Режимы механизированной сварки в защитных газах: Режимы сварки в защитных газах

Содержание

Режимы сварки в защитных газах

Темы: Режимы сварки, Сварка стали, Сварка MIG / MAG, Сварка в защитных газах, Сварка в углекислом газе, Проволока сварочная, Сварные соединения.

Режимы сварки в защитных газах имеют такие основные параметры :

  • род, сила и полярность тока;
  • напряжение сварки,
  • диаметр проволоки;
  • скорость подачи электродной проволоки;
  • вылет, наклон и колебания электрода;
  • скорость сварки;
  • расход газа;
  • состав газа.

Таблица 1. Режимы сварки в в защитных газах (СO2,СO2+O2 и Ar+25%СO2 ) стыковых соединений низкоуглеродистых и низколегированных сталей в нижнем положении проволокой Св-08Г2СА (ток обратной полярности)

Толщина металла, мм Зазор, мм Число проходов Диаметр проволоки, мм
Сила сварочного тока, А
Напря-
жение сварки, В
Скорость сварки, м/ч Вылет электрода, мм Расход газа, л/мин
0,5-1 0-1 1 0,5-0,9 30-80 16-18 25-50 8-10 6-7
1,5-2 0-1 1 1,0-1,2 80-150 18-23 25-45 10-13 7-9
3 0-1,5 1 1,2-1,4 150-200 23-25 25-40 12-15 8-11
3-4 0-1,5 2 1,2-1,6 180-250 25-32 25-75 12-30 8-15
6 0,5-2 2 1,2-2,0 200-420 25-36 25-60 12-30 10-16
9-10 0,5-2 2 1,2-2,5 300-450 28-38 20-50 12-35 12-16
12-20 1-3 2 1,2-2,5 380-550 33-42 15-30 12-25
12-16

 

Таблица 2. Режимы сварки в в защитных газах ( СO2,смеси Ar+25%СO2 и Ar+O2+25%СO2) поворотрых кольцевых стыковых швов проволокой Св-08Г2СА (ток обратной полярности)

Диаметр детали, мм Толщина стенки, мм Зазор, мм Смещение кромок, мм
Диаметр проволоки, мм Сила сварочного тока, А Напря-
жение сварки, В
Скорость сварки, м/ч
Вылет электрода, мм
Расход газа, л/мин
50* 1-1,5 0-1 0-1 0,8-1,2 100-150 18-19 80-90 10-12 7-8
100-150** 2-2,5 0-1.5 0-1 0,8-1,2 130-180 18-19 70-80 10-13 7-8
200-500** 8-15 0-1 0-1 1-1,2 150-190 19-21 20-30 10-15 7-8
200-400** 30-60 0-1 0-1 2-3 350-450 32-36 25-35 25-60 15-18

* Смещение электрода согласно Рис . 1.

** Сварка корневого шва при V- или U-образной разделке

Рис. 1. Схемы расположения электрода при сварке в СO2 поворотных кольцевых швов тонкой стали 1 на весу.


Таблица 3. Режимы сварки в в защитных газах ( СO2 и Ar+25%СO2 ) нахлесточных соединений проволокой Св-08Г2С (ток обратной полярности)
Толщина металла, мм Положение сварки Защитный газ Зазор, мм Диаметр проволоки, мм Сила сварочного тока, А Напряжение сварки, В Скорость сварки, м/ч Вылет электрода, мм Расход газа, л/мин Примечание
0,8+0,8 В СO2 0-0,5 0,8-1 100-120 17,5-19 40-80 8 6-7 На медной прокладке
1+1 Н
0,8-1,2
110-135 18-20 30-50 8-12 7-8
1+1 В 0,8-1,2 120-150 18-20 40-80 8-12 7-8 На весу или на медной прокладке
1,2+1,2 Н СO2 ,Ar+ 25%СO2 0-0,5 0,8-1,2 120-145 18-20 30-50 8-12 6-8 На медной прокладке
В 130-160 40-80 7-8 На весу или на медной прокладке
2+2 Н и В 0-0,5 1-1,4 160-220 19-22 30-70 10-14 8-9 На весу
5+5 Н 0-1 1,2-2 200-500 21-35 30-45 10-20 9-15
1,5+5 Н и В 0-1 1-1,4 130-180 19-22 30-65 8-14 7-9

* Н — нижнее, В — вертикальное положение сварки.

 

Таблица 4. Режимы сварки в в защитных газах ( СO2 и Ar+25%СO2 ) углеродистых сталей в вертикальном положении проволокой Св-08Г2С (сварка сверху вниз, обратная полярность).

Толщина металла, мм Соединение Зазор, мм Номер прохода Диаметр проволоки, мм Сила сварочного тока, А Напря-
жение сварки, В
Скорость сварки, м/ч Вылет электрода, мм Расход газа, л/мин
0,8-1 0-1 1 0,8-1,2 90-130 17-18 40-60 8-11 6-7
1,2-2 0-1 0,8-1,2 140-200 18-22 40-55 8-12 6-7
2,2-4 0-1,5 1,2-1,5 180-260 21-24 35-55 9-12 7-8
3-6 1±1 1 1,2-1,4
160-200
20-23 25-45 9-12 8-9
2 1,2-1,4 200-260 23-25 20-40 9-12 8-9
8-10 2±1/2 1 1,2-1,4 160-200 20-23 25-45 9-12 9-10
2-3 1,2-1,4 200-260 23-35 20-35 9-12 9-10
0,8-1 0-0,05 1 0,8-1 90-130 17-18 40-55 8-11 5-7
1,5-3 1 0,8-1,2 140-200 18-22 40-50 8-12 6-7
3,2-5,5 0-1 1-2 1,2-1,4 160-240 20-23 35-55 9-12 7-8
6-12 0-1,5 1-2 1,2-1,4 200-260 22-26 25-35 10-12 8-10

 

Таблица 5.

Режимы сварки в защитных газах ( СO

2)

горизонтальных швов проволокой Св-08Г2С (обратная полярность).

Толщина металла, мм Соединение Зазор, мм Диаметр проволоки, мм Сила сварочного тока, А Напря-
жение сварки, В
Скорость сварки, м/ч Вылет электрода, мм Расход газа, л/мин
0,8-1 0-0,5 0,8-1 70-130 17-18,5 25-30 8-10 6-7
1,5 1-1,5 0,8-1,2 100-150 17,5-19,5 19-24 8-12 6-8
3 1,5-2 1-1,4 140-190 20-23 16-18 10-12 7-9
5-6 0-1 1-1,4 150-250 20-23 10-14 12-14 8-10

 

Таблица 6.

Режимы сварки в защитных газах ( СO

2)

швов в потолочном положении проволокой Св-08Г2С (обратная полярность).

 

Толщина металла, мм Катет шва Соединение Зазор, мм Диаметр проволоки, мм Число проходов Сила сварочного тока, А Напря-
жение сварки, В
Скорость сварки, м/ч Расход газа, л/мин
1,5-2 1,5-2 0-1 0,8-1,2 1 150-190 18,5-20 23-35 7
3-5 3-5 0-1,5 1-1,2 1 160-260 18-22,5 20-30 8
7-8 6-8 2 160-270 19,5-22,5 17-25 8-9

 

Таблица 7.

Режимы сварки (ориентировочные) углеродистых сталей в углекислом газе

электрозаклепками и точками.

Толщина листов, мм Диаметр проволоки, мм Сила сварочного тока, А Напря-
жение сварки, В
Длительность сварки, с
Вылет электрода, мм
Расход газа, л/мин Наличие отверстия в верхнем листе
верхнего
нижнего
0,5 0,5-2,0 0,8 100-140 18-21 0,6-1,1 6-10 5-6 нет
0,8 0,8-3,0 0,8 120-160 19-22 0,5-1,2 8-10 5-6 нет
1,0 1,0-4,0 0,8-1,0 150-190 20-23 1,0-1,8 8-12 5-7 нет
1,5 1,5-4,0 1,0-1,2 200-210 21-24 1,4-1,8 10-12 6-7 нет
1,5 1,5-4,0 1,0-1,2 190-210 21-23 1,3-1,6 10-12 6-7 есть
2,0 2,0-5,0 1,0-1,4 220-300 22-27 2,0-3,0 10-14 6-8 нет
2,0 2,0-5,0 1,0-1,4 210-250 22-25 1,6-2,0 10-14 6-7 есть
3,0 3,0-6,0 1,2-1,6 320-380 30-35 2,0-3,0 12-14 7-8 нет
3,0 3,0-6,0 1,2-1,6 300-350 28-32 1,9-2,5 12-14 7-8 есть
4,0 4,0-6,0 1,4-1,6 380-420 33-37 3,0-3,5 13-15 8-9 нет
4,0 4,0-6,0 1,4-1,6 350-380 32-35 2,2-3,0 13-15 8-9 есть
5,0 5,0-7,0 1,4-2,0 400-450 34-40 3,5-4,0 14-16 9-10 нет
6,0 6,0-8,0 1,6-2,4 420-550 38-44 3,0-4,0 14-18 9-10 нет
8,0 8,0-10,0 2,0-2,4 550-600 43-48 3,0-4,0 16-18 11-12 нет

Примечание к Табл. 7: постоянный ток обратной полярности; режимы сварки точками принимают текими же, как при сварке без отверстия для толщины верхнего листа.

Другие материалы относящиеся к темам »

Режимы сварки в защитных газах

:

  • < Сварка MIG / MAG
  • Сварка в среде углекислого газа >

Режимы в защитных газах — Энциклопедия по машиностроению XXL

Таблица 10в. Режимы сварки титана и его сплавов плавящимся электродом в защитных газах

Проведение этих мероприятий во многом зависит от габаритных размеров и конструктивного оформления сварных заготовок. Для сложных заготовок с элементами больших толщин и размеров при наличии криволинейных швов в различных пространственных положе-йиях можно применять только хорошо свариваемые металлы. Последние сваривают универсальными видами сварки, например ручной дуговой покрытыми электродами или полуавтоматической в защитных газах в широком диапазоне режимов. При сварке не нужны, например, подогрев, затрудненный вследствие больших толщин и размеров элементов, а также высокотемпературная термическая обработка, часто невозможная ввиду отсутствия печей и закалочных ванн соответствующего размера. Для простых малогабаритных узлов возможно применение металлов с пониженной свариваемостью, поскольку при их изготовлении используют самые оптимальные с точки зрения свариваемости виды сварки, например электронно-лучевую или диффузионную в вакууме. При этом легко осуществить все необходимые технологические мероприятия и требуемую термическую или механическую обработку после сварки.  [c.246]

Участки I и II ВАХ соответствуют режимам сварки, применяемым при ручной сварке плавящимся покрытым электродом, а также неплавящимся электродом в среде защитных газов. Механизированная сварка под флюсом соответствует II области и частично захватывает III область при использовании тонких электродных проволок и повышенной плотности тока, сварка плавящимся электродом в защитных газах соответствует III области ВАХ. Для питания дуги с падающей или жесткой ВАХ применяют источники питания с падающей или пологопадающей внешней характеристикой. Для питания дуги с возрастающей ВАХ применяют источники тока с жесткой или возрастающей внешней характеристикой.  [c.57]

Для питания дуги на участке II с жесткой характеристикой применяют источники с падающей или пологопадающей характеристикой (ручная дуговая сварка, автоматическая под флюсом, сварка в защитных газах неплавящимся электродом). Режим горения дуги определяется точкой пересечения характеристик дуги б и источника тока I (рис. 5.4, б). Точка В соответствует режиму неустойчивого горения дуги, точка С — режиму устойчивого горения дуги (/св и f/д), точка А — режиму холостого хода в работе источника тока в период, когда дуга не горит и сварочная цепь разомкнута. Режим холостого хода характеризуется повышенным напряжением (60. .. 80 В). Точка D соответствует режиму короткого замыкания при зажигании дуги и ее замыкании каплями жидкого электродного металла. Короткое замыкание характеризуется малым напряжением, стремящимся к нулю, и повышенным, но ограниченным током.  [c.225]


Сварку осуществляют на режимах, ориентируясь на справочную литературу, производственные инструкции, операционные технологические карты и личный производственный опыт. К основным параметрам режима дуговой сварки в защитных газах относят диаметр электродной проволоки и ее марку, силу сварочного тока, напряжение дуги, скорость подачи электродной проволоки, скорость сварки, вылет электрода, состав защитного газа и его расход, наклон электрода вдоль оси шва, род тока, а для постоянного тока — и его полярность. В справочной литературе ориентировочные режимы приводятся в виде таблиц, в которые включают лишь основные параметры режима (см. табл. 12). Таблицы сопровождают примечаниями, касающимися параметров, не вошедших в таблицу. Так, табл. 18 составлена для ориентировочных режимов, рекомендуемых для сварки углеродистых и низколегированных сталей в углекислом газе постоянным током обратной полярности для проволок типа Св 08 Г2С-При сварке в углекислом газе обратная полярность тока позволяет получать более высокое качество шва, чем сварка на прямой полярности.[c.171]

Каковы основные параметры режима сварки в защитных газах  [c.179]

Цилиндрический корпус изделия собирают из обечаек путем последовательной стыковки на роликовых стендах или на механизированном рабочем месте, оснащенном сборочным устройством с гидравлическими прижимами. До начала сборки измеряют рулеткой периметры смежных торцов обечаек, определяют разность диаметров с целью равномерного расположения смещения кромок по всему контуру кольцевого стыка. При большой толщине кромок кольцевые стыки скрепляют прихватками, которые выполняют ручной дуговой сваркой, и затем сваривают их автоматической дуговой сваркой под флюсом на установках, оснащенных роликовыми вращателями с обрези-ненными роликами. При толщине кромок менее 3 мм стыки обечаек собирают на разжимных кольцах с подкладками для формирования проплава. В этом случае автоматическую сварку кольцевого стыка под флюсом или в защитном газе ведут без прихваток. Иногда, для предотвращения местных деформаций кромок в процессе сварки, применяют сплощную скоростную прихватку по всему периметру кольцевого стыка обечаек. Эта прихватка представляет собой кольцевой шов, выполненный со скоростью, в 2…5 раз превышающей скорость сварки основного шва при тех же остальных параметрах режима, что обеспечивает глубину проплава около 10…20 % толщины состыкованных кромок. Сварку стыков таких обечаек, как со сплошной прихваткой, так и без нее, ведут на вращателе с горизонтальной осью и с планшайбами для закрепления и центровки стыкуемых обечаек.  [c.385]

Коэффициент потерь зависит от способа сварки, типа электрода и параметров режима. На потери значительное влияние оказывает характер переноса электродного металла в сварочной дуге. Так, при сварке покрытыми электродами коэффициент потерь, %, составляет 5… 20, под флюсом — 1… 5, а в защитных газах — 1… 10. В тех случаях, когда в составе электродных покрытий или наполнителей порошковой проволоки содержится значительное количество металлических составляющих, коэффициент Ч отрицателен, поскольку Дн больше Др.  [c.21]

При сварке плавящимся электродом в защитных газах зависимости формы и размеров шва от основных параметров режима такие же, как и при сварке под флюсом (см. рис. 3.29). Для сварки используют электродные проволоки малого диаметра (до 3 мм). Поэтому швы имеют узкую форму провара и в них может наблюдаться повышенная зональная ликвация. Применяя поперечные колебания электрода, изменяют форму шва и условия кристаллизации металла сварочной ванны и уменьшают вероятность зональной ликвации. Имеется опыт применения для сварки в углекислом газе электродных проволок диаметром 3. .. 5 мм. Сварочный ток в этом случае достигает 2000 А, что значительно повышает производительность сварки. Однако при подобных форсированных режимах наблюдается ухудшенное формирование стыковых швов и образование в них подрезов. Формирование и качество угловых швов вполне удовлетворительны.  [c.138]


Дуговая сварка в защитных газах. Состав защитного газа, марка и диаметр сварочной проволоки, основные параметры режима полуавтоматической и автоматической сварки выбираются по справочным данным, с  [c.242]

Автоматическая сварка под слоем флюса. Выбор параметров режима сварки производится так же, как при сварке в защитных газах. Однако, учитывая, что при сварке под флюсом потери электродного металла на угар и разбрызгивание не превышают 5 %, должно выполняться соотношение >F v .  [c.243]

Приемы выбора параметров режима сварки покрытыми электродами, в защитных газах, под флюсом.  [c.249]

S. Рекомендуемые режимы сварки плавящимся электродом в защитных газах алюминиевых сплавов типа АМг  [c.446]

Аналогично может влиять и применение при наплавке, выполняемой под флюсом или в защитных газах, электродной ленты, спрессованной из порошков, по сравнению с прокатной. Большее электрическое сопротивление спрессованной ленты и ее меньшая теплопроводность приводят к более быстрому ее расплавлению (большему а при том же, как при прокатанной ленте, режиме наплавки) и возможному уменьшению доли основного металла в наплавленном слое.  [c.522]

Основным оборудованием для дуговой сварки и наплавки являются источники сварочного тока для ручной сварки штучными электродами, полуавтоматы, автоматы, станки и установки для сварки плавящимся электродом без внешней защиты дуги, под флюсом и в защитных газах, оборудование для импульсно-дуговой сварки плавящимся электродом в инертных газах, установки для ру шой и автоматической сварки вольфрамовым электродом, специальное оборудование для сварки конкретных изделий. Универсальное оборудование имеет различные степень сложности и эксплуатационные возможности от простых полуавтоматов и источников со ступенчатым регулированием режимов до сложных с микропроцессорным управлением.  [c.53]

Универсальные тиристорные сварочные выпрямители выполнены с тиристорным регулированием и имеют универсальные жесткие и падающие внешние характеристики, предназначены для механизированной сварки в среде углекислого газа, под флюсом, резки металлов. Выпрямители на силу тока до 630 А могут быть использованы для ручной дуговой сварки штучными электродами. Выпрямители типов ВДУ-505 и 506 обеспечивают сварку в углекислом газе на силе тока 60 А сварочной проволокой диаметром 1,2 мм, имеют бесступенчатое автоматическое изменение индуктивности в сварочной цепи в зависимости от режима сварки. В схему управления выпрямителей на силу тока 500 и 630 А введено устройство, обеспечивающее форсирование зажигания дуги при сварке в защитных газах, а на силу тока 1250 А — в защитных газах и под флюсом.  [c.58]

Газовые поры образуются в случае применения отсыревших электродов, большой скорости сварки и длинной дуги, загрязненных кромок разделки, недостаточной зашиты шва при сварке в защитных газах. Равномерная пористость обычно возникает при постоянно действующих факторах — загрязненность свариваемых кромок (ржавчина, масло, влага), непостоянная толщина покрытия электродов, влажные электроды. Поры могут быть одиночными, в виде цепочки по продольной оси шва или отдельных групп, равномерно распределенных по шву. Одиночные поры образуются за счет действия случайных факторов — колебания напряжения в сети, местного дефекта в покрытии электрода, случайном удлинении дуги. Цепочки пор образуются, когда газообразные продукты проникают в металл по оси шва на всем его протяжении — подварка корня шва произведена некачественными электродами, подсос воздуха через зазор между кромками, сварка ржавого металла. Скопления пор возникают при местных загрязнениях илп при отклонениях от установленного режима сварки при сварке в начале шва, случайных изменениях длины дуги или ее обрыва, при сварке электродами с нарушенным покрытием. Равномерная пористость обычно появляется при постоянно действующих факторах — ржавчина, масло, краска на свариваемых кромках, непостоянная толщина покрытия электродов.  [c.234]

Технологические режимы дуговой сварки в защитных газах. Для сварки углеродистых и низколегированных сталей широко применяют углекислый газ. Предупреждение появления пор в сварных швах и высокие механические свойства сварных соединений достигаются за счет применения сварочных проволок, содержащих повышенное количество кремния и марганца (табл. 10).  [c.328]

Технология и режимы сварки в защитных газах алюминия и различных алюминиевых сплавов, в том числе и литейных, примерно одинаковы. Отсутствие флюса снимает ограничение в выборе типов соединений. Сварка в защитных газах — высокопроизводительный процесс, обеспечивающий получение наиболее качественных сварных соединений в любом пространственном положении материалов различной толщины, начиная от 0,5 мм.  [c.438]

Приведены сведения о химическом составе, структуре и механических свойствах низколегированных сталей с пределом текучести свыше 586 МПа. Рассмотрены вопросы свариваемости этих сталей и рекомендованы меры борьбы с холодными трещинами. Описаны особенности подготовки деталей под сварку, технология ручной и механизированной сварки под флюсом и в защитных газах, сварочное оборудование. Даны рекомендации по режимам сварки в зависимости от толщины и конструкции соединений. Приведен опыт изготовления и эксплуатации сварных конструкций из высокопрочных низколегированных сталей.  [c.2]


Сварка в защитных газах имеет ряд преимуществ по сравнению с другими способами, из которых главные наличие благоприятных условий для визуального, в том числе и дистанционного, наблюдения за процессом сварки широкий диапазон рабочих параметров режима сварки  [c.6]

ТЕХНИКА И РЕЖИМЫ СВАРКИ В ЗАЩИТНЫХ ГАЗАХ  [c.150]

При сварке в вертикальном положении кромки соединяемых элементов располагают вертикально на вертикальной плоскости. Перенос дополнительного металла в сварочную ванну обычно осуществляется в направлении, перпендикулярном к силе тяжести (рис. 5-13, а). В связи с указанными особенностями удовлетворительное формирование шва достигается только при небольшом объеме сварочной ванны. В этих условиях силы поверхностного натяжения удерживают жидкий металл от стекания. Сварку в вертикальном положении можно вьшолнять покрытыми электродами вручную или механизированным способом в защитном газе на режимах, обеспечивающих малый объем сварочной ванны. Сварку ведут, как правило, снизу вверх. Применяется также сварка сверху вниз.  [c.177]

Изменение величины сварочного тока оказывает влияние на эффективность использования тепла дуги, разбрызгивание расплавленного металла, устойчивость горения дуги, производительность процесса сварки, площадь иоперечного сгчения наплавки и проплавления, химический состав металла шва. При сварке а одинаковых режимах в защитных газах и под флюсом количество тепла, затрачиваемого на расплавление основного и электродного металла, т. е. эффективность использования тепла дуги, выше при сварке в защитных газах. С увгли-чением тока при сварке в защитных газах уменьшается размер капель и при некотором критическом тока капельный перенос металла переходит в струйный. Изменение характера переноса капель металла в дуге оказывает влияние на величину разбрызгивания металла. С увеличением тока при сварке в защитных газах потгри металла на разбрызгивание снижаются, повышается устойчивость горения дуги, а производительность процесса наплавки возрастает. С дальнейшим увеличением тока выше определенных пределов разбрызгивание снова увеличивается, что определяет верхний предел тока. Нижний предел тока определяет устойчивость горения дуги.  [c.16]

Основные параметры режима механизированной сварки (автоматической и полуавтоматической) под флюсом и в защитных газах, оказывающие существенное влияние на размеры и форму швов, — сила сварочного тока, плотность тока в электроде, напряжение дуги, скорость сварки, химический состав (марка) и граггуляция флюса, род тока и ого полярность.  [c.185]

Аналогично может влиять и примепепие при поплавке, выполняемой под флюсом НЛП в защитных газах, электродной лепты, спрессованной из порошков, но сравнению с прокатной. ]Зольшее электрическое сопротивление спрессованной ленты и се меньшая теплопрозо/нюсть приводят к более быстрому ее расплавлению (большему а,1 при том же, как при прокатанной ленте, режиме  [c.397]

Наиболее часто встречаются дефекты типа пор и непро-плавления. При сварке на мягких режимах (малых токах сварки и напряжениях дуги) возникают непроплавления между слоями, либо между первым слоем и основным металлом (рис. 5.7, а). Причиной появления непроплавлений и пор является недостаточно качественная зачистка поверхности каверны от ржавчины (рис. 5.7, б-г). Поры, как правило, возникают из-за содержащейся в защитном газе влаги. Наличие пор не привело к существенному снижению пластичности. При мягких режимах сварки и повышенной влажности защитного газа наличие одновременно общирного непроплавления и пор (рис. 5.7, а) привело к снижению пластичности до пяти раз. При таких условиях угол загиба образцов не превышал 24 градусов.  [c.306]

Для сварки ряда сталей созданы также композиции чисто аустенитного металла шва типа Х15Н25М6 (электроды ЦТ-10, НИАТ-5) [35], типа Х25Н15Г7ВЗ (сварочные проволоки для автоматической сварки стали Х23Н18 [36]. Имеются данные о заметном повышении технологической прочности однофазного аустенитного металла шва в случае перехода к сварке в защитных газах (аргоне или углекислом газе). Необходимо, однако, подчеркнуть, что во всех случаях сварка сталей второй группы представляет заметно более сложную задачу и требует ведения ряда технологических ограничений, связанных прежде всего с введением процесса на пониженных режимах тока, применением электродов малого диаметра, недопущением разогрева детали при сварке и т. п. Длительная прочность сварных соединений сталей этого типа может уступать соответствующим показателям для основного металла.  [c.39]

Техника и технология механизированной сварки плавящимся электродом имеет много общего при использовании обычной стальной, имеющей сплошное сечение, порошковой газозащитной и порошковой са-мозащитной электродной проволоки. Различия в основном касаются значений параметров режима, рекомендуемых для сварки различных классов сталей той или иной толщины, величины вылета электродной проволоки, длины дугового промежутка. Основные типы и конструктивные элементы выполняемых дуговой сваркой в защитном газе швов сварных соединений регламентированы ГОСТ 14771-76, которым предусмотрены четыре типа соединений стыковые, угловые, тавровые и нахлесточные.  [c.169]

Пример оформления технологического процесса сборки и сварки на операционных картах согласно ЕСТД показан на рис. 185. В операционных картах применены следующие условные обозначения ОК -операционная карта О — переход операции К/М — комплектующие детали и материалы Р — режимы МИ — масса изделия Т — инструмент То — основное время на переход Тв — вспомогательное время на переход ОПП — обозначение подразделения (кладовой, склада), откуда поступают детали, сборочные единицы, материалы или куда поступают обработанные детали, узлы ЕВ — единицы измерения величины (массы, длины и т.п.) ЕН — единица нормирования, на которую устанавливается норма расхода материала (например, 1,10,100) КИ — количество деталей, сборочных единиц, применяемых при сборке изделия Н. расх. — норма расхода материала P — режим сварки ПС -обозначение положения сварки по ГОСТ 11969-79 ДС — диаметр сопла для сварки в защитных газах со струйной защитой, мм 4 — расстояние от торца сопла до поверхности свариваемых деталей /э — вылет электрода, мм U — напряжение дуги I — сила сварочного тока Ус -скорость сварки V — скорость подачи присадочного материала доз -расход защитного газа.  [c.369]

Сварка в защитных газах. Высокое качество сварных соединений толщиной 3. .. 5 мм достигается при аргонодуговой сварке неплавящим-ся электродом. При выборе присадочного материала (электродной проволоки) для дуговой сварки в среде защитных газов следует руководствоваться табл. 7.6. Первый слой выполняют без присадки с полным проваром кромок стыка и обратным валиком, второй — с поперечными низкочастотными колебаниями электрода и механической подачей присадочной проволоки. Возможен и третий слой с поперечными колебаниями электрода без присадочной проволоки со стороны обратного формирования на небольшом режиме для обеспечения плавного перехода от шва к основному металлу.  [c.310]


АРНД). Аналогично для устранения отклонений силы тока и напряжения дуги для большинства применяемых режимов сварки свободно расширяющейся дугой — (область II) эффективным является использование явления саморегулирования дуги (системы АРДС), регуляторов типа АРНД с воздействием на скорость подачи электродной проволоки, либо систем совместного регулирования силы тока и напряжения дуги с воздействием на подачу электродной проволоки и на источник сварочного тока. Возрастающая статическая характеристика сжатой дуги, например, при сварке тонкой электродной проволокой в защитном газе в сочетании с жесткой внешней характеристикой источника сварочного тока (область III) требует применения автоматических регуляторов силы тока дуги типа АРТД.  [c.101]

Применение основного металла переменного состава. В ряде случаев требуется исследовать влияние содержания в металле одного или нескольких легирующих элементов или примесей на структуру и свойства (твердость, прочность, пластичность, ударную вязкость, коррозионную стойкость и др.) стали. С эой целью одним из способов, указанных в п. 1, изготовляют слиток из этой стали ПС с содержанием исследуемого элемента в требуемых пределах. Из слитка отковывается пластина, которую используют в качестве основного металла. Технология ковки должна обеспечивать- непрерывное изменение — содержания- — исследуемого- здемента. по длине пластины и постоянное содержание этого элемента по ее ширине. В пластине выстрагиваются продольные и поперечные канавки, имитирующие разделку кромок. Эти канавки завариваются однослойными швами выбранным способом сварки (под флюсом, в защитных газах) с применением обычных присадочных Материалов и режимов сварки (рис. 8, а). Изменение содержания исследуемого элемента в металле швов будет достигаться путем его перехода из основного металла. При этом продольные швы (1) будут иметь металл переменного состава, а поперечные швы 12) — металл постоянного состава, но с различным содержанием  [c.12]

Реализация приведенных мероприятий во многом зависит от габаритных размеров и конструктивного оформления сварных заготовок и узлов. Для сложных узлов с элементами больших толщин и размеров при наличии криволинейных швов в различных пространственных положениях можно применять только хорошо свариваемые материалы. Последние сваривают самыми универсальными способами, например ручной дуговой сваркой покрытыми электродами или полуавтоматической в защитных газах в широком диапазоне режимов. При их сварке не нужны, например, подогрев, затрудненный вследствие больших толщин и размеров элементов, а также высокотемпературная термическая обработка, часто невозможная из-за отсутствия печей и закалочных ванн соответствующего размера. Для простых малогаба-372  [c.372]

Механизированную сварку медных заготовок в защитных газах (аргоне и азоте) выполняют неплавящимся вольфрамовым или плавящимся электродом. В качестве материала для присадочного прутка или плавящегося электрода применяют проволоку из бронзы марок БрЦ0,8 БрКМцЗ-1 БрОЦ4-3, а также из меди М1 и М2. Ориентировочные режимы аргонодуговой сварки приведены в табл. 17.3.  [c.273]

Сварка вольфрамовым электродом осуществляется преимущественно в инертных газах или их смесях, она целесообразна для материала толщиной до 5—7 мм. Хорошее формирование обратного валика позволяет рекомендовать вольфрамовый электрод для сварки корневых швов на сталях повышенных толщин (остальные валики могут выполняться под флюсом, покрытыми электродами или в защитных газах). Сварка может вестись непрерывно горящей или импульсной дугой, вручную, полуавтоматически или автоматически, иа режимах, приведенных в табл. XVI. 16.  [c.396]


Режимы сварки полуавтоматом в среде защитных газов: подбор, расчет, таблицы

В большинстве случаев использовать сварочный полуавтомат вместе с защитным газом-прекрасная идея.

Такой метод предоставляет широкий спектр возможностей, таких как скорость и качество при сварке разных металлов – меди, алюминия, сталей, и прочих.

Однако перед началом сваривания необходимо изучить специфику работы с таким набором оборудования, научится подбирать режим сварки полуавтоматом в среде защитных газов и только тогда это действительно упростит работу мастера.

Содержание статьиПоказать

Актуальность

Первое, на что обязательно стоит обратить внимание, если решили использовать этот метод работы – это квалификация мастера. Новичку будет сложно разобраться в настройках, грамотно выбрать материалы.

Опыт работы играет важную роль, и его не нужно недооценивать. Профессионалы особенно любят повторять насколько важно потратить не один десяток лет на самообучение, подружиться с книгами, изучить стандарты и, конечно, практиковаться.

Без этого сложно добиться успеха и качества. Сложно не согласиться с этим, но давайте не будем ставить крест на молодых специалистах, ведь все мы с чего-то начинали.

Именно для желающих обучиться всем тонкостям этой работы, правильного расчета режима сварки полуавтоматом в среде защитных газов  и была написана эта статья.

Внимательно изучите теорию и побольше применяйте на практике – вот и весь секрет. Здесь собраны не только знания специалистов, но и информация из справочников и профессиональной литературы.

Основные параметры

Первый этап работы – это настроить режимы для сварки полуавтоматом в среде защитных газов. Для этого разберемся в основных составляющих полуавтомата.

Пройдемся по основным режимам, изучив которые вы без труда правильно настроите полуавтоматическую сварку, и не допустите досадных ошибок.

Начинаем с диаметра проволоки. Его размер может колебаться в промежутках от 0.5 до 3 миллиметров. Чаще всего размер проволоки выбирают в зависимости от размера материала, с которым вы будете работать.

Но, независимо от этого, у каждой толщины есть присущие ей особенности. К примеру, если вы хотите достичь более стойкое горение дуги и меньшее разбрызгивание металла, профессионалы рекомендуют работать с более тонкой проволокой.

Немаловажно учесть при процессе с толстым материалом – напряжение потребуется гораздо сильнее.

Обратите внимание – чтобы работать с низколегированной сталью обязательно использовать проволоку, в которой содержится марганец и кремний. Проволока должна быть с раскислителями. Тоже относится и к низкоуглеродистой стали.

К сожалению, частой ошибкой начинающих является как раз недостаточное внимание к фирме, которая изготавливает данный материал, а также металлам, которые входят в ее состав.

Все же стоит отметить, что сталь в среде защитного газа чаще всего легированная, или же высоколегированная. Выход в такой ситуации простой – нужно взять проволоку, которая сделана из того же материала, с которым вы работаете.

Это очень важно, ведь в случае ошибки шов будет непрочным, и это безусловно повлияет на весь результат работы.

Сила, полярность и род сварочного тока

После правильно подобранных материалов, следующим шагом будет настройка режима полуавтомата для работы в среде защитных газов. Эти три параметра – сила, род и полярность сварочного тока являются основными, и непременно присутствуют даже в дешевых образцах.

Давайте рассмотрим подробнее каждый из них. Силу напряжения настраивают, исходя их особенностей материала, с которым вы будете работать, и, конечно, диаметр электрода. В зависимости от силы тока меняется, например, глубина провара.

Поговорим про остальные два параметра. Самый распространенный среди мастеров высокого класса метод сваривания в среде защитного газа – задать такие параметры: постоянный ток и обратная полярность.

Сделайте вы наоборот – и получите весьма нежелательный результат в виде неустойчивого горения дуги и, как следствие, значительно ухудшите результат своей работы.

Следуя правилам, не забывайте и про исключения: если работаете с алюминием, ток необходим именно переменный.

Чтобы не попасться на удочку, как и все новички, обязательно обратите внимание на напряжение сварочной дуги. А ведь именно этот важный параметр обеспечивает нужную глубину провара металла и само сварочное соединение.

Для настройки ориентируйтесь на силу сварочного тока. Если металл разбрызгивается, а в материале появляются нежелательный поры, значит напряжение слишком большое, и защитный газ не сможет проникнуть в нужную зону.

Скорость подачи проволоки

На качество вышей работы влияет механизм. Который обеспечивает подачу проволоки. При полуавтоматический сварке это залог точной и слаженной работы.

Как только вы приступаете к свариванию, сразу же настройте этот параметр сварки полуавтоматом в среде защитных газов – не слишком быстро и не слишком медленно. Только это может гарантировать вам ровный и прочный шов.

Опять же, следует руководствоваться силой тока при настройке данного параметра. Нужно стремиться к тому, чтобы скорость подачи обеспечивала стойкость дуги и равномерное формирование тока.

Скорость сварки

Следующее – это скорость сварки. Она влияет в основном на физические характеристики вашего шва. Для этого существуют стандарты расчета режима сварки полуавтоматом в среде защитных газов, однако с опытом вы сможете регулировать ее самостоятельно, в зависимости от специфики металла и его размеры.

Так, чем толще ваш материал, тем выше должна быть скорость и уже шов. Но и чрезмерная спешка недопустима, и приведет только к тому, что электрод перестанет находиться в зоне защитного газа и просто окислится под влиянием кислорода.

Ну а медлительность – залог рыхлого и пористого шва.

Наклон электрода

Наконец, угол преткновения всех начинающих мастеров во время сварки – это угол наклона электрода. В основном все стараются держать электрод наиболее удобным методом, но это значительный промах, который непременно даст о себе знать.

Ведь это главным образом влияет на итоговый результат.

Какие есть варианты сваривания? В основном их два, рассмотрим каждый из них. Сварка углом вперед – так вы лучше видите края, но при этом хуже область свари. При этом глубина получается меньше.

Сварка углом назад же все наоборот – здесь необходимо руководствоваться спецификой процесса. Первый тип отлично подойдет для тонкого материала, а вот второй можно применять с материалом любой другой толщины.

Таблицы расчета

С опытом вы обязательно наработаете и сразу подберете необходимые настройки сварки полуавтоматом в среде защитных газов. Метода проб и ошибок не избежать новичкам, однако облегчить труд вначале помогут специально созданные для этого таблицы.

Комбинируйте эти теоретические знания со своим опытом и экспериментами – и вы точно достигнете больших успехов.

Таблица No1. Рекомендации по настройке при сварке низкоуглеродистой или низколегированной стали при формировке стыкового шва в среде защитного газа в нижнем положении током обратной полярности (например углекислого газа, и его смеси с кислородом или аргоном).

Таблица No2. Рекомендации по настройке для работы с поворотно-стыковыми соединениями с использованием углекислого газа, и его смеси с кислородом или аргоном, ток обратной полярности.

Таблица No3. Рекомендации по настройке при создании нахлесточного шва, с использованием углекислого газа, и его смеси с кислородом или аргоном, ток обратной полярности.

Таблица No4. Рекомендации при работе с углеродной сталью, в вертикальном пространственном положении, с использованием углекислого газа, и его смеси с кислородом или аргоном, ток обратной полярности.

Таблица No5. Рекомендации по настройке сварки полуавтоматом в среде защитных газов при создании горизонтального соединения с использованием углекислого газа, ток обратной полярности.

Таблица No6. Рекомендации по настройке при работе с потолочными швами с использованием углекислого газа, ток обратной полярности.

Таблица No7. Рекомендации при работе методом «точка».

Самый простой способ рассчитать режим сварки полуавтоматом в среде защитных газов — воспользоваться таблицами

Заключение

Хоть эта статья и не раскрывает всех тонкостей расчета режима сварки полуавтоматом в среде защитных газов, таких как необходимое для работы давление углекислого газа, как рассчитать настройки в углекислом или других защитных газов.

Это всего лишь начало на пути от новичка к опытному мастеру. И этот сайт создан, чтобы облегчить ваш путь рекомендациями и советами, которые выведут вас на новый уровень гораздо быстрее.

Не бойтесь пробовать и ошибаться, ведь только так опыт приобретает свою цену. Успехов вам!

Режимы полуавтоматической сварки среде защитных газов

Использование сварочного полуавтомата в сочетании с защитным газом — почти всегда выигрышный вариант. Благодаря такому комплекту оборудования вам становится доступна качественная и быстрая сварка сталей, алюминия, меди и прочих металлов. Но есть и особенности, которые сварщик должен учитывать перед тем, как выберет данный метод сварки.

Прежде всего, полный новичок вряд ли сможет выполнить работу качественно. Это связано не только с отсутствием опыта, но и с тем фактом, что полуавтомат нужно правильно настроить и выбрать необходимые расходники. Опытные мастера говорят: «Чтобы настроить режимы сварки полуавтоматом в среде защитных газов нужно потратить несколько лет на изучение литературы, ГОСТов и кропотливую работу. Без практики ничего не получится».

Мы полностью согласны с этим утверждением. Но не спешим сбрасывать со счетов начинающих сварщиков. Специально для них мы подготовили краткую статью, которая поможет разобрать с режимами сварки и начать применять полученную информацию на практике. При составлении этой статьи мы руководствовались не только собственным опытом, но и справочной литературой.

Основные параметры

Чтобы правильно подобрать режимы полуавтоматической сварки нужно четко понимать, из чего состоят эти режимы. Далее мы перечислим основные параметры режимов сварки, зная которые вы сможете правильно выбрать настройки полуавтомата.

Диаметр и марка проволоки

Начнем с диаметра проволоки. Он может колебаться в пределах от 0.5 до 3 миллиметров. Обычно, диаметр проволоки подбирается исходя из толщины свариваемого металла. Но в любом случае у каждого диаметра есть свои характерные признаки. Например, при работе с проволокой малого диаметра мастера отмечают более устойчивое горение дуги и меньший коэффициент разбрызгивания металла. А при работе с проволокой большего диаметра всегда требуется увеличивать силу тока.

Не стоит забывать и о марке применяемой проволоки. А точнее, металле, из которого проволока изготовлена и какие вещества входят в ее состав. Например, для сварки низкоуглеродистой или низколегированной стали рекомендуется использовать проволоку с раскислителями, а в составе должен присутствовать марганец и кремний.

Но, справедливости ради, в среде защитного газа зачастую либо легированную, либо высоколегированную сталь. В таких случаях используют проволоку, изготовленную из того же металла, что и деталь, которую нужно сварить. Обратите внимание на выбор проволоки, ведь при неправильном выборе шов может получиться пористым и хрупким.

Сила, полярность и род сварочного тока

Помимо выбора комплектующих нам также нужно настроить сам полуавтомат. В типичном полуавтомате даже самого низкого ценового сегмента вы сможете настроить силу, полярность и род сварочного тока. У каждого параметра также есть свои особенности. Например, если увеличить силу тока, то глубина провара увеличиться. Силу тока устанавливают, опираясь на диаметр электрода и особенности металла, с которым собираются работать.

Теперь о полярности и роде тока. Общепринято выполнять полуавтоматическую сварку в среде защитного газа, установив постоянный ток и обратную полярность. Переменный род тока или прямая полярность применяются очень редко, поскольку такие настройки не обеспечивают устойчивое горение дуги и способствуют ухудшению качества сварного соединения. Но есть исключение из правил. Так переменный ток показан при сварке алюминия, например.

Также многие новички забывают о таком параметре, как напряжение сварочной дуги. А вместе с тем именно напряжение дуги влияет на глубину провара металла и размер сварочного соединения. Не стоит устанавливать слишком большое напряжение, иначе металл начнем разбрызгиваться, в шве образуются поры, а газ не сможет в должной мере защитить сварочную зону. Чтобы правильно настроить напряжение дуги ориентируйтесь на силу сварочного тока.

Скорость подачи проволоки

Как вы знаете, в полуавтоматической сварке проволока подается с помощью специального механизма. Он работает очень точно, поэтому необходимо заранее установить оптимальную скорость подачи присадочной проволоки, чтобы она вовремя плавилась и способствовала формированию качественного шва. Настраивайте скорость с учетом силы тока. В идеале проволока должна подаваться так, чтобы дуга сохраняла свою устойчивость, а шов формировался постепенно.

Скорость сварки

Не менее важна и скорость сварки. От нее во многом зависят физические размеры шва. Скорость регулируется ГОСТами, но ее можно выбрать и по своему усмотрению, опираясь на особенности металла и его толщину. Учтите, что толстый металл нужно варить быстрее, а шов должен быть узким. Но не стоит слишком спешить, иначе электрод может просто выйти из зоны защитного газа и окислиться под воздействием кислорода. Ну а слишком медленная скорость способствует формированию непрочного пористого шва.

Наклон электрода

И последний важный параметр, а именно угол наклона электрода при сварке. Наиболее частая ошибка у новичков — держать электрод так, как физически удобно. Это грубейшее нарушение. Ведь угол наклона электрода напрямую влияет на то, какова будет глубина провара и насколько качественным получится шов в конечном итоге.

Существует два типа наклона: углом назад и углом вперед. У каждого положения есть свои достоинства и недостатки. При сварке углом вперед зона сварки видна хуже, зато лучше видны кромки. Также глубина провара меньше. А при сварке углом назад наоборот зона сварки видна намного лучше, но глубина провара увеличивается.

Мы рекомендуем варить углом вперед только тонкий металл, поскольку данное положение наиболее удачно. А вот углом назад можно варить металлы любой другой толщины.

Таблицы

Да, опытные мастера с ходу способны подобрать правильный режим сварки, поскольку их опыт и знания позволяют. Но что делать новичкам? Им поможет специальная таблица для настройки режима. Точнее, таблицы, для каждого типа сварки. Но не стоит злоупотреблять готовыми настройками, экспериментируйте и не бойтесь применять на практике свой опыт.

Таблица №1. Рекомендуемые настройки для формирования стыкового шва в нижнем пространственном положении и сварки низкоуглеродистой и низколегированной стали в среде защитного газа (углекислого газа, смеси углекислоты с кислородом, а также смеси аргона с углекислым газом) током обратной полярности.

Таблица №2. Рекомендуемые настройки для формирования поворотно-стыковых соединений с применением углекислоты, смеси аргона с углекислотой и аргона с углекислотой и кислородом, ток обратной полярности.

Таблица №3. Рекомендуемые настройки для формирования нахлесточного шва с током обратной полярности, с применением углекислого газа или смеси углекислоты с аргоном.

Таблица №4. Рекомендуемые настройки для сварки углеродистой стали, пространственное положение вертикальное, применяется обратная полярность, а также углекислый газ или смесь углекислоты с аргоном.

Таблица №5. Рекомендуемые настройки для формирования горизонтального соединения на обратной полярности, с использованием углекислого защитного газа.

Таблица №6. Рекомендуемые настройки для формирования потолочных швов на обратной полярности с применением углекислого газа.

Таблица №7. Рекомендуемые режимы сварки в углекислом газе методом «точка», работа с углеродистой сталью.

Вместо заключения

Конечно, мы многие темы не затронули. Например, мы не рассказали, каково оптимальное рабочее давление углекислоты при сварке полуавтоматом, как производить расчет режима сварки в углекислом газе (или любом другом защитном газе). Это лишь краткий экскурс в тему выбора режима сварки. На нашем сайте вы найдете много полезного материала о полуавтоматической сварке и не только, обязательно прочтите, чтобы лучше разбираться в теме. И не забывайте практиковаться, ведь без практики теория теряют свою силу. Желаем удачи в работе!

Режимы сварки в защитных газах имеют такие основные параметры :

  • род, сила и полярность тока;
  • напряжение сварки,
  • диаметр проволоки;
  • скорость подачи электродной проволоки;
  • вылет, наклон и колебания электрода;
  • скорость сварки;
  • расход газа;
  • состав газа.

Таблица 1. Режимы сварки в в защитных газах (СO2,СO2+O2 и Ar+25%СO2 ) стыковых соединений низкоуглеродистых и низколегированных сталей в нижнем положении проволокой Св-08Г2СА (ток обратной полярности)

Диаметр детали, ммТолщина стенки, ммЗазор, ммСмещение кромок, ммДиаметр проволоки, ммСила сварочного тока, АНапря-
жение сварки, В
Скорость сварки, м/чВылет электрода, ммРасход газа, л/мин
50*1-1,50-10-10,8-1,2100-15018-1980-9010-127-8
100-150**2-2,50-1.50-10,8-1,2130-18018-1970-8010-137-8
200-500**8-150-10-11-1,2150-19019-2120-3010-157-8
200-400**30-600-10-12-3350-45032-3625-3525-6015-18

* Смещение электрода согласно Рис .1.

** Сварка корневого шва при V- или U-образной разделке

Рис. 1. Схемы расположения электрода при сварке в СO2 поворотных кольцевых швов тонкой стали 1 на весу.

Толщина металла, ммПоложение сваркиЗащитный газЗазор, ммДиаметр проволоки, ммСила сварочного тока, АНапряжение сварки, ВСкорость сварки, м/чВылет электрода, ммРасход газа, л/минПримечание
0,8+0,8ВСO20-0,50,8-1100-12017,5-1940-8086-7На медной прокладке
1+1Н0,8-1,2110-13518-2030-508-127-8
1+1В0,8-1,2120-15018-2040-808-127-8На весу или на медной прокладке
1,2+1,2НСO2 ,Ar+ 25%СO20-0,50,8-1,2120-14518-2030-508-126-8На медной прокладке
В130-16040-807-8На весу или на медной прокладке
2+2Н и В0-0,51-1,4160-22019-2230-7010-148-9На весу
5+5Н0-11,2-2200-50021-3530-4510-209-15
1,5+5Н и В0-11-1,4130-18019-2230-658-147-9

* Н – нижнее, В – вертикальное положение сварки.

Таблица 4. Режимы сварки в в защитных газах ( СO2 и Ar+25%СO2 ) углеродистых сталей в вертикальном положении проволокой Св-08Г2С (сварка сверху вниз, обратная полярность).

Толщина металла, ммСоединениеЗазор, ммНомер проходаДиаметр проволоки, ммСила сварочного тока, АНапря-
жение сварки, В
Скорость сварки, м/чВылет электрода, ммРасход газа, л/мин
0,8-10-110,8-1,290-13017-1840-608-116-7
1,2-20-10,8-1,2140-20018-2240-558-126-7
2,2-40-1,51,2-1,5180-26021-2435-559-127-8
3-61±111,2-1,4160-20020-2325-459-128-9
21,2-1,4200-26023-2520-409-128-9
8-102±1/211,2-1,4160-20020-2325-459-129-10
2-31,2-1,4200-26023-3520-359-129-10
0,8-10-0,0510,8-190-13017-1840-558-115-7
1,5-310,8-1,2140-20018-2240-508-126-7
3,2-5,50-11-21,2-1,4160-24020-2335-559-127-8
6-120-1,51-21,2-1,4200-26022-2625-3510-128-10

Режимы сварки в защитных газах ( СO

2)

горизонтальных швов проволокой Св-08Г2С (обратная полярность).

Толщина металла, ммСоединениеЗазор, ммДиаметр проволоки, ммСила сварочного тока, АНапря-
жение сварки, В
Скорость сварки, м/чВылет электрода, ммРасход газа, л/мин
0,8-10-0,50,8-170-13017-18,525-308-106-7
1,51-1,50,8-1,2100-15017,5-19,519-248-126-8
31,5-21-1,4140-19020-2316-1810-127-9
5-60-11-1,4150-25020-2310-1412-148-10

Режимы сварки в защитных газах ( СO

2)

швов в потолочном положении проволокой Св-08Г2С (обратная полярность).

Толщина металла, ммКатет шваСоединениеЗазор, ммДиаметр проволоки, ммЧисло проходовСила сварочного тока, АНапря-
жение сварки, В
Скорость сварки, м/чРасход газа, л/мин
1,5-21,5-20-10,8-1,21150-19018,5-2023-357
3-53-50-1,51-1,21160-26018-22,520-308
7-86-82160-27019,5-22,517-258-9

Режимы сварки (ориентировочные) углеродистых сталей в углекислом газе

электрозаклепками и точками.

Толщина листов, ммДиаметр проволоки, ммСила сварочного тока, АНапря-
жение сварки, В
Длительность сварки, сВылет электрода, ммРасход газа, л/минНаличие отверстия в верхнем листе
верхнегонижнего
0,50,5-2,00,8100-14018-210,6-1,16-105-6нет
0,80,8-3,00,8120-16019-220,5-1,28-105-6нет
1,01,0-4,00,8-1,0150-19020-231,0-1,88-125-7нет
1,51,5-4,01,0-1,2200-21021-241,4-1,810-126-7нет
1,51,5-4,01,0-1,2190-21021-231,3-1,610-126-7есть
2,02,0-5,01,0-1,4220-30022-272,0-3,010-146-8нет
2,02,0-5,01,0-1,4210-25022-251,6-2,010-146-7есть
3,03,0-6,01,2-1,6320-38030-352,0-3,012-147-8нет
3,03,0-6,01,2-1,6300-35028-321,9-2,512-147-8есть
4,04,0-6,01,4-1,6380-42033-373,0-3,513-158-9нет
4,04,0-6,01,4-1,6350-38032-352,2-3,013-158-9есть
5,05,0-7,01,4-2,0400-45034-403,5-4,014-169-10нет
6,06,0-8,01,6-2,4420-55038-443,0-4,014-189-10нет
8,08,0-10,02,0-2,4550-60043-483,0-4,016-1811-12нет

Примечание к Табл.7: постоянный ток обратной полярности; режимы сварки точками принимают текими же, как при сварке без отверстия для толщины верхнего листа.

Свар­ка MIG / MAG была изоб­ре­те­на в 1950‑х годах и основ­ные прин­ци­пы исполь­зу­ют­ся, в совре­мен­ных сва­роч­ных аппа­ра­тах по сей день. Она явля­ет­ся самой уни­вер­саль­ной и часто при­ме­ня­е­мой в кузов­ном ремон­те. Когда речь идёт о полу­ав­то­ма­ти­че­ской свар­ке, то, име­ют вви­ду, имен­но эту свар­ку. В отли­чие от дру­гих видов руч­ной свар­ки она отли­ча­ет­ся лёг­ко­стью при­ме­не­ния, при этом даёт каче­ствен­ный резуль­тат.

p, blockquote 1,0,0,0,0 –>

Более пра­виль­ное и пол­ное назва­ние это­го вида свар­ки GMAW (Gas metal arc welding – элек­тро­ду­го­вая свар­ка метал­ла в сре­де защит­но­го газа), но чаще исполь­зу­ют имен­но аббре­ви­а­ту­ру MIG / MAG (Metal Inert Gas/ Metal Active Gas).

p, blockquote 2,0,0,0,0 –>

MIG /MAG-свар­ка – это элек­тро-дуго­вая свар­ка, исполь­зу­ю­щая посто­ян­ный ток ( DC ). В каче­стве элек­тро­да в этом виде свар­ке исполь­зу­ет­ся про­во­ло­ка, кото­рая посту­па­ет в место свар­ки с опре­де­лён­ной задан­ной ско­ро­стью. Обыч­но такая свар­ка исполь­зу­ет­ся вме­сте с защит­ным газом. MIG – полу­ав­то­ма­ти­че­ская свар­ка, где в каче­стве защит­но­го газа исполь­зу­ет­ся инерт­ный газ (аргон, гелий..), а MAG – полу­ав­то­ма­ти­че­ская свар­ка, где в каче­стве защит­но­го газа исполь­зу­ет­ся актив­ный газ ( CO2 и сме­си).

p, blockquote 3,0,0,0,0 –>

Пер­во­на­чаль­но исполь­зо­вал­ся толь­ко аргон для свар­ки всех метал­лов, что было доро­го и недо­ступ­но. В даль­ней­шем ста­ли при­ме­нять дву­окись угле­во­да ( CO2 ) и сме­си и этот вид свар­ки стал более доступ­ным и полу­чил широ­кое рас­про­стра­не­ние.

p, blockquote 4,0,0,0,0 –>

MIG /MAG-свар­кой мож­но сва­ри­вать раз­лич­ные виды метал­ла: алю­ми­ний и его спла­вы, угле­ро­ди­стую и низ­ко­уг­ле­ро­ди­стую сталь и спла­вы, никель, медь и маг­ний.

p, blockquote 5,0,0,0,0 –>

Учи­ты­вая высо­кое каче­ство свар­ки и лёг­кость при­ме­не­ния, она, в допол­не­ние к это­му, рас­про­стра­ня­ет срав­ни­тель­но неболь­шой нагрев зоны, вокруг места свар­ки.

p, blockquote 6,0,0,0,0 –>

Принцип действия

p, blockquote 7,0,0,0,0 –>

Свар­ка MIG / MAG (Metal Inert Gas/ Metal Active Gas) осу­ществ­ля­ет­ся посред­ством элек­три­че­ской дуги, защи­щён­ной газом, обра­зу­е­мой меж­ду рабо­чей поверх­но­стью и про­во­ло­кой (элек­тро­дом), кото­рые авто­ма­ти­че­ски посту­па­ют к месту свар­ки при нажа­тии на курок. Ско­рость пода­чи про­во­ло­ки, напря­же­ние свар­ки и коли­че­ство газа уста­нав­ли­ва­ют­ся зара­нее. Из-за того, что сва­роч­ная про­во­ло­ка авто­ма­ти­че­ски посту­па­ет к месту свар­ки, а от свар­щи­ка зави­сят толь­ко мани­пу­ля­ции со сва­роч­ной горел­кой, такой вид свар­ки часто и назы­ва­ют полу­ав­то­ма­ти­че­ской.

p, blockquote 8,0,0,0,0 –>

При MIG /MAG-свар­ке очень важ­на настрой­ка сва­роч­но­го аппа­ра­та. При элек­тро­ду­го­вой свар­ке элек­тро­да­ми и при свар­ке TIG настрой­ки не так кри­тич­ны. Так­же важ­на чисто­та метал­ла перед нача­лом свар­ки.

p, blockquote 9,0,0,0,0 –>

Конец про­во­ло­ки дол­жен высту­пать на опре­де­лён­ное рас­сто­я­ние, ина­че слиш­ком длин­ная про­во­ло­ка-элек­трод не поз­во­лит защит­но­му газу нор­маль­но дей­ство­вать. Этот пара­метр мы рас­смот­рим ниже в этой ста­тье.

p, blockquote 10,0,0,0,0 –>

Оборудование для сварки MIG / MAG

Сва­роч­ный аппа­рат MIG / MAG содер­жит гене­ра­тор элек­три­че­ской дуги (транс­фор­ма­тор или инвер­тер), меха­низм пода­чи про­во­ло­ки, кабель «мас­сы» с зажи­мом, бал­лон для защит­но­го газа.

p, blockquote 11,0,0,0,0 –>

Защитный газ

Основ­ная зада­ча защит­но­го газа – защи­та рас­плав­лен­но­го метал­ла от атмо­сфер­но­го воз­дей­ствия (кис­ло­род окис­ля­ет, а азот и вла­га из воз­ду­ха вызы­ва­ют пори­стость шва) и обес­пе­чить бла­го­при­ят­ные усло­вия зажи­га­ния сва­роч­ной дуги.

p, blockquote 12,0,0,0,0 –>

Тип защит­но­го газа вли­я­ет на ско­рость плав­ле­ния, про­ник­но­ве­ние сва­роч­ной дуги, на коли­че­ство брызг при свар­ке, фор­му и меха­ни­че­ские свой­ства сва­роч­но­го шва. Опре­де­лён­ная смесь газов даёт суще­ствен­ный эффект ста­биль­но­сти элек­три­че­ской дуги и умень­ша­ет коли­че­ство брызг при свар­ке. Состав газа вли­я­ет на то, как рас­плав­лен­ный металл от про­во­ло­ки пере­да­ёт­ся к месту свар­ки.

p, blockquote 13,0,0,0,0 –>

Инерт­ные газы и их сме­си в каче­стве защит­но­го газа ( MIG ) исполь­зу­ют­ся для свар­ки алю­ми­ния и цвет­ных метал­лов. Обыч­но при­ме­ня­ют­ся аргон и гелий.

p, blockquote 14,0,0,0,0 –>

Актив­ные газы и сме­си ( MAG ) при­ме­ня­ет­ся для свар­ки ста­лей. Чаще все­го это чистая дву­окись угле­ро­да ( CO2 ), а так­же в сме­си с арго­ном.

p, blockquote 15,0,1,0,0 –>

Рас­смот­рим виды и сме­си защит­ных газов подроб­нее:

p, blockquote 16,0,0,0,0 –>

  • Чистая дву­окись угле­ро­да ( CO2 ) или дву­окись угле­ро­да с арго­ном, а так­же аргон в сме­си с кис­ло­ро­дом обыч­но исполь­зу­ют­ся, для свар­ки ста­ли. Если исполь­зо­вать дву­окись угле­ро­да ( CO2 ) в каче­стве защит­но­го газа, то полу­чи­те высо­кую ско­рость плав­ле­ния, луч­шую про­ни­ка­е­мость дуги, широ­кий и выпук­лый про­филь сва­роч­но­го шва. Когда исполь­зу­ет­ся чистая дву­окись угле­ро­да, то про­ис­хо­дит слож­ное вза­и­мо­дей­ствие сил вокруг рас­плав­лен­ных метал­ли­че­ских капель на кон­чи­ке насад­ки. Эти несба­лан­си­ро­ван­ные силы ста­но­вят­ся при­чи­ной обра­зо­ва­ния боль­ших неста­биль­ных капель, кото­рые пере­да­ют­ся в зону свар­ки слу­чай­ны­ми дви­же­ни­я­ми. Это явля­ет­ся при­чи­ной уве­ли­че­ния брызг вокруг сва­роч­но­го шва. Так­же чистый кар­бон диок­сид обра­зу­ет боль­ше испа­ре­ний.
  • Аргон, гелий и аргон­но-гели­е­вая смесь исполь­зу­ют­ся при свар­ке цвет­ных метал­лов и их спла­вов. Эти сме­си инерт­ных газов дают более низ­кую ско­рость плав­ле­ния, мень­шее про­ник­но­ве­ние и более узкий сва­роч­ный шов. Аргон дешев­ле гелия и сме­си гелия с арго­ном, а так­же даёт мень­шее коли­че­ство брызг при свар­ке. В отли­чие от арго­на, гелий даёт луч­шее про­ник­но­ве­ние, более высо­кую ско­рость плав­ле­ния и выпук­лый про­филь сва­роч­но­го шва. Но когда исполь­зу­ет­ся гелий, сва­роч­ное напря­же­ние воз­рас­та­ет при такой же длине сва­роч­ной дуги и рас­ход защит­но­го газа воз­рас­та­ет в срав­не­нии с арго­ном. Чистый аргон не под­хо­дит для свар­ки ста­ли, так как дуга ста­но­вит­ся слиш­ком неста­биль­ной.
  • Уни­вер­саль­ная смесь для угле­ро­ди­стой ста­ли состо­ит из 75% арго­на и 25% дву­оки­си угле­ро­да (может обо­зна­чать­ся 74/25 или C25 ). При исполь­зо­ва­нии тако­го защит­но­го газа обра­зу­ет­ся наи­мень­шее коли­че­ство брызг и умень­ша­ет­ся веро­ят­ность про­жи­га насквозь тон­ких метал­лов.

Металл дол­жен быть зачи­щен от крас­ки и ржав­чи­ны. Даже остат­ки крас­ки при свар­ке будут ухуд­шать каче­ство и проч­ность сва­роч­но­го соеди­не­ния. Место под зажим для мас­сы так­же долж­но быть зачи­ще­но.

p, blockquote 17,0,0,0,0 –>

Как держать сварочную горелку

p, blockquote 18,0,0,0,0 –>

Сва­роч­ной горел­кой полу­ав­то­ма­та MIG / MAG мож­но управ­лять одной рукой, но исполь­зо­ва­ние двух рук облег­чит кон­троль и уве­ли­чит акку­рат­ность и каче­ство сва­роч­но­го шва. Смысл в том, что­бы одной рукой дер­жать горел­ку и опи­рать­ся ей на дру­гую руку. Так мож­но лег­че кон­тро­ли­ро­вать рас­сто­я­ние от сва­ри­ва­е­мой поверх­но­сти и угол, а так­же делать горел­кой нуж­ные дви­же­ния при фор­ми­ро­ва­нии шва.

p, blockquote 19,0,0,0,0 –>

Что­бы рабо­тать дву­мя рука­ми, необ­хо­ди­мо исполь­зо­вать пол­но­раз­мер­ную сва­роч­ную мас­ку (луч­ше с авто­за­тем­не­ни­ем), кото­рая удер­жи­ва­ет­ся на голо­ве и руки оста­ют­ся сво­бод­ны­ми.

p, blockquote 20,0,0,0,0 –>

Движение сварочной горелкой во время сварки

p, blockquote 21,0,0,0,0 –>

  • Пря­мой шов, без каких-либо дви­же­ний в сто­ро­ну мож­но при­ме­нять на метал­лах, име­ю­щих прак­ти­че­ски любую тол­щи­ну, но здесь нужен опре­де­лён­ный опыт, что­бы удо­сто­ве­рить­ся, что сва­роч­ная дуга рав­но­мер­но дей­ству­ет на оба сва­ри­ва­е­мых метал­ла.
  • При свар­ке метал­ли­че­ских дета­лей, име­ю­щих тол­щи­ну мень­ше 1мм, луч­ше исполь­зо­вать элек­трод­ную про­во­ло­ку мень­ше­го диа­мет­ра, умень­шить пара­мет­ры силы тока, а так­же ско­рость пода­чи про­во­ло­ки. Нуж­но варить корот­ки­ми импуль­са­ми, делая пере­рыв меж­ду ними в пре­де­лах 1 секун­ды, что­бы металл успе­вал охла­дить­ся. Корот­кий пере­рыв нужен, что­бы сле­ду­ю­щий сег­мент сли­вал­ся с преды­ду­щим и полу­чал­ся моно­лит­ный гер­ме­тич­ный шов.
  • При свар­ке длин­но­го сег­мен­та, во избе­жа­ние пере­гре­ва метал­ла и теп­ло­вой дефор­ма­ции, мож­но сва­ри­вать неболь­ши­ми сег­мен­та­ми или точ­ка­ми с интер­ва­ла­ми, пооче­рёд­но, то с одно­го, то с дру­го­го кон­ца сва­ри­ва­е­мо­го отрез­ка. Таким обра­зом, мож­но про­ва­рить весь сег­мент, без полу­че­ния теп­ло­вой дефор­ма­ции листо­во­го метал­ла.

Скорость сварки

p, blockquote 22,0,0,0,0 –>

Ско­рость свар­ки – это ско­рость, с кото­рой элек­три­че­ская дуга про­хо­дит вдоль места свар­ки. Она кон­тро­ли­ру­ет­ся свар­щи­ком.

p, blockquote 23,0,0,0,0 –>

Ско­рость дви­же­ния сва­роч­ной горел­ки долж­на кон­тро­ли­ро­вать­ся свар­щи­ком и соот­вет­ство­вать ско­ро­сти пода­чи про­во­ло­ки и напря­же­нию элек­три­че­ской арки, выбран­ных, в соот­вет­ствии с тол­щи­ной сва­ри­ва­е­мо­го метал­ла и фор­мы шва.

p, blockquote 24,0,0,0,0 –>

Важ­но добить­ся пра­виль­ной ско­ро­сти свар­ки. Слиш­ком высо­кая ско­рость может вызвать слиш­ком мно­го брызг рас­плав­лен­но­го метал­ла. Защит­ный газ может остать­ся в быст­ро засты­ва­ю­щем рас­плав­лен­ном метал­ле, обра­зуя поры. Слиш­ком мед­лен­ная ско­рость свар­ки может стать при­чи­ной излиш­не­го про­ник­но­ве­ния сва­роч­ной дуги в сва­ри­ва­е­мый металл.

p, blockquote 25,0,0,0,0 –>

Ско­рость дви­же­ния сва­роч­ной горел­ки вли­я­ет на фор­му и каче­ство сва­роч­но­го шва. Мно­гие опыт­ные свар­щи­ки опре­де­ля­ют с какой ско­ро­стью нуж­но дви­гать сва­роч­ную горел­ку, гля­дя на тол­щи­ну и шири­ну шва в про­цес­се свар­ки.

p, blockquote 26,0,0,0,0 –>

Скорость потока защитного газа

Может зна­чи­тель­но вли­ять на каче­ство свар­ки. Ско­рость пото­ка защит­но­го газа долж­на стро­го соот­вет­ство­вать ско­ро­сти пода­чи про­во­ло­ки. Слиш­ком мед­лен­ный поток не даёт нор­маль­ной защи­ты от окис­ле­ния, в то вре­мя как слиш­ком высо­кая ско­рость пото­ка защит­но­го газа может создать завих­ре­ния, кото­рые так­же поме­ша­ют нор­маль­ной защи­те. Все откло­не­ния ведут к пори­сто­сти сва­роч­но­го шва. Важ­но создать ров­ный поток воз­ду­ха, без завих­ре­ний. На это может вли­ять нали­чие застыв­ших брызг на насад­ке.

p, blockquote 27,0,0,0,0 –>

Угол сварочной горелки во время сварки

Свар­ка MIG / MAG может сва­ри­вать раз­ные дета­ли под раз­ны­ми угла­ми, поэто­му не суще­ству­ет уни­вер­саль­но­го угла, кото­рый нуж­но соблю­дать при свар­ке. При свар­ке дета­лей, лежа­щих в одной плос­ко­сти иде­аль­ным будет угол в 15–20 гра­ду­сов (от вер­ти­каль­но­го поло­же­ния). При свар­ке двух дета­лей под углом удоб­нее дер­жать горел­ку под углом 45 гра­ду­сов. Прак­ти­ку­ясь, мож­но для себя опре­де­лить наи­бо­лее удоб­ный угол в кон­крет­ной ситу­а­ции.

p, blockquote 28,0,0,0,0 –>

Сварочное напряжение (длина электрической дуги)

Дли­на дуги одна из самых важ­ных пере­мен­ных в свар­ке MIG / MAG , кото­рую нуж­но кон­тро­ли­ро­вать. Нор­маль­ное напря­же­ние сва­роч­ной дуги в дву­оки­си угле­ро­да ( CO2 ) и гелии (He) намно­го выше, чем в Ароне (Ar). Напря­же­ние дуги вли­я­ет на про­ник­но­ве­ние, проч­ность и шири­ну шва.

p, blockquote 29,0,0,0,0 –>

С уве­ли­че­ни­ем напря­же­ния элек­три­че­ской дуги, шов ста­но­вит­ся более плос­ким и широ­ким и до опре­де­лён­ных пре­де­лов уве­ли­чи­ва­ет­ся про­ник­но­ве­ние. Низ­кое напря­же­ние даёт более узкий и выпук­лый шов и умень­ша­ет­ся про­ник­но­ве­ние.

p, blockquote 30,1,0,0,0 –>

Слиш­ком боль­шое и слиш­ком малень­кое напря­же­ние вызы­ва­ет неста­биль­ность дуги. Избы­точ­ное напря­же­ние явля­ет­ся при­чи­ной обра­зо­ва­ния брызг и пори­сто­сти шва.

p, blockquote 31,0,0,0,0 –>

Сварочная проволока

Сва­роч­ная про­во­ло­ка слу­жит при­са­доч­ным мате­ри­а­лом. При свар­ке про­во­ло­ка посту­па­ет к месту шва и рас­плав­ля­ет­ся вме­сте с кром­ка­ми метал­лов, запол­няя шов. У неё дол­жен быть хими­че­ский состав, схо­жий с соста­вом сва­ри­ва­е­мых мате­ри­а­лов. К при­ме­ру, содер­жа­ние угле­ро­да, от кото­ро­го зави­сит пла­стич­ность шва.

p, blockquote 32,0,0,0,0 –>

Тем­пе­ра­ту­ра плав­ле­ния элек­трод­ной про­во­ло­ки долж­на быть чуть ниже или такой же, как метал­лов, кото­рые сва­ри­ва­ют­ся. Если про­во­ло­ка будет пла­вить­ся поз­же, чем сва­ри­ва­е­мый металл, то уве­ли­чи­ва­ет­ся веро­ят­ность про­жже­ния метал­ла насквозь.

p, blockquote 33,0,0,0,0 –>

Для свар­ки алю­ми­ния и его спла­вов при­ме­ня­ет­ся про­во­ло­ка из чисто­го алю­ми­ния или с при­ме­сью маг­ния и крем­ния.

p, blockquote 34,0,0,0,0 –>

Диа­метр сва­роч­ной про­во­ло­ки

p, blockquote 35,0,0,0,0 –>

Диа­метр сва­роч­ной про­во­ло­ки вли­я­ет на раз­мер шва, глу­би­ну про­ник­но­ве­ния сва­роч­ной дуги, проч­ность шва и на ско­рость свар­ки.

p, blockquote 36,0,0,0,0 –>

Боль­ший диа­метр элек­тро­да (про­во­ло­ки) созда­ёт шов с мень­шим про­ник­но­ве­ни­ем, но более широ­кий. Выбор диа­мет­ра про­во­ло­ки зави­сит от тол­щи­ны сва­ри­ва­е­мо­го метал­ла и поло­же­ния сва­ри­ва­е­мых дета­лей.

p, blockquote 37,0,0,0,0 –>

В боль­шин­стве слу­ча­ев малень­кий диа­метр про­во­ло­ки под­хо­дит для тон­ко­го метал­ла и для свар­ки в вер­ти­каль­ном поло­же­нии.

p, blockquote 38,0,0,0,0 –>

Про­во­ло­ка боль­ше­го диа­мет­ра жела­тель­на для более тол­сто­го метал­ла. Ей нуж­но рабо­тать с умень­шен­ной ско­ро­стью пода­чи про­во­ло­ки, из-за более низ­ко­го про­ник­но­ве­ния.

p, blockquote 39,0,0,0,0 –>

Длина выхода сварочной проволоки

p, blockquote 40,0,0,0,0 –>

До каса­ния сва­ри­ва­е­мо­го метал­ла про­во­ло­ка долж­на высту­пать из нако­неч­ни­ка на опре­де­лён­ную дли­ну.

p, blockquote 41,0,0,0,0 –>

Этот сег­мент про­во­ло­ки про­во­дит сва­роч­ный ток. Таким обра­зом, уве­ли­че­ние дли­ны это­го сег­мен­та уве­ли­чи­ва­ет элек­три­че­ское сопро­тив­ле­ние и тем­пе­ра­ту­ру это­го отрез­ка про­во­ло­ки. Чем боль­ше высту­па­ет про­во­ло­ка, тем мень­ше будет элек­три­че­ская дуга. При длин­ном выхо­де про­во­ло­ки из нако­неч­ни­ка полу­ча­ет­ся узкий шов, низ­кое про­ник­но­ве­ние и повы­шен­ная тол­щи­на шва.

p, blockquote 42,0,0,0,0 –>

При умень­ше­нии дли­ны выхо­да отрез­ка сва­роч­ной про­во­ло­ки даёт про­ти­во­по­лож­ный эффект. Уве­ли­чи­ва­ет­ся про­ник­но­ве­ние сва­роч­ной дуги, полу­ча­ет­ся более широ­кий и тон­кий шов.

p, blockquote 43,0,0,0,0 –>

Типич­ная дли­на выхо­да сва­роч­ной про­во­ло­ки варьи­ру­ет­ся от 6 до 13 мм.

p, blockquote 44,0,0,0,0 –>

При исполь­зо­ва­нии порош­ко­вой про­во­ло­ки без газа дли­на выхо­да сва­роч­ной про­во­ло­ки долж­на быть боль­ше, чем с газом (30 – 45 мм).

p, blockquote 45,0,0,1,0 –>

Cварка самозащитной проволокой без газа

Порош­ко­вая само­за­щит­ная про­во­ло­ка, кото­рую так­же назы­ва­ют флю­со­вой име­ет сер­деч­ник, содер­жа­щий в себе все необ­хо­ди­мые при­сад­ки для защи­ты шва и сва­роч­ной дуги в про­цес­се свар­ки без газа.

p, blockquote 46,0,0,0,0 –>

Такая про­во­ло­ка содер­жит ком­по­нен­ты, обра­зу­ю­щие газ во вре­мя свар­ки, анти­окис­ли­те­ли, очи­сти­те­ли, а так­же при­сад­ки, улуч­ша­ю­щие элек­три­че­скую дугу. Таким обра­зом, при воз­ник­но­ве­нии дуги обра­зу­ет­ся газ, кото­рый защи­ща­ет рас­плав­лен­ный металл, а так­же спе­ци­аль­ные ком­по­нен­ты обра­зу­ют подо­бие шла­ка поверх метал­ла во вре­мя осты­ва­ния, кото­рый защи­ща­ет его во вре­мя затвер­де­ва­ния.

p, blockquote 47,0,0,0,0 –>

p, blockquote 48,0,0,0,0 –>

Такую про­во­ло­ку удоб­но исполь­зо­вать, когда сва­роч­ный аппа­рат нужен не часто. Пре­иму­ще­ством явля­ет­ся луч­шая мобиль­ность обо­ру­до­ва­ния (не тре­бу­ет­ся бал­лон с газом) и воз­мож­ность исполь­зо­ва­ния на ули­це (даже в вет­ре­ную пого­ду, вви­ду отсут­ствия при­то­ка защит­но­го газа).

p, blockquote 49,0,0,0,0 –>

При свар­ке само­за­щит­ной про­во­ло­кой обра­зу­ет­ся мно­го дыма и испа­ре­ний и слож­но визу­аль­но кон­тро­ли­ро­вать про­цесс свар­ки. Сва­роч­ный флюс, кото­рый оста­ёт­ся поверх гото­во­го шва, не про­во­дит элек­три­че­ства, поэто­му после охла­жде­ния, что­бы сва­ри­вать поверх гото­во­го шва, его необ­хо­ди­мо сна­ча­ла зачи­стить.

p, blockquote 50,0,0,0,0 –>

При помо­щи порош­ко­вой про­во­ло­ки мож­но сва­ри­вать более тол­стый металл, чем при помо­щи про­во­ло­ки, исполь­зу­е­мой с газом.

p, blockquote 51,0,0,0,0 –>

Свар­ка при помо­щи это­го типа про­во­ло­ки «про­ща­ет» недо­ста­точ­но хоро­шо под­го­тов­лен­ную поверх­ность.

p, blockquote 52,0,0,0,0 –>

Полярность при сварке без газа

Поляр­ность – это направ­ле­ние пото­ка элек­три­че­ства в цепи сва­роч­но­го аппа­ра­та.

p, blockquote 53,0,0,0,0 –>

При пря­мой поляр­но­сти элек­трод (про­во­ло­ка) – это минус, а сва­ри­ва­е­мый металл (зазем­ле­ние) – это плюс. При обрат­ной поляр­но­сти элек­трод – плюс, а сва­ри­ва­е­мый металл – минус.

p, blockquote 54,0,0,0,0 –>

Для свар­ки при помо­щи порош­ко­вой про­во­ло­ки исполь­зу­ет­ся пря­мая поляр­ность (про­во­ло­ка – минус, зазем­ле­ние — плюс).

p, blockquote 55,0,0,0,0 –>

При свар­ке с газом – элек­трод (+), мас­са (-).

p, blockquote 56,0,0,0,0 –>

Поляр­ность, с кото­рой будет нор­маль­но рабо­тать порош­ко­вая про­во­ло­ка, зави­сит от её соста­ва. Быва­ют и такие, кото­рые будут нор­маль­но сва­ри­вать с любой поляр­но­стью.

p, blockquote 57,0,0,0,0 –>

В боль­шин­стве слу­ча­ев, при свар­ке без газа сва­роч­ный аппа­рат дол­жен быть настро­ен с пози­тив­ным зазем­ле­ни­ем и нега­тив­ным элек­тро­дом. Это даст боль­ше мощ­но­сти для плав­ле­ния порош­ко­вой про­во­ло­ки.

p, blockquote 58,0,0,0,0 –>

Звук правильной сварки полуавтоматом

При обу­че­нии свар­ки MIG / MAG , важ­но слу­шать зву­ки, изда­ва­е­мые при свар­ке и, конеч­но же, кон­тро­ли­ро­вать про­цесс свар­ки визу­аль­но (через затем­нён­ную мас­ку). При пра­виль­ной свар­ке полу­ав­то­ма­том изда­ёт­ся звук, напо­ми­на­ю­щий жар­ку мяса на ско­во­ро­де. Этот «шипя­ще-жуж­жа­щий» звук гово­рит о хоро­шем балан­се меж­ду ско­ро­стью пода­чи про­во­ло­ки, пода­че газа и настрой­ка­ми напря­же­ния. Застыв­шие брыз­ги на насад­ке или нако­неч­ни­ке сва­роч­ной горел­ки ухуд­ша­ют поток защит­но­го газа, пло­хой кон­такт зажи­ма мас­сы, пло­хо очи­щен­ная область свар­ки, всё это может ухуд­шать фор­ми­ро­ва­ние сва­роч­ной дуги, и будет отра­жать­ся на зву­ке свар­ки. Так­же може­те про­чи­тать ста­тью “как настро­ить сва­роч­ный полу­ав­то­мат” для боль­ше­го пони­ма­ния пра­виль­ной настрой­ки аппа­ра­та перед свар­кой.

“>

ПОДГОТОВКА ДЕТАЛЕЙ И РЕЖИМЫ СВАРКИ В ЗАЩИТНЫХ ГАЗАХ

Требования на подготовку деталей под сварку в защитных газах в основном аналогичны, как и для сварки под флюсом.

Основные типы и конструктивные элементы выполняемых дуговой сваркой в защитных газах швов сварных соединений из сталей, а также сплавов на никелевой и железоникелевой основах регламентированы ГОСТ 14771-76, которым предусмотрено четыре типа соединений при сварке металла толщиной от 0,5 до 100 мм и более. В зависимости от формы подготовки кромок и толщины свариваемых деталей швы вы­полняются в соединениях: с отбортовкой кромок, без скоса кромок, со скосом кромок одной или двух кромок как с одной, так и с двух сторон. По характеру выполнения швов они могут быть одно — и двусторонними. Односторонние швы могут выполняться как на весу, так и на различно­го рода съемных и остающихся подкладках.

Стандартом установлены следующие обозначения способов сварки в защитных газах: ИН — в инертных газах неплавящимся электродом без присадочного материала, ИНП — в инертных газах неплавящимся элек­тродом с присадочным металлом, ИП — в инертных газах и их смесях с углекислым газом и кислородом плавящимся электродом, УП — в угле­кислом газе и его смеси с кислородом плавящимся электродом.

К основным параметрам сварочных режимов сварки в защитных га­зах относятся диаметр электрода или электродной проволоки, свароч­ный ток, напряжение дуги, скорость подачи электродной проволоки, скорость сварки, вылет электрода, расход защитного газа, наклон элек­трода вдоль оси шва, род тока и полярность.

Диаметр электродной проволоки. Выбирается в пределах 0,5-3 мм в зависимости от толщины свариваемого металла и положения шва в пространстве. С уменьшением диаметра проволоки при прочих равных условиях повышается устойчивость горения дуги, увеличиваются глу­бина проплавления и коэффициент наплавки, уменьшается разбрызги­вание жидкого металла.

С увеличением диаметра проволоки должна быть увеличена сила

тока.

Сварочный ток. С увеличением сварочного тока повышается глу­бина проплавления. Это приводит к увеличению доли основного метал­ла в шве. Ширина шва сначала несколько увеличивается, а затем уменьшается. Сварочный ток устанавливают в зависимости от диаметра электрода и толщины свариваемого металла.

Напряжение дуги. С увеличением напряжения дуги глубина про­плавления уменьшается, а ширина шва увеличивается. Чрезмерное уве­личение напряжения дуги сопровождается повышенным разбрызгива­нием жидкого металла, ухудшением газовой защиты и образованием пор в наплавленном металле. Напряжение дуги устанавливается в зави­симости от выбранного сварочного тока.

Скорость подачи электродной проволоки. Скорость подачи связана со сварочным током. Ее устанавливают с таким расчетом, чтобы в про­цессе сварки не происходило коротких замыканий и обрывов дуги, а протекал устойчивый процесс плавления электрода.

Скорость сварки. С увеличением скорости сварки уменьшаются все геометрические размеры шва. Она устанавливается в зависимости от толщины свариваемого металла и с учетом обеспечения хорошего фор­мирования шва. Сварку металла большой толщины лучше выполнять более узкими валиками на большей скорости. При слишком большой скорости сварки конец электрода может выйти из зоны защиты и окис­литься на воздухе. Медленная скорость сварки вызывает чрезмерное увеличение сварочной ванны и повышает вероятность образования пор в металле шва.

Вылет электрода. С увеличением вылета электрода ухудшаются ус­тойчивость горения дуги и формирование шва, а также увеличивается разбрызгивание жидкого металла. Очень малый вылет затрудняет на­блюдение за процессом сварки, вызывает частое подгорание газового сопла и токоподводящего контактного наконечника. Кроме вылета элек­трода, необходимо выдерживать определенное расстояние от сопла го­релки до поверхности свариваемого металла, так как с увеличением это­го расстояния ухудшается газовая защита зоны сварки и возможно по­падание кислорода и азота воздуха в расплавленном металле. Величину вылета электрода, а также расстояние от сопла горелки до поверхности металла устанавливают в зависимости от выбранного диаметра элек­тродной проволоки. Некоторые значения параметров при сварке в угле­кислом газе приведены в таблице 14.1.

Таблица 14.1

Параметры сварки в углекислом газе

Диаметр электродной проволоки, мм

0,5-0,8

1-1,4

1,6-2

2,5-3

Вылет электрода, мм

7-10

8-15

15-25

18-30

Расстояние от сопла горелки до металла, мм

7-10

8-14

15-20

18-22

Расход углекислого газа, дм /мин

5-8

8-16

15-20

20-30

Расход защитного газа определяют в основном в зависимости от выбранного диаметра электродной проволоки и тепловой мощности ду­ги, зависящей от силы тока. Но на него оказывают также влияние ско­рость сварки, конфигурация изделия и наличие движения воздуха в це­хе, ветра и т. п. Для улучшения газовой защиты в этих случаях приходит­ся увеличивать расход защитного газа, уменьшать скорость сварки, при­ближать сопло к поверхности металла или пользоваться защитными щитами и другими устройствами.

Наклон электрода вдоль оси шва оказывает влияние на глубину проплавления и качество шва. При сварке углом вперед труднее вести наблюдение за формированием шва, но лучше видны свариваемые кромки и легче управлять электродом. Ширина шва при этом возраста­ет, а глубина проплавления уменьшается. Сварку углом вперед реко­мендуется применять при небольших толщинах металла, когда сущест­вует опасность появления сквозных прожогов. При сварке углом назад улучшается видимость зоны сварки, повышается глубина проплавления и наплавленный металл получается более плотным.

Cварка в среде защитных газов: технология, режимы, виды

Защитные газы являются одним из лучших средств, которые могут уберечь сварочную ванну от влияния внешних факторов. Чтобы условия сварки были максимально приемлемыми, на расплавленный металл не должно ни что воздействовать, кроме электрической дуги и ничего не должно попадать в нее, кроме расплавленного присадочного материала. Сварка в среде защитных газов соответствует заявленным условиям и поэтому активно применяется в промышленности, строительстве, ремонтных цехах и прочих областях.

Процесс сварки в среде защитных газов

Здесь удачно объединяется технология использования газа и электрической дуги. Это позволяет объединить преимущества обоих вариантов и получить такое средство соединения металла, которое бы могло гарантировать надежность эксплуатации. Универсальность применения обусловлена большим количеством газов, используемых здесь. Для каждого типа металла можно подобрать свою разновидность, особенности которой будут соответствовать заданным условиям. Механизированная сварка в среде защитных газов позволяет соединять все типы металлов, которые применяются в производстве. Это касается их сплавов и даже разнородных деталей.

Преимущества

Свою популярность сварка в среде защитных газов получила благодаря своим положительным качествам, среди которых стоит отметить следующие:

  • Качество соединения существенно превосходит многие другие способы сварки;
  • Некоторые виды защитных газов имеют относительно невысокую стоимость;
  • Освоение данной методики для сварщиков, которые уже обладают опытом работы, не составляет большого труда;
  • Соединение может происходить как на малых толщинах, так и для более толстых деталей;
  • Сварка получает высокий уровень производительности;
  • Работа с нержавейкой, алюминием, медью и прочими цветными металлами и их сплавами уже не вызывает большого труда, так как благодаря газовой защите, многие проблемы с ними решились.

Недостатки

Недостатки сварки в защитных газах оказываются не столь существенными, как преимущества, но все же имеются:

  • Ветер может сдувать защитный газ, который выходит с горелки, что в итоге лишает сварку основного преимущества;
  • Применение в закрытых помещениях, где нет проветривания, также не рекомендуется, так как это связано с риском взрыва и загазованности помещения;
  • Подготовка полуавтомата занимает много времени, так что его применяют только для серьезных работ;
  • Такие газы как аргон обладают высокой стоимостью и некоторые швы оказывается делать не выгодно с экономической точки зрения.

Режимы

Для сварки в защитном газе применяют чаще всего инверторные полуавтоматы. Они выступают в качестве основного источника питания и регулируют параметры выходного тока и напряжения. Диапазон регулировки зависит от конкретной модели. Но если брать стандартные параметры соединения, когда не нужно работать со сверхвысокой толщиной, то с ней может справиться практически любой аппарат. Помимо этого к основным параметрам, влияющим на режим, входит расход газа и скорость подачи проволоки. Здесь приведены стандартные данные для полуавтоматов:

Толщина, мм

Диаметр проволоки, ммВеличина тока, АНапряжение, ВСкорость подачи проволоки, м/чРасход газа
1,50,812019150

6

1,7

1150202007
21,217021250

10

3

1,42002249012
4-51,625025680

14

6 и более

1,630030700

16

Технология сварки

Сварка в защитных газах оказывается весьма эффективной, но для достижения высокопоставленных результатов нужно точно придерживаться технологии. Технология сварки в защитных газах имеет ряд отличий от других способов, что сказывается на технологии ее проведения.

В самом начале идет подготовка металла под сварку. Хоть здесь она оказывает на столь большое влияние, но ее стоит привести. После этого идет подключение и настройка оборудования, чтобы оно соответствовало требуемым режимам сваривания. Дальнейшим этапом будет розжиг дуги, который производится одновременно с подпаливанием пламени горелки.

«Важно!

Если процедура сваривания требует предварительного подогрева, то стоит включить горелку заранее и прогреть ею заготовку.»

После того, как сварочная ванна начала образовываться вокруг электрической дуги, можно подавать проволоку. Для этого используется специальное механизированное устройство, которое позволяет обеспечить подачу с постоянной скоростью. Это удобно, когда нужно сделать длинный шов, не разрывая дуги. Неплавкий электрод позволяет поддерживать дугу максимально длительный период времени.

При использовании постоянного тока, сварка производится на обратной полярности. В данном случае сокращается вероятность разбрызгивания, но увеличивается расход металла. Дело в том, что коэффициент наплавления в данном случае будет значительно снижен. При прямой полярности он оказывается в 1,5 раза выше. Ведение ванны желательно осуществлять слева направо, чтобы специалист мог видеть, как формируется шов, а не действовать вслепую. Все манипуляции осуществляются по направлению к себе.

Схема подачи газа при наплавлении

Формирование шва происходит просто, так что мастеру нужно только ровно вести аппарат на одинаковой скорости. При хорошо настроенном механизме подачи так можно провести до самого конца шва. После отрыва дуги, который должен совершаться по направлению обратному, куда шел шов, может потребоваться дополнительное прогревание.

Схема сварки в среде защитных газов

Используемые защитные газы

Защитный газ для сварки полуавтоматом подбирается для каждого случая в отдельности, так как у всех них свои свойства. Есть, конечно же, и универсальные газы, но везде есть особенности применения.

Аргон является как раз тем самым универсальным вариантом. Он отличается более высокой стоимостью и высоким уровнем защиты, которые существенно превосходит остальных. Это инертный газ, создающий непроницаемую оболочку. Он оказывается вреден для здоровья при использовании, так что здесь обязательно нужно использовать средства индивидуальной защиты.

Водород относится к редко используемым газам. Он поставляется в баллонах в сжиженном состоянии под большим давлением. Особенности сварки в защитных газах с водородом выводят его в особую категорию. Лучше всего он подходит для сварки меди.

Азот также дает защитную среду во время сварки. Механизированное соединение металлических изделий в среде азота обходится относительно недорого и при этом обладает высокими прочностными характеристиками. Газ без запаха и цвета, а также не взрывоопасен.

Углекислота очень часто используется в качестве защитного газа. Она обладает невысокой стоимостью и хорошо подходит для сварки сталей со средним и низким содержанием углерода. Ею можно выполнять основную массу производственных операций.

Стандарты

Данный процесс производится согласно ГОСТ 14771-76. Этот стандарт включает в себя положения о сварных швах, создаваемых электродуговой сваркой проводимой во всех видах защитных газов.

Заключение

Среди современного разнообразия методик, данный тип сварки занимает уверенное место. Соотношение стоимости получения шва, его качества и простоты применения является одними из лучших на сегодняшний день.

 

Обзор современного методического обеспечения расчета размеров шва при механизированной сварке в смеси газов

АННОТАЦИЯ

Современное крупное машиностроение трудно представить без повсеместного применения сварки в защитных газах. Отечественный и зарубежный опыт иллюстрирует, что одним из эффективных путей совершенствования сварки сталей плавящимся электродом в окислительных защитных газах является использование смесей газов. Однако обзор существующих методик по расчету геометрических размеров шва при механизированной сварке в защитных газовых смесях показал их полное отсутствие.  Необходимы дальнейшие исследования и экспериментальные данные для создания качественных методик по расчету размеров шва при сварке в смесях.

ABSTRACT

Modern large-scale engineering is difficult to imagine without the widespread use of welding in protective gases. Domestic and foreign experience illustrates that one of the most effective ways to improve steels welding with a melting electrode in oxidizing protective gases is the use of gas mixtures. However, a survey of existing methods for calculating the geometric dimensions of the seam during mechanized welding in protective gas mixtures has showed their complete absence. Further research and experimental data are necessary to create high-quality methods for calculating the seam size during welding in mixtures.

 

Ключевые слова: дуговая сварка, механизированная сварка, смесь газов, защита шва, форма шва, расчет размеров шва.

Keywords: spark welding; mechanized welding; gas mixtures; seam protection; seam form; size calculation of a seam.

 

Дуговая сварка плавящимся электродом в среде защитных газов благодаря своей универсальности, возможности механизации и автоматизации процесса является одним из самых распространенных способов сварки в машиностроительном производстве.

Несмотря на широкую распространенность способа, при реализации технологии механизированной сварки зачастую сталкиваются с проблемой обеспечения требуемого качества сварных соединений.

Равнопрочность сварного шва основному металлу – одно из главных требований, предъявляемых к сварному соединению. Прочность, отсутствие дефектов, и требуемая работоспособность сварного соединения в значительной мере определяется правильно рассчитанными размерами и формой шва [3, 11], что, в свою очередь, ведет к существенному снижению расхода сварочных материалов и электроэнергии при производстве сварных конструкций.

Форму шва характеризуют основными параметрами – ширина, высота усиления и глубина проплавления основного металла.

Изменяя химический состава защитной среды, можно эффективно влиять на параметры дуги и глубину проплавления металла. К примеру, добавление к аргону газов с высоким потенциалом ионизации или газов с большой энергией диссоциации молекул ведет к увеличению напряжения дуги, плотности тока и глубины проплавления металла [12].

При сварке углеродистых и низколегированных сталей в качестве защитного газа чаще всего применяется углекислый газ. Однако процесс сварки в этом газе наряду с неоспоримыми достоинствами имеет существенные недостатки, которые ограничивают его использование при изготовлении металлоконструкции ответственного назначения.

Знание свойств компонентов защитных газов и их влияние на сварочный процесс позволяет создать оптимальную защитную среду с точки зрения оптимизации процесса сварки — повышение показателей качества и служебных характеристик сварных изделий, улучшения условий труда и повышения его производительности, а также соблюдения экологических норм при работе. При использовании смесей наблюдается существенная экономия за счет снижения расхода сварочной проволоки, вследствие уменьшения потерь на разбрызгивание, снижение трудозатрат на зачистку сварных соединений от брызг, повышение производительности труда сварщиков на 10 — 20 процентов.  [9, 15].

В ближайшем и более отдаленном будущем использование газовых смесей станет одним из ведущих способов защиты сварного шва при соединении материалов [13].

Вопрос о влиянии отдельных параметров режима сварки в СО2 на размеры шва подробно рассматривался в 60-70х годах во многих работах [1, 6, 14], однако обобщенных зависимостей для расчета предложено не было, что сильно затрудняло применение данных исследований в производстве.

Данную проблему в 1973 году решил ассистент на кафедре конструкции судов ДВГТУ Луценко В.Т. За основу в своей работе [10] он использовал методы, применяемые для расчета размеров шва при сварке под флюсом [7]. Однако, данные методики сравнительно сложны и могли быть использованы только после установления многих эмпирических коэффициентов.

В работе [10] предложен метод расчета ширины шва при сварке под флюсом с использованием комплексного параметра, характеризующего давление дуги и удельную ширину шва.

Данный метод, позволяющий при минимальном количестве экспериментов получить зависимость для расчета ширины шва, был принят за основу при расчете ширины и усиления шва, а также глубины проплавления основного металла при механизированной и автоматической сварке в СО2. Это позволило одновременно учесть тепловое и механическое воздействие сварочной дуги, которые и определяют размеры шва [4].

Интерес представляет известная, вообще говоря, общепринятая методика расчета режимов при двусторонней сварке и геометрических размеров шва при автоматической и механизированной сварке под флюсом [2]. В расчетной методике рассматривается только проблема расчета высоты углового шва в зависимости от режима сварки, однако вопрос определения размеров минимального сечения и глубины проплавления остался открытым.

В работе [8] Н.Л. Зайцев усовершенствовал эту методику, основываясь на подтвержденных экспериментами допущениях: зона проплавления при сварке углового шва описывается с помощью уравнения эллипса, а площадь поперечного сечения шва остается постоянной при заданных параметрах режима сварки независимо от его положения. Предлагаемая методика позволила оптимизировать расчет геометрических размеров угловых швов.

В 2014 году Д.С. Бузорина [5] успешно исследовала влияние положение электрода в разделке, угла разделки, скорости сварки, состава защитной среды и вылета электрода на площадь сечения шва и полный тепловой КПД процесса сварки в зависимости от состава защитного газа. Полученные экспериментальные данные Д.С. Бузориной могут быть дополнены и использованы при оптимизации существующих методик для расчета размеров шва.

Данные методики чаще других используются в литературе и приняты за основу при преподавании основ сварки плавлением во всех университетах РФ. Наблюдается потребность в качественных методиках по расчету параметров режима и геометрических размеров шва при механизированной сварке, учитывающих современные тенденции по внедрению защитных смесей. Необходимо экспериментально, на большом количестве образцов при сварке в смеси газов, проследить за изменением конфигурации швов в зависимости от химического состава защитной среды, сопоставить результаты эксперимента с результатами расчёта по методикам [2, 10] и попытаться развить и усовершенствовать эти методики.

 

Список литературы:
1. Акулов, А. И. Влияние режима и пространственного положения на размеры шва при сварке в СО2 / А. И. Акулов, В. В. Спицын // Сварочное производство. – 1971. – №2. – С. 27-39.
2. Акулов, А. И. Технология и оборудование сварки плавлением : учебник для студентов вузов / А. И. Акулов, Г. А. Бельчук, В. П. Демянцевич. – М.: Машиностроение, 1977. – 432 с
3. Бельчук, Г. А. Сварные соединения в корпусных конструкциях / Г. А. Бельчук. – Л. : Судостроение, 1969. – 279 с.
4. Бродский, А. Я. Давление дуги при сварке электрозаклепками с глубоким проплавлением / А. Я. Бродский, Л. Н. Скороходов // Сварочное производство. – 1966. – №6.
5. Бузорина, Д. С. Исследование условий формирования шва и разработка методики расчета режимов дуговой сварки в защитных газах: автореф. дис. … канд. техн. наук: 05.02.10 / Д. С. Бузорина. — Екатеринбург, 2014. — 22 с.
6. Влияние режима сварки и положения шва в пространстве на их размеры при полуавтоматической сварке в СО2 / В. С. Головченко [и др.]. – Технология судостроения. – 1967. – №2.
7. Дятлов, В. И. Методика расчета автоматической сварки / В. И. Дятлов. – Киев: Облиздат, 1959. – 73 с.
8. Зайцев, Н. Л. Совершенствование методики расчета размеров угловых швов // Вестник ЮУрГУ. Серия Металлургия. – 2015. – №1. – С. 48-50.
9. Кайдалов, А. А. Эффективность применения защитных газовых смесей при дуговой сварке сталей / А. А. Кайдалов, А. Н. Гаврик // Сварщик. – 2011. – № 4. – С. 28–31.
10. Луценко, В. Т. Методика приближенного расчета параметров шва при сварке (наплавке) в СО2 // Сварочное производство. – 1973. – № 1. – С. 20-22.
11. Навроцкий, Д. И. Прочность сварных соединений / Д. И. Навроцкий. – М.: Машгиз, 1961. – 178 с.
12. Паршин, С. Г. Электродуговая сварка сталей и сплавов с применением активирующих материалов: дис. … д-ра техн. наук: 05.03.06 / С. Г Паршин. – Тольятти, 2006. – 404 с.
13. Патон Б. Е. Применение защитных газов в сварочном производстве : обзор / Б. Е Патон, С. Т. Римский, В. И. Галинич // Автоматическая сварка. – 2014. – №6-7. – С. 17-25.
14. Повышение производительности сварки в СО2 / В. Т. Золотых [и др.] // Сварочное производство. – 1966. – №8. – С. 16-19.
15. Синица, А. Н. Сравнение экономической эффективности применения углекислого газа и смеси Ar + СО2 в качестве защитных сред при сварке / А. Н. Синица, М. А. Синица, М. Ж. Солодков // Материалы, оборудование и ресурсосберегающие технологии: материалы междунар. научно-техн. конф. – Могилев: Изд – во Белорусско-Российского университета, 2017 – Ст. 153.

 

Защита сварного шва

Защита сварного шва

Защита сварного шва

Основными задачами защитного газа являются защита сварочной ванны от воздействия атмосферы, то есть от окисления и поглощения азота, а также стабилизация электрической дуги. Выбор защитного газа также может влиять на характеристики профиля проплавления шва.

Защита от защитного газа

Защитный газ для сварки MIG / GMAW

Основным газом для сварки MIG / MAG является аргон (Ar).Гелий (He) может быть добавлен для увеличения проплавления и текучести сварочной ванны. Для сварки всех марок можно использовать аргон или смеси аргона и гелия. Однако небольшие добавки кислорода (O 2 ) или диоксида углерода (CO 2 ) обычно необходимы для стабилизации дуги, улучшения текучести, а также улучшения качества наплавленного металла. Для нержавеющих сталей также доступны газы, содержащие небольшое количество водорода (H 2 ).

В таблице указан соответствующий выбор защитного газа для сварки MIG / MAG с учетом различных типов нержавеющей стали и типов дуги.

Основной металл (вид материала)

Аустенитная
Нержавеющая
Сталь

Дуплекс
Нержавеющая сталь
Сталь

Супер-дуплекс
Нержавеющая сталь
Сталь

Ферритный
Нержавеющая сталь
Сталь

Высоколегированная
аустенитная
нержавеющая сталь

Никелевые сплавы

Ар

a

a

a

Ar + He

a

a

a

Ar + (1-2)% O 2

b

b

(●)

b

c

Ar + (1-2)% CO 2 d

e

e

(●)

e

c

Ar + 30% He + (1-2)% O 2

f

f

f

f

c

Ar + 30% He + (1-2)% CO 2 d

f

f

f

f

c

Ar + 30% He + (1-2)% N 2

г

a) Предпочтительно при импульсной сварке MIG.
b) Более высокая текучесть ванны расплава, чем при добавлении CO2.
c) За исключением 22.12.HT и 27.31.4.LCu, где предпочтительным является Ar.
d) Не использовать при дуговой сварке с распылением, где требуется очень низкое содержание углерода.
e) Лучшие характеристики сварки короткой дугой и позиционной сварки по сравнению с Ar + (1-2)% O2.
f) Более высокая текучесть ванны расплава по сравнению с Ar. Лучшие сварочные свойства с короткой дугой, чем с Ar + (1-2)% CO2.
г) Для марок, легированных азотом.

Защитный газ для сварки TIG / GTAW

Обычным газом для сварки TIG является аргон (Ar).Гелий (He) может быть добавлен для увеличения проплавления и текучести сварочной ванны. Для сварки всех марок можно использовать аргон или смеси аргона и гелия. В некоторых случаях могут быть добавлены азот (N 2 ) и / или водород (H 2 ) для достижения особых свойств. Например, добавление водорода дает такой же, но гораздо более сильный эффект, как добавление гелия. Однако добавки водорода не следует использовать для сварки мартенситных, ферритных или дуплексных марок.

В качестве альтернативы, если добавлен азот, свойства наплавленного металла сплавов, легированных азотом, могут быть улучшены.Окисляющие добавки не используются, поскольку они разрушают вольфрамовый электрод.

Рекомендации по использованию защитных газов при сварке TIG различных нержавеющих сталей приведены в таблице. Для плазменно-дуговой сварки типы газов с добавками водорода, указанные в таблице, в основном используются в качестве плазменного газа, а чистый аргон — в качестве защитного газа.

Основной металл (вид материала)

Аустенитная
Нержавеющая
Сталь

Дуплекс
Нержавеющая сталь
Сталь

Супер-дуплекс
Нержавеющая сталь
Сталь

Ферритный
Нержавеющая сталь
Сталь

Высоколегированная
аустенитная
нержавеющая сталь

Никелевые сплавы

Ар

Ar + He а

a

Ar + (2-5)% H 2 а, б

b

b

b

Ar + (1-2)% N 2

Ar + 30% He + (1-2)% N 2

a) Улучшает текучесть по сравнению с чистым аргоном.
б) Предпочтительно для автоматической сварки. Высокая скорость сварки. Риск пористости в многопроходных сварных швах.

Защита корня

Безупречный результат сварки без ухудшения коррозионной стойкости и механических свойств может быть получен только при использовании защитного газа с очень низким содержанием кислорода. Для достижения наилучших результатов можно допустить максимум 20 ppm O 2 на корневой стороне.

Это может быть достигнуто с помощью продувочной установки и может контролироваться с помощью современного измерителя кислорода.Чистый аргон на сегодняшний день является наиболее распространенным газом для защиты корней нержавеющих сталей. Formiergas (N 2 + 5 — 12% H 2 ) является отличной альтернативой обычным аустенитным сталям. Газ содержит активный компонент H 2 , который снижает уровень кислорода в области сварного шва.

Азот можно использовать для дуплексных сталей, чтобы избежать потерь азота в металле шва. Чистота газа, используемого для защиты корней, должна быть не менее 99,995%. Когда продувка газом нецелесообразна, альтернативой может быть корневой флюс.

Защита от расплавленного шлака

При дуговой сварке под флюсом (SAW) и электрошлаковой сварке (ESW) защита достигается за счет сварочного флюса, полностью покрывающего расходные материалы, дугу и ванну расплава. Флюс также стабилизирует электрическую дугу. Флюс плавится за счет тепла процесса, создавая покрытие из расплавленного шлака, которое эффективно защищает сварочную ванну от окружающей атмосферы.

Действие защитных газов в GMAW

Использование подходящего защитного газа важно не только для предотвращения пористости, но и для обеспечения надлежащего проплавления, желаемых механических свойств, включая прочность сварного шва, и общего качества сварки.Чтобы правильно выбрать защитный газ, необходимо учитывать следующее:

— Сплав присадочный

— Толщина материала

— Режим GMAW (спрей, короткая дуга и т. Д.)

— Сварочная позиция

— Желаемый профиль проникновения

— Стоимость

Типичные сварочные газы: : диоксид углерода, аргон и смеси аргона (с диоксидом углерода, гелием, азотом, водородом и кислородом).

Газы можно разделить на две категории: инертные и реактивные.

Инертные газы

Аргон и гелий — инертные газы. Это означает, что ни один из газов не вступит в химическую реакцию с расплавленной сварочной ванной. Аргон является наиболее широко используемым инертным газом, поскольку он легко доступен и недорого по сравнению с гелием. Он создает профиль проникновения, похожий на палец (см. Изображения ниже). Гелий имеет очень высокую теплопроводность по сравнению с аргоном и используется для получения более горячей дуги.Он также используется для газовой смеси из нержавеющей стали. Гелий обеспечивает широкое, но неглубокое проникновение. Гелий и аргон обычно смешивают при сварке алюминия толщиной 1 дюйм или более или в более тонких секциях, чтобы компенсировать недостаточный размер источника питания.

Реактивные газы

Двуокись углерода, кислород, азот и водород являются реактивными защитными газами. Эти газы химически соединяются со сварочной ванной, влияя на механические и химические свойства металла шва. Двуокись углерода — единственное, что можно использовать отдельно.Все это можно комбинировать с аргоном для получения бинарных смесей защитных газов. За исключением трехкомпонентных смесей из нержавеющей стали, большинство из них представляют собой только комбинацию аргона и одного из реактивных газов.

На изображении 1 ниже показано влияние на контур валика и проникновение различных газов. На рис. 2 показано влияние кислорода на двуокись углерода при использовании в смесях аргона и 100% двуокиси углерода.

В таблице ниже приведены наиболее распространенные сварочные газы, используемые при дуговой сварке, в зависимости от типа материала.Он также показывает, какой газ использовать в соответствии с желаемым режимом переноса металла (например, короткое замыкание или распыление). Могут использоваться и другие газы, особенно в смесях аргона, но они наиболее распространены.

Существуют буквально сотни смесей защитных газов. Небольшое изменение процентного содержания каждого компонента в некоторых случаях может дать очень желаемый эффект. Некоторые смеси будут содержать такие компоненты, как азот, в диапазоне миллионных долей, но это будет иметь значительный эффект.Какой защитный газ вы используете? Вы думали об использовании другого защитного газа? Если да, то может быть полезно прочитать, следует ли вам рассматривать другой защитный газ. Также может быть интересен вопрос, влияет ли смесь защитного газа на прочность сварного шва.

Ссылка: Руководство Lincoln Electric по сварке GMAW — Джефф Надзам

Как выбрать типы защитного газа для GMAW

  • Гелий имеет более низкую плотность, чем аргон, что требует более высоких скоростей потока.Гелий также представляет собой одноатомный газ, который обычно используется для более толстых материалов. Это также хороший выбор для сварки алюминия. Потому что, несмотря на ограниченную высокую цену, гелий уже редко встречается в отрасли.

  • Двуокись углерода (CO 2 ) редко используется сама по себе, потому что она дает широкий сварной шов и часто приводит к образованию большого количества брызг. CO 2 чаще всего сочетается с аргоном для получения наилучшего конечного результата. CO 2 также является химически активным газом, что означает, что он имеет высокий потенциал ионизации.

Газы, используемые в смесях
  • Кислород представляет собой двухатомную молекулу, обычно добавляемую в газовые смеси GTAW в количестве 10% или меньше. Его можно рассматривать как дополнение к аргону для GMAW, поскольку он может помочь создать глубокий и узкий проплавленный сварной шов в специализированных приложениях.

  • Водород — это активный защитный газ, который также обычно используется в смесях GMAW в количестве 10% или меньше.Эта двухатомная молекула имеет тенденцию давать горячие бусинки с широкой поверхностью. Водород в основном используется в материалах из нержавеющей стали для улучшения текучести и увеличения скорости движения.

Как выбрать защитный газ

При выборе защитного газа для GMAW необходимо учитывать три основных компонента: тип материала, тип наполнителя и режим переноса.

  • Тип материала : Наиболее важным фактором является соответствие вашего газа типу материала.Например, сталь намного плотнее алюминия, поэтому для достижения желаемого результата сварки требуется другой защитный газ. Также важно учитывать толщину материалов, поскольку более толстые материалы потребуют более высоких тепловложений.

  • Присадочный металл Тип : дважды проверьте, соответствует ли присадочный металл основному материалу. Это даст вам уверенность, когда дело доходит до выбора наилучшего защитного газа.

  • Режим переноса сварки : определите, используете ли вы короткое замыкание, дугу со струйным переносом, импульсную дугу или глобальный перенос.Каждый режим передачи будет лучше работать с определенными защитными газами, чем с другими.

Когда дело доходит до защитного газа для GMAW, нужно учесть гораздо больше. Следите за новостями в следующих статьях, в которых мы рассмотрим правильный поток защитного газа и подробно расскажем о процессе GMAW с каждым типом материала!

GMAW Welding Equipment Builders

Выбор подходящего защитного газа — важный шаг на пути к успеху сварки.При правильной оптимизации это не только улучшит качество сварных швов, но и сэкономит деньги и время. Команда Bancroft Engineering может помочь вам выбрать подходящий защитный газ и убедиться, что ваша автоматизированная или полуавтоматическая сварочная система дает наилучшие результаты. Свяжитесь с нашими инженерами-сварщиками сегодня!

(PDF) Исследование экранированных газов для MIG-сварки

Защитные газы для MIG-сварки Kikani Pratik

JoMME (2016) 6-10 © STM Journals 2016.Все права защищены. Страница 9

5. Свариваемость вне положения.

6. Скорость образования сварочного дыма.

7. Механические свойства наплавленного металла.

Скорость и эффективность осаждения присадочного металла

Смеси защитных газов с высоким содержанием аргона

обычно обеспечивают высокую производительность. Размещение

заготовки в положении плоской или горизонтальной сварки

позволяет использовать перенос распылением с

этими смесями.

Однопроволочная GMAW может превышать скорость осаждения

на 6–7 кг в час при 100% рабочем цикле.

Содержание аргона должно составлять 85% или более, чтобы

обеспечивал перенос распылением. В некоторых случаях

вместо использования обычного диоксида

аргона / углерода или смеси аргона / кислорода

усиленного гелием аргона может увеличить скорость осаждения металла сварного шва

до 15%.

Производительность катодной проверки

связана именно с уровнем сварочного разброса.Смеси аргона с высоким содержанием

обычно обеспечивают наилучшие результаты при переносе распылением. Расширенный отчет

Эффективность

также может быть компонентом

при выборе правильных параметров сварки.

Контроль разбрызгивания и очистка после сварки

Использование аргона позволяет уменьшить разбрызгивание при сварке

в случае использования обычных источников питания. Стабильность Arc

может быть улучшена с помощью аргона, так как он имеет низкую ионизацию

.Используя защитные газы

на основе аргона, разбрызгивание можно уменьшить еще на

. Вы можете увеличить рабочий ток и напряжение

на 10% или больше, при этом

сохранит контроль над разбрызгиванием.

В случае использования распылительной дуги

exchange, по большей части уровень аргона

должен составлять 85% или более. Импульсный распылитель

с 95% -ной смесью аргона обычно дает

с минимальным разбрызгиванием при сварке простой углеродистой стали

.Брызги сварочного шва могут уменьшить

за счет трехкомпонентной смеси аргона, гелия и

диоксида углерода.

Как правило, GMAW является бесшлаковым процессом,

, но островки шлака все еще остаются основными на поверхности валика

. Порошок и краска не выдержат

этих кремниевых складов. Низкая реактивность защитного газа

может уменьшить эти поверхностные остатки.

Если вас беспокоит образование островков шлака

по краю сварной точки, работайте

только с соответствующим образом очищенным основным материалом

и используйте смесь, содержащую не менее 90% аргона

без кислорода.Точно так же подбор присадочного металла

ограничит образование островка

.

Очистка после сварки может привести к увеличению затрат,

уменьшению времени зажигания дуги и уменьшению рабочего цикла сварки

. Так как это уменьшает разбрызгивание на

, идеальная смесь аргона может уменьшить шлифование после сварки на

.

Профиль валика и сварка поверх

Сварочный шов, экранированный CO2, имеет тенденцию к

иметь выпуклую форму, что в сумме дает более

сварных швов; это увеличивает стоимость сварки.Смеси на основе аргона

обеспечивают отличный контроль в форме шариков

, который может уменьшаться при сварке. В представлении

физических характеристик экранированной дуги CO2

и полученной сварочной ванны

CO2 может создавать выпуклую форму валика. Смеси аргона

имеют тенденцию создавать ровную поверхность валика, которая

обеспечивает адекватную поддержку, однако

уменьшается при сварке.

Оптимальная форма валика зависит от диаметра металла наполнителя

.Контроль размера сварного шва

становится затруднительным при использовании проволоки большего диаметра. Удивительно большой сварной шов

может увеличить затраты на сварку

не менее чем на 50%. Тип и размер металла наполнителя

основаны на потребностях

приложения.

Проникновение валика, возможность ожога —

Характеристики сварки играют важную роль

при сварке тонких материалов. Нормальным для чистого CO2

является то, что он приводит к расширенной жизнеспособности сварного шва

по сравнению со смесью аргона /

CO2.Контролируя содержание CO2

в смеси, вы можете контролировать протекание пламени и повышать эффективность сварки

. Смеси аргона / CO2

могут использоваться в диапазоне от 85 до 95% до

, чтобы свести к минимуму просвечивание. Для достижения хорошего проплавления при сварке

можно использовать чистый CO2.

На профиль проникновения могут влиять рабочий ток

, присадочный металл и состав газа

. Высокий процент CO2 может быть использован для глубокого проникновения

.

Свариваемость вне положения

Защитные газы с большей реакционной способностью, которые

используют больше CO2 или O2, увеличивают текучесть сварочной ванны

. Для работы вне положения это может привести к

принудительному использованию более медленных скоростей подачи проволоки, что даст

защитных газов для сварки Mig

.

Основной функцией защитного газа при сварке GMAW является защита расплавленной сварочной ванны от атмосферного загрязнения. Эти загрязнения находятся в форме кислорода, азота и водорода, которые содержатся в атмосфере.Реакция этих элементов на сварочную ванну может создать множество проблем, включая пористость (отверстия в сварном шве) и чрезмерное разбрызгивание. Различные защитные газы также влияют на следующее:

  1. Характеристики дуги
  2. Режим переноса металла
  3. Профиль проплавления и сварного шва
  4. Скорость сварки
  5. Тенденция к подрезанию
  6. Действие очистки
  7. Механические свойства наплавленного металла

Аргон, гелий, CO2 и кислород являются наиболее распространенными защитными газами, используемыми в процессе сварки MIG.Некоторые газы лучше других подходят для наиболее часто используемых основных материалов, будь то алюминий, углеродистая сталь или нержавеющая сталь.

CO2 и кислород являются химически активными газами, то есть они влияют на то, что происходит в сварочной ванне. Электроны этих газов вступают в реакцию со сварочной ванной, приобретая различные характеристики. Аргон и гелий — инертные газы, поэтому они не вступают в реакцию с основным материалом или сварочной ванной. Например, чистый CO2 обеспечивает очень глубокое проплавление сварного шва, что полезно для сварки толстых материалов, однако 100% CO2 дает менее стабильную дугу и большее количество брызг и может использоваться только в режиме переноса металла с короткой дугой.Если качество и внешний вид шва важны, смесь аргона и CO2 может обеспечить стабильность дуги, контроль сварочной ванны и уменьшение разбрызгивания. В зависимости от свариваемого основного материала могут использоваться следующие газы и газовые смеси.

Алюминий

Для алюминия следует использовать 100% аргон. Смесь аргона и гелия хорошо работает, если вам требуется более глубокое проникновение или более высокая скорость движения.

Низкоуглеродистая сталь

Существует множество вариантов защитного газа, включая 100% CO2 или смесь CO2 / аргона.По мере того, как материал становится толще, добавление кислорода в газообразный аргон может помочь в проникновении.

Углеродистая сталь

Защитные газы, используемые для этой стали с более высоким содержанием углерода, хорошо работают со 100-процентным CO2 или смесью CO2 / аргона. Низколегированная сталь. Для этого материала хорошо подходит смесь 98% аргона и 2% кислорода.

Нержавеющая сталь

Аргон, смешанный с 2–5% CO2, является нормой. Если вам требуется очень низкое содержание углерода в сварном шве, используйте аргон с 1-2% кислорода.Для наилучшего соответствия цвета материала серии 300 также можно использовать смесь гелия / аргона / СО2.

Выбранный вами защитный газ может влиять на многие сварочные характеристики. Как только вы поймете, какие свойства наиболее важны для вашего приложения, вы сможете выбрать лучшую смесь для работы. Для выбора наилучшего варианта рекомендуется проконсультироваться с поставщиком газа или другими специалистами в области сварки.

Различные типы сварочных процессов

Сегодня многие виды сварочных услуг используются как любителями, так и профессионалами.Учитывая универсальность и квалификацию, необходимые для сварочных работ, неудивительно, что сварщики должны проходить серьезную подготовку, чтобы стать квалифицированными в своем деле. Поскольку сварка относится к соединению металлических сплавов, важно увидеть, как сварщики используют для этой цели различные методы. Вот некоторые из различных типов сварочных процессов, используемых сегодня для нержавеющей стали и других металлических сплавов.

Газовая дуговая сварка вольфрамом (GTAW)

Газовая вольфрамовая дуговая сварка — это разновидность дуговой сварки с использованием неплавящегося вольфрамового электрода.Окисление не влияет на электрод или зону сварного шва через инертный защитный газ, в частности аргон или гелий, и присадочный металл. Когда используется гелий, это называется гелиарной сваркой, но процесс такой же. Сварочный источник постоянного тока обеспечивает электрическую энергию, которая проходит через дугу через ионизированный газ и пары металлов. GTAW обычно используется для нержавеющей стали, алюминия, магния и меди, поскольку сварщик может выполнять более прочные и качественные сварные швы.

Дуговая сварка порошковой проволокой (FCAW)

Дуговая сварка порошковой проволокой — это еще один тип дуговой сварки, при котором плавящийся трубчатый электрод, содержащий флюс, непрерывно подается через источник сварочного тока постоянного тока.Иногда используется внешний защитный газ, но не обязательно для завершения сварки. Сам флюс обеспечивает защиту, так как образует газообразный и жидкий шлак, который защищает его. Благодаря естественным защитным барьерам, высокой скорости сварки и портативности FCAW часто используется в строительных проектах. Первоначально разработанный как альтернатива дуговой сварке защищенным металлом, FCAW использует стержневые электроды, которые снижают многие ограничения, характерные для SMAW.

Дуговая сварка экранированных металлов (SMAW)

SMAW эффективен для процесса ручной дуговой сварки, в которой используются плавящиеся электроды, покрытые флюсом.Переменный или постоянный электрический ток от источника сварочного тока образует электрическую дугу между электродом и соединяемыми металлами. Это плавит электрод и заготовку, образуя расплавленный металл, который затем охлаждается и образует соединение. Затем флюсовое покрытие распадается, оставляя пары, которые действуют как защитный газ и образуют слой жидкого шлака, используемый для защиты от атмосферного загрязнения. Поскольку операции SMAW просты, но требуют относительно небольшого количества оборудования, они являются сегодня одним из самых популярных видов сварки, особенно в отраслях технического обслуживания и ремонта.С помощью этого метода можно использовать железо, нержавеющую сталь, алюминий, никель и медь.

Газовая дуговая сварка металлов (GMAW)

Дуговая сварка металлическим электродом в газовой среде — это процесс сварки, при котором возникает электрическая дуга между плавящимися электродами из проволоки MIG и металлами заготовки. Этот тип сварки нагревает металлы, заставляя их плавиться и соединяться. Защитный газ проходит через сварочную горелку и защищает от атмосферного загрязнения. Независимо от того, автоматический или полуавтоматический, система постоянного тока использует четыре основных метода переноса для переноса металла: шаровидный, короткозамкнутый, распылительный и импульсный.Метод GMAW первоначально использовался для алюминия и цветных металлов, но в настоящее время он используется для сталей из-за короткого времени сварки и большей универсальности. Это наиболее распространенная форма промышленного процесса сварки, учитывая эти преимущества и возможность адаптации к роботизированной автоматизации. Тем не менее, отсутствие защитного экрана делает его непригодным для использования на открытом воздухе.

Лазерная сварка

Лазерная сварка — это новая технология, при которой лазеры соединяют детали из металла или термопласта.Луч действует как концентрированный источник тепла, что позволяет выполнять узкие и глубокие сварные швы с высокой скоростью сварки. Процессы лазерной сварки часто используются в больших объемах, особенно в автомобильной промышленности, где часто используется сварка с отверстием или проплавлением. Высокая удельная мощность приводит к уменьшению зон термического влияния и более высокой скорости нагрева и охлаждения. Размер пятна может варьироваться, а глубина проникновения пропорциональна количеству подаваемой мощности и зависит от местоположения точки фокусировки.Сварка лазерным лучом обычно используется для углеродистой стали, нержавеющей стали, алюминия и титана, но высокая скорость охлаждения может привести к растрескиванию.

Электронно-лучевая сварка (EBM)

Электронно-лучевая сварка является одним из видов сварки плавлением, отличным от других видов сварки. В этом процессе используется пучок высокоскоростных электронов, применяемый для соединения двух материалов. Когда заготовки плавятся, кинетическая энергия при ударе преобразуется в тепло и соединяет материалы. Процессы обычно проходят в условиях вакуума, чтобы предотвратить рассеяние электронного луча.EBM обычно представляют собой тонкостенные компоненты, чтобы обеспечить идеальную точку контакта и предотвратить смещение во время сварки. Определенные материалы, такие как цинк, кадмий, магний и любые неметаллы, не могут подвергаться процессам EBM с учетом их температур плавления. Кроме того, процесс EBM не может соединить два разнородных материала с разными составами сплава. Электронные лучи могут создать атмосферу с высоким вакуумом и локализовать нагрев в точной точке, если более низкая точка плавления доступна для луча напрямую.

Дуговая сварка под флюсом (SAW)

Сварка под флюсом — это обычный процесс, используемый при непрерывной подаче плавящегося твердого или трубчатого электрода и погружении расплавленного сварного шва и зоны дуги в плавкий флюс. Затем поток становится проводящим и обеспечивает пути прохождения тока между электродом и заготовкой. Поскольку толстый слой флюса покрывает расплавленный металл, он предотвращает брызги и искры. Он также подавляет интенсивное ультрафиолетовое излучение и пары. Процессы SAW обычно автоматические и механизированные, но существуют способы подачи флюса под давлением или самотеком, ограниченные положениями плоской или горизонтальной угловой сварки.Токи варьируются от 300 до 5000 А при использовании одного или нескольких электродов. Комбинации постоянного и переменного тока обычно используются для процессов SAW и других многоэлектродных систем.

В CMPI мы понимаем важность сварочных услуг ASME. для любой производственной системы. Независимо от причины, мы вам поможем. Мы обеспечиваем надежность наших продуктов и услуг для любой отрасли, от продуктов питания и напитков до фармацевтики и производства резервуаров и емкостей.Вместо того, чтобы создавать продукт для продажи, мы хотим действовать как расширение вашего магазина. Поэтому, когда в дело вступают ваши сварочные конструкции, мы учитываем передовой опыт и соображения, которые соответствуют вашим конкретным потребностям. Если у вас остались вопросы или проблемы, позвоните нам сегодня, и мы будем рады ответить вам. В противном случае ознакомьтесь с нашими различными продуктами и услугами на нашем веб-сайте, чтобы узнать, какие из них подходят вам.

ВЫБОР ЗАЩИТНОГО ГАЗА ДЛЯ ГАЗОВОЙ ДУГОВОЙ СВАРКИ

ВЫБОР ЗАЩИТНОГО ГАЗА ДЛЯ ГАЗОВОЙ ДУГОВОЙ СВАРКИ МЕТАЛЛА

с.К.Гупта. БЫТЬ. C.E., FIIW, FIE, MSNT, MAE, MITD

Процесс GMAW широко используется, поскольку он удобен для оператора и позволяет получать высококачественные сварные швы для широкого диапазона черных и цветных сплавов по низкой цене. В производстве, где широко используется сварка, особенно газовая дуговая сварка металла, расхождения во взглядах из всех возможных источников сбивают с толку инженеров и операторов по сварке на стадии планирования и в цехе.

В данной статье представлен аналитический подход к использованию различных защитных газов, используемых при газовой дуговой сварке металла, для эффективной и действенной сварки различных металлов и сплавов. Защитные газы необходимы для газовой дуговой сварки металлическим электродом для защиты зоны сварки от атмосферных газов, таких как азот и кислород, которые могут вызвать дефекты плавления, пористость и охрупчивание металла шва, если они соприкасаются с электродом, дугой или сварочный металл.В GMAW защитные газы используются для защиты сварного шва от атмосферного загрязнения. Это устраняет шлак, твердый остаток флюса, который накапливается после сварки и должен быть удален, чтобы обнажить законченный шов, как в процессе SMAW.

Выбор защитного газа для GMAW

В GMAW выбор правильного защитного газа для конкретного применения имеет решающее значение для качества и производительности готового сварного шва. Основными критериями выбора являются:

  • Желаемые механические свойства наплавленного металла шва.
  • Толщина материала и конструкция соединения.
  • Режим переноса металла GMAW.
  • Электродный состав — легирующие элементы.
  • Состояние материала — наличие прокатной окалины, коррозии, стойких покрытий или масла.
  • Сварочное положение.
  • Условия подгонки.
  • Желаемый профиль проникновения.
  • Желаемый внешний вид окончательного сварного шва.

Защитные газы по-разному реагируют на нагрев дуги.Течение тока в дуге и его величина сильно влияют на поведение перенесенной капли расплава. В некоторых случаях сварки лучше всего использовать определенный защитный газ в одном режиме передачи, но он не сможет удовлетворить потребности другого. Для понимания поведения и свойств защитного газа полезны три основных критерия:

  1. Химическая активность защитного газа в сварочной ванне
  2. Потенциал ионизации используемых газов.
  • Теплопроводность используемых защитных газов.

Подробная информация о физике дуги, связанной с конкретными защитными газами, поможет выбрать лучший защитный газ для конкретного применения и представлена ​​ниже:

Инертные защитные газы

Аргон и гелий — два инертных защитных газа, используемых для защиты расплавленной сварочной ванны, из которых аргон является наиболее часто используемым инертным газом.По сравнению с гелием его теплопроводность низкая. Его энергия, необходимая для отдачи электрона, энергия ионизации, мала, и это приводит к профилю проникновения, напоминающему палец, связанному с его использованием.

СВОЙСТВА ИНЕРТНЫХ ЗАЩИТНЫХ ГАЗОВ

НАЗНАЧЕНИЕ АРГОН ГЕЛИЙ
ПОТЕНЦИАЛ ИОНИЗАЦИИ

а. ИНИЦИАЦИЯ ДУГИ

г.СТАБИЛЬНОСТЬ ДУГИ

15,8 эВ

ХОРОШО

ХОРОШО

24,6 эВ

ПЛОХО

ПЛОХО

ТЕПЛОПРОВОДНОСТЬ

(кал / кв.см / см

-4

0,406 х 10

-4

3,32 х 10

ПЛОТНОСТЬ (ОТНОСИТЕЛЬНО ВОЗДУХА) 1,38 0,137
ОЧИСТКА ХОРОШО ПЛОХО

Однако, чтобы стать проводящим газом, то есть плазмой, газ должен быть ионизирован.Разным газам для ионизации требуется разное количество энергии, которое измеряется в единицах энергии ионизации — эВ.

  • Для аргона энергия ионизации составляет 15,8 эВ.
  • Гелий, с другой стороны, имеет энергию ионизации 24,6 эВ. Таким образом, ионизировать аргон легче, чем гелий. По этой причине аргон способствует лучшему зажиганию дуги, чем гелий.

Опять же, теплопроводность или способность газа передавать тепловую энергию является наиболее важным фактором при выборе защитного газа.Высокие уровни теплопроводности приводят к большему отведению тепловой энергии к заготовке. Теплопроводность также влияет на форму дуги и распределение температуры внутри области, что приводит к различной картине проникновения. Аргон имеет более низкий коэффициент теплопроводности — около 10% от уровня как для гелия, так и для водорода. Высокая теплопроводность гелия обеспечит более широкую картину проникновения и уменьшит глубину проникновения. Газовые смеси с высоким содержанием аргона будут иметь профиль проникновения с выступом в виде пальца в основной материал, и это связано с более низкой теплопроводностью аргона.

Аргон поддерживает осевой перенос распыла. В основных материалах, легированных никелем, медью, алюминием, титаном и магнием, используется 100% защита аргоном. Аргон из-за его более низкой энергии ионизации также способствует зажиганию дуги. Это основной компонентный газ, используемый в бинарных двухкомпонентных или трехкомпонентных смесях для сварки GMAW. Это также увеличивает скорость переноса расплавленных капель.

Гелий обычно добавляют в газовую смесь для нержавеющей стали и алюминия. Его теплопроводность очень высока, что приводит к широкому, но менее глубокому профилю проникновения.

При использовании для стабилизации дуги потребуется дополнительное дуговое напряжение. Добавки гелия к аргону эффективны для уменьшения разбавления основного материала в коррозионно-стойких областях применения. Смеси гелия и аргона обычно используются для сварки алюминия толщиной более 1 дюйма (25 мм).

Реактивные защитные газы

Кислород, водород, азот и углекислый газ (CO2) являются химически активными газами. Реактивные газы химически соединяются со сварочной ванной для получения желаемого эффекта.

Двуокись углерода (CO2) инертна при комнатной температуре. В присутствии дуговой плазмы и расплавленной сварочной ванны он становится реактивным. В плазме дуги с высокой энергией молекула CO2 распадается в результате процесса, известного как диссоциация. В этом процессе из молекулы CO2 выделяются свободный углерод, окись углерода и кислород. Это происходит в области анода DC + дуги. В области катода постоянного тока, которая неизменно является рабочей деталью для GMAW, высвободившиеся элементы молекулы CO2 подвергаются процессу рекомбинации.Во время процесса рекомбинации преобладают более высокие уровни энергии, что приводит к глубокому и широкому профилю проникновения, который характеризует использование диоксида углерода.

Диссоциация и рекомбинация

В процессе диссоциации свободные элементы молекулы CO2 (углерод, оксид углерода и кислород) смешиваются с расплавленной сварочной ванной и рекомбинируют в более холодной катодной области дуги, снова образуя диоксид углерода. Освободившийся таким образом свободный кислород химически соединяется с кремнием, марганцем и железом с образованием оксидов кремния, марганца и железа.Такие образовавшиеся оксиды, обычно называемые островками кремнезема, всплывают на поверхность сварочной ванны, а затем затвердевают в островки на поверхности готового сварного шва или собираются на концах сварного шва. Более высокий уровень углекислого газа (более высокий окислительный потенциал) увеличивает количество шлака, образующегося на поверхности сварного шва. Более низкие уровни углекислого газа (более низкий потенциал окисления) увеличивают количество сплава, кремния и марганца, остающегося в сварном шве. В результате более низкие уровни углекислого газа в бинарной или тройной смеси защитного газа увеличивают текучесть и предел прочности готового сварного шва.

Кислород (O2) — это окислитель, который реагирует с компонентами расплавленной лужи с образованием оксидов. При небольших добавках (1-5%) с балансом аргона он обеспечивает хорошую стабильность дуги и превосходный внешний вид сварного шва. Использование раскислителей в составе присадочных сплавов компенсирует окислительный эффект кислорода. Кремний и марганец соединяются с кислородом с образованием оксидов. Водород (h3) в небольших количествах (1-5%) добавляется к аргону для защиты нержавеющей стали и никелевых сплавов.Его более высокая теплопроводность образует лужу с жидкостью, которая способствует улучшенному смачиванию носка и позволяет использовать более высокие скорости движения.

РУКОВОДСТВО ПО ВЫБОРУ ЗАЩИТНОГО ГАЗА
CO2 АРГОН + СО2 АРГОН + O2
Повышенный уровень дыма Нижний уровень дыма Самый низкий уровень дыма
Более глубокое проникновение Меньшее проникновение Более округлое проникновение
Более сильный или непостоянный перенос дуги Более плавный перенос дуги Более плавная передача Atc
Меньшая стоимость Более высокая стоимость Самая высокая стоимость
Более высокие брызги Нижнее разбрызгивание Минимальное разбрызгивание
Меньше излучаемого тепла Больше излучаемого тепла Максимально излучаемое тепло
Менее привлекательные бусины Более привлекательные бусины Более привлекательные бусины
Импульсная сварка НЕ ​​ВОЗМОЖНА Возможна импульсная сварка Импульсная сварка Возможна
Распылительный перенос невозможен Возможен перенос распылением Возможен перенос распылением

ГАЗ

ДЕЙСТВИЕ

ПОВЕДЕНИЕ ДУГИ

СТОИМОСТЬ

Водород (h3) Лучшая поверхность валика, более высокая температура дуги, хорошее зажигание, более высокая скорость сварки Стабильная, концентрированная дуга Дешевая
Аргон (Ar) Инертный инертный газ, улучшает разрушение оксидов, улучшает контроль сварочной ванны, ограниченное проплавление Стабильная дуга Умеренная
Гелий (He) Инертный благородный газ, обеспечивает больший подвод тепла, улучшает проплавление и текучесть сварочной ванны Нестабильная, блуждающая дуга Дорого
Азот (N2) Может образовывать нитриды при высоких температурах Блуждающая дуга Дешевая
Двуокись углерода (CO2) Используется в небольшом соотношении для окисления и стабилизации дуги, улучшает смачиваемость сварного шва, глубокое проплавление шва Нестабильная дуга Дешевая
Кислород (O2) Используется в небольшом соотношении для окисления и стабилизации дуги, улучшает текучесть сварочной ванны и проплавление шва Никогда не использовался отдельно Дешевая

Двоичные смеси защитных газов

Двухкомпонентные смеси защитного газа являются наиболее распространенными и обычно состоят из аргона + гелия, аргона + CO2 или аргона + кислорода.

Аргон + гелий

Бинарные смеси аргона и гелия используются для сварки сплавов на основе никеля и алюминия. Используемый режим переноса металла — это либо осевой перенос распылением, либо импульсный перенос распылением. Добавление гелия обеспечивает большую текучесть лужи и более плоскую форму шарика. Гелий способствует более высокой скорости движения. В случае GMAW алюминия гелий уменьшает выступы, похожие на пальцы, характерные для чистого аргона. Гелий также способствует уменьшению появления водородных пор в сварных швах, которые выполняются с использованием алюминиево-магниевых наполнителей с базовыми сплавами серии 5XXX.Компонент аргона обеспечивает отличное зажигание дуги и способствует очистке алюминия.

Аргон + CO2

Наиболее часто встречающиеся смеси бинарных газов — это смеси, используемые для сварки углеродистой стали GMAW. Все четыре традиционных режима переноса металла GMAW используются с бинарными смесями аргон / CO2.

Они также добились успеха в импульсных приложениях GMAW для нержавеющей стали, где CO2 не превышает 4%. Осевой перенос распылением требует содержания CO2 менее 18%.

Аргон + кислород

Смеси аргон / кислород достигают аксиального распыления при меньших токах, чем смеси аргон / CO2. Размер капель меньше, а сварочная ванна более жидкая. Использование аргона + кислорода исторически ассоциировалось с высокоскоростной сваркой тонких материалов. И нержавеющая, и углеродистая сталь выигрывают от использования смесей аргона и кислорода.

Тройные газовые защитные смеси

Трехкомпонентные смеси защитного газа продолжают оставаться популярными для углеродистой стали, нержавеющей стали и, в некоторых случаях, никелевых сплавов.Для короткозамкнутого переноса углеродистой стали добавление 40% гелия к аргону и CO2 в качестве третьего компонента смеси защитного газа обеспечивает более широкий профиль проникновения. Гелий обеспечивает большую теплопроводность при коротком замыкании

для переноса материалов из углеродистой и нержавеющей стали. Более широкий профиль проплавления и повышенное проплавление боковых стенок снижает вероятность неполного проплавления.

Для нержавеющей стали довольно часто используются трехкомпонентные смеси.Добавки гелия от 55% до 90% добавляются к аргону и 2,5% CO2 для короткозамкнутого переноса. Их ставят на

уменьшает разбрызгивание, улучшает текучесть лужи и обеспечивает более плоскую форму сварного шва.

Общие тройные газовые защитные смеси.

Процесс Диаметр проволоки (мм) Напряжение Ампер Защитный газ
Распылительный перенос GMAW 0.9 28–32 165–200 98% аргона + 2% кислорода ИЛИ

75% аргона + 25% CO2

1,14 30–34 180–220
1,6 30–34 230–260
GMAW Короткое замыкание переключения 0,9 22–25 100–140 100% CO2
1,14 23–26 120–150 75% аргона + 25% CO2

Таблица размеров и размеров баллонов для сварочного газа
Размеры баллона сжатого сварочного газа Диаметр Высота Масса тары
Размер газового баллона G2 230 мм 1460 мм 54 кг
Размер газового баллона E2 204 мм 780 мм 24.5 кг
Размер газового баллона D2 176 мм 550 мм 13,7 кг
Размер газового баллона G 310 мм 795 мм 55 кг
Размер газового баллона E 210 мм 770 мм 22 кг
VT размер газового баллона 215 мм 625 мм 13,5 кг
Размер баллона с фтор-газом 215 мм 1245 мм 23.5 кг
Размер газового баллона 9 кг 315 мм 510 мм 9 кг
Размер газового баллона 15 кг 305 мм 735 мм 9,7 кг
Размер газового баллона 45 кг 375 мм 1250 мм 33 кг

ДЛЯ ЭФФЕКТИВНОГО И ЭФФЕКТИВНОГО ИСПОЛЬЗОВАНИЯ ХАРАКТЕРИСТИКИ ПРОДУКТА ДОЛЖНЫ БЫТЬ

  • Круглая шкала давления с ручкой без проблем, позволяющая без проблем выполнять регулировку без использования инструментов.
  • Двойные манометры для максимального контроля давления, поступающего в бочонок и из него.
  • Интеллектуальный зазубренный выход для легкого подключения / переключения между бочками и баками.
  • Запорный клапан со встроенным обратным клапаном для предотвращения образования запаса пива.
  • Предохранение от давления и постоянное уплотнение на входном ниппеле. Усиленная защита от протечек.
  • Конструкция для тяжелых условий эксплуатации.
  • Двойные манометры для тяжелых условий эксплуатации.
  • Большой корпус для меньшего колебания давления.
  • Большая регулировочная ручка со стопорным кольцом, инструмент не требуется.
  • Размер выходного патрубка для газового шланга с внутренним диаметром 5/16 дюйма.
  • Регулятор
  • имеет систему безопасности давления с продувкой от 55 до 60 фунтов на квадратный дюйм.
  • устраняет необходимость в промывателях волокна при заправке.

ПОДАЧА И КОНТРОЛЬ ГАЗОВЫХ СМЕСЕЙ

Подача защитного газа с правильной смесью и правильным потоком имеет решающее значение для обеспечения качества и производительности при дуговой сварке металлическим газом.Любое изменение параметров газовой смеси или потока сильно влияет на характеристики переноса дуги и результирующее качество сварки. Таким образом, система подачи защитного газа сильно влияет на рентабельность и производительность GMAW.

Проблема на большом производственном предприятии с существующей системой подачи газа в баллоны со смешанными газами стоит дорого, а газовые смесители часто бывают неточными. Технология с правильным смешиванием газов из отдельных резервуаров в смесительной установке обойдется дешевле при массовом использовании.

Смеси газовые

Было обнаружено, что различные смеси стандартных газов улучшают процесс GMAW. Аргон / Кислород. Добавление небольшого количества кислорода, обычно от 1 до 5 процентов, к аргону значительно стабилизирует сварочную дугу, увеличивает количество капель присадочного металла, снижает переходной ток распыления и влияет на форму валика. Сварочная ванна становится более текучей и дольше остается расплавленной, позволяя металлу вытекать к носкам сварного шва.

Затраты на поставку газа

Стоимость производства является решающим фактором при выборе наиболее эффективного сварочного процесса.Также необходимо учитывать расходы, связанные со смесями защитных газов. Стоимость основных газов и газовых смесей для сварки может сильно различаться. CO2 — самый дешевый, а гелий — самый дорогой; аргон стоит между двумя.

Однако выбор защитного газа не должен основываться исключительно на стоимости кубического фута. Защитный газ — это не только одноцелевой продукт в уравнении сварки; это важнейший элемент в группе базовых технологий, составляющих сварочный процесс.

Защитный газ, как ни критично для процесса, обычно является одним из менее дорогих элементов. Например, снижение затрат на рабочую силу окажет гораздо большее влияние на общие расходы, чем выбор более дешевого газа или газовой смеси.

Интересно, что подход к газоснабжению позволяет снизить трудозатраты. Например, установка централизованной подачи газа вне рабочего места может снизить необходимость в ответственности оператора сварки за подачу газа, что повысит эффективность этого оператора в процессе сварки.

Еще один фактор, который следует учитывать, — это использование газосмесительных устройств для подачи газа по мере необходимости. Смешанные газы, поставляемые в отдельные баллоны, продаются по более высокой цене, что приводит к увеличению общих производственных затрат. Смесители газа могут быть установлены в точке подачи, что является хорошим выбором, когда многие операторы используют одну и ту же газовую смесь в течение длительного периода времени, или в точке использования, что лучше, если разные смеси будут использоваться различными операторы. Если объем газов велик, криогенные сосуды могут быть более рентабельными, чем баллоны со сжатым газом.В криогенные сосуды могут подаваться все газы, кроме гелия и водорода.

Использование газосмесительной системы в сочетании с центральным газоснабжением определяется объемом используемых газов. Режим поставки можно определить, учитывая:

  • Как выбор защитного газа влияет на сварку?
  • Какая смесь лучше всего подходит для применения?
  • Какой способ подачи газа самый лучший?
  • Насколько важна точность газовой смеси для этого применения?

При изменении каждого задания требования также могут меняться.Знание вариантов типов газа и методов подачи поможет выбрать наиболее эффективные и рентабельные продукты для процесса GMAW.

ЗАКЛЮЧЕНИЕ

Выбор и использование защитных газов в процессах газовой дуговой сварки металлов и сплавов для соединения различных металлов и сплавов требует глубоких знаний свойств и поведения газов в различных условиях для эффективного и действенного производства сварных швов. Это не только защита, но и улучшение переноса металла, совместимость с различными металлами и сплавами, смешение газов, скорость потока — все это зависит от защитных газов.

АВТОР

САМИР КУМАР ГУПТА.

B.E. (мех), дипломированный инженер, FIIE, FIIW, MISNT, MAE, MITD,

Технический директор, Jupiter Wagons Ltd,

Директор — Quivan Skill Empowerment Pvt.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *