Схема индукционной печи своими руками: Индукционная печь своими руками для плавки металла и обогрева: принцип работы и электрическая схема

Содержание

Простая индукционная печь своими руками по схеме

Индукционная печь — это словосочетание хорошо знакомо тем, чья профессия косвенно или напрямую связана с металлургией. Ведь именно в таких печах осуществляется процесс плавки металла.

Принцип работы индукционной печи — это процесс получения тепла от электричества, вырабатываемого переменным магнитным полем. В печах индукционного типа происходит преобразование энергии по схеме электромагнитная-электрическая-тепловая.

Индукционные печи подразделяются по видам:

— канальные;

— тигельные.

Для канального типа печей характерно расположение индуктора с сердечником внутри металла.
В тигельной — индуктор располагается вокруг металла.

У индукционных печей имеется целый ряд преимуществ по сравнению с другими печками или котлами:

— моментальный разогрев;
— фокусировка энергии;
— безопасность и экологическая чистота устройства;
— отсутствие угара;

— большие возможности в выборе емкости, рабочей частоты.

В промышленности такие печи используют для плавки чугуна и стали, меди и алюминия, а также драгоценных металлов. Эти печи имеют различную емкость и частоту.
Именно принцип работы индукционной печи привел к созданию известной всем нам в быту микроволновой печи.

Индукционная печь


Собираем индукционную печь самостоятельно по схеме

При наличии специальной электрической схемы для этого устройства, вполне реально сделать ее своими руками. Вам необходим высокочастотный генератор с частотой колебаний 27,12 МГц.

Схема собирается на 4-х электронных лампах(тетрадах), нужна также нелегкая лампа для сигнализации о готовности к началу работы.

Особенностью такой индукционной печи, собранной своими руками по такой схеме, будет то, что ручка конденсатора находится снаружи. А, самое главное, что часть металла, расположенная в катушке, расплавится очень быстро даже в устройстве с малой мощностью.

Индукционная печь своими руками — схема


Прежде, чем собрать индукционную печь своими руками, надо прояснить, от каких факторов зависит скорость плавки металла:

— от скорости теплопередачи;

— от мощности генератора;

— от вихревых потерь и потерь на гистерезисе;

— от частоты.

Используйте лампы высокой мощности, но не более 4 штук. Питание печи будет происходить от сети 220В с выпрямителем. Если вы будете использовать печь для плавки металла, используйте графитовые щётки, если для обогрева — нихромовую спираль.

Собрать индукционную печь своими руками несложно и экономически выгодно. Ее можно применять для обогрева гаража, дачи или как дополнительный источник обогрева своего жилища.

Посмотрите видео

Читайте также:

Муфельная печь: особенности конструкции, собираем сами

Делаем индукционные котлы отопления своими руками

Индукционные нагреватели и печи своими руками: от теории к реализации

Индукционная печь изобретена давно, еще в 1887 г, С. Фарранти. Первая промышленная установка заработала в 1890 г. на фирме Benedicks Bultfabrik. Долгое время индукционные печи и в индустрии были экзотикой, но не вследствие дороговизны электричества, тогда оно было не дороже теперешнего. В процессах, происходящих в индукционных печах, было еще много непонятного, а элементная база электроники не позволяла создавать эффективные схемы управления ими.

В индукционно-печной сфере переворот произошел буквально на глазах в наши дни, благодаря появлению, во-первых, микроконтроллеров, вычислительная мощность которых превышает таковую персональных компьютеров десятилетней давности. Во-вторых, благодаря… мобильной связи. Ее развитие потребовало появления в продаже недорогих транзисторов, способных отдавать мощность в несколько кВт на высоких частотах. Они, в свою очередь, были созданы на основе полупроводниковых гетероструктур, за исследования которых российский физик Жорес Алферов получил Нобелевскую премию.

В конечном итоге, индукционные печки не только совершенно преобразились в промышленности, но и широко вошли в быт. Интерес к предмету породил массу самоделок, которые, в принципе, могли бы быть полезными.

Но большинство авторов конструкций и идей (описаний которых в источниках много больше, чем работоспособных изделий) плоховато представляют себе как основы физики индукционного нагрева, так и потенциальную опасность неграмотно выполненных конструкций. Настоящая статья призвана прояснить некоторые наиболее смутные моменты. Материал построен на рассмотрении конкретных конструкций:

  1. Промышленной канальной печи для плавки металла, и возможности ее создания самостоятельно.
  2. Тигельных печей индукционного типа, самых простых в исполнении и наиболее популярных среди самодельщиков.
  3. Индукционных водогрейных котлов, стремительно вытесняющих бойлеры с ТЭНами.
  4. Бытовых варочных индукционных приборов, конкурирующих с газовыми плитами и по ряду параметров превосходящих микроволновки.

Примечание: все рассматриваемые устройства основаны на магнитной индукции, создаваемой катушкой индуктивности (индуктором), поэтому и называются индукционными. В них можно плавить/нагревать только электропроводящие материалы, металлы и т.п. Есть еще электроиндукционные емкостные печи, основанные на электрической индукции в диэлектрике между обкладками конденсатора, они применяются для «нежного» плавления и электротермообработки пластиков. Но распространены они гораздо меньше индукторных, рассмотрение их требует отдельного разговора, поэтому пока оставим.

Принцип действия

Принцип работы индукционной печи иллюстрирует рис. справа. В сущности она – электрический трансформатор с короткозамкнутой вторичной обмоткой:

Принцип действия индукционной печи

  • Генератор переменного напряжения G создает в индукторе L (heating coil) переменный ток I1.
  • Конденсатор С совместно с L образуют колебательный контур, настроенный на рабочую частоту, это в большинстве случаев повышает техпараметры установки.
  • Если генератор G автоколебательный, то С часто исключают из схемы, используя вместо него собственную емкость индуктора. Она у описанных ниже высокочастотных индукторов составляет несколько десятков пикофарад, что как раз соответствует рабочему диапазону частот.
  • Индуктор в соответствии с уравнениями Максвелла создает в окружающем пространстве переменное магнитное поле с напряженностью H. Магнитное поле индуктора может как замыкаться через отдельный ферромагнитный сердечник, так и существовать в свободном пространстве.
  • Магнитное поле, пронизывая помещенную в индуктор заготовку (или плавильную шихту) W, создает в ней магнитный поток Ф.
  • Ф, если W электропроводящая, индуцирует в ней вторичный ток I2, то тем же уравнениям Максвелла.
  • Если Ф достаточно массивна и цельная, то I2 замыкается внутри W, образуя вихревой ток, или ток Фуко.
  • Вихревые токи по закону Джоуля-Ленца отдает полученную им через индуктор и магнитное поле от генератора энергию, нагревая заготовку (шихту).

Электромагнитное взаимодействие с точки зрения физики достаточно сильно и обладает довольно высоким дальнодействием.

Поэтому, несмотря на многоступенчатое преобразование энергии, индукционная печь способна показать в воздухе или вакууме КПД до 100%.

Примечание: в среде из неидеального диэлектрика с диэлектрической проницаемостью >1 потенциально достижимый КПД индукционных печей падает, а в среде с магнитной проницаемостью >1 добиться высокого КПД проще.

Канальная печь

Канальная индукционная плавильная печь – первая из примененных в промышленности. Она и конструктивно похожа на трансформатор, см. рис. справа:

Канальная индукционная печь

  1. Первичная обмотка, питаемая током промышленной (50/60 Гц) или повышенной (400 Гц) частоты, выполнена из медной, охлаждаемой изнутри жидким теплоносителем, трубки;
  2. Вторичная короткозамкнутая обмотка – расплав;
  3. Кольцеобразный тигель из жаростойкого диэлектрика, в котором помещается расплав;
  4. Наборный из пластин трансформаторной стали магнитопровод.

Канальные печи используются для переплавки дюраля, цветных спецсплавов, получения высококачественного чугуна. Промышленные канальные печи требуют затравки расплавом, иначе «вторичка» не замкнется накоротко и нагрева не будет. Или между крошками шихты возникнут дуговые разряды, и вся плавка просто взорвется. Поэтому перед пуском печи в тигель наливают немного расплава, а переплавленную порцию выливают не до конца. Металлурги говорят, что канальная печь имеет остаточную емкость.

Канальную печь на мощность до 2-3 кВт можно сделать и самому из сварочного трансформатора промышленной частоты. В такой печи можно расплавить до 300-400 г цинка, бронзы, латуни или меди. Можно переплавлять дюраль, только отливке нужно по остывании дать состариться, от нескольких часов до 2-х недель, в зависимости от состава сплава, чтобы набрала прочность, вязкость и упругость.

Примечание: дюраль вообще был изобретен случайно. Разработчики, обозлившись, что легировать алюминий никак не удается, бросили в лаборатории очередной «никакой» образец и ушли в загул с горя. Протрезвились, вернулись – а никакой изменил цвет. Проверили – а он набрал прочность едва ли не стали, оставшись легким, как алюминий.

«Первичку» трансформатора оставляют штатной, она уже рассчитана на работу в режиме КЗ вторички сварочной дугой. «Вторичку» снимают (ее потом можно поставить обратно и использовать трансформатор по прямому назначению), а вместо нее надевают кольцевой тигель. Но пытаться переделать в канальную печь сварочный ВЧ-инвертор опасно! Его ферритовый сердечник перегреется и разлетится в куски из-за того, что диэлектрическая проницаемость феррита >>1, см. выше.

Проблема остаточной емкости в маломощной печке отпадает: в шихту для затравки кладут проволочку из того же металла, согнутую в кольцо и со скрученными концами. Диаметр проволоки – от 1 мм/кВт мощности печи.

Но появляется проблема кольцевого тигля: единственный подходящий для малого тигля материал – электрофарфор. В домашних условиях обработать его самому невозможно, а где взять покупной подходящий? Прочие огнеупоры не годятся вследствие высоких диэлектрических потерь в них или пористости и малой механической прочности. Поэтому, хотя канальная печь дает плавку высочайшего качества, не требует электроники, а ее КПД уже при мощности 1 кВт превышает 90%, у самодельщиков они не в ходу.

Под обычный тигель

Устройство тигельной индукционной печи

Остаточная емкость раздражала металлургов – сплавы-то плавились дорогие. Поэтому, как только в 20-х годах прошлого века появились достаточно мощные радиолампы, тут же родилась идея: выкинуть на (не будем повторять профессиональные идиомы суровых мужиков) магнитопровод, а обычный тигель засунуть прямо в индуктор, см. рис.

На промышленной частоте так не сделаешь, магнитное поле низкой частоты без концентрирующего его магнитопровода расползется (это т. наз. поле рассеяния) и отдаст свою энергию куда угодно, только не в расплав. Компенсировать поле рассеяния можно повышением частоты до высокой: если диаметр индуктора соизмерим с длиной волны рабочей частоты, а вся система – в электромагнитном резонансе, то до 75% и более энергии ее электромагнитного поля будет сосредоточено внутри «бессердечной» катушки. КПД выйдет соответственный.

Однако уже в лабораториях выяснилось, что авторы идеи проглядели очевидное обстоятельство: расплав в индукторе, хотя бы и диамагнитный, но электропроводящий, за счет собственного магнитного поля от вихревых токов изменяет индуктивность нагревательной катушки. Начальную частоту понадобилось устанавливать под холодную шихту и менять по мере ее плавления. Причем в пределах тем больших, чем больше заготовка: если для 200 г стали можно обойтись диапазоном в 2-30 МГц, то для болванки с железнодорожную цистерну начальная частота будет около 30-40 Гц, а рабочая – до нескольких кГц.

Подходящую автоматику на лампах сделать сложно, «тянуть» частоту за болванкой – нужен высококвалифицированный оператор. Кроме того, на низких частотах сильнейшим образом проявляет себя поле рассеяния. Расплав, который в такой печи еще и сердечник катушки, до некоторой степени собирает магнитное поле возле нее, но все равно, для получения приемлемого КПД понадобилось окружать всю печь мощным ферромагнитным экраном.

Тем не менее, благодаря своим выдающимся достоинствам и уникальным качествам (см. далее) тигельные индукционные печи широко применяются и в промышленности, и самодельщиками. Поэтому остановимся подробнее на том, как правильно сделать такую своими руками.

Немного теории

При конструировании самодельной «индукционки» нужно твердо помнить: минимум потребляемой мощности не соответствует максимуму КПД, и наоборот. Минимальную мощность от сети печка возьмет при работе на основной резонансной частоте, Поз. 1 на рис. Болванка/шихта при этом (и на более низких, дорезонансных частотах) работает как один короткозамкнутый виток, а в расплаве наблюдается всего одна конвективная ячейка.

Режимы работы тигельной индукционной печи

В режиме основного резонанса в печке на 2-3 кВт можно расплавить до 0,5 кг стали, но разогрев шихты/заготовки займет до часа и более. Соответственно, общее потребление электричества от сети будет большим, а общий КПД – низким. На дорезонансных частотах – еще ниже.

Вследствие этого индукционные печи для плавки металла работают чаще всего на 2-й, 3-й и др. высших гармониках (Поз. 2 на рис.) Требуемая для разогрева/расплавления мощность при этом возрастает; для того же полкило стали на 2-й понадобится 7-8 кВт, на 3-ей 10-12 кВт. Но прогрев происходит очень быстро, за минуты или доли минут. Поэтому и КПД выходит высокий: печка не успевает «съесть» много, как расплав уже можно лить.

У печей на гармониках есть важнейшее, даже уникальное достоинство: в расплаве возникает несколько конвективных ячеек, мгновенно и тщательно его перемешивающих. Поэтому можно вести плавку в режиме т. наз. быстрой шихты, получая сплавы, которые в любых других плавильных печах выплавить принципиально невозможно.

Если же «задрать» частоту в 5-6 и более раз выше основной, то КПД несколько (ненамного) падает, но проявляется еще одно замечательное свойство индукционки на гармониках: поверхностный нагрев вследствие скин-эффекта, вытесняющего ЭМП к поверхности заготовки, Поз. 3 на рис. Для плавки этот режим используется редко, но для разогрева заготовок под поверхностную цементацию и закалку – милое дело. Современная техника без такого способа термообработки была бы просто невозможна.

О левитации в индукторе

А теперь проделаем фокус: накрутим первые 1-3 витка индуктора, затем перегнем трубку/шину на 180 градусов, и остальную обмотку навьем в обратном направлении (Поз 4 на рис.) Подключим к генератору, введем в индуктор тигель в шихтой, дадим ток. Дождемся расплавления, уберем тигель. Расплав в индукторе соберется в сферу, которая там останется висеть, пока не выключим генератор. Тогда – упадет вниз.

Эффект электромагнитной левитации расплава используют для очистки металлов путем зонной плавки, для получение высокоточных металлических шариков и микросфер, и т.п. Но для надлежащего результата плавку нужно вести в высоком вакууме, поэтому здесь о левитации в индукторе упомянуто только для сведения.

Зачем индуктор дома?

Как видим, даже маломощная индукционная печка для квартирной проводки и лимитов потребления мощновата. Для чего же стоит ее делать?

Индукционный нагрев для закалки

Во-первых, для очистки и разделения драгоценных, цветных и редких металлов. Берем, к примеру, старый советский радиоразъем с позолоченными контактами; золота/серебра на плакировку тогда не жалели. Кладем контакты в узкий высокий тигелек, суем в индуктор, плавим на основном резонансе (выражаясь профессионально, на нулевой моде). По расплавлении постепенно снижаем частоту и мощность, давая застыть болванке в течение 15 мин – получаса.

По остывании разбиваем тигелек, и что видим? Латунный столбик с ясно различимым золотым кончиком, который остается только отрезать. Без ртути, цианидов и прочих убийственных реагентов. Нагревом расплава извне любым способом этого не добиться, конвекция в нем не даст.

Индуктор для отпусковой индукционной печи

Ну, золото-золотом, а сейчас и черный металлолом на дороге не валяется. Но вот необходимость равномерного, или точно дозированного по поверхности/объему/температуре нагрева металлических деталей для качественной закалки у самодельщика или ИП-индивидуала всегда найдется. И тут опять выручит печка-индуктор, причем расход электричества будет посильным для семейного бюджета: ведь основная доля энергии нагрева приходится на скрытую теплоту плавления металла. А меняя мощность, частоту и расположение детали в индукторе, можно нагреть именно нужное место именно как надо, см. рис. выше.

Наконец, сделав индуктор специальной формы (см. рис. слева), можно отпустить закаленную деталь в нужном месте, на нарушая цементации с закалкой на конце/концах. Затем, где надо – гнем, плющим, а остальное остается твердым, вязким, упругим. В конце можно снова разогреть, где отпускали, и опять закалить.

Приступаем к печке: что нужно знать обязательно

Электромагнитное поле (ЭМП) воздействует на человеческий организм, хотя бы прогревая его во всем объеме, как мясо в микроволновке. Поэтому, работая с индукционной печью в качестве конструктора, мастера или эксплуатанта, нужно четко уяснить себе суть следующих понятий:

ППЭ – плотность потока энергии электромагнитного поля. Определяет общее физиологическое воздействие ЭМП на организм независимо от частоты излучения, т.к. ППЭ ЭМП одной и той же напряженности растет с ростом частоты излучения. По санитарным нормам разных стран допустимое значение ППЭ от 1 до 30 мВт на 1 кв. м. поверхности тела при постоянном (свыше 1 часа в сутки) воздействии и втрое-впятеро больше при однократном кратковременном, до 20 мин.

Примечание: особняком стоят США, у них допустимая ППЭ – 1000 мВт (!) на кв. м. тела. Фактически, американцы считают началом физиологического воздействия внешние его проявления, когда человеку уже становится плохо, а долговременные последствия облучения ЭМП полностью игнорируют.

ППЭ при удалении от точечного источника излучения падает по квадрату расстояния. Однослойная экранировка оцинковкой или мелкоячеистой оцинкованной сеткой снижает ППЭ в 30-50 раз. Вблизи катушки по ее оси ППЭ будет в 2-3 раза выше, чем сбоку.

Поясним на примере. Есть индуктор на 2 кВт и 30 МГц с КПД в 75%. Следовательно, наружу из него уйдет 0,5 кВт или 500 Вт. На расстоянии в 1 м от него (площадь сферы радиусом 1 м – 12,57 кв. м.) на 1 кв. м. придется 500/12,57=39,77 Вт, а на человека – около 15 Вт, это очень много. Индуктор нужно располагать вертикально, перед включением печи надевать на него заземленный экранирующий колпак, следить за процессом издали, а по его окончании немедленно выключать печь. На частоте в 1 МГц ППЭ упадет в 900 раз, и с экранированным индуктором можно работать без особых предосторожностей.

СВЧ – сверхвысокие частоты. В радиэлектронике СВЧ считают с т.наз. Q-диапазона, но по физиологии СВЧ начинается примерно со 120 МГц. Причина – электроиндукционный нагрев плазмы клеток и резонансные явления в органических молекулах. СВЧ обладает специфически направленным биологическим действием с долговременными последствиями. Достаточно получить 10-30 мВт в течение получаса, чтобы подорвать здоровье и/или репродуктивную способность. Индивидуальная восприимчивость к СВЧ крайне изменчива; работая с ним, нужно регулярно проходить специальную медкомиссию.

Пресечь СВЧ-излучение очень трудно, оно, как говорят профи, «сифонит» сквозь малейшую щелочку в экране или при малейшем нарушении качества заземления. Эффективная борьба с СВЧ-излучением аппаратуры возможна только на уровне его конструирования высококлассными специалистами.

К счастью, диапазон частот, в котором работают индукционные печи, до СВЧ не простирается. Но при неумелом конструировании или пользовании печь может войти в режим, при котором появляется паразитное СВЧ. Разумеется, этого следует всячески избегать.

Компоненты печи

Индуктор

Важнейшая часть индукционной печи – ее нагревательная катушка, индуктор. Для самодельных печей на мощность до 3 кВт пойдет индуктор из голой медной трубки диаметром 10 мм или медной же голой шины сечением не менее 10 кв. мм. Внутренний диаметр индуктора – 80-150 мм, количество витков – 8-10. Витки не должны соприкасаться, расстояние между ними – 5-7 мм. Также никакая часть индуктора не должна касаться его экрана; минимальный зазор – 50 мм. Поэтому для прохождения выводов катушки к генератору нужно предусмотреть окно в экране, не мешающее его снимать/ставить.

Индукторы промышленных печей охлаждают водой или антифризом, но на мощности до 3 кВт описанный выше индуктор при работе его в продолжении до 20-30 мин принудительного охлаждения не требует. Однако он сам при этом сильно нагревается, а окалина на меди резко снижает КПД печи вплоть до потери ею работоспособности. Сделать самому индуктор с жидкостным охлаждением невозможно, поэтому его придется время от времени менять. Применять принудительное воздушное охлаждение нельзя: пластиковый или металлический корпус вентилятора вблизи катушки «притянут» к себе ЭМП, перегреются, а КПД печи упадет.

Примечание: для сравнения – индуктор для плавильной печи на 150 кг стали согнут из медной трубы 40 мм наружным диаметром и 30 внутренним. Число витков – 7, диаметр катушки по внутри 400 мм, высота тоже 400 мм. Для его раскачки на нулевой моде нужно 15-20 кВт при наличии замкнутого контура охлаждения дистиллированной водой.

Генератор

Вторая главная часть печи – генератор переменного тока. Сделать индукционную печь, не владея основами радиоэлектроники хотя бы на уровне радиолюбителя средней квалификации, не стоит и пытаться. Эксплуатировать – тоже, ведь, если печка не под компьютерным управлением, настроить ее в режим можно, только чувствуя схему.

Схема генератора для индукционной печи, дающая паразитное СВЧ

При выборе схемы генератора следует всячески избегать решений, дающих жесткий спектр тока. В качестве антипримера приводим довольно распространенную схему на тиристорном ключе, см. рис. выше. Доступный специалисту расчет по прилагаемой к ней автором осциллограмме показывает, что ППЭ на частотах свыше 120 МГц от индуктора, запитанного таким образом, превышает 1 Вт/кв. м. на расстоянии 2,5 м от установки. Убийственная простота, ничего не скажешь.

Схема лампового генератора для индукционной печи

В качестве ностальгического курьеза приводим еще схему древнего лампового генератора, см. рис. справа. Такие делали советские радиолюбители еще в 50-х годах, рис. справа. Настройка в режим – воздушным конденсатором переменной емкости С, с зазором между пластинами не менее 3 мм. Работает только на нулевой моде. Индикатор настройки – неоновая лампочка Л. Особенность схемы – очень мягкий, «ламповый» спектр излучения, так что пользоваться этим генератором можно без особых мер предосторожности. Но – увы! – ламп для него сейчас не найдешь, а при мощности в индукторе около 500 Вт энергопотребление от сети – более 2 кВт.

Примечание: указанная на схеме частота 27,12 МГц не оптимальна, она выбрана из соображений электромагнитной совместимости. В СССР она была свободной («мусорной») частотой, для работы на которой разрешения не требовалось, лишь бы устройство помех никому не давало. А вообще-то С можно перестраивать генератор в довольно широком диапазоне.

Самодельная тигельная индукционная печь 50-х годов.

На следующем рис. слева – простейший генератор с самовозбуждением. L2 – индуктор; L1 – катушка обратной связи, 2 витка эмалированного провода диаметром 1,2-1,5 мм; L3 – болванка или шихта. В качестве контурной емкости используется собственная емкость индуктора, поэтому эта схема не требует настройки, она автоматически входит в режим нулевой моды. Спектр мягкий, но при неправильной фазировке L1 мгновенно сгорает транзистор, т.к. он оказывается в активном режиме с КЗ по постоянному току в цепи коллектора.

Схема простейшего генератора для индукционной печи

Также транзистор может сгореть просто от изменения наружной температуры или саморазогрева кристалла – каких-либо мер по стабилизации его режима не предусмотрено. В общем, если у вас завалялись где-то старые КТ825 или им подобные, то начинать эксперименты по индукционному нагреву можно с этой схемки. Транзистор должен быть установлен на радиатор площадью не менее 400 кв. см. с обдувом от компьютерного или ему подобного вентилятора. Регулировка можности в индукторе, до 0,3 кВт – изменением напряжения питания в пределах 6-24 В. Его источник должен обеспечивать ток не менее 25 А. Мощность рассеивания резисторов базового делителя напряжения не менее 5 Вт.

Генератор-мультивибратор для индукционной печи

Схема на след. рис. справа – мультивибратор с индуктивной нагрузкой на мощных полевых тразисторах (450 B Uk, не менее 25 A Ik). Благодаря применению емкости в цепи колебательного контура дает довольно мягкий спектр, но внемодовый, поэтому пригоден для разогрева деталей до 1 кг для закалки/отпуска. Главный недостаток схемы – дороговизна компонент, мощных полевиков и быстродействующих (граничная частота не менее 200 кГц) высоковольтных диодов в их базовых цепях. Биполярные мощные транзисторы в этой схеме не работают, перегреваются и сгорают. Радиатор здесь такой же, как и в предыдущем случае, но обдува уже не нужно.

Следующая схема уже претендует на звание универсальной, мощностью до 1 кВт. Это – двухтактный генератор с независимым возбуждением и мостовым включением индуктора. Позволяет работать на 2-3 моде или в режиме поверхностного нагрева; частота регулируется переменным резистором R2, а диапазоны частот переключаются конденсаторами С1 и С2, от 10 кГц до 10 МГц. Для первого диапазона (10-30 кГц) емкость конденсаторов С4-С7 должна быть увеличена до 6,8 мкФ.

Схема универсального генератора для индукционной печи

Трансформатор между каскадами – на ферритовом кольце с площадью сечения магнитопровода от 2 кв. см. Обмотки – из эмалированного провода 0,8-1,2 мм. Радиатор транзисторов – 400 кв. см. на четверых с обдувом. Ток в индукторе практически синусоидальный, поэтому спектр излучения мягкий и на всех рабочих частотах дополнительных мер защиты не требуется, при условии работы до 30 мин в день через 2 дня на 3-й.

Видео: самодельный индукционный нагреватель в работе

Индукционные котлы

Индукционные водогрейные котлы, без сомнения, вытеснят бойлеры с ТЭНами везде, где электричество обходится дешевле других видов топлива. Но их неоспоримые достоинства породили и массу самоделок, от которых у специалиста иной раз буквально волосы дыбом встают.

Скажем, такая конструкция: пропиленовую трубу с проточной водой окружает индуктор, а он запитан от сварочного ВЧ-инвертора на 15-25 А. Вариант – из термостойкого пластика делают пустотелый бублик (тор), по патрубкам пропускают через него воду, а для нагрева обматывают шиной, образующий свернутый в кольцо индуктор.

ЭМП передаст свою энергию воде хорошо; та обладает неплохой электропроводностью и аномально высокой (80) диэлектрической проницаемостью. Вспомните, как стреляют в микроволновке оставшиеся на посуде капельки влаги.

Но, во-первых, для полноценного обогрева квартиры или частного дома зимой нужно не менее 20 кВт тепла, при тщательном утеплении снаружи. 25 А при 220 В дают всего 5,5 кВт (а сколько это электричество стоит по нашим тарифам?) при 100% КПД. Ладно, пусть мы в Финляндии, где электричество дешевле газа. Но лимит потребления на жилье – все равно 10 кВт, а за перебор нужно платить по увеличенному тарифу. И квартирная проводка 20 кВт не выдержит, нужно тянуть отдельный фидер от подстанции. Во что такая работа обойдется? Если еще электрикам далеко до перебора мощности по району и они ее разрешат.

Затем, сам теплообменник. Он должен быть или металлическим массивным, тогда будет действовать только индукционный нагрев металла, или из пластика с низкими диэлектрическими потерями (пропилен, между прочим, к таким не относится, годится только дорогой фторопласт), тогда вода непосредственно поглотит энергию ЭМП. Но в любом случае выходит, что индуктор греет весь объем теплообменника, а воде тепло отдает только внутренняя его поверхность.

В итоге, ценой больших трудов с риском для здоровья, получаем бойлер с КПД пещерного костра.

Индукционный котел отопления промышленного изготовления устроен совсем по-иному: просто, но в домашних условиях невыполнимо, см. рис. справа:

Схема индукционного водогрейного котла

  • Массивный медный индуктор подключается непосредственно к сети.
  • Его ЭМП греет также массивный металлический лабиринт-теплообменник из ферромагнитного металла.
  • Лабиринт одновременно изолирует индуктор от воды.

Стоит такой бойлер в несколько раз дороже обычного с ТЭНом, и пригоден для установки только на пластиковые трубы, но взамен дает массу выгод:

  1. Никогда не сгорает – в нем нет раскаленной электроспирали.
  2. Массивный лабиринт надежно экранирует индуктор: ППЭ в непосредственной близости от 30 кВт индукционного бойлера – ноль.
  3. КПД – более чем 99,5%
  4. Абсолютно безопасен: собственная постоянная времени обладающей большой индуктивностью катушки – более 0,5 с, что в 10-30 раз больше времени срабатывания УЗО или автомата. Его еще ускоряет «отдача» от переходного процесса при пробое индуктивности на корпус.
  5. Сам же пробой вследствие «дубовости» конструкции исключительно маловероятен.
  6. Не требует отдельного заземления.
  7. Безразличен к удару молнии; сжечь массивную катушку ей не под силу.
  8. Большая поверхность лабиринта обеспечивает эффективный теплообмен при минимальном температурном градиенте, что почти исключает образование накипи.
  9. Огромная долговечность и простота пользования: индукционный бойлер совместно с гидромагнитной системой (ГМС) и фильтром-отстойником работает без обслуживания не менее 30 лет.

О самодельных котлах для ГВС

Схема индукционного водонагревателя для ГВС

Здесь на рис. приведена схема маломощного индукционного нагревателя для систем ГВС с накопительным баком. В ее основе – любой силовой трансформатор на 0,5-1,5 кВт с первичной обмоткой на 220 В. Очень хорошо подходят сдвоенные трансформаторы от старых ламповых цветных телевизоров – «гробов» на двухстержневом магнитопроводе типа ПЛ.

Вторичную обмотку с таких снимают, первичку перематывают на один стержень, увеличив количество ее витков для работы в режиме, близком к КЗ (короткому замыканию) по вторичке. Сама же вторичная обмотка – вода в U-образном колене из трубы, охватывающем другой стержень. Пластиковая труба или металлическая – на промчастоте все равно, но металлическая должна быть изолирована от остальной системы диэлектрическими вставками, как показано на рис, чтобы вторичный ток замыкался только через воду.

В любом случае такая водогрейка опасна: возможная протечка соседствует с обмоткой под сетевым напряжением. Если уж идти на такой риск, то в магнитопроводе нужно насверлить отверстие под болт-заземлитель, и прежде всего наглухо, в грунт, заземлить трансформатор и бак стальной шиной не менее 1,5 кв. см. (не кв. мм!).

Далее трансформатор (он должен располагаться непосредственно под баком), с подключенным к нему сетевым проводом в двойной изоляции, заземлителем и водогрейным витком заливают в одну «куклу» силиконовым герметиком, как моторчик помпы аквариумного фильтра. Наконец, крайне желательно весь агрегат подключить к сети через быстродействующее электронное УЗО.

Видео: “индукционный” котел на основе бытовой плитки

Индуктор на кухне

Варочная индукционная плита

Индукционные варочные поверхности для кухни стали уже привычными, см. рис. По принципу действия это та же индукционная печка, только в роли короткозамкнутой вторичной обмотки выступает днище любой металлической варочной посудины, см. рис. справа, а не только из ферромагнитного материала, как часто не знаючи пишут. Просто алюминиевая посуда выходит из употребления; медики доказали, что свободный алюминий – канцероген, а медная и оловянная давно уже не в ходу по причине токсичности.

Бытовая индукционная плитка – порождение века высоких технологий, хотя идея ее зародилась одновременно с индукционными плавильными печами. Во-первых, для изоляции индуктора от стряпни понадобился прочный, стойкий, гигиеничный и свободно пропускающий ЭМП диэлектрик. Подходящие стеклокерамические композиты появились в производстве сравнительно недавно, и на долю верхней пластины плиты приходится немалая доля ее стоимости.

Схема кухонной индукционной плиты

Затем, все варочные посудины разные, а их содержимое изменяет их электрические параметры, и режимы приготовления блюд тоже разные. Осторожным подкручиванием ручек до нужной моды тут и специалист не обойдется, нужен высокопроизводительный микроконтроллер. Наконец, ток в индукторе должен быть по санитарным требованиям чистой синусоидой, а его величина и частота должны сложным образом меняться сообразно степени готовности блюда. То есть, генератор должен быть с цифровым формированием выходного тока, управляемым тем самым микроконтроллером.

Делать кухонную индукционную плиту самому нет смысла: на одни только электронные компоненты по розничным ценам денег уйдет больше, чем на готовую хорошую плитку. И управлять этими приборами пока еще сложновато: у кого есть, тот знает, сколько там кнопочек или сенсоров с надписями: «Рагу», «Жаркое» и т. п. Автор этой статьи видал плитку, где значилось отдельно «Борщ флотский» и «Суп претаньер».

Тем не менее, индукционные плиты имеют массу преимуществ перед прочими:

  • Почти нулевая, в отличие от микроволновок, ППЭ, хоть сам на эту плитку садись.
  • Возможность программирования для приготовления самых сложных блюд.
  • Растопка шоколада, вытапливание рыбьего и птичьего жира, приготовление карамели без малейших признаков пригорания.
  • Высокая экономичность как следствие быстрого нагрева и почти полного сосредоточения тепла в варочной посуде.

Разогрев варочной посуды на индукционной плите и газовой конфорке

К последнему пункту: взгляните на рис. справа, там графики разогрева стряпни на индукционной плите и газовой конфорке. Кто знаком с интегрированием, тот сразу поймет, что индуктор на 15-20% экономичнее, а с чугунным «блином» его можно и не сравнивать. Затраты денег на энергоноситель при приготовлении большинства блюд для индукционной плиты сравнимы с газовой, а на тушение и варку густых супов даже меньше. Индуктор пока уступает газу только при выпечке, когда необходим равномерный прогрев со всех сторон.

Видео: неудавшийся индукционный нагреватель из кухонной плиты

В заключение

Итак, индукционные электроприборы для подогрева воды и приготовления пищи лучше покупать готовые, дешевле и проще выйдет. А вот завести самодельную индукционную тигельную печку в домашней мастерской не помешает: станут доступными тонкие способы плавки и термообработки металлов. Нужно только помнить о ППЭ с СВЧ и строго соблюдать правила конструирования, изготовления и эксплуатации.

Загрузка…

Обсуждение темы «Индукционная печь»

Ниже Вы можете поделиться своими мыслями и результатами с нашими читателями и постоянными посетителями.

Также можно задать вопросы автору*, он постарается на них ответить.

Индукционная печь своими руками, принцип работы и сборка

Как собирается индукционная печь своими руками. Устройство и принцип работы. Важные параметры индукционных печей.

Расплавить небольшой кусок железа можно в самостоятельно собранной индукционной печи. Это самое эффективное устройство, которое работает от домашней розетки 220В. Печь пригодится в гараже или мастерской, где она может размещаться просто на рабочем столе. Нет смысла покупать ее, так как индукционная печь своими руками собирается за пару часов, если человек умеет читать электрические схемы. Без схемы обходиться нежелательно, ведь она дает полное представление об устройстве и позволяет избежать ошибок при подключении.

Принцип работы индукционной печи

Самодельная индукционная печь для плавки небольшого количества металла не требует больших габаритов и такого сложного устройства, как промышленные агрегаты. Ее работа основана на выработке тока переменным магнитным полем. Металл расплавляется в специальной заготовке, называемой тигелем и помещаемой в индуктор. Он представляет собой спираль с небольшим количеством витков из проводника, например, медной трубки. Если устройство используется в течение короткого времени, проводник не будет перегреваться. В таких случаях достаточно использовать медную проволоку.

Специальный генератор запускает в эту спираль (индуктор) мощные токи, а вокруг нее создается электромагнитное поле. Это поле в тигле и в помещенном в него металле создает вихревые токи. Именно они разогревают тигель и расплавляют металл за счет того, что он поглощает их. Следует отметить, что процессы происходят очень быстро, если использовать тигель из неметалла, например, шамота, графита, кварцита. Самодельная печь для плавки предусматривает выемную конструкцию тигеля, то есть, в него помещают металл, а после нагрева или плавки его вытаскивают из индуктора.

Схема индукционной печи

Генератор высокой частоты собирают из 4-х электронных ламп (тетродов), которые соединяются между собой параллельно. Скорость нагрева индуктора регулируется конденсатором переменной емкости. Его ручка выводится наружу и позволяет регулировать емкость конденсатора. Максимальное значение обеспечит нагрев куска металла в катушке всего за несколько секунд до красного состояния.

Параметры индукционной печи

Эффективная работа данного устройства зависит от следующих параметров:

  • мощность и частота генератора,
  • количество потерь в вихревых токах,
  • скорость потерь тепла и количество этих потерь в окружающий воздух.

Как подобрать составляющие детали схемы, чтобы получить для плавки в мастерской достаточные условия? Частота генератора задана заранее: она должна составить 27,12 МГц, если устройство собирают своими руками для использования в домашней мастерской. Катушку делают из тонкой медной трубки или провода, ПЭВ 0,8. Достаточно сделать не более 10 витков.

Электронные лампы следует использовать большой мощности, например, марки 6п3с. Также схема предусматривает установку дополнительной неоновой лампы. Она будет служить индикатором готовности устройства. Схема также предусматривает применение керамических конденсаторов (от 1500В) и дросселей. Подключение к домашней розетке осуществляется через выпрямитель.

Внешне самодельная индукционная печь выглядит так: к небольшой подставке на ножках прикрепляется генератор со всеми деталями схемы. К нему подключается индуктор (спираль). Следует отметить, что данный вариант сборки самодельного устройства для плавки применим для работы с небольшим объемом металла. Индуктор в виде спирали изготавливается проще всего, поэтому для самодельного устройства он используется именно в таком виде.

Особенности эксплуатации индуктора

Однако существует много разных модификаций индуктора. Например, он может изготавливаться в форме восьмерки, трилистника или иметь любую другую форму. Она должна быть удобной для размещения материала для термообработки. Например, плоскую поверхность легче всего нагреть виткам, расположенными в виде змейки.

Кроме этого ему свойственно прожигаться, и чтобы продлить время службы индуктора, его можно изолировать жаропрочным материалом. Используют, например, заливку огнеупорной смесью. Следует отметить, что данное устройство не ограничивается лишь медным материалом провода. Также можно применить стальной провод или из михрома. При работе с индукционной печью следует учесть ее термическую опасность. При случайном касании кожа получает сильный ожог.

Индукционная плавильная печь своими руками: схема изготовления

Индукционная плавильная печь применяется для плавления металлов и сплавов уже на протяжении последних нескольких десятилетий. Устройство получило широкое распространение в металлургической и машиностроительной областях, а также в ювелирном деле. При желании простую версию этого оборудования можно изготовить своими руками. Рассмотрим принцип работы и особенности применения индукционной печи подробнее.

Индукционная плавильная печь

Принцип индукционного нагрева

Для того чтобы металл перешел из одного агрегатного состояния в другое требуется нагреть его до достаточно высокой температуры. При этом у каждого металла и сплава своя температура плавления, которая зависит от химического состава и других моментов. Индукционная плавильная печь проводит нагрев материала изнутри при создании вихревых токов, которые проходят через кристаллическую решетку. Рассматриваемый процесс связан с явлением резонанса, который становится причиной увеличения силы вихревых токов.

Принцип действия устройства имеет следующие особенности:

  1. Пространство, которое образуется внутри катушки, служит для размещения заготовки. Использовать этот метод нагрева в промышленных условиях можно только при условии создания большого устройства, в которое можно будет поместить шихту различных размеров.
  2. Устанавливаемая катушка может иметь различную форму, к примеру, восьмерки, но наибольшее распространение получила спираль. Стоит учитывать, что форма катушки выбирается в зависимости от особенностей заготовки, подвергаемой нагреву.

Индукционный нагрев

Для того чтобы создать переменное магнитное поле устройство подключается к бытовой сети электроснабжения. Для повышения качества получаемого сплава с высокой текучестью применяются высокочастотные генераторы.

Устройство и применение индукционной печи

При желании можно создать индукционную печь для плавки металла из подручных материалов. Классическая конструкция имеет три блока:

  1. Генератор, который создает ток высокой частоты переменного типа. Именно он создает электрический ток, преобразующийся в магнитное поле, проходящее через материал и ускоряя движение частиц. За счет этого происходит переход металла или сплавов из твердого состояния в жидкое.
  2. Индуктор отвечает за создание магнитного поля, которое и нагревает металл.
  3. Тигель предназначен для плавки материала. Он помещается в индуктор, а обмотка подключается к источникам тока.

Процесс преобразования электрического тока в магнитное поле сегодня применяется в самых различных отраслях промышленности.

Устройство индукционной плавильной печи

К основным достоинствам индуктора можно отнести нижеприведенные моменты:

  1. Современное устройство способно направлять магнитное поле, за счет чего повышается КПД. Другими словами, проходит нагрев шихты, а не устройства.
  2. За счет равномерного распространения магнитного поля заготовка нагревается равномерно. При этом с момента включения устройства до плавки шихты уходит небольшое количество времени.
  3. Однородность получаемого сплава, а также его высокое качество.
  4. При нагреве и плавлении металла не образуются испарения.
  5. Сама установка безопасна в применении, не становится причиной образования токсичных веществ.

Существует просто огромное количество различных вариантов исполнения самодельных индукционных печей, каждая имеет свои определенные особенности.

Виды индукционных печей

Рассматривая классификацию устройств, отметим, что нагрев заготовок может проходить как внутри, так и снаружи катушки. Именно поэтому выделяют два типа индукционных печей:

  1. Канальная. Подобного рода устройство имеет небольшие каналы, которые расположены вокруг индуктора. Для генерации переменного магнитного поля внутри расположен сердечник.
  2. Тигельная. Эта конструкция характеризуется наличием специальной емкости, которую называют тигель. Изготавливается она из тугоплавкого металла с высоким показателем температуры плавления.

Важно, что канальные индукционные печи обладают большими габаритными размерами и предназначаются для промышленного плавления металла. За счет непрерывного процесса плавки можно получать большой объем расплавленного металла. Канальные индукционные печи применяются для плавки алюминия и чугуна, а также других цветных сплавов.

Тигельные индукционные печи характеризуются относительно небольшими размерами. В большинстве случаев подобного рода устройство применяется в ювелирном деле, а также при плавке металла в домашних условиях.

Устройство индукционной тигельной печи
Индукционная тигельная печь в разрезе

Установки на транзисторах получили довольно большое распространение, так как их можно изготовить своими руками при минимальных временных и денежных затратах.

Изготовление своими руками

При желании рассматриваемое устройство можно собрать в домашних условиях. Простая схема состоит из нижеприведенных элементов:

  1. полевые транзисторы;
  2. резисторы на 470 Ом;
  3. два диода;
  4. конденсаторы пленочного типа;
  5. обмоточный провод из меди;
  6. два кольца от дросселя, которые снимаются с компьютерного блока питания.

Приведенный выше список элементов определяет то, что создать индукционную печь можно при минимальных затратах. Процесс сборки устройства можно охарактеризовать следующим образом:

  1. Для начала проводится установка полевых транзисторов на радиаторы. Стоит учитывать, что подобная печь при работе сильно греется. Поэтому следует использовать радиаторы большого размера. Есть возможность провести установку транзисторов и на один радиатор, но придется выполнить их изоляцию.
  2. Далее потребуются два дросселя, которые также изготавливаются своими руками. Для этого проводится наматывание медной проволоки на кольца блока питания персонального компьютера. Почему именно эти кольца? Причина довольно проста – при их изготовлении применяется ферромагнитное железо. Следует намотать около 10 витков, а также выдерживать одинаковое расстояние между ними.
  3. Важным элементом конструкции можно назвать конденсаторную батарею. При соединении отдельных конденсаторов можно получить батарею емкостью 4,7 мкФ. Соединение отдельных элементов проводится параллельно.
  4. Для образования магнитного поля нужно создать обмотку, которая изготавливается из медной проволоки толщиной 2 миллиметра. Достаточно создать около 7-8 витков. Образующееся пространство внутри должно быть таким, чтобы поместилась заготовка, которая будет плавиться. Обмотка должна иметь два длинных конца, которые будут подключаться к источнику тока.
  5. В рассматриваемом случае источником питания может стать обычный аккумулятор на 12 В. Ток, который подается на катушку, имеет силу около 10А. Емкости подобного источника тока хватает примерно на 40 минут, после чего приходится проводить зарядку устройства.

Самодельная индукционная печь

Создавая печь своими руками можно провести регулировку мощности, для чего изменяется количество витков. Стоит учитывать, что при повышении мощности устройства требуется более емкая батарея, так как повышается показатель энергопотребления. Для того чтобы снизить температуру основных элементов конструкции устанавливается вентилятор. При длительной эксплуатации печи ее основные элементы могут существенно нагреваться, что стоит учитывать.

Еще большое распространение получили индукционные печи на лампах. Подобную конструкцию можно изготовить самостоятельно. Процесс сборки имеет следующие особенности:

  1. Медная трубка применяется для создания индуктора, для чего ее сгибают по спирали. Концы также должны быть большими, что требуется для подключения устройства к источнику тока.
  2. Индуктор следует поместить в корпусе. Изготавливается он из термостойкого материала, который может отражать тепло.
  3. Проводится соединение каскадов ламп по схеме с конденсаторами и дросселями.
  4. Выполняется подключение неоновой лампы-индикатора. Она включается в схему для обозначения того, что устройство готово к работе.
  5. В систему подключают подстроечный конденсатор переменной емкости.

Важным моментом является то, как можно провести охлаждение системы. При работе практически всех индукционных печей основные элементы конструкции могут нагреваться до высокой температуры. Промышленное оборудование имеет систему принудительного охлаждения, которое работает на воде или антифризе. Для того чтобы создать конструкцию водяного охлаждения своими руками требуется довольно много средств.

В домашних условиях устанавливается система воздушного охлаждения. Для этого устанавливаются вентиляторы. Следует располагать их так, чтобы обеспечивать беспрерывный поток холодного воздуха к основным элементам конструкции печи.

Индукционная печь своими руками: схема, как собрать?

Домашняя индукционная печь справляется с плавкой относительно небольших порций металла. Однако такой горн не нуждается ни в дымоходе, ни в мехах, подкачивающих воздух в зону плавки. А всю конструкцию подобной печи можно разместить на письменном столе. Поэтому разогрев с помощью электрической индукции является оптимальным способом плавки металлов в домашних условиях. И в этой статье мы рассмотрим конструкции и схемы сборки подобных печей.

1

Как устроена индукционная печь – генератор, индуктор и тигель

В заводских цехах можно встретить канальные индукционные печи для плавки цветных и черных металлов. У этих установок очень высокая мощность, задаваемая внутренним магнитопроводом, который повышает плотность электромагнитного поля и температуру в тигле печи.

В промышленных масштабах производятся канальные индукционные печи для плавки цветных и черных металлов

Однако канальные конструкции расходуют большие порции энергии и занимают много места, поэтому в домашних условиях и небольших мастерских применяется установка без магнитопровода – тигельная печь для плавки цветного/черного металла. Такую конструкцию можно собрать даже своими руками, ведь тигельная установка состоит из трех основных узлов:

  • Генератора, выдающего переменный ток с высокими частотами, которые необходимы для повышения плотности электромагнитного поля в тигле. Причем, если диаметр тигля можно будет сопоставить с длинной волны частоты переменного тока, то такая конструкция позволит трансформировать в тепловую энергию до 75 процентов электричества, потребляемого установкой.
  • Индуктора – медной спирали, созданной на основе точного просчета не только диаметра и количества витков, но и геометрии проволоки, используемой в этом процессе. Контур индуктора должен быть настроен на усиление мощности в результате возникновения резонанса с генератором, а точнее с частотой питающего тока.
  • Тигля – тугоплавкого контейнера, в котором и происходит вся плавильная работа, инициируемая за счет возникновения в структуре металла вихревых токов. При этом диаметр тигля и прочие габариты этого контейнера определяются строго по характеристикам генератора и индуктора.

Такую печь может собрать любой радиолюбитель. Для этого ему нужно найти правильную схему и запастить материалами и деталями. Перечень всего этого вы сможете найти ниже по тексту.

2

Из чего собирают печи – подбираем материалы и детали

В основе конструкции самодельной тигельной печи лежит простейший лабораторный инвертор Кухтецкого. Схема этой установки на транзисторах имеет следующий вид:

Схема установки на транзисторах

На основе этого рисунка-схемы вы сможете собрать индукционную печь, используя следующие компоненты:

  • два транзистора – желательно полевого типа и марки IRFZ44V;
  • медный провод диаметром 2 миллиметра;
  • два диода марки UF4001, еще лучше — UF4007;
  • два дроссельных кольца – их можно извлечь из старого блока питания от десктопа;
  • три конденсатора емкостью по 1 мкФ каждый;
  • четыре конденсатора емкостью по 220нФ каждый;
  • один конденсатор с емкостью 470 нФ;
  • один конденсатор с емкостью 330 нФ;
  • один резистор на 1 ватт (или 2 резистора по 0,5 ватта каждый), рассчитанный на сопротивление 470 Ом;
  • медный провод диаметром 1,2 миллиметра.

Кроме того, вам понадобится пара радиаторов – их можно снять со старых материнских плат или кулеров для процессоров, и аккумуляторная батарея емкостью не менее 7200 мАч от старого источника бесперебойного питания на 12 В. Ну а емкость-тигель в данном случае фактически не нужна – в печи будет плавиться прутковый металл, который можно удерживать за холодный торец.

3

Пошаговая инструкция для сборки – несложные операции

Распечатайте и повесьте над рабочим столом чертеж лабораторного инвертора Кухтецкого. После этого разложите все радиодетали по сортам и маркам и разогрейте паяльник. Закрепите два транзистора на радиаторах. А если вы будете работать с печью дольше 10-15 минут подряд, закрепите на радиаторах кулеры от компьютера, подключив их к рабочему блоку питания. Схема распиновки транзисторов из серии IRFZ44V выглядит следующим образом:

Схема распиновки транзисторов

Возьмите медную проволоку на 1,2 миллиметра и намотайте на ее на ферритовые кольца, сделав по 9-10 витков. В итоге у вас получатся дроссели. Расстояние между витками определяется диаметром кольца, исходя из равномерности шага. В принципе все можно сделать «на глаз», варьируя число витков в пределах от 7 до 15 оборотов. Соберите батарею из конденсаторов, соединяя все детали параллельно. В итоге у вас должна получиться батарея на 4,7 мкФ.

Теперь сделайте индуктор из медной 2-миллиметровой проволоки. Диаметр витков в этом случае может равняться диаметру фарфорового тигля или 8-10 сантиметрам. Число витков не должно превышать 7-8 штук. Если в процессе испытаний мощность печи покажется вам недостаточной – переделайте конструкцию индуктора, меняя диаметр и число витков. Поэтому на первых парах контакты индуктора лучше сделать не паянными, а разъемными. Далее соберите все элементы на плате из текстолита, опираясь на чертеж лабораторного инвертора Кухтецкого. И подключите к контактам питания аккумулятор на 7200 мАч. Вот и все.

Теперь вы можете проводить испытания печи, подбирая правильные параметры индуктора для каждой разновидности металла или тигля. Однако во время испытаний или плавки нужно помнить о мерах безопасности при работе с электропечами.

4

Меры безопасности при плавке металла

Индукционная установка генерирует очень высокую температуру, достаточную для расплавления металла массой до 10-20 грамм. Поэтому при работе  с тиглем нужно использовать фартук из плотного материала и такие же рукавицы. Они уберегут вас от ожогов при случайном пролитии металла из емкости.


Собранную конструкцию печи лучше упрятать в изолированный корпус, оставив за его стенами только индуктор. Это убережет и пользователя, и хрупкие радиодетали. А для вентиляции в корпусе необходимо нарезать или насверлить несколько отверстий, обеспечив приток и отток воздуха.

Остаточное магнитное поле может нагреть металлические детали на одежде пользователя, которые обожгут кожу. Поэтому к тиглю лучше подходить в простой одежде, без молний или металлических пуговиц. Кроме того, все электроприборы лучше удалить от индуктора, как минимум, на метровое расстояние.

Индукционная печь своими руками: принцип действия, схемы

Индукционная печь, выполненная своими руками, является отличным решением для обогрева различных помещений.

Кроме обогрева индукционная печь может выполнять следующие функции:

  • плавление металла;
  • очистку драгоценных металлов;
  • нагревание изделий из металла, после чего они проходят через процедуру закалки или через иные процессы.

Однако вышеописанные функции обеспечивают промышленные установки, а если нужно выполнять обогрев дома, то обычно устанавливается печь для кухни, причем можно ее приобрести в готовом виде или сделать самостоятельно. Самодельная индукционная печь создается достаточно просто, и на этот процесс не нужно тратить много времени. Однако важно знать не только правила формирования данной конструкции, но и ее другие особенности, чтобы можно было при необходимости своими силами осуществить ремонт или замену каких-либо основных частей.

Принцип работы оборудования

Важно знать особенности действия данного вида печи, чтобы хорошо разбираться в ее работе и параметрах. Работает оборудование за счет того, что с помощью специальных вихревых токов обеспечивается разогрев материала. Получаются такие токи за счет специального индуктора, являющегося катушкой индуктивности. В ней имеется насколько витков провода, обладающего довольно существенной толщиной.

Индуктор может нагреваться за счет сварочного инвертора или другого оборудования. Принцип работы индукционной печи предполагает, что питание индуктора поступает от сети переменного тока, а также для этого может применяться генератор высокой частоты. Ток, протекая по индуктору, формирует переменное поле, пронизывающее пространство. Если в нем имеются какие-либо материалы, то именно на них наводятся токи, обеспечивая их эффективное нагревание.

Если используется печь для создания системы отопления в доме, то обычно в качестве материала выступает вода, которая нагревается. Если же оборудование предназначено для промышленных целей, то в качестве материала может использоваться металл, который под действием тока начинает плавиться. Таким образом, принцип работы индукционной плиты считается простым и понятным, поэтому создать ее своими силами достаточно просто.

Устройство индукционных печей может быть разным, поскольку можно выделить два совершенно разных вида:

  • оборудование, оснащенное магнитопроводом;
  • печи без магнитопровода.

В первом случае индуктор находится внутри специального металла, который под действием токов начинает плавиться. Во втором индуктор располагается снаружи. Схема каждого варианта имеет свои специфические отличия.

Считается, что особенности действия конструкции с магнитопроводом является более эффективным, поскольку этот элемент повышает плотность создаваемого магнитного поля, поэтому нагрев более оперативный и качественный.

Самым популярным примером печи, оснащенной магнитопроводом, является канальная конструкция. Схема данного оборудования состоит из замкнутого магнитопровода, созданного из трансформаторной стали. На этом элементе имеется индуктор, являющийся первичной обмоткой, и тигель, обладающий кольцеобразной формой. Именно в нем находится материал, предназначенный для плавления. Тигель создается из специального диэлектрика, обладающего хорошей устойчивостью к возгоранию. Используются данные конструкции для создания чугуна высокого качества или для плавления цветных металлов.

Разновидности и характеристики различных индукционных печей

Можно выделить несколько видов индукционных печей, принцип действия которых имеет определенные отличия. Некоторые предназначаются только для промышленных работ, а другие могут использоваться в домашних условиях, поэтому часто предназначаются для кухни, где обеспечивают качественный нагрев. Наиболее часто последние варианты формируются из сварочного инвертора, имеют простую конструкцию, за счет чего их обслуживание и ремонт являются простыми работами.

К основным разновидностям индукционных печей относятся:

  • Вакуумная индукционная печь. В ней плавка осуществляется в вакууме, что позволяет удалить из различных смесей вредные и опасные примеси. В результате получаются изделия, которые совершенно безопасны для применения, отличаются высоким качеством. Следует отметить, что их ремонт считается сложной работой, а сам процесс создания, обычно, не может осуществиться своими силами без специализированного оборудования и необычных условий.
  • Канальная конструкция. Она изготавливается с применением обычного сварочного трансформатора, который работает на частоте, равной 50 Гц. Здесь вторичная обмотка данного устройства заменяется тигелем кольцеобразной формы. Видео создания такой печи можно найти в интернете, причем ее схема не считается сложной. Применяться грамотно сформированное оборудование может для плавки большого количества цветных металлов, причем потребление энергии считается небольшим. Ремонт считается специфическим и сложным.
  • Тигельная печь. Схема данной конструкции предполагает установку индуктора и генератора, которые являются самыми основными частями оборудования. Для формирования индуктора может применяться стандартная трубка из меди. Однако должно быть соблюдено необходимое количество витков, которое не должно быть больше 8, но и меньше 10. Схема самого индуктора может быть разной, он может иметь форму восьмерки или другую конфигурацию. Следует отметить, что ремонт данного оборудования считается достаточно простой работой.
  • Индукционная печь для обогрева помещения. Как правило, она предназначается для кухни, создается на основе сварочного инвертора. Обычно данная установка применяется в комбинации с водогрейным котлом, который позволяет обеспечить отопление каждого помещения в строении, кроме того, можно будет подвести горячее водоснабжение к сооружению. Принцип работы заключается в том, что индуктор получает питание от сварочного инвертора. Считается, что эффективность данного оборудования является невысокой, однако нередко только оно является единственно возможным для создания отопления в доме.

Процесс формирования печи

Сделать для кухни или другого помещения в доме индукционную печь на основе инвертора можно своими усилиями. Для этого рекомендуется не только изучить теоретическую часть данного процесса, но и просмотреть обучающее видео.

Чтобы сформировать электромагнитное поле, которое будет иметься снаружи индуктора, необходимо применять специальную катушку, в которой будет достаточно большое количество витков. Дополнительно потребуется сгибать трубу, а данная работа обладает определенными сложностями, поэтому более рациональным решением в этом случае будет расположение прямой трубы непосредственно внутри катушки, в результате чего она будет работать в качестве сердечника.

Как правило, используется металлическая труба, однако она считается слабым теплоносителем, поэтому вместо нее может применяться полимерная труба, внутри которой будут находиться небольшие отрезки проволоки из металла. Для генератора тока оптимальным считается применение стандартного инвертора. Его обслуживание и ремонт считаются простыми и понятными работами, поэтому можно будет обеспечить долгий срок службы оборудования.

Таким образом, для создания конструкции потребуется:

  • полимерная труба;
  • стальная проволока;
  • медный провод;
  • сетка из проволоки;
  • наличие самого инвертора.

Катанка из стали разрезается на мелкие части. Один торец трубы из полимеров закрывается сеткой, а в другой загружаются металлические отрезки проволоки. Второй торец также закрывается сеткой. Сверху трубы создается индукционная обмотка, для чего используется медный провод. Концы данной обмотки хорошо изолируются и подводятся к выходу инвертора. Как только аппарат включается, создается от катушки электромагнитное поле, что обеспечивает появление вихревых токов в сердечнике. Это приведет к его нагреванию, поэтому и вода, протекающая по трубе, начнет греться. Таким образом, получается идеальная конструкция для кухни или другого помещения, причем ее обслуживание и ремонт считаются простыми.

Лучше всего перед работами просмотреть обучающее видео, чтобы не совершить ошибок. После создания оборудования, можно установить его в нужном помещении. Оно может предназначаться не только для топочной, но даже и для кухни. Важно выбрать такое помещение, в котором можно будет легко ухаживать за печкой и осуществлять ее ремонт.

Особенности создания оборудования

Индукционная печь, созданная на основе инвертора, не обладает какими-либо параметрами, которые позволяли бы людям устанавливать нужную температуру воды. Поэтому можно говорить о том, что данное оборудование не является совершенно безопасным для постоянного использования. Поэтому лучше всего во время процесса формирования индукционной печи предусматривать установку автоматики и устройства контроля. В этом случае можно не только повысить безопасность устройства, но и упростить его использование, а ремонт будет требоваться очень редко.

Для этих целей на выходе из трубы необходимо смонтировать специальную группу безопасности, к которой причисляется предохранительный клапан, манометр и воздухоотводчик.

Чтобы во время использования оборудования не возникало перегрева, необходимо выполнить установку элемента аварийного отключения, которым можно управлять с помощью термостата. Может быть установлен терморегулятор, оснащенный датчиком температуры. Можно смонтировать реле, которое обеспечивает размыкание цепи в том случае, если температура теплоносителя достигает определенного уровня.

Таким образом, существует несколько разновидностей индукционных печей, отличающихся принципом работы, внешним видом, конструкцией и параметрами. Для обогрева дома можно даже своими силами сформировать конструкцию, для чего может применяться стандартный сварочный инвертор. Полученная установка при добавлении многочисленных дополнительных элементов будет безопасной, надежной и качественной, а также эффективной и простой в использовании.

принцип работы, устройство, изготовление своими руками

Вначале на него будет действовать электромагнитное поле, потом электрический ток, а затем уже он пройдет тепловую стадию. Простую конструкцию такого печного устройства можно собрать самостоятельно из различных подручных средств.

Принцип работы

Такое печное устройство является электрическим трансформатором со вторичной короткозамкнутой обмоткой. Принцип действия индукционной печи состоит в следующем:

  • при помощи генератора в индукторе создается переменный ток;
  • индуктор с конденсатором создает колебательный контур, он настроен на рабочую частоту;
  • в случае использования автоколебательного генератора, конденсатор исключается из схемы устройства и в этом случае используется собственный запас емкости индуктора;
  • создаваемое индуктором магнитное поле может существовать в свободном пространстве или же замыкаться с использованием индивидуального ферромагнитного сердечника;
  • магнитное поле воздействует на находящуюся в индукторе металлическую заготовку или шихту и образует магнитный поток;
  • по уравнениям Максвелла он индуцирует в заготовке вторичный ток;
  • при цельном и массивном магнитном потоке создаваемый ток замыкается в заготовке и происходит создание тока Фуко или вихревого тока;
  • после образования такого тока вступает в действие закон Джоуля-Ленца, и полученная с помощью индуктора и магнитного поля энергия нагревает заготовку металла или шихту.

Несмотря на многоступенчатую работу, устройство индукционной печи может давать в вакууме или воздухе до 100% КПД. Если среда с магнитной проницаемостью, то этот показатель будет расти, в случае со средой из неидеального диэлектрика, он будет падать.

к содержанию ↑

Устройство

Рассматриваемая печь – своеобразный трансформатор, но только в нем нет вторичной обмотки, ее заменяет помещенный в индуктор металлический образец. Он будет проводить ток, а вот диэлектрики в этом процессе не нагреваются, они остаются холодными.

Конструкция индукционных тигельных печей включает в себя индуктор, который состоит из нескольких витков медной трубки, свернутой в виде катушки, внутри нее постоянно передвигается охлаждающая жидкость. Также индуктор вмещает в себе тигель, который может быть из графита, стали и других материалов.

Кроме индуктора в печи установлен магнитный сердечник и подовый камень, все это заключено в корпус печи. В него входят:

  • кожух индукционной единицы;
  • кожух ванной;
  • каркас.

В моделях печей большой мощности кожух ванны обычно выполняется достаточно жестким, поэтому каркас в таком устройстве отсутствует. Крепление корпуса должно выдерживать сильные нагрузки при наклоне всей печи. Каркас чаще всего изготавливается из фасонных балок, выполненных из стали.

Тигельная индукционная печь для плавки металла устанавливается на фундамент, в который вмонтированы опоры, на их подшипники опираются цапфы механизма наклона устройства.

Кожух ванны выполняется из металлических листов, на которые для прочности наваривают ребра жесткости.

Кожух для индукционной единицы используется в качестве соединительного звена между печным трансформатором и подовым камнем. Его для уменьшения потерь тока делают из двух половинок, между которыми предусмотрена изолирующая прокладка.

Стяжка половинок происходит за счет болтов, шайб и втулок. Такой кожух делается литым или сварным, при выборе материала для него отдают предпочтение немагнитным сплавам. Двухкамерная индукционная сталеплавильная печь идет с общим кожухом для ванны и для индукционной единицы.

В небольших печах, в которых не предусмотрено водяного охлаждения имеется вентиляционная установка, она помогает отводить из агрегата излишки тепла. Даже вы случае установки водоохлаждаемого индуктора необходимо вентилировать проем, возле подового камня, чтобы он не перегревался.

В современных печных установках имеется не только водоохлаждаемый индуктор, но и предусмотрено водяное охлаждение кожухов. На каркасе печи могут быть установлены вентиляторы, работающие от приводного двигателя. При значительной массе такого устройства, вентиляционный прибор устанавливают возле печи. Если индукционная печь для производства стали идет со съемным вариантом индукционных единиц, то для каждой из них предусматривается свой вентилятор.

Отдельно стоит отметить механизм наклона, который для малых печей идет с ручным приводом, а для крупных он оснащен гидравлическим приводом, расположенным у сливного носика. Какой бы ни был установлен механизм наклона, он обязан обеспечивать слив полностью всего содержимого ванной.

к содержанию ↑

Расчет мощности

Так как индукционный способ плавки стали менее затратный, чем аналогичных методик, основанных на использовании мазута, угля и других энергоносителей, то расчет индукционной печи начинается с вычисления мощности агрегата.

Мощность индукционной печи подразделяется на активную и полезную, для каждой из них есть своя формула.

В качестве исходных данных нужно знать:

  • емкость печи, в рассматриваемом для примера случае она равна 8 тоннам;
  • мощность агрегата (берется максимальное ее значение) – 1300 кВт;
  • частота тока – 50 Гц;
  • производительность печной установки – 6 тонн в час.

Требуется также учитывать расплавляемый металл или сплав: по условию он цинковый. Это важный момент, тепловой баланс плавки чугуна в индукционной печи, также как и других сплавов свой.

Полезная мощность, которая передается жидкому металлу:

  • Рпол = Wтеор×t×П,
  • Wтеор – удельный расход энергии, он теоретический, и показывает перегрев металла на 10С;
  • П – производительность печной установки, т/ч;
  • t — температура перегрева сплава или металлической заготовки в ванной печи, 0С
  • Рпол = 0,298×800×5,5 = 1430,4 кВт.

Активная мощность:

  • Р = Рпол/Ютерм,
  • Рпол – берется с предыдущей формулы, кВт;
  • Ютерм – КПД литейной печи, его пределы от 0,7 до 0,85, в среднем принимают 0,76.
  • Р =1311,2/0,76=1892,1кВт, проводится округление значения до 1900 кВт.

На заключительном этапе рассчитывается мощность индуктора:

  • Ринд = Р/N,
  • Р – активная мощность печной установки, кВт;
  • N – количество индукторов, предусмотренных на печи.
  • Ринд =1900/2= 950 кВт.

Потребление мощности индукционной печью при плавке стали зависит от ее производительности и вида индуктора.

к содержанию ↑

Виды и подвиды

Индукционные печи делятся на два основных вида:

  1. Канальный. В нем вторичным витком служит кольцевой короткозамкнутый канал, в который помещается металл. В качестве источника энергии для процесса плавки используется генератор либо переменный ток промышленной частоты. Высокое КПД таких печей обусловлено передачей высокочастотного поля через ферритовый или стальной сердечник.  Плавка стали в индукционных печах такого типа отличается непрерывной подачей металлических заготовок и получением расплавленного металла. Единственным недостатком канального агрегата является сложность запуска его работы, так как предварительно необходимо заполнить канал расплавом.
  2. Тигельный. В таких печах источником энергии является генератор, который может работать в диапазоне от нескольких десятков до сотен кГц. Металлические заготовки в этом виде печи помещаются в ее термостойкий тигель, который располагается в обмотке индуктора. Как только расплав достигнет нужной температуры, тигель освобождают и заправляют следующей партией сырья. Такое печное устройство отличается высокой скоростью нагрева металла, так как в тигле очень малы потери тепла.

Кроме такого разделения, индукционные печи бывают компрессорными, вакуумными, открытыми и газонаполненными.

к содержанию ↑

Индукционные печи своими руками

Среди имеющихся распространенных методик создания таких агрегатов можно найти пошаговое руководство, как сделать индукционную печь из сварочного инвертора, с нихромовой спиралью или графитовыми щетками, приведем их особенности.

к содержанию ↑

Агрегат из высокочастотного генератора

Она выполняется с учетом расчетной мощности агрегата, вихревых потерь и утечек на гистерезисе. Питание конструкции будет идти от обычной сети в 220 В, но с использованием выпрямителя. Такой вид печи может идти с графитовыми щетками или нихромовой спиралью.

Для создания печи потребуется:

  • два диода UF4007;
  • пленочные конденсаторы;
  • полевые транзисторы в количестве двух штук;
  • резистор в 470 Ом;
  • два дроссельных кольца, их можно снять со старого компьютерного системщика;
  • медный провод Ø сечения 2 мм.

В качестве инструмента используется паяльник и плоскогубцы.

Приведем схему для индукционной печи:

Индукционные портативные плавильные печи такого плана создаются в следующей последовательности:

  1. Транзисторы располагаются на радиаторах. Из-за того, что в процессе плавки металла схема устройства быстро греется, радиатор для нее нужно подбирать с большими параметрами. Допустимо устанавливать несколько транзисторов на один генератор, но в этом случае их нужно изолировать от металла при помощи прокладок, сделанных из пластика и резины.
  2. Изготавливаются два дросселя. Для них берутся два заранее снятые с компьютера кольца, вокруг них обматывают медную проволоку, количество витков ограничено от 7 до 15.
  3. Конденсаторы объединяются между собой в батарею, чтобы на выходе получилась емкость в 4,7 мкФ, их соединение проводится параллельно.
  4. Вокруг индуктора обвивается медная проволока, ее диаметр должен быть 2 мм. Внутренний диаметр обмотки должен совпадать с размером используемого для печи тигля. Всего делают 7-8 витков и оставляют длинные концы, чтобы их можно было подключить к схеме.
  5. В качестве источника к собранной схеме подсоединяется аккумулятор мощностью 12 В, его хватает примерно на 40 минут работы печи.

Если необходимо, то делается корпус из материала с высокой термоустойчивостью . Если же выполняется индукционная плавильная печь из сварочного инвертора, то защитный корпус должен быть обязательно, но его нужно заземлить.

к содержанию ↑

Конструкция с графитовыми щетками

Такая печь используется для выплавки любого металла и сплавов.

Для создания устройства необходимо заготовить:

  • графитовые щетки;
  • порошковый гранит;
  • трансформатор;
  • шамотный кирпич;
  • стальная проволока;
  • тонкий алюминий.

Технология сборки конструкции заключается в следующем:

  1. Выполняется основа – в виде бокса, который изготавливается из шамотного кирпича, его кладут на огнеупорную плитку.
  2. Сверху бокса укладывается лист асбестокартона, если ему нужно придать определенную форму, его поверхность нужно смочить водой. Чтобы конструкцию сделать жесткой, нужно обмотать ее проволокой. Размеры бокса зависят от мощности трансформатора. Лучше всего использовать его из сварочного аппарата. Если он большой мощности, то его следует перемотать.
  3. Во избежание перегрева трансформатора его обматывают тонким алюминием.
  4. На дне кирпичного бокса располагается глиняная подложка, чтобы расплавленный металл не растекался.
  5. Устанавливаются графитовые щетки.
к содержанию ↑

Прибор с нихромовой спиралью

Такой прибор используется для выплавки больших объемов металла.

В качестве расходных материалов для обустройства самодельной печи используется:

  • нихром;
  • асбестовая нить;
  • кусок керамической трубы.

После подключения всех составляющих печи по схеме, ее работа состоит в следующем: после подачи электрического тока на нихромовую спираль, она передает тепло металлу и плавит его.

Создание такой печи проводится в следующей последовательности:

  1. Навивание спирали, для нее используется проволока диаметром 0,3 мм, длина заготовки должна быть около 11 метров.
  2. Проволока наматывается вокруг длинной трубки, ее диаметр – 5 мм.
  3. Кусок трубы из керамики выступает в качестве тигля, его подрезают до нужного размера, примерно на 15 см. В один его конец вставляется асбестовая нить, чтобы расплавленный металл не растекался.
  4. Укладка спирали вокруг трубы. Между ее витками укладывается асбестовая нить, она ограничит доступ кислорода и тем самым не допустит замыкания в печи.
  5. В таком виде катушка помещается в лампу высокой мощности, в ней имеется патрон нужного диаметра, который чаще всего изготовлен из керамики.

Такая конструкция отличается высокой производительностью, она долго остывает и быстро нагревается. Но необходимо учесть, что если спираль будет плохо изолирована, то она быстро перегорит.

к содержанию ↑

Цены на готовые индукционные печи

Самодельные конструкции печей будут стоить гораздо дешевле покупных, но их нельзя создать большими объемами, поэтому без готовых вариантов для массового производства расплава не обойтись.

Цены на индукционные печи для плавки металла зависят от их вместимости и комплектации.

МодельХарактеристики и особенностиЦена, рубли
INDUTHERM MU-200Печь поддерживает 16 температурных программ, максимальная температура нагрева – 1400 0С, контроль за режимом осуществляется с термопарой типа S. Агрегат производит мощность 3,5 кВт.820 тыс.
INDUTHERM MU-900Печь работает от электропитания в 380 В, температурный контроль происходит с помощью термопары типа S и может доходить до 1500 0С. Мощность – 15 кВт.1,7 млн.
УПИ-60-2

Эта индукционная плавильная мини-печь может использоваться для плавки цветных и драгоценных металлов. Заготовки загружаются в графитовый тигель, их нагрев ведется по принципу трансформатора.125 тыс.
ИСТ-1/0,8 М5Индуктор печи представляет собой корзину, в которую встроен магнитопровод совместно с катушкой. Агрегат 1 тонну.1,7 млн.
УИ-25ППечное устройство рассчитано на загрузку в 20 кг, он оснащен редукторным наклоном плавильного узла. В комплекте к печи идет блок конденсаторных батарей. Мощность установки – 25 кВт. Максимальная t нагрева – 1600 0С.470 тыс.
УИ-0,50Т-400Агрегат рассчитан на загрузку в 500 кг, самая большая мощность установки – 525 кВт, напряжение для него должно быть не ниже 380В, максимальная рабочая t – 1850 0С.900 тыс.
ST 10Печь итальянской компании оснащена цифровым термостатом, в панель управления встроена технология SMD, которая отличается быстродействием. Универсальный агрегат может работать с разной вместительностью от 1 до 3 кг, для этого ее не нужно переналаживать. Она предназначена для драгоценных металлов, ее max температура – 1250 0С.1 млн.
ST 12Статическая индукционная печь с цифровым термостатом. Она может быть дополнена вакуумной литьевой камерой, что дает возможность производить литье прямо рядом с установкой. Управление происходит с помощью сенсорной панели. Максимальная температура – 1250 0С.1050 тыс.
ИЧТ-10ТНПечь рассчитана на загрузку в 10 тонн, довольно объемный агрегат, для его установки нужно выделить закрытое цеховое помещение.8,9 млн.
к содержанию ↑

Вывод

Самостоятельно сделать индукционную печь увлекательно, но это сопряжено с некоторыми ограничениями и неизвестными последствиями, так как нужно опираться на законы физики и химии, а кто в этом не силен, тот не сможет провести процесс безопасно. Для частого использования такой установки лучше подобрать подходящий вариант из представленных выше.

Самодельный индукционный нагреватель Схема DIY

Схема индукционного нагревателя

Как работают эти индукционные нагреватели? Мы рассмотрим схему и шаг за шагом объясним, как создается колебательный сигнал, как индуцируется ток и как нагревается металл. Наконец, мы используем эту схему и устанавливаем самодельную версию и смотрим, работает ли она на нагрев некоторых металлов. Так что посмотрим …

ЧАСТЬ 1 — Коммерческий модуль

Во-первых, чтобы узнать и сопоставить сигналы, я купил один из этих коммерческих модулей индукционного нагревателя.Этот рекламируется как 1000 Вт mdoule. Мы видим огромные конденсаторы, несколько катушек и еще несколько компонентов, а на выходе — огромную катушку из толстой медной проволоки. Эта выходная катушка создаст мощное магнитное поле, которое будет нагревать металлы, и мы увидим, как это сделать. Я делаю еще одну катушку из медного провода и помещаю ее рядом с катушкой индукционного нагревателя, и, как вы можете видеть на осциллографе, у нас есть колебательный сигнал около 100 МГц.

Чтобы понять, как этот модуль нагревает металлы, нам нужно понять 3 вещи.Во-первых, как магнитные поля могут индуцировать токи внутри металлов и противоположный процесс, как токопроводящие провода будут создавать магнитные поля. Затем нам нужно увидеть, как резонанс этих катушек и конденсаторов будет создавать высокочастотные сигналы и, наконец, как ток будет нагревать металлы. Как вы можете видеть ниже, после включения модуля эти высокочастотные и мощные колебания нагревают металл до ярко-красного цвета всего за несколько секунд.

ЧАСТЬ 2 — Закон Фарадея

Закон индукции Фарадея — это основной закон электромагнетизма, предсказывающий, как магнитное поле будет взаимодействовать с электрической цепью, создавая явление электродвижущей силы, называемое электромагнитной индукцией. Это основной принцип работы трансформаторов, индукторов и многих типов электродвигателей, генераторов и соленоидов. Таким образом, движущийся магнит будет создавать изменения магнитного потока внутри катушки, и тем самым мы можем индуцировать ток внутри катушки. Но что еще могло формировать кореентирование магнитных полей?


Что ж, еще один компонент, помимо amgnet, который также создает магнитные поля, — это катушка. Да, катушка могла бы производить обратный процесс индукции тока. Если мы подаем ток через катушку, будет создано магнитное поле, поэтому нам не нужны магниты.Катушка могла создавать магнитное поле и наводить ток во второй катушке, как трансформаторы. Итак, теперь мы знаем, как вызвать ток, и этот ток будет нагревать наш металл. Ниже вы можете увидеть, как я передаю сигнал от одной катушки к другой.

ЧАСТЬ 3 — Частота резонанса

В этом примере мы будем использовать параллельно катушку и конденсатор. Это называется резервуаром LC, и если мы ударим по нему электроникой, он будет резонировать на своей резонансной частоте. Итак, если я приложу небольшой импульс напряжения, и они отключат соединение, это создаст быстро колеблющийся сигнал. Я подключаю конденсатор и катушку параллельно и очень быстро прикасаюсь к одному кабелю с напряжением 12 В к этому резервуару LC. Посмотрите ниже, что происходит. После прикосновения к резервуару LC я получаю на осциллографе первый осциллирующий сигнал, который медленно затухает. Итак, теперь мы получаем наши высокочастотные и мощные колебания, которые позже индуцируют ток внутри металла. Но наша схема работает немного иначе.Для этого давайте взглянем на схему базового и простого модуля индукционного нагревателя.


ЧАСТЬ 4 — Схема

В этом примере мы будем использовать параллельно катушку и конденсатор. Это называется резервуаром LC, и если мы ударим по нему электроникой, он будет резонировать на своей резонансной частоте. Итак, если я приложу небольшой импульс напряжения, и они отключат соединение, это создаст быстро колеблющийся сигнал. Я подключаю конденсатор и катушку параллельно и очень быстро прикасаюсь к одному кабелю с напряжением 12 В к этому резервуару LC.Посмотрите ниже, что происходит. После прикосновения к резервуару LC я получаю на осциллографе первый осциллирующий сигнал, который медленно затухает. Итак, теперь мы получаем наши высокочастотные и мощные колебания, которые позже индуцируют ток внутри металла. Но наша схема работает немного иначе. Для этого давайте взглянем на схему базового и простого модуля индукционного нагревателя.


Итак, как вы можете видеть на схеме выше, у нас на выходе 3 катушки. Пока не обращайте внимания на катушку L3, потому что это будет выходная катушка, которая будет создавать магнитное поле.У нас есть 2 катушки L1 и L2 и один конденсатор C1. У нас будет резонанс, как и раньше, но на этот раз он будет другим и никогда не прекратится. Как вы можете видеть, у нас также есть два диода, D1 и D2, которые подключены к затвору двух транзисторов, T1 и T2. Когда сигнал сначала колеблется на C1, на одной стороне C1 будет положительное напряжение, а на другой стороне C1 — отрицательное напряжение. Таким образом, один диод будет пропускать ток, а другой — нет. Итак, один транзистор будет включен, а другой выключен.Но буквально через несколько мгновений из-за этого процесса полярность на C1 изменится, и это активирует второй транзистор и выключит другой. И этот процесс будет повторяться снова и снова, и это изменит поток тока внутри катушки L3, потому что, как вы можете видеть, один энф этой катушки подключен к 15 В, а другой конец будет подключен к отрицательному или положительному, и тем самым будет создаваться колебательный ток. Это создаст колеблющееся магнитное поле.


Помогите мне, поделившись этим постом

Индукционный нагреватель DIY: 10 шагов (с изображениями)

Многие из вас, читающие это, могут спросить: «Что такое драйвер ZVS»? Что ж, это чрезвычайно эффективная схема генератора, способная создавать чрезвычайно мощное электромагнитное поле, которое нагревает металл.Это руководство показывает вам, как делать это основа индукционного нагревателя.

Чтобы понять, как работает этот блок питания, я объясню его различные разделы. Первая секция — это блок питания на 24 вольта. Блок питания должен выдавать 24 вольта при токе 10 ампер. В качестве источника питания я буду использовать две герметичные свинцово-кислотные батареи, соединенные последовательно. Затем питание подается на плату драйвера ZVS. Генератор ZVS проталкивает и пропускает ток через катушку вокруг нагреваемого объекта.2 * Р.

Теперь очень важен тип металла нагреваемого объекта. Черные металлы обладают более высокой магнитной проницаемостью, поэтому они могут использовать больше энергии магнитного поля. Это позволяет нагревать их быстрее, чем другие материалы. Металлы, такие как алюминий, имеют более низкую магнитную проницаемость, поэтому им требуется больше времени для нагрева. Вещи, обладающие высоким сопротивлением и низкой магнитной проницаемостью, например человеческий палец, вообще не будут нагреваться индукционным нагревателем.Прочность материала также очень важна. Если у вас есть более высокое сопротивление в целевом металле, тогда будет протекать меньший ток, поэтому мощность, преобразованная в тепло, станет экспоненциально меньше. Если у вас металл с меньшим сопротивлением, то ток будет выше, но потери мощности будут меньше из-за закона Ома. Это немного сложно, но из-за взаимосвязи между сопротивлением и выходной мощностью максимальная выходная мощность достигается, когда сопротивление объекта приближается к 0.

Генератор ZVS — самая сложная часть этой схемы, поэтому я собираюсь объяснить, как он работает. Прежде всего, когда ток включен, он проходит через 2 индуктивных дросселя с каждой стороны катушки. Дроссель предназначен для того, чтобы цепь не потребляла слишком много силы тока при запуске. Ток также течет через два резистора 470 Ом на затворы двух МОП-транзисторов. Теперь, поскольку ни один компонент не идеален, первым включается один Mosfet. Когда это происходит, он забирает весь ток затвора от другого МОП-транзистора.Он также потянет сток того Mosfet, который находится на земле. Это не только позволит току течь через катушку на землю, но также позволит току течь через один из быстрых диодов, формирующих другой затвор другого МОП-транзистора, блокируя его. Поскольку параллельно катушке установлен конденсатор, он создает резонансный контур резервуара, который начинает колебаться. Из-за этого резонансного действия сток другого МОП-транзистора будет колебаться взад и вперед по своему напряжению, в конечном итоге достигая 0 вольт. Как только это напряжение будет достигнуто, заряд затвора от включенного МОП-транзистора разрядится через быстрый диод в сток противоположного МОП-транзистора, эффективно отключив его.Когда этот Mosfet выключен, у другого Mosfet есть возможность включиться. После этого цикл повторяется тысячи раз в секунду. Резистор 10 кОм предназначен для истощения любого избыточного заряда затвора на МОП-транзисторе, потому что он похож на конденсатор, а стабилитрон предназначен для поддержания на затворе МОП-транзистора напряжения 12 В или ниже, чтобы они не взорвались. Этот высокочастотный генератор большой мощности позволяет нагревать металлические предметы.

Пришло время построить эту штуку!

2 простые схемы индукционного нагревателя — плиты-плиты

В этом посте мы узнаем о двух простых в сборке схемах индукционного нагревателя, которые работают с принципами высокочастотной магнитной индукции для генерирования значительной величины тепла на небольшом заданном радиусе.

Обсуждаемые схемы индукционной плиты действительно просты и используют всего несколько активных и пассивных обычных компонентов для требуемых действий.


Обновление: Вы также можете узнать, как создать свою собственную варочную панель индукционного нагревателя:
Проектирование цепи индукционного нагревателя — Учебное пособие


Принцип работы индукционного нагревателя

Индукционный нагреватель — это устройство, которое использует высокочастотное магнитное поле для нагрева железного груза или любого ферромагнитного металла посредством вихревого тока.

Во время этого процесса электроны внутри железа не могут двигаться со скоростью, соответствующей частоте, и это приводит к возникновению в металле обратного тока, называемого вихревым током. Это развитие сильного вихревого тока в конечном итоге вызывает нагрев железа.

Вырабатываемое тепло пропорционально току 2 x сопротивлению металла. Поскольку предполагается, что металл нагрузки состоит из железа, мы рассматриваем сопротивление R металлического железа.

Нагрев = I 2 x R (Железо)

Удельное сопротивление железа составляет: 97 нОм · м

Вышеупомянутое тепло также прямо пропорционально наведенной частоте, поэтому обычные трансформаторы с штамповкой из железа не используются в В приложениях с высокочастотным переключением вместо сердечников используются ферритовые материалы.

Однако здесь вышеупомянутый недостаток используется для получения тепла от высокочастотной магнитной индукции.

Обращаясь к предлагаемым ниже схемам индукционного нагревателя, мы находим концепцию, использующую ZVS или технологию переключения при нулевом напряжении для требуемого запуска полевых МОП-транзисторов.

Технология обеспечивает минимальный нагрев устройств, что делает работу очень эффективной и действенной.

Кроме того, цепь, являющаяся саморезонансной по своей природе, автоматически настраивается на резонансную частоту присоединенной катушки и конденсатора, вполне идентичных цепи резервуара.

Использование генератора Ройера

В схеме в основном используется генератор Ройера, который отличается простотой и саморезонансным принципом работы.

Функционирование схемы можно понять по следующим пунктам:

  1. При включении питания положительный ток начинает течь от двух половин рабочей катушки к стокам МОП-транзисторов.
  2. В то же время напряжение питания также достигает ворот МОП-транзисторов, включая их.
  3. Однако из-за того, что никакие два МОП-транзистора или какие-либо электронные устройства не могут иметь точно одинаковые характеристики электропроводности, оба МОП-транзистора не включаются вместе, скорее, один из них включается первым.
  4. Представим, что T1 включается первым. Когда это происходит, из-за сильного тока, протекающего через T1, его напряжение стока имеет тенденцию падать до нуля, что, в свою очередь, высасывает напряжение затвора другого МОП-транзистора T2 через присоединенный диод Шоттки.
  5. Здесь может показаться, что T1 может продолжать вести себя и уничтожать себя.
  6. Однако именно в этот момент включается контур резервуара L1C1, который играет решающую роль. Внезапное проведение T1 вызывает скачок и коллапс синусоидального импульса на стоке T2. Когда синусоидальный импульс схлопывается, он снижает напряжение затвора T1 и отключает его. Это приводит к повышению напряжения на стоке T1, что позволяет восстановить напряжение затвора для T2. Теперь настала очередь Т2 проводить, Т2 теперь проводит, вызывая повторение, подобное тому, которое произошло для Т1.
  7. Этот цикл теперь продолжается быстро, заставляя контур колебаться на резонансной частоте контура резервуара LC. Резонанс автоматически настраивается до оптимальной точки в зависимости от того, насколько хорошо совпадают значения LC.

Однако основным недостатком конструкции является то, что в ней в качестве трансформатора используется центральная катушка с ответвлениями, что немного усложняет реализацию обмотки. Однако центральный отвод обеспечивает эффективный двухтактный эффект через катушку всего с помощью пары активных устройств, таких как МОП.

Как видно, через затвор / исток каждого МОП-транзистора подключены диоды быстрого восстановления или высокоскоростного переключения.

Эти диоды выполняют важную функцию разряда емкости затвора соответствующих МОП-транзисторов во время их непроводящих состояний, тем самым делая операцию переключения быстрой и быстрой.

Как работает ZVS

Как мы уже говорили ранее, эта схема индукционного нагревателя работает по технологии ZVS.

ZVS означает переключение при нулевом напряжении, то есть МОП-транзисторы в цепи включаются, когда на их стоках присутствует минимальная или величина тока или нулевой ток, мы уже узнали это из объяснения выше.

Это фактически помогает МОП-транзисторам безопасно включаться, и, таким образом, эта функция становится очень полезной для устройств.

Эту характеристику можно сравнить с проводимостью при переходе через нуль для симисторов в цепях переменного тока.

Из-за этого свойства МОП-транзисторы в таких саморезонансных цепях ZVS требуют гораздо меньших радиаторов и могут работать даже с массивными нагрузками до 1 кВА.

Поскольку частота цепи является резонансной по своей природе, она напрямую зависит от индуктивности рабочей катушки L1 и конденсатора C1.

Частота может быть рассчитана по следующей формуле:

f = 1 / (2π * √ [ L * C] )

Где f — частота, рассчитанная в Hertz
L — это индуктивность основной нагревательной катушки L1, представленная в Henries
, а C — емкость конденсатора C1 в фарадах

МОП-транзисторы

Вы можете использовать IRF540 в качестве МОП-транзисторов, которые рассчитаны на хорошие 110 В, 33 ампера. Для них можно использовать радиаторы, хотя выделяемое тепло не вызывает опасений, но все же лучше укрепить их на теплопоглощающих металлах. Однако можно использовать любые другие N-канальные МОП-транзисторы с соответствующим номиналом, для этого нет никаких особых ограничений.

Индуктор или катушки индуктивности, связанные с катушкой основного нагревателя (рабочей катушкой), представляют собой своего рода дроссель, который помогает исключить любое возможное попадание высокочастотного содержимого в источник питания, а также для ограничения тока до безопасных пределов.

Значение этого индуктора должно быть намного выше по сравнению с рабочей катушкой. 2 мГн обычно вполне достаточно для этой цели. Однако он должен быть построен с использованием проводов большого сечения, чтобы обеспечить безопасное прохождение через него большого диапазона тока.

Контур резервуара

C1 и L1 составляют здесь контур резервуара для предполагаемой фиксации высокой резонансной частоты. Опять же, они тоже должны быть рассчитаны на то, чтобы выдерживать высокие значения тока и тепла.

Здесь мы видим использование металлизированных полипропиленовых конденсаторов 330 нФ / 400 В.

1) Мощный индукционный нагреватель с использованием драйвера Mazzilli. Концепция

Первая конструкция, описанная ниже, представляет собой высокоэффективную индукционную концепцию ZVS, основанную на популярной теории драйверов Mazilli.

В нем используется одна рабочая катушка и две катушки ограничителя тока. Конфигурация исключает необходимость центрального отвода от основной рабочей катушки, что делает систему чрезвычайно эффективной и обеспечивает быстрый нагрев нагрузки огромных размеров. Нагревательный змеевик нагревает нагрузку посредством двухтактного механизма полного моста.

Модуль фактически доступен в Интернете и может быть легко куплен по очень разумной цене.

Принципиальная схема этой конструкции представлена ​​ниже:

Исходная схема видна на следующем изображении:

Принцип работы — та же технология ZVS с использованием двух полевых МОП-транзисторов высокой мощности. Вход питания может быть от 5 В до 12 В, а ток от 5 до 20 А в зависимости от используемой нагрузки.

Выходная мощность

Выходная мощность вышеуказанной конструкции может достигать 1200 Вт при повышении входного напряжения до 48 В и тока до 25 ампер.

На этом уровне тепло, выделяемое рабочим змеевиком, может быть достаточно высоким, чтобы за минуту расплавить болт толщиной 1 см.

Размеры рабочей катушки

Видео-демонстрация

2) Индукционный нагреватель с рабочей катушкой с центральным отводом

Эта вторая концепция также является индукционным нагревателем ZVS, но использует центральное разветвление рабочей катушки, которое может быть немного менее эффективным по сравнению с предыдущей конструкцией.L1, который является наиболее важным элементом всей схемы. Он должен быть построен с использованием очень толстых медных проводов, чтобы выдерживать высокие температуры во время индукционных операций.

Конденсатор, описанный выше, в идеале должен быть подключен как можно ближе к клеммам L1. Это важно для поддержания резонансной частоты на указанной частоте 200 кГц.

Характеристики первичной рабочей катушки

Для катушки индукционного нагревателя L1 многие медные провода диаметром 1 мм могут быть намотаны параллельно или бифилярно, чтобы более эффективно рассеивать ток, вызывая меньшее тепловыделение в катушке.

Даже после этого катушка может подвергнуться сильному нагреву и деформироваться из-за этого, поэтому можно попробовать альтернативный метод намотки.

В этом методе мы наматываем его в виде двух отдельных катушек, соединенных в центре для получения требуемого центрального отвода.

В этом методе можно попробовать использовать меньшие витки для уменьшения импеданса катушки и, в свою очередь, увеличения ее способности выдерживать ток.

Емкость для этой схемы, напротив, может быть увеличена, чтобы пропорционально понизить резонансную частоту.

Конденсаторы резервуара:

Всего 330 нФ x 6 можно использовать для получения чистой емкости приблизительно 2 мкФ.

Как прикрепить конденсатор к индукционной катушке

На следующем изображении показан точный метод подключения конденсаторов параллельно концевым выводам медной катушки, предпочтительно через печатную плату хорошего размера.

Список деталей для указанной выше цепи индукционного нагревателя или индукционной нагревательной плиты

  • R1, R2 = 330 Ом 1/2 Вт
  • D1, D2 = FR107 или BA159
  • T1, T2 = IRF540
  • C1 = 10,000 мкФ / 25 В
  • C2 = 2 мкФ / 400 В, получается путем параллельного подсоединения указанных ниже конденсаторов на 6 нФ / 400 В
  • D3 —- D6 = 25-амперные диоды
  • IC1 = 7812
  • L1 = латунная трубка 2 мм намотанный, как показано на следующих рисунках, диаметр может быть где-то около 30 мм (внутренний диаметр катушек)
  • L2 = 2 мГн дроссель, полученный путем наматывания магнитного провода 2 мм на любой подходящий ферритовый стержень
  • TR1 = 0-15 В / 20 ампер
  • ИСТОЧНИК ПИТАНИЯ: Используйте стабилизированный источник питания постоянного тока 15 В, 20 А.
Использование транзисторов BC547 вместо быстродействующих диодов

На приведенной выше схеме индукционного нагревателя мы видим затворы полевых МОП-транзисторов, состоящих из диодов с быстрым восстановлением, которые может быть трудно получить в некоторых частях страны.

Простая альтернатива этому может заключаться в транзисторах BC547, подключенных вместо диодов, как показано на следующей схеме.

Транзисторы будут выполнять ту же функцию, что и диоды, поскольку BC547 может хорошо работать на частотах около 1 МГц.

Еще одна простая конструкция «сделай сам»

На следующей схеме показан еще один простой дизайн, аналогичный приведенному выше, который можно быстро построить дома для реализации индивидуальной системы индукционного нагрева.

Список деталей

  • R1, R4 = 1K 1/4 Вт MFR 1%
  • R2, R3 = 10K 1/4 Вт MFR 1%
  • D1, D2 = BA159 или FR107
  • Z1, Z2 = 12V, Стабилитрон 1/2 Вт
  • Q1, Q2 = МОП-транзистор IRFZ44n на радиаторе
  • C1 = 0,33 мкФ / 400 В или 3 н. у.1 мкФ / 400 В параллельно
  • L1, L2, как показано на следующих изображениях:
  • L2 восстановлен от любого старого блока питания компьютера ATX.
Как построен L2

Преобразование в посуду с подогревом

Вышеупомянутые разделы помогли нам изучить простую схему индукционного нагревателя с использованием пружинной катушки, однако эту катушку нельзя использовать для приготовления пищи, и для этого нужны некоторые серьезные модификации.

В следующем разделе статьи объясняется, как описанную выше идею можно изменить и использовать в качестве простой небольшой индукционной цепи нагревателя посуды или индукционной цепи кадай.

Дизайн низкотехнологичный, маломощный и может отличаться от обычных устройств. Схема была запрошена г-ном Дипешом Гуптой

Технические характеристики

Сэр,

Я прочитал вашу статью Простая схема индукционного нагревателя — Схема горячей плиты и был очень рад обнаружить, что есть люди, готовые помочь таким молодым людям, как мы, в сделай что-нибудь .

Сэр, я пытаюсь понять принцип работы и пытаюсь разработать для себя индукционный кадай… Сэр, пожалуйста, помогите мне разобраться в дизайне, так как я так хорош в электронике

Я хочу разработать индукцию для нагрева кадай диаметром 20 дюймов с частотой 10 кГц по очень низкой цене !!!

Я видел ваши схемы и статью, но немного запутался насчет

  • 1. Используемый трансформатор
  • 2. Как сделать L2
  • 3. И любые другие изменения в схеме для частоты от 10 до 20 кГц при токе 25 Ампер

Пожалуйста, помогите мне как можно скорее..Это будет полезно, если вы можете предоставить точную информацию о необходимых компонентах. PlzzИ, наконец, вы упомянули об использовании ИСТОЧНИКА ПИТАНИЯ: Используйте регулируемый источник питания постоянного тока 15 В 20 А. Где это используется ….

Спасибо

Dipesh gupta

The Design

Предлагаемая конструкция индукционной кадайной цепи, представленная здесь, предназначена только для экспериментальных целей и может не служить как обычные устройства. Его можно использовать для быстрого приготовления чашки чая или омлета, и ничего большего ожидать не стоит.

Указанная схема была первоначально разработана для нагрева таких предметов, как железный стержень, например, головки болта. отвертка металлическая и т. д., однако с некоторыми изменениями эта же схема может применяться для нагрева металлических кастрюль или сосудов с выпуклым дном, например «кадай».

Для реализации вышеизложенного исходная схема не нуждается в каких-либо изменениях, за исключением основной рабочей катушки, которую нужно будет немного подправить, чтобы сформировать плоскую спираль вместо пружинной конструкции.

В качестве примера, чтобы преобразовать конструкцию в индукционную посуду так, чтобы она поддерживала сосуды с выпуклым дном, такие как кадай, змеевик должен иметь сферически-спиральную форму, как показано на рисунке ниже:

Схема будет такой же, как объяснено в моем предыдущем разделе, который в основном представляет собой конструкцию на основе Ройера, как показано здесь:

Проектирование спиральной рабочей катушки

L1 сделан с помощью 5-6 витков 8-миллиметровой медной трубки в сферическую -спиральная форма, как показано выше, для размещения небольшой стальной чаши посередине.

Змеевик может быть также сжат в плоскую форму спирали, если небольшая стальная кастрюля предназначена для использования в качестве посуды, как показано ниже:

Конструирование ограничителя тока Катушка

L2 может быть изготовлена ​​путем намотки суперэмалированной пластины толщиной 3 мм. медный провод над толстым ферритовым стержнем, количество витков должно проверяться до тех пор, пока на его выводах не будет достигнуто значение 2 мГн.

TR1 может быть трансформатором 20 В 30 ампер или источником питания SMPS.

Фактическая схема индукционного нагревателя довольно проста по своей конструкции и не требует особых пояснений, необходимо позаботиться о следующих вещах:

Резонансный конденсатор должен располагаться относительно ближе к основной рабочей катушке. L1 и должен быть получен путем подключения около 10 ноль 0.22 мкФ / 400 В параллельно. Конденсаторы должны быть строго неполярного и металлизированного полиэфирного типа.

Хотя конструкция может показаться довольно простой, нахождение центрального отвода внутри спирально намотанной конструкции может вызвать головную боль, поскольку спиральная катушка будет иметь несимметричную компоновку, что затруднит определение точного центрального отвода для схемы.

Это можно сделать методом проб и ошибок или с помощью LC-метра.

Неправильно расположенный центральный ответвитель может заставить схему работать ненормально или производить неравномерный нагрев МОП-транзисторов, или вся схема может просто не колебаться в худшей ситуации.

Ссылка: Википедия

О Swagatam

Я инженер-электроник (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Как спроектировать схему индукционного нагревателя

В статье объясняется пошаговое руководство по проектированию собственной самодельной базовой схемы индукционного нагревателя, которую также можно использовать в качестве индукционной варочной панели.

Базовая концепция индукционного нагревателя

Вы, возможно, встречали много схем индукционного нагревателя своими руками в Интернете, но, похоже, никто не раскрыл ключевой секрет реализации идеальной и успешной конструкции индукционного нагревателя. Прежде чем узнать этот секрет, важно знать основную концепцию работы индукционного нагревателя.

Индукционный нагреватель на самом деле является крайне «неэффективной» формой электрического трансформатора, и эта неэффективность становится его основным преимуществом.

Мы знаем, что в электрическом трансформаторе сердечник должен быть совместим с наведенной частотой, и когда существует несовместимость между частотой и материалом сердечника в трансформаторе, это приводит к выделению тепла.

По сути, трансформатор с железным сердечником требует более низкого диапазона частот от 50 до 100 Гц, и по мере увеличения этой частоты сердечник может проявлять тенденцию к пропорциональному нагреванию. Это означает, что если частота будет увеличена до гораздо более высокого уровня, она может превысить 100 кГц, что приведет к сильному выделению тепла внутри ядра.

Да, это именно то, что происходит с системой индукционного нагрева, где варочная панель действует как сердечник и, следовательно, сделана из железа. А индукционная катушка подвергается воздействию высокой частоты, что в совокупности приводит к выделению пропорционально интенсивного количества тепла на сосуде. Поскольку частота оптимизирована на очень высоком уровне, обеспечивается максимально возможный нагрев металла.

Теперь давайте продолжим и изучим важные аспекты, которые могут потребоваться для проектирования успешной и технически правильной схемы индукционного нагревателя.Следующие детали объяснят это:

Что вам понадобится

Две основные вещи, необходимые для создания любой индукционной посуды:

1) Бифилярная катушка.

2) Схема генератора регулируемой частоты

Я уже обсуждал несколько схем индукционного нагревателя на этом веб-сайте, вы можете прочитать их ниже:

Схема солнечного индукционного нагревателя

Схема индукционного нагревателя с использованием IGBT

Простая схема индукционного нагревателя — Схема нагревательной плиты

Схема малого индукционного нагревателя для школьного проекта

Все вышеперечисленные звенья имеют две вышеупомянутые общие черты, то есть у них есть рабочая катушка и каскад задающего генератора.

Проектирование рабочей катушки

Для разработки индукционной посуды рабочая катушка должна быть плоской по своей природе, поэтому она должна быть бифилярного типа с ее конфигурацией, как показано ниже:

Бифилярная конструкция катушки, показанная выше, может быть эффективно применяется для изготовления домашней индукционной посуды.

Для оптимального отклика и низкого тепловыделения внутри катушки убедитесь, что провод бифилярной катушки сделан из множества тонких медных жил вместо одной сплошной проволоки.

Таким образом, это становится рабочей катушкой кухонной посуды, теперь концы этой катушки просто нужно объединить с согласующим конденсатором и совместимой сетью частотного драйвера, как показано на следующем рисунке:

Проектирование серии H-Bridge Схема резонансного драйвера

До сих пор информация должна была просветить вас относительно того, как сконфигурировать простую индукционную посуду или конструкцию индукционной варочной панели, однако наиболее важной частью конструкции является то, как резонировать конденсаторную сеть катушки (контур резервуара) в наиболее оптимальный диапазон, чтобы схема работала на наиболее эффективном уровне.

Для того чтобы цепь катушки / емкости конденсатора (LC-цепь) работала на их уровне резонанса, необходимо, чтобы индуктивность катушки и емкость конденсатора были идеально согласованы.

Это может произойти только тогда, когда реактивное сопротивление обоих аналогов одинаково, то есть реактивное сопротивление катушки (индуктора) и конденсатора примерно одинаковы.

Как только это будет исправлено, можно ожидать, что контур резервуара будет работать на своей собственной частоте, а сеть LC достигнет точки резонанса.Это называется идеально настроенной LC-схемой.

На этом завершаются основные процедуры проектирования цепи индукционного нагревателя.

Вам может быть интересно узнать, что такое резонанс контура LC. ?? И как это можно быстро рассчитать для выполнения конкретной конструкции индукционного нагревателя? Мы подробно обсудим это в следующих разделах.

Вышеупомянутые абзацы объясняют фундаментальные секреты разработки недорогой, но эффективной индукционной варочной панели в домашних условиях, в следующих описаниях мы увидим, как это можно реализовать, специально рассчитав ее ключевые параметры, такие как резонанс настроенного контура LC и правильный размер провода катушки для обеспечения оптимальной пропускной способности тока.

Что такое резонанс в LC-цепи индукционного нагревателя

Когда конденсатор в настроенной LC-цепи на мгновение заряжается, конденсатор пытается разрядить и сбросить накопленный заряд по катушке, катушка принимает заряд и сохраняет заряд в форме магнитного поля. Но как только конденсатор разряжен в процессе, катушка вырабатывает почти эквивалентное количество заряда в виде магнитного поля, и теперь она пытается заставить его вернуться внутрь конденсатора, хотя и с противоположной полярностью.

Изображение предоставлено:

Википедия

Конденсатор снова вынужден заряжаться, но на этот раз в противоположном направлении, и как только он полностью заряжен, он снова пытается опустошить катушку, что приводит к обмен заряда в виде колебательного тока через LC-сеть.

Частота этого колебательного тока становится резонансной частотой настроенного LC-контура.

Однако из-за собственных потерь вышеуказанные колебания со временем затухают, а частота и заряд через какое-то время заканчиваются.

Но если разрешено поддерживать частоту через внешний частотный вход, настроенный на тот же уровень резонанса, то это может гарантировать постоянный эффект резонанса, индуцируемый через LC-контур.

На резонансной частоте мы можем ожидать, что амплитуда напряжения, колеблющегося в LC-цепи, будет на максимальном уровне, что приведет к наиболее эффективной индукции.

Следовательно, мы можем подразумевать, что для реализации идеального резонанса в сети LC для конструкции индукционного нагревателя нам необходимо обеспечить следующие важные параметры:

1) Настроенная цепь LC

2) И согласованная частота для поддержания резонанс LC-контура.

Это можно рассчитать по следующей простой формуле:

F = 1 ÷ x √LC

где L — в Генри, а C — в Фарадах

Если вы не хотите идти Из-за хлопот расчета резонанса резервуара LC катушки по формуле гораздо более простым вариантом может быть использование следующего программного обеспечения:

LC Resonant Frequency Calculator

Или вы также можете построить этот измеритель угла наклона сетки для определения и установки резонанса частота.

После того, как резонансная частота определена, пора настроить полномостовую ИС на эту резонансную частоту, соответствующим образом выбрав компоненты синхронизации Rt и Ct. Это может быть выполнено методом проб и ошибок путем практических измерений или с помощью следующей формулы:

Для расчета значений Rt / Ct можно использовать следующую формулу:

f = 1 / 1,453 x Rt x Ct, где Rt — в Омах и Ct в Фарадах.

Использование последовательного резонанса

В концепции индукционного нагревателя, обсуждаемой в этом посте, используется последовательный резонансный контур.

Когда используется последовательный резонансный LC-контур, у нас есть последовательно соединенные индуктор (L) и конденсатор (C), как показано на следующей схеме.

Общее напряжение В , приложенное к последовательному LC, будет суммой напряжения на катушке индуктивности L и напряжения на конденсаторе C. Ток, протекающий через систему, будет равен току, протекающему через L и компоненты C.

V = VL + VC

I = IL = IC

Частота приложенного напряжения влияет на реактивные сопротивления катушки индуктивности и конденсатора.Когда частота увеличивается от минимального значения до более высокого значения, индуктивное реактивное сопротивление XL индуктора будет пропорционально увеличиваться, но XC, то есть емкостное реактивное сопротивление, будет уменьшаться.

Однако, когда частота увеличивается, будет конкретный случай или порог, когда величины индуктивного и емкостного сопротивления будут просто равны. Этот экземпляр будет резонансной точкой серии LC, и частота может быть установлена ​​как резонансная частота.

Следовательно, в последовательном резонансном контуре резонанс произойдет, когда

XL = XC

или, ωL = 1 / ωC

, где ω = угловая частота.

Оценка значения ω дает нам:

ω = ωo = 1 / √ LC, которая определяется как резонансная угловая частота.

Подставляя это в предыдущее уравнение, а также конвертируя угловую частоту (в радианах в секунду) в частоту (Гц), мы, наконец, получаем:

fo = ωo / 2π = 1 / 2π√ LC

fo = 1 / 2π√ LC

Расчет сечения провода для рабочей катушки индукционного нагревателя

После того, как вы рассчитали оптимизированные значения L и C для цепи резервуара индукционного нагревателя и оценили точную совместимую частоту для схемы драйвера, пришло время вычислить и зафиксируйте текущую пропускную способность рабочей катушки и конденсатора.

Поскольку ток в конструкции индукционного нагревателя может быть существенно большим, этот параметр нельзя игнорировать, и его следует правильно назначить цепи LC.

Использование формул для расчета размеров проводов для индукционных проводов может быть немного сложным, особенно для новичков, и именно поэтому на этом сайте было включено специальное программное обеспечение для того же самого, которое любой заинтересованный любитель может использовать для измерения размера провод правильного размера для вашей индукционной варочной панели.

О компании Swagatam

Я инженер-электронщик (dipIETE), любитель, изобретатель, разработчик схем / печатных плат, производитель. Я также являюсь основателем веб-сайта: https://www.homemade-circuits.com/, где я люблю делиться своими инновационными идеями и руководствами по схемам.
Если у вас есть запрос, связанный со схемой, вы можете взаимодействовать с ним через комментарии, я буду очень рад помочь!

Как построить индукционный нагреватель и как он работает?

Как построить индукционный нагреватель и как он работает?

#DIY

Индукционный нагрев — это процесс нагрева с помощью электропроводящего объекта. Объект обычно металлический и использует вихревые токи для выработки тепла. Процесс работает по принципу электромагнитной индукции. Этот процесс нагрева является точным,
Быстрым, эффективным и бесконтактным методом.

Система индукционного нагрева включает в себя индукционный источник питания и
преобразуется в переменный ток. Ток подается на рабочую головку и катушку,
Он генерирует в ней электромагнитное поле.
Компонент расположен в катушке индукционного нагревателя, и поле
индуцирует ток на заготовке, переходящий в выделение тепла.

Как сделать индукционный нагреватель?

Посмотрите видео ниже

В индукционном нагревателе используется система индукционного нагрева для нагрева с различными целями. Эти нагреватели применяются в промышленности, металлургических цехах,
Индукционных варочных станциях и чаще всего для кипячения воды. Процедура изготовления индукционного нагревателя проста и эффективна.

Работает по принципу высокочастотной магнитной индукции. Схема очень проста и использует только общие компоненты.Индукционная катушка металлическая и обычно используется медь. Он потребляет ток 5А и нагревает кончик отвертки всего за 30 секунд.

Схема состоит из встроенных транзисторов для индукции тока в катушке. Схема управления в индукционном нагревателе использует переключение нулевого напряжения на
Активация транзисторов и обеспечивает эффективный поток энергии. Ток протекает в катушке и производит вихревые токи. Через вихревые токи вокруг заготовки индуцируется магнитное поле.Магнитное поле индуцирует ток на компоненте, превращающийся в тепловыделение.

Как работает катушка в индукционном нагревателе?

С помощью поля переменного тока
Энергия проходит через рабочую катушку индукционного нагревателя во время работы.
Ток, проходящий через катушку индукционного нагревателя.
Создает магнитное поле и наводит вихревые токи на заготовке. Это генерирование вихревых токов на компоненте нагревает его до необходимой температуры.

Сделайте индукционный нагреватель легко

Дополнительная принципиальная схема

Подпишитесь на обновления Отписаться от обновлений

Индукционный нагреватель

Учебное пособие по индукционному нагревателю

10 кВт и 3 кВт

Отказ от ответственности: в обсуждаемых темах используется высокое напряжение и тепло. Они могут причинить материальный ущерб, а также причинить вред и убить. Этот сайт и автор сделали эту информацию общедоступной только в образовательных целях. Любой, кто читает это и пытается создать устройство на основе какой-либо его части, делает это на свой страх и риск.Это снимает с себя всякую ответственность и никого не поощряет к этому.

Индукционный нагреватель — интересное устройство, позволяющее быстро нагревать металлический предмет. При достаточной мощности можно даже расплавить металл.

Индукционный нагреватель работает без ископаемого топлива и может отжигать и нагревать предметы различной формы. Я задумал сделать индукционный нагреватель, способный плавить сталь и алюминий. До сих пор я мог обеспечить потребляемую мощность более 3 киловатт! Теперь, когда я сделал это, я хотел бы рассказать, как это работает и как вы можете его создать.В конце урока я расскажу и покажу вам, как построить левитационную катушку, которая позволит вам кипятить металлы, находясь в воздухе!

В первой части этого руководства я расскажу о моей разработке инвертора на 3 кВт. Моей первоначальной целью было быстрое нагревание металлов. Моей следующей целью было левитировать металлы. Мне это удалось, но я понял, что не могу левитировать из твердой меди и стали. Их плотность была слишком велика для магнитного поля. Это была моя конечная цель: поднять и приостановить расплавленную медь и сталь.В конце этого руководства я перейду к разработке блока мощностью 10 кВт, который реализовал эту цель. Я также остановлюсь на проблемах, которые пришлось преодолеть, чтобы этого добиться.

Начнем.

Мой индукционный нагреватель — инвертор. Инвертор использует источник постоянного тока и преобразует его в переменный ток. Электропитание переменного тока приводит в действие трансформатор, подключенный к последовательному резервуару LC. Частота инвертора устанавливается на резонансную частоту резервуара, что позволяет генерировать очень высокие токи внутри катушки резервуара.2. Заготовка похожа на однооборотную катушку; рабочая катушка имеет несколько витков. Таким образом, у нас есть понижающий трансформатор, поэтому в заготовке генерируются еще более высокие токи.

Я хотел бы поблагодарить Джона Дирмонда, Тима Уильямса, Ричи Бернетта и других участников форума 4hv за неоценимую помощь за то, что они помогли мне разобраться в этой теме. А теперь, прежде чем мы поговорим подробнее, давайте посмотрим, что он может делать:

Позже дам ссылку на видео, где он работает. Вот инвертор:

Теперь я перейду к каждой части. Затем я дам схемы, расскажу о том, как вы можете построить это устройство.

Легко сделать индукционный нагреватель — Electronics Projects Hub

Здравствуйте, читатель! В этой статье вы узнаете, как легко сделать индукционный нагреватель своими руками, используя меньшее количество компонентов. Приступим…

Я использовал схему простого двухтактного генератора или так называемый драйвер ZVS.Так же часто применяется в любительских конструкциях индукционных нагревателей
. Схема (схема) настолько популярна, что существует множество китайского производства. Вариантов схемы несколько. Рассмотрим случай со средней точкой катушки.

На мой взгляд, он немного стабильнее двух дросселей без середины. По сути, это резонансный преобразователь, который
был построен как автогенератор. Здесь каждое плечо схемы нужно рассматривать как отдельный генератор. Оптимальное напряжение питания составляет 12 В, хотя работает от 3. 5В. Источник питания должен быть достаточным для срабатывания полевых транзисторов.

Я использовал N-канал IRFZ44. Дроссель взят от компьютерного блока питания ATX. Сердечник из железного порошка. Затворные резисторы выполняют две функции. Они одновременно ограничивают ток затвора и ток стабилитронов.

Стабилитрон предотвращает повышение напряжения через затвор и защищает полевой транзистор от пробоя. Они поддерживают стабильное рабочее напряжение. Хотя опыт показывает, что при питании от стабильного источника 12 В стабилитрон не требуется.Первичная обмотка трансформатора подключена параллельно конденсатору, образуя резонансный контур.

Изменяя параметры этих компонентов, можно изменить рабочую частоту генератора. Как я уже говорил, схема часто используется для построения простых индукционных нагревателей, хотя она не является оптимальной из-за отсутствия схемы регулирования полевых транзисторов. и хороший осциллятор.

По цепи протекают большие токи, и конденсатор также работает в тяжелых условиях. В частности, если схема используется как индукционный нагреватель, т. Е. Если сердечник отсутствует или он не замкнут, поэтому я советую использовать батарею конденсаторов, соединенных параллельно, общей емкостью от 1 до 4,7 мкФ и напряжением От 630 до 1600 В. Оптимально 1000В. Практика показывает, что 400В недостаточно. В случае конденсаторной батареи все
должны иметь одинаковую емкость и напряжение. Простой, но мощный высоковольтный генератор можно построить на основе этого драйвера и обратноходового трансформатора телевизора.

На свободной части жилы сделать 2 * 5 или 2 * 6 витков проволоки диаметром 0,8 мм. Советую использовать многожильный медный провод с силиконовой изоляцией. Если вы используете обратноходовой трансформатор от старого телевизора, обязательно залейте дополнительную смолу на высоковольтную обмотку, иначе трансформатор сгорит.

Связанные

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *