Реверс трехфазного двигателя — Всё о электрике
Схема реверса трехфазного двигателя
Трехфазные электродвигатели широко используются на многих объектах. В силу специфических условий эксплуатации, довольно часто возникает необходимость изменения направления вращения вала того или иного агрегата. Для этих целей лучше всего подходит стандартная схема реверса трехфазного двигателя, применяемая для открытия и закрытия гаражных ворот, обеспечения работы лифтов, погрузчиков, кран-балок и другого оборудования.
Общая схема реверса электродвигателей
В промышленности и сельском хозяйстве нашли широкое применение различные типы трехфазных асинхронных электродвигателей. Они устанавливаются в электроприводах оборудования, служат составной частью автоматических устройств. Трехфазные агрегаты завоевали популярность, благодаря высокой надежности, простому обслуживанию и ремонту, возможности работы напрямую от сети переменного тока.
Специфика работы устройств, работающих с электродвигателями, предполагает необходимость изменения направления вращения вала, называемого реверсом. Для таких ситуаций разработаны специальные схемы, в состав которых включены дополнительные электрические приборы. Прежде всего, это вводный автомат, имеющий соответствующие параметры, контакторы (2 шт.), тепловое реле и элементы управления в виде трех кнопок, объединенных в общий кнопочный пост.
Для того чтобы вал начал вращаться в противоположную сторону, необходимо изменить расположение фаз подаваемого напряжения. Необходим постоянный контроль над значением напряжения, поступающего на электродвигатель и катушки контакторов. Непосредственное выполнение реверса в трехфазном двигателе осуществляется контакторами (КМ) № 1 и № 2. При срабатывании контактора № 1, фазы поступающего напряжения будут располагаться иначе, нежели при срабатывании контактора № 2.
Для управления катушками обоих контакторов предусмотрены три кнопки – ВПЕРЕД, НАЗАД и СТОП. Они обеспечивают питание катушек в зависимости от расположения фаз. Порядок включения контакторов влияет на замыкание электрической цепи таким образом, что вращение вала двигателя в каждом случае происходит строго в определенную сторону. Кнопку НАЗАД необходимо только нажать, но не удерживать, так как она сама оказывается в нужном положении под действием самоподхвата.
На всех трех кнопках установлена блокировка, предотвращающая их одновременное включение. Несоблюдение этого условия может привести к возникновению в электрической цепи короткого замыкания и выходу из строя оборудования. Для блокировки кнопок используется специальный блок-контакт, расположенный в соответствующем контакторе.
Схема реверса трехфазного двигателя и кнопочного поста
В каждой системе, обеспечивающей реверс трехфазного электродвигателя, имеются специфические кнопочные контакты, объединенные в общий кнопочный пост. Работа этой системы тесно связана с функционированием остальных элементов схемы.
Всем известно, что включение контактора магнитного пускателя осуществляется с помощью управляющего импульса, поступающего после нажатия на пусковую кнопку. Данная кнопка в первую очередь обеспечивает подачу напряжения на катушку управления.
Включенное состояние контактора удерживается и сохраняется, благодаря принципу самоподхвата. Он заключается в параллельном подключении (шунтировании) к пусковой кнопке вспомогательного контакта, обеспечивающего подачу напряжения на катушку. В связи с этим уже нет необходимости удерживать кнопку ПУСК в нажатом состоянии. Таким образом, магнитный пускатель может отключиться только после разрыва цепи катушки управления, поэтому в схеме необходима кнопка с размыкающим контактом. В связи этим, кнопки управления, объединенные в кнопочный пост, оборудуются двумя парами контактов – нормально открытыми (NO) и нормально закрытыми (NC).
Все кнопки выполнены в универсальном варианте для того, чтобы обеспечить моментальный реверс двигателя, если в этом возникнет срочная необходимость.
В некоторых случаях кнопочный пост может использоваться в нереверсивной схеме работы электродвигателя, когда его вал вращается лишь в одном направлении. Запуск производится кнопкой пуск, а остановка произойдет через определенный промежуток времени после нажатия кнопки СТОП, когда вал преодолеет инерцию. Подключение такой схемы может быть выполнено в двух вариантах, с помощью катушек управления на 220 и 380 вольт.
Во всех случаях перед подключением кнопочного поста составляется схема его монтажа. В первую очередь выполняется подключение контактора, при отсутствии напряжения на входном кабеле. Для непосредственного управления напряжение может сниматься с любой фазы, какая будет наиболее удобна для использования. Проводник, соединяемый с кнопкой СТОП, подключается совместно с проводом фазы к соответствующей клемме контактора. Во избежание путаницы, нормально разомкнутые контакты маркируются цифрами 1 и 2, а нормально замкнутые – цифрами 3 и 4.
По завершении монтажа в кнопочном посте устанавливается перемычка, затем подключается провод, соединяющий клемму 1 кнопки ПУСК и вывод катушки управления контактора.
Схема реверса трехфазного двигателя в однофазной сети
Довольно часто трехфазные электродвигатели используются в бытовых условиях и включаются в однофазную сеть. Для таких случаев предусмотрена реверсивная схема подключения электродвигателя в однофазной сети. Принцип действия такой схемы очень простой: для выполнения реверса используются конденсаторы, питание которых переключается между полюсами питающего напряжения. Управление схемой осуществляется кнопкой.
Поскольку питающее напряжение составляет 220 В, соединение обмоток двигателя будет выполнено звездой, а на клеммник подведено три вывода.
Затем переключатель соединяется с двигателем, затем подводится питающее напряжение. Готовую систему нужно включить и проверить работу реверса.
Схемы подключения трехфазных электродвигателей
ВАЖНО! Перед подключением электродвигателя необходимо убедится в правильности схемы соединения обмоток электродвигателя в соответствии с его паспортными данными.
Магнитный пускатель (далее — пускатель) — коммутационный аппарат предназначенный для пуска и остановки двигателя. Управление пускателем осуществляется через электрическую катушку, которая выступает в качестве электромагнита, при подаче на катушку напряжения она воздействует электромагнитным полем на подвижные контакты пускателя которые замыкаются и включают электрическую цепь, и наоборот, при снятии напряжения с катушки пускателя — электромагнитное поле пропадает и контакты пускателя под действием пружины возвращаются в исходное положение размыкая цепь.
У магнитного пускателя есть силовые контакты предназначенные для коммутации цепей под нагрузкой и блок-контакты которые используются в цепях управления.
Контакты делятся на нормально-разомкнутые — контакты которые в своем нормальном положении, т.е. до подачи напряжения на катушку магнитного пускателя или до механического воздействия на них, находятся в разомкнутом состоянии и нормально-замкнутые — которые в своем нормальном положении находятся в замкнутом состоянии.
В новых магнитных пускателях имеется три силовых контакта и один нормально-разомкнутый блок-контакт. При необходимости наличия большего количества блок-контактов (например при сборке
Кнопки для управления электродвигателем входят в состав кнопочных постов, кнопочные посты могут быть однокнопочные, двухкнопочные, трехкнопочные и т.д.
Каждая кнопка кнопочного поста имеет по два контакта — один из них нормально-разомкнутый, а второй нормально-замкнутый, т.е. каждая из кнопок может использоваться как в качестве кнопки «Пуск» так и в качестве кнопки «Стоп».
Данная схема является самой простой схемой подключения электродвигателя, в ней отсутствует цепь управления, а включение и отключение электродвигателя осуществляется автоматическим выключателем.
Главными достоинствами данной схемы является дешевизна и простота сборки, к недостаткам же данной схемы можно отнести то, что автоматические выключатели не предназначены для частого коммутирования цепей это, в сочетании с пусковыми токами, приводит к значительному сокращению срока службы автомата, кроме того в данной схеме отсутствует возможность устройства дополнительной защиты электродвигателя.
Схема подключения электродвигателя через магнитный пускательЭту схему так же часто называют
При нажатии кнопки SB-2 (кнопка «ПУСК») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1, при отпускании кнопки SB-2 ее контакт снова размыкается, однако катушка магнитного пускателя при этом не обесточивается, т.к. ее питание теперь будет осуществляться через блок-контак KM-1.1 (т.е. блок-контак KM-1.1 шунтирует кнопку SB-2). Нажатие на кнопку SB-1 (кнопка «СТОП») приводит к разрыву цепи управления, обесточиванию катушки магнитного пускателя, что приводит к размыканию контактов магнитного пускателя и как следствие, к остановке электродвигателя.
Реверсивная схема подключения электродвигателя (Как изменить направление вращения электродвигателя?)Что бы поменять направление вращения трехфазного электродвигателя необходимо поменять местами любые две питающие его фазы:
При необходимости частой смены направления вращения электродвигателя применяется реверсивная схема подключения электродвигателя:
В данной схеме применяется два магнитных пускателя (KM-1, KM-2) и трехкнопочный пост, магнитные поскатели применяемые в данной схеме кроме нормально-разомкнутого блок-контакта должны так же иметь и нормально замкнутый контакт.
При нажатии кнопки SB-2 (кнопка «ПУСК 1») подается напряжение на катушку магнитного пускателя KM-1, при этом пускатель замыкает свои силовые контакты KM-1 запуская электродвигатель, а так же замыкает свой блок-контакт KM-1.1 который шунтирует кнопку SB-2 и размыкает свой блок-контакт KM-1.2 который защищает электродвигатель от включения в обратную сторону (при нажатии кнопки SB-3) до его предварительной остановки, т.к. попытка запуска электродвигателя в обратную сторону без предварительного отключения пускателя KM-1 приведет к короткому замыканию. Что бы запустить электродвигатель в обратную сторону необходимо нажать кнопу «СТОП» (SB-1), а затем кнопку «ПУСК 2» (SB-3) которая запитает катушку магнитного пускателя KM-2 и запустит электродвигатель в обратную сторону.
Примечание: В данной статье понятия пускателя и контактора не разделяются в связи с идентичностью их схем подключения подробнее читайте статью: Контакторы и магнитные пускатели.
Была ли Вам полезна данная статья? Или может быть у Вас остались вопросы? Пишите в комментариях!
Не нашли на сайте статьи на интересующую Вас тему касающуюся электрики? Напишите нам здесь. Мы обязательно Вам ответим.
Схема подключения реверсивного магнитного пускателя.
08 Апр 2014г | Раздел: Электрика
Здравствуйте, уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем и сегодня мы рассмотрим еще одну классическую схему подключения магнитного пускателя, которая обеспечивает реверс вращения эл. двигателя.
Такая схема используется в основном, где нужно обеспечить вращение эл. двигателя в обе стороны, например, сверлильный станок, подъемный кран, лифт и т.д.
На первый взгляд может показаться, что эта схема намного сложнее, чем схема с одним пускателем, но это только на первый взгляд.
В схему добавилась еще одна цепь управления, состоящая из кнопки SB3, магнитного пускателя КМ2, и немного видоизменилась силовая часть подачи питания на эл. двигатель. Названия кнопок SB2 и SB3 даны условно.
Для защиты от короткого замыкания в силовой цепи, перед катушками пускателей добавились два нормально-замкнутых контакта КМ1.2 и КМ2.2, взятые от контактных приставок, установленных на магнитных пускателях КМ1 и КМ2.
Для удобства понимания схемы, цепи управления и силовые контакты пускателей раскрашены в разные цвета. А чтобы визуально не усложнять схему, цифробуквенные обозначения пар силовых контактов пускателей не указываются. Ну а если возникнут вопросы или сомнения, прочитайте еще раз предыдущую часть статьи о подключении магнитного пускателя.
1. Исходное состояние схемы.
При включении автоматического выключателя QF1 фазы «А», «В», «С» поступают на верхние силовые контакты магнитных пускателей КМ1 и КМ2 и там остаются дежурить.
Фаза «А», питающая цепи управления, через автомат защиты цепей управления SF1 и кнопку SB1 «Стоп» поступает на контакт №3 кнопок SB2 и SB3, вспомогательный контакт 13НО пускателей КМ1 и КМ2, и остается дежурить на этих контактах. Схема готова к работе.
На рисунке ниже показана часть реверсивной схемы, а именно, монтажная схема цепей управления с реальными элементами.
2. Работа цепей управления при вращении двигателя влево.
При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.
При замыкании контакта КМ1.1 пускатель встает на самоподхват, а при замыкании силовых контактов КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.
Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.
На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.
3. Работа цепей управления при вращении двигателя вправо.
Чтобы задать двигателю вращение в противоположную сторону достаточно поменять местами любые две питающие фазы, например, «В» и «С». Вот этим, как раз, и занимается пускатель КМ2.
Но прежде чем нажать кнопку «Вправо» и задать двигателю вращение в обратную сторону, нужно кнопкой «Стоп» остановить прежнее вращение.
При этом разорвется цепь и управляющая фаза «А» перестанет поступать на катушку пускателя КМ1, возвратная пружина вернет сердечник с контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель М от трехфазного питающего напряжения. Схема вернется в начальное состояние или ждущий режим:
Нажимаем кнопку SB3 и фаза «А» через нормально-замкнутый контакт КМ1. 2 поступает на катушку магнитного пускателя КМ2, пускатель срабатывает и через свой контакт КМ2.1 встает на самоподхват.
Своими силовыми контактами КМ2 пускатель перебросит фазы «В» и «С» местами и двигатель М станет вращаться в другую сторону. При этом контакт КМ2.2, расположенный в цепи питания пускателя КМ1, разомкнется и не даст пускателю КМ1 включиться пока в работе пускатель КМ2.
4. Силовые цепи.
А теперь посмотрим на работу силовой части схемы, которая и отвечает за переброс питающих фаз для осуществления реверса вращения эл. двигателя.
Обвязка силовых контактов пускателя КМ1 выполнена так, что при их срабатывании фаза «А» поступает на обмотку №1, фаза «В» на обмотку №2, и фаза «С» на обмотку №3. Двигатель, как мы определились, получает вращение влево. Здесь переброс фаз не осуществляется.
Обвязка силовых контактов пускателя КМ2 выполнена таким-образом, что при его срабатывании фазы «В» и «С» меняются местами: фаза «В» через средний контакт подается на обмотку №3, а фаза «С» через крайний левый подается на обмотку №2. Фаза «А» остается без изменений.
А теперь рассмотрим нижний рисунок, где показан монтаж всей силовой части на реальных элементах.
Фаза «А» белым проводом заходит на вход левого контакта пускателя КМ1 и перемычкой заводится на вход левого контакта пускателя КМ2. Выхода обоих контактов пускателей также соединены перемычкой, и уже от пускателя КМ1 фаза «А» поступает на обмотку №1 двигателя М — здесь переброса фазы нет.
Фаза «В» красным проводом заходит на вход среднего контакта пускателя КМ1 и перемычкой заводится на правый вход пускателя КМ2. С правого выхода КМ2 фаза перемычкой заводится на правый выход КМ1, и тем самым, встает на место фазы «С». И теперь на обмотку №3, при включении пускателя КМ2 будет подаваться фаза «В».
Фаза «С» синим проводом заходит на вход правого контакта пускателя КМ1 и перемычкой заводится на средний вход пускателя КМ2. С выхода среднего контакта КМ2 фаза перемычкой заводится на средний выход КМ1, и тем самым, встает на место фазы «В». Теперь на обмотку №2, при включении пускателя КМ2 будет подаваться фаза «С». Двигатель будет вращаться в правую сторону.
5. Защита силовых цепей от короткого замыкания или «защита от дурака».
Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок.
И вот представьте ситуацию, когда нет защиты.
Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».
А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.
6. Заключение.
Конечно, все это с первого раза понять трудно, я и сам, когда начинал осваивать работу эл. приводов, не с первого раза понял принцип реверса. Одно дело прочитать и запомнить схему на бумаге, а другое дело, когда все это видишь в живую. Но если собрать макет и несколько дней посвятить изучению схемы, то успех будет гарантирован.
И уже по традиции посмотрите видеоролик о подключении реверсивного магнитного пускателя.
А у нас еще осталось разобраться с электротепловой защитой эл. двигателя и тема о магнитных пускателях может быть смело закрыта.
Продолжение следует.
Удачи!
{SOURCE}
Схема реверса трехфазного двигателя в однофазной сети
Проблема подключения трехфазного двигателя к однофазной сети возникает достаточно часто, потому имеет смысл рассмотреть этот вопрос. Оказывается запустить такой двигатель от обычной розетки совсем несложно — достаточно лишь дополнить схему фазосдвигающим конденсатором:
На рисунках выше показано подключение трехфазных двигателей с обмотками, соединенными звездой и треугольником.
Правда в этой схеме есть один существенный недостаток: для получения максимального КПД емкость фазосдвигающего конденсатора (Сраб.) должна меняться в зависимости от числа оборотов якоря мотора. Простейший выход из этой ситуации — использование дополнительного конденсатора (Спуск.):
Он подключается только на время пуска двигателя, после чего сразу же отключается вручную.
Какой емкости конденсаторы нужно использовать? Расчет достаточно прост. Для схемы «Звезда» формула будет выглядеть так:
Где Сраб. в микрофарадах, I — ток потребления двигателем в амперах, U — напряжение питания в вольтах.
А для схемы «Треугольник» так:
Где Сраб. в микрофарадах, I — ток потребления двигателем в амперах, U — напряжение питания в вольтах.
Если вам известна мощность электродвигателя, то ток потребления несложно рассчитать, воспользовавшись формулой:
I = P/1.73 U η cosφ
Где I — ток потребления в амперах, Р — паспортная мощность двигателя в ваттах (указана на шильдике), U — напряжение сети в вольтах, η — КПД, cosφ — коэффициент мощности.
Пусковой конденсатор должен иметь в 1.5-2 большую емкость чем рабочий. Оба конденсатора должны быть обязательно бумажными (МБГО, МБГП) и рассчитаны на рабочее напряжение как минимум в 1.5 раза превышающее напряжение питания электродвигателя.
Как осуществить реверс двигателя при таком подключении? Схема реверсирования предельно проста — достаточно добавить схему переключатель В1:
И последний вопрос: если схема подключения трехфазного двигателя к одной фазе так проста, зачем вообще классическая схема с тремя фазами? Дело в том, что при использовании обычной сети для таких двигателей, мощности их составляет 50% от номинальной, но тут уже ничего не поделаешь.
Трехфазные электродвигатели широко используются на многих объектах. В силу специфических условий эксплуатации, довольно часто возникает необходимость изменения направления вращения вала того или иного агрегата. Для этих целей лучше всего подходит стандартная схема реверса трехфазного двигателя, применяемая для открытия и закрытия гаражных ворот, обеспечения работы лифтов, погрузчиков, кран-балок и другого оборудования.
Общая схема реверса электродвигателей
В промышленности и сельском хозяйстве нашли широкое применение различные типы трехфазных асинхронных электродвигателей. Они устанавливаются в электроприводах оборудования, служат составной частью автоматических устройств. Трехфазные агрегаты завоевали популярность, благодаря высокой надежности, простому обслуживанию и ремонту, возможности работы напрямую от сети переменного тока.
Специфика работы устройств, работающих с электродвигателями, предполагает необходимость изменения направления вращения вала, называемого реверсом. Для таких ситуаций разработаны специальные схемы, в состав которых включены дополнительные электрические приборы. Прежде всего, это вводный автомат, имеющий соответствующие параметры, контакторы (2 шт.), тепловое реле и элементы управления в виде трех кнопок, объединенных в общий кнопочный пост.
Для того чтобы вал начал вращаться в противоположную сторону, необходимо изменить расположение фаз подаваемого напряжения. Необходим постоянный контроль над значением напряжения, поступающего на электродвигатель и катушки контакторов. Непосредственное выполнение реверса в трехфазном двигателе осуществляется контакторами (КМ) № 1 и № 2. При срабатывании контактора № 1, фазы поступающего напряжения будут располагаться иначе, нежели при срабатывании контактора № 2.
Для управления катушками обоих контакторов предусмотрены три кнопки – ВПЕРЕД, НАЗАД и СТОП. Они обеспечивают питание катушек в зависимости от расположения фаз. Порядок включения контакторов влияет на замыкание электрической цепи таким образом, что вращение вала двигателя в каждом случае происходит строго в определенную сторону. Кнопку НАЗАД необходимо только нажать, но не удерживать, так как она сама оказывается в нужном положении под действием самоподхвата.
На всех трех кнопках установлена блокировка, предотвращающая их одновременное включение. Несоблюдение этого условия может привести к возникновению в электрической цепи короткого замыкания и выходу из строя оборудования. Для блокировки кнопок используется специальный блок-контакт, расположенный в соответствующем контакторе.
Схема реверса трехфазного двигателя и кнопочного поста
В каждой системе, обеспечивающей реверс трехфазного электродвигателя, имеются специфические кнопочные контакты, объединенные в общий кнопочный пост. Работа этой системы тесно связана с функционированием остальных элементов схемы.
Всем известно, что включение контактора магнитного пускателя осуществляется с помощью управляющего импульса, поступающего после нажатия на пусковую кнопку. Данная кнопка в первую очередь обеспечивает подачу напряжения на катушку управления.
Включенное состояние контактора удерживается и сохраняется, благодаря принципу самоподхвата. Он заключается в параллельном подключении (шунтировании) к пусковой кнопке вспомогательного контакта, обеспечивающего подачу напряжения на катушку. В связи с этим уже нет необходимости удерживать кнопку ПУСК в нажатом состоянии. Таким образом, магнитный пускатель может отключиться только после разрыва цепи катушки управления, поэтому в схеме необходима кнопка с размыкающим контактом. В связи этим, кнопки управления, объединенные в кнопочный пост, оборудуются двумя парами контактов – нормально открытыми (NO) и нормально закрытыми (NC).
Все кнопки выполнены в универсальном варианте для того, чтобы обеспечить моментальный реверс двигателя, если в этом возникнет срочная необходимость. Отключающая кнопка, в соответствии с общепринятыми нормами, имеет название СТОП и маркируется красным цветом. Кнопка включения известна как стартовая или пусковая, поэтому она именуется по-разному с помощью слов ПУСК, ВПЕРЕД или НАЗАД.
В некоторых случаях кнопочный пост может использоваться в нереверсивной схеме работы электродвигателя, когда его вал вращается лишь в одном направлении. Запуск производится кнопкой пуск, а остановка произойдет через определенный промежуток времени после нажатия кнопки СТОП, когда вал преодолеет инерцию. Подключение такой схемы может быть выполнено в двух вариантах, с помощью катушек управления на 220 и 380 вольт.
Во всех случаях перед подключением кнопочного поста составляется схема его монтажа. В первую очередь выполняется подключение контактора, при отсутствии напряжения на входном кабеле. Для непосредственного управления напряжение может сниматься с любой фазы, какая будет наиболее удобна для использования. Проводник, соединяемый с кнопкой СТОП, подключается совместно с проводом фазы к соответствующей клемме контактора. Во избежание путаницы, нормально разомкнутые контакты маркируются цифрами 1 и 2, а нормально замкнутые – цифрами 3 и 4.
По завершении монтажа в кнопочном посте устанавливается перемычка, затем подключается провод, соединяющий клемму 1 кнопки ПУСК и вывод катушки управления контактора.
Схема реверса трехфазного двигателя в однофазной сети
Довольно часто трехфазные электродвигатели используются в бытовых условиях и включаются в однофазную сеть. Для таких случаев предусмотрена реверсивная схема подключения электродвигателя в однофазной сети. Принцип действия такой схемы очень простой: для выполнения реверса используются конденсаторы, питание которых переключается между полюсами питающего напряжения. Управление схемой осуществляется кнопкой.
Поскольку питающее напряжение составляет 220 В, соединение обмоток двигателя будет выполнено звездой, а на клеммник подведено три вывода. На кнопке управления между клеммами устанавливается перемычка, после чего к одной из них подключается вывод конденсатора. Второй вывод конденсатора подключается к обмотке электродвигателя, не соединенной с сетью.
Затем переключатель соединяется с двигателем, затем подводится питающее напряжение. Готовую систему нужно включить и проверить работу реверса.
В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».
Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?
Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.
СОДЕРЖАНИЕ (нажмите на кнопку справа):
Конструктивные особенности
Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).
Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).
Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.
Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.
При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.
Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.
Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.
Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.
Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.
Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.
Как подключить электродвигатель с 380 на 220В без конденсатора?
Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.
Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.
Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.
Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.
По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.
Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.
Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.
Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.
Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.
Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.
Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.
В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).
Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.
Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.
Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.
Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.
Делается это следующим образом:
- Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
- После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R
При реализации рассмотренных схем стоит учесть ряд особенностей:
- Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
- Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.
Как подключить через конденсаторы
Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).
Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».
Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).
Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.
Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.
Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.
Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:
- Рабочие конденсаторы подключаются параллельно;
- Номинальное напряжение должно быть не меньше 300 Вольт;
- Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
- Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.
Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.
Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.
Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.
Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.
Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.
Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:
- Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
- Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
- Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.
С конденсатором дополнительная упрощенная — для схемы звезда.
С конденсатором дополнительная упрощенная — для схемы треугольник.
Как подключить с реверсом
В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.
Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.
Для реализации схемы можно использовать переключатель с двумя положениями.
К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.
Как подключить по схеме «звезда-треугольник» (с тремя проводами)
В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.
Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.
Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.
Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.
К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.
Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».
Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».
Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.
Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.
Принцип работы схемы прост:
- При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
- Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
- Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.
Итоги
Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.
com/embed/htKrQ6QRNbo?rel=0&modestbranding=1″/>
Схема реверса трехфазного двигателя с двумя концевиками
Здравствуйте уважаемые читатели сайта sesaga.ru. Продолжаем разбираться с магнитным пускателем и сегодня мы рассмотрим еще одну классическую схему подключения магнитного пускателя, которая обеспечивает реверс вращения эл. двигателя.
Такая схема используется в основном, где нужно обеспечить вращение эл. двигателя в обе стороны, например, сверлильный станок, подъемный кран, лифт и т.д.
На первый взгляд может показаться, что эта схема намного сложнее, чем схема с одним пускателем, но это только на первый взгляд.
В схему добавилась еще одна цепь управления, состоящая из кнопки SB3, магнитного пускателя КМ2, и немного видоизменилась силовая часть подачи питания на эл. двигатель. Названия кнопок SB2 и SB3 даны условно.
Для защиты от короткого замыкания в силовой цепи, перед катушками пускателей добавились два нормально-замкнутых контакта КМ1.2 и КМ2.2, взятые от контактных приставок, установленных на магнитных пускателях КМ1 и КМ2.
Для удобства понимания схемы, цепи управления и силовые контакты пускателей раскрашены в разные цвета. А чтобы визуально не усложнять схему, цифробуквенные обозначения пар силовых контактов пускателей не указываются. Ну а если возникнут вопросы или сомнения, прочитайте еще раз предыдущую часть статьи о подключении магнитного пускателя.
1. Исходное состояние схемы.
При включении автоматического выключателя QF1 фазы «А», «В», «С» поступают на верхние силовые контакты магнитных пускателей КМ1 и КМ2 и там остаются дежурить.
Фаза «А», питающая цепи управления, через автомат защиты цепей управления SF1 и кнопку SB1 «Стоп» поступает на контакт №3 кнопок SB2 и SB3, вспомогательный контакт 13НО пускателей КМ1 и КМ2, и остается дежурить на этих контактах. Схема готова к работе.
На рисунке ниже показана часть реверсивной схемы, а именно, монтажная схема цепей управления с реальными элементами.
2. Работа цепей управления при вращении двигателя влево.
При нажатии на кнопку SB2 фаза «А» через нормально-замкнутый контакт КМ2.2 поступает на катушку магнитного пускателя КМ1, пускатель срабатывает и его нормально-разомкнутые контакты замыкаются, а нормально-замкнутые размыкаются.
При замыкании контакта КМ1.1 пускатель встает на самоподхват, а при замыкании силовых контактов КМ1 фазы «А», «В», «С» поступают на соответствующие контакты обмоток эл. двигателя и двигатель начинает вращение, например, в левую сторону.
Здесь же, нормально-замкнутый контакт КМ1.2, расположенный в цепи питания катушки пускателя КМ2, размыкается и не дает включиться магнитному пускателю КМ2 пока в работе пускатель КМ1. Это так называемая «защита от дурака», и о ней чуть ниже.
На следующем рисунке показана часть схемы управления, отвечающая за команду «Влево». Схема показана с использованием реальных элементов.
3. Работа цепей управления при вращении двигателя вправо.
Чтобы задать двигателю вращение в противоположную сторону достаточно поменять местами любые две питающие фазы, например, «В» и «С». Вот этим, как раз, и занимается пускатель КМ2.
Но прежде чем нажать кнопку «Вправо» и задать двигателю вращение в обратную сторону, нужно кнопкой «Стоп» остановить прежнее вращение.
При этом разорвется цепь и управляющая фаза «А» перестанет поступать на катушку пускателя КМ1, возвратная пружина вернет сердечник с контактами в исходное положение, силовые контакты разомкнутся и отключат двигатель М от трехфазного питающего напряжения. Схема вернется в начальное состояние или ждущий режим:
Нажимаем кнопку SB3 и фаза «А» через нормально-замкнутый контакт КМ1. 2 поступает на катушку магнитного пускателя КМ2, пускатель срабатывает и через свой контакт КМ2.1 встает на самоподхват.
Своими силовыми контактами КМ2 пускатель перебросит фазы «В» и «С» местами и двигатель М станет вращаться в другую сторону. При этом контакт КМ2.2, расположенный в цепи питания пускателя КМ1, разомкнется и не даст пускателю КМ1 включиться пока в работе пускатель КМ2.
4. Силовые цепи.
А теперь посмотрим на работу силовой части схемы, которая и отвечает за переброс питающих фаз для осуществления реверса вращения эл. двигателя.
Обвязка силовых контактов пускателя КМ1 выполнена так, что при их срабатывании фаза «А» поступает на обмотку №1, фаза «В» на обмотку №2, и фаза «С» на обмотку №3. Двигатель, как мы определились, получает вращение влево. Здесь переброс фаз не осуществляется.
Обвязка силовых контактов пускателя КМ2 выполнена таким-образом, что при его срабатывании фазы «В» и «С» меняются местами: фаза «В» через средний контакт подается на обмотку №3, а фаза «С» через крайний левый подается на обмотку №2. Фаза «А» остается без изменений.
А теперь рассмотрим нижний рисунок, где показан монтаж всей силовой части на реальных элементах.
Фаза «А» белым проводом заходит на вход левого контакта пускателя КМ1 и перемычкой заводится на вход левого контакта пускателя КМ2. Выхода обоих контактов пускателей также соединены перемычкой, и уже от пускателя КМ1 фаза «А» поступает на обмотку №1 двигателя М — здесь переброса фазы нет.
Фаза «В» красным проводом заходит на вход среднего контакта пускателя КМ1 и перемычкой заводится на правый вход пускателя КМ2. С правого выхода КМ2 фаза перемычкой заводится на правый выход КМ1, и тем самым, встает на место фазы «С». И теперь на обмотку №3, при включении пускателя КМ2 будет подаваться фаза «В».
Фаза «С» синим проводом заходит на вход правого контакта пускателя КМ1 и перемычкой заводится на средний вход пускателя КМ2. С выхода среднего контакта КМ2 фаза перемычкой заводится на средний выход КМ1, и тем самым, встает на место фазы «В». Теперь на обмотку №2, при включении пускателя КМ2 будет подаваться фаза «С». Двигатель будет вращаться в правую сторону.
5. Защита силовых цепей от короткого замыкания или «защита от дурака».
Как мы уже знаем, что прежде чем изменить вращение двигателя, его нужно остановить. Но не всегда так получается, так как никто не застрахован от ошибок.
И вот представьте ситуацию, когда нет защиты.
Двигатель вращается в левую сторону, пускатель КМ1 в работе и с его выхода все три фазы поступают на обмотки, каждая на свою. Теперь не отключая пускатель КМ1 мы включаем пускатель КМ2. Фазы «В» и «С», которые мы поменяли местами для реверса, встретятся на выходе пускателя КМ1. Произойдет межфазное замыкание между фазами «В» и «С».
А чтобы этого не случилось, в схеме используют нормально-замкнутые контакты пускателей, которые устанавливают перед катушками этих же пускателей, и таким-образом исключается возможность включения одного магнитного пускателя пока не обесточится другой.
6. Заключение.
Конечно, все это с первого раза понять трудно, я и сам, когда начинал осваивать работу эл. приводов, не с первого раза понял принцип реверса. Одно дело прочитать и запомнить схему на бумаге, а другое дело, когда все это видишь в живую. Но если собрать макет и несколько дней посвятить изучению схемы, то успех будет гарантирован.
И уже по традиции посмотрите видеоролик о подключении реверсивного магнитного пускателя.
А у нас еще осталось разобраться с электротепловой защитой эл. двигателя и тема о магнитных пускателях может быть смело закрыта.
Продолжение следует.
Удачи!
В домашнем хозяйстве приходится использовать различные приборы, которые помогают облегчить выполнение какой-то задачи. В некоторых случаях под потребности приходится собирать какой-то конкретный инструмент, который стоит довольно дорого или под него просто есть все необходимые компоненты. Часто для этого важно знать, как сделать схему подключения электродвигателя. Заставить его вращаться не так сложно, а изменить направление движения уже сложнее. В статье будет рассказано о том, как выполнить схему реверсивного подключения двигателя.
Принцип работы
Электрический двигатель представляет собой механизм, в котором вращение осуществляется под воздействием электромагнитных волн. В основу положено всего два компонента:
- ротор;
- статор.
Вращается только первый элемента, а импульс на него подается со второго элемента. Чем выше мощность двигателя, тем больше его габариты. Из всего разнообразия различают:
- коллекторные;
- асинхронные.
В двигателях коллекторного типа питание на ротор подается через угольные щетки, которые касаются ламелей коллектора. Такие двигатели еще называют короткозамкнутыми. В асинхронных двигателях схема действия несколько отличается. В этом случае вращение происходит под воздействием двух сил:
- магнитного поля;
- индукции.
Напряжение от источника питания подается на фиксированные обмотки статора. При этом в нем возникают электромагнитные волны. Если напряжение переменное, тогда магнитное поле нестабильно и имеет определенные колебания. Благодаря этим колебаниям и происходит смещение ротора. Между ротором и статором есть небольшой воздушный зазор, благодаря которому и возможно беспрепятственное смещение. Магнитные волны из обмоток статора воздействуют на обмотки ротора, создавая напряжение. Благодаря такому воздействию возникает электродвижущая сила или ЭДС. Она заставляет магнитные волны взаимодействовать в обратном направлении тем, что есть в статоре, поэтому двигатель и называется асинхронным.
Обратите внимание! Чаще всего асинхронные двигатели имеют трехфазное подключение. Благодаря использованию дополнительных компонентов его можно переделать на работу от сети 220 вольт.
Требуемые компоненты
Самостоятельное подключение двигателя для реверсивного вращения не вызовет особых сложностей, если руководствоваться приведенной схемой. Одним из важных компонентов, который облегчит такую задачу является магнитный пускатель или контактор. На самом деле магнитный пускатель и контактор не являются тождественными понятиями. Если говорить просто, то контактор входит в состав магнитного пускателя, но для упрощения в статье оба понятия используются как равнозначные. Магнитные пускатели как раз и применяются для запуска, реверсивного движения и остановки асинхронных двигателей.
Возможно, возникает вопрос о том, почему нельзя использовать обычный рубильник или силовой автомат. В принципе, это допустимо, но не всегда пусковые токи, которые необходимы двигателю для нормального начала функционирования являются безопасными для человека. При включении может возникнуть пробой, который выведет из строя как выключатель, так и навредит оператору. Чтобы свести риски к минимуму, потребуется пускатель. В нем контактная часть отделена от той, с которой взаимодействует оператор. В нем есть отдельный модуль с катушкой, которая создает электромагнитное поле. Для работы катушки может потребоваться напряжение в 12 или больше вольт. При подаче этого напряжения происходит взаимодействие с металлическим сердечником, который втягивается внутрь катушки. К сердечнику закреплена пластина, которая уходит к контактной группе. Они замыкаются и происходит запуск двигателя. Остановка происходит в обратном порядке.
Кроме контактора, потребуется трехкнопочная станция. Одна клавиша выполняет функцию остановки, а две других функции запуска с разницей в направлении вращения. В трехкнопочной станции должно быть два нормально разомкнутых контакта и один нормально замкнутый. Если говорить просто, то нормальным положением контактора называется его нерабочее положение. То есть при воздействии на контакт он либо замыкается, либо размыкается. Если в рабочем состоянии он замкнут, то обозначается как НО, а если разомкнут, то обозначается как НЗ. Контакт НЗ применяется для кнопки остановки.
Принципиальная схема
На иллюстрации выше можно видеть принципиальную схему реверсивного подключения двигателя. Она отличается от обычной только наличием дополнительного модуля. Если говорить точнее, то в схеме задействуется два модуля управления. Один из них заставляет вращаться двигатель вправо, а другой влево. Взаимодействие оператора с модулями происходит посредством кнопок SB2 и SB3. Латинскими буквами A, B, C на схеме обозначены подводящие линии трехфазной сети. Они подходят к общему выключателю, который обозначен QF1. Далее идут два контактора КМ и цифровым обозначением. От контакторов цепь уходит к обмоткам двигателя. Каждый из этих контакторов вынесен отдельно и находится справа, где дополнительно можно рассмотреть их составные компоненты.
Процесс включения
Процесс включения двигателя довольно просто описать, используя все ту же схему. Первым делом происходит задействование общего рубильника QF1. Как только он включается, происходит подача напряжения по трем фазам. Но это напряжение не подается непосредственно на сам двигатель, т. к. еще нет четких указаний, в каком направлении он должен вращаться. Далее проводники проходят через автомат SF1 он выполняет защитную функцию, обесточивая всю систему в случае короткого замыкания. Далее следует кнопка выключения, которая также способна быстро разомкнуть цепь питания. Только после этого напряжение следует к клавишам SB2 и SB3, после воздействия на который, питание проходит к двигателю.
Обратите внимание! На схеме хорошо видно, что два контактора не могут быть задействованы одновременно, поэтому сбоя произойти не может.
Чтобы двигатель получил достаточное усилие для обратного вращения, необходимо переключить силовые фазы, для чего и предназначен пускатель КМ2. Если еще раз обратить внимание на схему, то можно заметить, что пускатель КМ1 имеет прямое подключение фаз к двигателю, а КМ2 обеспечивает некоторое смещение. Все происходит за чет первой фазы, она в этой схеме является ждущей. Как только она размыкается, прекращается подача напряжения на двигатель.
Обратите внимание! В реверсивной схеме подключения двигателя должен присутствовать дополнительный защитный модуль, который будет следить за тем, чтобы двигатель был остановлен перед началом нового цикла.
После полной остановки может быть задействована кнопка SB3. Она активирует второй пускатель. Последний меняет положение фаз, как показано на схеме. При этом дежурная фаза остается неизменной, питание от нее все так же подается на первый контакт двигателя. Изменения происходят во второй и третьей фазе. Благодаря этому обеспечивается реверсивное движение.
Этапы подключения
Подключение двигателя для реверсивного движения отличается в зависимости от того, какая сеть будет выступать питающей 220 или 380. Поэтому есть смысл рассмотреть их отдельно.
К трехфазной сети
Руководствуясь представленной схемой легко составить последовательность, в которой должно производиться подключение электродвигателя. Первым делом устанавливается основной силовой автомат. Его номинальное напряжение и сила тока должны быть рассчитаны на те, которые будет потреблять двигатель. Только в этом случае можно быть уверенным в бесперебойной работе. Перед монтажом автомата для двигателя потребуется обесточить сеть. Следующим устанавливается предохранительный выключатель. После него фазный кабель уходит на разрыв, на кнопку стоп, а уже от нее делается подключение к контакторам. На каждом элементе контактора и кнопочного поста обычно делаются соответствующие обозначения, которые упрощают процесс подключения. Видео о сборке тестовой схемы можно посмотреть ниже.
К однофазной сети
В домашних условиях часто приходится задействовать асинхронный двигатель, но не в каждом хозяйстве есть трехфазная сеть, поэтому важно знать, как подключить двигатель к однофазной сети. Для запуска от одной фазы требуется дополнительный импульс, чтобы его обеспечить подбирается конденсатор требуемой емкости. Если говорить проще, то конденсаторов должно быть два. Один из них является пусковым и подключается параллельно первому. Соединение обмоток двигателя выполняется по схеме «звезда». Если обмотки соединены другим способом и нет возможности его изменить, тогда не получиться выполнить требуемую схему.
Чтобы реверсивная схема функционировала потребуется переключение питания, которое поступает от конденсаторов между полюсами. Понадобится два выключателя и одна не фиксируемая кнопка. Одни из выключателей будет отвечать за подачу напряжения в цепь питания двигателя. Второй выключатель должен иметь три положения. В одном из них он будет выключенным, а в двух других изменять подачу питания от конденсаторов на обмотки. Не фиксируемая кнопка будет дополнительно подключать второй конденсатор на момент запуска двигателя.
Два вывода конденсатора подключаются между собой. К двум другим происходит подключение пусковой кнопки. Средний вывод трехпозиционного переключателя подключается к конденсаторам в том месте, где они объединены между собой. Два других вывода подключаются к клеммам двигателя, на которые приходит питание. Конденсаторы подключаются к выходу обмотки, которая применяется для запуска. Кнопка включения ставится в разрыв фазного провода.
Чтобы привести весь механизм в действие, необходимо подать питание на цепь двигателя основным выключателем. После этого задается направление вращения двигателя трехпозиционным выключателем. Далее нажимается кнопка пуска до момента выхода двигателя на рабочие обороты. Если возникает необходимость изменить направление вращения, тогда потребуется обесточить двигатель и дождаться его полной остановки, переключить трехпозиционный тумблер в противоположное крайнее положение и повторить процесс.
Резюме
Как видно реверсивное подключение требует определенных навыков, но может быть осуществлено без особых сложностей при соблюдении всех рекомендаций. Теперь не будет препятствий в использовании трехфазных агрегатов от однофазной сети, при этом следует понимать, что максимальная мощность будет ограничена, т. к. невозможен выход на полное потребление. На компонентах для подключения лучше не экономить, т. к. это скажется на сроке службы всей схемы. Во время сборки и запуска необходимо придерживаться всех правил безопасности работы с электрическим током.
Одноключевые конденсаторно-симисторные схемы реверса асинхронных двигателей при однофазной питающей сети Текст научной статьи по специальности «Электротехника, электронная техника, информационные технологии»
ЭНЕРГЕТИКА
УДК 621.313.333
В. Н. ДМИТРИЕВ, И. А. БОРИСОВ
ОДНОКЛЮЧЕВЫЕ КОНДЕНСАТОРНО-СИМИСТОРНЫЕ СХЕМЫ РЕВЕРСА АСИНХРОННЫХ ДВИГАТЕЛЕЙ ПРИ ОДНОФАЗНОЙ ПИТАЮЩЕЙ СЕТИ
Рассматриваются одноключевые схемы реверса конденсаторных асинхронных двигателей при питании от однофазной сети. Для исследования несимметричных схем при наличии параллельно и последовательно предвключённых в обмотки статора сопротивлений разработана трёхфазная схема замещения. Результаты расчёта позволяют подобрать оптимальное соотношение ёмкости конденсаторов, обеспечивающих максимум добротности пускового момента двигателя.
Ключевые слова: асинхронные двигатели, реверс, одноключевые конденсаторно-симисторные схемы, однофазная питающая сеть.
Для асинхронных двигателей (АД) с массивными роторами наиболее целесообразным является стартстопный режим с частыми пусками, реверсом и торможением. В этих условиях актуальной становится задача повышения эффективности и улучшения технико-экономических показателей реверса. При прочих равных условиях предпочтение следует отдавать схемам с минимальным числом коммутационных элементов и не требующим дополнительных устройств для защиты сети или элементов схемы двигателя от опасных последствий коммутационных операций.
На одноключевой схеме реверса [1,2] (рис. 1, а), в прямом режиме симистор открыт и АД работает как обычный конденсаторный АД, у которого фазная обмотка 2 подключена непосредственно к фазе сети, а обмотка 3 соединяется с обмоткой 2 через два параллельно включённых конденсатора С1, С2.
Для реверса симистор запирается и обмотка 2 соединяется с обмоткой 3 через конденсатор С!, что вызывает изменение порядка чередования фаз. Конденсатор С2 при этом включён последовательно и повышает соБф АД в целом.
Схема (рис. 1, б) является усовершенствованной схемой (рис. 1, а), где конденсатор С1 обеспечивает симметричный прямой режим, а обратный режим аналогичен режиму схемы (рис. 1, а), а конденсатор С1 остаётся подключённым к фазам сети, повышая со.
Для исследования схем АД при наличии параллельно и последовательно предвключённых в обмотки статора сопротивлений разработана трёхфазная схема замещения (рис. 2), которая позволяет учесть переменные параметры массивного ротора — Лг, Хг, сопротивления контуров вихревых
© В. Н. Дмитриев, И. А. Борисов, 2006
токов статора — Лет, Хст, насыщение магнитной цепи по пути основного потока — Хт, насыщение путей рассеяния обмоток статора — Хэ. Сопротивления Zг!o и 2Ьс являются сопротивлениями фазос-двигающих элементов, а Ъъ, Ъь учитывают последовательно предвключённые в цепь статора сопротивления конденсаторов, сопротивления катушек электромагнитных тормозов, ключей и др.
А о
А 0
Рис. 1. Одноключевые реверсивные схемы АД при однофазной питающей сети
lia
Ub
lie
O-
Za
Zb
Zc
Га
lisa
Ib
Zab
lab
Rsb
i
! Zbc
i
J
le
Ibc
Rsc
l/S Rra(Ir.S) XraO«\S)
—1 v—
Xsa(lsa) isa
-e. -i
Ira
Кепи Хста leía ——]-
Xma(im)
-8*—
l/S Rrb(Ir-S) Xrb(lr.S)
lib
ХчЬ(Ы>) Jsb
-a»-—
f
i
Rcrh Xerb le rh
Г……..H-
Xmb(lm) ,mb
1/S Rrc(lr«S) Xrc(lr.S) Irc
Xsc(ísc) Isc
Xnic(lm)
Рис. 2. Обобщённая схема замещения несимметричного АД с массивным ротором
Для расчёта реверсивных схем была разработана PASCAL — программа, в которой методом итераций учитывается изменение параметров массивной обмотки, как от насыщения, так и от поверхностного эффекта.
Непосредственным расчётом можно получить токи во всех цепях схемы в несимметричном пусковом и симметричном рабочем режимах. Момент рассчитывался по формуле
М = р
1 X
ух т
4з /я-
• 0)
+ (1т с — 1т а)1зЪ + (1т а — 1т
Были исследованы характеристики АД торцевого исполнения с массивным ротором со сле-
дующими параметрами: активное и индуктивное сопротивления обмотки статора: Т\ = 93. 8 Ом, X] = = 21.8 Ом, приведённые активное и индуктивное сопротивления массивной обмотки ротора: г2 = = 345 Ом, х2 = 21.8 Ом, сопротивление взаимоиндукции хт=135 Ом, число пар полюсов р = 2.
На рис. 3. представлены результаты расчёта добротности и пускового момента одноключе-вой схемы рис. 1, а при различных сочетаниях ёмкостей конденсаторов. Добротность пускового режима определялась отношением момента к потребляемой мощности при 8=1.
Рис. 3. Зависимости добротности и пускового момента однофазной схемы АД от соотношения ёмкостей фазосдвигающих конденсаторов
Результаты расчётов позволяют сделать вывод, что максимум момента наступает при С2 = 9—12 мкФ и с увеличением ёмкости С1 увеличивается, превышая его номинальное значение при С1= 16 мкФ. Максимум добротности пускового момента наблюдается при С2 = 11 мкФ и не зависит от ёмкости конденсатора С1.
БИБЛИОГРАФИЧЕСКИЙ СПИСОК
1. Дмитриев, В. Н. Конденсаторно-тиристорные схемы торможения и реверса асинхронных двигателей / В. Н. Дмитриев, А. Л. Кислицын, А. М. Крицштейн // Вопросы теории и проектирования электрических машин. Сб. научных трудов. — Ульяновск : УлГТУ, 2002. -С. 62-75.
УДК 621.313.333
2. Дмитриев, В. Н. Электромеханические устройства ввода-вывода информации специализированных вычислительных комплексов / В. Н. Дмитриев, А. Л. Кислицын . — Ульяновск : УлГТУ, 2003. — 120 с.
Дмитриев Владимир Николаевич, доктор технических паук доцент, заведующий кафедрой «Электропривод и автоматизация промыииген-ных установок» УлГТУ. Имеет статьи в области электрических машин и автоматизированного электропривода.
Борисов Иван Алексеевич, студент 5 курса спе-ifuaubuocmu «Электропривод и автоматизация промыииенных установок» Ул/ТУ.
В. Н. ДМИТРИЕВ, С. Е. ЛЕЙБЕ ЛЬ, С. С. ИГНАТОВ
ИССЛЕДОВАНИЕ РЕЖИМОВ КОНДЕНСАТОРНОГО ПРОТИВОВКЛЮЧЕНИЯ АСИНХРОННЫХ ДВИГАТЕЛЕЙ
Разработана математическая модель асинхронного двигателя с конденсаторно-симисторным коммутатором. Приводятся результаты расчёта тормозных режимов и реверса асинхронного двигателя путём перевода его от нормального трёхфазного режима к конденсаторному включению с обратным порядком чередования фаз. Установлено, что такой вид торможения, в отличие от классического торможения противовключением, для исключения реверса двигателя не требует установки датчика скорости.
Ключевые слова: асинхронные двигатели, режим противоключения, конденсаторно-симисторный коммутатор.
Для асинхронных двигателей (АД) ряда механизмов основным режимом работы является стартстопный режим с частыми пусками, торможением и реверсом [1, 2]. Это обусловливает актуальность исследования переходных процессов АД в указанных режимах.
Запись дифференциальных уравнений проводилась в фазовой заторможенной системе координат, что позволяло исследовать переходные процессы с учётом электромагнитной несимметрии как самого двигателя, так и учесть наличие пред-включённых элементов в статорные обмотки:
л
3;
>0)
B. Н. Дмитриев, С. Е. Лейбель,
C. иВс, Уса — линейные напряжения сети;
Яда, Язв, Язе — активные сопротивления обмоток
статора;
Яка. Ящ Якс — активные сопротивления ротора ;
1зл. Ьв кс. ¡пл. ¡яв. /*С — токи статора и ротора; Уав, Увс. Уел ~ потокосцепления статорных обмоток; Уял, Уяв. потокосцепления роторных обмоток;
со — частота вращения.
Электродвигатель с реверсом | Электрика в квартире, ремонт бытовых электроприборов
Просмотров 34 Опубликовано Обновлено
Иногда нам бывает необходим электродвигатель с управлением направления вращения вала (реверс), т.е. чтобы он вращался в одном или обратном направлении. Такой электродвигатель бывает нужен для кран-балки, гаражных ворот, насосов и т.д.
У нас есть электродвигатель, теперь необходимо сделать электрический реверс. Для реверса нам понадобятся два магнитных пускателя, две кнопки «пуск» и одна кнопка «стоп», и тепловое реле. Магнитные пускатели и тепловое реле подбираем исходя из мощности (Вт) электромотора. Сами магнитные пускатели должны быть с блоками-контактов. Блок-контакт — это дополнительные контакты, которые либо смыкаются , либо размыкаются при срабатывании катушки магнитного пускателя. Три кнопки (две «пуск» и одна «стоп»), объединённых в одном корпусе, можно приобрести в магазине, либо сделать самостоятельно.
Для электрического реверса нам понадобится вот эта схема:
Теперь давайте разберёмся в ней детально.
Магнитные пускатели (КМ1 и КМ2). На электродвигатель подали напряжение: пофазно А В С, через магнитный пускатель КМ1. Для того, чтобы двигатель начал вращаться в противоположную сторону, нам необходимо изменить фазировку его питающего напряжения. Говоря проще, поменять местами две фазы: А с В или В с С , или А с С . Вот для этого нам и понадобится второй магнитный пускатель КМ2. С пускателя КМ1 напряжение подаётся — А В С. А с пускателя КМ2 — С В А. Т.е. фазы поменялись и поменялось направление вращения электродвигателя . Это и есть реверс.
Кнопка «Стоп». Она необходима для остановки вращения вала, т.е. для отключения электромотора. Кнопка «Стоп» разрывает цепь подачи напряжения на катушки магнитных пускателей к.Км1 и к.КМ2.
Кнопки «Пуск». Они замыкают цепь, попеременно, и напряжение подаётся на катушки магнитных пускателей к.КМ1 и к.КМ2.
Блок — контакты на магнитных пускателях (б.к.КМ1 и б.к.КМ2). Они нам необходимы для предотвращения включения обоих магнитных пускателей одновременно, что приведёт к короткому замыканию . Т.е. когда мы включаем кнопку «Пуск 2» (см.схему), то блок-контакт КМ2 размыкает цепь и напряжение не может быть подано на катушку КМ1. И наоборот, когда мы нажимаем на кнопку «Пуск 1», то блок-контакт КМ1 разорвёт цепь на катушку КМ2.
Тепловое реле ТР. Оно необходимо для отключения электродвигателя в случае нагревания обмоток электромотора, либо электропроводки.
Не забывайте о том, что для подключения реверсивного электродвигателя вам понадобится автоматический выключатель (автомат). Он необходим для электробезопасности и аварийного отключения электромотора.
Реверс как собрать — Портал о стройке
Содержание статьи:
Схема подключения реверса электродвигателя с помощью пускателей
Хотя реверсное включение трехфазных двигателей асинхронного типа применяется довольно часто, тем не менее, вопрос о том, как его реализовать, обыватели до сих пор задают.
Как выяснилось, подавляющее большинство электрических движков асинхронного типа как в быту, так и на производстве, подключаются через магнитные пускатели .
Это связано с тем, что подобная схема включения обладает достаточно неплохой надежностью, кроме того, в их питающие цепи очень легко встраиваются устройства защиты от перегрузки, обрыва фазного провода и перекоса фаз.
Проще говоря, реверсом называется вращение вала двигателя в противоположную сторону.
В этой статье я рассмотрю схему подключения двигателя на реверс при помощи пары магнитных пускателей и пульта на три кнопки.
Вариант схемы, приведенный в этой статье можно считать самым простым. Более сложные схемы реверсного включения могут содержать в себе несколько вариантов блокировки.
Блокировки эти могут быть как электрические, так и механические. Первые выполняются на кнопках, включающих пускатели, а вторая — на движущихся деталях пускателей.
Реализация реверса происходит с помощью смены фазировки напряжения питания движка.
К примеру, если обозначить клеммы питания двигателя, как 1, 2 и 3 (фазные же провода сети принято обозначать А, В и С), то при подключении А -> 1, B -> 2 и C -> 3 вал двигателя станет вращаться в одну сторону, а если подключить A — > 1, B -> 3 и C -> 2 – то в противоположную.
Выполнятся такая схема, как правило, при помощи пары магнитных пускателей таким образом, что фазировка включения их силовых контактов выполнена так, что их последовательность различается между собой.
То есть, например, когда срабатывает первый пускатель, то двигатель подключается к фазам в последовательности А, В и С, а при срабатывании второго – А, С и В.
Рассмотрим саму схему (рисунок 1). Схема эта выполнена на паре магнитных пускателей КМ1 и КМ2. Когда происходит срабатывание первого (предположим, что это будет КМ1), происходит замыкание его силовых контактов, в результате чего, обмотки двигателя оказываются запитанными в последовательности L1, L2, L3. Когда же срабатывает второй пускатель, то двигатель окажется запитанным через его контакты, но уже в фазировке L3, L2, L1.
Сами магнитные пускатели в этом варианте включены по абсолютно стандартной схеме, с той лишь разницей, что в разрыв цепи питания катушки каждого из пускателей подключен нормально закрытый блок-контакт второго пускателя (КМ2.4, КМ1.4). Сделано это для того, чтобы при нажатии на обе пусковые кнопки не произошло срабатывания обоих пускателей.
Кроме того, схема выполнена таким образом, что параллельно с каждой из пусковых кнопок (КП) подключен нормально открытый блок-контакт ее пускателя. Это делается для того, чтобы при нажатии на пусковую кнопку, контактор пускателя вставал на самоблокировку и кнопку можно было отпускать.
Стоповая же кнопка (КС) включена в разрыв цепи перед обеими пусковыми.
Кроме того, в схеме имеется еще один контакт, подключенный в разрыв питающей цепи. Это контакт связан с устройством тепловой защиты пускателя (РТ).
Работает такая защита вот каким образом: при чрезмерных нагрузках или (не дай Бог) перекосе фаз, происходит нагрев биметаллических пластин системы тепловой защиты, в результате чего последние размыкают связанный с ними контакт.
Возврат этого контакта в исходное состояние выполняется с помощью специальной красной кнопки на корпусе устройства тепловой защиты.
Переключение реверса без нажатия на кнопку «стоп» невозможно по той причине, что этого не позволят включенные в цепь блок-контакты противоположных пускателей. Сделано это по той причине, что такое переключение может оказаться опасным для двигателя, не говоря уже о том, что в момент перефазировки может запросто произойти перемыкание фаз.
Для двигателей небольшой мощности возможно выполнение реверса без нажатия на стоповую кнопку. Для этого требуется выполнить регулировку так, чтобы силовая группа контактов одного пускателя размыкалась раньше, чем сработают на замыкание вспомогательные нормально закрытые контакты второго.
Подобная система включения совершенно не является редкостью, а используется весьма широко как в бытовых, так и в производственных целях. Я сам встречаю такое подключение сплошь и рядом для реверсирования двигателей вентиляторов, насосов, различных станков, транспортеров и т.д. в силу специфики моей работы.
В бытовых же целях реверсное включение применяется для подключения двигателей сверлильных машин, электрических мельниц и мясорубок.
Я очень надеюсь, что материал моей статьи помог вам разобраться в принципах реверсного включения электрических движков при помощи пары магнитных пускателей и теперь вопросов на эту тему будет значительно меньше.
Пишите комментарии, дополнения к статье, может я что-то пропустил. Загляните на карту сайта. буду рад, если вы найдете на моем сайте еще что-нибудь полезное. Всего доброго.
Схема реверса трехфазного двигателя
- Общая схема реверса электродвигателей
- Схема реверса трехфазного двигателя и кнопочного поста
- Схема реверса трехфазного двигателя в однофазной сети
- Видео
Трехфазные электродвигатели широко используются на многих объектах. В силу специфических условий эксплуатации, довольно часто возникает необходимость изменения направления вращения вала того или иного агрегата. Для этих целей лучше всего подходит стандартная схема реверса трехфазного двигателя, применяемая для открытия и закрытия гаражных ворот, обеспечения работы лифтов, погрузчиков, кран-балок и другого оборудования.
Общая схема реверса электродвигателей
В промышленности и сельском хозяйстве нашли широкое применение различные типы трехфазных асинхронных электродвигателей. Они устанавливаются в электроприводах оборудования, служат составной частью автоматических устройств. Трехфазные агрегаты завоевали популярность, благодаря высокой надежности, простому обслуживанию и ремонту, возможности работы напрямую от сети переменного тока.
Специфика работы устройств, работающих с электродвигателями, предполагает необходимость изменения направления вращения вала, называемого реверсом. Для таких ситуаций разработаны специальные схемы, в состав которых включены дополнительные электрические приборы. Прежде всего, это вводный автомат, имеющий соответствующие параметры, контакторы (2 шт.), тепловое реле и элементы управления в виде трех кнопок, объединенных в общий кнопочный пост.
Для того чтобы вал начал вращаться в противоположную сторону, необходимо изменить расположение фаз подаваемого напряжения. Необходим постоянный контроль над значением напряжения, поступающего на электродвигатель и катушки контакторов. Непосредственное выполнение реверса в трехфазном двигателе осуществляется контакторами (КМ) № 1 и № 2. При срабатывании контактора № 1, фазы поступающего напряжения будут располагаться иначе, нежели при срабатывании контактора № 2.
Для управления катушками обоих контакторов предусмотрены три кнопки – ВПЕРЕД, НАЗАД и СТОП. Они обеспечивают питание катушек в зависимости от расположения фаз. Порядок включения контакторов влияет на замыкание электрической цепи таким образом, что вращение вала двигателя в каждом случае происходит строго в определенную сторону. Кнопку НАЗАД необходимо только нажать, но не удерживать, так как она сама оказывается в нужном положении под действием самоподхвата.
На всех трех кнопках установлена блокировка, предотвращающая их одновременное включение. Несоблюдение этого условия может привести к возникновению в электрической цепи короткого замыкания и выходу из строя оборудования. Для блокировки кнопок используется специальный блок-контакт, расположенный в соответствующем контакторе.
Схема реверса трехфазного двигателя и кнопочного поста
В каждой системе, обеспечивающей реверс трехфазного электродвигателя, имеются специфические кнопочные контакты, объединенные в общий кнопочный пост. Работа этой системы тесно связана с функционированием остальных элементов схемы.
Всем известно, что включение контактора магнитного пускателя осуществляется с помощью управляющего импульса, поступающего после нажатия на пусковую кнопку. Данная кнопка в первую очередь обеспечивает подачу напряжения на катушку управления.
Включенное состояние контактора удерживается и сохраняется, благодаря принципу самоподхвата. Он заключается в параллельном подключении (шунтировании) к пусковой кнопке вспомогательного контакта, обеспечивающего подачу напряжения на катушку. В связи с этим уже нет необходимости удерживать кнопку ПУСК в нажатом состоянии. Таким образом, магнитный пускатель может отключиться только после разрыва цепи катушки управления, поэтому в схеме необходима кнопка с размыкающим контактом. В связи этим, кнопки управления, объединенные в кнопочный пост, оборудуются двумя парами контактов – нормально открытыми (NO) и нормально закрытыми (NC).
Все кнопки выполнены в универсальном варианте для того, чтобы обеспечить моментальный реверс электродвигателя, если в этом возникнет срочная необходимость. Отключающая кнопка, в соответствии с общепринятыми нормами, имеет название СТОП и маркируется красным цветом. Кнопка включения известна как стартовая или пусковая, поэтому она именуется по-разному с помощью слов ПУСК, ВПЕРЕД или НАЗАД.
В некоторых случаях кнопочный пост может использоваться в нереверсивной схеме работы электродвигателя, когда его вал вращается лишь в одном направлении. Запуск производится кнопкой пуск, а остановка произойдет через определенный промежуток времени после нажатия кнопки СТОП, когда вал преодолеет инерцию. Подключение такой схемы может быть выполнено в двух вариантах, с помощью катушек управления на 220 и 380 вольт.
Во всех случаях перед подключением кнопочного поста составляется схема его монтажа. В первую очередь выполняется подключение контактора, при отсутствии напряжения на входном кабеле. Для непосредственного управления напряжение может сниматься с любой фазы, какая будет наиболее удобна для использования. Проводник, соединяемый с кнопкой СТОП, подключается совместно с проводом фазы к соответствующей клемме контактора. Во избежание путаницы, нормально разомкнутые контакты маркируются цифрами 1 и 2, а нормально замкнутые – цифрами 3 и 4.
По завершении монтажа в кнопочном посте устанавливается перемычка, затем подключается провод, соединяющий клемму 1 кнопки ПУСК и вывод катушки управления контактора.
Схема реверса трехфазного двигателя в однофазной сети
Довольно часто трехфазные электродвигатели используются в бытовых условиях и включаются в однофазную сеть. Для таких случаев предусмотрена специальная схема реверса трехфазного двигателя в однофазной сети. Принцип действия такой системы очень простой: для выполнения реверса используются конденсаторы, питание которых переключается между полюсами питающего напряжения. Управление схемой осуществляется кнопкой.
Поскольку питающее напряжение составляет 220 В, соединение обмоток двигателя будет выполнено звездой, а на клеммник подведено три вывода. На кнопке управления между клеммами устанавливается перемычка, после чего к одной из них подключается вывод конденсатора. Второй вывод конденсатора подключается к обмотке электродвигателя, не соединенной с сетью.
Затем переключатель соединяется с двигателем, затем подводится питающее напряжение. Готовую систему нужно включить и проверить работу реверса.
Реверс асинхронного двигателя
Опубликовано Апрель 21, 2015
Так вышло, что трех фазные асинхронные электродвигатели, а так же их реверс стали самой распространенной электрической машиной.
В зависимости от механизма, который приводится во вращение этим электродвигателем, может возникнуть необходимость в изменении направления вращения механизмов, а, следовательно, и вала двигателя, в нашем случаи трех фазного асинхронного электродвигателя.
Все наверняка известна вот эта схема:
Теоретически, для изменения направления вращения вала ( реверса ) электродвигателя необходимо всего на всего поменять местами две фазы. Стоит отметить, что не имеет значения какие фазы мы будим менять, но на будущее принято менять две крайние фазы, то есть фазу « А » с фазой « В ».
Для выполнения таких манипуляций с электродвигателем, выше предоставленной схеме необходимо видоизменить – переделать, доработать. Для этого понадобится еще один магнитный пускатель, или же контактор (зависит от мощности), а также кнопочная станция, состоящая из трех кнопок, или же три кнопочных контакта два нормально разомкнутых (замыкающих), и один нормально разомкнутый.
Эта схема будит выглядеть следующим образом. Реверс.
Для наглядности каждая фаза выделена своим цветом: желтым фаза «А», зеленым фаза «В» и красным фаза «С», синим цветом выделена цепь управления. Так же линии, окрашенные в черный цвет, не находятся под напряжением.
Как вы уже заметили это схема реверса существенно не отличается от простой схемы пуска асинхронного двигателя. Все изменения сводятся к магнитному пускателю КМ2. нормально разомкнутому контакту кнопки SB2. Стоит отметить и наличие электрической блокировки, которая выражается блок контактами магнитных пускателей, включенных в цепь управления.
Как и элементарная схема пуска асинхронного двигателя, схема этого же двигателя состоит из следующих элементов (устройств):
- Вводной автомат АВ1 – через него подается трехфазное напряжение силовой цепи и цепи управления;
- Два магнитных пускателя КМ1 и КМ2 через силовые контакты которых, подается питание на статор. Их блок контакты включены в цепь управления для выполнения подхвата и электрической блокировки. Катушки этих пускателей также включены в цепь управления. Нужно сказать, что каждый из магнитных пускателей отвечает за определенное вращение ротора. Например, питание подаётся через магнитный пускатель КМ1. то вал электродвигателя будит вращаться по часовой стрелке (вперед), если же питание подаётся через силовые контакты магнитного пускателя КМ2. то вал асинхронного двигателя будит вращаться против часовой стрелки (назад).
В данной схеме используются катушки магнитных пускателей, рассчитанные на линейное напряжение 380В. Если же катушки магнитных пускателей были рассчитаны на фазное напряжение сети 220В, то схема выглядела следующим образом:
revers dvigatela katuschka 220 volt
- Тепловое реле КК – биметаллические пластины, которого включены последовательно в цепь статора, а блок контакт вцепи управления. Служит для защиты от перегрузки.
- Двухполюсный автомат АВ2 – подает питание в цепь управления. Также совместно с автоматом или без него может устанавливаться ключ бирка.
- Нормально разомкнутые контакты SB1 и SB2 – это кнопки пуск, каждая из которых соответствует направлению вращения вала электродвигателя (вперед и назад).
- Нормально замкнутый контакт SB3 – кнопка стоп.
- Ну и сам трех фазный асинхронный двигатель Д ;
Для того, чтобы привести схему в готовность к пуску, необходимо включить вводной автомат АВ1 и автомат в цепи управления АВ2.
В таком состоянии схема реверса асинхронного двигателя готова к пуску. При этом напряжение в силовой цепи подается через вводный автоматический выключатель АВ1 на верхние губки магнитных пускателей КМ1 и КМ2. а в цепи управления, через автомат АВ2. через нормально замкнутый контакт кнопки SB3 подаётся напряжение на нормально разомкнутые контакты кнопок SB1 и SB2. а также на нормально разомкнутые блок контакты магнитных пускателей КМ1 и КМ2.
Для запуска необходимо нажать одну из кнопок пуск SB1 или SB2 (допустим была нажата кнопка SB1).
После замыкания контакта кнопки SB1. напряжение через замкнутый блок контакт блокировки магнитного пускателя КМ2, через катушку магнитного пускателя КМ1. через блок контакт КК. через автоматы АВ2 и АВ1 выйдет на фазу «С». Образуется замкнутая цепь, по которой начнет протекать переменный ток. Проходя через катушку магнитного пускателя КМ1, она образует магнитное поле, которое втянет якорь магнитного пускателя КМ1. при этом его силовые контакты замкнутся, вследствие чего асинхронный электродвигатель получит питание, по его обмоткам начнет протекать ток, и он запустится, ротор будит вращаться. При срабатывании магнитного пускателя, его разомкнутый контакт в цепи управления замкнется, он шунтирует кнопку SB1. то есть ток будит протекать параллельно пусковой кнопки, так что при отпускании пусковой кнопки машина не остановится не остановится. Так же в цепи пусковой кнопки SB2 разомкнется блок контакт магнитного пускателя КМ1. этим исключит возможность срабатывания второго магнитного пускателя КМ2. что вызовет межфазное короткое замыкание. Все перечисленное происходило при нажатии кнопки «Пуск», замыкания контакта SB1.
Чтобы остановить двигатель, необходимо нажать кнопку «Стоп», то есть разомкнуть контакт кнопки SB3.
Вследствие чего цепь, в которую включены катушки будит разомкнута, электрический ток не будит по ним протекать. Магнитный пускатель разомкнет свои силовые контакты, из-за чего двигатель потеряет питание и остановится. При этом нормально разомкнутый блок контакт КМ1 (подхват) разомкнется, это приведет к тому, что при возврате кнопки SB3 двигатель не запуститься снова. Так же нормально замкнутый блок контакт электрической блокировки КМ1 в цепи катушки магнитного пускателя КМ2 замкнется, обеспечивая возможность включения обратного хода. Схема вернется в состояние готовности очередному пуску двигателя.
Если же мы замкнем контакт SB2. произойдут те же действия что и при замыкании контакта SB1. но с другим магнитным пускателем КМ2. и направление вращения вала асинхронного двигателя будит обратным. Мы видим, что магнитный пускатель КМ2 включен в цепи так, что фазы «А» и «С» поменяны местами, это и гарантирует изменение направления вращения вала. Для остановки необходимо так же разомкнуть контакт кнопки SB3.
Эта схема сложнее схемы обычного пуска асинхронного двигателя. я посоветую для начала разобраться в более легкой, а затем приступать к этой.
Главной особенностью данной схемы управления двигателем является — минимум сложных манипуляций.
2 комментария: Реверс асинхронного двигателя
Источники: http://podvi.ru/elektrotexnika/sxema-podklyucheniya-reversa-elektrodvigatelya-s-pomoshhyu-puskatelej.html, http://electric-220.ru/news/skhema_reversa_trekhfaznogo_dvigatelja/2016-10-24-1095, http://white-santa.ru/revers_dvigatela/
Source: electricremont.ru
Читайте также
Реверс трехфазного двигателя в трехфазной сети
Реверсивная схема подключения 3-х фазного электродвигателяЭта схема довольно часто используется для подключения трехфазного электродвигателя там, где необходимо оперативное управление направлением вращения вала двигателя – например, в гаражных воротах, насосах, различных погрузчиках, кран-балках и т. д.
Реверсирование двигателя реализуется изменением фазировки его питающего напряжения. Например, если порядок подключения фаз к клеммам трехфазного электродвигателя условно взять как L1, L2 ,L3, то направление вращения вала будет определенным, противоположным, чем при подключении, скажем, с фазировкой L3, L2, L1.
Особенностью реверсивной схемы подключения является использование в ней двух магнитных пускателей. Причем, их главные силовые контакты соединены между собой таким образом, что при срабатывании катушки одного из пускателей, фазировка питающего напряжения двигателя будет отличаться от фазировки при срабатывании катушки другого.
схеме используется два магнитных пускателя. При срабатывании первого пускателя KM1, его силовые контакты притягиваются (обведены зеленым пунктиром) и на обмотки электродвигателя поступает напряжение с фазировкой L1, L2, L3. При срабатывании второго пускателя – КМ2, напряжение на двигатель пойдет через его силовые контакты КМ2 (обведены красным пунктиром) уже будет иметь фазировку L3, L2, L1.
Как видите, здесь магнитные пускатели подключены по стандартной схеме. Разве, что, в цепь каждой катушки последовательно включен нормально закрытый блок-контакт другого пускателя. Эта мера предотвратит замыкание в случае ошибочного одновременного нажатия обеих кнопок «Пуск».
Для электродвигателя режим работы с периодическим изменением направления вращения (реверсирование) является наиболее благоприятным. По той причине, что ликвидируется паразитное намагничивание, вызывающее перегрев и потерю мощности электрической машиной. Кроме того, схемы реверсивного пуска намного проще, чем механические трансмиссии, состоящие из системы зубчатых шестерней. Наибольшее число вопросов вызывает способ изменения направления вращения двигателей переменного тока, ведь изменить полярность питающего напряжения невозможно. В этой статье мы представим вам основные схемные решения для запуска асинхронных и коллекторных электродвигателей, в которых предусмотрена возможность их реверсирования.
Реверс трехфазных асинхронных машин
Направление движения вращающегося магнитного поля асинхронных электродвигателей зависит от порядка подачи фаз, независимо от того как соединены его статорные обмотки – звездой или треугольником. Например, если фазы A, B, C подать на входные клеммы 1, 2 и 3 соответственно, то вращение пойдет (предположим) по часовой стрелке, а если на клеммы 2, 1, и 3, то против нее. Схема подключения через магнитный пускатель избавит вас от необходимости откручивать гайки в клеммной коробке и производить физическую перестановку проводов.
Трехфазные асинхронные машины на 380 вольт принято подключать магнитным пускателем, в котором три контакта находятся на одной раме и замыкаются одновременно, подчиняясь действию так называемой втягивающей катушки – магнитного соленоида, работающего как от 380, так и от 220 вольт. Это избавляет оператора от близкого контакта с токоведущими частями, что при токах свыше 20 ампер может быть небезопасно.
Для реверсивного пуска используется пара пускателей. Клеммы питающего напряжения на входе соединяются по прямой схеме: 1–1, 2–2, 3–3. А на выходе встречно: 4–5, 5–4, 6–6. Чтобы избежать короткого замыкания при случайном одновременном нажатии двух кнопок «Пуск» на пульте управления, напряжение на втягивающие катушки подается через дополнительные контакты противоположных пускателей. Так, чтобы при замкнутой основной группе контактов линия, которая идет на соленоид соседнего прибора, была разомкнута.
На пульте управления устанавливается трехкнопочный пост с однопозиционными – одно действие за одно нажатие – кнопками: одна «Стоп» и две «Пуск». Разводка проводов в нем следующая:
- один фазный провод подается на кнопку «Стоп» (она всегда нормально замкнута) и перемычками с нее на кнопки «Пуск», которые всегда нормально разомкнуты.
- С кнопки «Стоп» два провода на дополнительные контакты пускателей, которые при их срабатывании замыкаются. Так обеспечивается блокировка.
- С кнопок «Пуск» перекрестно по одному проводу на дополнительные контакты пускателей, которые при их срабатывании размыкаются.
Подробнее о схемах подключения магнитных пускателей для трехфазных электродвигателей читайте здесь.
Реверс однофазных синхронных машин
Для запуска этим моторам необходима вторая обмотка на статоре, в цепь которой включен фазосдвигающий элемент, обычно бумажный конденсатор. Реверсировать можно только те, у которых обе статорных обмотки равнозначны – по диаметру провода, числу витков, а также при условии, что одна из них не отключается после набора оборотов.
Суть схемы реверсирования в том, что фазосдвигающий конденсатор будет подключаться то к одной из обмоток, то к другой. Для примера рассмотрим асинхронный однофазный двигатель АИРЕ 80С2 мощностью 2,2 кВт.
В его клеммной коробке шесть резьбовых выводов, обозначенных литерами с цифрами W2 и W1, U1 и U2, V1 и V2. Чтобы двигатель вращался по часовой стрелке, коммутация производится следующим образом:
- Сетевое напряжение подается на клеммы W2 и V1.
- Концы одной обмотки соединяются с клеммами U1 и U2. Чтобы ее запитать, они соединяются перемычками по схеме U1–W2 и U2–V1.
- Концы второй обмотки подключают к клеммам W2 и V2.
- Фазосдвигающий конденсатор подключают к клеммам V1 и V2.
- Клемма W1 остается свободной.
Чтобы вращение происходило против часовой стрелки, изменяют положение перемычек, они ставятся по схеме W2–U2 и U1– W1. Схема автоматического реверса строится так же на двух магнитных пускателях и трех кнопках – двух нормально разомкнутых «Пуск» и одной нормально замкнутой «Стоп».
Реверс коллекторных двигателей
Схема включения его обмоток аналогична той, что используется в двигателях постоянного тока с последовательным возбуждением. Одна токоснимающая щетка коллектора подключается к обмотке статора, а питающее напряжение подается на другую щетку и второй вывод статорной обмотки.
При изменении положения штепсельной вилки в розетке происходит одновременная переполюсовка магнитов ротора и статора. Поэтому направление вращения не изменяется. Так же, как это происходит в двигателе постоянного тока при одновременном изменении полярности питающего напряжения на обмотке возбуждения и якоря. Изменить порядок следования фаза – ноль надо только в одном элементе электрической машины – коллекторе, который обеспечивает не только пространственное, но электрическое разделение проводников – обмотки якоря изолированы друг от друга. На практике это выполняется двумя способами:
- Физической переменой места установки щеток. Это нерационально, поскольку связано с необходимостью внесения изменений в конструкцию устройства. Кроме того, приводит к преждевременному выходу щеток из строя, поскольку форма выработки на их рабочем конце не совпадает с формой поверхности коллектора.
- Изменением положения перемычки между щеточным узлом и обмоткой возбуждения в клеммной коробке, а также точки подключения сетевого провода. Можно реализовать с помощью одного многопозиционного выключателя или двух магнитных пускателей.
Не забудьте, что все работы по перестановке перемычек в клеммной коробке или подключению схемы реверсирования должны проводиться при полностью снятом напряжении.
Трехфазные электродвигатели широко используются на многих объектах. В силу специфических условий эксплуатации, довольно часто возникает необходимость изменения направления вращения вала того или иного агрегата. Для этих целей лучше всего подходит стандартная схема реверса трехфазного двигателя, применяемая для открытия и закрытия гаражных ворот, обеспечения работы лифтов, погрузчиков, кран-балок и другого оборудования.
Общая схема реверса электродвигателей
В промышленности и сельском хозяйстве нашли широкое применение различные типы трехфазных асинхронных электродвигателей. Они устанавливаются в электроприводах оборудования, служат составной частью автоматических устройств. Трехфазные агрегаты завоевали популярность, благодаря высокой надежности, простому обслуживанию и ремонту, возможности работы напрямую от сети переменного тока.
Специфика работы устройств, работающих с электродвигателями, предполагает необходимость изменения направления вращения вала, называемого реверсом. Для таких ситуаций разработаны специальные схемы, в состав которых включены дополнительные электрические приборы. Прежде всего, это вводный автомат, имеющий соответствующие параметры, контакторы (2 шт.), тепловое реле и элементы управления в виде трех кнопок, объединенных в общий кнопочный пост.
Для того чтобы вал начал вращаться в противоположную сторону, необходимо изменить расположение фаз подаваемого напряжения. Необходим постоянный контроль над значением напряжения, поступающего на электродвигатель и катушки контакторов. Непосредственное выполнение реверса в трехфазном двигателе осуществляется контакторами (КМ) № 1 и № 2. При срабатывании контактора № 1, фазы поступающего напряжения будут располагаться иначе, нежели при срабатывании контактора № 2.
Для управления катушками обоих контакторов предусмотрены три кнопки – ВПЕРЕД, НАЗАД и СТОП. Они обеспечивают питание катушек в зависимости от расположения фаз. Порядок включения контакторов влияет на замыкание электрической цепи таким образом, что вращение вала двигателя в каждом случае происходит строго в определенную сторону. Кнопку НАЗАД необходимо только нажать, но не удерживать, так как она сама оказывается в нужном положении под действием самоподхвата.
На всех трех кнопках установлена блокировка, предотвращающая их одновременное включение. Несоблюдение этого условия может привести к возникновению в электрической цепи короткого замыкания и выходу из строя оборудования. Для блокировки кнопок используется специальный блок-контакт, расположенный в соответствующем контакторе.
Схема реверса трехфазного двигателя и кнопочного поста
В каждой системе, обеспечивающей реверс трехфазного электродвигателя, имеются специфические кнопочные контакты, объединенные в общий кнопочный пост. Работа этой системы тесно связана с функционированием остальных элементов схемы.
Всем известно, что включение контактора магнитного пускателя осуществляется с помощью управляющего импульса, поступающего после нажатия на пусковую кнопку. Данная кнопка в первую очередь обеспечивает подачу напряжения на катушку управления.
Включенное состояние контактора удерживается и сохраняется, благодаря принципу самоподхвата. Он заключается в параллельном подключении (шунтировании) к пусковой кнопке вспомогательного контакта, обеспечивающего подачу напряжения на катушку. В связи с этим уже нет необходимости удерживать кнопку ПУСК в нажатом состоянии. Таким образом, магнитный пускатель может отключиться только после разрыва цепи катушки управления, поэтому в схеме необходима кнопка с размыкающим контактом. В связи этим, кнопки управления, объединенные в кнопочный пост, оборудуются двумя парами контактов – нормально открытыми (NO) и нормально закрытыми (NC).
Все кнопки выполнены в универсальном варианте для того, чтобы обеспечить моментальный реверс двигателя, если в этом возникнет срочная необходимость. Отключающая кнопка, в соответствии с общепринятыми нормами, имеет название СТОП и маркируется красным цветом. Кнопка включения известна как стартовая или пусковая, поэтому она именуется по-разному с помощью слов ПУСК, ВПЕРЕД или НАЗАД.
В некоторых случаях кнопочный пост может использоваться в нереверсивной схеме работы электродвигателя, когда его вал вращается лишь в одном направлении. Запуск производится кнопкой пуск, а остановка произойдет через определенный промежуток времени после нажатия кнопки СТОП, когда вал преодолеет инерцию. Подключение такой схемы может быть выполнено в двух вариантах, с помощью катушек управления на 220 и 380 вольт.
Во всех случаях перед подключением кнопочного поста составляется схема его монтажа. В первую очередь выполняется подключение контактора, при отсутствии напряжения на входном кабеле. Для непосредственного управления напряжение может сниматься с любой фазы, какая будет наиболее удобна для использования. Проводник, соединяемый с кнопкой СТОП, подключается совместно с проводом фазы к соответствующей клемме контактора. Во избежание путаницы, нормально разомкнутые контакты маркируются цифрами 1 и 2, а нормально замкнутые – цифрами 3 и 4.
По завершении монтажа в кнопочном посте устанавливается перемычка, затем подключается провод, соединяющий клемму 1 кнопки ПУСК и вывод катушки управления контактора.
Схема реверса трехфазного двигателя в однофазной сети
Довольно часто трехфазные электродвигатели используются в бытовых условиях и включаются в однофазную сеть. Для таких случаев предусмотрена реверсивная схема подключения электродвигателя в однофазной сети. Принцип действия такой схемы очень простой: для выполнения реверса используются конденсаторы, питание которых переключается между полюсами питающего напряжения. Управление схемой осуществляется кнопкой.
Поскольку питающее напряжение составляет 220 В, соединение обмоток двигателя будет выполнено звездой, а на клеммник подведено три вывода. На кнопке управления между клеммами устанавливается перемычка, после чего к одной из них подключается вывод конденсатора. Второй вывод конденсатора подключается к обмотке электродвигателя, не соединенной с сетью.
Затем переключатель соединяется с двигателем, затем подводится питающее напряжение. Готовую систему нужно включить и проверить работу реверса.
Мотор— Как изменить направление вращения трехфазных электрических машин? Двигатель
— Как изменить направление вращения трехфазных электрических машин? — Обмен электротехнического стекаСеть обмена стеков
Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 117k раз
\ $ \ begingroup \ $Меня учили, что если вы хотите изменить направление трехфазной вращающейся машины, которая вращается в прямом направлении, вы меняете фазы местами.Поскольку фазы имеют одинаковые характеристики (напряжение и ток), что заставляет машину вращаться в обратном направлении, когда фазы меняются местами?
Питер42655 серебряных знаков1919 бронзовых знаков
Создан 01 авг.
Ezeatum SolomonEzeatum Solomon3111 золотой знак11 серебряный знак33 бронзовых знака
\ $ \ endgroup \ $ 2 \ $ \ begingroup \ $Обмотки трехфазного двигателя при включении трехфазного источника питания создают вращающееся магнитное поле в области ротора двигателя.Замена фазы A на фазу B переупорядочивает потоки, так что поток вращается в противоположном направлении. Замена B на C делает то же самое, что и замена A на C. Думайте об этом как о треугольнике с углами, называемыми A, B и C. Если вы поменяете местами любые два угла и проследите за точками A, B и C, вы пойдете. в противоположном направлении. Поменяйте местами еще два угла, и вы вернетесь к исходному вращению.
Вот как это выглядит. Черная стрелка — это поток, создаваемый тремя фазными обмотками: —
Ясно, что если бы желтую фазу заменить синей фазой, вращение было бы противоположным.
Создан 01 авг.
Энди он же Энди337k1919 золотых знаков276276 серебряных знаков589589 бронзовых знаков
\ $ \ endgroup \ $ \ $ \ begingroup \ $Каждая фаза имеет одинаковое напряжение в виде синусоиды, но не совпадает по фазе на 120 градусов.Тогда возникает вопрос, какая фаза опережает другую. Это то, что определяет направление двигателя.
Создан 01 авг.
DoxyLover6,47111 золотой знак1515 серебряных знаков2323 бронзовых знака
\ $ \ endgroup \ $ \ $ \ begingroup \ $Фазы имеют сдвиг фаз на 120 градусов, называемый электрическим фазовым углом, при этом обмотки двигателя также сдвинуты на 120 градусов — механический угол.Таким образом, когда ток проходит через обмотки, образуется вращающееся магнитное поле, которое является суммой всех трех векторов. Это принцип асинхронного двигателя, который Никола Тесла сделал 130 лет назад.
Если вы просто поменяете местами два провода, магнитный элемент изменит направление вращения.
Создан 02 авг.
Марко Буршич17.2,113 золотых знаков1313 серебряных знаков2525 бронзовых знаков
\ $ \ endgroup \ $ Очень активный вопрос . Заработайте 10 репутации, чтобы ответить на этот вопрос. Требование репутации помогает защитить этот вопрос от спама и отсутствия ответов. Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Мощность— Объясните, что трехфазный двигатель работает в обратном и прямом направлении. Мощность
— Объясняет, что трехфазный двигатель работает в обратном и прямом направлении. — Обмен электротехническими стеками.Сеть обмена стеков
Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Electrical Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов в области электроники и электротехники, студентов и энтузиастов.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 416 раз
\ $ \ begingroup \ $Хотите улучшить этот вопрос? Добавьте подробности и проясните проблему, отредактировав этот пост.
Закрыт 1 год назад.
Определить трехфазный двигатель, работающий в обратном и прямом направлении, останавливается только одним кустом
Создан 03 авг.
\ $ \ endgroup \ $ 2 \ $ \ begingroup \ $Вот наименее сложная из известных мне схем для реверсирования полного напряжения трехфазного двигателя.Обратите внимание, что в нем есть реле перегрузки (OL), которое остановит двигатель при обнаружении продолжительного чрезмерного тока. Также обратите внимание, что контакторы управляются непосредственно кнопками, питание катушки подается через трансформатор цепи управления, вспомогательные контакты контакторов используются для поддержания катушек под напряжением после отпускания кнопок мгновенного действия и предотвращения подачи питания на обе катушки при отпускании. в то же время. Механизмы контакторов также имеют механическую блокировку для предотвращения одновременного включения контакторов.
Создан 03 авг.
Чарльз КоуиЧарльз Коуи33k11 золотой знак2323 серебряных знака5757 бронзовых знаков
\ $ \ endgroup \ $ \ $ \ begingroup \ $тл; Версия dr: вы можете изменить направление 3-фазного двигателя, поменяв местами два фазных провода статора.
И здесь дан подробный ответ на этот вопрос: Как изменить направление вращения трехфазных электрических машин?
Для этой цели изготовлены реверсивные контакторы с механической блокировкой для предотвращения межфазного короткого замыкания. Это и многое другое объясняет это видео: https://youtu.be/nKDG3Ja4d8A
Создан 04 авг.
хактастический22.2k22 золотых знака1818 серебряных знаков5959 бронзовых знаков
\ $ \ endgroup \ $ Электротехнический стек Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Нужна помощь, чтобы изменить направление вращения моего двигателя
Я новичок в этом.Мне удалось спасти мотор стиральной машины. Как я узнаю, могу ли я отменить его вращение? И как я смогу это исправить, если это произойдет?
Также как я узнаю, что это асинхронный двигатель? Однофазный или трехфазный?
Ничего подобного на заводской табличке не сказано.
Вот подробности на заводской табличке.
Веллинг YXB170-4B RMOTS0007PLZZ
220 ~ 240 В 50/60 Гц
170 Вт $ P
1.4A CL E
FOSHAN WELLING WASHER MOTOR MANUFACTURING CO LTD.
Справа есть какая-то диаграмма.
11 мкФ / 450 В, затем СИНИЙ (CCW), ЧЕРНЫЙ, КРАСНЫЙ (CW)
ОБНОВЛЕНИЕ:
Я открыл коробку, куда идут провода, и вот как это выглядит внутри.
К сожалению, когда я его открыл, там выскочила пружина и что-то испортила. Я пытался собрать все вместе как можно лучше, но не совсем уверен, все ли я сделал правильно. На данный момент я бы не решился подключить его к электрической розетке, потому что не хочу, чтобы он взорвался мне в лицо или что-то в этом роде: D.
А есть ли вообще хоть как-то запустить от батареи? Надеюсь, так будет безопаснее.
Оцените это, если кто-нибудь проведет меня через это.
ОБНОВЛЕНИЕ 19.05.2018:
После того, как испортил коробку со всеми шестернями, я немного боюсь подключать ее к питанию, так как не уверен, что будет. В любом случае, я хотел бы попросить о помощи. Вот еще пара изображений, которые я надеюсь помочь мне объяснить, что мне нужно делать.
Рисунок 1.0
На изображении выше я пометил объекты, исходя из своего понимания.
A — Мотор
B — Это была коробка с ручкой для включения стиральной машины.
C — Конденсатор. На этикетке написано «SH КОНДЕНСАТОР. SH.M 400 В переменного тока, 50/60 Гц, 11 мкФ (-5 / + 10%) NUINTEK / KOREA».
Рисунок 2.0
Изображение выше — это крупный план коробки (B на Рисунке 1.0). Я обозначил то, что меня беспокоит.
A — Металл, который подключается к белому проводу, который подключается к источнику питания (не уверен, что положительный или отрицательный).
B — Металл, который подключается к синему проводу, который соединяется с двигателем.
C — Металл, который соединяется с красным проводом, соединяющим конденсатор и двигатель. Затем черный провод подключает конденсатор к источнику питания.
Мои вопросы:
Металлы (рис. 2.0) B и C в настоящее время не соединены с металлом A. Я еще не пробовал, но предполагаю, что если я подключу его к источнику питания, ничего не произойдет, поскольку эти металлы (B, C) не соединен с металлом (A). Если я хочу включить двигатель, должен ли я соединить металл (B, C) с металлом (A)? Если да, могу ли я их подключить постоянно?
Если я хочу изменить направление вращения, нужно ли подключить к конденсатору синий провод вместо красного?
Спасибо.
Прямое и обратное направление асинхронного двигателя и двигателя постоянного тока
Прямое и обратное направление асинхронного двигателя и двигателя постоянного тока:
Трехфазный асинхронный двигатель прямого и обратного хода:
Асинхронные двигателиделятся на два типа: однофазные асинхронные двигатели и трехфазные асинхронные двигатели. В случае трехфазного асинхронного двигателя это самозапускающийся двигатель, и направление двигателя будет направлением вращающегося магнитного поля.Чтобы изменить направление вращения двигателя, мы должны изменить направление вращающегося магнитного поля. Это реализуется путем изменения последовательности фаз питания двигателя.
Прямое и обратное направление асинхронного двигателя [wp_ad_camp_1]Пример: у вас есть двигатель (клемма двигателя U, V, W), который подключен с чередованием фаз (фаза питания R, Y, B) R-U, Y-V, B-W в прямом направлении. Чтобы реверсировать двигатель, вы должны соединить двигатель и фазу питания в таком состоянии. R-V, Y-U, B-W.
Прямое и обратное движение однофазного асинхронного двигателя.
Однофазный двигатель состоит из двух обмоток, таких как основная обмотка и вспомогательная обмотка. Они не являются самозапускающимися двигателями, поскольку у них нет вращающегося магнитного поля, как у трехфазных асинхронных двигателей. Обычно для запуска однофазного двигателя используются конденсаторы. Основной источник питания будет напрямую подключен к основной обмотке, а конденсатор подключен последовательно со вспомогательной обмоткой и фазой питания.Здесь конденсатор используется для создания фазового сдвига от существующей фазы. Следовательно, двигатель получает две фазы и начинает вращаться. Здесь мы можем изменить направление двигателя, изменив подключение конденсатора. Конденсатор может быть включен последовательно с основной обмоткой вместо вспомогательной обмотки.
Однофазный двигатель, прямое и обратное направление [wp_ad_camp_1]Двигатель постоянного тока вперед и назад:
Двигателипостоянного тока полностью отличаются от двигателей переменного тока. Имеют коммутатор, обмотку возбуждения и обмотку якоря.Питание постоянного тока будет подаваться на обмотку возбуждения и обмотку якоря. Вы можете изменить направление двигателя постоянного тока двумя способами. Их ……
Прямое и обратное направление двигателя постоянного тока- Путем изменения полярности питания в обмотке возбуждения или подаче питания. Полевой терминал состоит из F1 и F2. Обычно в прямом направлении подаётся постоянный ток, например F1 — положительный и F2 — отрицательный, для изменения направления полярность должна быть F1 — отрицательная и F2 — положительная.
- Таким же образом мы можем изменить направление двигателя постоянного тока, изменив полярность обмотки якоря.Вывод якоря состоит из А1 и А2. Обычно для прямого направления подача постоянного тока задается, например, A1 — положительный и A2 — отрицательный, для изменения направления полярность должна быть A1 — отрицательной и A2 — положительной.
См. Также:
Предыдущая статьяЧто такое координация релеСледующая статьяАнализ частотной характеристики развертки — Процедура испытания SFRAКак реверсировать двигатели переменного тока
Вращение двигателя по существу создается за счет манипуляции с проводами и магнитными полями.Таким образом, вы часто можете реверсировать двигатели переменного тока, переключая соединения проводов. Это так же просто, как отсоединить и повторно обжать обозначенные провода. (Обратите внимание, что не все двигатели переменного тока имеют возможность реверсирования, но все двигатели переменного тока Groschopp могут).
Общие сведения о вращении двигателя переменного тока
Прежде чем мы обсудим, как реверсировать двигатель переменного тока, мы должны сначала понять, как вращается асинхронный двигатель. Для быстрого объяснения того, как работают двигатели переменного тока, ознакомьтесь с нашим видео с техническими советами.
В этом примере мы будем использовать двигатель переменного тока, который имеет две медные обмотки внутри статора — главную обмотку и стартерную / вспомогательную обмотку.Каждая обмотка состоит из пучка медных проводов, по которым проходят электрические токи и создаются магнитные поля. Обмотка стартера обычно состоит из провода меньшего размера, в результате чего пучок имеет меньшую магнитную прочность, чем основная обмотка. Возникающая в результате электромагнитная активность — это то, что отвечает за выработку энергии и за удержание ротора в движении.
Основная и вспомогательная обмотки расположены перпендикулярно друг другу, создавая как вертикальное, так и горизонтальное поле. Каждая обмотка борется за подтверждение своего собственного заряда — когда ротор выравнивается с одним магнитным полем, он затем тянется еще на 90 °, пытаясь выровняться со вторым.
Это то, что заставляет ротор вращаться после запуска. Это как старинный образ лошади и моркови — цель всегда недостижима, поэтому процесс продолжается. Когда сила одного поля почти достигает максимума, соседнее его догоняет.
Реверс двигателя переменного тока
Схемы подключения двигателя переменного токадоступны для всех наших асинхронных двигателей, но мы объясним, как реверсировать двигатель в оставшейся части этого поста.
Чтобы изменить направление вращения двигателя переменного тока, необходимо изменить магнитные поля, чтобы вызвать движение в противоположном направлении. Поскольку каждый провод состоит из положительного и отрицательного тока в магнитных полях, перекручивание основных проводов и проводов стартера заставляет двигатель вращаться в обратном направлении.
Это простое переключение проводов работает, потому что полярность магнитного поля меняется на противоположную, что приводит к реверсированию двигателя.
Переключение синего и желтого проводов
Groschopp обычно использует стандартную 4-проводную схему с черно-желтыми и красно-синими соединениями. Чтобы вызвать обратное движение в наших двигателях, синий и желтый провода необходимо поменять местами .Это приведет к красно-желтым и черно-синим соединениям. Могут быть дополнительные черные провода, если двигатель подключен к энкодеру или другому аксессуару. Эти провода можно оставить как есть.
Решено: 1- Направление вращения трехфазного двигателя …
1- Направление вращения трехфазного двигателя может быть отменено __________.
a) повторное соединение L1 с L2, L2 с L3 и L3 с L1
b) повторное соединение L1 с L3, L2 с L1 и L3 с L2
c) отключение одного из проводов, а затем повторное его подключение после
двигатель работает на полной скорости
d) реверсирование любых двух из трех линейных подключений
e) все вышеперечисленное
2- Шестиполюсный двигатель переменного тока вращается __________ так же быстро, как двухполюсный. электродвигатель с частотой 60 Гц, подаваемый на обмотки статора.
а) половина
б) дважды
в) 1/3
г) 3 раза
д) 2,5 раза
3- Пусковой момент асинхронного двигателя с расщепленной фазой равен
максимум, когда ток через катушки запуска и запуска
__________ градусов друг от друга.
а) 0
б) 45
в) 30
г) 90
д) 120
4- В каких из следующих типов двигателей переменного тока используются контактные кольца и кисти?
a) разделенная фаза
b) конденсаторный пуск
c) синхронный
d) фазный ротор
e) как c, так и d
5- Для изменения направления индукции переменного тока при запуске конденсатора
двигатель, __________.
a) поменять местами соединения силовой линии
b) поменять местами вспомогательную обмотку
c) поменять местами основную или вспомогательную обмотку
d) a и b
e) b и c
6- В двигателе с переменным сопротивлением, если выступающие полюса равны 30
градусов, а полюса ротора разнесены на 45 градусов, его шаг
угол составляет __________ градусов.
а) 15
б) 30
в) 45
г) 60
д) 75
7- Каковы две основные классификации постоянного тока с полевой обмоткой?
двигатели ..
a) серия
b) короткий шунт
c) шунт
d) a и b
e) a и c
8- Если физическая нагрузка вызывает индукционный двигатель с короткозамкнутым ротором
чтобы заглохнуть, ток ротора увеличивается.Почему?
a) повышенное скольжение
b) возрастает напряжение
c) большее индуцированное напряжение
d) a и c
e) a и b
9- Перечислите два фактора, которые определяют синхронную скорость
Двигатель переменного тока.
a) Приложенное напряжение и приложенная механическая нагрузка
b) Приложенное напряжение и количество полюсов поля
c) Приложенная частота и количество полюсов поля
d) Приложенная частота и приложенная механическая нагрузка
e) Приложенная механическая нагрузка и количество полюсов поля
10- Предположим, что шаговый двигатель вращается со скоростью 90 об / мин, когда 48
импульсы применяются в секунду.Какой у него угол шага?
а) 1,875 градуса
б) 11,25 градуса
в) 18,75 градуса
г) 20 градусов
д) 32 градуса
11- Предположим, что шаговый двигатель с углом шага 45 градусов имеет 24
импульсы, приложенные к нему в секунду. Какая у него скорость вращения в
об / мин?
a) 108 об / мин
b) 120 об / мин
c) 160 об / мин
d) 180 об / мин
e) 200 об / мин
12- Если требуется 240 шагов для запуска шагового двигателя
один оборот, какой угол шага?
а) 1 градус
б) 1.5 градусов
c) 2 градуса
d) 3. градусов
e) Ничего из вышеперечисленного
Управление трехфазным двигателем с использованием релейной логики ПЛК
Гостевые статьи Учебные пособия по ПЛКУправление трехфазным двигателем с помощью ПЛК
Это программа ПЛК для прямого и обратного управления трехфазным асинхронным двигателем.
Описание проблемы
- В различных отраслях промышленности используется множество двигателей и конвейеров.
- В некоторых случаях двигатели или конвейеры нуждаются в прямом и обратном движении для некоторой цели управления.
- Например, мостовой кран в кране каждый раз, когда оператор перемещает его вперед и назад для перемещения материала.
- Таким образом, мы можем использовать системы ПЛК для программирования двигателя для работы в прямом / обратном направлении.
Схема проблем
Решение проблемы
- В этом случае нам нужно управлять двигателем в обоих направлениях, что возможно только с помощью цепи реле прямого / обратного управления или с помощью логики.
- Здесь мы решаем эту проблему, используя простую логику прямого / обратного управления в ПЛК.
- Итак, здесь мы рассмотрим один трехфазный двигатель для прямого и обратного хода.
- И мы возьмем два контактора или реле для управления двигателем, потому что здесь нам нужны два разных направления, то есть вперед / назад. Первый контактор для управления прямым направлением и второй контактор для управления двигателем в обратном направлении.
- Также мы должны рассмотреть три кнопки, т.е. для функций прямого, обратного и останова двигателя.
- Таким образом, здесь оператор будет использовать FWD PB для работы вперед, REV PB для работы в обратном направлении и STOP PB для функции остановки.
Список входов ПЛК
- FWD PB: I0.0
- REV: I0.1
- STOP PB: I0.2
- Отключение двигателя: I0.3
Список выходов ПЛК
- Двигатель вперед: Q0.0
- Двигатель назад: Q0.1
Лестничная диаграмма ПЛК для прямого / обратного управления двигателем
Описание релейной логики
- В этом приложении мы будем использовать для программирования ПЛК Siemens S7-1200 и программное обеспечение TIA Portal.Мы также можем спроектировать эту логику с помощью релейной схемы.
- Эта схема также известна как прямое / обратное управление для трехфазного асинхронного двигателя.
- Мы напишем логику для прямого состояния в сети 1. Здесь мы используем замыкающий контакт FWD PB (I0.0) для прямого действия двигателя, мы используем кнопку, поэтому нам нужно использовать один замыкающий контакт двигателя вперед. выходная катушка (Q0.0) для фиксации. (Кнопка обеспечивает только мгновенный контакт, и нам нужно зафиксировать действие, чтобы использовался передний контакт катушки двигателя)
- Установите нормально замкнутый контакт обратного выхода двигателя (Q0.1) последовательно для разблокировки цепи, потому что и вперед, и назад не должны работать одновременно.
- Теперь напишите логику для обратного состояния в сети 2. Здесь мы возьмем замыкающий контакт REV PB (I0.2) для функции реверса двигателя, а также возьмем еще один замыкающий контакт катушки обратного вывода двигателя (Q0.1) для фиксация реверсивного выхода двигателя (QO.1). (Нажатие кнопки обеспечивает только мгновенный контакт, и нам нужно зафиксировать действие, чтобы использовался передний контакт катушки двигателя)
- Здесь также поместите нормально замкнутый контакт передней выходной катушки двигателя (Q0.0) последовательно для разблокировки цепи, потому что и вперед, и назад не должны работать одновременно.
- Для блокировки подключите нормально замкнутый контакт FWD PB (I0.0) последовательно с REV PB (I0.2) и включите нормально замкнутый контакт REV PB (I0.2) последовательно с FWD PB (I0.0).
- Поместите NC-контакт последовательно в обе сети, чтобы оператор мог остановить прямое или обратное вращение, нажав STOP PB
- Здесь мы использовали OLR для защиты двигателя, поэтому добавьте NC-контакт отключения двигателя (I0.3) последовательно в обоих сеть для защиты двигателя
Тестовые наборы во время работы
Примечание: Вышеупомянутая логика ПЛК предоставила базовое представление о применении логики ПЛК для управления трехфазным асинхронным двигателем.Логика — это ограниченное и неполное приложение.