Как проверить транзистор мультиметром, как прозвонить транзистор
Как проверить транзистор? (Или как прозвонить транзистор) Такой вопрос, к сожалению, рано или поздно возникает у всех. Транзистор может быть повреждён перегревом при пайке либо неправильной эксплуатацией. Если есть подозрение на неисправность, есть два лёгких способа проверить транзистор.
Как проверить транзистор мультиметром (тестером)
Проверка транзистора мультиметром (тестером) (прозвонка транзистора) производится следующим образом.
Для лучшего понимания процесса на рисунке изображён «диодный аналог» npn-транзистора. Т.е. транзистор как бы состоит из двух диодов. Тестер устанавливается на прозвонку диодов и прозванивается каждая пара контактов в обоих направлениях. Всего шесть вариантов.
- База — Эмиттер (BE): соединение должно вести себя как диод и
проводить ток только в одном направлении. - База — Коллектор (BC): соединение должно вести себя как диод и
проводить ток только в одном направлении. - Эмиттер — Коллектор (EC): соединение не должно проводить ток ни в каком направлении.
При прозвонке pnp-транзистора «диодный аналог» будет выглядеть также, но с перевёрнутыми диодами. Соответственно направление прохождения тока будет обратное, но также, только в одном направлении, а в случае «Эмиттер — Коллектор» — ни в каком направлении.
Проверка простой схемой включения транзистора
Соберите схему с транзистором, как показано на рисунке. В этой схеме транзистор работает как «ключ». Такая схема может быть быстро собрана на монтажной печатной плате, например. Обратите внимание на 10Ком резистор, который включается в базу транзистора. Это очень важно, иначе транзистор «сгорит» во время проверки.
Если транзистор исправен, то при нажатии на кнопку светодиод должен загораться и при отпускании — гаснуть.
Эта схема для проверки npn-транзисторов. Если необходимо проверить pnp-транзистор, в этой схеме надо поменять местами контакты светодиода и подключить наоборот источник питания.
Таким образом, можно сказать, что проверка транзистора мультиметром более проста и удобна. К тому же, существуют мультиметры с функцией проверки транзисторов. Они показывают ток базы, ток коллектора и даже коэффициент усиления транзистора.
И помните, никто не умирает так быстро и так бесшумно, как транзистор.
Как проверить транзистор мультиметром
Самый быстрый и действенный способ проверки исправности транзисторов — это проверка (прозвонка) его переходов мультиметром, хотя 100% гарантии в некоторых случаях это не дает, но об этом ниже.
Итак, как проверить транзистор мультиметром.
Транзистор можно представить в виде двух диодов включенных навстречу (p-n-p — прямой ) и в обратном (n-p-n — обратный) направлении. На принципиальных схемах структура транзисторов обозначается стрелкой эмиттерного перехода. Если стрелка направлена к базе, значит это структура p-n-p, а если от базы, значит это транзистор структуры n-p-n.
Методика проверки транзистора
Чтобы проверить P-N-P транзистор мультиметром, минусовым щупом (черного цвета) касаемся вывода базы, а плюсовым (красного цвета) поочередно касаемся выводов коллектора и эмиттера. Если транзистор цел, то падение напряжения в режиме проверки (прозвонки) в милливольтах, будет находиться в пределах 500 – 1200 Ом и при этом разница этих значений должна быть невелика. После этого меняем местами щупы, мультиметр не должен показывать никакого падения. Далее проверяем коллектор — эмиттер в обе стороны (меняем местами щупы), здесь также не должно быть никаких значений.
Проверка N-P-N транзисторов мультиметром идентична, с той лишь разницей, что мультиметр должен показать падение напряжения на переходах при касании плюсовым щупом базы транзистора, а черным поочерёдно коллектора и эмиттера.
Посмотрите небольшое видео проверки транзистора мультиметром.
В начале я упоминал, что в некоторых случаях, такая проверка может дать ложный вывод. Бывает в ходе ремонта телевизора, при проверке выпаянного транзистора мультиметром, все переходы показывают нормальные значения, но в схеме он не работает. Выявить это можно только заменой.
Составной транзистор проверяется вставляя в отверстия на панели мультиметра или другого прибора. Для этого нужно знать какой проводимости он является и после этого уже вставлять, не забыв переключить в соответствующее положение тестер.
Проверить силовой транзистор, а так же строчный можно по этой же методике исследуя переходы Б-К, Б-Э, К-Э, но так как в этих транзисторах в большинстве случаев имеются встроенные диоды (К-Е) и сопротивления (Б-Э) все это нужно учитывать. При незнакомом элементе лучше посмотреть его даташит.
Как проверить на плате
Проверить транзистор на плате можно аналогичным способом, но в некоторых случаях установленные рядом в обвязке резисторы с малым сопротивлением, дроссели или трансформаторы могут вносить ложные значения. Поэтому лучше иметь специальные приборы предназначенные для таких проверок, типа ESR-mikro v4.
Проверить биполярный транзистор не выпаивая может ESR-mikro v4.0
Проверка полевого
Оценить исправность полевого транзистора сложно и если с мощными это вполне безопасно, то с маломощными — труднее. Дело в том что эти элементы управляются по затвору напряжением и легко пробиваются статическим напряжением.
Работоспособность полевых транзисторов проверяется с осторожностью, желательно на антистатическом столе с антистатическим браслетом на руке (хотя по большей части это касается маломощных элементов).
Сами по себе переходы покажут бесконечное сопротивление, но как видно из предложенных выше сильноточный полевой транзистор имеет диод, его можно проверить. Показатель того, что нет короткого замыкания, это уже хороший знак.
Переводим прибор в режим «прозвонки» диодов и вводим полевой тр-тор в режим насыщения. Если он N-типа, то минусом касаемся стока, а плюсом — затвора. Исправный транзистор должен открыться. Далее плюсовой, не отрывая минусового, переводим на исток, мультиметр покажет какое-то сопротивление.
Для элементов P- типа щупы меняем местами.
Как проверить и прозвонить транзистор: особенности работы мультиметром
Проверка транзисторов является важным моментом в электронике и радиотехнике. Попытайтесь самостоятельно разобраться, как проверить транзистор мультиметром, не выпаивая. Это достаточно простая процедура, которую можно выполнить различными способами. Наиболее практичный вариант — проверка транзистора мультиметром. Именно об этом способе и пойдет речь в рассматриваемой статье.
Общие сведения
На сегодняшний день существует два типа транзисторов — биполярный и полевой. У первого выходной ток создается с участием обоих зарядов в виде дырок и электронов, а в другом варианте участвует только один из носителей.
- Биполярные элементы являются полупроводниковыми приборами с тремя выводами и двумя переходами типа p-n. Принцип действия таких приборов основывается на использовании положительных и отрицательных зарядов. Управление же ведется специально выделенным управляющим током. Широко применяются в различных технических схемах.
- У полевого варианта имеются затвор, сток и исток, через которые осуществляется управление. В случае каких-либо неисправностей процедуру осуществляют различными способами, включая мультиметр. Рассмотрев указанное устройство и их основные особенности, перейдем к вопросу, как прозвонить транзистор мультиметром.
Проверка биполярного транзистора
Указанная процедура для биполярных транзисторов начинается с грамотной настройки прибора. Устройство переключают в режим проверки полупроводников, на дисплее должна высвечиваться единица. Выводы подключаются по аналогии с режимом измерения сопротивления. С портом СОМ соединяют провод черного цвета, а на выходе для измерения напряжения, сопротивления и частоты подключают красный провод.
Еще важно, чтобы батарея мультиметра была полностью заряжена и исправны щупы. При соединении кончиков об исправности свидетельствуют писк прибора и нули на экране. Порядок действий в данном случае идет по таким шагам:
- Правильно соединяем выводы мультиметра и транзистора. Определяем местонахождение базы, коллектора и эмиттера. Щупы меняют местами до тех пор, пока не произойдет падение напряжения. Проводим проверку по парам база-эмиттер или база-коллектор.
- Пара база-коллектор означает, что красный щуп подведен к базе, черный же — к коллектору. Соединение работает в режиме диода и проводит ток лишь в одном направлении.
- При проверке через соединение база-эмиттер черный провод подключают к эмиттеру. Ток также проходит исключительно в прямом направлении.
- Переход эмиттер-коллектор исправен в том случае, если сопротивление на экране стремится к бесконечности.
- Подключаем мультиметр к каждой паре контактов в обоих направлениях в обратном направлении, к базе включают черный щуп. Полученные результаты сравниваются.
- Работоспособность устройства подтверждается наличием конечного сопротивления, обратная полярность показывает единицу.
В результате не потребуется выпаивания элемента на предмет его исправности. Если же вы хотите использовать для проверки лампочки и другие элементы, то не рекомендуется этого делать, поскольку есть риск окончательно испортить транзистор биполярного типа.
Испытание полевого устройства
Процедура по таким элементам аналогична биполярным. Однако здесь имеются некоторые особенности:
- Если положительный щуп приложен к мультиметру, а отрицательный к истоку, то происходит зарядка емкости и открытие перехода.
- Перед проверкой канала сток-исток выполняют короткое замыкание всех выводов для разрядки емкости. Сопротивления снова увеличивают и можно повторно прозванивать их мультиметром.
- Нередко ставятся внутренние диоды. Во время процедуры проявляются свойства полупроводникового прибора.
- По указанной выше причине нужно убедиться в наличии диода, дабы измерение проходило без ошибок.
- После первого процесса меняют местами щупы. На дисплее появится единица, указывая на бесконечное сопротивление. В противном случае транзистор неисправен.
За счет указанных моментов удается произвести качественную проверку полевых устройств, не задействовав при этом выпаивания. Если же у вас составной прибор, то проверка аналогична методике по биполярным устройствам.
Преимущество метода
Проверка транзистора с применением мультиметра выгодна тем, что нет необходимости выпаивания элемента, и она — достаточно точная. Методика проверки биполярных и полевых устройств схожа, но необходимо учитывать ряд моментов и нюансов, которые способствуют улучшению методики. Грамотная настройка мультиметра и умение работать с различными элементами позволит произвести наиболее точную и качественную проверку исправности приборов любого вида.
Как проверить мультиметром транзистор — подробные инструкции для разных видов
Транзисторы — важнейшие элементы в большинстве электронных систем и конструкции различных радиоприборов. Однако ничто не вечно, и транзисторы, по той или иной причине, со временем выходят из строя. Стоит разобраться с тем, как проверить мультметром транзистор.
Подготовка
Перед тем, как прозвонить транзистор мультиметром, необходимо определиться с тем, какой именно тип транзистора нужно проверить и какие у него характеристики. Наиболее простой способ – посмотреть маркировку транзистора, благодаря которой можно получить распиновку и требуемую информацию в сети.
Зачастую кодировка указана на английском языке, но этого достаточно, чтобы разобраться в том, какой используется транзистор и какие у него основные характеристики и особенности. После того, как будет определен тип и цоколевка устройства, необходимо выпаять деталь. Только затем можно приступать к основной процедуре – проверке мультиметром.
Проверка биполярного транзистора
Данный транзистор имеет два p-n перехода, в итоге его структура имеет вид NPN либо PNP. Проверка транзистора мультиметром проводится в режиме «сопротивление» или «проверка диода» как показано на схеме ниже:
1. Присоединить к мультиметру щупы. Включить тестер в режиме прозвонки или режим проверки диодов.
3. Подсоединить черный щуп к соответствующему выводу транзистора. То же самое проделать с красным щупом, согласно схеме.
4. Посмотреть на показания мультиметра, величина падения напряжения на p-n переходе будет отображаться на дисплее прибора.
Следует отметить, что нужно проверить каждый p-n переход. Точно такая же проверка выполняется для транзисторов обратной проводимости. Единственное отличие – смена положения щупов.
Проверка полевого транзистора
Для примера используем n-канальный mosfet транзистор. Тестер, как и в предыдущей схеме, используем в режиме прозвонки или проверки диодов. Следующие действия, как проверить полевой транзистор мультиметром, выглядят так:
- Черный щуп подсоединяем на сток (D), а красный подключаем на исток (S) – на дисплее значение p-n перехода встроенного встречного диода.
- Красным щупом касаемся затвора (G) – так мы частично открываем транзистор.
- Красным щупом касаемся истока (S). Значение перехода стало меньше — полевик частично открылся. Иногда он может открыться полностью, в таком случае мультиметр запищит, показывая отсутствие сопротивления.
- Черным щупом касаемся затвора (G) — закрываем транзистор.
- Возвращаем черный щуп обратно — полевик закрывается.
Для проверки p-канального транзистора процедура отличается лишь цветом используемых щупов.
Проверка составного транзистора
Еще одно название этого элемента – транзистор Дарлингтона. Особенность его заключается в том, в одном корпусе имеется два транзистора, соединенные по схеме:
Проверка таких транзисторов не отличается от схемы проверки биполярного транзистора, за исключением того, что падение напряжения переходах база-эмиттер составляет 1,2…1,4В, а в обычного около 0,6-0,7В. Некоторые цифровые мультиметры имеют на щупах напряжение меньшее 1,2В, чего не хватает для открывания р-n перехода, это нужно учесть при выборе мультиметра для теста составного транзистора.
Проверка однопереходного транзистора
Проверка на пробой однопереходного транзистора возможна с использованием мультиметра. Необходимо подключиться щупами к выводам Б1 и Б2 , если сопротивление, измеренное мультиметром, имеет небольшое значение, значит, в цепи есть пробой. Для точной диагностики исправности элемента необходимо использовать простые схемы, например генератор звука или др.
Что делать, если нельзя выпаивать схему?
Этим вопросом задаются многие, так как не всегда удобно выпаивать транзистор из платы. К сожалению, подобный вариант практически всегда невозможен. Объясняется это тем, что другие элементы обвязки транзистора, влияют на показания мультиметра, из-за чего в показаниях возникает абсолютно неверный результат.
Как проверить транзистор мультиметром: видео с инструкцией
Транзистор является наиболее популярным активным компонентом, входящим в состав электрических схем. У любого, кто интересуется электроникой, время от времени возникает необходимость проверить подобный элемент. Особенно часто проверку приходится делать начинающим радиолюбителям, которые в своих схемах используют транзисторы, бывшие в употреблении, например, выпаянные из старых плат. Для «прозвонки» можно использовать специальные приборы-тестеры, позволяющие измерять параметры транзисторов, чтобы потом их можно было сравнить их с указанными в справочнике. Однако для элементов, входящих в любительскую схему достаточно выполнить проверку по правилу: «исправен, неисправен». Эта статья рассказывает, как проверить транзистор мультиметром именно по такому методу тестирования.
Подготовка инструментов
У каждого современного радиолюбителя есть универсальный инструмент под названием цифровой мультиметр. Он позволяет измерять постоянные и переменные токи и напряжение, сопротивление элементов. Он также позволяет проверить работоспособность элементов схемы. Рядом с переключателем в режим «прозвонки», как правило, нарисован диод и динамик (см. фото на рис. 1).
Рисунок 1 – Лицевая панель мультиметра
Перед проверкой элемента необходимо убедиться в работоспособности самого мультиметра:
- Батарея должна быть заряжена.
- При переключении в режим проверки полупроводников дисплей должен отображать цифру 1.
- Щупы должны быть исправны, т. к. большинство приборов – китайские, и разрыв провода в них является очень частым явлением. Проверить их нужно, прислонив кончики щупов друг к другу: в этом случае на дисплее отобразятся нули и раздастся писк – прибор и щупы исправны.
- Щупы подключаются согласно цветовой маркировке: красный щуп — в красный разъем, черный – в черный разъем с надписью COM.
Если Вы не знаете, как использовать данный прибор, рекомендуем прочитать подробную инструкцию для чайников о том, как пользоваться мультиметром!
Технологии проверки
Биполярный
Структура биполярного транзистора (БТ) включает в себя 2 p-n или 2 n-p перехода. Выводы этих переходов называются эмиттером и коллектором. Вывод срединного слоя называется базой. Упрощенно БТ можно представить как два включенных встречно диода, как изображено на рисунке 2.
Рисунок 2 – NPN модель и ее диодный «аналог»
Проверить биполярный транзистор мультиметром не сложно, в чем Вы сейчас и убедитесь. Как известно основным свойством p-n перехода является его односторонняя проводимость. При подключении положительного (красный) щупа к аноду, а черного к катоду на дисплее мультиметра будет отображена величина прямого напряжения на переходе в милливольтах. Величина напряжения зависит от типа полупроводника: для германиевых диодов это напряжение будет порядка 200–300 мВ, а для кремниевых от 600 до 800 мВ. В обратном направлении диод ток не пропускает, поэтому если поменять щупы местами, то на дисплее будет отображена 1, свидетельствующая о бесконечно большом сопротивлении.
Если же диод «пробит», то скорей всего раздастся звуковой сигнал, причем в обоих направлениях. В случае если диод «в обрыве», то на индикаторе, так и будет отображаться единица.
Таким образом, суть проверки исправности транзистора заключается в «прозвонке» p-n переходов база-коллектор, база-эмиттер и эмиттер-коллектор в прямом и обратном включении:
- База-коллектор: Красный щуп подключается к базе, черный к коллектору. Соединение должно работать как диод и проводить ток только в одном направлении.
- База-эмиттер: Красный щуп остается подключенным к базе, черный подключается к эмиттеру. Аналогично предыдущему пункту соединение должно проводить ток только при прямом включении.
- Эмиттер-коллектор: У исправного перехода сопротивление данного участка стремится к бесконечности, о чем будет говорить единица на индикаторе.
При проверке работоспособности pnp типа «диодный» аналог будет выглядеть также, но диоды будут подключены наоборот. В этом случае черный щуп подключается к базе. Переход эмиттер-коллектор проверяется аналогично.
На видео ниже наглядно показывается проверка биполярного транзистора мультиметром:
Полевой
Полевые транзисторы (ПТ) или «полевики» используются в блоках питания, мониторах, аудио и видеотехнике. Поэтому с необходимостью проверки более часто сталкиваются мастера по ремонту аппаратуры. Самостоятельно проверить такой элемент в домашних условиях можно также с помощью обычного мультиметра.
На рисунке 3 представлена структурная схема ПТ. Выводы Gate (затвор), Drain (сток), Source (исток) могут располагаться по-разному. Очень часто производители маркируют их буквами. Если маркировка отсутствует, то необходимо свериться со справочными данными, предварительно узнав наименование модели.
Рисунок 3 – Структурная схема ПТ
Стоит иметь в виду, что при ремонте аппаратуры, в которой стоят ПТ, часто возникает задача проверки работоспособности и целостности без выпаивания элемента из платы. Чаще всего выходят из строя мощные полевые транзисторы, устанавливаемые в импульсные блоки питания. Также следует помнить, что «полевики» крайне чувствительны к статическим разрядам. Поэтому перед тем, как проверить полевой транзистор не выпаивая, необходимо надеть антистатический браслет и соблюдать технику безопасности.
Рисунок 4 – Антистатический браслет
Проверить ПТ мультиметром можно по аналогии с прозвонкой переходов биполярного транзистора. У исправного «полевика» между выводами бесконечно большое сопротивление вне зависимости от приложенного тестового напряжения. Однако, имеются некоторые исключения: если приложить положительный щуп тестера к затвору, а отрицательный – к истоку, то зарядится затворная емкость, и переход откроется. При замере сопротивления между стоком и истоком мультиметр может показать некоторое значение сопротивления. Неопытные мастера часто принимают подобное явление как признак неисправности. Однако, это не всегда соответствует реальности. Необходимо перед проверкой канала сток-исток замкнуть накоротко все выводы ПТ, чтобы разрядились емкости переходов. После этого их сопротивления снова станут большими, и можно повторно проверить работает транзистор или нет. Если подобная процедура не помогает, то элемент считается нерабочим.
«Полевики», стоящие в мощных импульсных блоках питания часто имеют внутренний диод на переходе сток-исток. Поэтому этот канал при проверке ведет себя как обычный полупроводниковый диод. Во избежание ложной ошибки необходимо перед тем, как проверить транзистор мультиметром, удостовериться в наличии внутреннего диода. Следует поменять местами щупы тестера. В этом случае на экране должна отобразиться единица, что свидетельствует о бесконечном сопротивлении. Если этого не происходит, то, скорее всего, ПТ «пробит».
Технология проверки полевого транзистора показана на видео:
Составной
Типовой составной транзистор или схема Дарлингтона изображена на рисунке 5. Эти 2 элемента расположены в одном корпусе. Внутри также находится нагрузочный резистор. У такой модели аналогичные выводы, что и у биполярного. Нетрудно догадаться, что проверить составной транзистор мультиметром можно точно также, как и БТ. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв в цепи.
Рисунок 5 – Схема Дарлингтона
Если после прочтения статьи Вы все же не до конца поняли, как проверить транзистор мультиметром, видео урок ниже позволит наглядно увидеть технологию проверки:
Таким образом, задача проверки данного элемента схемы сводится к последовательному «прозвону» p-n переходов, и если они исправны, то устройство можно считать рабочим. Надеемся, что теперь Вы знаете, как проверить транзистор мультиметром в домашних условиях!
Советуем прочитать:
Как проверить pnp транзистор мультиметром
Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.
С чего начать?
Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.
Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.
Рисунок 2. Фрагмент спецификации на 2SD2499
Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.
Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.
Проверка биполярного транзистора мультиметром
Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.
С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).
Рисунок 3. «Диодные аналоги» переходов pnp и npn
Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:
- Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
- Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.
Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.
- Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.
Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:
- Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
- Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.
Отклонения от этих значений говорят о неисправности компонента.
Проверка работоспособности полевого транзистора
Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.
Рис 4. Полевые транзисторы (N- и P-канальный)
Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):
- Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
- Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
- Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
- Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
- Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.
Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.
Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.
Рис 5. IGBT транзистор SC12850
Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.
В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.
Проверка составного транзистора
Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.
Рис 6. Эквивалентная схема транзистора КТ827А
Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.
Рис. 7. Схема для проверки составного транзистора
Обозначение:
- Т – тестируемый элемент, в нашем случае КТ827А.
- Л – лампочка.
- R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A – 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).
Тестирование производится следующим образом:
- Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
- Подаем минус – лампочка гаснет.
Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.
Как проверить однопереходной транзистор
В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.
Рис 8. КТ117, графическое изображение и эквивалентная схема
Проверка элемента осуществляется следующим образом:
Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.
Как проверить транзистор мультиметром, не выпаивая их схемы?
Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.
В электронике и радиотехнике большое значение имеет не только правильная сборка схемы, но и последующая проверка ее работоспособности. Проверяться может все устройство или его отдельные элементы. В связи в этим довольно часто возникает вопрос, как проверить транзистор мультиметром, не нарушая схемы. Существуют различные способы, которые применяются индивидуально к каждому виду элементов. Прежде чем начинать подобную проверку и тестирование, рекомендуется изучить общее устройство и принцип работы транзисторов.
Основные типы транзисторов
Существует два основных типа транзисторов – биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае – только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.
Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов – дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.
Биполярные транзисторы состоят из трехслойных полупроводников двух типов – «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам – эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.
В разных типах транзисторов у дырок и электронов – носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.
В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.
Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.
Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта – исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.
Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.
Проверка биполярного транзистора мультиметром
Проверку работоспособности биполярного транзистора можно выполнить с помощью цифрового мультиметра. Этим прибором проводятся измерения постоянных и переменных токов, а также напряжение и сопротивление. Перед началом измерений прибор нужно правильно настроить. Это позволит более эффективно решить проблему, как проверить биполярный транзистор мультиметром не выпаивая.
Современные мультиметры могут работать в специальном режиме измерения, поэтому на корпусе изображается значок диода. Когда решается вопрос, как проверить биполярный транзистор тестером, устройство переключается в режим проверки полупроводников, а на дисплее должна отображаться единица. Выводы устройства подключаются так же, как и в режиме измерения сопротивления. Провод черного цвета соединяется с портом СОМ, а провод красного цвета – с выходом, измеряющим сопротивление, напряжение и частоту.
В мультиметрах старой конструкции функция проверки диодов и транзисторов может отсутствовать. В таких случаях все действия проводятся в режиме измерения сопротивления, установленном на максимум. До начала работы батарея мультиметра должна быть заряжена. Кроме того, нужно проверить исправность щупов. Для этого их кончики соединяются между собой. Писк устройства и нули, отображенные на дисплее, свидетельствуют об исправности щупов.
Проверка биполярного транзистора мультиметром выполняется в следующем порядке:
- Прежде всего, нужно правильно соединить выводы мультиметра и транзистора. Для этого необходимо точно определить, где находятся база, коллектор и эмиттер. Чтобы определить базу, щуп черного цвета подключается к первому электроду, который предположительно считается базовым. Другой щуп красного цвета поочередно подключается вначале ко второму, а затем к третьему электроду. Щупы меняются местами до тех пор, пока прибор не определит падение напряжения. После этого окончательно проводится проверка биполярного транзистора мультиметром и определяются пары: «база-эмиттер» или «база-коллектор». Электроды эмиттера и коллектора определяются с помощью цифрового мультиметра. В большинстве случаев падение напряжения и сопротивление у эмиттерного перехода выше, чем у коллектора.
- Определение р-п-перехода «база-коллектор»: щуп красного цвета подключен к базе, а черный – к коллектору. Такое соединение работает в режиме диода и пропускает ток лишь в одном направлении.
- Определение р-п-перехода «база-эмиттер»: красный щуп остается подключенным к базе, а щуп черного цвета нужно подключить к эмиттеру. Так же, как и в предыдущем случае, при таком соединении ток проходит только при прямом включении. Это подтверждает проверка npn транзистора мультиметром
- Определение р-п-перехода «эмиттер-коллектор»: в случае исправности данного перехода сопротивление на этом участке будет стремиться к бесконечности. На это указывает единица, отображенная на дисплее.
- Подключение мультиметра осуществляется к каждой паре контактов в двух направлениях. То есть транзисторы р-п-р типа проверяются путем обратного подключения к щупам. В этом случае к базе подключается черный щуп. После измерений полученные результаты сравниваются между собой.
- После того как проведена проверка pnp транзистора мультиметром, работоспособность биполярного транзистора подтверждается, когда при измерении одной полярности мультиметр показывает конечное сопротивление, а при замерах обратной полярности получается единица. Данная проверка не требует выпаивания детали из общей платы.
Очень многие пытаются решить вопрос, как проверить транзистор без мультиметра с помощью лампочек и других устройств. Этого делать не рекомендуется, поскольку элемент с высокой вероятностью может выйти из строя.
Проверка работоспособности полевого транзистора
Полевые транзисторы нашли широкое применение в аудио и видеоаппаратуре, мониторах и блоках питания. От их работоспособности зависит функционирование большинства электронных схем. Поэтому в случае каких-либо неисправностей выполняется проверка этих элементов различными способами, в том числе и проверка транзисторов без выпайки из схемы мультиметром.
Типовая схема полевого транзистора представлена на рисунке. Основные выводы – затвор, сток и исток могут быть расположены по-разному, в зависимости от марки транзистора. При отсутствии маркировки, необходимо уточнить справочные данные, касающиеся той или иной модели.
Основной проблемой, возникающей при ремонте электронной аппаратуры с полевыми транзисторами, является проверка транзистора мультиметром не выпаивая. Как правило неисправности касаются полевых транзисторов с высокой мощностью, которые используются в импульсных блоках питания. Кроме того, эти устройства очень чутко реагируют на статические разряды. Поэтому перед решением вопроса, как прозвонить транзистор мультиметром на плате, следует надеть специальный антистатический браслет и ознакомиться с правилами техники безопасности при выполнении этой процедуры.
Проверка с использованием мультиметра предполагает такие же действия, как и в отношении биполярных транзисторов. Исправный полевой транзистор обладает бесконечно большим сопротивлением между выводами, независимо от тестового напряжения, приложенного к нему.
Тем не менее, решение вопроса, как прозвонить транзистор мультиметром имеет свои особенности. Если положительный щуп мультиметра приложен к затвору, а отрицательный – к истоку, то в этом случае произойдет зарядка затворной емкости и наступит открытие перехода. При замерах между стоком и истоком, прибор показывает наличие небольшого сопротивления. Иногда электротехники при отсутствии практического опыта, могут посчитать это за неисправность, что не всегда соответствует действительности. Это может быть важно при проверки строчного транзистора мультиметром. Перед началом проверки канала сток-исток рекомендуется выполнить короткое замыкание всех выводов полевого транзистора, чтобы разрядить емкости переходов. После этого их сопротивления вновь увеличатся, после чего можно повторно прозванивать транзисторы мультиметром. Если данная процедура не дала положительного результата, значит данный элемент находится в нерабочем состоянии.
В полевых транзисторах, используемых для мощных импульсных блоков питания, очень часто на переходе сток-исток устанавливаются внутренние диоды. Поэтому данный канал во время проверки проявляет свойства обычного полупроводникового диода. Поэтому чтобы исключить ошибку, перед тем как проверить исправность транзистора мультиметром, следует убедиться в присутствии внутреннего диода. После первой проверки щупы мультиметра нужно поменять местами. После этого на экране появится единица, указывающая на бесконечное сопротивление. Если подобного не случится, велика вероятность неисправности полевого транзистора. С помощью прибора можно не только проверить, но и измерить транзистор мультиметром.
Как проверить составной транзистор мультиметром
Составной транзистор или транзистор Дарлингтона представляет собой схему, объединяющую в своем составе два и более биполярных транзистора. Это позволяет значительно увеличить коэффициент усиления по току. Такие транзисторы применяются в схемах, предназначенных для работы с большими токами, например, в стабилизаторах напряжения или выходных каскадах усилителей мощности. Они необходимы, когда требуется обеспечение большого входного импеданса, то есть полного комплексного сопротивления.
Общие выводы у составного транзистора такие же, как и у биполярной модели. Точно так же и происходит проверка npn транзистора мультиметром. В этом случае применяется методика, аналогичная проверке обычного биполярного транзистора.
Проверка транзистора цифровым мультиметром
Занимаясь ремонтом и конструированием электроники, частенько приходится проверять транзистор на исправность.
Рассмотрим методику проверки биполярных транзисторов обычным цифровым мультиметром, который есть практически у каждого начинающего радиолюбителя.
Несмотря на то, что методика проверки биполярного транзистора достаточно проста, начинающие радиолюбители порой могут столкнуться с некоторыми трудностями.
Об особенностях тестирования биполярных транзисторов будет рассказано чуть позднее, а пока рассмотрим самую простую технологию проверки обычным цифровым мультиметром.
Для начала нужно понять, что биполярный транзистор можно условно представить в виде двух диодов, так как он состоит из двух p-n переходов. А диод, как известно, это ничто иное, как обычный p-n переход.
Вот условная схема биполярного транзистора, которая поможет понять принцип проверки. На рисунке p-n переходы транзистора изображены в виде полупроводниковых диодов.
Устройство биполярного транзистора p-n-p структуры с помощью диодов изображается следующим образом.
Как известно, биполярные транзисторы бывают двух типов проводимости: n-p-n и p-n-p. Этот факт нужно учитывать при проверке. Поэтому покажем условный эквивалент транзистора структуры n-p-n составленный из диодов. Этот рисунок нам понадобиться при последующей проверке.
Транзистор со структурой n-p-n в виде двух диодов.
Суть метода сводиться к проверке целостности этих самых p-n переходов, которые условно изображены на рисунке в виде диодов. А, как известно, диод пропускает ток только в одном направлении. Если подключить плюс ( + ) к выводу анода диода, а минус (-) к катоду, то p-n переход откроется, и диод начнёт пропускать ток. Если проделать всё наоборот, подключить плюс ( + ) к катоду диода, а минус (-) к аноду, то p-n переход будет закрыт и диод не будет пропускать ток.
Если вдруг при проверке выясниться, что p-n переход пропускает ток в обоих направлениях, то значит он «пробит». Если же p-n переход не пропускает ток ни в одном из направлений, то значит переход в «обрыве». Естественно, что при пробое или обрыве хотя бы одного из p-n переходов транзистор работать не будет.
Обращаем внимание, что условная схема из диодов необходима лишь для более наглядного представления о методике проверки транзистора. В реальности транзистор имеет более изощрённое устройство.
Функционал практически любого мультиметра поддерживает проверку диода. На панели мультиметра режим проверки диода изображается в виде условного изображения, который выглядит вот так.
Думаю, уже понятно, что проверять транзистор мы будем как раз с помощью этой функции.
Небольшое пояснение. У цифрового мультиметра есть несколько гнёзд для подключения измерительных щупов. Три, а то и больше. При проверке транзистора необходимо минусовой щуп (чёрный) подключить к гнезду COM (от англ. слова common – «общий»), а плюсовой щуп ( красный ) в гнездо с обозначением буквы омега Ω, буквы V и, возможно, других букв. Всё зависит от функционала прибора.
Почему я так подробно рассказываю о том, как подключать измерительные щупы к мультиметру? Да потому, что щупы можно элементарно перепутать и подключить чёрный щуп, который условно считается «минусовым» к гнезду, к которому нужно подключить красный, «плюсовой» щуп. В итоге это вызовет неразбериху, и, как следствие, ошибки. Будьте внимательней!
Теперь, когда сухая теория изложена, перейдём к практике.
Какой мультиметр будем использовать?
В качестве мультиметра использовался многофункциональный мультитестер Victor VC9805+, хотя для измерений подойдёт любой цифровой тестер, вроде всем знакомых DT-83x или MAS-83x. Такие мультиметры можно купить не только на радиорынках, магазинах радиодеталей, но и в магазинах автозапчастей. Подходящий мультиметр можно купить в интернете, например, на Алиэкспресс.
Вначале проведём проверку кремниевого биполярного транзистора отечественного производства КТ503. Он имеет структуру n-p-n. Вот его цоколёвка.
Для тех, кто не знает, что означает это непонятное слово цоколёвка, поясняю. Цоколёвка – это расположение функциональных выводов на корпусе радиоэлемента. Для транзистора функциональными выводами соответственно будут коллектор (К или англ.- С), эмиттер (Э или англ.- Е), база (Б или англ.- В).
Сначала подключаем красный ( + ) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).
Далее не отсоединяя красного щупа от вывода базы, подключаем чёрный («минусовой») щуп к выводу эмиттера транзистора.
Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.
Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом, обратном включении. В этом режиме p-n переход ток не проводит, и на дисплее не должно отображаться ничего, кроме «1». Если на дисплее единица «1», то это означает, что сопротивление перехода велико, и он не пропускает ток.
Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…
…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.
Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1», что, как уже говорилось, указывает на то, что p-n переход не пропускает ток. Так мы проверили переходы Б-К и Б-Э в обратном включении.
Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.
Пробой P-N перхода транзистора.
В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.
Обрыв P-N перехода транзистора.
При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1». При таком дефекте p-n переход как бы превращается в изолятор.
Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность подключения измерительных щупов к выводам транзистора. Вспомним рисунок условного изображения транзистора p-n-p в виде двух диодов. Если забыли, то гляньте ещё раз и вы увидите, что катоды диодов соединены вместе.
В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107 структуры p-n-p. Вот его цоколёвка.
В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.
Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.
То же самое проделываем и для перехода Б-Э.
Как видим, он также исправен. На дисплее – 724 мВ.
Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.
Переход Б-К при обратном включении…
Переход Б-Э при обратном включении.
В обоих случаях на дисплее прибора – единичка «1». Транзистор исправен.
Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:
Определение цоколёвки транзистора и его структуры;
Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;
Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;
При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов. К таковым можно отнести составные транзисторы (транзисторы Дарлингтона), «цифровые» транзисторы, строчные транзисторы (так называемые «строчники») и т.д.
Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики. Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом). О том, как найти даташит на конкретный электронный компонент или микросхему, я рассказывал здесь.
NPN транзистор
NPN транзистор
Когда
единственный р-тип
полупроводниковый слой зажат между двумя n-типами
В полупроводниковых слоях формируется npn-транзистор.
NPN символ транзистора
символ цепи и диод аналог npn-транзистора показан на рисунке ниже.
В На рисунке выше показано, что электрический ток всегда течет из p-области в n-область.
NPN конструкция транзистора
npn-транзистор состоит из трех полупроводниковых слоев: одного полупроводниковый слой p-типа и два полупроводника n-типа слои.
Слой полупроводника p-типа зажат между двумя полупроводниковые слои.
npn-транзистор имеет три вывода: эмиттер, база и коллектор. Вывод эмиттера подключается к левой стороне слой n-типа. Клемма коллектора подключается справа боковой слой n-типа. Базовый терминал подключается к слой р-типа.
npn-транзистор имеет два p-n переходы. Между излучателем образуется один стык. и база.Этот переход называется переходом эмиттер-база или эмиттерный переход. Другой стык образуется между база и коллектор. Это соединение называется коллекторно-базовым. переход или коллекторный переход.
Рабочий транзистора npn
Беспристрастный npn транзистор
Когда нет напряжения применяется к транзистору, он называется несмещенным транзистор.Слева n-область (эмиттер) и справа n-регион (коллектор), бесплатно электроны — основные носители, а дырки — неосновные носители, тогда как в p-области (основание) дырки являются основные носители и свободные электроны составляют меньшинство перевозчики.
ср знать, что носители заряда (свободные электроны и дырки) всегда старайтесь перейти от области более высокой концентрации к более низкой область концентрации.
Для свободные электроны, n-область — область более высокой концентрации а p-область — область более низкой концентрации. Аналогично для дырок, p-область — область более высокой концентрации и n-область — область более низкой концентрации.
Следовательно, в свободные электроны в левой n-области (эмиттер) и справа боковая n-область (коллектор) испытывает силу отталкивания от друг друга.В результате свободные электроны в левой части а правые n-области (эмиттер и коллектор) переместятся в p-область (основание).
Во время В этом процессе свободные электроны встречаются с дырками в p-область (основание) возле стыка и залейте им. Как результат, истощение область (положительные и отрицательные ионы) формируется на эмиттер к переходу базы и переход от базы к коллектору.
в эмиттер-базовый переход, область обеднения пронизана аналогично, ближе к основанию; на базе коллекционеру переход, область истощения проникает больше в сторону базовая сторона.
Это потому что на переходе эмиттер-база эмиттер сильно легирован, а основание слегка легировано, поэтому обедненная область проник больше в сторону основания и меньше в сторону сторона эмиттера.Точно так же на переходе от базы к коллектору коллектор сильно легирован, а база слегка легирована, поэтому область истощения проникает больше к основанию и меньше в сторону коллектора.
коллектор область слегка легирована, чем область эмиттера, поэтому ширина обедненного слоя на стороне коллектора больше ширина обедненного слоя на стороне эмиттера.
Почему истощение область проникает больше к слаболегированной стороне, чем сильно легированная сторона?
ср знать, что легирование — это процесс добавления примесей в собственный полупроводник для улучшения его электрических проводимость. Электропроводность полупроводника это зависит от добавленного к нему уровня допинга.
Если полупроводниковый материал сильно легирован, его электрические проводимость очень высокая. Это означает, что сильно допированный полупроводниковый материал имеет большое количество носителей заряда которые проводят электрический ток.
Если полупроводниковый материал слегка легирован, его электрические проводимость очень низкая. Это означает, что слегка допированный полупроводниковый материал имеет небольшое количество носителей заряда которые проводят электрический ток.
ср знать, что в полупроводнике n-типа свободные электроны являются основные носители заряда и дырки являются неосновным зарядом перевозчики.
В npn транзистор, левая сторона n-области (эмиттер) сильно допированный. Таким образом, у эмиттера большое количество свободных электронов.
ср знать, что в полупроводнике p-типа дырки составляют большинство носители заряда и свободные электроны являются неосновным зарядом перевозчики.
p-область (база) слабо легирована. Так что база имеет небольшой количество отверстий.
правая сторона n-области (коллектор) умеренно легирована. это уровень легирования находится между уровнем эмиттера и базы.
Когда атом теряет или отдает электрон, становится положительным ионом. С другой стороны, когда атом получает или принимает электрон, он становится отрицательным ионом.
атомы, которые отдают электроны, известны как доноры, а атомы которые принимают электроны, известны как акцепторы.
Излучатель-база стыковка:
Пусть Предположим, что в левой n-области (эмиттере) каждый атом имеет три свободных электрона, а в p-области каждый атом имеет одну дырку.
Во время
распространение
процесс, свободные электроны движутся от эмиттера (n-область)
к базе (p-область).Точно так же отверстия перемещаются от основания
(p-область) к эмиттеру (n-область).
в эмиттер-база переход, когда атомы n-области (эмиттера) встречаются с p-областью (основные) атомы, каждый атом n-области отдает три свободных электрона к трем атомам p-области. В результате n-область (эмиттер) атом, отдающий три свободных электрона, станет положительным ион и три атома p-области (основания), которые принимают (каждый принять один свободный электрон) три свободных электрона станут отрицательные ионы.Таким образом, каждый положительный ион n-области (эмиттера) производит три отрицательных иона p-области (основания).
Следовательно,
в
обедненная область на переходе эмиттер-база содержит больше
отрицательные ионы, чем положительные. Отрицательные ионы находятся
в p-области (основании) вблизи перехода и положительных ионов
находятся в n-области (эмиттере) рядом с переходом.
Следовательно, в область истощения проникает больше в p-область (база), чем n-область (эмиттер).
База-коллектор стыковка:
Пусть Предположим, что в правой части n-области (коллектора) каждый атом имеет два свободных электрона, а в p-области каждый атом имеет по одному отверстие.
Во время
В процессе диффузии свободные электроны движутся от коллектора
(n-область) к основанию (p-область).Точно так же дыры перемещаются из
база (p-область) к коллектору (n-область).
в сборщик базы переход, когда атомы n-области (коллектора) встречаются с атомы p-области (основания), каждый атом n-области (коллектор) отдает два свободных электрона на два атома p-области (основания). Как результат, атом n-области (коллектор), отдающий два свободных электрона станет положительным ионом, и два атома p-области (основания) который принимает (каждый принимает один свободный электрон) два свободных электроны станут отрицательными ионами.Таким образом, каждая n-область (коллектор) положительный ион производит две p-области (основание) отрицательных ионы.
Следовательно,
в
область истощения на стыке база-коллектор содержит больше
отрицательные ионы, чем положительные. Отрицательные ионы находятся
в p-области (основании) вблизи перехода и положительных ионов
проживают в n-области (коллектор) около стыка.
Следовательно, в область истощения проникает больше в p-область (база), чем n-регион (коллектор).
Однако ширина обедненного слоя на стороне коллектора более ширина обедненного слоя на стороне эмиттера. Это потому, что коллекторная область слабо легирована, чем эмиттерная.
предвзято npn транзистор
Когда внешний напряжение подается на транзистор npn, это называется смещенный npn-транзистор.В зависимости от полярности приложенное напряжение, npn Транзистор может работать в трех режимах: активный режим, режим отсечки и режим насыщения.
npn-транзистор часто работает в активном режиме, потому что в В активном режиме npn-транзистор усиливает электрический ток.
Так Давайте посмотрим, как работает npn-транзистор в активном режиме.
Пусть
Рассмотрим транзистор npn, как показано на рисунке ниже. В
на рисунке ниже, переход эмиттер-база смещен вперед
постоянным напряжением V EE и переходом база-коллектор
имеет обратное смещение постоянным напряжением V CC .
Излучатель-база стыковка:
Срок к прямому смещению большое количество свободных электронов в левая сторона n-области (эмиттер) испытывает силу отталкивания от отрицательный полюс батареи постоянного тока, а также они испытать силу притяжения от положительного полюса батарея.В результате свободные электроны начинают течь. от эмиттера к базе. Аналогичным образом отверстия в основании испытать отталкивающую силу от положительного вывода аккумулятор, а также испытать силу притяжения от отрицательная клемма аккумуляторной батареи. В итоге дыры начинаются течет от базы к эмиттеру.
Срок
к приложенному внешнему напряжению каждый атом эмиттера имеет больше
чем один или два свободных электрона.Следовательно, каждый атом-эмиттер
жертвует более одного или двух свободных электронов более положительным
ионы. В результате положительные ионы становятся нейтральными.
Точно так же каждый базовый атом принимает большее количество электронов.
от большего количества отрицательных ионов. В результате отрицательные ионы становятся
нейтральный. Мы знаем, что область истощения — это не что иное, как
комбинация положительных и отрицательных ионов.
Таким образом, ширина обеднения на переходе эмиттер-база уменьшается на приложение напряжения прямого смещения.
ср знайте, что электрический ток означает поток носителей заряда. В свободные электроны (отрицательные носители заряда) текут от эмиттера к основание, тогда как дырки (носители положительного заряда) текут из основания эмитенту.Эти носители заряда проводят электрический ток. Однако обычный Текущее направление такое же, как и направление отверстий.
Таким образом, электрический ток течет от базы к эмиттеру.
База-коллектор стыковка:
Срок
к обратному смещению большое количество свободных электронов в
правая сторона n-области (коллектор) испытывает силу притяжения
от положительной клеммы аккумуляторной батареи.Следовательно, бесплатные
электроны удаляются от перехода и текут к
положительный полюс аккумуляторной батареи. В результате большое количество
нейтральных атомов коллектора теряет электроны и становится
положительные ионы. С другой стороны, дырки в p-области (основании)
испытать притягательную силу с отрицательного полюса
батарея. Следовательно, отверстия удаляются от стыка и
течь к отрицательной клемме аккумулятора.Как
В результате большое количество нейтральных основных атомов приобретает электроны
и становится отрицательными ионами.
Таким образом, ширина обедненной области увеличивается у базы-коллектора соединение. Другими словами, количество положительных и отрицательных ионов увеличивается на переходе база-коллектор.
Коллектор-база-эмиттер текущий:
свободные электроны, которые текут от эмиттера к базе из-за прямое смещение будет сочетаться с отверстиями в основании.Однако, основа очень тонкая и слегка легированная. Так что только небольшой процент свободных электронов эмиттера объединяется с дырками в базовом регионе. Оставшееся большое количество бесплатных электроны пересекают базовую область и достигают коллекторский регион. Это связано с положительным напряжением питания. применяется у коллекционера. Следовательно, свободные электроны текут из эмиттера. коллекционеру.На коллекторе оба эмиттера свободные электроны и свободные от коллектора электроны создают ток, протекая к положительной клемме аккумулятора. Следовательно, на выходе вырабатывается усиленный ток.
В
npn-транзистор, электрический ток в основном проводится через
свободные электроны.
Работа транзисторов в качестве переключателя и усилителя
Первый транзистор с биполярным переходом был изобретен в 1947 году в лабораториях Bell.«Две полярности» сокращенно обозначают как биполярный, отсюда и название Биполярный переходной транзистор . BJT — трехконтактное устройство с коллектором (C), базой (B) и эмиттером (E). Для идентификации выводов транзистора требуется схема выводов конкретной части BJT, она будет доступна в таблице данных. Есть два типа BJT — NPN и PNP транзисторы. В этом уроке мы поговорим о транзисторах NPN. Давайте рассмотрим два примера NPN-транзисторов — BC547A и PN2222A, показанных на изображениях выше.
В зависимости от процесса изготовления конфигурация выводов будет изменяться, а подробности будут доступны в соответствующем техническом описании. По мере увеличения номинальной мощности транзистора необходимо прикрепить к корпусу транзистора необходимый радиатор. Несмещенный транзистор или транзистор без потенциала, приложенного к клеммам, аналогичен двум диодам, соединенным задними сторонами , как показано на рисунке ниже.
Диод D1 имеет свойство обратной проводимости на основе прямой проводимости диода D2.Когда через диод D2 протекает ток, диод D1 воспринимает ток, и пропорциональный ток может течь в обратном направлении от вывода коллектора к выводу эмиттера при условии, что на выводе коллектора приложен более высокий потенциал. Постоянная пропорциональности — это усиление (β).
Работа NPN транзисторов:
Как обсуждалось выше, транзистор представляет собой устройство с управляемым током, которое имеет два обедненных слоя с определенным барьерным потенциалом, необходимым для диффузии обедненного слоя.Потенциал барьера для кремниевого транзистора составляет 0,7 В при 25 ° C и 0,3 В при 25 ° C для германиевого транзистора. В основном используются транзисторы кремниевого типа, поскольку кремний является самым распространенным элементом на Земле после кислорода.
Внутренние операции:
Конструкция npn-транзистора заключается в том, что области коллектора и эмиттера легированы материалом n-типа, а базовая область легирована небольшим слоем материала p-типа.Область эмиттера сильно легирована по сравнению с областью коллектора. Эти три области образуют два стыка. Это переход коллектор-база (CB) и переход база-эмиттер.
Когда на переход база-эмиттер прикладывается потенциал VBE, возрастающий от 0 В, электроны и дырки начинают накапливаться в обедненной области. Когда потенциал увеличивается выше 0,7 В, достигается барьерное напряжение и происходит диффузия. Следовательно, электроны текут к положительному выводу, и ток базы (IB) протекает противоположно потоку электронов.Кроме того, ток от коллектора к эмиттеру начинает течь, если на выводе коллектора подано напряжение VCE. Транзистор может действовать как переключатель и усилитель.
Рабочий регион в зависимости от режима работы:
1. Активная область, IC = β × IB — Работа усилителя
2. Область насыщения, IC = ток насыщения — переключение (полностью включено)
3. Область отключения, IC = 0 — переключение (полностью выключено)
Транзистор как переключатель:
Для объяснения с PSPICE была выбрана модель BC547A.Первое, что нужно иметь в виду — использовать в базе резистор, ограничивающий ток. Более высокие базовые токи повредят BJT. Из таблицы данных максимальный ток коллектора составляет 100 мА, и указано соответствующее усиление (hFE или β).
Шаги по выбору компонентов,
1. Найдите ток коллектора — это ток, потребляемый вашей нагрузкой. В этом случае это будет 60 мА (катушка реле или параллельные светодиоды) и резистор = 200 Ом.
2. Для приведения транзистора в состояние насыщения должен быть подан достаточный базовый ток, чтобы транзистор был полностью открыт.Расчет тока базы и соответствующего резистора, который будет использоваться.
Для полного насыщения базовый ток составляет примерно 0,6 мА (не слишком высокий или слишком низкий). Таким образом, ниже приведена схема с 0 В на базе, во время которой переключатель находится в выключенном состоянии.
a) Имитация PSPICE BJT в качестве коммутатора и b) эквивалентное состояние переключения
Теоретически переключатель полностью разомкнут, но практически можно наблюдать протекание тока утечки.Этим током можно пренебречь, так как они находятся в пА или нА. Для лучшего понимания управления током транзистор можно рассматривать как переменный резистор между коллектором (C) и эмиттером (E), сопротивление которого изменяется в зависимости от тока через базу (B).
Первоначально, когда ток не течет через базу, сопротивление через CE очень велико, и ток не течет через него. Когда к базовому выводу прикладывается потенциал 0,7 В и выше, соединение BE диффундирует и вызывает диффузию перехода CB.Теперь ток течет от коллектора к эмиттеру в зависимости от коэффициента усиления.
a) Имитация PSPICE BJT в качестве коммутатора и b) эквивалентное состояние переключения
Теперь давайте посмотрим, как контролировать выходной ток, управляя базовым током. Учитывая, что IC = 42 мА и следуя той же формуле выше, мы получаем IB = 0,35 мА; RB = 14,28кОм ≈ 15кОм.
a) Имитация PSPICE BJT в качестве коммутатора и b) эквивалентное состояние переключения
Отклонение практического значения от расчетного связано с падением напряжения на транзисторе и используемой резистивной нагрузкой.
Транзистор как усилитель:
Усиление — это преобразование слабого сигнала в пригодную для использования форму. Процесс усиления был важным шагом во многих приложениях, таких как беспроводные передаваемые сигналы, беспроводные принимаемые сигналы, Mp3-плееры, мобильные телефоны и т. Д. Транзистор может усиливать мощность, напряжение и ток в различных конфигурациях.
Некоторые из конфигураций, используемых в схемах усилителя:
- Усилитель с общим эмиттером
- Усилитель с общим коллектором
- Усилитель с общей базой
Из вышеперечисленных типов распространенный тип эмиттера является популярной и наиболее часто используемой конфигурацией.Работа происходит в активной области. Примером может служить схема одноступенчатого усилителя с общим эмиттером. Стабильная точка смещения постоянного тока и стабильное усиление по переменному току важны при разработке усилителя. Назовите одноступенчатый усилитель, когда используется только один транзистор.
Выше представлена схема одноступенчатого усилителя , где слабый сигнал, подаваемый на вывод базы, преобразуется в β, умноженный на фактический сигнал на выводе коллектора.
Назначение детали:
CIN — это конденсатор связи, который передает входной сигнал на базу транзистора.Таким образом, этот конденсатор изолирует источник от транзистора и пропускает только сигнал переменного тока. CE — это байпасный конденсатор, который действует как путь с низким сопротивлением для усиленного сигнала. COUT — это конденсатор связи, который передает выходной сигнал с коллектора транзистора. Таким образом, этот конденсатор изолирует выход от транзистора и пропускает только сигнал переменного тока. R2 и RE обеспечивают стабильность усилителя, тогда как R1 и R2 вместе обеспечивают стабильность в точке смещения постоянного тока, действуя как делитель потенциала.
Операция:
Схема работает мгновенно для каждого временного интервала. Просто для понимания, когда напряжение переменного тока на клемме базы увеличивается, соответствующее увеличение тока протекает через резистор эмиттера. Таким образом, это увеличение тока эмиттера увеличивает ток коллектора, протекающий через транзистор, что снижает падение напряжения коллектора-эмиттера VCE. Аналогично, когда входное переменное напряжение экспоненциально уменьшается, напряжение VCE начинает расти из-за уменьшения тока эмиттера.Все эти изменения напряжений мгновенно отражаются на выходе, который будет инвертированной формой волны входа, но усиленной.
Характеристики | Общая база | Общий эмиттер | Общий коллектор |
Коэффициент усиления по напряжению | Высокая | Средний | Низкая |
Текущая прибыль | Низкая | Средний | Высокая |
Прирост мощности | Низкая | Очень высокий | Средний |
Таблица: Таблица сравнения коэффициентов усиления
На основании приведенной выше таблицы можно использовать соответствующую конфигурацию.
Electronics Club — Транзисторы — типы, подключение, пайка, тестирование, выбор, радиаторы
Electronics Club — Транзисторы — типы, подключение, пайка, тестирование, выбор, радиаторыТипы | Подключение | Пайка | Тестирование | Коды | Выбор | Радиаторы
На этой странице описаны практические вопросы, такие как меры предосторожности при пайке и идентификации выводов. Информацию о работе и использовании транзисторов в схемах см. В страница транзисторных схем.
Транзисторы усиливают ток , например, их можно использовать для усиления небольшого выхода ток от логической ИС, чтобы он мог управлять лампой, реле или другим сильноточным устройством. Во многих схемах используется резистор для преобразования изменяющегося тока в изменяющееся напряжение, поэтому транзистор используется для усиления напряжения .
Транзистор может использоваться как переключатель (либо полностью включен с максимальным током, либо полностью выключен с нет тока) и как усилитель (всегда частично включен).
Величина усиления тока называется усилением тока , символ h FE (один из многих параметров транзисторов, каждый со своим символом).
Типы транзисторов
Есть два типа стандартных (биполярных) транзисторов, NPN и PNP , с разными обозначениями схем, как показано. Буквы относятся к слоям полупроводникового материала, из которых изготовлен транзистор. Большинство используемых сегодня транзисторов являются NPN, потому что это самый простой тип из кремния.Если вы новичок в электронике, лучше всего начать с изучения того, как использовать транзисторы NPN.
Выводы имеют маркировку база (B), коллектор (C) и эмиттер (E). Эти термины относятся к внутренней работе транзистора, но их не так много. помогают понять, как используется транзистор, поэтому относитесь к ним как к ярлыкам.
Пара Дарлингтона — это два соединенных вместе транзистора. чтобы дать очень высокий коэффициент усиления по току.
В дополнение к биполярным переходным транзисторам существуют полевых транзисторов , которые обычно обозначается как FET s.У них разные символы схем и свойства, и они не рассматриваются на этой странице.
Подключение
Транзисторыимеют три вывода, которые должны быть подключены правильно. Будьте осторожны, так как неправильно подключенный транзистор может быть немедленно поврежден при включении.
Ориентация транзистора может быть ясна из схемы разводки печатной платы или платы, в противном случае вы необходимо обратиться к каталогу поставщика или на веб-сайте, чтобы определить потенциальных клиентов.
На чертежах показаны выводы некоторых распространенных типов корпусов транзисторов.
Обратите внимание, что схемы выводов транзисторов показывают вид с ниже с ведет к вам. Это противоположно схемам выводов IC, которые показывают вид сверху.
Пайка
Транзисторы могут быть повреждены нагревом при пайке, поэтому, если вы не эксперт, это Целесообразно использовать радиатор, прикрепленный к проводу между соединением и корпусом транзистора. Можно купить специальный инструмент, но стандартный зажим «крокодил» (без пластиковой крышки). работает так же хорошо и дешевле.
Не путайте этот временный радиатор с постоянным радиатором (описанным ниже) что может потребоваться для силового транзистора, чтобы предотвратить его перегрев во время работы.
Проверка транзистора
Транзисторы могут быть повреждены нагревом при пайке или неправильным использованием в цепи. Если вы подозреваете, что транзистор может быть поврежден, есть два простых способа его проверить:
1. Проверка мультиметром
Используйте мультиметр или простой тестер (аккумулятор, резистор и светодиод) чтобы проверить каждую пару проводов на проводимость.Установите цифровой мультиметр на проверку диодов и аналоговый мультиметр для диапазона низкого сопротивления.
Проверить каждую пару проводов в обе стороны (всего шесть тестов):
- Переход база-эмиттер (BE) должен вести себя как диод, а переход только в одном направлении .
- Переход база-коллектор (BC) должен вести себя как диод, а переход только в одну сторону, .
- Коллектор-эмиттер (CE) не должен вести в любом случае .
На схеме показано, как ведут себя переходы в NPN-транзисторе. В транзисторе PNP диоды перевернуты, но можно использовать ту же процедуру тестирования.
Проверка NPN транзистора
2. Тестирование по простой схеме
Подключите транзистор в показанную простую схему. Напряжение питания не критично, подходит от 5 до 12 В. Эту схему можно быстро построить, например, на макете. Позаботьтесь о включении 10k
Как определить транзисторы NPN и PNP с помощью мультиметра
Как определить транзисторы NPN и PNP (BJT) с помощью мультиметра?
Представьте, что из коробки с компонентами вы выбрали пару биполярных переходных транзисторов (BJT) и не знаете, являются ли они транзисторами типа NPN или PNP… (Практически каждый сталкивался бы с этой проблемой)
В этом посте мы обсудим, как определить транзисторы NPN и PNP с помощью мультиметра …
Прежде чем продолжить, давайте освежим информацию о том, как идентифицировать выводы транзистора.
Идентификация клемм BJT:
Мы знаем, что биполярный переходной транзистор имеет три вывода, а именно
- Излучатель (E)
- База (B)
- Коллектор (C)
Транзисторы доступны на рынке в различных корпусах.Поговорим о пакете ТО-92.
Держите транзистор так, чтобы плоская поверхность была обращена к вам, как показано на рисунке ниже:
Теперь, начиная слева, отметьте 1,2 и 3. Это соответственно
- Излучатель (E)
- База (B)
- Коллектор (C)
Условное обозначение BJT приведено ниже:
Определение типов BJT:
Оба транзистора NPN и PNP внешне похожи.Мы не можем различить их, увидев их. Нам понадобится мультиметр для определения типа БЮТ.
Запомните следующие моменты:
- Транзистор внутри имеет два диода (NPN ≡ N — P — N ≡ NP Junction + PN Junction и PNP ≡ P — N — P ≡ PN Junction + NP Junction).
то есть, эмиттер-база — это один PN переход (диод), а база для коллектора — другой PN-переход (диод). - В режиме диода мультиметр будет показывать напряжение, когда мы поднесем положительный щуп мультиметра к аноду диода, а отрицательный щуп к катоду.
- Если положительный щуп мультиметра подсоединен к катоду диода, а отрицательный щуп к аноду, то он не будет давать никакого напряжения (показывает ноль).
Шаги по идентификации транзистора типа NPN:
- Держите мультиметр в диодном режиме.
- Держите положительный щуп на центральном штыре (основании) транзистора.
- Коснитесь отрицательным датчиком контакта 1 (эмиттер). Вы увидите напряжение на мультиметре.
- Аналогичным образом прикоснитесь отрицательным щупом к контакту 3 (коллектор) по отношению к контакту 2.Вы увидите напряжение на мультиметре.
- Это гарантирует, что это транзистор NPN. Логика, лежащая в основе этого, в NPN-транзисторе
Эмиттер (E) — материал типа N — Эквивалент катоду диода
База (B) — Материал типа P — Эквивалент аноду диода
Коллектор (C) — материал типа N — Эквивалент катодного диода - Если положительный зонд мультиметра подсоединен к аноду, а отрицательный — к катоду, то он покажет напряжение.Если соединения поменять местами, значение не будет отображаться.
Шаги для идентификации транзистора типа PNP:
- Держите мультиметр в диодном режиме.
- Поднесите положительный щуп к выводу 1 (эмиттер) транзистора.
- Коснитесь отрицательным датчиком центрального штифта (основания). Вы увидите напряжение на мультиметре.
- Аналогичным образом прикоснитесь отрицательным щупом к центральному штырю (основанию) относительно штифта 3 (коллектора). Вы увидите напряжение на мультиметре.
- Это гарантирует, что это транзистор PNP. Логика, лежащая в основе этого, в PNP-транзисторе
Эмиттер (E) — Материал типа P — Эквивалентен аноду диода
База (B) — Материал типа N — Эквивалент катоду диода
Коллектор (C) — Материал типа P — Аналог анода диода - Если положительный зонд мультиметра подсоединен к аноду, а отрицательный — к катоду, то он покажет напряжение. Если соединения поменять местами, значение не будет отображаться.
С помощью вышеупомянутых шагов мы можем идентифицировать транзисторы NPN и PNP с помощью мультиметра. Как мы можем гарантировать, что транзисторы находятся в хорошем состоянии и вышли из строя? Прочтите, пожалуйста, пост Как проверить транзистор с помощью мультиметра?
Вы также можете прочитать:
Как работает люминесцентная лампа?
Как управлять скоростью параллельных двигателей постоянного тока?
Radartutorial
- Основы
- Исторический обзор
- Физические основы радара
- Основной принцип радара
- Принцип измерения
- Определение расстояния
- Определение направления
- Максимальный однозначный диапазон
- Минимальный диапазон измерения
- Угол возвышения
- Диапазон Разрешение
- Точность
- Характеристики синхронизации радара
- Частота следования импульсов
- Рабочий цикл
- Время пребывания / ударов за сканирование
- Учет времени импульсного радара
- Радарное уравнение
- Вычисление потерь на трассе в свободном пространстве
- Вывод радиолокационного уравнения
- Поперечное сечение радара
- Бюджет радиолокационных потерь
- Примерные вычисления
- Полосы частот радара
- Зона действия радара
- Электронная война
- Комплекты радаров
- Классификация радиолокационных систем
- В зависимости от технологий
- Первичный радар
- Вторичный радар
- Радар непрерывного действия (CW)
- Радиолокатор непрерывного действия с частотной модуляцией (FMCW)
- Радар FMiCW
- Импульсный радар
- Бистатический радар
- Бортовой радиолокатор
- В зависимости от предполагаемого использования
- РЛС ПВО
- ATC-Radars
- Радиолокатор дальнего обнаружения
- Метеорологический радар
- Принцип работы
- Адаптация радиолокационного уравнения
- Радар осадков
- Облачный радар
- Профиль ветра
- В зависимости от технологий
- База данных радаров
- Дидактические радары
- CW-радар
- FMCW-Радар
- РЛС импульсный ДПР – 886
- Дидактический шумовой радар
- Самодельный CW- / FMCW- Радар
- Классификация радиолокационных систем
- Радиолокационные технологии
- Радар с частотным разнесением
- Функциональная блок-схема
- Колебательные потери
- Адаптация радиолокационного уравнения
- Поляриметрический радар
- Внутриимпульсная модуляция
- Радар с синтезированной апертурой
- Вторичный радар
- Функциональная блок-схема
- Режим A / C
- Mode A / C форматы восходящего канала
- Формат ответа (нисходящая линия)
- Подавление боковых лепестков
- Фрукты
- Подставка
- Режим S
- Запросы в режиме S
- Индивидуальный запрос в режиме S
- Дифференциальная фазовая манипуляция (DPSK)
- Форматы ответов
- Режим сквиттера
- Транспондер
- MIMO — радар
- Радар с частотным разнесением
- Радарные устройства
- Антенна
- Характеристики
- Антенна параболической антенны
- Слот антенны
- Узор косеканс в квадрате
- Антенна Кассегрена
- Антенна с фазированной решеткой
- Принцип работы
- Системы кормления
- Антенна вороньего гнезда
- Устройства фазовращения
- Демонстратор фазированной решетки
- Моноимпульсная антенна
- Активная антенна
- Дуплексер
- Диплексер
- Передатчик
- Обзор
- Когерентный радар на приеме
- Функциональная блок-схема
- Модулятор
- Тиратрон
- Магнетрон
- Когерентный радар
- Концепция согласованности Функциональная блок-схема
- Усилитель поперечного поля
- Клистрон
- Расширенный интерактивный клистрон
- Лампа бегущей волны
- Твистрон
- полупроводниковый усилитель
- Модули передатчиков активных антенн
- Ресивер
- Супергетеродинный
- Функциональная блок-схема
- Частотные помехи изображения
- Двойное гетеродинирование
- Методы автоматической регулировки усиления
- Автоматический контроль частоты
- Детектор амплитуды
- Технология когерентного радара
- Беспорядок
- Эффект Доплера
- Обработка пары импульсов
- Доплеровский фильтр
- Слепая скорость
- Супергетеродинный
- Прицелы радара
- Прицел
- Прицел B
- Диапазон PPI
- Монитор растрового сканирования
- Обработка сигналов радара
- & Q-фазовый детектор
- Hit Processor
- Раздвижное окно
- Центр корреляции масс
- Локальное отслеживание
- Антенна
- Сервис
- Справка
- О нас
- Политика конфиденциальности
- Карта сайта
- (в подкаталоге)
- Версии для печати
- Предлагаемая литература
- Регистр ключевых слов
- Список сокращений
- Индекс производителей радаров
- Ежедневный трафик
- Приложения
- Измерительная практика
- Полупроводники
- Распространение электромагнитных волн
- Характеристики линий передачи
- Метрические единицы измерения
- Deutsch
- Английский
- Français
- Türkçe
Биполярный переходной транзистор Применения
Что такое транзистор?
Транзистор — это полупроводниковое устройство, используемое для усиления или переключения электронных сигналов и электроэнергии.Или транзистор — это устройство, которое регулирует ток или напряжение и действует как переключатель или затвор для электронных сигналов. Транзисторы состоят из трех слоев полупроводникового материала, каждый из которых может проводить ток.
Биполярный переходной транзистор
базовая структура биполярного переходного транзистора (BJT) определяет его рабочие характеристики. В этом разделе вы увидите, как полупроводящие материалы используются для формирования BJT, и вы узнаете стандартные символы BJT .
BJT сконструирован с тремя легированными полупроводниковыми областями, разделенными двумя переходами pn , которые показаны на эпитаксиальной планарной структуре. Эти три области называются эмиттером , базой и коллектором . Физические представления двух типов BJT показаны на рисунке выше. Один тип состоит из двух областей n , разделенных областью p ( npn), , а другой тип состоит из двух областей p , разделенных н регион ( пнп ).Термин биполярный относится к использованию дырок и электронов в качестве носителей тока в структуре транзистора.
Переход pn , соединяющий базовую область и область эмиттера, называется переходом база-эмиттер . Переход pn , соединяющий базовую область и коллекторную область, называется переходом база-коллектор. Показан вывод провода, подсоединенный к каждой из трех областей. Эти выводы обозначены буквами E, B и C для эмиттера, базы и коллектора соответственно.Базовая область слабо легирована и очень тонка по сравнению с сильно легированным эмиттером и умеренно легированной областью коллектора. (Причина этого обсуждается в следующем разделе). Условные обозначения для биполярных транзисторов npn и pnp .
Как работает биполярный транзистор?
Для того, чтобы BJT работал должным образом в качестве усилителя, два перехода pn должны быть правильно смещены с помощью внешних напряжений.