Принцип действия асинхронного двигателя: Асинхронный электродвигатель с короткозамкнутым и фазным ротором: устройство и принцип действия

Содержание

Асинхронный электродвигатель с короткозамкнутым и фазным ротором: устройство и принцип действия

Наука в области электричества в XIX и XX веках стремительно развивалась, что привело к созданию электрических асинхронных двигателей. С помощью таких устройств развитие промышленной индустрии шагнуло далеко вперед и теперь невозможно представить заводы и фабрики без силовых машин с использованием асинхронных электродвигателей.

Устройство, виды и принцип действия асинхронных электродвигателей

История появления

История создания асинхронного электродвигателя начинается в 1888 году, когда Никола Тесла запатентовал схему электродвигателя, в этом же году другой ученый в области электротехники Галлилео Феррарис опубликовал статью о теоретических аспектах работы асинхронной машины.

В 1889 году российский физик Михаил Осипович Доливо-Добровольский получил в Германии патент на асинхронный трехфазный электрический двигатель.

Устройство, виды и принцип действия асинхронных электродвигателей

Все эти изобретения позволили усовершенствовать электрические машины и привели к тому, что в промышленность стали массово применяться электрические машины, которые значительно ускорили все технологические процессы на производстве, повысили эффективность работы и снизили её трудоемкость.

В настоящий момент самый распространенный электродвигатель, эксплуатируемый в промышленности, является прототипом электрической машины, созданной Доливо-Добровольским.

Устройство и принцип действия асинхронного двигателя

Главными компонентами асинхронного электродвигателя являются статор и ротор, которые отделены друг от друга воздушным зазором. Активную работу в двигателе выполняют обмотки и сердечник ротора.

Под асинхронностью двигателя понимают отличие частоты вращения ротора от частоты вращения электромагнитного поля.

Статор – это неподвижная часть двигателя, сердечник которой выполняется из электротехнической стали и монтируется в станину. Станина выполняется литым способом из материала, который не магнитится (чугун, алюминий). Обмотки статора являются трехфазной системой, в которой провода уложены в пазы с углом отклонения 120 градусов. Фазы обмоток стандартно подключают к сети по схемам «звезда» или «треугольник».

Устройство, виды и принцип действия асинхронных электродвигателей

Ротор – это подвижная часть двигателя. Роторы асинхронных электродвигателей бывают двух видов: с короткозамкнутым и фазным роторами. Данные виды отличаются между собой конструкциями обмотки ротора.

Асинхронный двигатель с короткозамкнутым ротором

Такой тип электрической машины был впервые запатентован М.О. Доливо-Добровольским и в народе называется «беличье колесо» из-за внешнего вида конструкции. Короткозамкнутая обмотка ротора состоит из накоротко замкнутых  с помощью колец стержней из меди (алюминия, латуни) и вставленные в пазы обмотки сердечника ротора. Такой тип ротора не имеет подвижных контактов, поэтому такие двигатели очень надежны и долговечны при эксплуатации.

Асинхронный двигатель с фазным ротором

Устройство, виды и принцип действия асинхронных электродвигателей

Такое устройство позволяет регулировать скорость работы в широком диапазоне. Фазный ротор представляет собой трехфазную обмотку, которая соединяется по схемам «звезда» или треугольник. В таких электродвигателях в конструкции имеются специальные щетки, с помощью которых можно регулировать скорость движения ротора. Если в механизм такого двигателя добавить специальный реостат, то при пуске двигателя уменьшится активное сопротивление и тем самым уменьшатся пусковые токи, которые пагубно влияют на электрическую сеть и само устройство.

Принцип действия

При подаче электрического тока на обмотки статора возникает магнитный поток. Так как фазы смещены относительно друг друга на 120 градусов, то из-за этого поток в обмотках вращается. Если ротор короткозамкнутый, то при таком вращении в роторе появляется ток, который создает электромагнитное поле. Взаимодействуя друг с другом, магнитные поля ротора и статора заставляют ротор электродвигателя вращаться. В случае, если ротор фазный, то напряжение подается на статор и ротор одновременно, в каждом механизме появляется магнитное поле, они взаимодействуют друг с другом и вращают ротор.

Достоинства асинхронных электродвигателей

С короткозамкнутым роторомС фазным ротором
1. Простое устройство и схема запуска1. Небольшой пусковой ток
2. Низкая цена изготовления2. Возможность регулировать скорость вращения
3. С увеличением нагрузки скорость вала не меняется3. Работа с небольшими перегрузками без изменения частоты вращения
4. Способен переносить перегрузки краткие по времени4. Можно применять автоматический пуск
5. Надежен и долговечен в эксплуатации5. Имеет большой вращающий момент
6. Подходит для любых условий работы
7. Имеет высокий коэффициент полезного действия

Недостатки асинхронных электродвигателей

С короткозамкнутым роторомС фазным ротором
1. Не регулируется скорость вращения ротора1. Большие габариты
2. Маленький пусковой момент2. Коэффициент полезного действия ниже
3. Высокий пусковой ток3. Частое обслуживание из-за износа щеток
4. Некоторая сложность конструкции и наличие движущихся контактов

Асинхронные электродвигатели являются очень эффективными устройствами с отличными механическими характеристиками, и благодаря этому они являются лидерами по частоте применения.

Режимы работы

Устройство, виды и принцип действия асинхронных электродвигателей

Электродвигатель асинхронного типа универсальный механизм и по продолжительности работы имеет несколько режимов:

  • Продолжительный;
  • Кратковременный;
  • Периодический;
  • Повторно-кратковременный;
  • Особый.

Продолжительный режим — основной режим работы асинхронных устройств, который характеризуется постоянной работой электродвигателя без отключений с неизменной нагрузкой. Такой режим работы самый распространенный, используется на промышленных предприятиях повсеместно.

Кратковременный режим – работает до достижения постоянной нагрузки определенное время (от 10 до 90 минут), не успевая максимально разогреться. После этого отключается. Такой режим используют при подаче рабочих веществ (воду, нефть, газ) и прочих ситуациях.

Периодический режим – продолжительность работы имеет определенное значение и по завершении цикла работ отключается. Режим работы пуск-работа-остановка. При этом он может отключаться на время, за которое не успевает остыть до внешних температур и включаться заново.

Повторно-кратковременный режим – двигатель не нагревается максимально, но и не успевает остыть до внешней температуры. Применяется в лифтах, эскалаторах и прочих устройствах.

Особый режим – продолжительность и период включения произвольный.

В электротехнике существует принцип обратимости электрических машин — это означает, что устройство может, как преобразовывать электрическую энергию в механическую, так и совершать обратные действия.

Асинхронные электродвигатели тоже соответствуют этому принципу и имеют двигательный и генераторный режим работы.

Двигательный режим – основной режим работы асинхронного электродвигателя. При подаче напряжения на обмотки возникает электромагнитный вращающий момент, увлекающий за собой ротор с валом и, таким образом, вал начинает вращаться, двигатель выходит на постоянную частоту вращения, совершая полезную работу.

Генераторный режим – основан на принципе возбуждения электрического тока в обмотках двигателя при вращении ротора. Если вращать ротор двигателя механическим способом, то на обмотках статора образуется электродвижущая сила, при наличии конденсатора в обмотках возникает емкостный ток. Если емкость конденсатора будет определенного значения, зависящего от характеристик двигателя, то произойдет самовозбуждение генератора и возникнет трехфазная система напряжений. Таким образом короткозамкнутый электродвигатель будет работать как генератор.

Регулирование частоты вращения асинхронных двигателей

Для регулирования частоты вращения асинхронных электродвигателей и управления режимами их работы существуют следующие способы:

  1. Частотный – при изменении частоты тока в электрической сети изменяется частота вращения электрического двигателя. Для такого способа применяют устройство, которое называется частотный преобразователь;
  2. Реостатный – при изменении сопротивления реостата в роторе, изменяется частота вращения. Такой способ увеличивает пусковой момент и критическое скольжение;
  3. Импульсный – способ управления, при котором на двигатель подается напряжение специального вида.
  4. Переключение обмоток по время работы электрического двигателя со схемы «звезда» на схему «треугольник», что снижает пусковые токи;
  5. Управление с изменения пар полюсов для короткозамкнутых роторов;
  6. Подключение индуктивного сопротивления для двигателей с фазным ротором.

С развитием электронных систем, управление различными электродвигателями асинхронного типа становится все более эффективным и точным. Такие двигатели используются в мире повсеместно, разнообразие задач, выполняемых такими механизмами, с каждым днем растет, и потребность в них не уменьшается.

устройство, принцип работы, виды, способы пуска

Способы пуска и схемы подключения

Асинхронный электродвигатель с короткозамкнутым ротором обладает низкой себестоимостью, большими пусковыми токами и низким усилием на старте. Поэтому для различных целей могут применять различные способы пуска, снижающие бросок тока в обмотках и улучшающие рабочие характеристики:

  • прямой – напряжение на электродвигатель подается через пускатели или контакторы;
  • переключение схемы соединения обмоток электродвигателя со звезды на треугольник;
  • понижение напряжения;
  • плавный пуск;
  •  изменение частоты питающего напряжения.

Однофазного асинхронного двигателя.

Для асинхронного однофазного электродвигателя могут использоваться три основных способа пуска:

  • С расщеплением полюсов – используется в электродвигателях особой конструкции, но недостатком методы является постоянная потеря мощности.
Пуск однофазного двигателя с расщеплением полюса
  • С конденсаторным пуском – вводит пусковой конденсатор в момент запуска асинхронного двигателя и убирает его со схемы через несколько секунд после начала работы. Обладает максимальным вращательным моментом.
  • С резисторным пуском электродвигателя – обеспечивает начальный сдвиг между векторами ЭДС обмоток для скольжения в асинхронной машине.
Пуск однофазного двигателя через конденсатор и сопротивление

Трехфазного асинхронного двигателя.

Способы пуска трехфазного электродвигателя

Трехфазные асинхронные агрегаты могут подключаться такими способами:

  • Напрямую в цепь через пускатель или контактор, что обеспечивает простоту процесса, но формирует максимальные токи. Этот способ не подходит в случае больших механических нагрузок на вал.
  • Переключением схемы со звезды на треугольник – применяется для снижения токов в обмотках электродвигателя за счет уменьшения питающего напряжения с линейного на фазное.
  • Путем подключения через преобразователь напряжения, реостаты или автотрансформатор
    для снижения разности потенциалов. Также используется изменение числа пар полюсов, частоты питающего напряжения и прочие.

Помимо этого трехфазные асинхронные двигатели могут использовать прямую и реверсивную схему включения в цепь. Первый вариант применяется только для вращения вала электродвигателя в одном направлении. В реверсивной схеме можно переключать движение рабочего органа в прямом и обратном направлении.

Прямая схема без возможности реверсированияРис. 9: прямая схема без возможности реверсирования

Рассмотрим нереверсивную схему пуска асинхронного электродвигателя (рисунок 9). Здесь, через трехполюсный автомат QF1 питание подается на пускатель KM1. При нажатии кнопки SB2 произойдет подача напряжения на обмотки электродвигателя, его остановка осуществляется кнопкой SB1. Тепловое реле KK1 применяется для контроля температуры нагрева, а лампочка HL1 сигнализирует о включенном состоянии контактора.

Схема прямого включения с реверсомРисунок 10: схема прямого включения с реверсом

Реверсивная схема (смотрите рисунок 10) устроена аналогичным образом, но в ней используются два пускателя

KM1 и KM2. Прямое включение асинхронного электродвигателя производиться кнопкой SB2, а обратное SB3.

Устройство и принцип действия асинхронных электродвигателей

Ustroystvo i printsip deystviya asinkhronnykh elektrodvigateleyВсем привет. Рад вас видеть у себя на сайте. Тема сегодняшней статьи: устройство и принцип действия асинхронных электродвигателей. Так же я бы хотел немного сказать о способах регулировки их частоты вращения, и перечислить их основные преимущества и недостатки.

Раньше, я уже писал статьи, касающиеся асинхронных электродвигателей. Если кому интересно, то можете почитать. Вот список:

Схема пуска асинхронного двигателя.

Расчёт тока электродвигателя.

Реверсивное управление асинхронным электродвигателем с короткозамкнутым ротором.

Ну а теперь давайте перейдём к теме сегодняшней статьи.

В нынешнее время, очень трудно представить, как бы существовали все промышленные предприятия, если бы не было асинхронных машин. Эти двигателя установлены практически везде. Даже дома у каждого человека есть такой двигатель. Он может стоять на вашей стиральной машинке, на вентиляторе, на насосной станции, в вытяжке и так далее.

Вообще асинхронный электродвигатель – это колоссальный прорыв в мировой промышленности. Во всём мире их выпускают более 90 процентов от количества всех выпускаемых двигателей.

asinkhronnyy elektrodvigatel

Асинхронный электродвигатель – это электрическая машина, которая преобразовывает электрическую энергию в механическую. То есть потребляет электрический ток, а взамен дают крутящий момент, с помощью которого можно вращать многие агрегаты.

А само слово «асинхронный» — означает неодновременных или не совпадающий по времени. Потому что у таких двигателей частота вращения ротора немного отстаёт от частоты вращения электромагнитного поля статора. Ещё это отставанием называют – скольжением.

Обозначается это скольжение буквой: S

А вычисляется скольжение по такой формуле: S = ( n1 — n2 )/ n1 — 100%

Где, n1 – это синхронная частота магнитного поля статора;

n2 – это частота вращения вала.

Устройство асинхронного электродвигателя.

Двигатель состоит из таких частей:

1. Статор с обмотками. Или станина внутри которой находится статор с обмотками.

2. Ротор. Это если короткозамкнутый. А если фазный, то можно сказать, что это якорь или даже коллектор. Я думаю, ошибки не будет.

3. Подшипниковые щиты. На мощных двигателях ещё спереди стоят подшипниковые крышки с уплотнителями.

4. Подшипники. Могут стоять скольжения или качения, в зависимости от исполнения.

5. Вентилятор охлаждения. Изготавливается из пластмассы или металла.

6. Кожух вентилятора. Имеет прорези для подачи воздуха.

7. Борно или клеммная коробка. Для подключения кабелей.

Это все его основные детали, но в зависимости от вида, типа и исполнения может немного изменяться.

dvigatel asinkhronnyy trekhfaznyy

Асинхронные электродвигателя в основном выпускают двух видов: трёхфазные и однофазные. В свою очередь трёхфазные ещё подразделяются на подвиды: с короткозамкнутым ротором или фазным ротором.

Самые распространённые – это трёхфазные с короткозамкнутым ротор.

Статор имеет круглую форму и набирается с листов специальной стали, которые изолированы между собой, и эта собранная конструкция образует сердечник с пазами. В пазы сердечника укладываются обмотки, со специального обмоточного, изолированного лаком провода. Провод это отливают в основном из меди, но также есть и с алюминия. Если двигатель очень мощный, то обмотки делаю шиной. Обмотки укладывают так, чтобы они были сдвинуты относительно друг друга на 120 градусов. Соединяются обмотки статора в звезду или в треугольник.

Ротор, как выше я уже писал выше, бывает короткозамкнутый или фазный.

Короткозамкнутый представляет собой вал, на который надеваются листы, из тоже специальной, стали. Эти наборные листы образую сердечник, в пазы которого заливают расплавленный алюминий. Этот алюминий равномерно растекается по пазам и образует стержни. А по краям эти стержни замыкают алюминиевыми кольцами. Получается своего рода «беличья клетка».

korotkozamknutyy rotor

Фазный ротор представляет собой вал с сердечником и тремя обмотками. Одни концы, которых обычно соединяют в звезду, а вторые три конца присоединяют к токосъемным кольцам. А на эти кольца, с помощью щёток подают электрический ток.

Если в цепь фазных обмоток добавить нагрузочный реостат, и при пуске двигателя увеличивать активное сопротивление, то таким способ можно уменьшить большие пусковые токи.

Принцип действия.

Когда на обмотки статора подаются электрический ток, то в этих обмотках возникает электрический поток. Как вы помните, из выше написанных слов, фазы у нас смещены относительно друг друга на 120 градусов. И вот этот поток в обмотках начинает вращаться.

И при вращении магнитного потока статора, в обмотках ротора появляется электрический ток, и своё магнитное поле. Два этих магнитных поля начинают взаимодействовать и заставляют вращаться ротор электродвигателя. Это если ротор короткозамкнутый.

По принципу роботы вот посмотрите видео ролик.

Ну а с фазным ротором, по сути, принцип тот же. Напряжение подаётся на статор и на ротор. Появляются два магнитных поля, которые начинают взаимодействовать и вращать ротор.

Достоинства и недостатки асинхронных двигателей.

Основные достоинства асинхронного электродвигателя с короткозамкнутым ротором:

1. Очень простое устройство, что позволяет сократить затраты на его изготовление.

2. Цена намного меньше по сравнению с другими двигателями.

3. Очень простая схема запуска.

4. Скорость вращения вала практически не меняется с увеличением нагрузки.

5. Хорошо переносит кратковременные перегрузы.

6. Возможность подключения трёхфазных двигателей в однофазную сеть.

7. Надёжность и возможность эксплуатировать практически в любых условиях.

8. Имеет очень высокий показатель КПД и cos φ.

Недостатки:

1. Не возможности контролировать частоту вращения ротора без потери мощности.

2. Если увеличить нагрузку, то уменьшается момент.

3. Пусковой момент очень мал по сравнению с другими машинами.

4. При недогрузе увеличивается показатель cos φ

5. Высокие показатели пусковых токов.

Достоинства двигателей с фазным ротором:

1. По сравнению с короткозамкнутыми двигателями, имеет достаточно большой вращающий момент. Что позволяет его запускать под нагрузкой.

2. Может работать с небольшим перегрузом, и при этом частота вращения вала практически не меняется.

3. Небольшой пусковой ток.

4. Можно применять автоматические пусковые устройства.

Недостатки:

1. Большие габариты.

2. Показатели КПД и cos φ меньше, чем у двигателей с короткозамкнутым ротором. И при недогрузе эти показатели имеют минимальное значение

3. Нужно обслуживать щёточный механизм.

На этом буду заканчивать свою статью. Если она была вам полезной, то поделитесь нею со своими друзьями в социальных сетях. Если есть вопросы, то задавайте их в комментариях и подписывайтесь на обновления. Пока.

С уважением Александр!

Читайте также статьи:

Принцип работы асинхронного двигателя

Электродвигатель предназначен для преобразования, с малыми потерями, электрическую энергию в механическую.

Строение двигателя

Основные элементы электродвигателя это – статор, ротор, их обмотки и магнитопровод.

Преобразование электрической энергии в механическую происходит во вращающейся части мотора — роторе.

У двигателя переменного тока, ротор получает энергию не только за счет магнитного поля, но и при помощи индукции. Таким образом, они называются асинхронными двигателями. Это можно сравнить с вторичной обмоткой трансформатора. Эти асинхронные двигатели еще называют вращающимися трансформаторами. Чаще всего используется модели рассчитанные на трех фазное включение.

Конструкция асинхронного двигателя

Направление вращения электродвигателя задается правилом левой руки буравчика: оно демонстрирует связь между магнитным полем и проводником.

Второй очень важный закон – Фарадея:

  1. ЭДС наводиться в обмотке, но электромагнитный поток меняется во временем.
  2. Величина наведенной ЭДС прямо пропорциональна скорости изменения электрического потока.
  3. Направление ЭДС противодействует току.

Принцип действия

При подаче напряжения на неподвижные обмотки статора, оно создает магнитное в статора. Если подается напряжение переменного тока, то магнитный поток, созданный им, изменяется. Так статор производит изменение магнитного поля, и ротор получает магнитные потоки.

Таким образом, ротор электродвигателя принимает эти поток статора и, следовательно, вращается. Это основной принцип работы и скольжения в асинхронных машинах. Из вышеизложенного следует отметить, что магнитный поток статора (и его напряжение) должно быть равно переменному току для вращения ротора, так что асинхронная машина может работать только от сети переменного тока.

Принцип работы асинхронного двигателя

Когда такие двигатели действуют в качестве генератора, они будет генерировать непосредственно переменный ток. В случае такой работы, ротор вращается с помощью внешних средств скажем, турбины. Если ротор имеет некоторый остаточный магнетизм, то есть некоторые магнитные свойства, которые сохраняет по типу магнита внутри материала, то ротор создает переменный поток в стационарной обмотке статора. Так что это обмотки статора будут получать наведенное напряжение по принципу индукции.

Индукционные генераторы используются в небольших магазинах и домашних хозяйствах, чтобы обеспечить дополнительную поддержку питания и являются наименее дорогостоящими из-за легкого монтажа. В последнее время они широко используется людьми в тех странах, где электрические машины теряют мощность из-за постоянных перепадов напряжения в питающей электросети. Большую часть времени, ротор вращается при помощи небольшого дизельного двигателя соединенного с асинхронным генератором переменного напряжения.

Как вращается ротор

Вращающийся магнитный поток проходит через воздушный зазор между статором, ротором и обмоткой неподвижных проводников в роторе. Этот вращающийся поток, создает напряжение в проводниках ротора, тем самым заставляя наводиться в них ЭДС. В соответствии с законом Фарадея электромагнитной индукции, именно это относительное движение между вращающимся магнитным потоком и неподвижными обмотками ротора, которые возбуждает ЭДС, и является основой вращения.

Двигатель с короткозамкнутым ротором, в котором проводники ротора образовывают замкнутую цепь, в следствии чего возникает ЭДС наводящая ток в нем, направление задается законом Ленса, и является таким, чтобы противодействовать причине его возникновения. Относительное движение ротора между вращающимся магнитным потоком и неподвижным проводником и является его действием к вращению. Таким образом, чтобы уменьшить относительную скорость, ротор начинает вращаться в том же направлении, что и вращающийся поток на обмотках статора, пытаясь поймать его. Частота наведенной на него ЭДС такая же, как частота питания.

Гребневые асинхронные двигатели

Когда напряжение питания низкое, возбуждение обмоток короткозамкнутого ротора не происходит. Это обусловлено тем что, когда число зубцов статора и число зубьев ротора равное, таким образом вызывая магнитную фиксацию между статором и ротором. Этот физический контакт иначе называется зубо-блокировкой или магнитной блокировкой. Данная проблема может быть преодолена путем увеличения количества пазов ротора или статора.

Подключение

Асинхронный двигатель можно остановить, просто поменяв местами любые два из выводов статора. Это используется во время чрезвычайных ситуаций. После он изменяет направление вращающегося потока, который производит вращающий момент, тем самым вызывая разрыв питания на роторе. Это называется противофазным торможением.

Видео: Как работает асинхронный двигатель

//www.youtube.com/embed/hu9TaxRe2UE?feature=player_detailpage

Для того чтобы этого не происходило в однофазном асинхронном двигателе, необходимо использование конденсаторного устройства.

Его нужно подключить к пусковой обмотке, но предварительно обязательно проводится его расчет.

Формула, из которой следует, что электрические машины переменного тока двухфазного или однофазного типа должны снабжаться конденсаторами с мощностью, равной самой мощности двигателя.

QC = Uс I2 = U2 I2 / sin2

Схема: Подключение асинхронного двигателя

Аналогия с муфтой

Рассматривая принцип действия асинхронного электродвигателя, используемого в промышленных машинах, и его технические характеристики, нужно сказать про вращающуюся муфту механического сцепления . Крутящий момент на валу привода должен равняться крутящему моменту на ведомом валу. Кроме того, следует подчеркнуть, что эти два момента являются одним и тем же, поскольку крутящий момент линейного преобразователя вызывается трением между дисков внутри самой муфты.

Электромагнитная муфта сцепления

Похожий принцип действия и у тягового двигателя с фазным ротором. Система такого мотора состоит из восьми полюсов (из которых 4 – основные, а 4 – добавочные), и остовы. На основных полюсах расположены медные катушки. Вращение такого механизма обязано зубчатой передаче, которая получает крутящий момент от вала якоря, так же называемого сердечником. Включение в сеть, производится четырьмя гибкими кабелями. Основное назначение многополюсного электродвигателя – приведение в движение тяжелой техники: тепловозы, тракторы, комбайны и в некоторых случаях, станки.

Достоинства и недостатки

Устройство асинхронного двигателя является практически универсальным, но так же, у данного механизма есть свои плюсы и минусы.

Преимущества асинхронных двигателей переменного тока:

  1. Конструкция простой формы.
  2. Низкая стоимость производства.
  3. Надежная и практичная в обращении конструкция.
  4. Не прихотлив в эксплуатации.
  5. Простая схема управления

Эффективность этих двигателей очень высока, так как нет потерь на трение, и относительно высокий коэффициент мощности.

Недостатки асинхронных двигателей переменного тока:

  1. Не возможен контроль скорости без потерь мощности.
  2. Если увеличивается нагрузка – уменьшается момент.
  3. Относительно небольшой пусковой момент.

Трехфазный асинхронный двигатель

Трехфазный асинхронный электродвигатель — это асинхронный электродвигатель, который имеет трехфазную обмотку статора.

Трехфазный асинхронный двигатель с короткозамкнутым ротором

Асинхронный двигатель с короткозамкнутым ротором — это асинхронный электродвигатель, у которого ротор выполнен с короткозамкнутой обмоткой в виде беличьей клетки [1].

Конструкция асинхронного электродвигателя

Трехфазный асинхронный электродвигатель, как и любой электродвигатель, состоит из двух основных частей — статора и ротора. Статор — неподвижная часть, ротор — вращающаяся часть. Ротор размещается внутри статора. Между ротором и статором имеется небольшое расстояние, называемое воздушным зазором, обычно 0,5-2 мм.

Статор асинхронного двигателяРотор асинхронного двигателя

Статор состоит из корпуса и сердечника с обмоткой. Сердечник статора собирается из тонколистовой технической стали толщиной обычно 0,5 мм, покрытой изоляционным лаком. Шихтованная конструкция сердечника способствует значительному снижению вихревых токов, возникающих в процессе перемагничивания сердечника вращающимся магнитным полем. Обмотки статора располагаются в пазах сердечника.

Корпус и сердечник статора асинхронного электродвигателяКонструкция шихтованного сердечника асинхронного двигателя

Ротор состоит из сердечника с короткозамкнутой обмоткой и вала. Сердечник ротора тоже имеет шихтованную конструкцию. При этом листы ротора не покрыты лаком, так как ток имеет небольшую частоту и оксидной пленки достаточно для ограничения вихревых токов.

Принцип работы. Вращающееся магнитное поле

Принцип действия трехфазного асинхронного электродвигателя основан на способности трехфазной обмотки при включении ее в сеть трехфазного тока создавать вращающееся магнитное поле.

Вращающееся магнитное поле — это основная концепция электрических двигателей и генераторов.

ЗагрузкаВращающееся магнитное поле асинхронного электродвигателя

Частота вращения этого поля, или синхронная частота вращения прямо пропорциональна частоте переменного тока f1 и обратно пропорциональна числу пар полюсов р трехфазной обмотки.

, где n1 – частота вращения магнитного поля статора, об/мин, f1 – частота переменного тока, Гц, p – число пар полюсов

Концепция вращающегося магнитного поля

Чтобы понять феномен вращающегося магнитного поля лучше, рассмотрим упрощенную трехфазную обмотку с тремя витками. Ток текущий по проводнику создает магнитное поле вокруг него. На рисунке ниже показано поле создаваемое трехфазным переменным током в конкретный момент времени

ЗагрузкаМагнитное поле прямого проводника с постоянным токомМагнитное поле создаваемое обмоткой

Составляющие переменного тока будут изменяться со временем, в результате чего будет изменяться создаваемое ими магнитное поле. При этом результирующее магнитное поле трехфазной обмотки будет принимать разную ориентацию, сохраняя при этом одинаковую амплитуду.

Магнитное поле создаваемое трехфазным током в разный момент времениТок протекающий в витках электродвигателя (сдвиг 60°)ЗагрузкаВращающееся магнитное поле

Действие вращающегося магнитного поля на замкнутый виток

Теперь разместим замкнутый проводник внутри вращающегося магнитного поля. По закону электромагнитной индукции изменяющееся магнитное поле приведет к возникновению электродвижущей силы (ЭДС) в проводнике. В свою очередь ЭДС вызовет ток в проводнике. Таким образом, в магнитном поле будет находиться замкнутый проводник с током, на который согласно закону Ампера будет действовать сила, в результате чего контур начнет вращаться.

Влияние вращающегося магнитного поля на замкнутый проводник с током

Короткозамкнутый ротор асинхронного двигателя

По этому принципу также работает асинхронный электродвигатель. Вместо рамки с током внутри асинхронного двигателя находится короткозамкнутый ротор по конструкции напоминающий беличье колесо. Короткозамкнутый ротор состоит из стержней накоротко замкнутых с торцов кольцами.

Короткозамкнутый ротор «беличья клетка» наиболее широко используемый в асинхронных электродвигателях (показан без вала и сердечника)

Трехфазный переменный ток, проходя по обмоткам статора, создает вращающееся магнитное поле. Таким образом, также как было описано ранее, в стержнях ротора будет индуцироваться ток, в результате чего ротор начнет вращаться. На рисунке ниже Вы можете заметить различие между индуцируемыми токами в стержнях. Это происходит из-за того что величина изменения магнитного поля отличается в разных парах стержней, из-за их разного расположения относительно поля. Изменение тока в стержнях будет изменяться со временем.

Вращающееся магнитное поле пронизывающее короткозамкнутый роторМагнитный момент действующий на ротор

Вы также можете заметить, что стержни ротора наклонены относительно оси вращения. Это делается для того чтобы уменьшить высшие гармоники ЭДС и избавиться от пульсации момента. Если стержни были бы направлены вдоль оси вращения, то в них возникало бы пульсирующее магнитное поле из-за того, что магнитное сопротивление обмотки значительно выше магнитного сопротивления зубцов статора.

Скольжение асинхронного двигателя. Скорость вращения ротора

Отличительный признак асинхронного двигателя состоит в том, что частота вращения ротора n2 меньше синхронной частоты вращения магнитного поля статора n1.

Объясняется это тем, что ЭДС в стержнях обмотки ротора индуцируется только при неравенстве частот вращения n2, где s – скольжение асинхронного электродвигателя, n1 – частота вращения магнитного поля статора, об/мин, n2 – частота вращения ротора, об/мин,

Рассмотрим случай когда частота вращения ротора будет совпадать с частотой вращения магнитного поля статора. В таком случае относительное магнитное поле ротора будет постоянным, таким образом в стержнях ротора не будет создаваться ЭДС, а следовательно и ток. Это значит что сила действующая на ротор будет равна нулю. Таким образом ротор будет замедляться. После чего на стержни ротора опять будет действовать переменное магнитное поле, таким образом будет расти индуцируемый ток и сила. В реальности же ротор асинхронного электродвигателя никогда не достигнет скорости вращения магнитного поля статора. Ротор будет вращаться с некоторой скоростью которая немного меньше синхронной скорости.

Скольжение асинхронного двигателя может изменяться в диапазоне от 0 до 1, т. е. 0—100%. Если s~0, то это соответствует режиму холостого хода, когда ротор двигателя практически не испытывает противодействующего момента; если s=1 — режиму короткого замыкания, при котором ротор двигателя неподвижен (n2 = 0). Скольжение зависит от механической нагрузки на валу двигателя и с ее ростом увеличивается.

Скольжение, соответствующее номинальной нагрузке двигателя, называется номинальным скольжением. Для асинхронных двигателей малой и средней мощности номинальное скольжение изменяется в пределах от 8% до 2%.

Преобразование энергии

Асинхронный двигатель преобразует электрическую энергию подаваемую на обмотки статора, в механическую (вращение вала ротора). Но входная и выходная мощность не равны друг другу так как во время преобразования происходят потери энергии: на трение, нагрев, вихревые токи и потери на гистерезисе. Это энергия рассеивается как тепло. Поэтому асинхронный электродвигатель имеет вентилятор для охлаждения.

Параметры асинхронного двигателя

При подборе таких машин, а также при дальнейшей их эксплуатации необходимо учитывать характеристики асинхронного двигателя. Они бывают энергетические — это коэффициент полезного действия, коэффициент мощности. Важно учитывать и механические показатели. Основным из них считается зависимость между скоростью вращения вала и рабочим усилием, прикладываемым к нему. Существуют ещё пусковые характеристики. Они определяют пусковой, минимальный и максимальный моменты и их соотношение. Важно также знать, каков пусковой ток асинхронного двигателя. Для наиболее эффективного использования двигателя необходимо учитывать все эти параметры.

Нельзя оставить без внимания вопрос энергосбережения. В последнее время он рассматривается не только с позиции уменьшения эксплуатационных затрат. Экономичность электродвигателей снижает уровень экологических проблем, связанных с производством электроэнергии.

Перед производителями постоянно ставятся задачи разработки и выпуска энергосберегающих двигателей, повышения эксплуатационного ресурса, уменьшения шумового уровня.

Улучшить энергосберегающие показатели можно путём снижения потерь при эксплуатации. А они напрямую зависят от рабочей температуры машины. Кроме того, совершенствование этой характеристики неизбежно приведёт к увеличению срока эксплуатации двигателя.

Снизить температуру обмоток можно, применяя вентилятор наружного обдува, закреплённый на хвостовике вала ротора. Но это приводит к неизбежному повышению шума, производимого двигателем при работе. Особенно ощутим этот показатель при высокой скорости вращения ротора.

Таким образом, видно, что асинхронный двигатель имеет один существенный недостаток. Он не способен поддерживать постоянную частоту вращения вала при возрастающих нагрузках. Зато такой двигатель имеет множество преимуществ по сравнению с образцами электродвигателей других конструкций.

Во-первых, он имеет надёжную конструкцию. Работа асинхронного двигателя не вызывает никаких сложностей при его использовании.

Во-вторых, асинхронный двигатель экономичен в производстве и эксплуатации.

В-третьих, эта машина универсальна. Имеется возможность её использования в любых устройствах, которые не требуют точного поддержания частоты вращения вала якоря.

В-четвёртых, двигатель с асинхронным принципом действия востребован и в быту, получая питание только от одной фазы.

Режимы работы

Электродвигатель асинхронного типа универсальный механизм и по продолжительности работы имеет несколько режимов:

  • Продолжительный;
  • Кратковременный;
  • Периодический;
  • Повторно-кратковременный;
  • Особый.

Продолжительный режим – основной режим работы асинхронных устройств, который характеризуется постоянной работой электродвигателя без отключений с неизменной нагрузкой. Такой режим работы самый распространенный, используется на промышленных предприятиях повсеместно.

Кратковременный режим – работает до достижения постоянной нагрузки определенное время (от 10 до 90 минут), не успевая максимально разогреться. После этого отключается. Такой режим используют при подаче рабочих веществ (воду, нефть, газ) и прочих ситуациях.

Периодический режим – продолжительность работы имеет определенное значение и по завершении цикла работ отключается. Режим работы пуск-работа-остановка. При этом он может отключаться на время, за которое не успевает остыть до внешних температур и включаться заново.

Повторно-кратковременный режим – двигатель не нагревается максимально, но и не успевает остыть до внешней температуры. Применяется в лифтах, эскалаторах и прочих устройствах.

Особый режим – продолжительность и период включения произвольный.

В электротехнике существует принцип обратимости электрических машин — это означает, что устройство может, как преобразовывать электрическую энергию в механическую, так и совершать обратные действия.

Асинхронные электродвигатели тоже соответствуют этому принципу и имеют двигательный и генераторный режим работы.

Двигательный режим – основной режим работы асинхронного электродвигателя. При подаче напряжения на обмотки возникает электромагнитный вращающий момент, увлекающий за собой ротор с валом и, таким образом, вал начинает вращаться, двигатель выходит на постоянную частоту вращения, совершая полезную работу.

Генераторный режим – основан на принципе возбуждения электрического тока в обмотках двигателя при вращении ротора. Если вращать ротор двигателя механическим способом, то на обмотках статора образуется электродвижущая сила, при наличии конденсатора в обмотках возникает емкостный ток. Если емкость конденсатора будет определенного значения, зависящего от характеристик двигателя, то произойдет самовозбуждение генератора и возникнет трехфазная система напряжений. Таким образом короткозамкнутый электродвигатель будет работать как генератор.

Регулирование частоты вращения асинхронных двигателей

Для регулирования частоты вращения асинхронных электродвигателей и управления режимами их работы существуют следующие способы:

  1. Частотный – при изменении частоты тока в электрической сети изменяется частота вращения электрического двигателя. Для такого способа применяют устройство, которое называется частотный преобразователь;
  2. Реостатный – при изменении сопротивления реостата в роторе, изменяется частота вращения. Такой способ увеличивает пусковой момент и критическое скольжение;
  3. Импульсный – способ управления, при котором на двигатель подается напряжение специального вида.
  4. Переключение обмоток по время работы электрического двигателя со схемы «звезда» на схему «треугольник», что снижает пусковые токи;
  5. Управление с изменения пар полюсов для короткозамкнутых роторов;
  6. Подключение индуктивного сопротивления для двигателей с фазным ротором.

С развитием электронных систем, управление различными электродвигателями асинхронного типа становится все более эффективным и точным. Такие двигатели используются в мире повсеместно, разнообразие задач, выполняемых такими механизмами, с каждым днем растет, и потребность в них не уменьшается.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Асинхронный электродвигатель: устройство и принцип работы

Самым эффективным устройством, превращающим электрическую энергию в механическую, является асинхронный двигатель, изобретенный инженером Доливо-Добровольским в конце 19 века. Учитывая возрастающий интерес современников к разработке и сборке станков, самодвижущихся аппаратов и прочих механизмов, мы постараемся объяснить, как работает асинхронный электродвигатель, чтобы вы могли понять принцип его действия и результативно его использовать.

Устройство асинхронного электродвигателя

В его конструкцию входят следующие элементы:

  • Статор цилиндрической формы, собранный из стальных листов. Сердечник статора имеет пазы, в которые уложены обмотки. Их оси сдвинуты на 120 градусов по отношению друг к другу.
  • Ротор (короткозамкнутый или фазный). Первый вариант представляет собой сердечник с алюминиевыми стержнями, накоротко замкнутыми торцевыми кольцами (беличья клетка). Второй вариант состоит из трехфазной обмотки, чаще всего соединенной «звездой».
  • Конструктивные детали – вал, подшипники, лапы, подшипниковые щиты, крыльчатка и кожух вентилятора, коробка выводов — обеспечивающие вращение, охлаждение и защиту механизма.

Схему асинхронного двигателя с указанием его деталей легко найти в интернете или в пособиях.

Принцип работы асинхронного двигателя

Принцип действия асинхронного электродвигателя заложен в его названии (не синхронный). То есть статор и ротор при включении создают вращающиеся с разной частотой магнитные поля. При этом частота вращения магнитного поля ротора всегда меньше частоты вращения магнитного поля статора.

Чтобы более наглядно представить себе этот процесс, возьмите постоянный магнит и покрутите его вокруг своей оси возле медного диска. Диск с небольшим отставанием начнет вращаться вслед за магнитом. Дело в том, что при вращении магнита в структуре диска возбуждаются токи Фуко (индукционные токи), движущиеся по замкнутому кругу. По сути они являются токами короткого замыкания, разогревающими металл. В диске «зарождается» собственное магнитное поле, в дальнейшем взаимодействующее с полем магнита.

В асинхронном двигателе для получения вращающегося поля используются обмотки статора. Магнитный поток, образованный ими, создает ЭДС в проводниках ротора. При взаимодействии магнитного поля статора и индуцируемого тока в обмотке ротора создается электромагнитная сила, приводящая во вращение вал электродвигателя.

Пошагово процесс выглядит следующим образом:

  1. При запуске двигателя магнитное поле статора пересекается с контуром ротора и индуцирует электродвижущую силу.
  2. В накоротко замкнутом роторе возникает переменный ток.
  3. Два магнитных поля (статора и ротора) создают крутящий момент.
  4. Крутящийся ротор пытается «догнать» поле статора.
  5. В тот момент, когда частоты вращения магнитного поля статора и ротора совпадут, электромагнитные процессы в роторе затухают и крутящий момент становится равным нулю.
  6. Магнитное поле статора возбуждает контур ротора, который к этому моменту снова отстает.

То есть ротор всегда медленнее магнитного поля статора, что и обеспечивает асинхронность.

Поскольку ток в роторе индуцируется бесконтактно, отпадает необходимость установки скользящих контактов, что делает асинхронные двигатели более надежными и эффективными. Изменяя направление тока в одной из обмоток (для этого нужно поменять фазы на клеммах), вы можете «заставить» мотор вращаться в ту или другую сторону.

Направление электромагнитной силы легко определить, вспомнив школьный курс физики и воспользовавшись «правилом левой руки».

На частоту вращения магнитного поля статора влияет частота питающей сети и число пар полюсов. Поскольку число пар полюсов зависит от типа двигателя и остается неизменным, то, если вы хотите изменить частоту вращения поля, необходимо изменить частоту питающей сети с помощью преобразователя.

Преимущества асинхронных двигателей

Благодаря тому, что устройство и принцип работы асинхронного электродвигателя достаточно просты, он обладает массой преимуществ и широко применяется во всех сферах народного хозяйства и в быту. Двигатели этого типа характеризуются:

  • Надежностью и долговечностью. Отсутствие контакта между подвижными и неподвижными деталями сводит к минимуму возможность износа и поломок.
  • Низкой стоимостью. Они доступны (не зря 90% от всех выпускающихся в мире двигателей именно асинхронные).
  • Простотой эксплуатации. Для того чтобы использовать их, не обязательно иметь специальные знания и навыки.
  • Универсальностью. Их можно установить практически на любое оборудование.

Изобретение асинхронного электродвигателя было значимым вкладом в развитие науки, промышленности и сельского хозяйства. С ним наша жизнь стала более комфортной.


Асинхронный двигатель — принцип работы и устройство

8 марта 1889 года величайший русский учёный и инженер Михаил Осипович Доливо-Добровольский изобрёл трёхфазный асинхронный двигатель с короткозамкнутым ротором.

Асинхронный двигатель - принцип работы и устройство

Современные трёхфазные асинхронные двигатели являются преобразователями электрической энергии в механическую. Благодаря своей простоте, низкой стоимости и высокой надёжности асинхронные двигатели получили широкое применение. Они присутствуют повсюду, это самый распространённый тип двигателей, их выпускается 90% от общего числа двигателей в мире. Асинхронный электродвигатель поистине совершил технический переворот во всей мировой промышленности.

Огромная популярность асинхронных двигателей связана с простотой их эксплуатации, дешивизной и надежностью.

Асинхронный двигатель это асинхронная машина, предназначенная для преобразования электрической энергии переменного тока в механическую энергию. Само слово “асинхронный” означает не одновременный. При этом имеется ввиду, что у асинхронных двигателей частота вращения магнитного поля статора всегда больше частоты вращения ротора. Работают асинхронные двигатели, как понятно из определения, от сети переменного тока.

Устройство

Устройство трехфазного асинхронного двигателя

 

На рисунке: 1 — вал, 2,6 — подшипники, 3,8 — подшипниковые щиты, 4 — лапы, 5 — кожух вентилятора, 7 — крыльчатка вентилятора, 9 — короткозамкнутый ротор, 10 — статор, 11 — коробка выводов.

Основными частями асинхронного двигателя являются статор (10) и ротор (9).

Статор имеет цилиндрическую форму, и собирается из листов стали. В пазах сердечника статора уложены обмотки статора, которые выполнены из обмоточного провода. Оси обмоток сдвинуты в пространстве относительно друг друга на угол 120°. В зависимости от подаваемого напряжения концы обмоток соединяются треугольником или звездой.

Асинхронный двигатель - принцип работы и устройство

Роторы асинхронного двигателя бывают двух видов: короткозамкнутый и фазный ротор.

Короткозамкнутый ротор представляет собой сердечник, набранный из листов стали. В пазы этого сердечника заливается расплавленный алюминий, в результате чего образуются стержни, которые замыкаются накоротко торцевыми кольцами. Эта конструкция называется «беличьей клеткой«. В двигателях большой мощности вместо алюминия может применяться медь. Беличья клетка представляет собой короткозамкнутую обмотку ротора, откуда собственно название.

Короткозамкнутый ротор и беличья клетка

Фазный ротор имеет трёхфазную обмотку, которая практически не отличается от обмотки статора. В большинстве случаев концы обмоток фазного ротора соединяются в звезду, а свободные концы подводятся к контактным кольцам. С помощью щёток, которые подключены к кольцам, в цепь обмотки ротора можно вводить добавочный резистор. Это нужно для того, чтобы можно было изменять активное сопротивление в цепи ротора, потому что это способствует уменьшению больших пусковых токов. Подробнее о фазном роторе можно прочитать в статье — асинхронный двигатель с фазным ротором.

Асинхронный двигатель - принцип работы и устройство

Принцип работы

При подаче к обмотке статора напряжения, в каждой фазе создаётся магнитный поток, который изменяется с частотой подаваемого напряжения. Эти магнитные потоки сдвинуты относительно друг друга на 120°, как во времени, так и в пространстве. Результирующий магнитный поток оказывается при этом вращающимся.

Результирующий магнитный поток статора вращается и тем самым создаёт в проводниках ротора ЭДС. Так как обмотка ротора, имеет замкнутую электрическую цепь, в ней возникает ток, который в свою очередь взаимодействуя с магнитным потоком статора, создаёт пусковой момент двигателя, стремящийся повернуть ротор в направлении вращения магнитного поля статора. Когда он достигает значения, тормозного момента ротора, а затем превышает его, ротор начинает вращаться. При этом возникает так называемое скольжение.

Скольжение s — это величина, которая показывает, насколько синхронная частота n1 магнитного поля статора больше, чем частота вращения ротора n2, в процентном соотношении.Асинхронный двигатель - принцип работы и устройство

Скольжение это крайне важная величина. В начальный момент времени она равна единице, но по мере возрастания частоты вращения n2 ротора относительная разность частот n1-n2 становится меньше, вследствие чего уменьшаются ЭДС и ток в проводниках ротора, что влечёт за собой уменьшение вращающего момента. В режиме холостого хода, когда двигатель работает без нагрузки на валу, скольжение минимально, но с увеличением статического момента, оно возрастает до величины sкр — критического скольжения. Если двигатель превысит это значение, то может произойти так называемое опрокидывание двигателя, и привести в последствии к его нестабильной работе. Значения скольжения лежит в диапазоне от 0 до 1, для асинхронных двигателей общего назначения оно составляет в номинальном режиме — 1 — 8 %.

Как только наступит равновесие между электромагнитным моментом, вызывающим вращение ротора и тормозным моментом создаваемым нагрузкой на валу двигателя процессы изменения величин прекратятся.

Выходит, что принцип работы асинхронного двигателя заключается во взаимодействии вращающегося магнитного поля статора и токов, которые наводятся этим магнитным полем в роторе. Причём вращающий момент может возникнуть только в том случае, если существует разность частот вращения магнитных полей.

Рекомендуем к прочтению — однофазный асинхронный двигатель. 

  • Просмотров: 74296
  • Режимы и принцип работы асинхронного электродвигателя

    Асинхронно  – слово греческого происхождения (ασύγχρονα, где: α- отрицание, σύγ — вместе, χρονα – время), используется в русском языке для обозначения (наименования) процессов не совпадающих во времени.

    Асинхронной, в электротехнике, принято называть машину, в процессе работы которой частота вращения ротора не равна частоте изменения магнитного поля создаваемого обмотками статора, вызывающего это вращение.

    К асинхронным электрическим машинам относятся: асинхронные двигатели с короткозамкнутым ротором, асинхронные двигатели с фазным ротором, асинхронные микродвигатели общего применения, асинхронные тахогенераторы и другие, работающие по тому же принципу. Асинхронные электрические машины очень широко распространены благодаря таким качествам как: высокая надёжность, относительно низкая стоимость, приемлемые габариты и вес, просты в обслуживании. С появлением современных частотных преобразователей значительно расширился спектр применения асинхронных электродвигателей, благодаря возможности довольно просто и оптимально реализовывать такие функции как управление по скорости и моменту, вплоть до решения задач позиционирования. Не удивительно, что асинхронные двигатели применяются повсюду, особенно это касается асинхронных электродвигателей, объём выпуска которых занимает около 90%  общего объёма мирового выпуска электрических машин.

    Принцип действия и режимы работы

    Рассмотрим принцип работы асинхронного электродвигателя с помощью  электромагнитной схемы (рис.1,а), которая отличается от электромагнитной схемы трансформатора тем, что неподвижный статор 1 представляет собой первичную обмотку, а вращающийся ротор 3 – вторичную. Магнитная связь между ротором и статором зависит от величины воздушного зазора между ними, поэтому, при изготовлении машины, в большинстве случаев, его стараются делать как можно меньше. На статоре расположена обмотка 2, катушки которой размещаются равномерно по его окружности. Обмотку  статора (фазы A-X , B-Y, C-Z ) выполняют трёхфазной, или в общем случае многофазной, и соединяют её фазы в Y (звезду) или в  (треугольник), что оказывает существенное влияние на такие характеристики как: мощность, плавность хода, величины пусковых токов и других параметров. Обмотку ротора а-x, b-y, c-z также выполняют трёхфазной или многофазной и тоже равномерно размещают по его окружности. В простейшем случаях включения, фазы ротора а-x, b-y, c-z, замыкают накоротко (см. рис. 1,б).

    Электромагнитная схема асинхронной машиныРис.1. Электромагнитная схема асинхронного двигателя (а – направление электромагнитного момента при работе в режиме двигателя, б – подключение к сети трёхфазного тока) , где: 1- неподвижный статор; 2- обмотка статора; 3- вращающийся ротор; 4- обмотка ротора.

    Когда обмотки статора асинхронной электрической машины подключены к сети трехфазного тока, в нём создаётся вращающееся магнитное поле, частота вращения которого (n1) синхронна с частотой сети, питающей эти обмотки, и вычисляется по формуле:

    n1 = 60 x f1 / p

    где:  n1 – частота вращения магнитного поля статора; f1 – частота сети; p – число пар полюсов обмоток статора.

    Вращающееся магнитное поле индуктирует в проводниках ротора электрической  машины ЭДС, что вызывает прохождение по ним тока, взаимодействие которого с магнитным потоком создаёт электромагнитный момент. Направление ЭДС, индуктированной в проводниках обмоток ротора, показано на рисунке 1, а согласно правилу правой руки, для случая, когда вращении магнитного потока (Ф) происходит по часовой стрелке. Крестики и точки на рисунке показывают направление активной составляющей тока ротора, совпадающего по фазе с индуктированной ЭДС.

    Известно, что если проводники с током расположить в магнитном поле, то на них будут действовать электромагнитые силы, направление которых можно определить при помощи правила левой руки. Приложенное к каждому проводнику ротора суммарное усилие (Fрез), создаёт электромагнитный момент (М), который “увлекает” ротор за вращающимся магнитным полем, создаваемым обмотками статора.

    Ротор вращается, если величина момента (М) достаточна для преодоления внутренних сил трения (подшипники, сопротивление  воздуха и так далее), а также тормозного момента, приложенного к валу от приводимого во вращение  механизма, если таковой имеется. Установившаяся частота вращения ротора (n2) зависит от соотношения вышеперечисленных сил и создаваемых ими моментов. Очевидно, что при этом будет выполняться соотношение:

    0 ≤ n2 <n1. Такой режим работы асинхронного электродвигателя называется двигательным. Разность частот n1 (вращения магнитного поля)  и n2 (вращения ротора), выраженную в относительных единицах, принято называть скольжением. Наверное потому, что вращающееся магнитное поле статора “скользит” по обмоткам ротора “увлекая” ротор за собой, подобно скольжению потоков жидкости или воздуха по лопастям турбин гидравлических или пневматических машин.

    Скольжение определяют по формуле:

    Скольжение асинхронной машины

    где:  s – скольжение; n1 – частота магнитного поля статора; n2 – частота вращения ротора.       Скольжение также может быть представлено и в процентном соотношении:

    Скольжение асинхронной машины выраженное в процентах

    Поскольку, при двигательном режиме выполняется соотношение 0 ≤ n2 <n1, то очевидно, что скольжения для этого режима будет находиться в пределах 1≥ S >0 (или 100%≥ S >0%).

    Но асинхронная электрическая машина может работать и в других режимах. Если её ротор разогнать до частоты превышающей частоту магнитного поля статора (то есть n2>n1) при помощи внешнего момента другого механизма (например механически соединить с двигателем, вал которого вращается быстрее), то изменятся направление ЭДС и активной составляющей тока в проводниках обмотки ротора, что вызовет переход машины в генераторный режим работы (рис.2,а). Электромагнитный момент (М), при этом, становится тормозящим изменив своё направление, а электрическая машина, получая механическую энергию от внешнего источника, превращает её в электрическую и отдаёт в сеть, питающую обмотки статора. В генераторном режиме выполняются соотношения:  n2>n1, S<0.

    Если в момент работы асинхронного электродвигателя в двигательном режиме (когда 0 ≤ n2 <n1, а 1≥S >0) изменить направление вращения магнитного поля статора (например, изменив схему подключения обмоток статора к питающей сети с помощью магнитных пускателей), так чтобы магнитное поле статора стало вращаться противоположно направлению вращения ротора, то машина перейдёт в режим электромагнитного торможения (рис.2,б). При этом, ЭДС и активная составляющая тока в проводниках обмотки ротора будут сохранять (до определённого момента) то же направление, что и в прежнем двигательном режиме. Машина будет продолжать получать энергию от питающей сети, но эта энергия будет направлена на торможение вращения ротора. Электромагнитный момент (М), в данном режиме, как результат взаимодействия электромагнитных сил, направлен против вращения ротора и является тормозящим.

    Направление электромагнитного момента в асинхронной машинеРис.2. Направление электромагнитного момента в асинхронной машине (а – при работе в генераторном режиме; б – при работе в режиме электромагнитного торможения).

    На практике, асинхронные двигатели чаще всего работают в двигательном режиме, что, в свою очередь, довольно часто не исключает применений режима электромагнитного торможения электродвигателей.

    Итого, кратко повторим, асинхронный электродвигатель работает только при наличии скольжения, то есть неравенстве частот n1 и n2. Только в этом случае в обмотках ротора сможет индуктироваться ЭДС, и как следствие, возникать электромагнитный момент. Поскольку ротор вращается не синхронно с полем статора, машину называют асинхронной.

    Таблица режимов работы асинхронной машины

    Трехфазные асинхронные двигатели — Принцип работы

    Каков принцип работы трехфазных асинхронных двигателей?

    Электродвигатель преобразует электрическую энергию в механическую, которая затем подается на различные типы нагрузок. A.c. двигатели работают от переменного тока. Электродвигатели подразделяются на синхронные, однофазные, трехфазные, асинхронные и специальные. Из всех типов трехфазные асинхронные двигатели наиболее широко используются в промышленности, главным образом потому, что для них не требуется пусковое устройство.

    Fig. Production of rotating magnetic field in a three phase induction motor Рис. Создание вращающегося магнитного поля в трехфазном асинхронном двигателе

    Трехфазный асинхронный двигатель получил свое название от того факта, что ток ротора индуцируется магнитным полем, а не электрическими соединениями.

    Принцип действия трехфазного асинхронного двигателя основан на выработке среднеквадратичной силы.

    Создание вращающегося магнитного поля

    Статор асинхронного двигателя состоит из нескольких перекрывающихся обмоток, смещенных на электрический угол 120 °.Когда первичная обмотка или статор подключаются к трехфазному источнику переменного тока, создается вращающееся магнитное поле, которое вращается с синхронной скоростью.

    Направление вращения двигателя зависит от последовательности фаз линий питания и порядка, в котором эти линии подключены к статору. Таким образом, изменение мест подключения любых двух первичных клемм к источнику питания изменит направление вращения на противоположное.

    Число полюсов и частота приложенного напряжения определяют синхронную скорость вращения статора двигателя.Двигатели обычно имеют 2, 4, 6 или 8 полюсов. Синхронная скорость — термин, обозначающий скорость, с которой будет вращаться поле, создаваемое первичными токами, — определяется следующим выражением.

    Синхронная скорость вращения = (120 * частота питания) / Число полюсов статора


    Создание магнитного потока

    Вращающееся магнитное поле в статоре — это первая часть работы. Чтобы создать крутящий момент и, таким образом, вращаться, роторы должны пропускать ток.В асинхронных двигателях этот ток исходит от проводников ротора. Вращающееся магнитное поле, создаваемое в статоре, пересекает проводящие стержни ротора и индуцирует ЭДС.

    Обмотки ротора асинхронного двигателя либо замкнуты через внешнее сопротивление, либо напрямую закорочены. Следовательно, ЭДС, индуцированная в роторе, заставляет ток течь в направлении, противоположном направлению вращающегося магнитного поля в статоре, и приводит к вращательному движению или крутящему моменту в роторе.

    Как следствие, частота вращения ротора не достигает синхронной скорости среднеквадратичного значения в статоре. Если бы скорости совпадали, ЭДС не было бы. индуцированный в роторе, ток не будет протекать, и, следовательно, не будет создаваться крутящий момент. Разница между скоростями статора (синхронной скорости) и ротора называется скольжением.

    Вращение магнитного поля в асинхронном двигателе имеет то преимущество, что не требуется никаких электрических соединений с ротором.

    В результате получается двигатель, который:

    • Самозапускающийся
    • Взрывозащищенный (из-за отсутствия контактных колец или коллекторов и щеток, которые могут вызывать искры)
    • Прочная конструкция
    • Недорого
    • Легче обслуживать
    .

    Индукционная машина | Строительство | Принцип работы | Индукционный генератор

    Индукционные машины находят широкое применение в качестве двигателей в промышленности. Однофазные асинхронные двигатели используются в бытовых целях. Мы можем видеть асинхронные двигатели повсюду в виде вентиляторов, насосов и т. Д. Более 85% двигателей, используемых в промышленности, являются асинхронными двигателями. Он работает с постоянной скоростью. Это машина с однополярным питанием, т.е. ротор не требует возбуждения, как в случае синхронного двигателя.Он работает со скоростью немного меньшей, чем синхронная скорость. Следовательно, он называется асинхронной машиной. В асинхронном двигателе возможно регулирование скорости в широком диапазоне с помощью силовых электронных схем.

    Строительство

    Индукционная машина — это вращающаяся машина. Следовательно, он имеет неподвижную часть и вращающуюся часть. Стационарная часть называется статором, а вращающаяся часть — ротором.

    Статор

    Статор асинхронной машины аналогичен статору синхронной машины.Он состоит из обмотки, размещенной в пазах статора.

    Ротор

    Для ротора используются два типа конструкций ротора:

    1. Ротор с обмоткой.
    2. Ротор с короткозамкнутым ротором

    Сердечник ротора изготовлен из многослойной стали для уменьшения потерь на вихревые токи. Он содержит полузамкнутые прорези, специально проделанные над ним для размещения обмотки ротора в случае намотанного ротора и стержней ротора в случае ротора с короткозамкнутым ротором.Полузакрытые пазы ротора увеличивают магнитную проницаемость на полюс и уменьшают ток намагничивания.

    Ротор с обмоткой.

    Обмотка намотанного ротора аналогична обмотке статора, за исключением того, что количество пазов и витков меньше, а проводник толще, чем обмотка статора. В трех выводах трехфазной обмотки выведены через контактные кольца и соединены звездой. Нарезание токосъемных колец производится угольными щетками. В обмотку можно включить внешнее переменное сопротивление, чтобы уменьшить пусковой ток и улучшить пусковой момент, а также контролировать скорость.

    Ротор с короткозамкнутым ротором

    Ротор с короткозамкнутым ротором имеет сплошные стержни из проводящего материала, помещенные в пазы ротора. Эти стержни постоянно закорочены на обоих концах концевыми кольцами. В больших машинах используются легированные медные стержни с медными концевыми кольцами, а в малых машинах используются стержни и концевые стержни из литого под давлением алюминия. Асинхронные двигатели с короткозамкнутым ротором имеют низкий пусковой момент. Пусковой момент двигателя может быть увеличен за счет использования ротора с двойной клеткой или ротора с глубоким стержнем.

    Количество пазов ротора меньше, чем количество пазов статора, чтобы предотвратить магнитную блокировку ротора. Зубья ротора слегка перекошены.

    Принцип действия

    Учтите, что обмотки статора подключены к трехфазному источнику переменного тока. Ток статора создает вращающееся магнитное поле в воздушном зазоре, вращающееся с синхронной скоростью. Это вращающееся поле индуцирует ЭДС в обмотке ротора. Частота наведенной ЭДС будет такой же, как у статора.

    Предположим, что если обмотка ротора не замкнута накоротко, ток не течет и не возникает МДС. В роторе не будет развиваться крутящий момент, и он останется неподвижным.

    Теперь учтите, что обмотки ротора закорочены и заблокированы от вращения. Ротор теперь несет три фазных тока, создавая MMF, вращающуюся в том же направлении, что и статор. Теперь позвольте короткозамкнутому ротору вращаться. Теперь ротор движется в направлении поля статора и достигает постоянной скорости N, которая меньше синхронной скорости.

    Просто,

    Когда к обмоткам статора подключен трехфазный источник переменного тока, в воздушном зазоре создается вращающееся магнитное поле, вращающееся с синхронной скоростью, которое индуцирует ЭДС в обмотке ротора. Поскольку обмотки ротора закорочены, ток течет через обмотку ротора. Этот ток создает магнитное поле. Взаимодействие между двумя полями создает крутящий момент, и ротор начинает вращаться в том же направлении, что и статор.

    По мере того, как ротор набирает скорость, частота и величина наведенной ЭДС в роторе уменьшаются.

    Ротор пытается догнать вращающееся магнитное поле. Однако он не может этого сделать, потому что в этом случае относительное движение между статором и ротором становится равным нулю, и в роторе не будет индуцироваться ЭДС. Если ЭДС не индуцируется, ток не будет течь, и крутящий момент упадет до нуля.

    Slip

    Разница между скоростью ротора и скоростью вращающегося магнитного поля (синхронная скорость) известна как скорость скольжения. скольжение определяется как отношение скорости скольжения к синхронной скорости.

    Зубчатый и медленный ход

    Если количество пазов статора равно или целое число пазов ротора, во время пуска создаются сильные выравнивающие усилия. Эти силы могут привести к тому, что силы выравнивания могут создать момент выравнивания, превышающий момент ускорения, и двигатель откажется запускаться. Это явление известно как зубчатость. Такого оформления прорезей следует избегать во время самого дизайна.

    Тенденция асинхронной машины стабильно работать на скоростях, составляющих всего одну седьмую синхронной скорости с низкой скоростью, называется медленным движением.

    Индукционный генератор

    Асинхронные двигатели всегда работают на субсинхронных скоростях для обеспечения постоянной частоты питания. Предположим, что ротор вращается со скоростью выше, чем его синхронная скорость, он действует как генератор. Такой генератор известен как индукционный. Он используется в ветряных турбинах и малых гидроэлектростанциях.

    .

    Основы трехфазного асинхронного двигателя (часть 1)

    Знакомство с трехфазным двигателем

    В этой статье будут рассмотрены те концепции трехфазного асинхронного двигателя, которые являются необходимыми предпосылками для правильного выбора, приобретения, установки и обслуживания двигателя. .

    Basics of 3-phase Induction Motor (part 1) Основы трехфазного асинхронного двигателя (часть 1)

    Перед тем, как начинать какое-либо фактическое обсуждение двигателя, будет лучше провести сравнение поведения асинхронного двигателя и трансформатора при запуске, потому что в соответствии с представлением эквивалентной схемы трехфазный асинхронный двигатель обобщенный трансформатор.

    Предполагается, что читатели уже знакомы с элементарным понятием принципа действия и конструкции трехфазного асинхронного двигателя.

    В чем принципиальная разница в принципе работы асинхронного двигателя и трансформатора ? То есть, несмотря на то, что эквивалентная схема двигателя и трансформатора — это один и тот же ротор двигателя, который вращается, а вторичная обмотка трансформатора — нет.

    Асинхронный двигатель — это трансформатор общего назначения.Разница в том, что трансформатор представляет собой машину с переменным магнитным потоком, а асинхронный двигатель — это машина с вращающимся магнитным потоком. Вращающийся поток возможен только тогда, когда трехфазное напряжение (или многофазное), которое разнесено во времени на 120 градусов, приложено к трехфазной обмотке (или многофазной обмотке) на расстоянии 120 градусов в пространстве, тогда создается трехфазный вращающийся магнитный поток, величина которого постоянно, но направление постоянно меняется. В трансформаторе создаваемый магнитный поток является переменным во времени и не вращается.

    Отсутствует воздушный зазор между первичной и вторичной обмотками трансформатора, поскольку между статором и ротором двигателя имеется четкий воздушный зазор, который обеспечивает механическое перемещение двигателя.Из-за более высокого сопротивления (или низкой проницаемости) воздушного зазора требуемый ток намагничивания в двигателе составляет 25-40% от номинального тока двигателя, тогда как в трансформаторе он составляет всего 2-5% от номинального первичного тока.

    В машине с переменным магнитным потоком частота наведенной ЭДС в первичной и вторичной обмотках такая же, как и частота ЭДС ротора, которая зависит от скольжения. Во время запуска, когда S = 1 частота наведенной ЭДС в роторе и статоре одинакова, но после нагрузки это не так.

    Другое отличие состоит в том, что вторичная обмотка и сердечник установлены на валу, установленном в подшипниках, которые могут свободно вращаться, отсюда и название ротор.

    Если вся вторичная обмотка трансформатора установлена ​​на валу, установленном на подшипниках, то скорость отсечения взаимного магнитного потока с вторичной цепью будет отличаться от первичной и их частота будет другой. Индуцированная ЭДС не будет пропорциональна коэффициенту числа витков, но произведению передаточного числа витков и частоты. Отношение первичной частоты к вторичной частоте называется скольжением.

    Любой проводник с током, помещенный в магнитное поле, испытывает силу, так что проводник ротора испытывает крутящий момент, и согласно Закону Ленца направление движения таково, что он пытается противодействовать вызванному изменению, поэтому он начинает преследовать поле.


    Диаграмма мощности асинхронного двигателя

    Входная электрическая мощность статора = A
    Потери в статоре = B
    Потери в роторе = C
    Механическая мощность = P
    A — (B + C) = P
    Примерно B = 0.03A, C = 0,04A
    A — 0,07A = P
    0,93A = P, Следовательно, КПД = (P / A) x 100 = 93%

    Power flow diagram of induction motor Диаграмма мощности асинхронного двигателя

    Почему двигатели LT имеют треугольник подключены и двигатели HT подключены звездой?

    Причина техно-коммерческая.

    1. В схеме звезды фазный ток такой же, как и линейный. Но фазное напряжение в 1 / 1,732 раза больше линейного напряжения. Таким образом, изоляция, необходимая в случае двигателя HT, меньше.
    2. Пусковой ток двигателей в 6-7 раз превышает ток полной нагрузки.Таким образом, пусковая мощность будет большой, если двигатели HT соединены треугольником. Это может вызвать нестабильность (падение напряжения) в случае небольшой энергосистемы. При включении двигателя HT пусковой ток будет меньше по сравнению с двигателем, подключенным по схеме треугольник. Так что пусковая мощность снижается. Пусковой крутящий момент также будет уменьшен. (Это не будет проблемой, поскольку двигатели имеют большую мощность.)
    3. Также, поскольку ток составляет , меньше меди (Cu) , необходимой для обмотки, будет меньше.
    4. LT двигатели соединены треугольником.
      1. Изоляция не будет проблемой, поскольку уровень напряжения ниже.
      2. Пусковой ток не будет проблемой, так как пусковая мощность будет меньше. Так что проблем с провалом напряжения нет.
      3. Пусковой момент должен быть большим, так как двигатели малой мощности.
    Comparison of star and delta motor starting Сравнение двигателей с пуском звездой и треугольником.
    LT двигатели имеют соединение обмоток треугольником.

    1. Если используется пускатель звезда-треугольник, то они запускаются как двигатель, подключенный звездой.
    2. После достижения 80% скорости синхронизации происходит переключение со звезды на первоначальную дельту конфигурации.
    3. В схеме звезды напряжение на обмотках меньше, чем в 1 / 1,732 раза, чем доступно в треугольнике, поэтому ток ограничен.
    4. Когда он снова переходит в треугольник, напряжение становится полным линейным напряжением, поэтому ток увеличивается, даже если он меньше, чем линейный ток, он остается выше, чем линейный ток, потребляемый звездой при пониженном напряжении. Таким образом, кабели двигателя рассчитаны на этот ток, который он потребляет при соединении треугольником.

    Ссылки:

    1. NEMA MG-1.
    2. Справочник по промышленной энергетике и применению, К. К. Агарвал.
    3. Справочник по промышленной энергосистеме Шоаиб Хана.
    4. Теория и расчет явлений переменного тока Чарльзом Протеем Штайнметцем
    5. Реле защиты двигателя (MM30), руководство от L&T

    .

    Базовая конструкция трехфазных асинхронных двигателей переменного тока, которые вы должны знать

    Трехфазные асинхронные двигатели переменного тока

    Для промышленного и горнодобывающего применения трехфазных асинхронных двигателей переменного тока являются первичными двигателями для подавляющего большинства машин. Эти двигатели могут работать как напрямую от сети, так и от преобразователей частоты.

    В современных промышленно развитых странах более половины всей электроэнергии, используемой в этих странах, преобразуется в механическую энергию с помощью асинхронных двигателей переменного тока.

    Basic construction of 3-phase AC induction motors you should know Базовая конструкция трехфазных асинхронных двигателей переменного тока, которые вы должны знать (фото: capolight.wordpress.com)

    Применения этих двигателей охватывают почти все стадии производства и обработки.

    Применения также распространяются на коммерческие здания и домашнюю среду. Они используются для привода насосов, вентиляторов, компрессоров, миксеров, мешалок, мельниц, конвейеров, дробилок, станков, кранов и т. Д. И т. Д.

    Неудивительно, что электродвигатели этого типа так популярны, если учесть его простоту, надежность и дешевизну.В последнее десятилетие становится все более распространенной практикой использовать 3-фазные асинхронные двигатели переменного тока с короткозамкнутым ротором с преобразователями переменного напряжения и частоты (VVVF) для приводов с регулируемой скоростью (VSD).

    Чтобы четко понимать, как работает система VSD, необходимо понимать принципы работы этого типа двигателя.

    Хотя базовая конструкция асинхронных двигателей не сильно изменилась за последние 50 лет, современные изоляционные материалы, компьютерные методы оптимизации конструкции и автоматизированные методы производства привели к появлению двигателей меньшего физического размера и более низкой стоимости в расчете на единицу продукции. кВт .

    Международная стандартизация физических размеров и размеров корпуса означает, что двигатели большинства производителей физически взаимозаменяемы и имеют схожие рабочие характеристики.

    Надежность асинхронных двигателей переменного тока с короткозамкнутым ротором по сравнению с двигателями постоянного тока выше . Единственные части двигателя с короткозамкнутым ротором, подверженные износу, — это подшипники. Для этого типа конструкции не требуются токосъемники и щетки. Усовершенствования в современной конструкции подшипников с предварительной смазкой продлили срок службы этих двигателей.

    Хотя однофазные асинхронные двигатели переменного тока довольно популярны и распространены в приложениях с малой мощностью до примерно 2,2 кВт, они редко используются в промышленности и горнодобывающей промышленности. Однофазные двигатели чаще используются в быту.

    Информация в этой статье в основном относится к 3-фазным асинхронным двигателям переменного тока с короткозамкнутым ротором, которые наиболее часто используются с преобразователями VVVF.


    Базовая конструкция

    Асинхронный двигатель переменного тока состоит из 2 электромагнитных частей:

    • Стационарная часть, называемая статором
    • Вращающаяся часть, называемая ротором, опирающаяся на подшипники с каждого конца

    Статор и ротор каждый состоит из:

    • Электрическая цепь, обычно сделанная из изолированной меди или алюминия, для передачи тока
    • Магнитная цепь, обычно сделанная из многослойной стали, для передачи магнитного потока

    Статор

    Статор это внешняя неподвижная часть двигателя, которая состоит из:

    • Наружная цилиндрическая рама двигателя , которая изготовлена ​​из сварной листовой стали, чугуна или литого алюминиевого сплава.Это может быть ножка или фланец для монтажа.
    • Магнитный тракт , который состоит из набора стальных пластин с прорезями, вдавленных в цилиндрическое пространство внутри внешней рамы. Магнитный тракт имеет многослойную структуру для уменьшения вихревых токов, меньших потерь и меньшего нагрева.
    • Набор изолированных электрических обмоток , которые размещаются внутри прорезей ламинированного магнитного тракта. Площадь поперечного сечения этих обмоток должна быть достаточно большой для номинальной мощности двигателя.Для трехфазного двигателя требуется 3 комплекта обмоток, по одному на каждую фазу.
    Figure 1: Stator and rotor laminations Рис. 1. Пластины статора и ротора
    Ротор

    Это вращающаяся часть двигателя. Как и статор выше, ротор состоит из набора стальных пластин с прорезями, сжатых вместе в форме цилиндрического магнитного пути и электрической цепи. Электрическая схема ротора может быть любой:

    • Ротор с фазной обмоткой типа , который включает 3 набора изолированных обмоток с соединениями, выведенными на 3 контактных кольца, установленных на валу.Внешние соединения с вращающейся частью выполнены щетками на токосъемниках. Следовательно, этот тип двигателя часто называют двигателем с токосъемником.
    • Ротор с короткозамкнутым ротором типа , который состоит из набора медных или алюминиевых стержней, установленных в пазы, которые соединены с концевым кольцом на каждом конце ротора. Конструкция этих обмоток ротора напоминает «беличью клетку». Алюминиевые стержни ротора обычно отливаются под давлением в пазы ротора, что обеспечивает очень прочную конструкцию.Несмотря на то, что алюминиевые стержни ротора находятся в прямом контакте со стальными пластинами, практически весь ток ротора проходит через алюминиевые стержни, а не в пластинах.

    Другие детали

    Другие детали, необходимые для сборки асинхронного двигателя:

    • Два концевых фланца для поддержки двух подшипников, один на приводной стороне (DE), а другой на неприводной стороне (неприводной стороне)
    • Два подшипника для поддержки вращающегося вала на переднем и неприводном концах
    • Стальной вал для передачи крутящего момента на нагрузку
    • Охлаждающий вентилятор, расположенный на неприводном конце, для принудительного охлаждения статора и ротор
    • Клеммная коробка сверху или с обеих сторон для подключения внешних электрических соединений
    Figure 2: Assembly details of a typical AC induction motor Рисунок 2: Детали сборки типичного асинхронного двигателя переменного тока

    Как работают асинхронные двигатели (ВИДЕО)

    Ссылка // Практические приводы с регулируемой скоростью и силовая электроника Малкольма Барнса

    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *