключением нового электродвигателя, а большинство электродвигателей с конденсаторами поставляются с четкими инструкциями или схемой проводки сбоку.
Советы по подключению двойного пускового конденсатора Электромонтаж
База данных электрических схем пускового конденсатора
База данных электромонтажных схем пускового конденсатора
Электропроводка конденсатора двигателя переменного тока Основная теория электропроводки
Электросхема электрического конденсатора
Символы и руководство по электромонтажной схеме двигателя
С базой данных схем электропроводки конденсатора
Конденсатор Запуск конденсатора Советы по схеме запуска двигателя
Электромонтажные конденсаторы и запуск Основная теория электропроводки
Советы по подключению двойного пускового конденсатора Электропроводка
Схема подключения конденсатора запуска двигателя на заводе в Китае Купить конденсатор двигателя Cbb60 150uf 250v Конденсатор двигателя 12 мкФ, 250 В Конденсаторы двигателя переменного тока Продукт на
Схема электрических соединений рабочего конденсатора База данных e
Конденсатор двигателя Схема проводки при запуске и запуске Конденсатор двигателя
Схема подключения конденсатора электродвигателя Базовая электрическая схема
Электропроводка двигателя 110 с конденсатором База данных электрических схем
Советы по подключению рабочего конденсатора Электропроводка
Разъяснение по запуску и запуску конденсатора Hvac4
Схема подключения пускового конденсатора двигателя 220 ВСоветы по подключению конденсатора двигателя Baldor Электропроводка
Схема подключениядля компрессора холодильника
Схема проводки домашнего реле General Helper
Электропроводка конденсатора двигателя вентилятора Чтение промышленных электрических схем конденсатора двигателя
Советы по электрическому подключению
Схема подключениядля компрессора холодильника Схема подключения 9000 5
Seriel Схема Колера Двигатель Loq0467j0394 Электромонтаж
Схема подключенияДетали конденсатора переменного тока Советы по электромонтажу
Советы по подключению конденсатора двигателя Baldor Электрическая проводка
Схема подключениядля компрессора холодильника Схема подключения
Советы по подключению воздухообрабатывающего агрегата Hvac
Советы по электромонтажу двигателя Электромонтажная схема
Электромонтажная схема двигателя 110 с конденсатором General Helper
Схема электрических соединений рабочего конденсатора холодильника
Схема электрических соединений двигателяБиблиотека электрических соединений
Схема электрических соединений двигателя 110 с конденсатором General Helper
Схема электрических соединений рабочего конденсатора переменного тока Электрические схемы
Схема подключения конденсатора переменного токапо цветовым типам электрооборудования
Электрическая схема двигателя 110 с конденсатором General Helper
Потолочный вентилятор с двумя конденсаторами Asgraf Info
Схема подключения двойного конденсатора переменного тока Библиотека проводов
Руководство по установке размеров конденсатора запуска двигателя To Air
Конденсатор запуска двигателя Схема подключения конденсатора двигателя Ac
Схема подключения для конденсаторного пускового двигателя вентилятора в день с
Конденсатор пусковой конденсатор работает Чтение схемы двигателя
Пусковой конденсатор двигателя вентилятора In3wp Co
Схема подключения конденсатора ОВКВ Схема соединений Галерея изображений
Схемы подключения конденсатора пускового двигателя
Схема подключенияИзображения Конденсатор для пуска двигателя с круглым концом, 4 В перем. Тока, 4 В, используемый в Gageen
, Схема электрических соединений пускового конденсатора двигателя с однофазным приводом Панель подключения
Trends Схема инвертора 12 В пост. Тока 120 В перем. Схема подключения рабочего конденсатора
Вид на электрическую схему
Схема подключения двигателяСхема электрических соединений
Советы по подключению рабочего конденсатора двигателя переменного токаПусковой конденсатор переменного тока Alexandergarcia Co
Схемы электрических соединений сдвоенного конденсатора двигателя переменного токаПусковой конденсатор
Рядом со мной Запуск
Мы отправляем нам корабль Электромотор вентилятора переменного тока Проводка конденсатора Robkozlowski Com
Пусковой конденсатор Жесткий пусковой конденсатор Схема подключения Пуск
Конденсатор Пусковой конденсатор Работа Схема двигателя Чтение
Стоимость замены конденсатора нагнетателя Испытание переменного тока Monarquemgzn Co
Trends Электропроводка Панель 12 В постоянного тока Цепь инвертора 120 В перем.
Размер пускового конденсатора двигателя Информация для розенкрейцеров
Trends Монтажная панель Цепь инвертора 12 В пост. Тока, 120 В перем. Советы по монтажной схеме рабочего конденсатора Электропроводка
Двухфазный двигатель Teke Wpart Co
Outd oor Схема электрических соединений конденсатора двигателя
Схема подключения одноходового конденсатора Определение размеров запуска двигателя
Электропроводка пускового конденсатора 110 В Автоматическая электрическая проводка
1-фазная электрическая схема Схема электрических соединений General Helper
Пусковой конденсатор Пусковой конденсатор и рабочий конденсатор
Схема подключения компрессора General Helper
Цвет проводки конденсатора переменного тока Несущая Цвета конденсатора переменного тока
Схема подключения конденсатора двигателя переменного тока Советы по подключению Электропроводка
Схема подключения конденсатора с жестким пуском
Схема подключения конденсатора Start Run A 110 Библиотека проводов
Пуск двигателяСхема подключения Схема подключения
Схема подключения двухпроводного конденсатора переменного тока
120 В Схема подключения конденсатора Схемы подключения
Схема подключения конденсатора двигателя переменного тока
Советы по монтажу Электрическая проводка
Схемы подключения конденсатора жесткого пускаСхемы подключения конденсатора
Схема подключения конденсатора двигателя Копленда
Схема подключения конденсатора Dual Run
Общая схема подключения конденсатора
Цветные схемы подключения конденсатораСхема подключения однофазного двигателя 220 В с конденсатором
Цветные схемы подключения конденсатора переменного токаСхема подключения трехпроводного электродвигателя
Схема подключения 3-проводного электродвигателя Схема подключения электродвигателя вентилятора конденсатора 3 Схема подключения электродвигателя двигателя вентилятора конденсатораСхема подключения Схема подключения
Реверсирование и ремонт электродвигателей
Реверсирование и ремонт электродвигателейВыбор, подключение, реверсирование и ремонт электродвигателей
Роберта В.Lamparter
Перепечатка только в формате ASCII с разрешения «Home Shop Machinist»
Июль / август 1987 г. 6 шт. 4
Представлено и введены данные Грантом Эрвином
Выбор двигателя и подключение электрооборудования — это первое. проблемы, возникшие после покупки давно желанного станка. В настоящее время производятся однофазные двигатели переменного тока нескольких типов. в США, но обычно используются только два типа для питания наших оборудование.
ВИДЫ ДВИГАТЕЛЕЙ
Для наглядности опишу особенности обычных типы двигателей дробной мощности.Универсальные или серийные двигатели — это двигатели со щетками и фазным ротором. Примером этого типа является портативная дрель или дрель Dremel. инструмент. Еще они отличаются своей шумностью.
Индукционные двигатели или двигатели с экранированными полюсами обычно продаются в витринах. поклонники.Они имеют твердый (квадратный сепаратор) ротор и запускаются медленно, постепенно набирая скорость.
Отталкивающие двигатели старые и необычные, по моему опыту, но они могут встретиться на дворовой распродаже или барахолке. Будучи старыми, они склонны быть на большом размере. Имеют намотанный ротор и электрические щетки. соединены друг с другом, но не с обмотками статора. Большой мотор щетками (при условии, что на паспортной табличке не указан двигатель постоянного тока или генератор) является признаком того, что вы, вероятно, исследуете отталкивание мотор.Этот тип двигателя можно изменить, изменив положение кисти. Увидев, что один из них приводит в действие большой сверлильный станок в местная кузница, вкладывать деньги в отталкиваю я бы не советовал двигатель, поскольку остальные типы двигателей, которые будут описаны, будут выполнять работа намного лучше.
Последние три типа двигателей являются наиболее подходящими для питания. бытовое торговое оборудование: двигатель с расщепленной фазой (запуск с разделением фаз — индукционный запуск), конденсаторный пуск двигателя (конденсаторный пуск — индукционный пуск) и конденсаторный пуск — конденсаторный запуск двигателя.Все отличаются твердым ротор с короткозамкнутым ротором и слышимый щелчок при вращении мотора выключен и замедляется. Двигатель с расщепленной фазой не имеет цилиндрического выступа. снаружи для конденсатора; два других типа, очевидно, делают. В конденсаторный пусковой конденсаторный двигатель будет иметь либо два конденсатора горбов или будет конденсатор с тремя отдельными электрическими соединения. В процессе исключения должно казаться очевидным, что у конденсаторного пускового двигателя будет один конденсатор, у которого есть только два электрические соединения.
Все описанные двигатели работают от бытового тока, который является одиночным. фаза. Трехфазные двигатели обычно используются на промышленных предприятиях. машины и не будут работать от бытового тока без дорогостоящего роторного фазовый преобразователь. Твердотельные фазовые преобразователи дешевле, но наши местный перемотчик электродвигателя намекает, что они склонны к горению вне. Возможно, еще один читатель с личным опытом работы с твердотельными фазовые преобразователи могут нас просветить.Из-за отсутствия опыта с трехфазным питанием я решил, что лучше избегать этих двигателей. В Табличка производителя с электрической информацией указывает, однофазный или трехфазный.
РЕКОМЕНДАЦИИ ПО ТИПУ И РАЗМЕРУ ДВИГАТЕЛЯ
Конденсаторные двигатели имеют гораздо больший пусковой момент, чем расщепленные фазы. моторы. Я предпочитаю использовать конденсаторные пусковые двигатели на всех инструментах, кроме настольные шлифовальные машины. При большой пусковой нагрузке двигатель с расщепленной фазой потребуется много времени, чтобы набрать скорость.Есть две проблемы с это. Одна из них заключается в том, что потребляется большой ток, в результате чего магазин свет погаснет. Во-вторых, пусковые обмотки легче. калибровочная проволока; с повторяющимися двух- или трехсекундными стартовыми периодами обмотки стартера со временем сгорят.Двигатели с расщепленной фазой считаются подходящими для легкого запуска. инструменты, такие как шлифовальные станки, сверлильные станки, лобзики и тому подобное. у меня есть обнаружил, что двигатель с разделенной фазой на 1/3 л.с. на моем старом сверлильном станке Delta подходит для всех, кроме более высоких скоростей.Планирую заменить на 1/2 конденсаторный двигатель л.с., когда я нахожу его на дворовой распродаже. Если бы у меня был промышленный сверлильный станок с конусом Морзе № 2 или № 3, я бы хотел мотор 3/4 или 1 л.с. Уважаемый мастер своего дела вполне доволен мотором с разделенной фазой мощностью 1/3 л.с. на своем 9-дюймовом токарном станке South Bend но признает, что делает только легкие повороты. Я верю производителю рекомендует конденсаторный двигатель мощностью 1/2 л.с. У меня был конденсаторный двигатель мощностью 1/2 л.с. мой 12-дюймовый токарный станок Клаузинга. Он никогда не замедлялся даже при тяжелых разрезает, но в итоге перегорела обмотка.Из этого опыта я сделать вывод, что для токарный станок 12 дюймов. Подозреваю, что хватило бы мотора на 3/4 л.с., но мотор 1,5 л.с. был единственным использованным мотором, доступным, когда старый сгореть.
СООТВЕТСТВИЕ ЭЛЕКТРОПРОВОДКЕ И ДОСТОИНСТВА РАБОТЫ НА 220 Вольт
Далее следует электромонтаж двигателя. Первый взгляд на двигатель информационная табличка с указанием рабочей силы тока и определить, есть ли в магазине проводка и предохранители в порядке.Согласно Sears and Roebuck’s «Упрощенная электрическая разводка», пусковые токи двигателей примерно в три раза превышающий указанный рабочий ток. Для практических целей, если время пуска двигателя не продлевается из-за тяжелого нагрузки, рабочий ток двигателя будет определять, собирается в поездку. Например, при 110 В обычный двигатель мощностью 1/2 л.с. работают от 7 ампер или меньше, но при запуске потребляют 22 ампера. В моем старый дом, в котором были выключатели на 15 ампер, я никогда не перегружал схему с мотором на 1/2 л.с.Если вы приобретаете оборудование (путем покупки или аренды оборудования), которое превышает электрическую мощность вашего магазина. емкость, вам придется сделать некоторые проводки. Покупка моего воздушный компрессор представил мне эту проблему. При напряжении 110В его рабочий ток был 17,8 ампер, и выключатель на 15 ампер скорее сработал бы. часто. В то время я не знал, насколько легко было добавить выключатель и проложил линию 220 В, поэтому я подключился к одному из 20-амперные цепи в доме и провод 12-го калибра для запуска нового 110-вольтового контура. очередь в магазин.
Несколько лет спустя мой друг машинист познакомил меня с концепция использования тока 220В для машин. Я всегда предполагал что тяжелые провода, такие как те, что используются в сушилках и плитах, были необходимы для 220в работа. Не так! Эти провода тяжелые, потому что сушилки и плиты токи тяги в диапазоне 30 и 50 ампер соответственно. Фактически, уменьшение толщины проволоки может быть обеспечено за счет запуска двигателя на 220в. Когда двигатель переключается на работу при 220 В, его рабочий ток делится вдвое.Таким образом, компрессор, который тянул 17,8 А только при 110 В потянул 8,9 ампера при 220в. Когда я наконец привел свою линию 220 В в магазин, я использовал прерыватель на 15 ампер и провод 14 калибра. Какая разница в как быстро запустился компрессор. Я использовал ту же розетку, что и был используется для 110 В, но нарисовал знак на розетке, помеченный как 220в. Я сомневаюсь, что эта розетка соответствует электрическим нормам, так как специальные розетки на 220 В физически не позволяют устройству на 110 В подключен к сети; однако я считаю, что такая практика приемлема в домашний магазин.На двигателях, которые будут работать от 110 В или 220 В, я предпочитаю запускать их на 220В, так как яркость загорается и запускается намного быстрее при таком напряжении.
На будущее помните, что предохранители и автоматические выключатели защищают проводка дома от перегрева и горения при нахождении внутри стены и, следовательно, имеют размер, совместимый с проводкой в доме они защищают, а не подключенную к нему машину. Вот почему это опасно просто установить больший предохранитель или прерыватель в цепи вашего магазин без улучшения проводки.Провод 12-го калибра выдержит ток 20 ампер, Провод 14-го калибра 15 ампер и провод 16-го калибра 10 ампер. Домашняя проводка достаточно прямолинейно, но детали выходят за рамки цели этого статья. Снова отсылаю читателя к уже упомянутому буклету. продан Sears and Roebuck за расширенное описание процедура.
СОЕДИНЕНИЯ ВНУТРЕННЕЙ ПРОВОДКИ: ИЗМЕНЕНИЕ РАБОТЫ С 110 В НА 220 В
Теперь обратим внимание на внутреннюю проводку двухфазные и конденсаторные двигатели.Они почти идентичны, за исключением Конденсаторный пусковой двигатель имеет конденсатор. Оба мотора имеют два типа обмотки — обмотки пускателя и обмотки ходовые. Обмотки стартера определить направление вращения. Они из лёгкого провода. так как они используются только на короткое время для запуска, а затем отключается от цепи центробежным выключателем, когда двигатель почти до скорости. Щелчок слышен, когда двигатель замедляется до остановка — центробежный выключатель, щелкнув пусковые обмотки назад в цепь.Нумерация выводов, представленная на схемах, рисунках С 1 по 4, используется в трех двигателях в моем магазине, все из которых различное производство. Один из них британский по происхождению. Я предполагаю система нумерации универсальна, но я не могу быть уверен в этом, так как я не нашел этих диаграмм в печати. Если есть электрическая схема на ваш мотор, тем лучше; я тебе не нужен. Если нет, я дам как можно больше уловок для определения потенциальных клиентов:Ведущий №8 обычно присоединяется к конденсатору или центробежному выключатель. Выводы № 6 и 7 обычно закапываются где-то в двигателе. и не видны. Если три провода скручены вместе, они, вероятно, представляют собой два вывода ходовой обмотки и вывод пусковой обмотки. Согласно статье в «Model Engineer» (том 145, номер 3620, стр. Ноябрь 1979 г., стр. 1262) пусковые обмотки имеют немного более высокую сопротивление, чем бегущие обмотки. На моем 1,5-сильном моторе Brooks пусковые обмотки имеют сопротивление 2.2 Ом и ходовые обмотки имеют сопротивление 1,2 Ом. Будьте предельно осторожны при изготовлении этих измерения, так как грязный контакт изменит результат измерения. Если только четыре вывода подходят к клеммной колодке, два, вероятно, работают выводы обмотки и два, вероятно, являются выводами пусковой обмотки № 5. и 8. Я не могу охватить все возможности, но это должно вам помочь. в начале работы.
На рисунках 1 и 3 показано сравнение двигателя, настроенного для работы на 220 В по сравнению с одним проводным для работы от 110 В.Обратите внимание, что пусковые обмотки соединены последовательно с одной из работающих обмоток, когда мотор подключен к сети 220в. Несколько лет назад, когда я купил подержанный Мотор на 3/4 л.с. на замену трехфазному, который стоял в моем Hardinge мельницу, менее внимательный сотрудник мотоперемотки проинструктировал мне подключить выводы пусковой обмотки № 5 и 8 к ходовой обмотке. выводы №1 и 4 — по сути, на полный вход 220в. Двигатель работал штраф в течение двух месяцев, а затем один раз при запуске, он закурил, сделал ужасно громкий вибрирующий шум, и вращался только на части своего нормальная скорость.К счастью, вышел из строя только конденсатор. Когда я купил новый конденсатор, поинтересовался подключением проводки на этот мотор так как он отличался от двух других в моем магазине. В владелец перемоточного цеха поручил мне разместить стартовый обмотки последовательно с бегущими обмотками так, чтобы они поглощали часть тока идет к пусковым обмоткам и конденсатору, продление их продолжительности жизни.
Переоборудовав мотор для работы на 220в, стоит его протестировать. сначала на 110в.При правильном подключении он будет работать несколько медленнее. чем нормальная скорость.
R = ходовая обмотка
S = пусковая обмотка
| ___ = конденсатор --- | | о \ \ = центробежный переключатель V о |
+ ---------- + ----------------------- строка 1 1 | 8 | | | + ----------- строка 2 | ___ 4 | | --- | (| ( ) о) (\ ( ) \) (V ( ) o) 220 В переменного тока (| (Прямое соединение R1) () R2 () S1 (_ ) ().. (7 | (.. ) +). . (6 | (< | (| | ) S2 | фигура 1 | (| 2 | 5 | 3 | + ---------- + ----------- +
+ ---------- + ----------------------- строка 1 1 | 5 | | | + ----------- строка 2 | (4 | | ) S2 | ((( ) 6 | ) (+ ( ) 7 | ) ((( )) S1) 220 В перем. (((Обратное подключение R1) | ) R2 (о (_ ) \).. (\ (.. ) V). . (о (> | | | | ___ | фигура 2 | --- | 2 | 8 | 3 | + ---------- + ----------- +
+ ---------- + ----------- + ----------- строка 1 1 | 8 | 4 | | | | | ___ | | --- | (| ( ) о) (\ ( ) \) (V ( ) o) 110 В переменного тока (| (Прямое соединение R1) () R2 () S1 (_ ) ().. (7 | (.. ) +). . (6 | (< | (| | ) S2 | Рисунок 3 | (| 2 | 5 | 3 | + ---------- + ----------- + ----------- строка 2
+ ---------- + ----------- + ----------- строка 1 1 | 5 | 4 | | | | | (| | ) S2 | ((( ) 6 | ) (+ ( ) 7 | ) ((( )) S1) 110 В перем. (((Обратное подключение R1) | ) R2 (о (_ ) \).. (\ (.. ) V). . (о (> | | | | ___ | Рисунок 4 | --- | 2 | 8 | 3 | + ---------- + ----------- + ----------- строка 2
ПЕРЕКЛЮЧАТЕЛИ ВРАЩЕНИЯ И ПРОВОДКИ БАРАБАНА
Часто желательно изменить направление вращения двигателя.Из рисунков 1 через 4, очевидно, что поменяв местами соединения Все, что необходимо - это выводы пусковой обмотки № 5 и 8. В На рисунках 5 и 6 показаны схемы подключения клемм в барабане. переключатель, управляющий двигателем 220 В. На рисунках 7 и 8 показан один и тот же переключатель. разводка для мотора 110в. Обратите внимание, что единственная разница во внутреннем проводка барабанного переключателя между 110 В и 220 В является связующим звеном между терминалы в левом нижнем углу. Обратите внимание на то, что на рисунках 7 и 8 Линия 2 - это провод под напряжением или под напряжением.(ПРИМЕЧАНИЕ ИСПОЛНИТЕЛЯ ПИСАТЕЛЯ. Потерпите меня. ------------------ (8) | | строка 2 | (4) ----------------- V ------------- (*) ---------------------------------- - (*) (горячий) Реверс (110В) Рисунок 8 Несколько лет назад, когда упоминавшийся ранее мотор мощностью 1/2 л.с. в моем сгорел токарный станок, реверсивного переключателя у меня не было, а только стандартный однополюсный настенный выключатель, контролирующий ток.Я бездумно подключил этот переключатель к нейтральному (белому) Свинец. Когда мотор начал шипеть и дымить, я быстро перевернул выключить. К моему большому беспокойству, мотор продолжал шипеть, дымить и запустить! При сгорании обмотки произошло замыкание на корпус двигателя и замкнута цепь от горячего провода через оставшиеся обмотки к заземляющему проводу. Мне пришлось броситься к выключателю, чтобы выключить токарный станок. (Слава богу, я никогда не пытался сэкономить несколько центов, покупая электрический шнур без заземляющего провода или, в этом случае, я мог бы * был * заземляющий провод.)
Такой же поток возникает в проводке барабанного переключателя на 220 В, поскольку обе линии горячие (под напряжением), а линия 1 напрямую подключена к двигатель без промежуточного выключателя. В собственном магазине я решил эту проблема с магнитным пускателем; подробнее об этом позже. На рисунке 9 показано альтернативный тип конфигурации барабанного переключателя, который может быть столкнулся. К настоящему времени вы должны иметь некоторое представление о том, как расположить связи, поэтому я не буду их иллюстрировать. Если ты все еще в своем салатные дни и не можете позволить себе барабанный переключатель, альтернатива - используйте четырехпозиционный переключатель, который используется в бытовой электропроводке, когда три или более переключателя управляют одной цепью.Электрический соединения показаны на рисунках с 9 по 13.
Есть два типа четырехпозиционных переключателей - перекрестного и проходного типа. - и вам нужно будет определить, какой у вас тип с помощью омметра или контрольная лампа. Я проиллюстрировал соединения только для двигателя 110 В, но нет причин, по которым ту же настройку нельзя использовать для 220В операция. С четырехпозиционным переключателем вам понадобится отдельный переключатель для включить и выключить мотор.
Пока мы говорим о том, что делать, я передам еще одну жемчужину.Люверсы для обуви - отличные электрические разъемы. Просто оберните оголенный провод вокруг столба и обжима. Иногда рэп в дырку с центром перфоратор необходим для его расширения, чтобы он поместился на винт Терминал. Далее вам понадобится четырех- или пятижильный «кабель» для подключения к переключиться на мотор. Поскольку в моем городке нет кабеля, Я сделал свой собственный, используя прозрачную пластиковую трубку с внутренним диаметром 5/8 дюйма и другой цвета 14 или 16 калибра * многожильный * провод. Если кабель не слишком длинный, можно использовать плечики, чтобы протянуть провода.
(*) ---- (*) (*) (*) (*) (*) | | | | (*) ---- (*) (*) (*) (*) (*) (*) ---- (*) (*) (*) (*) ---- (*) Вперед Выкл Назад Рисунок 9
(1 и 4) ---- (8) (1 и 4) (8) Сквозной | | 4-позиционный переключатель | | 110 v | | (5) ---- (2 и 3) (5) (2 и 3) Вперед Назад Рисунок 10 Рисунок 11
(1 и 4) (2 и 3) (1 и 4) (2 и 3) | | Крестообразный \ / | | 4-позиционный переключатель \ | | 110 в / \ (8) (5) (5) - - (8) Вперед Назад Рисунок 12 Рисунок 13
ЗАЩИТА ДВИГАТЕЛЯ И МАГНИТНЫЕ СТАРТЕРЫ
Зачастую защитой двигателя пренебрегают.Блок предохранителей или автоматический выключатель ничего не делает для защиты двигателя в случае перегрузки. Они только защитите электропроводку дома, чтобы она не начала гореть, пока она спрятана стена.Dayton продает однополюсный ручной стартер двигателя с дробной мощностью, акция № 5X269, в которой перечислены (используемые для листинга) за 22 доллара. Их двухполюсные модель № 5X270 должна использоваться для подключений 220В и списков (используется для list) за 26 долларов. Нагревательный элемент, рассчитанный на рабочую силу тока мотор нужно покупать отдельно и перечислять (использованные для перечисления) за 4 доллара.
Многие бывшие в употреблении машины все еще поставляются с устройством защиты двигателя. прикрепил. В некоторых случаях это ручные устройства, а в других - магнитные пускатели. Почти всегда эти устройства настроены на трехфазный режим работы, поэтому вам нужно будет следовать инструкциям внутри крышки для перехода на однофазный режим и правильное напряжение. Вам нужно будет купить один или два нагревательных элемента, чтобы соответствовать рабочей силе тока защищаемого двигателя.Список номера деталей для нагревательных элементов обычно печатаются внутри крышку с инструкциями по подключению. Они стоят около 7 долларов за штуку. На магнитных пускателях также обратите внимание на этикетку на магнитной катушке. убедитесь, что он соответствует напряжению, которое вы собираетесь использовать. В устройство защиты размещено в цепи между вилкой и барабанный переключатель. Таким образом, последовательность такова: вилка и шнур, ведущий в защитное устройство, затем барабанный переключатель, а затем двигатель.Некоторый двигатели имеют встроенные устройства защиты от тепловой перегрузки. Я полагаю, они работают, но я не доверял им с тех пор, как единственный мотор в моем В магазине у одного из них был перегорел мотор токарного станка. Я признаюсь что защищены только более дорогие моторы в моем магазине.
Прежде чем перейти к следующей теме, последнее напоминание - всегда включайте заземляющий провод во всех ваших цепях, чтобы в случае короткого замыкания вы не земля.
УСТРАНЕНИЕ НЕПОЛАДОК
Есть только ограниченное количество вещей, которые могут пойти не так электрически с разделенными фазами и конденсаторными двигателями.Перечисление того, что может пойти не так легко. Объяснение того, как изолировать цепи для тестирования может быть трудным, и вам придется использовать свою изобретательность плюс схемы проводки я вам дал. Вам понадобится омметр или контрольная лампа. провести тестирование.Если мотор даже не гудит, когда вы его подключаете, значит, это тоже не так. есть какое-либо питание или в одной из цепей произошел обрыв внутри мотора. Посмотрите на обмотки. Если один или несколько выглядят потемневшими и пахнет гари, наверное, сгорело.Это не кажется выгодным для ремонтников, чтобы перемотать небольшие однофазные двигатели, поэтому, если у вас сгорела обмотка, вероятно, придется заменить мотор.
Если мотор гудит, но не крутится, есть несколько вариантов, все имея дело с пусковыми обмотками. Убедитесь, что все связи находятся в нужном месте. Ищите перегоревшие обмотки. Исследовать конденсатор. Если из него вытекло несколько капель масла, ничего хорошего.
Снимите провода с конденсатора и проверьте его с помощью омметра, установленного на шкала 100x или 1000x.Игла должна ненадолго повернуться к 0 Ом. а затем вернитесь к верхнему пределу шкалы. Если не качается в сторону 0 Ом, закоротите конденсатор отверткой и попробуйте проверить очередной раз; конденсатор мог иметь небольшой заряд, который мешал с этим тестом.
Центробежный переключатель обычно замкнут и пропускает ток, когда двигатель остановлен. Если этого не происходит, снимите концы раструба с двигателя. рамку и посмотрите на контакты центробежного переключателя.Нажать контакты вместе и проверьте их с помощью омметра, чтобы убедиться, что они не передавать ток. Масло или смазка из подшипников могут предотвратить контакты от замыкания. Посмотрите на контактные поверхности на предмет точечной коррозии или жжение. Если им это нужно, осветлите их точечным напильником или наждаком. бумагу, следя за тем, чтобы на подшипник не попала наждачная пыль.
Если вы не слышите щелчка при замедлении двигателя, значит, центробежный переключатель не работает.Снимите концы рамы с рамы и посмотрите на центробежный выключатель. Гири должны быть подвижными хотя и жесткий из-за натяжения пружины. Если подшипники сильно изношен, ротор может коснуться рамы и помешать двигателю от операционной. Я никогда такого не видел, но ожидал найти много люфт в валу двигателя и наличие ярких или прожженных пятен внутри рама, на которой трулся мотор.
Если двигатель запускается, но кажется, что он не обладает такой мощностью, как он следует, посмотрите, не сгорела ли одна из обмоток.Проверить, чтобы увидеть что все электрические соединения правильные и чистые. Убеждаться у вас нет двигателя, подключенного для работы от 220 В, когда вы используете только 110в.
Ряд публикаций послужил ссылками на то, что самопроизвольно вытекла из-под моего пера, и читатель может найти полезны следующие ссылки: "Simplified Electrical Wiring", Sears, Робак и компания; «Проверка и ремонт электродвигателей» от TAB Books, Inc., полученная от постоянного рекламодателя в "Home Shop Machinist"; а также «Model Engineer» Том 145, номер 3620, страницы 1260-1263 и номер 3622, страницы 1414-1416.
Электронная почта: Грант Эрвин
Вернуться на главную страницу
Ред .: 05.04.98
Поворотные фазовые преобразователи | Ронк Электротехническая промышленность
Поворотные фазовые преобразователи
Перейти к ... ОБЩИЕ ВОПРОСЫВЫБОР И ПРИМЕНЕНИЕУСТАНОВКА И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕОБЩИЕ ЧАВО
Что такое преобразователи мощности ROTO-CON® и ROTOVERTER®?
ROTO-CON и ROTOVERTER - поворотные фазопреобразователи.Эти преобразователи вырабатывают трехфазный ток от однофазного источника питания. Это позволяет использовать трехфазные двигатели и оборудование там, где установка коммерческого трехфазного источника питания непрактична или слишком дорога. ROTO-LOAD CENTER® - это настраиваемая система преобразователя, использующая любой из этих роторов для специальных применений.
Почему использовать ROTO-CON и ROTOVERTER с трехфазными двигателями, а не с однофазными двигателями?
Однофазные двигатели доступны только в ограниченном количестве типов и могут не подходить для некоторых механизмов.Многие машины поставляются с уже установленными трехфазными двигателями. Однофазные двигатели механически сложнее и, как правило, дороже трехфазных двигателей. Многие однофазные двигатели не могут соответствовать рабочим характеристикам, требуемым нагрузкой, и не так эффективны, как трехфазный двигатель, управляемый преобразователем.
Правильно установленный фазовый преобразователь позволяет трехфазному оборудованию работать от однофазной сети. Сохраняется простота трехфазных двигателей и средств управления.
Если в дальнейшем будет доступно трехфазное обслуживание, все оборудование будет готово к работе.
Как вы бы описали ROTO-CON и ROTOVERTER?
Роторный преобразователь состоит из поворотного основания и одной или нескольких конденсаторных панелей. Базовый блок похож на встроенный трехфазный двигатель мощностью в лошадиных силах, но без вала, выходящего из концевого выступа. К базовому блоку подключена одна конденсаторная панель.Панель и основание работают вместе, обеспечивая трехфазное питание. Дополнительные конденсаторные панели могут быть подключены на стороне нагрузки пускателя (ей) для более крупного двигателя (ей).
Асинхронный ротор базового блока с двумя подшипниками - единственная движущаяся часть. Основание не имеет щеток или переключателей и практически не требует обслуживания, кроме смазки подшипников.
Чем РОТОВЕРТЕР отличается от других ротационных фазопреобразователей?
Запатентованный РОТОВЕРТЕР - единственный вращающийся фазовый преобразователь, использующий ответвительную обмотку.Функция регулировки ответвлений позволяет уравновешивать токи лучше, чем со стандартными роторными преобразователями, тем самым обеспечивая максимальную производительность оборудования. Преобразователи без обмотки с ответвлениями, такие как Ronk ROTO-CON, подходят для приложений, где двигатели не полностью загружены и / или балансировка трехфазного тока не критична.
Почему RONK производит как роторные, так и статические преобразователи?
Для удовлетворительной работы требуется применение лучшего преобразователя для работы.Только Ronk предлагает широкий ассортимент продукции и опыт, необходимые для создания лучшего преобразователя для любого приложения.
Статические преобразователи типа автотрансформатор-конденсаторобычно рекомендуются для приложений с постоянной нагрузкой, таких как большинство вентиляторов или насосов, с одним или двумя двигателями. ADD-A-PHASE® предлагает очень хороший пусковой момент, высокую эффективность, легко адаптируется к автоматизированному управлению и позволяет двигателю работать при номинальной нагрузке.
ROTO-CON и ROTOVERTER обычно рекомендуются для работы группы двигателей или двигателей со значительными колебаниями нагрузки.Использование одного преобразователя в приложениях с несколькими двигателями может привести к снижению начальной стоимости и большей гибкости нагрузки. ROTO-CON также может использоваться для питания резистивных нагревательных нагрузок. ROTO-LOAD CENTER, в котором используется вращающийся преобразователь, обычно рекомендуется для выпрямительных или электронных нагрузок, таких как станки с ЧПУ.
ВЫБОР И ПРИМЕНЕНИЕ
Как правильно выбрать размер ROTO-CON® или ROTOVERTER®?
Выбор преобразователя зависит от нагрузки, которая будет эксплуатироваться.Следует проконсультироваться с инженерами по продажам Ronk для получения рекомендаций по любому применению на основе списка нагрузок, которые будут эксплуатироваться.
Какой общей мощностью может управлять ROTO-CON или ROTOVERTER?
Номинальные характеристики ROTO-CON и ROTOVERTER указаны в кВА. Приблизительно 1 л.с. может эксплуатироваться на каждую кВА номинальной мощности преобразователя.
Какой самый большой размер двигателя может использоваться ROTO-CON или ROTOVERTER?
Отдельный двигатель, имеющий номинальную мощность в два раза меньше номинальной мощности, может эксплуатироваться с РОТО-КОНТОРОМ типа P или РОТОВЕРТОМ типа C.ROTOVERTER типа D и ROTO-CON типа D-1 могут запускать отдельные двигатели мощностью, почти равной номинальной мощности преобразователя в кВА.
Что делать, если задействовано более одного «большого двигателя»?
Во многих приложениях задействованы два или три больших двигателя и несколько маленьких двигателей.
Имеется относительно простой вариант (панели с разделенными конденсаторами) для поддержания хорошего трехфазного баланса в этих условиях.
Какая наименьшая нагрузка двигателя может работать с ROTO-CON или ROTOVERTER?
Если преобразователь настроен на работу с максимальной нагрузкой, минимальная нагрузка в лошадиных силах должна составлять не менее 15% от общей номинальной мощности преобразователя. ROTO-CON и ROTOVERTER предназначены для обеспечения хорошего трехфазного баланса, поскольку нагрузки двигателя варьируются от этого минимального до полного номинала преобразователя. Двигатели с номинальной мощностью ниже этого минимума 15% могут работать, если в то же время будет работать другой двигатель с номинальной мощностью выше минимума 15%.По поводу электронных нагрузок или других немоторных нагрузок проконсультируйтесь с заводом-изготовителем.
Когда рекомендуется РОТОВЕРТЕР типа D или РОТО-КОН типа D-1?
РОТОВЕРТЕР типа D обычно рекомендуется для отдельной единицы оборудования с изменяющейся нагрузкой или там, где задействовано большое количество небольших двигателей по отношению к общей нагрузке. ROTO-CON типа 2D-1 чаще всего работает с электронными и выпрямительными нагрузками, требующими трехфазного тока. Для некоторых электронных нагрузок может потребоваться специальный преобразователь, например ROTO-LOAD CENTER®.
Когда рекомендуется РОТОВЕРТЕР типа C?
РОТОВЕРТЕР типа C следует рассматривать, если большая часть нагрузки состоит из одного или двух более крупных двигателей, которые непрерывно работают почти с полной нагрузкой, когда необходим хороший баланс тока между фазами, но другие двигатели также могут работать одновременно. В качестве примера можно привести вентиляторы для сушки зерна, работающие непрерывно, а также время от времени работающее оборудование для обработки зерна.
Когда рекомендуется экономичный ROTO-CON?
ROTO-CON рекомендуется для нагрузок, где баланс тока не столь критичен, например для станков, деревообрабатывающего оборудования, сварочных аппаратов, для обработки зерна или для систем орошения с центральным шарниром. Баланс тока, как правило, не так важен для этих нагрузок, потому что двигатели, как правило, не работают почти при полной номинальной нагрузке или включаются с перерывами. Они также применимы для большинства электронных или резистивных тепловых нагрузок.
Могут ли электродвигатели с регулируемой или высокой скоростью вращения удовлетворительно работать с ROTO-CON или ROTOVERTER?
Многоскоростные двигатели имеют разные характеристики при работе на разных скоростях и, следовательно, кажутся разными двигателями. Многоскоростные двигатели можно рассматривать как несколько двигателей, встроенных в одну раму. ROTO-CON и ROTOVERTER будут работать с этими типами двигателей. Электроприводы с регулируемой скоростью представляют собой выпрямительную нагрузку и требуют особого внимания.Проконсультируйтесь с заводом-изготовителем для получения рекомендации.
Можно ли управлять двигателями в приложениях, требующих высокого пускового момента, от ROTO-CON или ROTOVERTER?
Двигатели, работающие с нагрузками, требующими высокого пускового момента, могут потребовать использования вспомогательной пусковой панели. Пусковая панель, подключенная к стороне нагрузки пускателя двигателя, будет обеспечивать до 200% крутящего момента полной нагрузки во время пуска. Стандартные пусковые панели ограничены 20 пусками в час.Если требуется больше запусков в час, доступны специальные панели. Без панели пусковой момент будет приблизительно равен крутящему моменту полной нагрузки, что может быть неадекватным для нагрузок, требующих высокого пускового момента или нагрузок с высокой инерцией. Дополнительный пусковой крутящий момент также может быть получен за счет использования преобразователя увеличенного размера или за счет запуска других двигателей до запуска жесткой пусковой нагрузки.
Можно ли использовать ROTO-CON или ROTOVERTER для реверсивных электродвигателей?
Стандартный ROTO-CON или ROTOVERTER можно использовать для реверсирования, поскольку нет ограничения на количество запусков двигателя в час.Необходимо позаботиться о правильной фазировке цепей управления и конденсаторов (если есть) на стороне нагрузки пускателя. Однако изменение положения штекера требует специальной компенсации, и следует проконсультироваться с заводом-изготовителем.
Будет ли ROTO-CON или ROTOVERTER работать с двигателями с треугольным и звездообразным обмотками?
Да. Тип обмотки не имеет значения для работы ROTO-CON или ROTOVERTER.
Могут ли однофазные нагрузки питаться от ROTO-CON или ROTOVERTER?
Если в дополнение к двигателям применяются однофазные нагрузки, такие как цепи управления, их следует подключать только к фазам «B» и «C».«B» и «C» - однофазные, проходящие через блок. Ронк использует букву «А» в качестве условного обозначения производимой фазы преобразователя. Однофазные нагрузки большой мощности могут быть подключены к фазам «B» и «C», если дополнительный ток от этих нагрузок учитывается при подключении. Подключение однофазных нагрузок к фазе «А» не рекомендуется. Если приложение требует такого подключения, следует проконсультироваться с заводом-изготовителем.
Как выбрать преобразователи для немоторных нагрузок?
Хотя преобразователи в основном применяются с нагрузками двигателя, конструкция ROTO-CON и ROTOVERTER типа D обеспечивает очень хорошие характеристики с немоторными нагрузками.Однако из-за большого разнообразия характеристик нагрузки рекомендуется проконсультироваться с заводом-изготовителем для получения рекомендаций. Чтобы обеспечить правильный подбор электронных нагрузок, следует указать максимальные и минимальные допуски по нагрузке и напряжению. ЦЕНТР РОТО-НАГРУЗКИ, использующий любой из этих поворотных устройств, может быть рекомендован для приложений с особыми соображениями.
Какие опции доступны для ROTO-CON и ROTOVERTER?
Ronk может предоставить модификации преобразователя, позволяющие удовлетворительно работать с любой нагрузкой.Самая распространенная модификация РОТОВЕРТЕРА - это сплит-панели на РОТОВЕРТЕРЕ типа C для нескольких больших двигателей. Преобразователи также могут поставляться с контакторами для запуска преобразователя или интеграции преобразователя в автоматизированные схемы управления. ROTO-LOAD CENTER может быть спроектирован для обеспечения улучшенного регулирования напряжения для электронных нагрузок или для других типов индивидуальных пакетов.
УСТАНОВКА
Следует ли уведомить поставщика электроэнергии перед покупкой ROTO-CON® или ROTOVERTER®?
Перед покупкой любого оборудования, предполагающего значительное увеличение нагрузки, следует проконсультироваться с поставщиком электроэнергии.Поставщику электроэнергии следует указать местонахождение оборудования вместе со списком задействованных двигателей. Мощность каждого двигателя должна быть указана с учетом силы тока полной нагрузки, максимальной пусковой силы тока и напряжения.
Какое влияние окажет ROTO-CON или ROTOVERTER на линии электроснабжения?
Воздействие на любую линию электропередачи будет различным, поскольку линии электропередачи имеют разную мощность и существующие нагрузки.Однако высокий коэффициент мощности преобразователей и способность ограничивать пусковые токи обычно делают их хорошей нагрузкой для линий электропитания.
Какой однофазный питающий трансформатор кВА требуется при установке ROTO-CON или ROTOVERTER?
Трансформатор должен иметь номинальную мощность в кВА, равную или превышающую номинальную мощность преобразователя, плюс кВА, необходимую для размещения любых дополнительных однофазных нагрузок, которые также могут быть подключены к трансформатору.
Какие сечения предохранителей и проводов требуются для установки?
Ток полной нагрузки ROTO-CON и ROTOVERTER указан на паспортной табличке преобразователя (приблизительно 4,5 А на кВА при 240 В). Однофазные предохранители должны быть рассчитаны по крайней мере на 115% этого тока, а размер провода должен основываться на не менее 125% этого тока, если иное не оговорено Кодексом (455-6,7). Провода также должны иметь такой размер, чтобы предотвратить чрезмерное падение напряжения при длительных участках.Для однопанельных агрегатов трехфазная проводка к нагрузке должна быть такой же, как и для стандартной трехфазной проводки. Для двухпанельных блоков размер трехфазного провода должен составлять 135% от силы тока трехфазной нагрузки. Все предохранители или автоматические выключатели для нагрузок преобразователя и двигателя должны быть с выдержкой времени, чтобы обеспечить запуск преобразователя и двигателей. Предохраняйте немоторные нагрузки, как при трехфазном питании. Все электромонтажные работы должны выполняться квалифицированным электриком в соответствии с применимыми правилами электробезопасности.См. Разд. 455 NEC для правил, регулирующих установку преобразователей.
Должны ли моторы располагаться рядом с ROTO-CON или ROTOVERTER?
ROTOVERTER служит трехфазным источником питания, и его следует рассматривать во многом так же, как и трехфазное питание. Если двигатель расположен на значительном расстоянии от ROTO-CON или ROTOVERTER, необходимо тщательно продумать размер используемых проводов, чтобы избежать чрезмерного падения напряжения во время запуска двигателя.
Нужно ли оборудовать двигатели магнитными пускателями?
Все трехфазные электродвигатели со встроенной мощностью в лошадиных силах должны быть защищены магнитными пускателями и соответствующей защитой от перегрузки. Магнитные пускатели также необходимы для предотвращения одновременного запуска преобразователя и нагрузки после отключения электроэнергии.
На что следует обратить особое внимание при поиске ROTO-CON или ROTOVERTER?
Стандартный роторный трансформатор и панели управления имеют каплезащищенную конструкцию и могут устанавливаться на открытом воздухе.Преобразователь может работать при температуре окружающей среды от -30 ° C до 40 ° C (от -25 ° F до 105 ° F). Затенение от прямых солнечных лучей приведет к более низкой температуре и продлению срока службы всех компонентов. Необходимо следить за тем, чтобы грязь, снег, лед или другие материалы не препятствовали вращению и не препятствовали вентиляции вращающегося трансформатора. Преобразователь нельзя подвергать воздействию удобрений или других агрессивных химикатов. Доступны блоки TEFC, если условия окружающей среды требуют их использования.
Как низкое напряжение влияет на ROTO-CON и ROTOVERTER?
ROTO-CON и ROTOVERTER запустятся и будут работать при напряжении ниже номинального.Однако следует отметить, что низкое напряжение приведет к снижению пускового момента двигателя и увеличению силы тока для данной нагрузки двигателя. Поэтому для большинства приложений требуется минимум 220 В (440 В) при полной нагрузке при работе от источника 240 В (480 В). Проконсультируйтесь с Ронком, если будет более низкое напряжение.
Как на ROTO-CON и ROTOVERTER влияет высокое напряжение?
Более высокое линейное напряжение выше 255 В (510 В) может отрицательно повлиять на преобразователь или нагрузку.Обратитесь к поставщику электроэнергии, если однофазное напряжение превышает эти пределы, чтобы узнать, что можно сделать, чтобы его снизить.
Требуются ли какие-либо регулировки на месте после установки?
ROTOVERTER отличается от других роторных преобразователей тем, что предусмотрены настройки для оптимизации производительности в любом приложении. ROTOVERTER настроен на заводе-изготовителе для обеспечения удовлетворительной работы в большинстве случаев. Фазные токи и силы тока следует проверять при различных условиях нагрузки.Если этого требуют конкретные характеристики нагрузки, емкость и соединения ответвлений следует отрегулировать в соответствии с инструкциями по установке. ROTO-CON не имеет регулируемых кранов; поэтому на этих устройствах можно регулировать только емкость.
ЭКСПЛУАТАЦИЯ И ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ
Каковы основные принципы работы ROTO-CON® и ROTOVERTER®?
Вращающийся трансформатор запускается от однофазного источника питания и емкости подключенной панели.Преобразователь должен быть запущен и набрать полную скорость до того, как на него будет приложена какая-либо нагрузка. Две однофазные входные линии подключены непосредственно к двум из трехфазных выходных линий. Третья линия производится комбинацией вращающегося трансформатора и конденсаторов, создающих трехфазный выход с правильными фазовыми углами.
Могут ли ROTO-CON и ROTOVERTER работать без нагрузки?
Обычно это непрактично, поскольку преобразователь будет потреблять электроэнергию, пока не выполняются никакие работы.Однако там, где этого требует приложение, преобразователь может работать непрерывно без нагрузки. Если ожидается значительный простой, следует проконсультироваться с заводом-изготовителем.
Сколько потерь мощности происходит в ROTO-CON и ROTOVERTER?
Максимальная потеря мощности происходит на холостом ходу преобразователя; приблизительно 120 Вт / кВА для РОТОВЕРТЕРА типа D и ROTO-CON типа D-1 и 40 Вт / кВА для РОТОВЕРТЕРА типа C и типа 2P ROTO-CON.Потери в преобразователе будут ниже при приложении нагрузки, обычно около одной трети значений холостого хода. При правильной балансировке преобразователя не происходит заметного изменения КПД двигателя.
Какой пусковой момент двигателя доступен при работе от ROTO-CON или ROTOVERTER?
Пусковой крутящий момент двигателя зависит от многих факторов, но обычно он всегда меньше, чем при запуске от трехфазной сети.На заводе следует проконсультироваться с подробностями любого применения, требующего высокой инерционной нагрузки или высокого пускового момента.
Ограничивает ли двигатель ROTO-CON или ROTOVERTER количество запусков в час?
ROTO-CON и ROTOVERTER не ограничивают количество запусков двигателя в час. Стандартные вспомогательные пусковые панели ограничены до 20 пусков в час каждого двигателя. Если требуется больше запусков в час и требуется пусковая панель, следует проконсультироваться с заводом-изготовителем.
Какой крутящий момент двигателя доступен при использовании ROTO-CON или ROTOVERTER?
Момент отказа двигателя, как и пусковой момент, зависит от нескольких факторов. Пробойный момент обычно зависит от размера двигателя относительно размера преобразователя и количества других работающих двигателей. Момент пробоя обычно примерно в два раза превышает крутящий момент при полной нагрузке, но может быть улучшен за счет использования преобразователя типа D или D-1 или одновременной работы других двигателей с небольшой нагрузкой.
Как изменение нагрузки повлияет на текущий баланс?
ROTOVERTER и ROTO-CON разработаны специально для приложений, в которых значительная часть нагрузки может быть включена или выключена во время работы. Баланс будет несколько изменяться в зависимости от нагрузки, но обычно приемлем для общих нагрузок от 15% до 100% номинальной полной мощности преобразователя нагрузки. В большинстве случаев балансировка с ROTOVERTER будет лучше, чем с ROTO-CON, обычно 10% или меньше по сравнению с 15% или меньше для ROTO-CON.
РОТОВЕРТЕР типа D часто рекомендуется для моторных нагрузок, когда задействовано большое количество относительно небольших моторов. Как правило, хороший баланс напряжений может быть достигнут для общих нагрузок от 10% до 100% от номинальной общей мощности нагрузки преобразователя в лошадиных силах. Текущий баланс обычно составляет 10% или меньше.
Как ROTO-CON и ROTOVERTER будут работать с немоторными нагрузками?
Правильно установленный роторный преобразователь обеспечивает приемлемое трехфазное питание оборудования.Поскольку во многих из этих приложений используются разные нагрузки на каждой фазе, желательно измерять напряжения, а не токи, при проверке правильности баланса выходов преобразователя. Некоторым электронным нагрузкам могут потребоваться изолирующие трансформаторы для обеспечения повышенного напряжения на нагрузке.
Если возникнут трудности, какие шаги следует предпринять?
При возникновении каких-либо проблем в работе следует обращаться к руководству по поиску и устранению неисправностей в руководстве по обслуживанию.Если решение не может быть определено, свяжитесь с заводом-изготовителем и сообщите серийные номера устройства, полное описание проблемы, а также фазные токи и напряжение. Показания должны быть обозначены буквами «A», «B» и «C», как указано в преобразователе.
Большинство электриков имеют квалификацию для обслуживания ROTO-CON или ROTOVERTER?
Электрик, имеющий опыт работы с двигателями, обычно имеет квалификацию для обслуживания ROTO-CON или ROTOVERTER.Электрик должен выполнять такое обслуживание только после ознакомления с инструкцией по подключению, руководством по эксплуатации и электрической схемой. Техническую помощь и копии сервисной литературы можно получить на заводе.
Какое общее обслуживание требуется для ROTO-CON и ROTOVERTER?
ROTO-CON и ROTOVERTER должны работать в течение многих лет без какого-либо обслуживания, поскольку в базовом блоке нет движущихся частей, кроме ротора.Подшипники ротора смазываются на заводе и должны смазываться в соответствии с рекомендациями для эквивалентного рамного двигателя в зависимости от часов работы. Проконсультируйтесь с заводом или местным моторным магазином для получения конкретных рекомендаций. Масляные конденсаторы в конденсаторной панели признаны UL и не содержат печатных плат. Эти конденсаторы имеют очень долгий срок службы и не требуют обслуживания.
Какие есть запасные части для ROTO-CON или ROTOVERTER?
Запасные части и заводские ремонтные мастерские обслуживаются компанией Ronk для всех моделей ROTO-CON и ROTOVERTER.Перед любым обслуживанием или заменой деталей в течение гарантийного срока необходимо проконсультироваться с заводом-изготовителем.
Детали, используемые в преобразователе, обычно являются относительно распространенными типами, доступными на местном уровне через электрических распределителей и мастерские по ремонту двигателей. Большинство ремонтов преобразователя может производиться на месте. Техническая помощь предоставляется на заводе.
Конденсаторы для проводкидля двигателя воздушного компрессора Baldor VL1309
Вам не нужно больше трех проводов, поскольку один является общим для колпачков рабочего и пускового конденсаторов, а два других - это пуск и пуск, которые можно провести параллельно электролитическим пускателям. , я.е. к одному полюсу группы пластин или полюсов, соединенных параллельно перемычкам, а другой провод, т. е. рабочий провод, можно протянуть через один полюс колпачка. В конструкции Baldor, которая у меня есть, есть две обмотки, A и B. Одна вспомогательная, а другая - основная. Интересно, что оба провода запуска и запуска идут от вспомогательной обмотки, а общий ТАКЖЕ идет на вспомогательную обмотку. Вспомогательная обмотка вообще НЕ вырезана в этой конструкции, но продолжает работать с небольшим сдвигом фазы по отношению к основной обмотке, работая с меньшим и более низким MuF-конденсатором на масляной основе.Центробежный выключатель отключает только большую батарею электролитических конденсаторов и ее провод, в случае с проводом E или так называемым стартовым проводом. Таким образом, пусковой провод и рабочий провод идут параллельно к вспомогательной обмотке. Так что мультиметром ОЧЕНЬ сложно проверить, какой провод какой. Вам практически придется потянуть за колпачок двигателя, чтобы открыть центробежный переключатель, и проследить провода до и после переключателя с помощью омметра, чтобы увидеть, какой из них какой. Разница в сопротивлении между O и E, Run и Start будет очень низкой.Кроме того, поскольку O и E имеют короткое замыкание друг на друга при испытании на сопротивление, сопротивление, следовательно, очень низкое, около 0,4 Ом, как отмечали некоторые. Только через общий провод провода E и O пересекают обмотку, и тогда сопротивление становится выше, примерно 2,6 Ом. Таким образом, должно быть ясно, какой из них является общим, то есть тот, который обеспечивает более высокую устойчивость к тесту E или O.Но какой из них O, а какой E, часто остается загадкой. Возвращение к L1 и L2 не поможет (выводные линии), поскольку O и E все еще параллельны - и за исключением E, проходящего через переключатель, сопротивления будут почти идентичными.
На фото колпачков на скамейке видно, что перемычки установлены правильно. За исключением одного провода, который не подключен к электролизеру, они полностью подключены, как и должно быть. За исключением всей важной проводки двигателя.
Два больших «Elecs» соединены перемычкой на одной стороне пластины или группы с помощью одной перемычки, и эта «сторона» соединяется на одном полюсе группы перемычек с проводом E или START от двигателя, согласно прилагаемой электрической схеме двигателя. - а также мы видим, из загруженной диаграммы шапки.
Все схемы, предоставленные Baldor для 3 HP FDL3610TM, или, как они его еще называют, Spec. №36х29W655. [Трудно найти в сети номера Baldor относительно «молодых» двигателей. Настоящая модель паспортной таблички не та, что у меня есть, и ее не ищу даже на сайте Baldor !! Не так уж и сложно держать в оперативном режиме руководства или старые номера двигателей. Похоже на корпоративную политику кластера F для старых клиентов. Я заполнил это множеством лодочных якорей, которые в остальном были бы полезны.]
Провод ПУСК (O) подключается к меньшему конденсатору на масляной основе меньшей емкости на одной батарее, которая НЕ замкнута перемычкой.
ОБЩИЙ провод [двигателя], который подключается к вспомогательной обмотке последовательно, подключается к одной батарее из ВСЕХ ТРЕХ конденсаторов, соединенных двумя проводами.
Провод ПУСКА, или провод Е на схеме, [помните, что Е параллелен проводу О или ПУСК, т. Е. Находится напротив конденсаторной пластины к соединениям с общим проводом], и этот провод двигателя ПУСКА, обозначенный E на Схема подключения подключается к полюсу, который соединен одним проводом через два больших электролитических элемента.
1.Провод ПУСК (O) находится «сам по себе» на оголенном полюсе на маленькой крышке ПУСК на масляной основе.
2. Провод ПУСКА (E) находится на электролитической клемме с перемычкой.
Если вы поменяете местами провода START и RUN, провод RUN будет переключен, а провод START останется неизменным, и вы сожжете электролитический конденсатор START за несколько секунд. Вы не можете с уверенностью сказать, какой именно провод, без непредвиденных разработок Baldor, маркировки проводов, окраски или информации о конструкции, которая является четкой и однозначной, поэтому ДОЛЖНО отследить провода внутри двигателя от центробежного переключателя.
Совсем не красиво.
Муф колпачков START, Elecs, составляет 216-259 Muf, при максимальном напряжении 250 В. Колпачок RUN на масляной основе составляет 25 мкФ и максимальное напряжение 370 В.
Может быть способ определить, что есть что с помощью ометра, поэтому я открыт для предложений, но следует помнить, что в этой модели можно проверить только одну обмотку, поскольку вспомогательная обмотка НЕ отключается только СТАРТ колпачки.