принцип действия, применение в электродвигателях и техника безопасности
В промышленности и в быту широко используются электродвигатели. При эксплуатации некоторых механизмов необходимо обеспечить вращение вала двигателя в разный направлениях, то есть нужно осуществлять реверс. Для этого используют определённую схему управления и применяют дополнительный магнитный пускатель (контактор) или реверсивный пускатель.
- Теоретические основы
- Принцип работы асинхронного двигателя
- Трехфазная сеть
- Однофазный режим
- Машины постоянного тока
- Плюсы использования магнитных пускателей
- Техника безопасности
Теоретические основы
Вид схемы реверсивного пуска двигателя зависит от следующих факторов:
- тип электродвигателя;
- питающее напряжение;
- назначение электрооборудования.
Поэтому схемы реверса могут сильно отличаться, но, поняв принципы их построения, вы сможете собрать или отремонтировать любую подобную схему.
Прежде чем разбирать схемы реверса двигателя, нужно определиться с понятиями, которые будут использоваться при описании работы:
- Нормально разомкнутый (открытый) контакт — это контакт, который без внешнего воздействия находится в разомкнутом состоянии. Под внешним воздействием, прежде всего, понимают подачу напряжения на катушку управления реле или магнитного пускателя. В случае с кнопками коммутация контактов производится механически.
- Нормально замкнутый (закрытый) контакт — это контакт, который без воздействия внешних сил находится в замкнутом состоянии.
- Магнитный пускатель — это электромагнитное устройство, имеющее три силовых нормально разомкнутых контакта и несколько вспомогательных контактов. При подаче питающего напряжения на катушку электромагнита, якорь притягивается и все контакты одновременно переключаются. Силовые контакты используются для подключения электродвигателя к сети, а вспомогательные нужны для построения схемы управления, поэтому они могут быть нормально открытыми или закрытыми.
После снятия управляющего напряжения, под действием пружин устройство возвращается в исходное состояние. - Реверсивный пускатель — это два одинаковых магнитных пускателя, закреплённые на одном основании, с общим корпусом. Предназначен аппарат для реверсирования трёхфазных двигателей, поэтому силовые контакты соединены между собой определённым образом.
- Тепловое реле — устройство для защиты двигателя от перегрева, вызванного повышенными токами в обмотках.
- Контактор — коммутирующее устройство во многом аналогичное магнитному пускателю. Но в отличие от него может иметь от двух до четырёх нормально открытых силовых контактов с дугогасительными камерами и предназначен для переключения больших токов.
- Автоматический выключатель — аппарат для защиты от токов короткого замыкания.
Для того чтобы электродвигатель поменял своё вращение нужно изменить его магнитное поле. Для этого необходимо произвести некоторые переключения,
Принцип работы асинхронного двигателя
Работа электродвигателя может осуществляться как в трехфазном, так и однофазном режиме. Принцип действия схем меняется незначительно, однако имеются некоторые дополнения в устройстве питания от однофазной сети.
Трехфазная сеть
Электрическая принципиальная схемя реверсивного пуска трёхфазного электродвигателя с короткозамкнутым ротором выглядит следующим образом (схема представлена на Рис.1)Питание всей схемы осуществляется от трёхфазной сети переменного тока с напряжением 380 В через автомат АВ.
Для того чтобы сделать реверс такой электрической машины (М), нужно изменить чередование двух любых фаз, подключённых к статору. На схеме магнитный пускатель Мп1 отвечает за прямое вращение, а Мп2 — за обратное. На рисунке видно, что при включении Мп1 происходит чередование фаз на статоре А, В, С, а при включении Мп2 — С, В, А, то есть фазы А и С меняются местами, что нам и нужно.
При подаче на схему напряжения, катушки Мп1 и Мп2 обесточены. Их силовые контакты Мп1.3 и Мп2.3 разомкнуты. Электродвигатель не вращается.
При нажатии на кнопку Пуск1, подаётся питание на катушку Мп1, пускатель срабатывает и происходит следующее:
- Замыкаются силовые контакты Мп1.3, питающее напряжение подаётся на обмотки статора, двигатель начинает вращаться.
- Замыкается нормально разомкнутый вспомогательный контакт Мп1.1. Этот контакт обеспечивает самоблокировку пускателя Мп1. То есть, когда кнопка Пуск1 будет отпущена, катушка Мп1 останется под напряжением благодаря контакту Мп1.1 и пускатель не отключится.
- Размыкается нормально закрытый вспомогательный контакт Мп1.2. Этот контакт разрывает цепь управления катушкой Мп2, таким образом, обеспечивается защита от одновременного включения обоих контакторов.
Если возникла необходимость остановить двигатель или произвести реверс, нужно нажать
кнопку Стоп.
Для того чтобы двигатель начал вращаться в обратную сторону, нужно нажать кнопку Пуск2. По аналогии с Мп1, сработают контакты Мп2.3, Мп2.1, Мп2.2, произойдёт переключение фаз на обмотке статора и двигатель начнёт вращаться в противоположном направлении.
Питание схемы управления осуществляется от двух фазовых проводов. При таком включении должны быть использованы контакторы с катушками на 380 В. Предохранители Пр1 и Пр2 обеспечивают защиту от токов короткого замыкания. Кроме того, извлечение этих предохранителей позволяет полностью обесточить все элементы управления и избежать риска получения электротравм при обслуживании и ремонте.
Защиту электрической машины от перегрузок обеспечивает тепловое реле РТ. При протекании повышенного тока в любой из трёх обмоток статора происходит нагрев биметаллической пластины РТ, в результате чего она изгибается. При определённом токе пластина нагревается настолько, что её изгиб вызывает срабатывание теплового реле, из-за чего оно размыкает свой нормально закрытый контакт РТ в схеме управления катушками Мп1 и Мп2 и двигатель отключается от сети.
Время срабатывания зависит от величины тока: чем выше ток, тем меньше время срабатывания. Благодаря тому, что РТ действует с некоторой задержкой, пусковые токи, которые могут в 7-10 раз превышать номинальные, не успевают спровоцировать срабатывание защиты.
В зависимости от типа устройства и настроек после срабатывания теплового реле возможны два варианта возвращения схемы в рабочее состояние:
- Автоматический — после остывания чувствительного элемента реле возвращается в нормальное состояние и двигатель можно запустить кнопкой Пуск.
- Ручной — нужно нажать специальный флажок на корпусе РТ, после этого контакт замкнётся и схема будет готова к запуску.
Рассмотренная схема реверса трехфазного двигателя может видоизменяться в зависимости от условий и потребностей. Например, питание схемы управления можно осуществлять от сети 12 В, в этом случае все элементы управления будут находиться под безопасным напряжением и такую установку можно без риска использовать при высокой влажности.
Реверс двигателя можно осуществлять только в том случае, когда двигатель полностью неподвижен, иначе пусковые токи возрастут в несколько раз, что приведёт к срабатыванию защиты. Для того чтобы контролировать выполнение этого условия, в схему управления могут быть добавлены реле времени, контакты которых подключаются последовательно к МП2.2 и Мп1.2. Благодаря этому, после нажатия кнопки Стоп двигатель можно будет запустить в противоположном направлении только по истечении несколько секунд,
Однофазный режим
Для того чтобы трёхфазный асинхронный двигатель с короткозамкнутым ротором работал от однофазной сети 220 В, используется схема подключения с пусковым и рабочим конденсаторами.
От обмотки статора электродвигателя отходит три провода. Два провода подключаются напрямую к фазному и нулевому проводам, а третий соединяется с одной из питающих жил через конденсатор. В этом случае направление вращения зависит от того, к какому из питающих проводников подключён конденсатор.
Если требуется превратить такую схему подключения в реверсивную, её нужно дополнить тумблером, который будет переключать ёмкость с одного провода питания на другой.
Машины постоянного тока
Реверсивный пуск двигателя постоянного тока можно осуществить изменением полярности подключения обмотки якоря или обмотки возбуждения. В зависимости от того, как эти две обмотки соединены между собой, двигатели постоянного тока имеют следующие типы возбуждения:
- независимое — обмотки возбуждения и якоря запитывают от различных источников;
- последовательное;
- параллельное;
- смешанное.
Двигатели постоянного тока могут уйти вразнос — режим работы машины, при котором обороты увеличиваются настолько, что это приводит к механическому повреждению.
В случае применения коллекторного двигателя с параллельным или независимым возбуждением такой режим может возникнуть при обрыве обмотки возбуждения. Поэтому схема подключения реверсивного двигателя в этом случае строится таким образом, чтобы осуществлялось переключение обмотки якоря, а обмотка возбуждения должна быть напрямую подключена к источнику питания. То есть недопустимо цепь возбуждения подключать через какие-либо контакты или предохранители.
В остальном схема управления отличается от реверсивного подключения трехфазного двигателя только тем, что происходит переключение двух питающих проводов постоянного тока, вместо трёх фаз переменного.
Плюсы использования магнитных пускателей
Основным элементом в реверсивных схемах подключения электродвигателя является магнитный пускатель. Применение этих аппаратов позволяет решить ряд задач:
- Одновременное подключение трёх фаз.
- Осуществление коммутации больших токов малыми сигналами. Некоторые аппараты могут коммутировать токи порядка сотен ампер, а ток необходимый для питания катушки редко превышает один ампер.
- Дистанционный запуск. Благодаря конструкции пускателя и малым токам срабатывания, кнопки управления могут находиться на расстоянии нескольких сотен метров от электродвигателя, что, в свою очередь, обеспечивает не только удобство эксплуатации, но и безопасность оператора.
- Нулевая защита. Если в процессе работы отключится напряжение, например, из-за срабатывания токовой защиты, то после возобновления электроснабжения, механизм начнёт работать самопроизвольно, что может привести не только к порче оборудования, но и к человеческим жертвам. Применение контактора исключает такую вероятность, так как после обесточивания он отключится и будет сохранять своё состояние до тех пор, пока оператор не нажмёт кнопку запуска.
- Универсальность. Катушки для определённого типа пускателей имеют одинаковые характеристики и конструкцию, но напряжение срабатывания может быть разным. Благодаря этому, установив соответствующую катушку, контактор можно использовать в различных сетях. Об этой особенности следует помнить при замене одного пускателя на другой, так как внешне совершенно одинаковые устройства, могут иметь разное рабочее напряжение.
Техника безопасности
При монтаже, наладке и ремонте необходимо строго соблюдать правила техники безопасности.
В случае работы со схемой управления электродвигателями для полного отключения нужно обесточить силовую часть и цепи управления. Некоторые электродвигатели могут получать питание от двух независимых источников питания, поэтому необходимо обязательно изучить схему подключения. Произведите необходимые отключения и проверьте индикатором отсутствие напряжения не только на силовых, но и на вспомогательных контактах.
Если в схеме установлены конденсаторы, после отключения питания следует дать им время для разрядки, прежде чем касаться токопроводящих частей.
«Реверсивный пуск асинхронного электродвигателя». — КиберПедия
Цель:Сформировать умение собирать схему реверсирования асинхронного электродвигателя с короткозамкнутым ротором.
По окончании выполнения лабораторной работы студент должен
знать:
— элементный состав схемы реверсирования асинхронного электродвигателя с короткозамкнутым ротором;
— назначение, устройство и принцип действия каждого элемента схемы;
— безопасные правила эксплуатации;
уметь:
— собирать схему пуска, реверсирования и останова асинхронного электродвигателя с короткозамкнутым ротором.
Основные теоретические положения:
Схема реверса приведена на рисунке 28.
При включении автоматического выключателя QF напряжение подается к цепи управления и к разомкнутым силовым контактам IKMI – IKM3, 2KMI – 2KM3. При нажатии кнопки ISBI, механически связанной с кнопкой ISB2, образуется цепь: точка С, катушка IKM, кнопка ISB4, точка В. По катушке электромагнитного пускателя IKM протекает ток, замыкаются его контакты IKMI –IKM3 в силовой цепи. На двигатель подается напряжение, он начинает вращаться в прямом направлении. Кроме того, замыкается контакт IKM5 в цепи управления, поэтому, независимо от состояния кнопочного выключателя ISBI, катушка IKM остается под напряжением.
Для реверса АД необходимо изменить чередование фаз питающего напряжения, т.е. переключить два линейных провода, подключенных к обмотке статора. Эту функцию выполняют силовые контакты 2KMI – 2KM3. При нажатии кнопки 2SBI, технически связанной с кнопкой 2SB2, размыкается предыдущая цепь и образуется новая цепь: точка С, катушка 2KM, кнопка 2SBI, кнопка 2SB2, контакт 3КК – 4КК, контакт IKM4, контакт IB4. Ток протекает по катушке 2КМ, а катушка IKM обесточивается, силовые контакты IKMI – IKM3 размыкаются, а контакты 2KMI – 2KM3 замыкаются, двигатель тормозится и разгоняется в обратном направлении. При этом контакт 2КМ5 находится в замкнутом состоянии, и ток через катушку 2КМ протекает, независимо от состояния кнопки 2SBI.
В случае недопустимого нагрева двигателя при вращении в прямом или обратном направлении размыкаются контакты теплового реле соответственно IKK-2KK или 3KK – 4KK, катушка IKM или 2КМ обесточивается, двигатель отключается от сети. Для остановки двигателя нажимают кнопку ISB4, цепь управления обесточивается, и силовые контакты IKMI – IKM3 или 2KMI – 2KM3 размыкаются.
Рисунок 28 – Реверсивная схема пуска асинхронного двигателя с короткозамкнутым ротором
Расшифровка кнопок:
— SB1 — «Вперед»;
— SB2 — «Назад»;
— SB3 — «Стоп».
Монтажная схема для лучшего понимания кнопочного поста приведена на рисунке 29.
Рисунок 29 – Монтажная схема к рисунку 28
Порядок выполнения работы:
1. Выполнить задание лабораторной работы.
2. Составить отчет.
3. Ответить на контрольные вопросы.
Ход работы:
Рабочий инструмент: отвертка плоская, бокорезы, монтажный нож, кабель (провод) одножильный, круглогубцы, плоскогубцы, трехфазная вилка с питающим шнуром (рисунок 30).
Рисунок 30 – Рабочий инструмент для сборки схемы
Необходимые машины и аппараты для реализации схемы приведены на рисунке 31.
Рисунок 31 – Элементный состав схемы
Обозначения элементов схемы приведены на рисунке 32.
Рисунок 32 – Элементы схемы реверса асинхронного электродвигателя
Расшифровка кнопок (рисунок 33):
— SB1 – «Вперед»;
— SB2 – «Назад»;
— SB3 – «Стоп».
Рисунок 33 – Расшифровка кнопок кнопочного поста
Виды контактов приведены на рисунке 34.
Рисунок 34 – Виды контактов
Например, контакты на магнитном пускателе ПМЕ-211 (рисунки 35, 36):
Рисунок 35 – Виды контактов магнитного пускателя
Рисунок 36 – Виды контактов магнитного пускателя
Такой же контакт стоит в кнопке «пуск» и «стоп» (рисунки 37, 38).
Рисунок 37 – Виды контактов кнопок
Рисунок 38 – Виды контактов кнопок
Технологический процесс сборки схемы реверса асинхронного двигателя (АД) с короткозамкнутым ротором.
Цепь управления:
1. Питающий кабель присоединяем с фазы «В» на нормально замкнутый контакт (3) кнопки SB3 (рисунки 39-41).
Рисунок 39 – Сборка питающего кабеля на принципиальной схеме
Рисунок 40 – Сборка питающего кабеля на монтажной схеме
Рисунок 41 – Сборка питающего кабеля на стенде
2. С нормально замкнутого контакта (4) кнопки SB3 присоединить перемычку на нормально разомкнутый контакт (1) кнопки SB2 (рисунки 42-44).
Рисунок 42 – Сборка перемычки между кнопками на принципиальной схеме
Рисунок 43 – Сборка перемычки между кнопками на монтажной схеме
Рисунок 44 – Сборка перемычки между кнопками на стенде
3. С нормально замкнутого контакта (4) кнопки SB3 присоединить перемычку на нормально разомкнутый контакт (1) кнопки SB1 (рисунки 45-47).
Рисунок 45 – Сборка перемычки между кнопками на принципиальной схеме
Рисунок 46 – Сборка перемычки между кнопками на монтажной схеме
Рисунок 47 – Сборка перемычки между кнопками на стенде
4. С нормально разомкнутого контакта (2) кнопки SB1 присоединить провод на нормально замкнутый контакт магнитного пускателя КМ2 (рисунки 48-51).
Рисунок 48 – Сборка соединения пусковой кнопки прямого вращения двигателя с блок-контактом магнитного пускателя на принципиальной схеме
Рисунок 49 – Сборка соединения пусковой кнопки прямого вращения двигателя с блок-контактом магнитного пускателя на монтажной схеме
Рисунок 50 – Сборка соединения пусковой кнопки прямого вращения двигателя с блок-контактом магнитного пускателя на стенде
Рисунок 51 – Нормально разомкнутый контакт пусковой кнопки
прямого вращения двигателя
5. С нормально замкнутого контакта магнитного пускателя КМ2 присоединяем провод на катушку К1 магнитного пускателя КМ1 (рисунки 52-54).
Рисунок 52 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на принципиальной схеме
Рисунок 53 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на монтажной схеме
Рисунок 54 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на стенде
6. С нормально разомкнутого контакта (1) кнопки SB1 присоединяем провод на нормально разомкнутый контакт магнитного пускателя КМ1 (рисунки 55-58).
Рисунок 55 – Шунтирование пусковой кнопки прямого вращения двигателя блок-контактом магнитного пускателя на принципиальной схеме
Рисунок 56 – Шунтирование пусковой кнопки прямого вращения двигателя блок-контактом магнитного пускателя на монтажной схеме
Рисунок 57 – Шунтирование пусковой кнопки прямого вращения двигателя блок-контактом магнитного пускателя на стенде
Рисунок 58 – Нормально разомкнутый контакт кнопки
прямого вращения двигателя
7. С нормально разомкнутого контакта магнитного пускателя КМ1, присоединяем перемычку на нормально замкнутый контакт магнитного пускателя КМ2 (рисунки 59-61).
Рисунок 59 – Сборка перемычки между блок-контактами магнитного пускателя схеме прямого вращения двигателя на принципиальной схеме
Рисунок 60 – Сборка перемычки между блок-контактами магнитного пускателя схеме прямого вращения двигателя на монтажной схеме
Рисунок 61 – Сборка перемычки между блок-контактами магнитного пускателя схеме прямого вращения двигателя на стенде
8. С нормально разомкнутого контакта (2) кнопки SВ2 присоединить провод на нормально замкнутый контакт магнитного пускателя КМ1 (рисунки 62-65).
Рисунок 62 – Сборка соединения пусковой кнопки обратного вращения двигателя с блок-контактом магнитного пускателя на принципиальной схеме
Рисунок 63 – Сборка соединения пусковой кнопки обратного вращения двигателя с блок-контактом магнитного пускателя на монтажной схеме
Рисунок 64 – Сборка соединения пусковой кнопки обратного вращения двигателя с блок-контактом магнитного пускателя на стенде
Рисунок 65 – Нормально разомкнутый контакт пусковой кнопки
обратного вращения
9. С нормально замкнутого контакта магнитного пускателя КМ1 присоединяем провод на катушку магнитного пускателя КМ2 (рисунки 66-68).
Рисунок 66 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на принципиальной схеме
Рисунок 67 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на монтажной схеме
Рисунок 68 – Сборка соединения блок-контакта магнитного пускателя с катушкой магнитного пускателя на стенде
10. С нормально разомкнутого контакта (1) кнопки SВ2 присоединить провод на нормально разомкнутый контакт магнитного пускателя КМ2 (рисунок 69-72).
Рисунок 69 – Шунтирование пусковой кнопки обратного вращения блок-контактом магнитного пускателя на принципиальной схеме
Рисунок 70 – Шунтирование пусковой кнопки обратного вращения блок-контактом магнитного пускателя на монтажной схеме
Рисунок 71 – Шунтирование пусковой кнопки обратного вращения блок-контактом магнитного пускателя на стенде
Рисунок 72 – Нормально разомкнутый контакт пусковой кнопки
обратного вращения
11. С нормально разомкнутого контакта магнитного пускателя КМ2 присоединяем перемычку на нормально замкнутый контакт магнитного пускателя КМ1 (рисунки 73-75).
Рисунок 73 – Сборка перемычки между блок-контактами магнитного пускателя схеме обратного вращения двигателя на принципиальной схеме
Рисунок 74 – Сборка перемычки между блок-контактами магнитного пускателя схеме обратного вращения двигателя на монтажной схеме
Рисунок 75 – Сборка перемычки между блок-контактами магнитного пускателя схеме обратного вращения двигателя на стенде
12. Закрыть крышку кнопочного поста (рисунок 76).
Рисунок 76 – Сборка кнопочного поста завершена
13. Делаем перемычку между катушками К1 и К2 магнитных пускателей КМ1и КМ2 (рисунки 77, 78).
Рисунок 77 – Сборка перемычки между катушками магнитных пускателей на принципиальной схеме
Рисунок 78 – Сборка перемычки между катушками
магнитных пускателей на стенде
14. От катушки К1 магнитного пускателя КМ1 присоединить провод к замкнутому контакту теплового реле КК (рисунки 79, 80).
Рисунок 79 – Сборка соединения между магнитным пускателем и тепловым реле на принципиальной схеме
Рисунок 80 – Сборка соединения между магнитным пускателем и тепловым реле на стенде
15. С нормально замкнутого контакта теплового реле КК присоединяем провод на фазу «С» (рисунки 81, 82).
Рисунок 81 – Соединение теплового реле с фазой «С» на принципиальной схеме
Рисунок 82 – Соединение теплового реле с фазой «С» на стенде
Силовая цепь:
16. На магнитных пускателях осуществить реверс путём переключения контактов по схеме (рисунки 83, 84).
Со стороны двигателя:
— 3-1;
— 2-2;
— 1-3.
Со стороны подключения кнопочного поста:
— 1-1;
— 2-2;
— 3-3.
Рисунок 83 – Сборка цепей силовых контактов магнитных пускателей на монтажной схеме (подключение к фазам сети)
Рисунок 84 – Сборка цепей силовых контактов магнитных пускателей на стенде (подключение к фазам сети)
17. Подключение двигателя с КЗ-ротором фазой «В» к фазе «В» на магнитный пускатель. Фазу «А» и «С» подключаем к выходным контактам теплового реле КК (рисунок 85).
Рисунок 85 – Подключение двигателя к фазам на стенде
18. С выходных концов теплового реле КК присоединить провода к фазе «А» и к фазе «С» (рисунки 86, 87).
Рисунок 86 – Подключение тепловых реле к фазам «А» и «С» сети
на монтажной схеме
Рисунок 87 – Подключение тепловых реле к фазам «А» и «С» сети
на стенде
19. Подключить трёхфазную вилку к магнитному пускателю на фазы «А», «В» и «С» (рисунки 88-90).
Рисунок 88 – Подключение трехфазной вилки к магнитному пускателю на фазы «А», «В», «С» сети на монтажной схеме
Рисунок 89 – Подключение трехфазной вилки к магнитному пускателю на фазы «А», «В», «С» сети на стенде
Рисунок 90 – Подключение трехфазной вилки к магнитному пускателю на фазы «А», «В», «С» сети на стенде
20. Проверить правильность сборки схемы реверса асинхронного двигателя и только после этого подать напряжение и запустить двигатель.
Задание.
Собрать и запустить схему реверсирования асинхронного электродвигателя с короткозамкнутым ротором по приведенной выше наглядной инструкции.
Контрольные вопросы:
1. Приведите примеры электроприводов электроприемников, в которых требуется реверсирование электродвигателя?
2. Как устроен реверсивный магнитный пускатель?
3. Как устроен кнопочный пост для реверсивной схемы?
4. Зачем в схеме используются тепловые реле?
Лабораторная работа №9
Управление вперед-назад
ЦЕЛИ :
- Обсудите меры предосторожности, которые необходимо соблюдать при реверсивных цепях.
- Объясните, как реверсировать трехфазный двигатель.
- Обсудите методы блокировки.
- Подключить цепь управления двигателем прямого/обратного хода.
Направление вращения любого трехфазного двигателя можно изменить с помощью замена любых двух Т выводов двигателя (рис. 1). Так как двигатель подключен к линия электропередач, независимо от того, в каком направлении она работает, отдельный контактор нужно для каждого направления. Если реверсивные пускатели соответствуют требованиям NEMA стандартов Т отведения 1 и 3 будут заменены (рис. 2). Так как только один двигатель работает, однако для защиты требуется только одно реле перегрузки. двигатель. Настоящие реверсивные контроллеры содержат два отдельных контактора и одно реле перегрузки. В некоторых реверсивных пускателях используется один отдельный контактор и пускатель со встроенным реле перегрузки.
Другие используют два отдельных контактора и отдельное реле перегрузки. Вертикаль реверсивный пускатель с реле перегрузки показан на рис. 3, а горизонтальный реверсивный пускатель без реле перегрузки показан на рис. 4.
Рис. 1 Направление вращения любого трехфазного двигателя можно изменить
поменяв местами подключение к любым двум тройникам двигателя.
Блокировка
Блокировка предотвращает выполнение некоторых действий до тех пор, пока не будет выполнено какое-либо другое действие. было выполнено. В случае реверсивных пускателей блокировка используется для предотвращения одновременного включения обоих контакторов.
Это может привести к короткому замыканию двух из трех фазных линий. Блокировка заставляет один контактор обесточиваться раньше, чем другой. можно зарядить энергией.
Для обеспечения блокировки можно использовать три метода. Много реверсивные элементы управления используют все три.
Механическая блокировка
Большинство реверсивных контроллеров содержат механические блокировки, а также электрические блокировки. Механическая блокировка осуществляется с помощью контакторов. для управления механическим рычагом, который предотвращает замыкание другого контактора пока человек находится под напряжением. Механические блокировки поставляются производителем и встроены в реверсивные пускатели. На принципиальной схеме механический блокировки показаны пунктирными линиями от каждой катушки, соединяющейся в сплошную линия (ил. 5).
Электрическая блокировка
Доступны два метода электрической блокировки. Один метод выполнен с помощью кнопок двойного действия (рис. 6). Пунктирные линии нарисованы между кнопками указывают на то, что они механически связаны. Обе кнопки будут нажаты одновременно. нормально закрытая часть кнопки ВПЕРЕД соединен последовательно с катушкой R, а нормально замкнутая часть кнопки REVERSE соединена последовательно с катушкой F. Если двигатель должен вращаться в прямом направлении и нажата кнопка REVERSE, нормально закрытая часть толкателя Кнопка разомкнется и отключит катушку F от линии до нормального открытая часть закрывается, чтобы подать питание на катушку R. Нормально закрытый участок любого кнопка оказывает такое же воздействие на цепь, как и нажатие кнопки STOP.
Второй метод электрической блокировки достигается путем подключения нормально замкнутые вспомогательные контакты на одном контакторе последовательно с катушку другого контактора (рис. 7). Предположим, что кнопка ВПЕРЕД кнопка нажата, и катушка F активируется. Это приводит к изменению всех F-контактов. должность.
Три F-контакта нагрузки замыкаются и подключают двигатель к сети. нормально разомкнутый вспомогательный контакт F замыкается для поддержания цепи, когда Кнопка ВПЕРЕД отпускается, и нормально замкнутый вспомогательный контакт F включенный последовательно с катушкой R размыкается (рис. 8).
Если требуется противоположное направление вращения, кнопка СТОП должна быть нажата в первую очередь. Если сначала нажать кнопку REVERSE, теперь разомкнутый вспомогательный контакт F, соединенный последовательно с катушкой R, будет предотвратить создание полной цепи.
Однако после нажатия кнопки STOP F-катушка обесточивается, и все F-контакты возвращаются в нормальное положение. Кнопка РЕВЕРС теперь можно нажать, чтобы включить катушку R (рис. 9).). Когда катушка R возбуждается, все контакты R меняют положение. Три контакта нагрузки R замыкаются и соединяются двигатель к линии. Обратите внимание, однако, что два Т-провода двигателя подключены к разным линиям. Нормально замкнутый вспомогательный контакт R размыкается. чтобы предотвратить возможность подачи питания на катушку F до тех пор, пока катушка R не будет обесточена.
Рис. 2 Магнитные реверсивные пускатели обычно заменяют тройники 1 и 3 на
реверс мотора.
Разработка электрической схемы
Та же базовая процедура используется для разработки электрической схемы из схематично, как описано в предыдущих разделах. Компоненты, необходимые для построения этой схемы показаны на рис. 10. В этом примере примем два контактора и отдельное трехфазное реле перегрузки. использовал.
Первым шагом является размещение номеров проводов на принципиальной схеме. Предлагаемый последовательность нумерации показана на рис. 11. Следующим шагом является размещение провода номера рядом с соответствующими компонентами электрической схемы (рис. 12).
Реверсивные однофазные двухфазные двигатели
Чтобы изменить направление вращения однофазного двигателя с расщепленной фазой, либо выводы пусковой обмотки, либо выводы рабочей обмотки, но не оба, взаимно изменены. Принципиальная схема управления вперед-назад для однофазный двигатель с расщепленной фазой показан на рис. 13. Обратите внимание, что сечение такое же, как и для реверсирования трехфазных двигателей. В этом Например, вывод рабочей обмотки Т1 всегда будет подключен к L1, а Т4 будет всегда быть подключенным к L2.
Однако выводы пусковой обмотки будут заменены.
Когда на контактор прямого хода подается питание, вывод пусковой обмотки Т5 будет подключен к L1, а T8 будет подключен к L2. Когда обратный контактор находится под напряжением, вывод пусковой обмотки Т5 будет подключен к L2, а Т8 быть подключен к L1.
Рис. 3 Вертикальный реверсивный пускатель с реле перегрузки.
Рис. 4 Горизонтальный реверсивный пускатель.
Рис. 5 Механические блокировки обозначены пунктирными линиями, продолжающимися
с каждой катушки.
Рис. 6 Блокировка с помощью кнопок двойного действия.
Рис. 7 Электрическая блокировка также осуществляется при нормально закрытом
вспомогательные контакты.
Рис. 8 Двигатель работает в прямом направлении.
Рис. 9 Двигатель работает в обратном направлении.
Ill. 10 Компоненты, необходимые для создания реверсивного управления.
Рис. 11 Размещение номеров на схеме.
Рис. 12 Компоненты, необходимые для создания схемы реверсивного управления.
Рис. 13 Реверсирование однофазного двигателя с расщепленной фазой.
ВИКТОРИНА :
1. Как изменить направление вращения трехфазного двигателя?
2. Что такое блокировка?
3. Ссылаясь на схему, показанную на рис. 7, как будет работать схема если бы нормально замкнутый контакт R, соединенный последовательно с катушкой F, был подключен нормально открытый?
4. Какая опасность была бы, если бы она была, если бы цепь была подключена, как указано в вопросе 3?
5. Как будет работать схема, если нормально замкнутые вспомогательные контакты были соединены так, что контакт F был соединен последовательно с катушкой F, а контакт R последовательно с катушкой R, рис. 7?
6. Предположим, что схема, показанная на рис. 7, должна быть подключена, как показано на рис. на рис. 14. Чем будет отличаться работа схемы, если вообще?
Рис. 14 Положение удерживающих контактов изменено с
на рис. 7.
Цепь управления двигателем Вперед Назад | Проводка и подключение
Привет, в этой статье мы рассмотрим схему управления двигателем для вращения в прямом и обратном направлении. Здесь схема подключения и схема цепи управления даны и подробно объяснены. Как правило, в промышленных приложениях, лифтах, кранах и т. Д. Нам необходимо вращать двигатель как в прямом, так и в обратном направлении.
Вращение вперед или по часовой стрелке (CW):
Как правило, трехфазные электродвигатели сконструированы или их обмотки соединены таким образом, что при соединении фаз R, Y и B с клеммами двигателя R, Y , B или U, V, W или T1, T2, T3 соответственно, то они будут работать в прямом направлении или по часовой стрелке.
Обратное направление или вращение против часовой стрелки (ACW):
Мы знаем, что в трехфазном электродвигателе, если мы поменяем местами любые две клеммы двигателя или источника питания, он будет вращаться в обратном направлении. Таким образом, эта основная концепция используется в этой принципиальной схеме.
Читайте также: Схема подключения инвертора. Установите инвертор и аккумулятор дома.
Схема подключения управления двигателем вперед-назад
Ниже приведена схема подключения управления двигателем с подключением светового индикатора.
Читайте также: Схема подключения солнечной панели с аккумулятором, инвертором, контроллером заряда и нагрузками.
Различные части и оборудование:
MCCB
Здесь MCCB или автоматический выключатель в литом корпусе используется в качестве основного вводного выключателя, который обеспечивает функцию переключения и защиту от короткого замыкания.
Автоматический выключатель управления
Однополюсный автоматический выключатель используется для цепи управления, и его вход берется от входящей фазы «R».
Контактор
Здесь вы можете увидеть две части электрических контакторов. Один для вращения в прямом направлении, а другой для вращения в обратном направлении.
Тепловое реле перегрузки
Здесь используется 3-полюсное тепловое реле перегрузки. Это реле имеет один замыкающий контакт и один размыкающий контакт.
Кнопочный переключатель и индикаторная лампа
Здесь используются три кнопочных переключателя — вперед, назад и стоп. Всего используется четыре контрольных лампы ПК — вперед, назад, стоп и отключение
См. также: Схема подключения для дома с руководством по выбору рейтинга MCB
Описание подключения
1. Основное входящее трехфазное питание подключается к MCCB. Выход MCCB подключается к контактору.
2. Здесь оба контактора подключены параллельно, но фазы «R» и «B» поменялись местами для второго контактора.
3. Взаимоблокировка: Включение только одного контактора за раз называется блокировкой. Поскольку оба контактора подключены параллельно, а клемма для второго контактора поменялась местами, то при одновременном включении обоих контакторов произойдет короткое замыкание.