Принцип работы асинхронного электродвигателя | Русэлт
Асинхронные электродвигатели – это устройства, главным назначением которых является преобразование энергии переменного электротока в механическую. Своим названием двигатель обязан асинхронному типу вращения ротора относительно частоты вращения магнитного поля, индуцирующего электроток в обмотке статора.
Принцип работы на примере асинхронного электродвигателя трехфазного тока
Этот тип электрического двигателя наиболее часто применяется в различных сферах промышленности. Двигатель имеет 3-и обмотки на статоре, со смещением на 120 градусов. Обмотки запитаны переменным током и объединены по схеме «звезда» или «треугольник». При подаче напряжения на обмотку статора во всех трёх фазах появится магнитный поток.
Вместе с изменением частоты напряжения на обмотке статора, изменяется и магнитный поток. Фазы и магнитные потоки смещены относительно друг друга на сто двадцать градусов. Суммарный магнитный поток и будет вращающимся магнитным потоком, создающим электродвижущую силу (ЭДС).
Преимущества и недостатки асинхронных электродвигателей
Простота эксплуатации и хорошая ремонтопригодность – главные достоинства асинхронного двигателя, сделавшие его наиболее востребованным в очень разных сферах машиностроения и приборостроения. Привлекает и:
- Сравнительно невысокая цена;
- Надёжность
- Несложность подсоединения в общую электроцепь устройств.
- Трудности с точным регулированием скорости;
- Большой пусковой ток;
- Относительно невысокий коэффициент мощности.
По типу обмотки ротора, короткозамкнутой или фазной, асинхронные двигатели, подразделяются на 2 типа:
- Электродвигатели с короткозамкнутым ротором имеют обмотку, замыкающуюся на сам ротор;
- Электродвигатели с фазным ротором – обмотку с концами, выведенными на щеточно-коллекторный узел.
Преимущество двигателя с фазным ротором в том, что скорость вращения можно регулировать путем подключения дополнительных сопротивлений (реостатного регулирования).
Принцип действия асинхронного двигателя ~ Электропривод
Самым распространенным электродвигателем, используемым в быту, промышленности, строительстве и сельском хозяйстве, на сегодняшний день, является асинхронный двигатель с короткозамкнутым ротором (АД с КЗ ротором). Основным его преимуществом, перед другими типами двигателей является простота, надежность и дешевизна.
Принцип действия трехфазного асинхронного двигателя с короткозамкнутым ротором
Принцип действия трехфазного АД с КЗ ротором основан на взаимодействии вращающегося магнитного поля и расположенного в этом поле проводника. Вращающееся магнитное поле создается статором асинхронного двигателя, которая является неподвижной частью двигателя. Статор асинхронного электродвигателя представляет собой стальной сердечник, с пазами в которых расположена обмотки, намотанная медным изолированным проводом.
Это поле пересекая обмотку ротора наводит в ней ЭДС. Под действием этой ЭДС по обмотке будет протекать ток. Этот ток будет взаимодействовать с магнитным потоком. Взаимодействие вращающего магнитного поля статора с током в роторе создает вращающий момент, за счет которого ротор будет вращаться в ту же сторону, что и поле, но с небольшим отставанием.
Обмотки статора намотаны таким образом, что образуют три катушки, смещенные друг, относительно друга на 120°. Между собой их соединяют либо в «звезду», либо в «треугольник» и пропускают трехфазный переменный ток. При частоте тока 50 Гц, магнитное поле будет вращаться со скоростью 3000 об./мин. Магнитное поле, образованное тремя катушками, называется двухполюсным.
Особенностью асинхронного двигателя является то, что появление ЭДС в роторной обмотке ротора возможно только при различии частоты вращения магнитного поля ротора, обозначаемое букой n и магнитного поля статора n0. Разница n0 и n создает электромагнитный момента асинхронного двигателя.
S=( n0-n )/ n0,
где n0=60f/P синхронная частота вращения магнитного поля статора об/мин, f- частота питающей сети, Гц, p-число пар полюсов статора.
В такой конструкции двигателя, магнитное поле статора опережает скорость вращения ротора. Т.е. поле ротора вращается асинхронно со скоростью вращения поля статора. Отсюда и пошло название двигателя асинхронный двигатель переменного тока.
Если нагрузка на валу двигателя отсутствует, частота вращения поля ротора n, стремиться достичь частоты вращения поля ротора, но никогда не достигает ее, так как если n0-n=0, то и электромагнитный момент двигателя М будет равен 0.
В паспорте и на шильдике асинхронного электродвигателя производитель указывает номинальную частота вращения двигателя, замеряемую при номинальной мощности. При увеличении нагрузки на валу двигателя, частота вращения двигателя уменьшается, а ток статора увеличивается. Асинхронные двигатели могут изготовляться с 1,2,3 ,4,5,6 парами полюсов. Соответственно синхронная скорость вращения асинхронного двигателя соответственно будет составлять 3000, 1500, 1000, 750, 600 и 500 об/мин.
На смену классической конструкции асинхронного двигателя приходят энергоэффективные конструкции асинхронных двигателей обладающие более высоким КПД и технико-экономическими показателями. Применение частотно-регулируемого привода в тандеме с энергоэффективными двигателями, позволит существенно улучшить энергетические показатели и снизить затраты на электроэнергию.
Понять принцип действия асинхронного двигателя не сложно, если не пользоваться учебниками для вузов и школ. Зачастую академическая литература лишь препятствует пытливому уму разобраться в работе электромоторов и часто навсегда отбивает охоту заниматься изысканиями, связанными с электротехникой и электромеханикой. В последнее время у многих людей, не связанных напрямую с наладкой и проектированием машин, появился интерес к сборке самодельных станков, механизмов, летательных аппаратов и самодвижущихся машин. Работа любого асинхронного двигателя построена на принципе вращающегося магнитного поля. Как его можно создать? Например, можно взять постоянный магнит и начать вращать его вокруг своей оси – получится вращающееся магнитное поле. А если крутить магнит возле медного диска, то он станет вращаться вслед за магнитом, пытаясь его догнать. Со стороны наблюдателя кажется, что между магнитом и диском есть невидимая вязкая связь. Их движение не синхронно, диск крутится с некоторым отставанием. Объяснить это явление можно тем, что магнит при вращении возбуждает в структуре диска индукционные токи или токи Фуко. Они всегда движутся по замкнутому кругу — нигде не начинаясь и нигде не заканчиваясь, и являются, по сути, токами короткого замыкания, которые разогревают металл и от которых обычно пытаются избавиться. Но в нашем случае они полезны, т.к. порождают во вращаемом диске магнитное поле, которое дальше взаимодействует с полем постоянного магнита. В асинхронных электродвигателях всё происходит по тому же принципу, только чтобы получить вращающееся поле, используют не постоянный магнит, а обмотки статора, в которых создаётся поле вращения. Условия для вращения можно создать только в многофазных системах, где ток сдвинут по фазе на определённый градус. В быту используются двухфазные электродвигатели, где вторая фаза создаётся искусственно с помощью сдвигающего конденсатора, катушки или сопротивления. В промышленности применяют трёхфазные системы. Первый трёхфазный асинхронный двигатель был сделан русским учёным Доливо-Добровольским. Схема его работы показана на рисунке. Статор состоял из трёх обмоток (полюсов), отдалённых друг от друга на 120°. Вверху показан график синусоидального тока всех трёх полюсов, наложенных на один рисунок. В момент, когда ток одной из фаз равен нулю (отмечено пунктиром), две другие имеют значения близкие к максимальным и отличаются по направлению тока. Так между двумя работающими обмотками создаются магнитное поле. Основной принцип работы асинхронного двигателя, созданного в позапрошлом веке, остаётся актуальным и для современных электродвигателей. Только вместо дисковых и цилиндровых роторов стали использовать короткозамкнутые роторы по типу «беличья клетка» и фазные роторы. Также изменилась форма обмоток статора – вместо катушек с полюсными наконечниками теперь делают радиальные обмотки, уложенные в пазы. Асинхронные двигатели хороши тем, что они не имеют скользящих контактов (ток в роторе индуцируется бесконтактно), а направление вращения легко поменять, изменив направление тока в одной из обмоток (поменяв фазы на клеммах мотора). Выше была рассмотрена работа статора с одной парой рабочих полюсов (двухполюсного с тремя обмотками). Количество оборотов в минуту такого электромотора равно частоте тока, т.е. 50 об/сек или 3000 об/мин. Изготавливают также 4-х и 6-ти полюсные электродвигатели с шестью и девятью обмотками соответственно. Частота вращения таких моторов составляет 1500 и 1000 об/мин. Подведём итоги. Принцип действия асинхронного двигателя основывается на создании в обмотках статора вращающегося магнитного поля, которое пересекает контур ротора и индуцирует в нём электродвижущую силу. Поскольку он замкнут на коротко, то в нём возникает переменный ток. Магнитное поле этого тока вместе с вращающимся магнитным полем статора создают крутящий момент. Ротор начинает крутиться и пытается сравнять свою скорость со скоростью убегающего поля статора. Но как только частота вращения ротора совпадёт с частотой вращения магнитного поля статора, в роторе затухнут все электромагнитные процессы и крутящий момент станет равным нулю. Ротор начинает отставать и магнитное поле статора снова начинает возбуждать контур ротора. Этот процесс будет повторяться всё снова и снова. Таким образом, частота вращения ротора стремится догнать частоту вращения магнитного поля статора, но всё время отстаёт, т.е. вращается не синхронно, а значит асинхронно. В станкостроении асинхронные двигатели не заменимы. Ни какой другой тип электромоторов не имеет такой высокой износоустойчивости и универсальности. Поэтому такое оборудование как станок для сетки рабицы, правильно-отрезной и просечно-вытяжной станки, выпускаемые на нашем предприятии, оснащены именно асинхронными электроприводами. На видео хорошо объясняется принцип работы асинхронного электродвигателя, его устройство и отличительные особенности • Скачать принцип работы трёхфазного асинхронного двигателя
Свежие записи: |
Назначение и принцип действия асинхронного двигателя
Назначение асинхронного электродвигателя
Система трехфазного переменного тока, позволившая создать устройства для получения вращающегося магнитного потока, вызвала появление наиболее распространенного в данное время электродвигателя, называемого асинхронным. Это название обусловлено тем, что вращающаяся часть машины — ротор — всегда вращается со скоростью, не равной скорости магнитного потока, т.е. не синхронно с ним. Изготовляемый на мощности от долей ватта до тысяч киловатт при напряжениях 127, 220, 380, 500, 600, 3000, 6000, 10000 В, этот электродвигатель прост по конструкции, надежен в эксплуатации и дешев по сравнению с другими типами. Он применяется во всех видах работ, где не требуется поддержания постоянной скорости вращения, а также в быту, в однофазном исполнении для малой мощности.
Принцип действия асинхронного двигателя
Рассмотрим устройство, показанное на рис. Оно состоит из постоянного магнита 1, медного диска 2, рукоятки 3 и подшипников 4. Если вращать магнит при помощи рукоятки, то медный диск начинает вращаться в ту же сторону, но с меньшей частотой. Медный диск можно рассматривать как бесчисленное множество замкнутых витков; при вращении магнита 1 его магнитные силовые линии (м.с.л.) пересекают витки диска, и в витках наводится электродвижущая
Модель асинхронного двигателя
Обозначим:
п, — частота вращения магнита (синхронная частота), об/мин;
п2 — частота вращения диска, об/мин; п — разность частот вращения магнита и диска, об/мин.
Частота вращения диска меньше частоты вращения магнита, и, следовательно, диск вращается с несинхронной (асинхронной) частотой. Разница частот магнита и диска представляет собой частоту, с которой м.с.л. пересекают витки диска. Отношение разницы частот к синхронной частоте называется скольжением. Скольжение может быть выражено в долях единицы или в процентах:
В двигателях вращающееся магнитное поле создается трехфазным током, протекающим по обмотке статора, а роль диска выполняет обмотка ротора. Активная сталь статора и ротора служит магнитопроводом, уменьшающим в сотни раз сопротивление магнитному потоку.
Под влиянием подведенного к статору напряжения сети Ul в его обмотке протекает ток I,. Этот ток создает вращающийся магнитный поток Ф, замыкающийся через статор и ротор. Поток создает в обеих обмотках э.д.с. Е{ и Е2, как в первичной и вторичной обмотках трансформатора. Таким образом, асинхронный двигатель подобен трехфазному трансформатору, в котором э.д.с. создаются вращающимся магнитным потоком.
Рис. 2 . Работа асинхронного двигателя при cos ф2 = 1
Пусть поток вращается в направлении движения стрелки часов. Под влиянием э.д.с. Е2 в обмотке ротора пойдет ток I2, направление которого показано на рис. 2. Предположим, что он совпадает по фазе с Е2. Взаимодействие тока I2 и потока Ф создает электромагнитные силы F, приводящие ротор во вращение, вслед за вращающимся потоком. Таким образов, асинхронный двигатель представляет собой трансформатор с вращающейся вторичной обмоткой и способный поэтому превращать электрическую мощность E2I2 cos ф в механическую.
Ротор всегда отстает от вращающегося магнитного потока, так как только в этом случае может возникать э.д.с. Е2, а следовательно, ток 12 и силы F. Чтобы изменить направление вращения ротора, следует изменить направление вращения потока. Для этого меняют местами два любых провода, подводящие ток от сети к статору. В этом случае меняется порядок следования фаз ABC на АСВ или ВАС, и поток вращается в обратную сторону.
Ротор двигателя вращается с асинхронной частотой п2, поэтому и двигатель называется асинхронным. Частоту вращения магнитного потока называют синхронной частотой п1. Частота вращенияротора
Теоретически скольжение меняется от 1 до 0 или от 100% до 0, так как при неподвижном роторе в первый момент пуска п2 — 0; а если вообразить, что ротор вращается синхронно с потоком, п2 = пх.
Чем больше нагрузка на валу, тем меньше скорость ротора п2 и следовательно больше S, так как больший тормозной момент должен уравновеситься вращающим моментом; последнее возможно только при увеличении Е2 и I2, а значит и S. Скольжение при номинальной нагрузке SH у асинхронных двигателей равно от 1 до 7%; меньшая цифра относится к мощным двигателям.
Асинхронный двигатель. Устройство и принцип действия однофазного и трехфазного асинхронного электродвигателя.
Асинхронные электродвигатели (АД) находят в народном хозяйстве широкое применение. По разным данным до 70% всей электрической энергии, преобразуемой в механическую энергию вращательного или поступательного движения, потребляется асинхронным двигателем. Электрическую энергию в механическую энергию поступательного движения преобразуют линейные асинхронные электродвигатели, которые широко используются в электрической тяге, для выполнения технологических операций. Широкое применение АД связано с рядом их достоинств. Асинхронные двигатели — это самые простые в конструктивном отношении и в изготовлении, надежные и самые дешевые из всех типов электрических двигателей. Они не имеют щеточноколлекторного узла либо узла скользящего токосъема, что помимо высокой надежности обеспечивает минимальные эксплуатационные расходы. В зависимости от числа питающих фаз различают трехфазные и однофазные асинхронные двигатели. Трехфазный асинхронный двигатель при определенных условиях может успешно выполнять свои функции и при питании от однофазной сети. АД широко применяются не только в промышленности, строительстве, сельском хозяйстве, но и в частном секторе, в быту, в домашних мастерских, на садовых участках. Однофазные асинхронные двигатели приводят во вращение стиральные машины, вентиляторы, небольшие деревообрабатывающие станки, электрические инструменты, насосы для подачи воды. Чаще всего для ремонта или создания механизмов и устройств промышленного изготовления или собственной конструкции применяют трехфазные АД. Причем в распоряжении конструктора может быть как трехфазная, так и однофазная сеть. Возникают проблемы расчета мощности и выбора двигателя для того или другого случая, выбора наиболее рациональной схемы управления асинхронным двигателем, расчета конденсаторов, обеспечивающих работу трехфазного асинхронного двигателя в однофазном режиме, выбора сечения и типа проводов, аппаратов управления и защиты. Такого рода практическим проблемам посвящена предлагаемая вниманию читателя книга. В книге приводится также описание устройства и принципа действия асинхронного двигателя, основные расчетные соотношения для двигателей в трехфазном и однофазном режимах.Устройство и принцип действия асинхронных электродвигателей
1. Устройство трехфазных асинхронных двигателей
Трехфазный асинхронный двигатель (АД) традиционного исполнения, обеспечивающий вращательное движение, представляет собой электрическую машину, состоящую из двух основных частей: неподвижного статора и ротора, вращающегося на валу двигателя. Статор двигателя состоит из станины, в которую впрессовывают так называемое электромагнитное ядро статора, включающее магнитопровод и трехфазную распределенную обмотку статора. Назначение ядра — намагничивание машины или создание вращающегося магнитного поля. Магнитопровод статора состоит из тонких (от 0,28 до 1 Мм) изолированных друг от друга листов, штампованных из специальной электротехнической стали. В листах различают зубцовую зону и ярмо (рис. 1.а). Листы собирают и скрепляют таким образом, что в магнитопроводе формируются зубцы и пазы статора (рис. 1.б). Магнитопровод представляет собой малое магнитное сопротивление для магнитного потока, создаваемого обмоткой статора, и благодаря явлению намагничивания этот поток усиливает.
Рис. 1 Магнитопровод статора
В пазы магнитопровода укладывается распределенная трехфазная обмотка статора. Обмотка в простейшем случае состоит из трех фазных катушек, оси которых сдвинуты в пространстве по отношению друг к другу на 120°. Фазные катушки соединяют между собой по схемам звезда, либо треугольник (рис. 2).
Рис 2. Схемы соединения фазных обмоток трехфазного асинхронного двигателя в звезду и в треугольник
Более подробные сведения о схемах соединения и условных обозначениях начал и концов обмоток представлены ниже. Ротор двигателя состоит из магнитопровода, также набранного из штампованных листов стали, с выполненными в нем пазами, в которых располагается обмотка ротора. Различают два вида обмоток ротора: фазную и короткозамкнутую. Фазная обмотка аналогична обмотке статора, соединенной в звезду. Концы обмотки ротора соединяют вместе и изолируют, а начала присоединяют к контактным кольцам, располагающимся на валу двигателя. На контактные кольца, изолированные друг от друга и от вала двигателя и вращающиеся вместе с ротором, накладываются неподвижные щетки, к которым присоединяют внешние цепи. Это позволяет, изменяя сопротивление ротора, регулировать скорость вращения двигателя и ограничивать пусковые токи. Наибольшее применение получила короткозамкнутая обмотка типа «беличьей клетки». Обмотка ротора крупных двигателей включает латунные или медные стержни, которые вбивают в пазы, а по торцам устанавливают короткозамыкающие кольца, к которым припаивают или приваривают стержни. Для серийных АД малой и средней мощности обмотку ротора изготавливают путем литья под давлением алюминиевого сплава. При этом в пакете ротора 1 заодно отливаются стержни 2 и короткозамыкающие кольца 4 с крылышками вентиляторов для улучшения условий охлаждения двигателя, затем пакет напрессовывается на вал 3. (рис. 3). На разрезе, выполненном на этом рисунке, видны профили пазов, зубцов и стержней ротора.
Рис. 3. Ротор аснхронного двигателя с короткозамкнутой обмоткой
Общий вид асинхронного двигателя серии 4А представлен на рис. 4 [2]. Ротор 5 напрессовывается на вал 2 и устанавливается на подшипниках 1 и 11 в расточке статора в подшипниковых щитах 3 и 9, которые прикрепляются к торцам статора 6 с двух сторон. К свободному концу вала 2 присоединяют нагрузку. На другом конце вала укрепляют вентилятор 10 (двигатель закрытого обдуваемого исполнения), который закрывается колпаком 12. Вентилятор обеспечивает более интенсивное отведение тепла от двигателя для достижения соответствующей нагрузочной способности. Для лучшей теплоотдачи станину отливают с ребрами 13 практически по всей поверхности станины. Статор и ротор разделены воздушным зазором, который для машин небольшой мощности находится в пределах от 0,2 до 0,5 мм. Для прикрепления двигателя к фундаменту, раме или непосредственно к приводимому в движение механизму на станине предусмотрены лапы 14 с отверстиями для крепления. Выпускаются также двигатели фланцевого исполнения. У таких машин на одном из подшипниковых щитов (обычно со стороны вала) выполняют фланец, обеспечивающий присоединение двигателя к рабочему механизму.
Рис. 4. Общий вид асинхронного двигателя серии 4А
Выпускаются также двигатели, имеющие и лапы, и фланец. Установочные размеры двигателей (расстояние между отверстиями на лапах или фланцах), а также их высоты оси вращения нормируются. Высота оси вращения — это расстояние от плоскости, на которой расположен двигатель, до оси вращения вала ротора. Высоты осей вращения двигателей небольшой мощности: 50, 56, 63, 71, 80, 90, 100 мм.
2. Принцип действия трехфазных асинхронных двигателей
Выше отмечалось, что трехфазная обмотка статора служит для намагничивания машины или создания так называемого вращающегося магнитного поля двигателя. В основе принципа действия асинхронного двигателя лежит закон электромагнитной индукции. Вращающееся магнитное поле статора пересекает проводники короткозамкнутой обмотки ротора, отчего в последних наводится электродвижущая сила, вызывающая в обмотке ротора протекание переменного тока. Ток ротора создает собственное магнитное поле, взаимодействие его с вращающимся магнитным полем статора приводит к вращению ротора вслед за полями. Наиболее наглядно идею работы асинхронного двигателя иллюстрирует простой опыт, который еще в XVIII веке демонстрировал французский академик Араго (рис. 5). Если подковообразный магнит вращать с постоянной скоростью вблизи металлического диска, свободно расположенного на оси, то диск начнет вращаться вслед за магнитом с некоторой скоростью, меньшей скорости вращения магнита.
Рис. 5. Опыт Араго, объясняющий принцип работы асинхронного двигателя
Это явление объясняется на основе закона электромагнитной индукции. При движении полюсов магнита около поверхности диска в контурах под полюсом наводится электродвижущая сила и появляются токи, которые создают магнитное поле диска. Читатель, которому трудно представить проводящие контуры в сплошном диске, может изобразить диск в виде колеса со множеством проводящих ток спиц, соединенных ободом и втулкой. Две спицы, а также соединяющие их сегменты обода и втулки и представляют собой элементарный контур. Поле диска сцепляется с полем полюсов вращающегося постоянного магнита, и диск увлекается собственным магнитным полем. Очевидно, наибольшая электродвижущая сила будет наводиться в контурах диска тогда, когда диск неподвижен, и напротив, наименьшая, когда близка к скорости вращения диска. Перейдя к реальному асинхронному двигателю отметим, что короткозамкнутую обмотку ротора можно уподобить диску, а обмотку статора с магнитопроводом — вращающемуся магниту. Однако вращение магнитного поля в неподвижном статоре а осуществляется благодаря трехфазной системе токов, которые протекают в трехфазной обмотке с пространственным сдвигом фаз.
Алиев И.И.
Асинхронный двигатель. Принцип работы. — Help for engineer
Асинхронный двигатель. Принцип работы.
Асинхронный двигатель – это асинхронная электрическая машина переменного тока в двигательном режиме, у которой частота вращения магнитного поля статора больше чем частота вращения ротора.
Принцип работы берет основу из создания вращающегося магнитного поля статора, о чем подробнее вы можете почитать из указанной ссылки.
Асинхронные двигатели – одни из самых распространённых электрическим машин, и зачастую являются одним из основных преобразователей электрической энергии в механическую энергию. Самым большим достоинством является отсутствие контакта между подвижными и подвижными частями ротора, я имею ввиду электрический контакт, к примеру, в двигателях постоянного тока через щетки и коллектор. Однако это справедливо только к АД с короткозамкнутым ротором, в асинхронных двигателях с фазным ротором, этот контакт имеет место, но об этом чуть позже.
Конструкция асинхронного двигателя.
Рассмотрим конструкцию, примером послужит асинхронный двигатель с короткозамкнутым ротором, но так же существует фазный тип ротора. Асинхронный двигатель состоит из статора и ротора между которыми воздушный зазор. Статор и ротор в свою очередь еще имеют так называемые активные части – обмотка возбуждения (отдельно статорная и отдельно роторная) и магнитопровод (сердечник). Все остальные детали АД, такие как: вал, подшипники, вентилятор, корпус, и т.п. – чисто конструктивные детали, обеспечивающие защиту от окружающей среды, прочность, охлаждение, возможность совершать вращение.
Рисунок 1 – Конструкция асинхронного двигателя.
Статор представляет собой трёх (или много)-фазную обмотку, проводники которой равномерно уложены в пазах по всей окружности, с угловым расстоянием в 120 эл. градусов. Концы обмотки статора обычно соединяют по схемам «звезда» или «треугольник», и подключаются к сети питающего напряжения. Магнитопровод выполняется из электротехнической шихтованной (набрано из тонких листов) стали.
Как я уже сказал ранее, в асинхронном двигателе существует всего 2 типа роторов: это фазный тип ротора, и короткозамкнутый. Магнитопровод ротора также выполнен из шихтованной электротехнической стали. Короткозамкнутый ротор имеет вид так называемой «беличьей клетки» из-за схожести своей конструкции на эту клетку. Состоит эта клетка из медных стержней, которые накоротко замкнуты кольцами. Стержни непосредственно вставлены в пазы сердечника ротора. Для улучшения пусковых характеристики АД с таким типом ротора, применяют специальную форму паза, это дает возможность использования эффекта вытеснения тока, что влияет на увеличение активного сопротивления роторной обмотки при пуске (больших скольжения). Сами по себе, АД с короткозамкнутым ротором имеют малый пусковой момент, что пагубно сказывается на области их использования. Наибольшее распространение они нашли в системах которые не требуют больших пусковых моментов. Однако, данный тип ротора отличается тем, что на его обслуживание тратится меньше средств чем на обслуживание двигателя с фазным ротором, вследствие отсутствия физического контакта в типе ротора беличья клетка.
Рисунок 2 – Ротор АД «беличья клетка»
Фазный ротор состоит из трёхфазной обмотки, зачастую соединенной по схеме «звезда», и выведенную на контактные кольца, которые вращаются вместе с валом. Щетки выполнены из графита. Фазный ротор дает много преимуществ, таких как пуск звезда-треугольник, регулирование частоты вращения изменением сопротивления ротора.
Режимы работы
Подробнее рассмотреть механическую характеристику в моей ранней статье, а так же способы пуска с реверсом.
К тормозным режимам стоит отнести несколько основных:
– торможение противовключением;
– торможение однофазным переменным током и конденсаторное торможение;
– динамическое торможение.
Асинхронный двигатель имеет низкую стоимость, надёжен, и очень дешевый в обслуживании, особенно если он выполнен с короткозамкнутым ротором.
Недостаточно прав для комментирования
Асинхронный электродвигатель: виды и принцип работы
В наши дни электрооборудование выглядит совсем иначе, чем изобретение российского электротехника, но по-прежнему используются для превращения электрической энергии в механическую. Надежность в работе, простая конструкция и невысокая себестоимость были по достоинству оценены покупателями. Сегодня асинхронные двигатели — наиболее распространенный во всем мире тип моторов. Их используют для комплектации промышленного оборудования, бытовой техники и электроинструментов в девяти случаев из десяти.
Какие бывают виды асинхронных механизмов
Асинхронный мотор имеет самую простую конструкцию. Классическое устройство электродвигателя состоит из статора, а также ротора.
Статор выполнен в форме классического цилиндра. Для изготовления статора производители используют тонкие стальные листы, обмотка в пазах сердечника сделана из специального провода. Оси обмоток расположены друг к другу под углом 120°. Их концы соединяются по-разному — все зависит от допустимой величины напряжения. В одних случаях соединение напоминаем звезду, в других — треугольник.
В отличие от статора, роторы бывают нескольких типов. Производители классифицируют выпущенные моторы именно по типу ротора — виды асинхронных двигателей: с короткозамкнутым и фазным ротором. Давайте рассмотрим каждый их подробнее.
- Фазный — это ротор с трехфазной обмоткой, которая напоминает обмотку статора. Ее концы соединяются в форме звезды, края крепятся к контактным кольцам. К этим же кольцам присоединяются добавочные резисторы, которые меняют активное сопротивление в цепи и уменьшают большие пусковые токи.
- Короткозамкнутый ротор — сердечник, изготовленный из стальных листов. Для серийного производства, как правило, используется расплавленный алюминий, который заливается и образовывает стержни между торцевых колец. Конструкция ротора получила в обиходе название «беличья клетка», так как внешне напоминает бочку для грызунов. Когда заходит речь об изготовлении мощных двигателей, производители используют не алюминий, а медь.
Асинхронный электродвигатель: принцип работы
Напряжение подается на обмотку статора. В этот момент возникает магнитный поток, величина которого меняется с изменением частоты напряжения. Потоки сдвинуты во времени и пространстве по отношению друг к другу на 120°. Вращающим оказывается результирующий магнитный поток, который движется, тем самым создавая в проводниках ротора ЭДС. Обмотка ротора исполняет роль замкнутой электрической цепи, в ней появляется ток, который, взаимодействуя с потоками статора, создает пусковой момент. Мотор стремится повернуть ротор в направлении движения магнитного поля статора. В тот момент, когда он достигает значения тормозного момента ротора и превышает его, ротор начинает вращаться, вызывая скольжение.
Что такое скольжение? Это величина, которая показывает нам, насколько синхронная частота магнитного поля статора больше, чем частота вращения ротора.
S = ((n1 — n2)/n1) х 100 %, где:
S — скольжение;
n1 — синхронная частота магнитного поля статора, n2 — ротора.
Почему так важно скольжение? Его используют для характеристики асинхронных электродвигателей, ведь изначально скольжение равно единице, но по мере роста n1 относительная разность частот n1-n2 становится меньше. В результате этого, падает ЭДС и ток в проводниках ротора, что в свою очередь приводит к уменьшению вращающего момента. Если провести анализ, в состоянии холостого хода, в тот момент, когда мотор работает без нагрузки на валу, показатель скольжения минимален. Как только возрастает статический момент, скольжение растет до величины Skp — критического скольжения. Этот показатель очень важен, ведь как только будет превышена точка критического скольжения, асинхронные двигатели перестают стабильно работать. Значение скольжения колеблется в пределах от нуля до единицы, асинхронных моторов универсального назначения в номинальном режиме до 8 %. Как только наступает равновесие между электромагнитным и тормозным моментом изменение величин прекратится.
Если говорить простыми словами, принцип работы мотора состоит во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Вращающий момент возникает только тогда, когда появляется разность частот вращения магнитных полей.
Двигатели переменного тока| Принцип работы | Ресурсы для инженеров
Универсальные моторы
Универсальный двигатель — это однофазный последовательный двигатель, который может работать как от переменного (ac), так и от постоянного (dc) тока, а характеристики одинаковы как для переменного, так и для постоянного тока. Обмотки возбуждения последовательных двигателей соединены последовательно с обмотками якоря
.Основные принципы Universal Motors
Области электрического проектирования универсального двигателя: магнитная цепь, обмотки возбуждения и якоря, коммутатор и щетки, изоляция и система охлаждения.
Процесс коммутации универсальных двигателей
Тактико-технические характеристики универсальных двигателей
Двигатели с экранированными полюсами
Двигатель с экранированными полюсами — это однофазный асинхронный двигатель переменного тока. Вспомогательная обмотка, состоящая из медного кольца, называется затеняющей катушкой. Ток в этой катушке задерживает фазу магнитного потока в этой части полюса, чтобы обеспечить вращающееся магнитное поле. Направление вращения — от незатененной стороны к закрашенному кольцу.
Основные принципы двигателя с экранированными полюсами
- Эта система затеняющих катушек (кольцо) смещает ось затененных полюсов от оси основных полюсов
- Когда питание подается на статор, магнитный поток в основной части полюса индуцирует напряжение в затеняющей катушке, которая действует как вторичная обмотка трансформатора.
- Так как ток во вторичной обмотке трансформатора не в фазе с током в первичной обмотке.
- Ток в затеняющей катушке не в фазе с током в основной обмотке возбуждения.
- Таким образом, поток затеняющего полюса не совпадает по фазе с потоком основного полюса.
Вращающееся поле двигателя с экранированными полюсами
Двигатели синхронные
Синхронные двигатели переменного тока — это электродвигатели с постоянной скоростью, которые работают синхронно с частотой сети. Скорость синхронного двигателя определяется количеством пар полюсов и всегда является соотношением частоты сети.
- Статор снабжен двумя простыми катушками, которые можно напрямую подключить к сети.
- Ротор состоит из цилиндрического постоянного двухполюсного магнита, диаметрально намагниченного.
Основные принципы синхронных двигателей
Каков принцип работы асинхронного двигателя | by Starlight Generator
Асинхронный двигатель
Асинхронный двигатель, также известный как «асинхронный двигатель», представляет собой устройство, которое помещает ротор во вращающееся магнитное поле и получает вращающий момент под действием вращающегося магнитного поля. поле, тем самым вращая ротор.
Статор — это не вращающаяся часть двигателя. Основная задача — создать вращающееся магнитное поле. Вращающееся магнитное поле не достигается механически. Вместо этого он подключен к паре электромагнитов переменным током, так что его свойства магнитного полюса меняются циклически, поэтому он эквивалентен вращающемуся магнитному полю.
Принцип работы
Вращающееся магнитное поле, создаваемое статором (скорость вращения — это синхронная скорость вращения n1), и относительное движение обмотки ротора, линия магнитной индукции, режущая обмотку ротора, создает наведенную электродвижущую силу, тем самым генерирование индуцированного тока в обмотке ротора.Индуцированный ток в обмотке ротора взаимодействует с магнитным полем, создавая электромагнитный момент, который заставляет ротор вращаться. Поскольку индуцированный ток постепенно уменьшается по мере того, как скорость ротора постепенно приближается к синхронной скорости, генерируемый электромагнитный момент также соответственно уменьшается. Когда асинхронный двигатель работает в режиме двигателя, скорость ротора меньше синхронной скорости.
Разница между синхронным двигателем и асинхронным двигателем
Синхронный двигатель и асинхронный двигатель являются наиболее широко используемыми типами двигателей переменного тока. Разница между этими двумя типами заключается в том, что синхронный двигатель вращается со скоростью, привязанной к частоте сети, поскольку он не полагается на индукцию тока для создания магнитного поля ротора. В отличие от этого, асинхронный двигатель требует скольжения: ротор должен вращаться немного медленнее, чем переменный ток, чтобы вызвать ток в обмотке ротора.
Маленькие синхронные двигатели используются в системах хронометража, таких как синхронные часы, таймеры в приборах, магнитофонах и точных сервомеханизмах, в которых двигатель должен работать с точной скоростью; Точность скорости — это точность частоты линии электропередачи, которая тщательно контролируется в крупных взаимосвязанных сетевых системах.
Синхронные двигатели доступны от самовозбуждающихся субфракционных размеров в лошадиных силах до мощных промышленных размеров.
Starlight Power обеспечивает синхронный генератор мощностью от 20 до 2500 кВт различных производителей, таких как Stamford, Siemens, Marathon, Engga, Leroy-Somer и генератор переменного тока Starlight. Свяжитесь с нами по электронной почте: [email protected]
В диапазоне дробной мощности большинство синхронных двигателей используются там, где требуется точная постоянная скорость. Эти машины обычно используются в аналоговых электрических часах, таймерах и других устройствах, где требуется точное время.В промышленных масштабах большой мощности синхронный двигатель выполняет две важные функции. Во-первых, это высокоэффективное средство преобразования энергии переменного тока в работу. Во-вторых, он может работать с опережающим или единичным коэффициентом мощности и, таким образом, обеспечивать коррекцию коэффициента мощности.
Теория двигателей переменного тока | Научные исследования
Обновлено 8 декабря 2018 г.
Дж. Дайан Дотсон
Никола Тесла изобрел двигатели переменного тока, или двигатели переменного тока, в конце 19 века. Двигатели переменного тока отличаются от двигателей постоянного или постоянного тока тем, что в них используется переменный ток, который меняет направление. Двигатели переменного тока преобразуют электрическую энергию в механическую. Электродвигатели переменного тока все еще широко используются в современной жизни, и вы можете найти их в бытовой технике и гаджетах у себя дома.
TL; DR (слишком долго; не читал)
Двигатели переменного тока или двигатели переменного тока были изобретены Николой Тесла в 19 веке. Теория электродвигателя переменного тока предполагает использование электромагнитов с токами для создания силы и, следовательно, движения.
Каков принцип работы двигателя?
Простейший принцип работы двигателя — использование электромагнитов с токами для создания силы для перемещения чего-либо — другими словами, для преобразования электрической энергии в механическую энергию вращения.В двигателях установлены электромагниты во вложенных кольцах с чередованием полярности магнитов с севера на юг в кольцах. Магниты ротора движутся, а магниты статора — нет. Полярность север-юг этих электромагнитов должна постоянно меняться.
Как работает двигатель переменного тока?
До изобретений Теслы двигатели постоянного тока были основным типом двигателей. Двигатель переменного тока работает, подавая переменный ток на обмотки статора, которые создают вращающееся магнитное поле.Поскольку магнитное поле вращается таким образом, двигатель переменного тока не нуждается в силе или механической помощи для приложения к ротору. Ротор будет вращаться под действием магнитного поля и создавать крутящий момент на приводном валу двигателя. Скорость вращения зависит от количества магнитных полюсов статора. Эта скорость называется синхронной скоростью. Однако асинхронные двигатели переменного тока работают с задержкой или скольжением, чтобы обеспечить прохождение тока ротора.
Различные двигатели переменного тока имеют разное количество полюсов и, следовательно, разную скорость по сравнению друг с другом.Однако скорость двигателя переменного тока не является переменной, а скорее постоянной. В этом отличие от многих двигателей постоянного тока. Двигатели переменного тока не требуют щеток (силовых контактов) или коммутаторов, которые необходимы двигателям постоянного тока.
Изобретения Теслы радикально изменили ландшафт двигателей, создав более эффективные и надежные устройства. Эти двигатели переменного тока произвели революцию в отрасли и проложили путь для использования во многих устройствах, используемых в 21 веке, таких как кофемолки, вентиляторы для душа, кондиционеры и холодильники.
Сколько типов двигателей существует?
Существует несколько типов двигателей переменного тока, работающих по одному и тому же основному принципу. Многие из этих двигателей представляют собой разновидности асинхронных двигателей переменного тока, хотя более поздние двигатели переменного тока с постоянными магнитами, или PMAC, работают немного иначе.
Самый распространенный двигатель переменного тока — это универсальный трехфазный асинхронный двигатель. Этот многофазный двигатель работает с задержкой, а не с синхронной скоростью. Эта разница в скорости называется скольжением двигателя.Индуцированные токи, протекающие в роторе, вызывают это скольжение, что приводит к возникновению большого тока при его запуске. Из-за скольжения эти двигатели считаются асинхронными. Трехфазные асинхронные двигатели обладают высокой мощностью и эффективностью с высоким пусковым моментом. Таким двигателям часто требуется механическое пусковое усилие для приведения ротора в движение. Трехфазные асинхронные двигатели — это мощные двигатели, обычно используемые в промышленных устройствах.
Двигатели с короткозамкнутым ротором представляют собой двигатель переменного тока, в котором алюминиевые или медные токопроводящие шины на роторе расположены параллельно валу.Размер и форма токопроводящих стержней влияет на крутящий момент и скорость. Название происходит от сходства устройства с клеткой.
Асинхронный двигатель с фазным ротором — это двигатель переменного тока, который состоит из ротора с обмотками, а не стержнями. Асинхронным двигателям с фазным ротором требуется высокий пусковой момент. Сопротивление вне ротора влияет на скорость крутящего момента.
Однофазный асинхронный двигатель — это двигатель переменного тока, в котором пусковая обмотка добавлена под прямым углом к обмотке главного статора.Универсальные двигатели — это однофазные двигатели, которые могут работать как от переменного, так и от постоянного тока. Пылесос в вашем доме, вероятно, оснащен универсальным двигателем.
Конденсаторные двигатели — это двигатель переменного тока, который требует добавления емкости для создания фазового сдвига между обмотками. Они удобны для машин, требующих высокого пускового момента, таких как компрессоры.
Двигатели с конденсаторным питанием — это однофазные двигатели переменного тока, которые уравновешивают хороший пусковой момент и ход. В этих двигателях используются конденсаторы, подключенные к вспомогательным пусковым обмоткам.В некоторых печных вентиляторах вы найдете конденсаторные двигатели. В двигателях с конденсаторным пуском используется конденсатор с пусковой обмоткой, который может создать наибольший пусковой момент. Оба этих типа двигателей требуют двух конденсаторов в дополнение к переключателю, поэтому их части повышают стоимость таких двигателей. Если выключатель убрать, полученный двигатель с постоянным разделенным конденсатором будет работать с меньшими затратами, но также будет использовать более низкий пусковой момент. Эти типы двигателей переменного тока, хотя и являются более дорогими в эксплуатации, хорошо подходят для нужд с высоким крутящим моментом, таких как воздушные компрессоры и вакуумные насосы.
Электродвигатели с расщепленной фазой — это электродвигатели переменного тока, в которых используется пусковая обмотка малого диаметра и различные соотношения сопротивления и реактивного сопротивления. Это дает разность фаз через узкие проводники. Двигатели с разделенной фазой обеспечивают более низкий пусковой момент, чем другие конденсаторные двигатели, и высокий пусковой ток. Поэтому электродвигатели с расщепленной фазой обычно используются в небольших вентиляторах, небольших шлифовальных машинах или электроинструментах. Мощность электродвигателей с расщепленной фазой может достигать 1/3 л.с.
Двигатели с расщепленными полюсами — это недорогие однофазные асинхронные двигатели переменного тока с одной обмоткой.Двигатели с экранированными полюсами используют магнитный поток между незатененными и затемненными частями затененной катушки из меди. Их лучше всего использовать в качестве небольших одноразовых двигателей, не требующих длительного времени работы или большого крутящего момента.
Синхронные двигатели названы так потому, что генерируемые ими магнитные полюса вращают ротор с синхронной скоростью. Количество пар полюсов определяет скорость синхронного двигателя. Подтипы синхронных двигателей включают трехфазные и одиночные синхронные двигатели.
Гистерезисные двигатели представляют собой стальные цилиндры без обмоток и зубьев.Эти двигатели имеют постоянный крутящий момент и работают плавно, поэтому их часто используют в часах.
В большинстве двигателей переменного тока используются электромагниты, потому что они не ослабевают, в отличие от постоянных магнитов. Однако новые технологии сделали двигатели переменного тока с постоянными магнитами жизнеспособными и даже предпочтительными в определенных обстоятельствах. Двигатели переменного тока с постоянными магнитами или PMAC используются в приложениях, требующих точного крутящего момента и скорости. Это надежные, популярные сегодня моторы. Магниты установлены на роторе либо на его поверхности, либо в его пластинах.Магниты, используемые в PMAC, сделаны из редкоземельных элементов. Они производят больше магнитного потока, чем индукционные магниты. PMAC — это синхронные машины, которые работают с высоким КПД и работают независимо от того, является ли потребность в крутящем моменте переменной или постоянной. PMAC работают при более низких температурах, чем другие двигатели переменного тока. Это помогает снизить износ деталей двигателя. Благодаря своей высокой эффективности PMAC потребляют меньше энергии. Более высокие первоначальные затраты в конечном итоге компенсируются длительной работой этого эффективного двигателя.
Может ли двигатель переменного тока работать с регулируемой скоростью?
Одно из преимуществ двигателей постоянного тока заключается в том, что их скорость может изменяться. Двигатели переменного тока, однако, не склонны работать с переменной скоростью. Они работают с постоянной скоростью независимо от нагрузки. Это полезно для поддержания точной скорости. Однако для некоторых приложений требуется переменная скорость. Попытки изменить скорость двигателей переменного тока могут привести к их повреждению или перегреву. Однако есть способы обойти эти проблемы и создать двигатель переменного тока с регулируемой скоростью.Существуют механические решения для изменения скорости двигателей переменного тока. В некоторых устройствах это можно сделать с помощью шкивов, например токарного станка. Еще одно механическое решение — использовать промежуточный вал.
Многие современные машины по-прежнему работают на основе оригинальных асинхронных двигателей переменного тока Николы Теслы. Эти двигатели выдержали испытание временем благодаря своей адаптивности и долговечности. Инженеры стремятся сделать двигатели более эффективными, с меньшим износом и тепловыделением, с меньшими затратами и меньшим воздействием на окружающую среду.
Конструкция, принцип действия, расчет мощности и крутящего момента, характеристики и регулирование скорости
— 2-
Ключевые слова: асинхронный двигатель; 3-фазные двигатели; Строительство асинхронного двигателя; Ротор;
Статор; Принцип действия; Характеристики крутящего момента-скорости; Контроль скорости.
Резюме В настоящее время более 90% механической энергии, используемой в промышленности, составляет
, обеспечиваемая трехфазными асинхронными двигателями, поскольку они прочны и просты в конструкции, а
— это довольно эффективное преобразование энергии. Кроме того, трехфазная индукция имеет низкую стоимость, достаточно хороший коэффициент мощности
, самозапуск и низкую стоимость обслуживания. В этом исследовании
мы начинаем с конструкции асинхронного двигателя и его основных частей. Функции. Затем,
объясняется принцип работы индукционной машины. Более того, подробный расчет мощности и крутящего момента
с учетом эквивалентной схемы индукционной машины
. Однако показана диаграмма потока мощности асинхронного двигателя, а затем
расчет мощности, начиная с входной электрической мощности и заканчивая выходной
механической мощностью.Тем не менее, развиваемый крутящий момент асинхронного двигателя получается с использованием выражения
для развитой механической мощности. Затем схема асинхронного двигателя решается, чтобы
получить ток ротора, крутящий момент и мощность с точки зрения напряжения на клеммах статора, скольжения
работы и параметров машины. Кроме того, в пятый раздел включены основные рабочие характеристики, такие как
, такие как характеристика крутящего момента-скорости, коэффициент мощности, ток и эффективность асинхронных двигателей
. В следующем разделе описаны различные методы контроля скорости
. Наконец, есть заключение по этому исследованию.
1. Введение
Индукционные машины, также называемые асинхронными машинами, являются наиболее часто используемыми электрическими машинами
в промышленности. Фактически, асинхронные двигатели настолько распространены в промышленности, что на многих заводах
невозможно найти другие типы электрических машин. Трехфазный. Асинхронные двигатели
доступны как однофазные, так и трехфазные.Однофазные асинхронные двигатели
обычно изготавливаются небольшого размера (до 3 л.с.). Поэтому важно изучить индукционный двигатель
для лучшего понимания, поскольку он играет важную роль в промышленности. [1]
Электродвигатель— Принципы работы трехфазного двигателя — роторный, полевой, магнитный и синхронный
Основное различие между двигателями переменного и постоянного тока заключается в том, что магнитное поле, создаваемое статором, вращается в корпусе переменного тока. Через клеммы вводятся три электрические фазы, каждая фаза возбуждает отдельный полюс поля.Когда каждая фаза достигает своего максимального тока, магнитное поле на этом полюсе достигает максимального значения. По мере уменьшения тока уменьшается и магнитное поле. Поскольку каждая фаза достигает своего максимума в разное время в пределах цикла тока, тот полюс поля, магнитное поле которого является наибольшим, постоянно изменяется между тремя полюсами, в результате чего магнитное поле, видимое ротором, вращается. Скорость вращения магнитного поля, известная как синхронная скорость, зависит от частоты источника питания и количества полюсов, создаваемых обмоткой статора.Для стандартного источника питания 60 Гц, используемого в Соединенных Штатах, максимальная синхронная скорость составляет 3600 об / мин.
В трехфазном асинхронном двигателе обмотки ротора не подключены к источнику питания, а по существу являются короткими замыканиями. Наиболее распространенный тип обмотки ротора, обмотка с короткозамкнутым ротором, очень похожа на ходовое колесо, используемое в клетках для домашних животных песчанок . Когда двигатель первоначально включен, а ротор неподвижен, проводники ротора испытывают изменяющееся магнитное поле, перемещающееся с синхронной скоростью.Согласно закону Фарадея, эта ситуация приводит к наведению токов вокруг обмоток ротора; величина этого тока зависит от импеданса обмоток ротора. Поскольку условия для работы двигателя теперь выполнены, то есть токопроводящие проводники находятся в магнитном поле, ротор испытывает крутящий момент и начинает вращаться. Ротор никогда не может вращаться с синхронной скоростью, потому что не будет относительного движения между магнитным полем и обмотками ротора, и не может быть индуцирован ток.Асинхронный двигатель имеет высокий пусковой момент.
В двигателях с короткозамкнутым ротором скорость двигателя определяется нагрузкой, которую он приводит, и числом полюсов, создающих магнитное поле в статоре. Если некоторые полюса включены или выключены, скорость двигателя можно регулировать с приращением. В двигателях с фазным ротором сопротивление обмоток ротора может быть изменено извне, что изменяет ток в обмотках и, таким образом, обеспечивает непрерывное управление скоростью.
Трехфазные синхронные двигатели сильно отличаются от асинхронных двигателей.В синхронном двигателе в роторе используется катушка под напряжением постоянного тока для создания постоянного магнитного поля. После того, как ротор приближается к синхронной скорости двигателя, северный (южный) полюс магнита ротора фиксируется на южном (северном) полюсе вращающегося поля статора, и ротор вращается с синхронной скоростью. Ротор синхронного двигателя обычно включает в себя обмотку с короткозамкнутым ротором, которая используется для запуска вращения двигателя до подачи питания на катушку постоянного тока. Беличья клетка не действует на синхронных скоростях по причине, описанной выше.
Однофазные асинхронные и синхронные двигатели, используемые в большинстве бытовых ситуаций, работают по принципам, аналогичным принципам, описанным для трехфазных двигателей. Однако для создания пусковых моментов необходимо внести различные модификации, поскольку одна фаза не создает только вращающееся магнитное поле. Следовательно, в асинхронных двигателях используются конструкции с расщепленной фазой, конденсатором , пуском или заштрихованными полюсами. Синхронные однофазные двигатели, используемые для таймеров, часов, магнитофонов и т. Д., полагайтесь на конструкции сопротивления или гистерезиса.
Конструкция и принцип работы трехфазного асинхронного двигателя Трехфазный асинхронный двигатель: Трехфазные асинхронные двигатели — наиболее широко используемые электродвигатели в промышленности. Они работают практически с постоянной скоростью от холостого хода до полной нагрузки. Однако скорость зависит от частоты, и, следовательно, эти двигатели нелегко адаптировать контроль скорости.Обычно мы предпочитаем двигатели постоянного тока, когда требуются большие изменения скорости.Тем не менее, трехфазные асинхронные двигатели просты, надежны, дешевы, просты в обслуживании и могут быть изготовлены с характеристиками, соответствующими большинству промышленных требований. В этом разделе мы обсудим принцип работы трехфазной индукции . моторы .
Как и любой электродвигатель, трехфазный асинхронный двигатель имеет статор и ротор.Статор имеет трехфазную обмотку (называемую обмоткой статора), а ротор имеет короткозамкнутую обмотку (называемую обмоткой ротора). Только обмотка статора питается от трехфазного источника питания. Обмотка ротора получает напряжение и мощность от обмотки статора, находящейся под внешним напряжением, посредством электромагнитной индукции, отсюда и название.
Асинхронный двигатель может рассматриваться как трансформатор с вращающейся вторичной обмоткой и, следовательно, может быть описан как машина переменного тока «трансформаторного типа», в которой электрическая энергия преобразуется в механическую.
Конструкция трехфазного асинхронного двигателя:
На рисунке 8.1 показана конструкция трехфазного асинхронного двигателя . Трехфазный асинхронный двигатель состоит из двух основных частей (i) статор и (ii) ротор. Ротор отделен от статора небольшим воздушным зазором, который составляет от 0,4 мм до 4 мм, в зависимости от мощности двигателя. .РИС.(8.1) |
3-фазная обмотка статора намотана на определенное количество полюсов в соответствии с требованиями скорости.Чем больше число полюсов, тем меньше скорость двигателя и наоборот. Когда на обмотку статора подается трехфазное питание, создается вращающееся магнитное поле (см. Раздел 8.3) постоянной величины. токи в роторе за счет электромагнитной индукции.
Ротор, установленный на валу, представляет собой полый многослойный сердечник с прорезями на внешней периферии. Обмотка, помещенная в эти прорези (называемая обмоткой ротора), может быть одного из следующих двух типов:
(i) Тип беличьей клетки (ii) Тип раны
(i) Ротор с короткозамкнутым ротором: Он состоит из многослойного цилиндрического сердечника с параллельными пазами на внешней периферии.В каждую прорезь помещается по одной медной или алюминиевой шине, каждая из которых соединяется с каждого конца металлическими кольцами, называемыми концевыми кольцами.Это образует постоянно замкнутую накоротко обмотку, которая не поддается разрушению. Вся конструкция (стержни и концевые кольца) напоминает беличью клетку, отсюда и название. Ротор электрически не подключен к источнику питания, но в нем есть ток, индуцированный действием трансформатора от статора.
Асинхронные двигатели , в которых используется ротор с короткозамкнутым ротором, называются асинхронными двигателями с короткозамкнутым ротором. В большинстве трехфазных асинхронных двигателей используется ротор с короткозамкнутым ротором, поскольку он имеет удивительно простую и прочную конструкцию, позволяющую работать в самых неблагоприятных условиях.
Однако он страдает недостатком низкого пускового момента, так как стержни ротора постоянно закорочены, и невозможно добавить какое-либо внешнее сопротивление в цепь ротора для получения большого пускового момента.
(ii) Ротор с обмоткой: Он состоит из многослойного цилиндрического сердечника и имеет 3-фазную обмотку , аналогичную обмотке статора [см. Рис.(8.3)]. Обмотка ротора равномерно распределена в пазах и обычно соединяется звездой. Открытые концы обмотки ротора выводятся и соединяются с тремя изолированными контактными кольцами, установленными на валу ротора, с одной щеткой, опирающейся на каждый контакт. звенеть.
Три щетки подключены к трехфазному реостату, соединенному звездой, как показано на рисунке (8. 4). При запуске внешние сопротивления включаются в цепь ротора, чтобы обеспечить большой пусковой момент. Эти сопротивления постепенно уменьшаются до нуля. когда двигатель набирает скорость.
Внешние сопротивления используются только во время запуска. Когда двигатель достигает нормальной скорости, три щетки замыкаются накоротко, так что намотанный ротор работает как ротор с короткозамкнутым ротором.
Принцип работы трехфазного асинхронного двигателя:
Скорость вращения магнитного поля:
Скорость, с которой вращается вращающееся магнитное поле, называется синхронной скоростью (Нс).Ссылаясь на рис. (8.6 (ii)), момент 4 представляет собой завершение четверти цикла переменного тока Ix с момента времени 1. В течение этого четверти цикла поле повернулось на 90 °. В момент времени, представленный 13 или одним полным циклом тока Ix от начала координат, поле совершило один оборот.Следовательно, для 2-полюсной обмотки статора поле совершает один оборот за один цикл тока. В 4-полюсной обмотке статора можно показать, что вращающееся поле совершает один оборот за два цикла тока.В общем, если полюса P, вращающееся поле делает один оборот в P / 2 цикла тока.
Скорость вращающегося магнитного поля такая же, как и скорость генератора переменного тока, который подает мощность на двигатель, если оба имеют одинаковое количество полюсов, поэтому считается, что магнитный поток вращается с синхронной скоростью.Трехфазный асинхронный двигатель Преимущества: (i) Он имеет простую и прочную конструкцию.(ii) Это относительно дешево. (iii) Он требует небольшого обслуживания. (iv) Он имеет высокий КПД и достаточно хороший коэффициент мощности.
(v) Он имеет самозапускающийся крутящий момент.
Трехфазный асинхронный двигатель Недостатки:(i) По сути, это двигатель с постоянной скоростью, и его скорость не может быть изменена
(ii) Его пусковой момент ниже, чем у шунтирующего двигателя постоянного тока. Заключение:
Вы узнали о конструкции и принципах работы трехфазного асинхронного двигателя .Если у вас есть какие-либо вопросы, оставьте комментарий ниже.
Принцип работы однофазного асинхронного двигателя
Производство вращающегося поля
Рассмотрим две обмотки «A» и «B», смещенные так, что они создают магнитное поле на 90 ° друг от друга в пространстве. Результатом этих двух полей является вращающееся магнитное поле постоянной величины & phiv; м . Неоднородное магнитное поле создает неравномерный крутящий момент, который делает работу двигателя шумной и влияет на пусковой крутящий момент.
Рисунок: Создание однородного магнитного поля.
Принцип пуска
Однофазный асинхронный двигатель состоит из однофазной обмотки на статоре и клеточной обмотки на роторе. Когда к обмотке статора подключен однофазный источник питания, создается пульсирующее магнитное поле. В пульсирующем поле ротор не вращается по инерции. Поэтому однофазный асинхронный двигатель не запускается автоматически и требует определенных средств запуска.Для определения характеристик однофазного асинхронного двигателя были предложены две теории.
- Теория двойного вращающегося поля.
- Теория кросс-поля.
Теория двойного вращающегося поля
Эта теория для однофазной среды утверждает, что стационарное пульсирующее магнитное поле может быть разделено на два RMF, каждая из которых имеет одинаковую величину, но вращается в противоположном направлении.
Асинхронная машина реагирует на каждое магнитное поле отдельно, и чистый крутящий момент в двигателе равен некоторой части крутящего момента, создаваемого каждым из двух магнитных полей.
Уравнение переменного магнитного поля, ось которого зафиксирована в пространстве:
β max — максимальное значение плотности потока синусоидально распределенного воздушного зазора. «B» представляет уравнение вращающегося поля, движущегося в положительном направлении α, а «A» представляет уравнение вращающегося поля, движущегося в положительном направлении. Поле, движущееся в положительном направлении α, называется полем вращения вперед, а в направлении отрицательного α — полем, вращающимся назад.
Таким образом, можно сделать вывод, что стационарное пульсирующее магнитное поле может быть разрешено за счет двух вращающихся магнитных полей, оба одинаковой величины и движущихся с синхронной скоростью в противоположном направлении с той же частотой, что и стационарное магнитное поле.
Теория, основанная на таком разрешении переменного поля на два поля, вращающихся в противоположных направлениях, называется теорией поля с двойным вращением и однофазной индукционной машины.
.