Расчет тороидального трансформатора по сечению сердечника калькулятор: Расчет трансформатора с тороидальным магнитопроводом :: АвтоМотоГараж

Содержание

Расчёт тороидального трансформатора по сечению сердечника калькулятор

Чтобы рассчитать параметры трансформатора, введите данные мощности и напряжения подключаемого устройства, а также напряжение сети.

Площадь сердечника выражается произведением ширины железной пластины сердечника (или средней части пластины при Ш-образном железе) на толщину всего набора пластин.

При расчётах мощность сети берется равной 1,2 мощности трансформатора (потери трансформатора ≈ 20%).

*Расчёт производится по методике, описанной в руководстве для технических кружков «Техническое Творчество».

«Как-то лет в 12 нашёл я старый трансформатор, слегка перемотал его и включил.
Энергосистема опознала нового радиотехника и приветливо моргнула всем домом.
Вот так я и начал изучать силовую электронику».

А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами.
При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один – массогабаритные показатели. Всё остальное – сплошной минус.

Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.

Наиболее популярными среди радиолюбителей стали сетевые источники питания, собранные на микросхемах IR2153 и IR2155, которые представляют из себя самотактируемые высоковольтные драйверы, позволяющие получать полумостовые импульсные блоки питания мощностью до 1,5 кВт с минимальной обвязкой.
И если сердце импульсного блока питания колотится внутри готовой буржуйской микросхемы, то главным, ответственным за электрохозяйство среди остальных наружных образований, безусловно, является правильно выполненный трансформатор.

Для наших высокотоковых дел лучше всего применять трансформаторы с тороидальным магнитопроводом. В сравнении с другими сердечниками они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмоток и повышенным КПД.
Но самое главное – при равномерном распределении обмоток по периметру сердечника практически отсутствует магнитное поле рассеяния, что в большинстве случаев отметает потребность в тщательном экранировании трансформаторов.

По сути дела, умных статей в сети на предмет расчёта импульсных трансформаторов великое множество, с картинками, формулами, таблицами и прочими авторитетными причиндалами. Наблюдаются в свободном доступе и многочисленные онлайн-калькуляторы на интересующую нас тематику.

И снизошла б на нас благодать неземная, кабы вся полученная информация сложилась в наших любознательных головах в единое большое целое.
Да вот, что-то не получается. Ништяк обламывается из-за того, что следуя этими различным компетентным источникам, мы устойчиво получаем на выходе и различные результаты.

Вот и гуляют по сети идентичные радиолюбительские схемы импульсных блоков питания на IR2153 с идентичными заявленными характеристиками, трансформаторами на одних и тех же кольцах, но радикально не идентичным количеством витков первичных обмоток трансформаторов.

А когда эти различия выражаются многими разами, то возникает желание «что-то подправить в консерватории». Объясняется это желание просто – существенной зависимостью КПД устройства от значения индуктивности, на которую нагружены ключевые транзисторы преобразователя. А в качестве этой индуктивности как раз и выступает первичная обмотка импульсного трансформатора.

А для лучшего восприятия сказанного, приведу типовую схему источника питания на IR2153, не обременённую ни устройством защиты, ни какими-либо другими излишествами.


Рис.1

Схема проверена временем и многочисленными опытами изрядно пощипанных током, неустрашимых радиолюбителей, так что не работать в ней – просто нечему.

Ну и наконец, переходим к расчёту импульсного трансформатора.

Мотать его будем на бюджетных низкочастотных ферритовых кольцах отечественного производителя 2000НМ или импортных – EPCOS N87, а для начала определимся с габаритной мощностью тороидального ферритового магнитопровода.

Концепция выбора габаритной мощности с запасом в 10% от максимальной мощности в нагрузке, заложенная в режимы автоматического подбора сердечника в большинстве калькуляторов, хотя и не противоречит теоретическим расчётам, учитывающим высокий КПД импульсного трансформатора, но всё же наводит на грустную мысль о ненадлежащей надёжности и возможной скорой кончине полученного моточного изделия.

Куда мне ближе трактовка этого параметра, описанная в литературе: Pгаб>1,25×Рн .

Расчёты поведём исходя из частоты работы преобразователя IR2153, равной 50 кГц. Почему именно такой?
Не ниже, потому что такой выбор частоты позволяет нам уложиться в достаточно компактные размеры ферритового сердечника, и при этом гарантирует полное отсутствие сигналов комбинационных частот ниже 30 кГц при работе девайса в составе качественной звуковоспроизводящей аппаратуры.
А не выше, потому что мы пилоты. А феррит у нас низкочастотный и может почахнуть и ответить значительным снижением магнитной проницаемости при частотах свыше 60-70 кГц. Не забываем, что сигнал, на выходах ключей имеет форму меандра и совокупная амплитуда гармоник, с частотами в 3-9 раз превышающими основную, имеет весьма ощутимую величину.

Параметры первичной обмотки трансформатора рассчитаем при помощи программы Lite-CalcIT, позволяющей, на мой взгляд, вполне адекватно оценить как размер сердечника, так и количество витков первичной обмотки.
Результаты сведём в таблицу.

Мощность блока
питания, Вт
Размеры кольца, мм ;
(габаритная мощность, Вт)
Количество витков
первичной обмотки
Индуктивность
обмотки, мГн
25R 20×12×6 2000НМ (33,8 Вт)
R 22,1×13,7×6,35 №87 (51,5 Вт)
50R 22,1×13,7×12,5 №87 (100,1 Вт)
R 22,1×13,7×7,9 №87 (63,9 Вт)
R 27×18×6 2000НМ (85,3 Вт)100R 28×16×9 2000НМ (136 Вт)
R 32,0×20,0×6,0 №27 (141 Вт)200R 28×16×18 2000НМ (268 Вт)
R 29,5×19,0×14,9 №87 (297 Вт)
R 30,5×20,0×12,5 №87 (265 Вт)
R 34,0×20,5×10,0 №87 (294 Вт)
R 34,0×20,5×12,5 №87 (371 Вт)
R 38×24×7 2000НМ (278 Вт)400R 36,0×23,0×15,0 №87 (552 Вт)
R 38×24×14 2000НМ (565 Вт)
R 40×25×11 2000НМ (500 Вт)800R 40×25×22 2000НМ (998 Вт)
R 45×28×16 2000НМ (1036 Вт)
R 45×28×24 2000НМ (1580 Вт)1500R 50,0×30,0×20,0 №87 (1907 Вт)
R 58,3×32,0×18,0 №87 (2570 Вт)

Как следует мотать первичную обмотку трансформатора?


Рис. 2 а) б) в) г) д)

Если используются кольца 2000НМ отечественного производителя, то для начала – посредством наждачной бумаги скругляем наружные острые грани до состояния, приведённого на Рис.2 а).

Далее на кольцо следует намотать термостойкую изоляционную прокладку (Рис.2 б). В качестве изоляционного материала можно выбрать лакоткань, стеклолакоткань, киперную ленту, или сантехническую фторопластовую ленту.

Для буржуйских колец фирмы EPCOS первые два пункта практической ценности не имеют.

Настало время намотать однослойную обмотку «виток к витку» (Рис.2 в). Обмотка должна быть равномерно распределена по периметру магнитопровода – это важно!

Если в закромах радиолюбительского хозяйства не завалялся обмоточный провод необходимого диаметра, то обмотку можно намотать сразу в два, или несколько проводов меньшего диаметра (Рис.2 г). Не забываем, что зависимость тока от диаметра квадратичная и если, к примеру, нам надо заменить провод диаметром 1мм, то это будет не два провода по 0,5мм, а четыре (или два провода по 0,7мм).

Ну и для завершения первичного процесса поверх первичной обмотки трансформатора наматываем межобмоточную прокладку – пару слоёв лакоткани или другой изолирующей ленты (Рис.2 д).

А вот теперь мы плавно переходим к выполнению второй части упражнения.
Казалось бы, расчёты количества витков вторичной обмотки импульсного трансформатора настолько банальны и очевидны, что, как говаривал товарищ Мамин-Сибиряк – «яйца выеденного не стоят».
Да только вот опять – не складываются куличики в пирамидку, потому как далеко не каждый источник информации радует ожидаемым результатом. Поэтому для начала приведём формулу зависимости выходного напряжения от соотношения количества витков обмоток:
W1 (Uвх – Uдм1)/2 – Uнас ,
W2 (Uвых+Uдм2)

где Uвх – значение выпрямленного напряжения сети, равное 1,41×220≈310В,

Uдм1 – падение напряжения на входном диодном мосте ≈ 1В,
Uдм2 – падение напряжения на выходном диодном мосте ≈ 1В,
Uнас – напряжение насыщения на ключевом транзисторе ≈ 1,6В.
Подставив значения, получаем конечную формулу W2 = W1×(Uвых+1)/153.
Это формула верна для случаев, когда мы хотим получить расчётное значение выходного напряжения на холостом ходу.
Если же данный параметр нас интересует при максимальном токе нагрузки, то практика показывает, что количество витков вторичной обмотки следует увеличить на 10%.

Теперь, что касается диаметра провода вторичной обмотки трансформатора. Диаметр этот достаточно просто вычисляется по формуле:

D = 1,13× I / J ,
где I – ток обмотки, а J – параметр плотности тока, напрямую зависящий от мощности трансформатора и принимающий для кольцевых сердечников значения:
≈4,5 для мощностей до 50Вт; ≈4 для 50-150Вт; ≈3,25 для 150-300Вт и ≈2,75 для 300-1000Вт.

И в завершении приведу незамысловатый калькулятор для расчёта параметров вторичной обмотки импульсного трансформатора.

Точно так же, как и в случае с первичной обмоткой – вторичная должна быть как можно более равномерно распределена по периметру магнитопровода.

Количество вторичных обмоток ограничено только размерами магнитопровода. При этом суммарная величина снимаемых с обмоток мощностей не должна превышать расчётную мощность трансформатора.

При необходимости поиметь двуполярный источник питания, обе обмотки следует мотать одновременно, затем присовокупить начало одной обмотки к концу другой, а уже потом направить это соединение, в зависимости от личных пристрастий – к земле, средней точке, общей шине, корпусу, или совсем на худой конец – к GND-у.

Ну что ж, с трансформатором определились, пора озадачиться полным джентльменским набором настоящего мужчины – плавками с меховым гульфиком, а главное, непосредственно импульсным блоком питания, оснащённым такими значимыми прибамбасами, как устройства мягкого пуска и защиты от токовых перегрузок и КЗ.
Всё это хозяйство подробно опишем на странице Ссылка на страницу.

Трансформатор является главным узлом сварочного аппарата независимо от его конструкции. При самостоятельном изготовлении этого элемента возникает много вопросов: Как выбрать форму магнитопровода? Какой требуется намоточный провод? Как сделать расчет необходимого количества витков?

Тороидальный трансформатор имеет ряд преимуществ перед трансформаторами другого типа:

  • Равномерное распределение обмоток;
  • Снижение массы на 20…30 % при сохранении мощности;
  • Сниженные токи Х.Х. в 10…20 раз;
  • Высокий К.П.Д;
  • Уменьшение полей рассеяния;
  • Низкий уровень шума.

Если приложить определенные усилия для создания тороидального трансформатора своими руками, то можно получить свой уникальный набор характеристик устройства, которое удовлетворит все потребности при работе со сваркой. И даже более того – можно учесть текущие реалии нашей действительности такие как, например пониженное напряжение в сети вашего дома.

Используя формулы и методы, приведенные в нашей статье, вы получите практическое пособие по расчету сварочного трансформатора на тороидальном сердечнике.

Методика расчета – пошаговая инструкция

Сам же расчет тороидального трансформатора разделяется на две части:

  1. Непосредственно рассчитать мощность тороидального сердечника, чтобы ее определить вы можете получить, при наличии у вас конкретного сердечника, или заданной мощности, то определить размеры будущего трансформатора.
  2. Расчет собственно электрической части, которая включает в себя количество витков в обмотках, а также какое сечение будет применяться в обмотках и материал провода.

Расчет сердечника

Его мы произведем по формуле, которая уже включает в себя константы, для упрощения понимания его результатов. Дальше останется подставить в ниже приведенную формулу только переменные значения, а именно:

«P=1,9*Sc*So», где:

  • P – это мощность, которую возможно получить, применяя сердечник с таким габаритными размерами
  • 1,9 – результат математических действий над всеми константами для данного вида трансформаторов
  • Sc- площадь сердечника, единица измерения сантиметры квадратные
  • So – площадь отверстия в теле сердечника, в «кв. см.»

Если сделанный трансформатор будет иметь основное назначение – сварка, то размеры его сердечника должны быть адекватными, иначе полученной мощности устройства будет не достаточно для выполнения своих функций. Для примера возьмем следующие значения и применив калькулятор вычислим.
«P=1,9*70*70=9310 Ватт»

Определим количество витков первичной обмотки

В первую очередь рассмотрим расчет с единой первичной обмоткой, без регулировки. Для этого сначала выясним, сколько витков обмотки должен иметь тороидальный трансформатор для получения 1 вольта напряжения. Применим следующую формулу.
К=35/ Sc, где:

  • K – количество витков на 1 вольт напряжения.
  • 35 – это константа, которая одинакова для всех типов тороидальных сердечников.
  • Sc- площадь сердечника, единица измерения сантиметры квадратные.

Таким образом, если у нас имеется сердечник площадью 70 «кв. см.», то подставив значения в формулу, получим следующую ситуацию.
«K=35/70=0,5» витка на каждый вольт, и соответственно объём первичной обмотки узнаем, применив соответствующую формулу.
«W1=U1*K», где:

  • W1- количество витков в первой обмотке.
  • U1 – необходимое напряжение в этой точке.
  • K – количество витков на 1 вольт напряжения.

«W1=220*0,5=110» – витков.
С учетом того, что мы проводим вычисления для сварочного трансформатора, то примем за рабочее напряжение вторичной равное 35 вольт, тогда исходя из аналогичной формулы, получим.
«W2=35*0,5=17,5» – витков.

Расчет сечения применяемых проводов

Чтобы рассчитать необходимые сечения нужно понять какой ток будет через них протекать, это единственный параметр который влияет на толщину используемого материала, итак, вычисление величины тока в обмотках трансформатора:
«I пер.=9310 Ватт/220 Вольт=42.3 Ампера»
С вторичной обмоткой несколько сложнее, все должно опираться на напряжение дуги и ток сварки.
«I свар.=(29 Вольт-14)/0.05=300 Ампер», где 29 вольт среднее значение дуги сварки. Теперь проверяем, возможна ли такая мощность у нашего устройства 300 Ампер*29 Вольт=8700 Ватт.

Это значение вполне укладывается в мощность, которой обладает тороидальный трансформатор, рассчитываемый нами, поэтому 300 Ампер, считаем током вторичной обмотки. Проведя эти нехитрые вычисления, для которых даже не всегда нужен калькулятор, можно перейти к определению сечения проводов и их материала.

Из руководящих документов таких как, например «ПУЭ», известно, что для продолжительной работы требуется 1 квадратный миллиметр сечения меди на каждые 5 ампер тока, а при использовании алюминия 2 ампера.
Исходя из этих данных, вычисляем сечение проводов в устройстве для меди:

  1. Первичная обмотка=42,3/5=8,46 кв. мм, ближайший стандарт сечения это 10.
  2. Вторичная обмотка=300/5=60 кв. мм, выбираем следующее по стандарту сечение в сторону увеличения это 70.

Применяем условие продолжительности нагрузки 40 процентов, так как никто не работает все время под нагрузкой. В этом случае сечение можно уменьшить в два раза, тогда получаем:

  1. 8,46/2=4,23 ближайший стандарт сечения -6 кв. мм.
  2. 60/2=30 следующий стандарт 35 кв. мм.

Как упростить задачу по намотке витков на сердечник

Зная как создать трансформатор во всех подробностях и всеми данными, остается перейти к практической работе, но намотка витков представляет собой достаточно трудоемкий процесс, требующий особой концентрации внимания. Правильность намотки также имеет значение и напрямую влияет на характеристики устройства, которое в итоге получится.

Но для таких случаев в помощь людям существует специальное устройство, станок для намотки тороидальных трансформаторов, цена такого приспособления не высока, но купить его не просто, поэтому на рынке часто встречаются самодельные устройства, и если почитать соответствующую литературу, то можно попробовать сделать этот станок самому.

Онлайн калькулятор расчета тороидального трансформатора

Чтобы рассчитать параметры трансформатора, введите данные мощности и напряжения подключаемого устройства, а также напряжение сети.

Площадь сердечника выражается произведением ширины железной пластины сердечника (или средней части пластины при Ш-образном железе) на толщину всего набора пластин.

При расчетах мощность сети берется равной 1,2 мощности трансформатора (потери трансформатора ≈ 20%).

*Расчет производится по методике, описанной в руководстве для технических кружков «Техническое Творчество».

«Как-то лет в 12 нашёл я старый трансформатор, слегка перемотал его и включил.
Энергосистема опознала нового радиотехника и приветливо моргнула всем домом.
Вот так я и начал изучать силовую электронику».

А тем временем традиционные линейные источники питания на силовых трансформаторах всё чаще стали вытесняться своими импульсными коллегами.
При этом, что бы там не говорили авторитетные товарищи про многочисленные технические достоинства импульсных преобразователей, плюс у них только один – массогабаритные показатели. Всё остальное – сплошной минус.
Однако этот единственный плюс оказался настолько жирным, что заслонил собой все многочисленные минусы, особенно в тех замесах, когда к электроустройствам не предъявляется каких-либо жёстких требований.

Наиболее популярными среди радиолюбителей стали сетевые источники питания, собранные на микросхемах IR2153 и IR2155, которые представляют из себя самотактируемые высоковольтные драйверы, позволяющие получать полумостовые импульсные блоки питания мощностью до 1,5 кВт с минимальной обвязкой.
И если сердце импульсного блока питания колотится внутри готовой буржуйской микросхемы, то главным, ответственным за электрохозяйство среди остальных наружных образований, безусловно, является правильно выполненный трансформатор.

Для наших высокотоковых дел лучше всего применять трансформаторы с тороидальным магнитопроводом. В сравнении с другими сердечниками они имеют меньший вес и габариты, а также отличаются лучшими условиями охлаждения обмоток и повышенным КПД.
Но самое главное – при равномерном распределении обмоток по периметру сердечника практически отсутствует магнитное поле рассеяния, что в большинстве случаев отметает потребность в тщательном экранировании трансформаторов.

По сути дела, умных статей в сети на предмет расчёта импульсных трансформаторов великое множество, с картинками, формулами, таблицами и прочими авторитетными причиндалами. Наблюдаются в свободном доступе и многочисленные онлайн-калькуляторы на интересующую нас тематику.

И снизошла б на нас благодать неземная, кабы вся полученная информация сложилась в наших любознательных головах в единое большое целое.
Да вот, что-то не получается. Ништяк обламывается из-за того, что следуя этими различным компетентным источникам, мы устойчиво получаем на выходе и различные результаты.

Вот и гуляют по сети идентичные радиолюбительские схемы импульсных блоков питания на IR2153 с идентичными заявленными характеристиками, трансформаторами на одних и тех же кольцах, но радикально не идентичным количеством витков первичных обмоток трансформаторов.
А когда эти различия выражаются многими разами, то возникает желание «что-то подправить в консерватории». Объясняется это желание просто – существенной зависимостью КПД устройства от значения индуктивности, на которую нагружены ключевые транзисторы преобразователя. А в качестве этой индуктивности как раз и выступает первичная обмотка импульсного трансформатора.

А для лучшего восприятия сказанного, приведу типовую схему источника питания на IR2153, не обременённую ни устройством защиты, ни какими-либо другими излишествами.


Рис.1

Схема проверена временем и многочисленными опытами изрядно пощипанных током, неустрашимых радиолюбителей, так что не работать в ней – просто нечему.

Ну и наконец, переходим к расчёту импульсного трансформатора.

Мотать его будем на бюджетных низкочастотных ферритовых кольцах отечественного производителя 2000НМ или импортных – EPCOS N87, а для начала определимся с габаритной мощностью тороидального ферритового магнитопровода.

Концепция выбора габаритной мощности с запасом в 10% от максимальной мощности в нагрузке, заложенная в режимы автоматического подбора сердечника в большинстве калькуляторов, хотя и не противоречит теоретическим расчётам, учитывающим высокий КПД импульсного трансформатора, но всё же наводит на грустную мысль о ненадлежащей надёжности и возможной скорой кончине полученного моточного изделия.
Куда мне ближе трактовка этого параметра, описанная в литературе: Pгаб>1,25×Рн .

Расчёты поведём исходя из частоты работы преобразователя IR2153, равной 50 кГц. Почему именно такой?
Не ниже, потому что такой выбор частоты позволяет нам уложиться в достаточно компактные размеры ферритового сердечника, и при этом гарантирует полное отсутствие сигналов комбинационных частот ниже 30 кГц при работе девайса в составе качественной звуковоспроизводящей аппаратуры.
А не выше, потому что мы пилоты. А феррит у нас низкочастотный и может почахнуть и ответить значительным снижением магнитной проницаемости при частотах свыше 60-70 кГц. Не забываем, что сигнал, на выходах ключей имеет форму меандра и совокупная амплитуда гармоник, с частотами в 3-9 раз превышающими основную, имеет весьма ощутимую величину.

Параметры первичной обмотки трансформатора рассчитаем при помощи программы Lite-CalcIT, позволяющей, на мой взгляд, вполне адекватно оценить как размер сердечника, так и количество витков первичной обмотки.
Результаты сведём в таблицу.

Мощность блока
питания, Вт
Размеры кольца, мм ;
(габаритная мощность, Вт)
Количество витков
первичной обмотки
Индуктивность
обмотки, мГн
25R 20×12×6 2000НМ (33,8 Вт)
R 22,1×13,7×6,35 №87 (51,5 Вт)
50R 22,1×13,7×12,5 №87 (100,1 Вт)
R 22,1×13,7×7,9 №87 (63,9 Вт)
R 27×18×6 2000НМ (85,3 Вт)100R 28×16×9 2000НМ (136 Вт)
R 32,0×20,0×6,0 №27 (141 Вт)200R 28×16×18 2000НМ (268 Вт)
R 29,5×19,0×14,9 №87 (297 Вт)
R 30,5×20,0×12,5 №87 (265 Вт)
R 34,0×20,5×10,0 №87 (294 Вт)
R 34,0×20,5×12,5 №87 (371 Вт)
R 38×24×7 2000НМ (278 Вт)400R 36,0×23,0×15,0 №87 (552 Вт)
R 38×24×14 2000НМ (565 Вт)
R 40×25×11 2000НМ (500 Вт)800R 40×25×22 2000НМ (998 Вт)
R 45×28×16 2000НМ (1036 Вт)
R 45×28×24 2000НМ (1580 Вт)1500R 50,0×30,0×20,0 №87 (1907 Вт)
R 58,3×32,0×18,0 №87 (2570 Вт)

Как следует мотать первичную обмотку трансформатора?


Рис. 2 а) б) в) г) д)

Если используются кольца 2000НМ отечественного производителя, то для начала – посредством наждачной бумаги скругляем наружные острые грани до состояния, приведённого на Рис.2 а).

Далее на кольцо следует намотать термостойкую изоляционную прокладку (Рис.2 б). В качестве изоляционного материала можно выбрать лакоткань, стеклолакоткань, киперную ленту, или сантехническую фторопластовую ленту.

Для буржуйских колец фирмы EPCOS первые два пункта практической ценности не имеют.

Настало время намотать однослойную обмотку «виток к витку» (Рис.2 в). Обмотка должна быть равномерно распределена по периметру магнитопровода – это важно!

Если в закромах радиолюбительского хозяйства не завалялся обмоточный провод необходимого диаметра, то обмотку можно намотать сразу в два, или несколько проводов меньшего диаметра (Рис.2 г). Не забываем, что зависимость тока от диаметра квадратичная и если, к примеру, нам надо заменить провод диаметром 1мм, то это будет не два провода по 0,5мм, а четыре (или два провода по 0,7мм).

Ну и для завершения первичного процесса поверх первичной обмотки трансформатора наматываем межобмоточную прокладку – пару слоёв лакоткани или другой изолирующей ленты (Рис.2 д).

А вот теперь мы плавно переходим к выполнению второй части упражнения.
Казалось бы, расчёты количества витков вторичной обмотки импульсного трансформатора настолько банальны и очевидны, что, как говаривал товарищ Мамин-Сибиряк – «яйца выеденного не стоят».
Да только вот опять – не складываются куличики в пирамидку, потому как далеко не каждый источник информации радует ожидаемым результатом. Поэтому для начала приведём формулу зависимости выходного напряжения от соотношения количества витков обмоток:
W1 (Uвх – Uдм1)/2 – Uнас ,
W2 (Uвых+Uдм2)

где Uвх – значение выпрямленного напряжения сети, равное 1,41×220≈310В,
Uдм1 – падение напряжения на входном диодном мосте ≈ 1В,
Uдм2 – падение напряжения на выходном диодном мосте ≈ 1В,
Uнас – напряжение насыщения на ключевом транзисторе ≈ 1,6В.
Подставив значения, получаем конечную формулу W2 = W1×(Uвых+1)/153.
Это формула верна для случаев, когда мы хотим получить расчётное значение выходного напряжения на холостом ходу.
Если же данный параметр нас интересует при максимальном токе нагрузки, то практика показывает, что количество витков вторичной обмотки следует увеличить на 10%.

Теперь, что касается диаметра провода вторичной обмотки трансформатора. Диаметр этот достаточно просто вычисляется по формуле:
D = 1,13× I / J ,
где I – ток обмотки, а J – параметр плотности тока, напрямую зависящий от мощности трансформатора и принимающий для кольцевых сердечников значения:
≈4,5 для мощностей до 50Вт; ≈4 для 50-150Вт; ≈3,25 для 150-300Вт и ≈2,75 для 300-1000Вт.

И в завершении приведу незамысловатый калькулятор для расчёта параметров вторичной обмотки импульсного трансформатора.

Точно так же, как и в случае с первичной обмоткой – вторичная должна быть как можно более равномерно распределена по периметру магнитопровода.

Количество вторичных обмоток ограничено только размерами магнитопровода. При этом суммарная величина снимаемых с обмоток мощностей не должна превышать расчётную мощность трансформатора.

При необходимости поиметь двуполярный источник питания, обе обмотки следует мотать одновременно, затем присовокупить начало одной обмотки к концу другой, а уже потом направить это соединение, в зависимости от личных пристрастий – к земле, средней точке, общей шине, корпусу, или совсем на худой конец – к GND-у.

Ну что ж, с трансформатором определились, пора озадачиться полным джентльменским набором настоящего мужчины – плавками с меховым гульфиком, а главное, непосредственно импульсным блоком питания, оснащённым такими значимыми прибамбасами, как устройства мягкого пуска и защиты от токовых перегрузок и КЗ.
Всё это хозяйство подробно опишем на странице Ссылка на страницу.

Данный онлайн расчет трансформатора выполнен по типовым расчетам электрооборудования. В типовых расчётах все начинается с определения необходимой мощности вторичной обмотки, а уж потом с поправкой на КПД – коэффициент полезного действия, находим мощность всего трансформатора, и на основании этого рассчитываем необходимое сечение и тип сердечника и так далее.

Изначально так и было в моём расчете. Пока не появились предложения от посетителей сайта внести изменения в расчет. По имеющимся размерам трансформаторного железа рассчитываем полную мощность трансформатора, а уж потом видим, какой ток и напряжение можно снять с этого железа. Далее все как по типовому расчёту, выбираем тип: броневой или стержневой, указываем напряжение первичной обмотки, вторичной, частоту переменного тока и так далее.

В результате получаем необходимые расчетные данные трансформатора, например сечение обмоточных проводов, которые сравниваются со стандартными обмоточными проводами и представляются для дальнейшего расчёта. Диапазон обмоточных проводов сечением от 0,000314 до 4,906 мм 2 , всего 63 позиции. На основании имеющихся данных рассчитывается площадь занимаемой обмотками трансформатора, для определения возможности их размещения в окнах трансформатора.
Хотелось бы узнать в комментариях ваше мнение, и практические результаты, чтобы если это возможно сделать более качественный расчёт.

Просмотр и ввод комментариев к статье

РадиоКот :: Расчёт импульсных трансформаторов

РадиоКот >Чердак >

Расчёт импульсных трансформаторов

 

 

Хочу рассказать о расчёте импульсных трансформаторов т.к. в сети очень много методик, но все они какие – то отдалённые и примерные с какими то непонятными коэффициентами, числами, откуда они взялись никто не описывает а приводит конечный результат в итоге результат получается с большим отклонением!!

Начнём с того, что мы захотели разработать некое устройство, посчитали необходимую требуемую мощность на выходе, допустим она равна 250 Вт, далее необходимо выбрать магнитопровод обеспечивающий заданую мощность.

Для этого существует реальная формула для оценки входной габаритной мощности магнитного элемента:

  • кф – коэффициент формы напряжения или тока: для синуса =1,11 для прямоугольника =1.
  • Кзс – коэффициент заполнения геометрического сечения магнитопровода материалом феромагнетика Кзс = 0,6 – 0,95 и даётся в справочной литературе на магнитный элемент.
  • Кок — коэффициент заполнения окна магнитопровода сечениями проводников, Кок =0,35.
  • n0 – коэффициент показывающий какую часть катушки занимает первичная обмотка, для трансформаторов n0 = 0,5.
  • Sc – сечение магнитопровода.
  • Sок – сечение окна магнитопровода.
  • J – плотность тока, при естественном охлаждении 3500000 А/м2, при принудительном 6000000 А/м2
  • В – рабочая индукция магнитопровода.
  • F — частота напряжения либо тока Гц.

И так по этой формуле мы оценим реальную габаритную мощность трансформатора и прикиним что можем выжать с этого сердечника!

Например:

Имеем трансформатор от компьютерного блока питания с параметрами.

Сечение магнитопровода Sс = 0,9 см2

Сечение окна Sок = 2,4 см2

Рабочая индукция В = 0,15 (ориентировочное значение)

Частота предпологаемой работы нашего устройства f = 50кГц.

 

Все величины в единицах СИ!!!!!!!!! Т.е. переводим всё в метры, амперы, герцы, и.т.д.

 

Получим:

Так сердечник оценили, идём дальше, теперь необходимо разобраться с витками и сечением провода.

Начнём с витков в первичной обмотки, для этого существует замечательная формула:

Все данные мы рассмотрели выше, кроме U1— это непосредственно напряжение на первичной обмотке.

Допустим строим полумостовой преобразователь, Еп = 24В, следовательно U1 = 12В т.к первичная обмотка будет подключена через ёмкостной делитель т.е 24/2.

Далее считаем.

Вторичная обмотка допустим имеет напряжение 50В.

 

Все значения округляем до целого числа!

Теперь посчитаем сечение проводников обмоток.

P1 – мощность необходимая нам на выходе и принятая ранее 250 Вт.

  • Вторичной: (потерями пренебрежём)

 

При намотке трансформатора не забываем про вытеснение тока на поверхность проводника в зависимости от частоты и производим расщепление проводника (литцендрант) или используем фольгу.

  • Формула для расчёта расщепленного проводника:

 

Теперь не трудно посчитать и диаметр провода и раскладку провода!

В этой статье я хотел коротко и доступно рассказать о расчёте импульсного трансформатора, с разъяснением основных коэффициентов, что откуда берётся.

Также не забываем, что для более качественного расчёта необходимо использовать справочные данные магнитного элемента.

В итоге хотелось сказать, что использую даную методику уже несколько лет для расчёта как низкочастотных так и ВЧ трансформаторов. 

 

Используемая литература:

Обрусник В.П. Магнитные элементы электронных устройств: Учебное пособие. — Томск: ТУСУР 2006 — 154 с.

 

 

Файлы:
22

Все вопросы в Форум.


Как вам эта статья?

Заработало ли это устройство у вас?

принцип работы, сечение сердечника, преимущества эксплуатации

Высококачественные трансформаторы широко используются в различных отраслях. Многие мастера ценят такие агрегаты за то, что они достаточно компактны и легки, а вот коэффициент полезного действия находится на высоком уровне. Такие характеристики особенно важны в сварочных аппаратах и стабилизаторах напряжения. Но чтобы такой агрегат исправно работал, нужно правильно рассчитать тороидальный трансформатор.

Краткое описание

Современные производители занимаются промышленным изготовлением нескольких разновидностей магнитопроводов для трансформаторов — броневого, стержневого, тороидального. Если сравнивать их эксплуатационные характеристики и сферы использования, то более эффективным можно считать последний вариант. Всё дело в том, что такое устройство обладает исключительно положительными параметрами, благодаря чему активно применяется в современной промышленности.

Высокая производительность и длительный эксплуатационный срок повлияли на то, что сейчас тороидальный трансформатор является базовым элементом в осветительной технике, стабилизаторах напряжения, источниках бесперебойного питания, радиотехнике, а также медицинском и диагностическом оборудовании.

Сами производители утверждают, что такой агрегат представлен в виде однофазной установки, которая может как понижать, так и повышать мощность. Для качественной эксплуатации трансформатор оборудован мощным сердечником с двумя и более обмотками. Но принцип его эксплуатации ничем не отличается от тех моделей, которые оснащены броневой или стержневой намоткой.

В независимости от эксплуатационных характеристик, трансформатор — это устройство, главная задача которого основана на преобразовании электроэнергии из одной величины в другую. Однако даже самые минимальные изменения в конструктивном исполнении могут существенно изменить итоговые размеры и вес электрической установки. Благодаря этому, технико-экономические параметры будут только возрастать.

Основные преимущества

У такого трансформатора магнитопровод имеет форму тороида, иными словами — все кольца отличаются прямоугольным сечением. Уникальные эксплуатационные характеристики высоко ценятся как в бытовых, так и промышленных сферах. Помимо этого, тороидальный агрегат имеет ряд дополнительных преимуществ в отличие от стандартных стержневых и бронированных моделей:

  1. У мастеров появилась отличная возможность использовать для сердечника сталь с повышенной магнитной проницаемостью (Э-370, 340).
  2. Известно, что итоговый поток рассеяния в идеальной тороидальной катушке должен быть равен нулю. В таком трансформаторе этот показатель имеет некоторую конечную величину. Но такие потоки рассеяния не такие уж и большие, как у обычных моделей, поэтому внешние магнитные поля не влияют на слаженную работу трансформатора.
  3. В сердечнике полностью отсутствуют зазоры и стыки.
  4. Мастер может смело использовать структурные свойства сердечника, так как в тороидальном агрегате направление магнитного поля полностью совпадает с прокатом ленты.

Все вышеперечисленные преимущества позволяют добиться высоких экономических и электрических показателей. За счёт этого существенно возрастает производительность оборудования:

  • Существенно уменьшается общее количество витков, которые используются для получения величины индуктивной первичной обмотки. Такой эффект достигается благодаря использованию сталей с высокой магнитной проницаемостью. В отдельных конструкциях мастерам удалось снизить итоговый расход меди на 25%.
  • Полное отсутствие зазоров и наличие высоколегированной стали является причиной того, что в сердечнике трансформатора достигается более высокая индукция. Это функциональное преимущество совершенно не влияет на коэффициент нелинейных искажений. В результате мастеру удаётся повысить Bmax в два раза, что считается невозможным в броневых трансформаторах. В итоге снижается итоговый вес и объём рабочего сердечника.
  • Равномерная частотная характеристика каскад достигается за счёт небольшой величины индуктивности рассеяния. Наличие минимальных искажений по вине переходных процессов позволяет использовать довольно глубокую обратную связь отрицательного типа.

В связи с тем, что тороидальный трансформатор обладает небольшим магнитным полем, даже самый тесный монтаж не влияет на взаимодействие с другими элементами конструкции.

Самостоятельное изготовление агрегата

Прежде чем приступить к созданию такого агрегата, необходимо подготовить все необходимые инструменты и материалы. Для изготовления более качественной модели может понадобиться даже швейная машинка, прочная игла и обычные спички, но такие детали можно найти практически в каждом доме.

Основным расходным материалом является железо, из него изготавливаются базовые части трансформатора. Для работы понадобится качественная сталь, которая должна быть в форме тора. Не стоит забывать и о хорошем проводе в лаковой изоляции. Надёжная фиксация не может обойтись без клея ПВА и малярного скотча.

Отдельно стоит учесть, что качественная работа обмоток зависит от изоленты на тканевой основе. А также стоит приобрести высококачественный провод в резиновой или силиконовой изоляции. Этот элемент понадобится для надёжного соединения всех концов обмотки.

Подготовка трансформаторной стали

Начинающим мастерам может показаться, что достать базовый элемент конструкции крайне сложно, но на практике всё обстоит совершенно иначе. Дело в том, что даже обычные пункты приёма металла часто располагают неработоспособными стабилизаторами напряжения. В советский период они были очень распространены, так как использовались в чёрно-белых телевизорах, что продлевало работоспособность кинескопов.

Исправность такого устройства совершенно не имеет значения, так как особой ценностью обладают только тороидальные трансформаторы, которые расположены во внутреннем отсеке стабилизатора. Именно эта часть используется мастерами в качестве основы всей конструкции.

На пути к изъятию трансформаторов всегда лежит обмотка, изготовленная из алюминиевого провода. Не стоит забывать о том, что сердечник тоже нуждается в подготовительных работах. Мастер должен максимально округлить острые края этой детали, так как в процессе намотки может повредиться лаковая изоляция. Поверх трансформаторной стали обязательно укладывается изолента на тканевой основе. В этом случае нужен всего один изоляционный слой.

Правила обмотки

Прежде чем приступить к этому виду работы, нужно сделать расчёт тороидального трансформатора по сечению сердечника. Конечно, мастер может использовать специальные онлайн-калькуляторы, которых на просторах интернета существует очень много. Но можно выбрать более простой вариант, где для всех вычислений нужно подготовить только линейку и калькулятор.

Конечно, он может иметь некоторые погрешности, так как расчёт не подразумевает соблюдения всех тех факторов, которые встречаются в природе. Главное, придерживаться правила о том, что итоговая мощность во вторичной катушке не должна превышать аналогичных показателей в первой обмотке.

Когда мастер дошёл до этого этапа и нужно сделать намотку тороидального агрегата, ему стоит быть крайне внимательным, так как этот процесс довольно трудоёмкий. Отличным считается тот вариант, когда есть возможность самостоятельно разобрать магнитопровод, а уже после намотки собрать его.

В противном случае можно прибегнуть к помощи обычного веретена, на которое нужно аккуратно намотать определённое количество заранее подготовленного провода. Только после этого веретено можно пропустить необходимое количество раз сквозь тор, равномерно укладывая витки обмоток. Конечно, на реализацию такой идеи уйдёт достаточно много времени, но результат того стоит.

Стоит отметить, что в стандартных ситуациях мастера проводят дополнительную изоляцию тороидального сердечника от обмоток (даже в том случае, если используется лакированная проволока). Особой популярностью пользуется высококачественный электротехнический картон, который соответствует всем стандартам ГОСТ 2824 . Толщина этого материала находится в пределах 0,8 мм.

Во время работы мастера придерживаются следующей схемы:

  • Картон аккуратно наматывается на сердечник с небольшим захватом предыдущего витка. Конец материала обязательно фиксируется киперной лентой либо клеем ПВА.
  • Все торцы сердечника должны быть защищены картонными шайбами с небольшими надрезами от 10 до 20 мм, длина шага — 35 мм. Как наружная, так и внутренняя грань обязательно закрывается небольшими полосами. Стоит отметить, что технологические шайбы фиксируются на финишном этапе, а все прорезиненные зубцы загибаются. Поверх всей конструкции наматывается киперная лента.
  • Если надрезы были сделаны на самых полосах, тогда должен присутствовать небольшой запас, чтобы добиться большей высоты торца. Все кольца должны быть прикреплены строго по ширине, накладываются они поверх загибов.
  • В редких случаях кольца могут быть изготовлены из специальной электротехнической фанеры, толстого текстолита. Уязвимую внутреннюю и внешнюю грань защищают картонными полосами с небольшими загибами по краям. Между первыми витками обмотки и сердечником должен присутствовать небольшой воздушный зазор. Такой подход особенно важен в тех случаях, когда края под проволокой протрутся. Так уязвимая токонесущая часть никогда не коснётся тороидального сердечника. На верхний слой обязательно наматывается киперная лента. В некоторых случаях мастера предпочитают сглаживать внешнее ребро колец, за счёт чего намотка углов идёт плавно.

Если трансформатор обладает повышенной мощностью, тогда медный провод должен быть прямоугольного сечения. Такой подход позволяет сэкономить свободное пространство. Жила обязательно должна быть толстой, чтобы она не плавилась во время того, как по ней проходит большое напряжение.

Тонкости расчётных манипуляций

Чаще всего первичная обмотка питается от обычной сети переменного напряжения в 220 В. Если мастеру нужно две вторичные обмотки, чтобы каждая выдавала минимум по 12 В, то площадь сечения должна составлять минимум 0,23 кв. мм. Но этих данных мало, чтобы правильно рассчитать тороидальный трансформатор.

Мастеру нужно разделить 220 В на определённую сумму напряжений вторичной цепи. Так можно получить коэффициент 3,9, который будет обозначать, что сечение провода для вторичной обмотки должно быть аналогичным с этим показателем. А вот для того, чтобы определить количество витков, нужно прибегнуть к достаточно простой формуле: напряжение 220 В умножить на коэффициент 40, а полученную цифру следует разделить на площадь поперечного сечения магнитопровода.

Отдельно стоит учесть, что от правильности проведённых расчётов зависит уровень КПД тороидального трансформатора и его эксплуатационный срок. Именно поэтому лучше несколько раз всё перепроверить, дабы не допустить самых распространённых ошибок.

Рекомендации специалистов

Когда мастер тщательным образом изучил способ изготовления трансформатора своими руками, он может смело приступать к практической части. Так как намотка витков считается очень сложным процессом, понадобится запастись терпением, чтобы итоговый результат оправдал все ожидания. Ведь именно от того, насколько качественно выполнен этот этап, зависят эксплуатационные характеристики устройства.

Для упрощения этой задачи можно использовать специальный станок, предназначенный для намотки тороидальных трансформаторов. Цена такого агрегата считается доступной, а при желании его можно изготовить и своими руками.

РАСЧЕТ СИЛОВОГО ТРАНСФОРМАТОРА

силовой трансформатор   радиотехнические расчеты    радио калькулятор

        РАСЧЕТ СИЛОВОГО ТРАНСФОРМАТОРА

В радиолюбительской практике иногда возникает необходимость в изготовлении трансформатора с нестандартными значениями напряжения и тока.

Хорошо, если удается подобрать готовый трансформатор с нужными обмотками, в противном случае трансформатор приходится изготавливать самостоятельно.

Эта страничка посвящена изготовлению силового трансформатора своими силами. В промышленных условиях расчет трансформатора — весьма трудоемкая работа, но для радиолюбителей созданы упрощенные методики расчета. С одной из таких методик я и хочу вас познакомить.

Перед началом расчета нам нужно определиться с выходными данными будущего трансформатора.

Во-первых - номинальная мощность (P). Мощность трансформатора определяется как сумма мощностей всех вторичных обмоток. Мощность любой из вторичных обмоток определяем из произведения напряжения на вторичной обмотке и снимаемого с нее тока (напряжение для расчета берем в Вольтах, а ток — в Амперах).

Исходя из полученной номинальной мощности трансформатора можно вычислить минимальное сечение сердечника (S) (измеряется в квадратных сантиметрах). При выборе сердечника руководствуются шириной центральной пластины сердечника и толщиной набора. Площадь сечения сердечника определяется как произведение ширины пластины на толщину набора.

 

S серд = L*T  (все величины берутся в Сантиметрах!)

S окна = h*b

Также полезно сразу рассчитать площадь окна выбранного нами сердечника. Эта величина будет использоваться для проверки коэффициента заполнения окна ( проще говоря — поместятся все обмотки на данном трансформаторе, или нет). 

Далее — приступаем к вычислению коэффициента N. Этот коэффициент показывает, сколько витков нужно намотать для получения напряжения на обмотке в 1 вольт.

Дальнейший расчет сводится к умножению напряжения на обмотке на это коэффициент (N). Эта процедура для всех обмоток одинакова.

Далее — рассчитываем рабочий ток в сетевой обмотке исходя из мощности трансформатора и сетевого напряжения.

Диаметр провода в обмотках рассчитывается по приведенным формулам (ток берется в Миллиамперах !). Иногда не удается приобрести провод нужного сечения (но есть провод меньшего диаметра) — для этого случая полезно воспользоваться следующей табличкой:

Как пользоваться табличкой? Предположим, в результате расчета диаметр провода обмотки у нас получился равным 0,51 миллиметра. Для получения эквивалентного по сечению провода нам нужно взять либо 2 провода, диаметром 0,31 миллиметра, либо 3 провода с диаметром 0,29 миллиметров. Соответственно, обмотка будет состоять не из расчетного провода, а из нескольких, вместе сложенных проводов меньшего сечения. Надеюсь, что пример довольно понятный для понимания…

В конце расчета проверяем коэффициент заполнения окна обмотками. Если этот коэффициент не превышает 0,5 — всё в порядке — можно приступать к намотке, в противном случае придется использовать сердечник с большей площадью сечения и произвести весь расчет заново…

Сборка сердечника  у силового трансформатора производится «в перекрышку» — так как показано на рисунке внизу:

Если у вас найдется готовый силовой трансформатор с номинальной мощностью не ниже, чем необходимо, то можно сетевую обмотку не перематывать, а ограничиться расчетом только вторичной обмотки.

Для примера : нам нужен силовой трансформатор для зарядки автомобильного аккумулятора с номинальным током зарядки 5 ампер.

Таким образом - мощность такого трансформатора должна быть не менее 90 ватт (18 вольт помноженное на 5 ампер).

В данном случае можно использовать силовой трансформатор типа ТС180 от лампового черно-белого телевизора. Переделка такого трансформатора сводится только к перемотке вторичной обмотки. Данный трансформатор изготовлен с применением так называемого «О» - образного сердечника и имеет две катушки. Все обмотки такого трансформатора разделены пополам и наматываются на обе катушки. Для переделки разбираем аккуратно сердечник (предварительно пометив одну из сторон сердечника, так как половинки при сборке трансформатора пришлифовываются друг к другу), сматываем все обмотки, кроме помеченных цифрами 1-3. Во время сматывания накальной обмотки (она намотана самым толстым проводом) нужно сосчитать число витков. Полученное число витков делим на 6,5 - получаем количество витков обмотки данного трансформатора на 1 вольт. Затем умножаем это число на 18 и получаем нужное число витков вторичной обмотки. По формуле рассчитываем диаметр провода вторичной обмотки. При данном токе обмотки диаметр провода должен быть не менее, чем 1,42 миллиметра. Если вы найдете такой провод, то вторичную обмотку нужно разделить на 2 части и наматывать на каждый каркас, после чего соединить обмотки последовательно. Можно использовать провод меньшего диаметра (например 1,0 миллиметра). В этом случае на каждый каркас наматываем полное число витков и обмотки соединяем параллельно.   

Ниже приведена табличка для изготовления силового трансформатора с «типовыми» размерами  сердечника:

Пользование табличкой, думаю, не составит трудностей…

Расчет тороидального сетевого трансформатора

Исходные данные для расчета: напряжение/ток всех вторичных обмоток. Исходя из этих данных получаем минимальную габаритную мощность трансформатора. Пример: нужен трансформатор с двумя вторичными обмотками . Первая — на 14 вольт при токе в 1 ампер, вторая — 30 вольт при токе 0,05 ампера. Получаем сумму мощности во вторичных обмотках (14*1)+(30*0,05)=15,5 ватт. Главный качественный показатель силового трансформатора для радиоаппаратуры — это его надежность. Следствие надежности — это минимальный нагрев трансформатора при работе и минимальная просадка выходных напряжений под нагрузкой (иными словами, трансформатор должен быть «жестким»).
В расчетах примем КПД трансформатора 0,95 . Учитывая то, что нам нужен надежный трансформатор, и учитывая то, что напряжение в сети может иметь отклонения от 220 вольт до 10%, принимаем В=1,2 Тл
Плотность тока принимаем 3,5 А/мм2
Коэффициент заполнения сердечника сталью принимаем 0,95
Коэффициент заполнения окна принимаем 0,45
Исходя из принятых допущений, формула для расчета габаритной мощности у нас примет вид:

Р=1.9 * Sc * So

Далее считаем количество витков первичной (сетевой) обмотки — оно равно n1=40 * 220 / Sc
Где: Sc — площадь поперечного сечения сердечника, соответственно [кв. см]; 220 — напряжение первичной обмотки [В]; Количество витков во вторичных обмотках считаем по той же формуле, но учитываем падение напряжения под нагрузкой — добавляем примерно 5 % к расчитанному количеству.

Диаметр провода всех обмоток расчитываем по формулам

— для меди         

— для алюминия

Каталог радиолюбительских схем. Простой расчет тороидальных трансформаторов (по таблице).

Каталог радиолюбительских схем. Простой расчет тороидальных трансформаторов (по таблице).

Простой расчет тороидальных трансформаторов (по таблице)

При изготовлении малогабаритной радиоэлектронной аппаратуры лучше всего использовать трансформаторы с тороидальным магнитопроводом. В сравнении с броневыми сердечниками из Ш-образных пластин они имеют меньший вес и габариты, обладают повышенным КПД, а их обмотка лучше охлаждается. Кроме того, при равномерном распределении обмоток по периметру сердечника практически отсутствует поле рассеяния и в большинстве случаев отпадает необходимость в экранировании трансформаторов.

В связи с тем, что полный расчет силовых трансформаторов на тороидальных сердечниках слишком громоздок и сложен, приводим таблицу, с помощью которой легко рассчитать тороидальный трансформатор мощностью до 120 Вт. Точность расчета вполне достаточна для любительской практики. Расчет параметров тороидального трансформатора, не вошедших в таблицу, аналогичен расчету трансформаторов на Ш-образном сердечнике.

Таблицей можно пользоваться при расчете трансформаторов на сердечниках из холоднокатаной стали Э310, Э320, Э330 с толщиной ленты 0,35—0,5 мм и стали Э340, Э350, Э360 с толщиной ленты 0,05—0,1 мм при частоте питающей сети 50 Гц. .При намотке трансформаторов допустимо применять лишь межобмоточную и наружную изоляции: хотя межслоевая изоляция и позволяет добиться более ровной укладки провода обмоток, из-за различия наружного и внутреннего диаметров сердечника при ее применении неизбежно увеличивается толщина намотки по внутреннему диаметру.

Для намотки тороидальных трансформаторов необходимо применять обмоточные провода с повышенной механической и электрической прочностью изоляции. При намотке вручную следует пользоваться проводами ПЭЛШО, ПЭШО. В крайнем случае можно применить провод ПЭВ-2. В качестве межобмоточной и внешней изоляции пригодны фторопластовая пленка ПЭТФ толщиной 0,01—0,02 мм, лакоткань ЛШСС толщиной 0,06—0,012 мм или батистовая лента.

Пример расчета трансформатора.

Дано: напряжение питающей сети Uc = 220 В, выходное напряжение UH = 12 В, ток нагрузки Iн = 3,6 А.

1. Определяют мощность вторичной обмотки:

P=UaхIн=12х3,6=43,2 Вт.

2. Определяют габаритную мощность трансформатора:

Величину КПД и другие необходимые для расчета данные выбирают по таблице из нужной графы ряда габаритных мощностей.

3. Находят площадь сечения сердечника:

4. Подбирают размеры сердечника Dc,dc и hc :

Ближайший стандартный тип сердечника — ОЛ50/80- 40, площадь сечения которого равна

(не

менее расчетной).

5. При определении внутреннего диаметра сердечника должно быть выполнено условие: dc>d’c

то есть 5>3,8.

6. Предположим, выбран сердечник из стали Э320, тогда число витков на вольт определяют по формуле

7. Находят расчетные числа витков первичной и вторичной обмоток:

W1-1=w1*Ue=5,55х220=1221 виток, W1-2=w1*Uн=5,55х12=66 витков.

Так как в тороидальных трансформаторах магнитный поток рассеяния весьма мал, то падение напряжения в обмотках определяется практически лишь их активным сопротивлением, вследствие чего относительная величина падения напряжения в обмотках тороидального трансформатора значительно меньше, чем в трансформаторах стержневого и броневого типов. Поэтому для компенсации потерь на сопротивлении вторичной обмотки необходимо увеличить количество ее витков лишь на 3%.

W1-2=66X1,03=68 витков.

8. Определяют диаметры проводов обмоток:

где

I1, — ток первичной обмотки трансформатора, определяемый из формулы

Выбирают ближайший диаметр провода в сторону увеличения (0,31 мм):

Таблица для расчета тороидальных трансформаторов

Pг, Вт

w1

w2

S, см2

А, А/мм2

h, %

До 10

41/S

38/S

(Pг)(1/2)

4,5

0,8

10—30

36/S

32/S

(Pг)(1/2)/1,1

4

0,9

30—50

33,3/S

29/S

(Pг)(1/2)/1,2

3,5

0,92

50—120

32/S

28/S

(Pг)(1/2)/1,25

3

0,95

Примечание. Рг — габаритная мощность трансформатора wt — число витков на вольт для стали Э310, Э320, Э330, w2— число витков на вольт для стали Э340, Э350, Э360, S — площадь сечения сердечника, A—допустимая плотность тока в обмотках, I) — КПД трансформатора.





Расчет индуктора с ферритовым сердечником — прямоугольное сечение

Расчет индуктора с ферритовым сердечником — прямоугольное сечение

Этот калькулятор оценивает полное сопротивление и эквивалентную последовательную индуктивность индукторы с сердечником из феррита и тороида прямоугольного сечения на ВЧ.

СВН:

Калькулятор не выполняет много проверок ошибок, если ввести ерунду, он будет производить чушь. NaN означает не число, проверьте входные значения.

Используемая модель представляет собой простой параллельный резонансный контур для представления индуктивность витков, потери из-за потерь в сердечнике, как подразумевается сложным проницаемость и эквивалентная паразитная емкость.Калькулятор не моделирует эффекты размерного резонанса, которые возникают в некоторых ферритовых материалах (кроме в той мере, в какой это улавливается µ ‘, µ’ ‘).

Катушки индуктивности обладают саморезонансом, влияние которого можно оценить, шунтируя расчетную серии R, Xl с эквивалентной емкостью, обычно в диапазоне от 2 до 10 пФ (в зависимости от физического расположения, расстояния между витками и т. д.).

Калькулятор предполагает наличие острых углов на тороиде, закругленные углы будут несколько уменьшите импеданс и Leq.Потери проводника игнорируются, как и для большинства В практических индукторах с ферритовым сердечником в RF потери в сердечнике значительно превосходят потери в меди.

Таблица 1: Описание полей ввода
Поле ввода Значение
Частота Частота для расчета Xl и R
OD ОД тора
ID ID тора
Ширина Ширина тора
µ ‘ Реальная часть комплексной относительной проницаемости
µ ‘ Мнимая часть сложного родственника проницаемость
Обороты Количество витков
CS Расчетный эквивалент бездомных емкость

Для расчета сопротивления дросселя 11 витков на сердечнике FT240-43 на 3.5 МГц, мы во-первых необходимо определить µ ‘и µ’ ‘на частоте 3,6 МГц по данным производителя.

Рис.1:

Рис. 1 из книги данных Fair-rite показывает комплексную проницаемость смеси № 43. На частоте 3,6 МГц µ ‘= 470 и µ’ ‘= 224.

Сердечник FT240 имеет внешний диаметр = 61 мм, внутренний диаметр = 35,6 мм, ширину = 12,7 мм.

Допустим, Cs было 2 пФ.

Вставив эти значения в калькулятор, вы должны получить Z = 998 + j1870 Ом и Leq = 82.7 мкГн (поэтому Q = Xl / R = 1,87).

Обратите внимание, что многие калькуляторы дают результат на основе µ i , Начальная проницаемость на низких частотах, 800 для микса # 43, но график показывает что такой расчет действителен только примерно до 600 кГц для материала № 43.

Таблица 2
Частота (МГц) 31 43 52 61 67 73 F14
µi = 1500 µi = 800 µi = 250 µi = 125 µi = 40 µi = 2500 µi = 220
µ ‘ µ ‘ µ ‘ µ ‘ µ ‘ µ ‘ µ ‘ µ ‘ µ ‘ µ ‘ µ ‘ µ ‘ µ ‘ µ ‘
1.8 1167,2 702,1 609,8 149,3 272,3 4,0 120,3 0,3 40,6 0,1 1540,4 1315,4 219 2
3,6 657,7 677,9 470,2 224,0 278,7 7,8 120.6 0,6 40,3 0,1 839,9 1057,1 235 4
7,1 359,1 476,1 332,0 228,0 305,2 73,8 123,4 1,2 40,2 0,1 457,4 803,3 265 36
10.1 275,3 385,3 259,7 220,4 258,2 138,7 127,4 2,1 40,3 0,1 296,7 685,7 257 89
14,2 223,4 323,8 201,2 204,3 186,8 151,2 136.8 6,2 40,5 0,1 157,9 562,0 222 111
18,1 187,9 284,9 159,9 189,3 150,8 138,8 150,8 20,1 40,8 0,1 86,2 458,8 189 117
21.2 165,2 262,4 135,3 179,4 132,2 126,8 153,7 41,5 40,9 0,1 49,4 396,2 172 121
24,9 144,6 241,0 113,7 168,7 118,0 116,8 140.7 64,9 41,2 0,1 25,0 336,2 157 124
28,5 129,2 224,5 97,5 158,4 107,2 109,4 124,5 76,6 41,4 0,1 8,8 289,8 146 126

В таблице 2 приведены интерполированные значения для µ ‘и µ’ ‘для некоторых общих микширует на точечных частотах в любительских ВЧ диапазонах.

Калькулятор может применяться для сердечников из порошкового железа, но иначе для феррита, комплексная проницаемость обычно не публикуется (введите ее как ноль, и R не может быть вычислено), а µ ‘имеет тенденцию быть менее чувствительным к частоте на ВЧ, чем большинство ферритовых смесей.

Опыт показывает, что измеренная добротность сердечников из порошкового железа на ВЧ не соответствует с формулами Micrometals, приведенными для потерь материалов №2 и №6. Калькуляторы которые зависят от этих формул, также неверны.

Версия Дата Описание
1.01 31.05.2012 Начальный.
1,02
1,03
1,04
1,05

© Авторское право: Оуэн Даффи 1995, 2020.Все права защищены. Заявление об ограничении ответственности.

Формулы и калькулятор для тороидальных индукторов

Тороидальные катушки индуктивности часто используются в приложениях для импульсного питания и регулирования мощности, поскольку магнитные поля в основном ограничены объемом формы. Все формулы на этой странице показаны для тороидального индуктора с воздушным сердечником. Если использовать магнитный сердечник в качестве формы для намотки тороида, индуктивность тороида можно найти, рассчитав значение по соответствующей формуле, показанной ниже для индуктора с воздушным сердечником, а затем умножив это значение на относительную проницаемость магнитного основной материал.

Тороиды могут быть намотаны круглой формы, как показано на рисунке ниже:

Схема тороидального индуктора круглого сечения

Индуктивность такого тороида можно рассчитать по следующей формуле:

Уравнение для тороидального индуктора круглого сечения

, где N — количество витков, R — средний радиус формы, показанной на рисунке (в см), а a — радиус обмоток формы, как показано на рисунке (в см).

Другая формула индуктивности тороида круглого сечения приведена ниже:

Альтернативная формула для тороидального индуктора круглого сечения

, где N — количество витков, D — средний диаметр формы, показанной на рисунке (в дюймах), а d — диаметр обмоток, как показано на рисунке (в дюймах).

Они также могут иметь прямоугольную форму, как показано на рисунке ниже:

Схема тороидального индуктора квадратного сечения

Индуктивность тороида прямоугольного сечения может быть найдена из следующего уравнения (Terman, Frederick E., Radio Engineers Handbook , McGraw-Hill, New York, 1943, p58.):

Уравнение для тороидального индуктора с квадратным поперечным сечением

, где N — количество витков, h — высота обмотки (в дюймах), d 1 — внутренний диаметр (в дюймах), а d 2 — внешний диаметр (в дюймах).

Вторая формула для тороида прямоугольной формы показана ниже:

Альтернативное уравнение для тороидального индуктора квадратного сечения

, где N — количество витков, h — высота обмотки (в см), r 1 — внутренний радиус (в см), а r 2 — это внешний радиус (в см).

Калькуляторы, представленные ниже, можно использовать для определения правильных параметров тороидального индуктора круглого или квадратного сечения. Кредит за исходный код Javascript, используемый в калькуляторе, дан Рэю Аллену, у которого есть ряд аналогичных полезных калькуляторов на своем веб-сайте Pulsed Power Portal.


Консультации, комментарии и предложения направляйте по адресу [email protected]

Калькулятор Z-показателей

Используйте этот калькулятор для вычисления z-показателя нормального распределения.


Конвертер Z-баллов и вероятностей

Укажите любое значение для преобразования между z-оценкой и вероятностью. Это эквивалент ссылки на z-таблицу.



Вероятность между двумя Z-значениями

Используйте этот калькулятор, чтобы найти вероятность (область P на диаграмме) между двумя z-значениями.


Калькулятор связанного стандартного отклонения

Что такое z-счет?

Z-оценка, также называемая стандартной оценкой, z-значением и нормальной оценкой, среди прочего, представляет собой безразмерную величину, которая используется для обозначения дробного числа стандартных отклонений со знаком, на которое событие превышает среднее измеряемое значение. Значения выше среднего имеют положительные z-баллы, а значения ниже среднего имеют отрицательные z-баллы.

Z-оценку можно рассчитать путем вычитания среднего значения для совокупности из исходной оценки или рассматриваемой точки данных (оценка теста, рост, возраст и т. Д.), затем разделив разницу на стандартное отклонение генеральной совокупности:

, где x — исходный результат, μ — среднее значение генеральной совокупности, а σ — стандартное отклонение совокупности.

Z-оценка имеет множество приложений и может использоваться для выполнения z-теста, вычисления интервалов прогнозирования, приложений управления процессами, сравнения оценок по разным шкалам и многого другого.

Z-столик

Z-таблица, также известная как стандартная нормальная таблица или стандартная таблица единиц, представляет собой таблицу, которая состоит из стандартизованных значений, которые используются для определения вероятности того, что заданная статистика находится ниже, выше или между стандартным нормальным распределением.

Таблица ниже представляет собой z-таблицу с правым хвостом. Хотя существует несколько типов z-таблиц, обычно имеется в виду z-таблица с правым концом, когда ссылаются на z-таблицу. Он используется для нахождения площади между z = 0 и любым положительным значением и привязки площади к правой стороне кривой стандартного отклонения.

Z Таблица от среднего (от 0 до Z)

1919
z 0 0,01 0,02 0,03 0,04 0.05 0,06 0,07 0,08 0,09
0 0 0,00399 0,00798 0,01197 0,01595 0,01994 0,02392 0,0279 0,019 0,019 0,01994 0,02392 0,0279 0,019 0,019 0,019
0,1 0,03983 0,0438 0,04776 0,05172 0,05567 0,05962 0.06356 0,06749 0,07142 0,07535
0,2 0,07926 0,08317 0,08706 0,09095 0,09483 0,09871 0,10257 0,09871 0,10257
0,3 0,11791 0,12172 0,12552 0,1293 0,13307 0,13683 0.14058 0,14431 0,14803 0,15173
0,4 0,15542 0,1591 0,16276 0,1664 0,17003 0,17364 0,17724 0,17364 0,17724 0,127 0,5 0,19146 0,19497 0,19847 0,20194 0,2054 0,20884 0.21226 0,21566 0,21904 0,2224
0,6 0,22575 0,22907 0,23237 0,23565 0,23891 0,23237 0,23565 0,23891 0,23237 0,24215 0,24537 0,248 0,24537 0,248 0,245 0,7 0,25804 0,26115 0,26424 0,2673 0,27035 0,27337 0.27637 0,27935 0,2823 0,28524
0,8 0,28814 0,29103 0,29389 0,29673 0,29955 0,30234 0,30511107 0,30234 0,30511107 0,30234 0,305117 0,9 0,31594 0,31859 ​​ 0,32121 0,32381 0,32639 0,32894 0.33147 0,33398 0,33646 0,33891
1 0,34134 0,34375 0,34614 0,34849 0,35083 0,34614 0,34849 0,35083 0,34614 0,35314 0,35569 0,35314 0,35569 0,35314 0,35569 1,1 0,36433 0,3665 0,36864 0,37076 0,37286 0,37493 0.37698 0,379 0,381 0,38298
1,2 0,38493 0,38686 0,38877 0,39065 0,39251 0,39435 0,3961797 0,39435 0,3961797 0,39435 0,3961797 1,3 0,4032 0,4049 0,40658 0,40824 0,40988 0,41149 0.41308 0,41466 0,41621 0,41774
1,4 0,41924 0,42073 0,4222 0,42364 0,42507 0,422 0,426422 0,42785 0,429 0,426422 0,42785 0,429 0,426422 0,42785 0,42 1,5 0,43319 0,43448 0,43574 0,43699 0,43822 0,43943 0.44062 0,44179 0,44295 0,44408
1,6 0,4452 0,4463 0,44738 0,44845 0,4495 0,45053 0,45154 0,45053 0,45154 0,45053 0,45154 0,45 1,7 0,45543 0,45637 0,45728 0,45818 0,45907 0,45994 0.4608 0,46164 0,46246 0,46327
1,8 0,46407 0,46485 0,46562 0,46638 0,46712 0,46784 0,46856 0,46784 0,46856 0,46784 0,46856 0,46784 900 1,9 0,47128 0,47193 0,47257 0,4732 0,47381 0,47441 0.475 0,47558 ​​ 0,47615 0,4767
2 0,47725 0,47778 0,47831 0,47882 0,47932 0,47982 0,4803 0,47982 0,4803 0,47982 0,4803 0,4 2,1 0,48214 0,48257 0,483 0,48341 0,48382 0,48422 0.48461 0,485 0,48537 0,48574
2,2 0,4861 0,48645 0,48679 0,48713 0,48745 0,48778 0,48809 0,48778 0,48809 0,488 0,48809 0,488 2,3 0,48928 0,48956 0,48983 0,4901 0,49036 0,49061 0.49086 0,49111 0,49134 0,49158
2,4 0,4918 0,49202 0,49224 0,49245 0,49266 0,49286 0,49309 0,49309 0,49286 0,49309 0,49286 0,49309 2,5 0,49379 0,49396 0,49413 0,4943 0,49446 0,49461 0.49477 0,49492 0,49506 0,4952
2,6 0,49534 0,49547 0,4956 0,49573 0,49585 0,4956 0,49573 0,49585 0,49598 0,496021 0,49596 0,496021 0,49598 0,496021 0,4 2,7 0,49653 0,49664 0,49674 0,49683 0,49693 0,49702 0.49711 0,4972 0,49728 0,49736
2,8 0,49744 0,49752 0,4976 0,49767 0,49774 0,49781 0,4978897 0,49781 0,4978897 0,49781 0,4978897 2,9 0,49813 0,49819 0,49825 0,49831 0,49836 0,49841 0.49846 0,49851 0,49856 0,49861
3 0,49865 0,49869 0,49874 0,49878 0,49882 0,49886 0,49889 0,49886 0,49889 0,40 3,1 0,49903 0,49906 0,4991 0,49913 0,49916 0,49918 0.49921 0,49924 0,49926 0,49929
3,2 0,49931 0,49934 0,49936 0,49938 0,4994 0,49946 0,49942 0,49944 0,49946 900 0,49944 0,49946 900 0,49944 0,49946 900 3,3 0,49952 0,49953 0,49955 0,49957 0,49958 0,4996 0.49961 0,49962 0,49964 0,49965
3,4 0,49966 0,49968 0,49969 0,4997 0,49971 0,49972 0,49973 0,49975 0,49973 0,49975 3,5 0,49977 0,49978 0,49978 0,49979 0,4998 0,49981 0.49981 0,49982 0,49983 0,49983
3,6 0,49984 0,49985 0,49985 0,49986 0,49986 0,49988 0,49987 0,49987 0,49988 0,49987 0,49988 900 3,7 0,49989 0,4999 0,4999 0,4999 0,49991 0,49991 0.49992 0,49992 0,49992 0,49992
3,8 0,49993 0,49993 0,49993 0,49994 0,49994 0,49994 0,499949995 0,49994 0,499949995 0,49994 0,499949995 3,9 0,49995 0,49995 0,49996 0,49996 0,49996 0,49996 0.49996 0,49996 0,49997 0,49997
4 0,49997 0,49997 0,49997 0,49997 0,49997 0,49997 0,49998 0,49998 9000,49998 0,49998 900 Калькулятор

· Торический калькулятор

ТОРИЧЕСКИЙ КАЛЬКУЛЯТОР
ВЫБРАТЬ ОБЪЕКТИВ ЗАМЕНИТЬ ЛИНЗУ
МОНОФОКАЛЬНЫЙ
КОРРЕКЦИЯ ПРЕСБИОПИИ
  • Калькулятор
  • Предпочтения и поддержка

Вернуться к калькулятору

Имя хирурга Информация для пациентов Дата Возраст пациента
Информация для хирурга и пациента Примечания… Имя хирурга Дата Информация о пациенте Возраст пациента

Выбор глаза

OD (справа)

ОС (слева)

K Обозначение

D

мм

Кератометрия

Новые координаты вращением осей Калькулятор

[1] 26.11.2020 05:53 Мужчина / До 20 лет / Старшая школа / ВУЗ / аспирант / Очень /

Цель использования
Моя мозг перегорел, поэтому я пытаюсь объяснить, как работает ротация

[2] 25.11.2020 08:39 Женщина / Моложе 20 лет / Начальная школа / Ученица средней школы / Очень /

Цель использования
домашнее задание
хорошие отметки
Комментарий / просьба
добавить вариант против часовой стрелки и по часовой стрелке

[3] 2020/10/20 23:51 Мужской / До 20 лет / Старшая школа / Вуз / аспирант / Very /

Цель использования
оборотов координатных записей

[4] 2020/10/15 05:06 Женский / До 20 лет / Начальная школа / Неполный средний класс / Очень /

Цель использования
Домашнее задание
918 68

[5] 2020/10/02 06:24 Мужской / До 20 лет / Начальная школа / Неполный средний класс / Очень /

Цель использования
Школьные тесты

[6] 2020 / 10/02 02:30 Женщина / До 20 лет / Начальная школа / Неполная средняя школа / Не совсем /

Цель использования
Школа Homeowrk
Комментарий / Запрос
Я хочу понять, что Я должен склоняться.

[7] 2020/09/28 02:14 Мужчина / До 20 лет / Старшая школа / Университет / аспирант / Немного /

Цель использования
учеба в школе
Комментарий / запрос
добавьте вариант по часовой стрелке / против часовой стрелки

[8] 2020/08/18 17:44 Мужчина / 50-летний уровень / Средняя школа / Университет / аспирант / Маленький /

Цель использования
Требуется формула для этого, чтобы я мог рассчитать новую ограничивающую рамку

[9] 2020/05/28 23:17 Женщина / Моложе 20 лет / Начальная школа / Ученица неполной средней школы / Очень /

Цель использования
Та же девушка из прошлого, но я бы хотела, чтобы она делала только одно — против часовой стрелки.
Комментарий / запрос
У вас должна быть опция против часовой стрелки.

[10] 2020/05/28 23:09 Женский / До 20 лет / Начальная школа / Неполный средний класс / Очень /

Цель использования
Математика в 8-м классе Я на продвинутом уровне и запутался, это очень полезно.

Метод деления пополам Калькулятор — расчет высокой точности

[1] 2020/10/06 14:27 Мужской / 20-летний уровень / Старшая школа / Университет / аспирант / Полезно /

Цель использования
to проверьте мою работу, если она верна

[2] 2020/10/05 07:25 Мужчина / 30 лет / Домохозяйка / Очень /

Цель использования
забрала моих детей, моя жена сделала.Вычисляя граммы кетамина, я использую это для.

[3] 2020/05/13 00:43 Мужской / 20-летний уровень / Начальная школа / Младший школьник / Очень /

Цель использования
Назначение

[4] 2020 / 05/05 04:45 Женский / Уровень 20 лет / Старшая школа / Университет / Аспирант / Очень /

Цель использования
Домашнее задание

[5] 2020/05/04 06:49 Мужской / 20 лет уровень / средняя школа / университет / аспирант / Very /

Цель использования
Учеба.
Комментарий / запрос
Как я могу использовать Pi? π?
от Кейсана
pi

[6] 2020/04/05 17:59 Мужчина / Моложе 20 лет / Высшая школа / Университет / аспирант / Очень /

Цель использования
для оценки

[7] 2020/03/06 05:58 Мужчина / Уровень 20 лет / Средняя школа / Университет / аспирант / Полезно /

Цель использования
Назначение
Комментарий / Запрос
Q Найти приблизительный корень и соответствующая граница погрешности для
следующего нелинейного уравнения, f (x) = sqrt (x) — cos (x) в интервале [0, 1] до 4-й итерации
, используя метод
1-бисекция,
2- итерационный метод с фиксированной точкой,
3- метод Ньютона-Рафсона,
4- метод секанса,
5- метод Регулы – Фальси.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *