Расчет балки прогиб: Расчет балки на прогиб и прочность

Расчет балки на прогиб

вернуться в раздел РАСЧЕТЫ КМ И КЖ

Здесь представлены формулы расчета для нахождения значений изгибающих моментов и прогибов для различных балок.

Однопролетные балки на двух шарнирных опорах
1 Расчет балки на двух шарнирных опорах при одной сосредоточенной нагрузке Смотреть расчет
2 Расчет балки на двух шарнирных опорах при двух сосредоточенных нагрузках Смотреть расчет
3 Расчет балки на двух шарнирных опорах при одной равномерно-распределенной нагрузке Смотреть расчет
4 Расчет балки на двух шарнирных опорах при одной неравномерно-распределенной нагрузке Смотреть расчет
5 Расчет балки на двух шарнирных опорах при действии изгибающего момента Смотреть расчет
Балки с жестким защемлением на двух опорах
6 Расчет балки с жестким защемлением на опорах при одной сосредоточенной нагрузке Смотреть расчет
7 Расчет балки с жестким защемлением на опорах при двух сосредоточенных нагрузках Смотреть расчет
8 Расчет балки с жестким защемлением на опорах при одной равномерно-распределенной нагрузке Смотреть расчет
9 Расчет балки с жестким защемлением на опорах при одной неравномерно-распределенной нагрузке Смотреть расчет
10 Расчет балки с жестким защемлением на опорах при действии изгибающего момента Смотреть расчет
Балки с жестким защемлением на одной опоре (консольные)
11 Расчет однопролетной балки с жестким защемлением на одной опоре при одной сосредоточенной нагрузке Смотреть расчет
12 Расчет однопролетной балки с жестким защемлением на одной опоре при одной равномерно-распределенной нагрузке Смотреть расчет
13 Расчет однопролетной балки с жестким защемлением на одной опоре при одной неравномерно-распределенной нагрузке Смотреть расчет
14 Расчет однопролетной балки с жестким защемлением на одной опоре при действии изгибающего момента Смотреть расчет
Балки двухпролетные
15 Расчет двухпролетной с шарнирными опорами при одной сосредоточенной нагрузке Смотреть
16 Расчет двухпролетной с шарнирными опорами при двух сосредоточенных нагрузках Смотреть
17 Расчет двухпролетной с шарнирными опорами при одной равномерно-распределенной нагрузке
Смотреть
18 Расчет двухпролетной с шарнирными опорами при одной неравномерно-распределенной нагрузке Смотреть
19 Расчет двухпролетной с шарнирными опорами при одной неравномерно-распределенной нагрузке Смотреть

 

 

 

Основные формулы для расчета прогиба балки

Балка является основным элементом несущей конструкции сооружения. При строительстве важно провести расчет прогиба балки. В реальном строительстве на данный элемент действует сила ветра, нагружение и вибрации. Однако при выполнении расчетов принято принимать во внимание только поперечную нагрузку или проведенную нагрузку, которая эквивалентна поперечной.

Балки в доме

При расчете балка воспринимается как жесткозакрепленный стержень, который устанавливается на двух опорах. Если она устанавливается на трех и более опорах, расчет ее прогиба является более сложным, и провести его самостоятельно практически невозможно. Основное нагружение рассчитывается как сумма сил, которые действуют в направлении перпендикулярного сечения конструкции. Расчетная схема требуется для определения максимальной деформации, которая не должна быть выше предельных значений. Это позволит определить оптимальный материал необходимого размера, сечения, гибкости и других показателей.

Содержание

  • 1 Виды балок
    • 1.1 Деревянные
    • 1.2 Стальные
  • 2 Прочность и жесткость балки
  • 3 Расчет на жесткость
  • 4 Расчет моментов инерции и сопротивления сечения
  • 5 Определение максимальной нагрузки и прогиба
  • 6 Особенности расчета на прогиб
  • 7 Пример подсчета прогиба

Виды балок

Для строительства различных сооружений применяются балки из прочных и долговечных материалов. Такие конструкции могут отличаться по длине, форме и сечению. Чаще всего используются деревянные и металлические конструкции. Для расчетной схемы прогиба большое значение имеет материал элемента. Особенность расчета прогиба балки в данном случае будет зависеть от однородности и структуры ее материала.

Деревянные

Для постройки частных домов, дач и другого индивидуального строительства чаще всего используются деревянные балки. Деревянные конструкции, работающие на изгиб, могут использоваться для потолочных и напольных перекрытий.

Деревянные перекрытия

Для расчета максимального прогиба следует учитывать:

  1. Материал. Различные породы дерева обладают разным показателем прочности, твердости и гибкости.
  2. Форма поперечного сечения и другие геометрические характеристики.
  3. Различные виды нагрузки на материал.

Допустимый прогиб балки учитывает максимальный реальный прогиб, а также возможные дополнительные эксплуатационные нагрузки.

Конструкции из древесины хвойных пород

Стальные

Металлические балки отличаются сложным или даже составным сечением и чаще всего изготавливаются из нескольких видов металла. При расчете таких конструкций требуется учитывать не только их жесткость, но и прочность соединений.

Стальные перекрытия

Металлические конструкции изготавливаются путем соединения нескольких видов металлопроката, используя при этом такие виды соединений:

  • электросварка;
  • заклепки;
  • болты, винты и другие виды резьбовых соединений.

Стальные балки чаще всего применяются для многоэтажных домов и других видов строительства, где требуется высокая прочность конструкции. В данном случае при использовании качественных соединений гарантируется равномерно распределенная нагрузка на балку.

Для проведения расчета балки на прогиб может помочь видео: 

Прочность и жесткость балки

Чтобы обеспечить прочность, долговечность и безопасность конструкции, необходимо выполнять вычисление величины прогиба балок еще на этапе проектирования сооружения. Поэтому крайне важно знать максимальный прогиб балки, формула которого поможет составить заключение о вероятности применения определенной строительной конструкции.

Использование расчетной схемы жесткости позволяет определить максимальные изменения геометрия детали. Расчет конструкции по опытным формулам не всегда эффективен. Рекомендуется использовать дополнительные коэффициенты, позволяющие добавить необходимый запас прочности. Не оставлять дополнительный запас прочности – одна из основных ошибок строительства, которая приводит к невозможности эксплуатации здания или даже тяжелым последствиям.

Существует два основных метода расчета прочности и жесткости:

  1. Простой. При использовании данного метода применяется увеличительный коэффициент.
  2. Точный. Данный метод включает в себя использование не только коэффициентов для запаса прочности, но и дополнительные вычисления пограничного состояния.

Последний метод является наиболее точным и достоверным, ведь именно он помогает определить, какую именно нагрузку сможет выдержать балка.

Расчет балок на прогиб

Расчет на жесткость

Для расчета прочности балки на изгиб применяется формула:

Где:

M – максимальный момент, который возникает в балке;

Wn,min – момент сопротивления сечения, который является табличной величиной или определяется отдельно для каждого вида профиля.

Ry является расчетным сопротивлением стали при изгибе. Зависит от вида стали.

γc представляет собой коэффициент условий работы, который является табличной величиной.

Расчет жесткости или величины прогиба балки является достаточно простым, поэтому расчеты может выполнить даже неопытный строитель. Однако для точного определения максимального прогиба необходимо выполнить следующие действия:

  1. Составление расчетной схемы объекта.
  2. Расчет размеров балки и ее сечения.
  3. Вычисление максимальной нагрузки, которая воздействует на балку.
  4. Определение точки приложения максимальной нагрузки.
  5. Дополнительно балка может быть проверена на прочность по максимальному изгибающему моменту.
  6. Вычисление значения жесткости или максимально прогиба балки.

Чтобы составить расчетную схему, потребуются такие данные:

  • размеры балки, длину консолей и пролет между ними;
  • размер и форму поперечного сечения;
  • особенности нагрузки на конструкцию и точно ее приложения;
  • материал и его свойства.

Если производится расчет двухопорной балки, то одна опора считается жесткой, а вторая – шарнирной.

Расчет моментов инерции и сопротивления сечения

Для выполнения расчетов жесткости потребуется значение момент инерции сечения (J) и момента сопротивления (W). Для расчета момента сопротивления сечения лучше всего воспользоваться формулой:

Важной характеристикой при определении момента инерции и сопротивления сечения является ориентация сечения в плоскости разреза. При увеличении момента инерции увеличивается и показатель жесткости.

Определение максимальной нагрузки и прогиба

Для точного определения прогиба балки, лучше всего применять данную формулу:

Где:

q является равномерно-распределенной нагрузкой;

E – модуль упругости, который является табличной величиной;

l – длина;

I – момент инерции сечения.

Чтобы рассчитать максимальную нагрузку, следует учитывать статические и периодические нагрузки. К примеру, если речь идет о двухэтажном сооружении, то на деревянную балку будет постоянно действовать нагрузка от ее веса, техники, людей.

Особенности расчета на прогиб

Расчет на прогиб проводится обязательно для любых перекрытий. Крайне важен точный расчет данного показателя при значительных внешних нагрузках. Сложные формулы в данном случае использовать необязательно. Если использовать соответствующие коэффициенты, то вычисления можно свести к простым схемам:

  1. Стержень, который опирается на одну жесткую и одну шарнирную опору, и воспринимает сосредоточенную нагрузку.
  2. Стержень, который опирается на жесткую и шарнирную опору, и при этом на него действует распределенное нагружение.
  3. Варианты нагружения консольного стержня, который закреплен жестко.
  4. Действие на конструкцию сложной нагрузки.

Применение этого метода вычисления прогиба позволяет не учитывать материал. Поэтому на расчеты не влияют значения его основных характеристик.

Пример подсчета прогиба

Чтобы понять процесс расчета жесткости балки и ее максимального прогиба, можно использовать простой пример проведения расчетов. Данный расчет проводится для балки с такими характеристиками:

  • материал изготовления – древесина;
  • плотность составляет 600 кг/м3;
  • длина составляет 4 м;
  • сечение материала составляет 150*200 мм;
  • масса перекрывающих элементов составляет 60 кг/м²;
  • максимальная нагрузка конструкции составляет 249 кг/м;
  • упругость материала составляет 100 000 кгс/ м²;
  • J равно 10 кг*м².

Для вычисления максимальной допустимой нагрузки учитывается вес балки, перекрытий и опор. Рекомендуется также учесть вес мебели, приборов, отделки, людей и других тяжелых вещей, который также будут оказывать воздействие на конструкцию. Для расчета потребуются такие данные:

  • вес одного метра балки;
  • вес м2 перекрытия;
  • расстояние, которое оставляется между балками;
  • временная нагрузка;
  • нагрузка от перегородок на перекрытие.

Чтобы упросить расчет данного примера, можно принять массу перекрытия за 60 кг/м², нагрузку на каждое перекрытие за 250 кг/м², нагрузки на перегородки 75 кг/м², а вес метра балки равным 18 кг. При расстоянии между балками в 60 см, коэффициент k будет равен 0,6.

Если подставить все эти значения в формулу, то получится:

q = ( 60 + 250 + 75 ) * 0,6 + 18 = 249 кг/м.

Для расчета изгибающего момента следует воспользоваться формулой f = (5 / 384) * [(qn * L4) / (E * J)] £ [¦].

Подставив в нее данные, получается f = (5 / 384) * [(qn * L4) / (E * J)] = (5 / 384) * [(249 * 44) / (100 000 * 10)] = 0,13020833 * [(249 * 256) / (100 000 * 10)] = 0,13020833 * (6 3744 / 10 000 000) = 0,13020833 * 0,0000063744 = 0,00083 м = 0,83 см.

Именно это и является показателем прогиба при воздействии на балку максимальной нагрузки. Данные расчеты показывают, что при действии на нее максимальной нагрузки, она прогнется на 0,83 см. Если данный показатель меньше 1, то ее использование при указанных нагрузках допускается.

Использование таких вычислений является универсальным способом вычисления жесткости конструкции и величины их прогибания. Самостоятельно вычислить данные величины достаточно легко. Достаточно знать необходимые формулы, а также высчитать величины. Некоторые данные необходимо взять в таблице. При проведении вычислений крайне важно уделять внимание единицам измерения. Если в формуле величина стоит в метрах, то ее нужно перевести в такой вид. Такие простые ошибки могут сделать расчеты бесполезными. Для вычисления жесткости и максимального прогиба балки достаточно знать основные характеристики и размеры материала. Эти данные следует подставить в несколько простых формул.

 

Калькулятор прогиба балки

Создано Николасом Свонсоном и Кеннетом Аламбра

Отзыв от Bogna Szyk

Последнее обновление: 17 июня 2022 г.

Содержание:
  • Что такое прогиб и изгиб балки Как рассчитать максимальное прогиба
  • Метод наложения
  • Жесткость балки
  • Понимание формул прогиба балки
  • Пример расчета прогиба балки

Этот калькулятор прогиба балки поможет вам определить максимальный прогиб балки на просто опертых и консольных несущих балках простые конфигурации загрузки . Вы можете выбрать один из нескольких типов нагрузки, которые могут воздействовать на балку любой длины. Величина и расположение этих нагрузок влияют на то, насколько сильно изгибается балка. В этом калькуляторе прогиба балки вы узнаете о различных формулах прогиба балки , используемых для расчета прогибов свободно опертой балки и прогибов консольной балки. Вы также узнаете, как модуль упругости балки и ее момент инерции поперечного сечения влияют на рассчитанный максимальный прогиб балки.

Прогиб балки является важной частью анализа балки, но другой важной частью является анализ напряжения. Мощным инструментом для изучения напряжений изгиба балки является модуль сопротивления, который можно рассчитать с помощью нашего калькулятора модуля сечения.

Что такое прогиб и изгиб балки

В строительстве мы обычно используем каркасные конструкции , которые удерживаются на месте фундаментом в земле. Эти каркасные конструкции подобны каркасам зданий, домов и даже мостов. В кадре мы называем вертикальное кадрирование колонны , а горизонтальные балки . Балки — это длинные элементы конструкции, которые несут нагрузки, создаваемые горизонтальными плитами конструкций, такими как сплошные бетонные полы, деревянные балочные системы полов и крыши.

Когда балки несут слишком тяжелые для них нагрузки, они начинают прогибаться. Мы называем величину изгиба балки прогибом балки . Прогиб балки — это вертикальное смещение точки вдоль центра тяжести балки. Мы также можем рассматривать поверхность балки в качестве нашей точки отсчета, если во время изгиба нет изменений высоты или глубины балки.

Как рассчитать максимальный прогиб балки

Мы оснастили наш калькулятор прогиба балки формулами, которые инженеры и студенты инженерных специальностей используют для быстрого определения максимального прогиба конкретной балки из-за нагрузки, которую она несет. Однако эти формулы могут решать только простые нагрузки и их комбинации. Мы свели для вас эти формулы в таблицу, как показано ниже:

Формулы прогиба свободно опертой балки

Формулы прогиба консольной балки

Метод суперпозиции

Для расчета максимального прогиба балки при сочетании нагрузок можно использовать метод суперпозиции . Метод суперпозиции утверждает, что мы можем аппроксимировать полное отклонение балки, суммируя все отклонения, вызванные каждой конфигурацией нагрузки. Однако этот метод дает нам только приблизительное значение фактического максимального отклонения. Расчет сложных нагрузок потребовал бы от нас использования так называемого метод двойного интегрирования .

Жесткость балки

Расчет прогиба балки требует знания жесткости балки и величины силы или нагрузки, которые могут повлиять на изгиб балки. Мы можем определить жесткость балки, умножив модуль упругости балки, E , на ее момент инерции, I . Модуль упругости зависит от материала балки. Чем выше модуль упругости материала, тем больше прогиб может выдержать огромные нагрузки, прежде чем он достигнет предела прочности. Модуль упругости бетона составляет от 15 до 50 ГПа (гигапаскалей), в то время как у стали около 200 ГПа и выше. Эта разница в значениях модуля упругости показывает, что бетон может выдерживать только небольшое отклонение и растрескивается раньше, чем сталь.

Вы можете узнать больше о модуле упругости, воспользовавшись нашим калькулятором напряжений. С другой стороны, чтобы определить момент инерции для определенного поперечного сечения балки, вы можете посетить наш калькулятор момента инерции. Момент инерции представляет собой величину сопротивления материала вращательному движению. Момент инерции зависит от размеров поперечного сечения материала.

Момент инерции также меняется в зависимости от того, вдоль какой оси вращается материал. Чтобы лучше понять эту концепцию, давайте рассмотрим поперечное сечение прямоугольного бруса шириной 20 см и высотой 30 см. Используя формулы, которые вы также можете увидеть в нашем калькуляторе момента инерции, мы можем рассчитать значения момента инерции поперечного сечения этой балки следующим образом:

Iₓ = ширина × высота Quest³ / 12
= 20 × (30³) / 12
= 45 000 см

Iᵧ = Высота × Ширина / 12
= 30 × (20 минут (20 минут (20 минут (20 минут (20 минут (20 минут (20 минут) / 12
= 30 81 (20 минут) / 12
(20 минут) / 12
(20 минут) / 12
.
= 20 000 см⁴

Обратите внимание на два значения момента инерции. Это потому, что мы можем считать, что балка изгибается вертикально вдоль пролета балки (или испытывает изгибающий момент вокруг оси x) и в поперечном направлении вдоль пролета балки (или согнуть вокруг оси Y). Поскольку мы рассматриваем отклонение луча, когда он изгибает по вертикали или вокруг оси x, мы должны использовать Iₓ для наших вычислений. Полученные нами значения момента инерции говорят нам о том, что балка труднее изгибается при вертикальной нагрузке и легче изгибается при горизонтальной поперечной нагрузке. Эта разница в значениях моментов инерции является причиной того, что мы видим балки в такой конфигурации, где их высота больше, чем их ширина.

Понимание формул прогиба балки

Теперь, когда мы знаем понятия модуля упругости и момента инерции, мы теперь можем понять, почему эти переменные являются знаменателями в наших формулах прогиба балки. Из формул видно, что чем жестче балка, тем меньше будет ее прогиб. Однако, изучив наши формулы, мы также можем сказать, что длина балки также напрямую влияет на отклонение балки. Чем длиннее становится балка, тем больше она может изгибаться и тем больше может быть отклонение.

Нагрузки, с другой стороны, влияют на прогиб балки двумя способами: направление прогиба и величина прогиба. Нагрузки, направленные вниз, имеют тенденцию отклонять балку вниз. Нагрузки могут быть в виде одноточечной нагрузки, линейного давления или мгновенной нагрузки. Формулы в этом калькуляторе ориентированы только на направление вниз или вверх для точечной нагрузки и распределенной нагрузки. Распределенные нагрузки аналогичны давлению, но учитывают только длину балки, а не ширину балки. Формулы в этом калькуляторе также учитывают момент или крутящий момент нагрузки по часовой стрелке или против часовой стрелки. Просто сверьтесь с направлениями стрелок на соответствующем изображении формулы, чтобы выяснить, какие направления имеют положительное значение нагрузки.

Пример расчета прогиба балки

Для примера расчета прогиба балки рассмотрим простую деревянную скамью с ножками, расположенными на расстоянии 1,5 м друг от друга в их центрах. Допустим, у нас есть доска из восточной белой сосны толщиной 4 см и шириной 30 см, которая служит сиденьем для этой скамьи. Мы можем рассматривать это сиденье как балку, которая будет отклоняться всякий раз, когда кто-то садится на скамейку. Зная размеры этого сиденья, мы можем рассчитать его момент инерции, как в нашем примере выше. Поскольку нам нужно рассчитать Iₓ, его момент инерции будет:

Iₓ = ширина * высота QUERS / 12
= 30 * (4³) / 12
= 160,0 см или 1,6x10⁻⁶ M⁴

Восточная белая созна x10⁹ Па) , что является значением, полученным из Справочника по дереву. Вы также можете легко получить значение модуля упругости для других материалов, таких как сталь и бетон, в Интернете или в местной библиотеке. Теперь, когда мы знаем эти значения, давайте рассмотрим нагрузку, которую будет нести эта скамья. Предположим, что 400 N ребенок сидит посередине скамьи. Теперь мы можем рассчитать прогиб сиденья скамьи из-за точечной нагрузки в его центре: )³ / (48 * 6,8×10⁹ Па * 1,6×10⁻⁶ м⁴)
δₘₐₓ = 0,002585 м = 2,5850 мм

посреди скамейки.

Если эта тема показалась вам интересной и вы хотели бы узнать больше о прочности материалов, вам также может понравиться наш калькулятор запаса прочности. Вы также можете воспользоваться нашим конвертером силы, если хотите изучить различные единицы, используемые в точечных нагрузках и при расчете сил.

Николас Свонсон и Кеннет Аламбра

Тип балки

Тип нагрузки

Входные значения

Длина пролета, L

Точечная нагрузка, P

Модуль упругости0003

Момент инерции, Ix

Жесткость балки, Eix

Выходное значение

Максимальный прогиб, δmax

Проверить 114 подобных строительных калькуляторов Вычислить

В приложениях по перемещению существует множество ситуаций, когда линейная направляющая или исполнительный механизм поддерживаются не полностью по всей длине. В этих случаях прогиб (из-за собственного веса компонента и из-за приложенных нагрузок и усилий) может повлиять на ходовые качества подшипников и вызвать плохую работу в виде преждевременного износа и заедания.

Изделия, которые могут монтироваться только с концевыми опорами, такие как линейные валы или приводные узлы, или с консольной ориентацией, такие как телескопические подшипники, обычно имеют характеристики максимально допустимого отклонения. Важно проверить приложение и убедиться, что это максимальное отклонение не превышено. К счастью, большинство линейных направляющих и приводов можно смоделировать в виде балок, а их отклонение можно рассчитать с помощью обычных уравнений отклонения балки.

Материалы и особенности конструкции

При расчете прогиба необходимо знать свойства направляющей или исполнительного механизма и условия приложенной нагрузки. С точки зрения направляющей или привода важными критериями являются модуль упругости и плоский момент инерции компонента. Модуль упругости является мерой жесткости материала, и обычно его можно найти в каталоге продукции. Момент инерции описывает сопротивление объекта изгибу и иногда предоставляется производителем компонента. Если момент инерции не указан, его можно разумно аппроксимировать, используя уравнение момента инерции для сплошного или полого цилиндра (для линейного круглого вала) или прямоугольника (телескопический подшипник или линейный привод).


Модуль упругости, также известный как модуль Юнга или модуль упругости при растяжении, можно определить как отношение напряжения (силы на единицу площади) на оси к деформации (отношение деформации по длине) вдоль этой оси.

Плоский момент инерции (также называемый вторым моментом площади или моментом инерции площади) определяет, как точки площади распределяются относительно произвольной плоскости и, следовательно, ее сопротивление изгибу.


С точки зрения применения и конструкции критериями, влияющими на прогиб балки, являются тип опоры на концах направляющей или привода, приложенная нагрузка и неподдерживаемая длина. Когда компонент является консольным, его можно смоделировать как фиксированную балку, а когда он поддерживается с обоих концов, его обычно можно смоделировать как просто поддерживаемую балку. Для консольных балок максимальный прогиб будет иметь место, когда нагрузка будет находиться на свободном конце балки, а для свободно опертых балок максимальный прогиб произойдет, когда нагрузка будет находиться в центре балки.

При определении полного отклонения имейте в виду, что будут две нагрузки, вызывающие отклонение: вес самой направляющей или привода и приложенная нагрузка. Собственный вес компонента почти всегда можно смоделировать как равномерно распределенную нагрузку, а приложенную нагрузку оценить как точечную нагрузку в месте максимального прогиба (на свободном конце консольной балки или в центре свободно опертой балки). обычно обеспечивает наихудший сценарий полного отклонения.

Отклонение консольных балок

Телескопические подшипники часто бывают консольными, а некоторые конфигурации декартовых роботов приводят к консольному приводу по оси Y или Z. В этом случае вес балки, достаточно равномерный по ее длине, вызывает максимальный прогиб на конце балки.

Изображение предоставлено: wikipedia.org

Это отклонение рассчитывается как:

Где:

q = усилие на единицу длины (Н/м, фунт-сила/дюйм)

L = длина без опоры (м, дюйм)

E = модуль упругости (Н/м 2 , фунт-сила/дюйм 2 )

)

9002 4 , in 4 )

Чтобы сгенерировать наихудший сценарий прогиба, мы рассматриваем приложенную нагрузку как точечную нагрузку (F) на конце балки, и результирующий прогиб можно рассчитать как:  

Суммируя прогиб из-за равномерной нагрузки и прогиб из-за приложенной (точечной) нагрузки, получаем общий прогиб на конце балки:

Прогиб свободно опертых балок

Линейные валы и приводы часто закрепляются на концах, оставляя их длину неподдерживаемой, как у свободно опертой балки. Равномерная нагрузка на балку (собственный вес вала или привода) вызовет максимальное отклонение в центре балки, которое можно рассчитать как:

моделируется как точечная нагрузка в центре балки для наихудшего сценария.

Изображение предоставлено: wikipedia.org

Прогиб из-за приложенной нагрузки в этом состоянии рассчитывается как:

Общий прогиб в центре балки:

Прогиб валов с двумя подшипниками
  • 6 При использовании двух подшипников на свободно опертой балке, как это обычно бывает с направляющими круглого вала, приложенная нагрузка распределяется между двумя подшипниками, и максимальный прогиб происходит в двух местах: в месте каждый подшипник , когда узел подшипника (иногда называемый кареткой или столом) находится в середине вала.

    Изображение предоставлено: Thomson Linear

    Расчет прогиба балки для этого условия:

    Опять же, мы должны добавить прогиб из-за собственного веса балки плюс прогиб из-за приложенной нагрузки, чтобы получить общий прогиб из:


    Существуют дополнительные сценарии монтажа и нагрузки, которые могут встречаться в некоторых приложениях, таких как привод с фиксированной опорой на обоих концах.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *