Температура плавления металлов — Южный механо-литейный завод
Каждый металл и сплав имеет собственный уникальный набор физических и химических свойств, среди которых не последнее место занимает температура плавления металлов. Сам процесс означает переход тела из одного агрегатного состояния в другое, в данном случае, из твердого кристаллического состояния в жидкое. Чтобы расплавить металл, необходимо подводить к нему тепло до достижения температуры плавления. При ней он все еще может оставаться в твердом состоянии, но при дальнейшем воздействии и повышении тепла металл начинает плавиться. Если температуру понизить, то есть отвести часть тепла, элемент затвердеет.
Самая высокая температура плавления металлов у вольфрама: она составляет 3422 °C, самая низкая — у ртути: элемент плавится уже при — 39 °C. Определить точное значение для сплавов, как правило, не представляет возможности: оно может значительно колебаться в зависимости от процентного соотношения компонентов.
Плавление всех металлов происходит примерно одинаково — при помощи внешнего или внутреннего нагревания. Первый осуществляется в термической печи, для второго используют резистивный нагрев при пропускании электрического тока или индукционный нагрев в высокочастотном электромагнитном поле. Оба варианта воздействуют на металл примерно одинаково.
При увеличении температуры увеличивается и амплитуда тепловых колебаний молекул, возникают структурные дефекты решетки, выражающиеся в росте дислокаций, перескоке атомов и других нарушениях. Это сопровождается разрывом межатомных связей и требует определенного количества энергии. В это же время происходит образование квази-жидкого слоя на поверхности тела. Период разрушения решетки и накопления дефектов называется плавлением.
Взависимости от температуры плавления металлы делятся на:
- Легкоплавкие: им необходимо не более 600°C. Это цинк, свинец, виснут, олово.
- Среднеплавкие: температура плавления колеблется от 600°C до 1600°C. Это золото, медь, алюминий, магний, железо, никель и большая половина всех элементов.
- Тугоплавкие: требуется температура свыше 1600°C, чтобы сделать металл жидким. Сюда относятся хром, вольфрам, молибден, титан.
В зависимости от температуры плавления металлов выбирают и плавильный аппарат. Чем выше показатель, тем прочнее он должен быть. Узнать температуру нужного вам элемента можно из таблицы.
Еще одной немаловажной величиной является температура кипения. Это величина, при которой начинается процесс кипения жидкостей, она соответствует температуре насыщенного пара, который образуется над плоской поверхностью кипящей жидкости. Обычно она почти в два раза больше, чем температура плавления.
Обе величины принято приводить при нормальном давлении. Между собой они прямопропорциональны.
- Уменьшается давление — уменьшается величина плавления.
Таблица легкоплавких металлов и сплавов (до 600°C )
Название элемента | Латинское обозначение | Температуры | |
Плавления | Кипения | ||
Олово | Sn | 232 °C | 2600 °C |
Свинец | Pb | 327 °C | 1750 °C |
Цинк | Zn | 420 °C | 907 °C |
Калий | K | 63,6 °C | 759 °C |
Натрий | Na | 97,8 °C | 883 °C |
Ртуть | Hg | — 38,9 °C | 356.73 °C |
Цезий | Cs | 28,4 °C | 667.5 °C |
Висмут | Bi | 271,4 °C | 1564 °C |
Палладий | Pd | 327,5 °C | 1749 °C |
Полоний | Po | 254 °C | 962 °C |
Кадмий | Cd | 321,07 °C | 767 °C |
Рубидий | Rb | 39,3 °C | 688 °C |
Галлий | Ga | 29,76 °C | 2204 °C |
Индий | In | 156,6 °C | 2072 °C |
Таллий | Tl | 304 °C | 1473 °C |
Литий | Li | 18,05 °C | 1342 °C |
Таблица среднеплавких металлов и сплавов (от 600°C до 1600°C )
Название элемента | Латинское обозначение | Температураы | |
Плавления | Кипения | ||
Алюминий | Al | 660 °C | 2519 °C |
Германий | Ge | 937 °C | 2830 °C |
Магний | Mg | 650 °C | 1100 °C |
Серебро | Ag | 2180 °C | |
Золото | Au | 1063 °C | 2660 °C |
Медь | Cu | 1083 °C | 2580 °C |
Железо | Fe | 1539 °C | 2900 °C |
Кремний | Si | 1415 °C | 2350 °C |
Никель | Ni | 1455 °C | 2913 °C |
Барий | Ba | 727 °C | 1897 °C |
Бериллий | Be | 1287 °C | 2471 °C |
Нептуний | Np | 644 °C | 3901,85 °C |
Протактиний | Pa | 1572 °C | 4027 °C |
Плутоний | Pu | 640 °C | 3228 °C |
Актиний | Ac | 1051 °C | 3198 °C |
Кальций | Ca | 842 °C | 1484 °C |
Радий | Ra | 700 °C | 1736,85 °C |
Кобальт | Co | 1495 °C | 2927 °C |
Сурьма | Sb | 630,63 °C | 1587 °C |
Стронций | Sr | 777 °C | 1382 °C |
Уран | U | 1135 °C | 4131 °C |
Марганец | Mn | 1246 °C | 2061 °C |
Константин | 1260 °C | ||
Дуралюмин | Сплав алюминия, магния, меди и марганца | 650 °C | |
Инвар | Сплав никеля и железа | 1425 °C | |
Латунь | Сплав меди и цинка | 1000 °C | |
Нейзильбер | Сплав меди, цинка и никеля | 1100 °C | |
Нихром | Сплав никеля, хрома, кремния, железа, марганца и алюминия | 1400 °C | |
Сталь | Сплав железа и углерода | 1300 °C — 1500 °C | |
Фехраль | Сплав хрома, железа, алюминия, марганца и кремния | 1460 °C | |
Чугун | Сплав железа и углерода | 1100 °C — 1300 °C |
Таблица тугоплавких металлов и сплавов (свыше 1600°C )
Название элемента | Латинское обозначение | Температуры | |
Плавления | Кипения | ||
Вольфрам | W | 3420 °C | 5555 °C |
Титан | Ti | 1680 °C | 3300 °C |
Иридий | Ir | 2447 °C | 4428 °C |
Осмий | Os | 3054 °C | 5012 °C |
Платина | Pt | 1769,3 °C | 3825 °C |
Рений | Re | 3186 °C | 5596 °C |
Хром | Cr | 1907 °C | 2671 °C |
Родий | Rh | 1964 °C | 3695 °C |
Рутений | Ru | 2334 °C | 4150 °C |
Гафний | Hf | 2233 °C | 4603 °C |
Тантал | Ta | 3017 °C | 5458 °C |
Технеций | Tc | 2157 °C | 4265 °C |
Торий | Th | 1750 °C | 4788 °C |
Ванадий | V | 1910 °C | 3407 °C |
Цирконий | Zr | 1855 °C | 4409 °C |
Ниобий | Nb | 2477 °C | 4744 °C |
Молибден | Mo | 2623 °C | 4639 °C |
Карбиды гафния | 3890 °C | ||
Карбиды ниобия | 3760 °C | ||
Карбиды титана | 3150 °C | ||
Карбиды циркония | 3530 °C |
Цветные металлы и сплавы
Подробности- Подробности
- Опубликовано 27. 05.2012 13:22
- Просмотров: 11930
Наибольшее применение в технике имеют следующие цветные металлы: медь, латунь, бронза, алюминий и его сплавы, свинец, олово, цинк.
Медь.
Высокая пластичность позволяет производить прокатку ее в холодном состоянии в тонкие листы. Прочность нагартованной меди достигает 40 кг!мм2, а отожженной и литой — 18—20 кг/мм2.
Обычно применяется медь марок МО, M1, М2, МЗ, (М4) (ГОСТ 859-41), отличающихся друг от друга содержанием примесей. Наиболее чистой от примесей является медь марки МО (количество примесей 0,05%) и марки M1 (примесей 0,1%). Чем меньше примесей, тем лучше медь поддается сварке.
При нагревании свыше 600° С прочность меди резко снижается, она становится хрупкой. В жидком состоянии медь легко поглощает газы и окисляется. Это ограничивает ее применение для литых изделий, а также затрудняет сварку. Высокая теплопроводность и жидко текучесть в расплавленном состоянии также затрудняют сварку меди.
С понижением температуры механические свойства меди не снижаются, что позволяет применять медь в конструкциях, работающих при низкой температуре. Благодаря высокой электропроводности медь широко применяется в электропромышленности, в химическом машиностроении и других отраслях промышленности для изготовления баков, котлов, теплообменной аппаратуры и т. д.
Латунь. Латунь представляет собой сплав меди с цинком золотисто-желтого цвета. Содержание цинка в латуни 20—45%. Температура плавления латуни в зависимости от состава достигает 880— ‘950° С. С увеличением содержания цинка температура плавления понижается. Латунь достаточно хорошо сваривается и прокатывается. Изготовляется и применяется она обычно в виде листов, прутков, трубок и проволоки. Широкое применение латуни обусловливается ее меньшей стоимостью по сравнению с медью.
По ГОСТ 1019-47 латуни разделяются в зависимости от их химического состава на ряд марок: томпак марок Л96 и Л90 (содержание меди 88—97%), полутомпак марок JI80 и Л85 (меди 79— 86%), латунь марок Л62, Л68 и Л70 (цифра обозначает среднее содержание меди). Кроме того, имеются алюминиевые латуни марки ЛА77-2 (меди 76—79%, алюминия в среднем до 2%), марганцовистые, железомарганцовистые и др. Такие латуни обладают повышенной прочностью и вязкостью.
Бронза. Сплавы меди с оловом, марганцем, алюминием, никелем, кремнием, бериллием и другими элементами называют бронзами. Наиболее известны оловянистые бронзы, содержащие олова от 3 до 7%. Оловянистая бронза обладает очень малой усадкой и хорошими литейными свойствами.
Бронзы применяются в промышленности, главным образом в качестве литейного материала для изготовления подшипников и деталей, работающих на трение, а также для различного рода арматуры котлов, аппаратов и т. д.
Температура плавления бронзы зависит от количества в ней примесей и в среднем составляет: для оловянистых бронз 900—950 ° С, для безоловянистых — 950— 1080° С. Бронзы хорошо свариваются.
По ГОСТ 5017-49 различают следующие марки: Бр. ОФ 6,5-0,15 (олова 6—7%, фосфора 0,1—0,25%), Бр. ОФ 4-0,25 (олова 3,5— 4%, фосфора 0,2—0,3%), Бр. ОЦС-4-4-2,5 (олова 3—5%, цинка 3—5%, свинца 1,5—3,5%).
Алюминий и его сплавы. Алюминий — очень легкий металл, светло-серого, почти белого цвета. Он почти в три раза легче стали. Его удельный вес 2,7 г/см3. Алюминий имеет высокую теплопроводность и электропроводность и хорошо сопротивляется окислению благодаря тонкой, но прочной пленке окислов, защищающей его поверхность. Температура плавления алюминия 658° С. Несмотря на низкую температуру плавления, алюминий требует для расплавления большого количества тепла благодаря своей высокой удельной теплоемкости. Механические свойства чистого алюминия невысоки.
Сплавы алюминия с медью (дюралюминий), с магнием (электрон), с кремнием (силумин) и другие обладают прочностью, близкой к прочности малоуглеродистой стали.
В чистом виде алюминий применяется в электротехнике и химическом машиностроении. Алюминиевые сплавы широко применяются в промышленности в качестве литейного материала, а также в виде листового и сортового металла. Алюминий и его сплавы хорошо свариваются.
Из большого количества алюминиевых сплавов в сварных конструкциях чаще всего применяют алюминиево-марганцевый сплав АМц (содержащий до 1,6% марганца), дюралюминий (марки Д1, Д6, Д16) и др.
Все алюминиевые сплавы могут быть разделены на литейные, из которых изготовляются литые детали, и деформируемые, которые используются для изготовления полуфабрикатов прокаткой, прессованием, ковкой, штамповкой (полосы, листы, трубы и другие профили).
Литейные сплавы обозначаются АЛ1-АЛ13 (ГОСТ 2685-44) и отличаются низкими механическими свойствами (предел прочности от 12 до 28 кг/мм2у относительное удлинение от 0,5 до 9%).
Деформируемые алюминиевые оплавы (ГОСТ 4784-49) делятся на две группы: неупрочняющиеся термической обработкой (сплавы марки АМц, АМг) « упрочняющиеся (Д6, Д16, В95).
Упрочняющиеся оплавы (Д6, Д16) после термической обработки имеют предел прочности 42—46 кг/мм2 и относительное удлинение 15—17%. Такие сплавы обозначаются Д6Т, Д16Т.
При сварке указанных упрочняющихся сплавов значительный нагрев металла в зоне, расположенной рядом со швом, приводит к понижению механических свойств (предел прочности понижается до 21—22 кг/мм2).
Магний и его сплавы. Чистый магний в машиностроении не применяется. Широко применяются сплавы магния с алюминием, марганцем, цинком. Магниевые сплавы относятся к легчайшим металлам. Их удельный вес равен 1,75—1,85 г/см3. Температура плавления 648—650° С. Магниевые сплавы удовлетворительно свариваются газовой сваркой. Они могут быть как литейные (марки МЛ1-7-МЛ6, ГОСТ 2855-45), так и деформируемые (марки МА1Ч-МА5).
Цинк — металл синевато-белого цвета. Температура плавления 419° С, температура кипения 906° С. Цинк легко окисляется, пары его весьма вредны для здоровья.
Свинец отличается большим удельным весом (11,3 г/см3), малой теплопроводностью (9% от теплопроводности меди), низкой температурой плавления (325° С), малой прочностью на разрыв (1,35 кг/мм2) и значительным относительным удлинением — 50 %.
При нагревании свинец легко окисляется, покрываясь пленкой окиси с температурой плавления 850° С.
Пары и пыль свинца очень ядовиты.
Свинец и его сплавы свариваются удовлетворительно.
Олово — мягкий и вязкий металл серебристо-белого цвета; температура плавления 232° С. Для него характерна хорошая стойкость против окисления на воздухе и слабая окисляемость в воде. Применяется для лужения посуды, изготовления припоев и различных медных сплавов.
Читайте также
Добавить комментарий
Температура плавления меди – при какой температуре плавится медь
Благодаря тому, что температура плавления меди достаточно невысокая, этот металл стал одним из первых, которые древние люди начали использовать для изготовления различных инструментов, посуды, украшений и оружия. Самородки меди или медную руду можно было расплавить на костре, что, собственно, и делали наши далекие предки.
Этап плавления меди
Несмотря на активное применение человечеством с древних времен, медь не является самым распространенным природным металлом. В этом отношении она значительно уступает остальным элементам и занимает в их ряду только 23-е место.
Как плавили медь наши предки
Благодаря невысокой температуре плавления меди, составляющей 1083 градуса Цельсия, наши далекие предки не только успешно получали из руды чистый металл, но и изготавливали различные сплавы на его основе. Чтобы получить такие сплавы, медь нагревали и доводили до жидкого расплавленного состояния. Затем в такой расплав просто добавляли олово или выполняли его восстановление на поверхности расплавленной меди, для чего использовалась оловосодержащая руда (касситерит). По такой технологии получали бронзу – сплав, обладающий высокой прочностью, который использовали для изготовления оружия.
Какие процессы происходят при плавлении меди
Что характерно, температуры плавления меди и сплавов, полученных на ее основе, отличаются. При добавлении в медь олова, имеющего меньшую температуру плавления, получают бронзу с температурой плавления 930–1140 градусов Цельсия. А сплав меди с цинком (латунь) плавится при 900–10500 Цельсия.
Во всех металлах в процессе плавления происходят одинаковые процессы. При получении достаточного количества теплоты при нагревании кристаллическая решетка металла начинает разрушаться. В тот момент, когда он переходит в расплавленное состояние, его температура не повышается, хотя процесс передачи ему теплоты при помощи нагрева не прекращается. Температура металла начинает вновь повышаться только тогда, когда он весь перейдет в расплавленное состояние.
Диаграмма состояния системы хром-медь
При охлаждении происходит противоположный процесс: сначала температура резко снижается, затем на некоторое время останавливается на постоянной отметке. После того, как весь металл перейдет в твердую фазу, температура снова начинает снижаться до полного его остывания.
Как плавление, так и обратная кристаллизация меди, связаны с параметром удельной теплоты. Данный параметр характеризует удельное количество теплоты, которая требуется для того, чтобы перевести металл из твердого состояния в жидкое. При кристаллизации металла такой параметр характеризует количество теплоты, которое он отдает при остывании.
Более подробно узнать о плавлении меди помогает фазовая диаграмма, показывающая зависимость состояния металла от температуры. Такие диаграммы, которые можно составить для любых металлов, помогают изучать их свойства, определять температуры, при которых они кардинально меняют свои свойства и текущее состояние.
Кроме температуры плавления, у меди есть и температура кипения, при которой расплавленный металл начинает выделять пузырьки, наполненные газом. На самом деле никакого кипения меди не происходит, просто этот процесс внешне очень его напоминает. Довести до такого состояния ее можно, если нагреть до температуры 2560 градусов.
Как понятно из всего вышесказанного, именно невысокую температуру плавления меди можно назвать одной из основных причин того, что сегодня мы можем использовать этот металл, обладающий многими уникальными характеристиками.
Оценка статьи:
Загрузка…Поделиться с друзьями:
Содержание: Каждый металл обладает способностью плавиться. Все они отличаются собственной температурой плавления, которая зависит от разных факторов. Прежде всего, на этот показатель влияет структура металла и наличие в нем каких-либо примесей. Температура плавления меди составляет 1080 градуса. Процесс плавления металловВо время нагревания металлов их кристаллическая решетка начинает постепенно разрушаться. В начальной стадии, по мере нагревания, происходит повышение температуры. Достигнув определенного значения, она продолжает оставаться на одном и том же уровне, несмотря на продолжающийся нагрев. В такой момент и начинается процесс плавления. Он продолжается до тех пор, пока металл полностью не расплавится. После этого продолжается дальнейшее повышение температуры. Таким образом, происходит плавление всех, без исключения, металлов. Во время охлаждения наблюдается обратное явление. Температура начинает снижаться до тех пор, пока металл не начнет твердеть. Она будет держаться на одном уровне до окончательного отвердения, а потом вновь начнет понижаться. Все происходящие процессы можно отобразить графически, в виде фазовой диаграммы.
Если же расплавленный металл будет нагреваться и далее, то при достижении определенного предела он начнет кипеть. Однако в отличие от жидкости, жидкий металл начинает выделять не пузырьки газа, а углерод, который образуется во время окислительных процессов. Свойства медиЧеловек использовал медь для своих целей с древних времен. Плавление меди при сравнительно низких температурах, позволило проводить с этим металлом самые разные операции. Таким образом, была получена бронза, представляющая собой сплав меди с оловом. По своей прочности она значительно превосходила чистую медь, что позволило изготавливать более качественное оружие и инструменты. В настоящее время медь также не используется в чистом виде. В составе меди, в большом количестве присутствуют разные компоненты. Их содержание достигает 1%. В качестве основных добавок используется никель, железо, мышьяк и сурьма. Тем не менее, несмотря на добавки, с технической стороны медь считается чистым металлом с высокими показателями теплопроводности и электропроводности. Поэтому она является идеальным материалом для кабельно-проводниковой продукции. Сплав меди с другими металламиОтносительно невысокая температура плавления меди составляет 1084°С. Это позволяет получать на ее основе металлические сплавы, обладающие совершенно другими свойствами. Среди них хорошо известна латунь, представляющая собой сплав меди и цинка, в процентном соотношении приблизительно 1:1. Полученное вещество, имеет более низкую температуру плавления, составляющую от 800 до 950 градусов. Конкретное значение этого показателя зависит от соотношения металлов, содержащихся в сплаве: с уменьшением количества цинка плавление латуни происходит при более низкой температуре. Данный материал используется в литейном производстве, а также в качестве листовых и прокатных изделий.
Другим известным сплавом является бронза, в которой присутствует медь и олово. В некоторых случаях, вместо олова могут использоваться железные, алюминиевые или марганцевые добавки. Сплав с оловом плавится при диапазоне от 900 до 950 градусов. Для бронзы без олова этот показатель составляет от 950 до 1080 градусов. Этот материал применяется для производства различных трущихся деталей, а также при изготовлении декоративных украшений. |
Температура плавления меди в кельвинах
Уже в древности люди добывали и плавили медь. Этот металл широко применялся в быту и служил материалом для изготовления различных предметов. Бронзу научились делать примерно 3 тыс. лет назад. Из этого сплава делали хорошее оружие. Популярность бронзы быстро распространялась, так как металл отличался красивым внешним видом и прочностью. Из него делали украшения, орудия охоты и труда, посуду. Благодаря небольшой температуре плавления меди человек быстро освоил ее производство.
Нахождение в природе
Свое латинское название Cuprum металл получил от названия острова Кипр, где его научились добывать в третьем тысячелетии до н. э. В системе Менделеева Сu получил 29 номер, а расположен в 11-й группе четвертого периода.
В земной коре элемент на 23-м месте по распространению и встречается чаще в виде сульфидных руд. Наиболее распространены медный блеск и колчедан. Сегодня медь из руды добывается несколькими способами, но любая технологий подразумевает поэтапный подход для достижения результата.
- На заре развития цивилизации люди уже получали и использовали медь и ее сплавы.
- В то время добывалась не сульфидная, а малахитовая руда, которой не требовался предварительный обжиг.
- Смесь руды и углей помещали в глиняный сосуд, который опускался в небольшую яму.
- Смесь поджигалась, а угарный газ помогал малахиту восстановиться до состояния свободного Cu.
- В природе есть самородная медь, а богатейшие месторождения находятся в Чили.
- Сульфиды меди нередко образуются в среднетемпературных геотермальных жилах.
- Часто месторождения имеют вид осадочных пород.
- Медяные песчаники и сланцы встречаются в Казахстане и Читинской области.
Физические свойства
Металл пластичен и на открытом воздухе покрывается оксидной пленкой за короткое время. Благодаря этой пленке медь и имеет свой желтовато-красный оттенок, в просвете пленки цвет может быть зеленовато-голубым. По уровню уровнем тепло- и электропроводности Cuprum на втором месте после серебра.
- Плoтность — 8,94×103 кг/ м3 .
- Удельная теплоемкость при Т=20 ° C — 390 Дж/кг х К.
- Электрическoе удельное при 20−100 ° C — 1,78×10−8 Ом/м.
- Температура кипeния — 2595 ° C.
- Удельная электропрoводность при 20 ° C — 55,5−58 МСм/м.
При какой температуре плавится медь
Плавления происходит, когда из твердого состояния металл переходит в жидкое. Каждый элемент имеет собственную температуру плавления. Многое зависит от примесей в металле. Обычная температура плавления меди — 1083 ° C. Когда добавляется олово, температура снижается до 930- 1140 ° C. Температура плавления зависит здесь от содержания в сплаве олова. В сплаве купрума с цинком плавление происходит при 900- 1050 ° C .
При нагреве любого металла разрушается его кристаллическая решетка. По мере нагревания повышается температура плавления, но затем выравнивается по достижении определенного предела температуры. В этот момент и плавится металла. Полностью расплавляется, и температура повышается снова.
Когда металл охлаждается, температура снижается, в определенный момент остается на прежнем уровне, пока металл не затвердеет полностью. После полного затвердевания температура снижается опять. Это демонстрирует фазовая диаграмма, где отображен температурный процесс с начала плавления до затвердения. При нагревании разогретая медь при 2560 ° C начинает закипать. Кипение подобно кипению жидких веществ, когда выделяется газ и появляются пузырьки на поверхности. В момент кипения при максимально больших температурах начинается выделение углерода, образующегося при окислении.
Плавление в домашних условиях
Благодаря низкой температуре плавления древние люди могли расплавлять купрум на костре и использовать металл для изготовления различных изделий.
Для расплавки меди в домашних условиях понадобится:
- древесный уголь;
- тигель и специальные щипцы для него;
- муфельная печь;
- бытовой пылесос;
- горн;
- стальной крюк;
- форма для плавления.
Процесс течет поэтапно, металл помещается в тигель, а затем размещается в муфельной печи. Выставляется нужная температура, а наблюдение за процессом осуществляется через стеклянное оконце. В процессе в емкости с Cu появится окисная пленка, которую нужно устранить — открыть окошко и отодвинуть в сторону стальным крюком.
При отсутствии муфельной печи расплавить медь можно автогеном. Плавление пойдет, если ест нормальный доступ воздуха. Паяльной лампой расплавляется латунь и легкоплавкая бронза. Пламя должно охватить весь тигель.
Если под рукой ничего из перечисленных средств нет, можно использовать горн, установленный на слой древесного угля. Для повышения Т можно использовать пылесос, включенный в режим выдувания, но шланг должен иметь металлический наконечник, хорошо, если с зауженным концом, так струя воздуха будет тоньше.
Температура плавления бронзы и латуни, как температура плавления меди и алюминия — невысоки.
Сегодня в промышленных условиях в чистом виде Cu не используется. В ее составе содержится много примесей: никель, железо, мышьяк, сурьма, другие элементы. Качество продукта определяется наличием содержания в процентах примесей в сплаве (не более 1%). Важные показатели — тепло- и электропроводность. Благодаря пластичности, малой Т плавления и гибкости медь широко используется во многих отраслях промышленности.
Медь входит в семёрку самых древних металлов, с которыми люди познакомились на самом начальном этапе своего существования. Период с 4 по 3 тысячелетие до нашей эры так и называется медный век в истории развития человечества. Древние люди изготавливали из неё предметы быта, орудия труда и боевое оружие. Это стало возможным благодаря относительно невысокой температуре плавления меди.
Купрум: характеристика элемента
Научное наименование меди Cuprum (Купрум) происходит от названия греческого острова Кипр, где медь начали добывать ещё в середине третьего тысячелетия до нашей эры. В периодической таблице Менделеева химический элемент медь имеет 29 атомный (порядковый) номер, находится в 11 группе четвёртого периода. Принадлежит к пластичным переходным металлам. В чистом виде имеет характерный золотисто-розовый цвет. Чистую медь легко окислить, поэтому в естественных условиях она всегда образует на своей поверхности тонкую оксидную плёнку, которая придаёт ей красноватый оттенок.
Физические свойства
Это второй металл после серебра по уровню электропроводности, что делает её крайне востребованной в современной электронике. Второе ценное качество — высокая теплопроводность, это позволяет её широко применять во всевозможных теплообменниках и в холодильной аппаратуре.
- Температура плавления 1083 градуса.
- Температура кипения 2567 градусов.
- Удельное сопротивление при 20 градусах составляет 1,68·10 -3 Ом·м.
- Плотность 8,92 г/см.
Нахождение в природе
В природе встречается в самородном виде и в виде соединений.
Самые крупные месторождения самородной меди находятся в США в районе озера Верхнего. Именно в этом районе был найден самый крупный медный самородок весом 3560 килограмм. А также много самородной меди встречается в рудных горах Германии.
В России и на постсоветском пространстве добыча меди происходит путём извлечения из сульфидной руды. Её можно добыть, извлекая из медного колчедана или халькопирита CuFeS2. Наиболее известны такие месторождения, как Удокан в Забайкалье и Джезказган в Казахстане.
Сульфиты меди чаще всего образуются в так называемых среднетемпературных гидротермальных жилах. Могут образовываться и в осадочных породах в виде медистых песчаников и сланцев.
Как правило, медная руда всегда добывается открытым способом. Процентное содержание чистой меди в руде составляет от 0,2 до 1,0 процента в зависимости от месторождения.
Медные сплавы
Являются самыми первыми металлическими сплавами, получение которых человечество освоило ещё на самой заре своего развития. При какой температуре плавится медь, зависит от того, в каком сплаве она находится. В настоящее время наиболее известны и востребованы такие сплавы, как:
- Латунь. Сплав с добавление цинка, содержание которого может доходить до 40%. Цинк повышает пластичность и прочность металла. Температура, при которой латунь плавится, составляет 880 — 950 градусов.
- Бронза. Сплав с оловом, с добавлением некоторых других компонентов, таких как кремний, бериллий, свинец. Получать бронзу из меди человек научился ещё в самом начале бронзового века. Бронза не утратила своей актуальности даже с наступлением века железа, например, ещё в начале 20 века стволы пушек изготавливали из так называемой орудийной бронзы. Температура, при которой бронза начинает плавиться, составляет 930 — 1140 градусов.
- Мельхиор. Кроме меди, содержит в своём составе 5−30% никеля. Никель увеличивает прочность медного сплава и повышает его электрическое сопротивление. Кроме того, сильно повышается коррозионная стойкость. Температура плавления — 1170 градусов. По своим внешним характеристикам мельхиор очень похож на серебро, раньше его называли белой медью. Но он обладает более высокой механической прочностью, чем обычное серебро.
- Дюраль, или дюралюминий. Основную массу сплава составляет алюминий 93%, на медь приходится 5%, оставшиеся 2% занимают марганец, железо и магний. Название происходит от названия немецкого города Дюрен, где в 1906 году был впервые получен этот высокопрочный сплав алюминия. Одной из его особенностей является тот факт, что его прочностные характеристики с течением времени имеют тенденцию к увеличению. Поэтому он не теряет своей прочности после нескольких лет эксплуатации, как другие металлы. В настоящее время этот сплав является основой самолётостроения.
- Ювелирные сплавы. Сплавы меди с золотом. Тем самым увеличивается устойчивость драгметалла к механическим воздействиям и истиранию.
Переплавка меди дома
Этот металл обладает целым набором полезных свойств, которые делают её весьма желанным металлом в домашнем хозяйстве. А относительно невысокая температура при плавлении и изрядное количество медного лома, которое можно обнаружить на ближайшей свалке, позволяют задавать вопрос о том, как расплавить медь в домашних условиях, не как риторический, а вполне реальный и практический.
График плавления меди
Расплавление любого металла заключается в том, что под воздействием высоких температур разрушается кристаллическая решётка и металл переходит из твёрдого состояния в жидкое. Можно выделить некоторые закономерности, свойственные любому металлу в процессе расплавления:
- Во время нагревания температура внутри металла повышается, но кристаллическая решётка не подвергается разрушению. Металл сохраняет своё твёрдое состояние.
- При достижении температуры плавления, для меди это 1083 градуса, температура внутри металла перестаёт повышаться, несмотря на то что общий нагрев и передача тепла продолжаются.
- После того как вся масса метала переходит в расплавленное состояние, температура внутри металла снова начинает резко повышаться.
В случае процесса охлаждения расплавленного металла происходит всё то же самое, но в обратной последовательности. Сначала происходит резкое снижение температуры внутри металла, затем на значении 1080 градусов падение температуры прекращается до тех пор, пока вся масса метала не перейдёт в твёрдое состояние. После этого температура снова начинает резко падать, пока не сравняется с температурой окружающего воздуха и кристаллизация не завершится окончательно.
Температура кипения
Медь начинает активно выделять углерод в виде пузырьков газа при температуре 2560 градусов. Внешне это очень напоминает кипение воды. На самом деле это процесс активного окисления меди, в результате которого металл теряет практически все свои уникальные свойства. Детали, отлитые из кипящей меди, имеют в своей структуре большое количество пор, которые будут уменьшать механическую прочность материала и ухудшать его декоративные свойства. Потому в процессе плавки необходимо внимательно следить за температурой и не допускать закипания меди.
Способы плавки
Медный лом можно переплавить в домашних условиях разными способами в зависимости от технического оснащения домашней мастерской. При этом нужно иметь в виду, что придётся нагревать медь не до её температуры плавления, а чуть выше — примерно до 1100−1200 градусов.
Для этих целей годятся следующие приспособления:
- Муфельная печь. Наиболее рациональное решение проблемы расплавления меди, так как такая печь позволяет регулировать температуру во время процесса плавки, что очень удобно. Подобные лабораторные печи оснащены специальным окном из жаропрочного стекла, что позволяет постоянно осуществлять визуальный контроль всего процесса.
- Газовая горелка. Ручная газовая горелка размещается под дном ёмкости из тугоплавкого материала, в которой непосредственно будет размещаться медный лом. Этот способ предполагает наличие тесного контакта расплавляемой массы металла с воздухом, что будет способствовать усилению процесса окисления расплавляемого металла. Чтобы этому как-то противостоять, на расплавляемую массу сверху насыпают слой древесного угля.
- Паяльная лампа. Способ практически ничем не отличается от плавки с помощью газовой горелки. Но в этом случае невозможно достигнуть относительно высоких температур, поэтому он годится для переплавки сплавов меди, которые обладают меньшей температурой плавления, чем чистая медь.
- Кузнечный горн. На раскалённые древесные угли специального костра помещается тугоплавкий тигель с измельчённым металлом. Для ускорения процесса расплавления задействуют обычный бытовой пылесос, включённый в режиме выдувания. Труба пылесоса должна быть небольшого диаметра и иметь металлический наконечник, в противном случае она расплавится. Данный способ подходит для тех, кто занимается плавкой меди дома регулярно и имеет дело с большими объёмами исходного материала, который необходимо отжечь.
- Микроволновая печь. Бытовая мощная микроволновка с небольшими изменениями конструкции может легко плавить довольно большие объёмы медного лома. Для этого необходимо убрать из микроволновки вращающуюся тарелку, а вместо неё поместить соответствующих размеров тигель, который необходимо сделать из тугоплавкого материала, например, из шамотного кирпича.
Пошаговая инструкция
Процесс плавления любого металла происходит поэтапно и подчиняется определённому алгоритму, который одинаков как для промышленного производства, так и для кустарного. Для тех, кто озадачен вопросом плавки меди в домашних условиях, пошаговая инструкция будет выглядеть следующим образом:
- Необходимо взять тугоплавкий тигель. Металл в измельчённом состоянии насыпается в тигель. После этого тигель помещается в предварительно прогретую муфельную печь. С помощью специального окошка наблюдают за процессом расплавления.
- После полного расплавления всего объёма медного лома тигель с помощью специальных длинных щипцов извлекается из печи.
- На поверхности расплавленного металла образуется плёнка его оксида. Эту плёнку необходимо аккуратно сдвинуть в сторону к одной из стенок тигля. Для этих целей используют специальный крючок, изготовленный из тугоплавкого металла.
- После того как металл освобождён от оксидной плёнки, необходимо его очень быстро разлить в предварительно подготовленные формы.
Практические рекомендации
Температура плавления меди в домашних условиях зависит от того, в каком сплаве она содержится.
Техническая чистая медь содержится в проводах и кабелях, а также в обмотках трансформаторов, электродвигателей и генераторов. При этом нужно иметь в виду, что химически чистая медь содержится только в столовых приборах и в прочей кухонной утвари. Во всех остальных случаях в ней присутствуют те или иные вредные компоненты.
В чистом виде обладает повышенной вязкостью в расплавленном состоянии, поэтому отливать из неё изделия сложной конфигурации и небольших размеров очень сложно. Гораздо легче для этих целей использовать латунь.
В сплавах бронзы, изготовленных вначале и середине прошлого века, использовали в качестве компонентов мышьяк и сурьму. Поэтому следует избегать расплавления так называемой старинной бронзы, так как пары мышьяка могут привести к отравлению организма.
Самородная медь размером около 4 см
Медь — минерал из класса самородных элементов. В природном минерале обнаруживаются Fe, Ag, Au, As и другие элементы в виде примеси или образующие с Cu твёрдые растворы. Простое вещество медь — это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. Он входит в семёрку металлов, известных человеку с очень древних времён. Медь является необходимым элементом для всех высших растений и животных.
Смотрите так же:
СТРУКТУРА
Кристаллическая структура меди
Кубическая сингония, гексаоктаэдрический вид симметрии m3m, кристаллическая структура — кубическая гранецентрированная решётка. Модель представляет собой куб из восьми атомов в углах и шести атомов , расположенных в центре граней (6 граней). Каждый атом данной кристаллической решетки имеет координационное число 12. Самородная медь встречается в виде пластинок, губчатых и сплошных масс, нитевидных и проволочных агрегатов, а также кристаллов, сложных двойников, скелетных кристаллов и дендритов. Поверхность часто покрыта плёнками «медной зелени» (малахит), «медной сини» (азурит), фосфатов меди и других продуктов её вторичного изменения.
СВОЙСТВА
Кристаллы самородной меди, Верхнее озеро, округ Кинави, Мичиган, США. Размер 12 х 8,5 см
Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.
Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.
Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5-58 МСм/м. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком.
Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем и другие.
ЗАПАСЫ И ДОБЫЧА
Образец меди, 13,6 см. Полуостров Кинави, Мичиган, США
Среднее содержание меди в земной коре (кларк) — (4,7-5,5)·10 −3 % (по массе). В морской и речной воде содержание меди гораздо меньше: 3·10 −7 % и 10 −7 % (по массе) соответственно. Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т — подтверждённые запасы, на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.
Медь получают из медных руд и минералов. Основные методы получения меди — пирометаллургия, гидрометаллургия и электролиз. Пирометаллургический метод заключается в получении меди из сульфидных руд, например, халькопирита CuFeS2. Гидрометаллургический метод заключается в растворении минералов меди в разбавленной серной кислоте или в растворе аммиака; из полученных растворов медь вытесняют металлическим железом.
ПРОИСХОЖДЕНИЕ
Небольшой самородок меди
Обычно самородная медь образуется в зоне окисления некоторых медносульфидных месторождений в ассоциации с кальцитом, самородным серебром, купритом, малахитом, азуритом, брошантитом и другими минералами. Массы отдельных скоплений самородной меди достигают 400 тонн. Крупные промышленные месторождения самородной меди вместе с другими медьсодержащими минералами формируются при воздействии на вулканические породы (диабазы, мелафиры) гидротермальных растворов, вулканических паров и газов, обогащенных летучими соединениями меди (например, месторождение озера Верхнее, США).
Самородная медь встречается также в осадочных породах, преимущественно в медистых песчаниках и сланцах.
Наиболее известные месторождения самородной меди — Туринские рудники (Урал), Джезказганское (Казахстан), в США (на полуострове Кивино, в штатах Аризона и Юта).
ПРИМЕНЕНИЕ
Браслеты из меди
Из-за низкого удельного сопротивления, медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов и силовых трансформаторов.
Другое полезное качество меди — высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления.
В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы.
В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото очень мягкий металл и нестойко к этим механическим воздействиям.
Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц — всех поверхностей, к которым прикасается рука человека.
Бронза температура плавления — Справочник химика 21
Медь, серебро и золото несколько выпадают из общей для переходных металлов закономерности по своему электронному строению с валентной конфигурацией Они характеризуются более низкими температурами плавления и кипения, чем предшествующие им переходные элементы, и являются довольно мягкими металлами. Проявление таких свойств соответствует закономерной тенденции к ослаблению металлических связей, обнаруживаемой начиная с группы У1Б(Сг-Мо- У). Эта тенденция объясняется постепенным уменьшением числа неспаренных -электронов у атомов металлов второй половины переходных рядов. Медь, серебро и золото обладают очень большой электро- и теплопроводностью, поскольку их электронное строение обусловливает высокую подвижность 5-электронов. Эти металлы ковки, пластичны и инертны и могут находиться в природе в металлическом состоянии. Они встречаются довольно редко и поэтому имеют высокую стоимость, но все же распространены значительно больше, чем платиновые металлы. Относительно большая распространенность и возможность существования этих металлов в природе в несвязанном виде послужили причиной того, что они явились первыми металлами, с которыми познакомился чёловск и кошрые иН научился обрабатывать. По-видимому, первым металлом, который стали восстанавливать из его руды, была медь. Металлургия началась с открытия того, что сплав меди с оловом (естественно встречающаяся примесь) дает намного более твердый материал — бронзу. Медные предметы были найдены [c.446]Сплавы на основе меди. Бронза — под этим названием выпускаются сплавы, в состав которых входят медь (до 90%), олово (до 10%), свинец (до 1%). При сравнительно низкой температуре плавления (900—1300 ) бронзы обладают ценными механическими свойствами. [c.321]
Магний сильно уступает бериллию как по прочности, так и по температуре плавления (650°С). Он химически более активен, чем бериллий, и легко поддается коррозии. Но магний более доступен и широко применяется в самолетостроении для внутрифюзеляжных конструкций. Магний употребляется как чистый, так и в сплавах. Сплав (МА8), содержащий 1,5—2,5% Мп и 0,15—0,25% Се, обладает высокими механическими свойствами, которые могут быть еще улучшены механической обработкой (прокат, деформирование). В табл. 61 приведены механические свойства чистого магния и этого сплава. Там же приведены свойства чистой меди и бериллиевой бронзы (БрБ-2,5). [c.311]
Бронза. Бронза—сплав, известный еще в древности. Бронза широко применяется вследствие ее сравнительно низкой температуры плавления (900—1000° С) и высоких механических свойств. Из бронзы до открытия железа изготовляли различные орудия, оружие и предметы домашнего обихода. [c.314]
Сплавы меди с оловом (алюминием, кремнием и некоторыми другими металлами) называются бронзами. Их температура плавления значительно ниже, чем у меди. Оловянистые бронзы часто имеют сложный химический состав, особенно в археологических предметах. Бронза -один из важнейших материалов, открытых человеком в древнейшие времена. [c.132]
Печи для плавки сплавов на основе меди. Канальные индукционные печи для плавки и подогрева меди и спла ВОВ на медной основе (латуни, бронзы, томпака, мель хиора и т. п.) изготавливаются как периодического, так и непрерывного действия (миксеры). Корпус печи кон струируется прямоугольной или цилиндрической формы В последнее время применяют печи барабанного типа со сменными индукционными единицами. На рис. 3.10 при ведена конструкция печи ИЛК-16, имеющей цилиндри ческую ванну и щесть индукционных отъемных единиц Футеровка выполняется из шамотной набивной массы Теплоизоляцией служит диатомитовый кирпич. При плавке латуней и бронз температура разлива составляет 1100—1200° С. Большой перегрев металла свыше указанного значения может вызвать так называемую цинковую пульсацию, которая возникает при парообразовании цинка, входящего в состав расплава (цинк кипит при 916° С, тогда как температура плавления меди 1083° С). Цинковая пульсация выражается в кратковременном прекращении тока в каналах печи и затем его восстановлении, так как парообразование при исчезновении тока прекращается. Это приводит к характерному качанию стрелок измерительных приборов. [c.124]
Олово — серебристо-белый, мягкий металл с удельным весом 7,3. Температура плавления 231,9° С. При сгибании оловянных палочек раздается характерный треск, возникающий вследствие трения друг о друга кристаллов металлического олова. Олово легко прокатывается в тонкие листы, называемые оловянной фольгой, или станиолем. На воздухе не окисляется, не взаимодействует с водой и трудно поддается действию разбавленных кислот. Это позволяет применять олово для покрытия железа, лужения бытовой и технической посуды, изготовления белой жести (луженое железо) и фольги. Большое количество олова расходуется для получения ценных сплавов бронзы, баббитов, припоев и др. [c.276]
Металлическое олово идет на изготовление различных технических сплавов, таких, как бронзы и сплавы с низкой температурой плавления (сплав Вуда и др.). Из олова, сурьмы и меди делают подшипники. Оно входит в состав типографских сплавов. Сплавы олова с золотом и серебром применяются в зубоврачебной технике. Из олова делают также сплавы для пайки, которые легко плавятся и трудно окисляются, например припой третник ( 5.4). [c.191]
Медь, серебро золото — слабые восстановители, окисляются с трудом. Их температура плавления порядка 1000° С (см. табл. 33), температура кипения высокая, большая плотность, кристаллическая решетка типа К-12. Опи легко куются и прокатываются, очень тепло-и электропроводны. В силу большой химической устойчивости золото и серебро находятся в природе в самородном состоянии. Эти металлы и их сплавы известны с древнейших времен, издавна применяются в различных денежных системах. Медь и ее сплавы (бронза, латунь) использовались для изготовления оружия, украшений, домашней утвари. [c.442]
Итак, дуговые печи косвенного действия— небольшие (до 500—600 ква), обычно однофазные печи, служащие для плавления металлов с температурой плавления не выше 1 300—1400° С, в основном печи для плавления цветных металлов. В ннх переплавляют как с целью рафинировки, так и для фасонного литья медь и ее сплавы — бронзы, латуни и т. п. и другие цветные [c.5]
Висмутовые припои имеют низкие температуры плавления, но плохо смачивают поверхность большинства металлов, хрупки и имеют низкую пр(] чность паяных соединений. Особенностью припоев (так же, как и сплавов) является увеличение объема при кристаллизации, что может оказаться полезным при пайке изделий из меди и бронзы сложной конфигурации. [c.139]
Индиевые припои наряду с низкой температурой плавления обладают хорошей смачивающей способностью по отношению к металлам, керамике, стеклу. Припои на основе индия обладают высокой коррозионной стойкостью. Некоторые низкоплавкие сплавы индия могут быть использованы при реставрации серебряного слоя зеркал, участков потертости и разрушений посеребренных изделий из бронзы. [c.139]
Бронза — сплав меди с оловом. Температура плавления оловянистых бронз 900—950° С. Имеются также безоловянистые бронзы, представляющие собой сплавы меди с алюминием, с марганцем или с другими элементами. Температура плавления безоловянистых бронз 950—10802 С. [c.37]
Влияние цинка сказывается в улучшении литейных свойств (понижение температуры плавления и улучшение жидкотекучести). Бронзы с примесью цинка обладают по.вышенной хрупкостью. При больших нагрузках на вкладыш антифрикционные свойства оловянистой бронзы с добавкой цинка несколько понижаются трущаяся поверхность вкладыша подвергается различным напряжениям наклепу, растяжению, сжатию, вследствие чего поверхностный слой начинает разрушаться, от него отрываются тонкие пластинки металла в виде чешуек. [c.533]
Физико-химические свойства оловянистых бронз следующие температура плавления 1000—1050 С Вв 15—25 /сГ/жд2 б от 3% (для литых в кокиль) и до 25% (для литых в песок) твердость 60—120 НВ усадка линейная 1.2—1,5%. [c.535]
Реакционную смесь выливают в охлажденный до 0° раствор 200 г (1,2 мол.) иодистого калия в 200 мл воды. Через несколько минут добавляют 1 г медной бронзы (примечание 2) при непрерывном перемешивании и раствор медленно нагревают на водяной бане. Температуру поддерживают при 75—80° до тех пор, пока не прекратится выделение азота. Иодфенол при этом выделяется в виде тяжелого темноокрашенного масла. По охлаждении до комнатной температуры реакционную смесь извлекают три раза порциями по 165 мл хлороформа и соединенные вытяжки промывают разбавленным раствором тиосульфата. Растворитель отгоняют на водяной бане, а остаток перегоняют в вакууме, причем п-иодфе-нол собирают при 138—140°/5 мм. Однократная перекристаллизация из 2 л нефтяной фракции (т. кип. 90—110°) дает бесцветный продукт с резкой температурой плавления 94°. Выход продукта после перекристаллизации 153—159 г (69—72% теоретич.). [c.289]
Благодаря большой ковкости и пластичности, низкой температуре плавления, малой твердости, невысокой химической активности (устойчивости к атмосферной коррозии) и очень незначительной токсичности металлическое олово находит широкое применение. Его применяют в производстве станиоля (для упаковки пиш евых продуктов, фармацевтических препаратов и т. д.), для изготовления труб, коробок (для фармацевтических препаратов), змеевиков (применяемых во многих дистилляционных аппаратах), для лужения жести или изделий из железа и латуни и т. д. Из олова делают также сплавы для пайки, для подшипников, для заш,иты от коррозии (они легкоплавки и трудно окисляются). Олово входит в состав типографских сплавов, бронз и некоторых видов латуни. Его применяют также в качестве восстановителя (в присутствии кислот) или катализатора в процессе хлорирования многих веществ. [c.405]
Дисперсноупрочненные материалы — более широкий класс композитов, чем металлы, упрочненные волокнами. Напомним, что дисперсноупрочненными называют металлические материалы, упрочненные дисперсными частицами тугоплавких соединений. Отличительной особенностью их является наличие высокодисперсных, равномерно распределенных на заданном расстоянии друг от друга частиц фазы упрочнителя, не взаимодействующ,их активно с матрицей, не растворяюш,ихся в ней вплоть до температуры плавления и искусственно вводимых в сплав на одной из технологических стадий его приготовления. Первый дисперсноупрочнен-ный материал (вольфрам, упрочненный ТЬОз) был создан свыше 60 лет назад. Л1аксимальный эффект упрочнения достигается при достаточно малом размере частиц (0,01—0,06 мкм), их равномерном распределении и оптимальном расстоянии между ними (0,1—0,5 мкм). Обш,ее количество упрочняющей фазы обычно не превышает 5—107о. В отличие от дисперсионно-твердеющих сплавов, у которых упрочняющая дисперсная фаза выделяется из пересыщенного твердого раствора (дюралюминий, бериллиевые бронзы, железо-никелево-хромовые сплавы), в дисперсноупрочнен-ных композиционных материалах эта фаза вводится искусственно. Наиболее известные дисперсноупрочненные композиционные материалы — ТД-никель (N1-1-0,2% ТЬОз), ТД-нихром (N 4-20%, Сг + 2% ТЬОз), В9У-1 (N14-2,5% ТЬОг), [c.155]
В фазе состава Кад УвО] , отвечающей нижнему пределу интервала составов, некоторые туннели могут содержать в себе упорядоченные ряды атомов, хотя другие из них остаются пустыми. Озеров предположил [347], что в этом соединении, как и в изоморфной бронзе К2 д Уб015 [349], щелочной металл находится в металлическом состоянии. Доказательства его основывались на данных по измерению электрического сопротивления при различных темпе ратурах и подкреплялись выдвинутым автором предположением о (хотя и маловероятном) пере-расиределении атомов щелочных металлов. Ввиду возможности появления самых различных изменений, вплоть до образования искаженной структуры, в результате нагревания до температуры плавления, эта модель маловероятна. Получен также медный аналог этого соединения Сцз.вУвОхб [348]. [c.154]
Наряду с покрытиями чистыми металлами уже давно была показана возможность осаждения разнообразных бинарных и более сложных сплавов. Ряд давно известных сплавов в связи с новыми требованиями промышленности получил широкое применение. Так, например, латунные покрытия применяются для улучшения сцепления резины с металлами, а покрытия из малооловянистой бронзы хорошо защищают сталь от воздействия горячей воды. Покрытия бронзой с большим содержанием олова (40—50%) хорошо полируются, отличаются высоким блеском и твердостью, коррозионной стойкостью, немагнитны и могут в ряде случаев успешно конкурировать с никелевыми и хромовыми покрытиями. Сплавы олова и свинца стали широко применяться для покрытия контактов, подлежащих пайке. Такие сплавы имеют более низкую температуру плавления по сравнению с чистым оловом и значительно дешевле. [c.3]
Олово широко применяется для изготовления различных технических сплавов, например, бронзы, а также сплавов с очень низкой температурой плавления. Так, например, сплав Вуда, состоящий из 7 частей висмута, 4 частей свинца, 2 частей олова и 2 частей кадмия, плавится при — -65° сплав Розе состоит из 2 частей висмута, 1 части свинца и 1 части олова, он плавится при 70° и т. д. [c.359]
Пример легкого и вместе с тем твердого сплава — электрон. Он содержит магний, алюминий, марганец и цинк. Сплав победит, содержащий углерод, вольфрам и кобальт — один из самых твердых сплавов, известных в настоящее время. По твердости он приближается к алмазу. Сплав Вуда, содержащий висмут, кадмий и олово, имеет сравнительно низкую температуру плавления (около 70°С), поэтому его применяют в электротехнике для изготовления легкоплавящихся предохранителей. Давно известными сплавами являются бронзы разного состава, содержащие главным образом медь и олово. [c.195]
Обработка поверхности покрытия, нанесенного с целью восстановления изношенных деталей, имеющих форму тел вращения, производится обычными металлорежущими станками. Практически установлено, что при каждом наслоении при распылении мягких металлов (например свинца, кадмия), образуется покрытие толщиной около 0,08 мм, а при распылении металлов, имеющих температуру плавления от 500 до 1100° (например меди, бронзы, и др.) 0,04 мм. При распылении тугоплавких металлов (как монель-металл, нержавеющая сталь и т. п.) образуется слой от 0,025 до 0,03 мм при каждом наслоении. Расход металла на покрытие зависит как от распыляемого металла, гак и типа распылителя (табл. 45). Требуемая толщина покрытия определяется в основном его назначением. Так, в случае свинцевания изделий, предназначаемых для службы в морской воде, толщина покрытия, полученного металллизацией, должна быть [c.208]
Едва ли можно полагать, чтобы медь сильно корродировала под воздействием паров воды, что и было экспериментально подтверждено опытами при температурах, близких к ее температуре плавления [856]. Скорость окисления меди при 800° С в атмосфере кислорода с примесью паров воды не зависит от их содержания в газовой среде, если оно не превышает 3,9% [210], хотя, как сообщалось [165], скорость окисления во влажном воздухе была меньше, чем в сухом. Подобным же образом слабо тгяменя.пясь и скорость окисления при 400° С многочисленных медных сплавов с переходом от сухого воздуха к атмосфере, содержавшей 10% влаги. Обычно во влажном воздухе корродирование несколько ослабляется, хотя для оловянистой бронзы, содержавшей 2% So, наблюдалась противоположная картина [524]. [c.378]
Бронзой можно паять также изделия пз низкоуглеродистой стали при условии предварительной сборки деталей пайка производится в печи столь же успешно, как и водородо-кислороднымп или ацетилено-воздушными горелками. При пайке ацетилено-кислородным пламенем во избежание расплавления основного металла не следует нагревать его внутренним ядром пламени, это допускается только при предварительном подогреве. В качестве припоя можно применять медно-цинковый сплав (50 1% каждого металла) [39] с температурой плавления 880° С в состав сплава входят также 8п, 8Ь, Аз п В1 — в количествах менее 0,05% Ге менее 0,15% и РЬ менее 0,5%, прп пахше применяется флюс, содержащий борную кислоту. [c.589]
Как раскисленную, так и технически чистую медь можно сварпвать бронзой, применяя ацетилено-кислородное пламя (основной метал.ч при этом не расплавляется). Вначале на изделие наносится флюс и нагретые кромки смачиваются каплей расплавленного присадочного металла, имеющего температуру плав.иения 875° С (состав —60 40 Си — 2п, 0,5% 81 и 0,5% 8п). Затем производптся наплавка присадки. Иногда в качестве присадочного металла применяется латунь, содержащая 0,05—0,25% Мп и 0,1—0,5% Ге (температура плавления 895° С). [c.593]
Пайка меди твердым припоем производится также ацетилено-кислородным пламенем — нормальным или с небольшим избытком кислорода (во избежание водородной болезни меди) ириной и способ сварки те же, что и прп твердой пайке малоуглеродистой стали. В качестве присадки можно применять фосфористую бронзу (например, 8 92) с температурой плавления 707—800° С, а также серебряные припои [39, 44], например Ag 61, Си 29, 2п 10% (тмшература плавления 690—735° С) Ag 43, Си 37, гн 20% (температура плавления 700—775° С) Ag 50, Си 15, 7н 16, С(1 19% (температура плавления 620—640° С) и т. д. [c.593]
Применение новых высокоактивных каталитических систем позволяет получать полиэтилен низкого давления как высокой плотности с молекулярной массой до 700000, так и сверхвысокомолекулярного полиэтилена (СВМПЭ) с молекулярной массой от 1 до 4 млн. Такой полиэтилен резко отличается от обычного ПЭНД. Он обладает более высокими физико-механическими показателями, износостойкостью, стойкостью к растрескиванию и ударным нагрузкам, морозостойкостью, низким коэффициентом трения. При нагревании СВМПЭ выше температуры плавления, он, в отличие от термопластов, не переходит в вязкотекучее состояние, а только в высокоэластичное. В связи с этим его трудно формовать и перерабатывают его главным образом, горячим прессованием. СВМПЭ используют в тех областях, где обычные марки ПЭНД и других термопластов не выдерживают жестких условий эксплуатации. Он может заменять сталь, бронзу и другие материалы, а также фторопласт. Его используют для изготовления деталей машин во многих областях техники. [c.565]
Флюс 18-В. Для пайки нержавеющих сталей, бериллие-вой бронзы, сплавов типа нихром, никеля и его сплавов серебряными припоями с температурой плавления до 850° С. [c.129]
В корпус из углеродистой стали соответствующего размера насыпают бронзовую стружку и закрывают его диском (рис. 2-14). Затем закрепляют его в трехкулачковом патроне токарного станка и включают в работу с числом оборотов 380 в минуту. Газовой горелкой подогревают корпус. Бронза, разгоретая до температуры плавления, под влиянием центробежной силы прилегает 92 [c.92]
Моногидрохлорид гидразония Ы2Н4-НС1 лучше растворим в воде (179 г/100 г воды при 25°С),чем дигидрохлорид, температура плавления — 90°С. Может быть получен при нагревании дигидрохлорида гидразония в течение длительного времени при температуре ниже его температуры плавления. Моногидрохлорид гидразония входит в состав флюсов для пайки металлов. Эти флюсы обеспечивают высокую прочность и малое коррозионное воздействие и нашли применение для пайки латуни и бронзы в производстве теплообменников и автомобильных радиаторов. [c.96]
Сода (МагСОз 1ОН2О). Температура плавления 851°С. При нагреве теряет кристаллизационную воду и рассыпается из крупных кристаллов в порошок, называемый кальцинированной содой. Последняя плавится также при 851° С и применяется в смеси с бурой для покрывных флюсов при плавке свинцовистых бронз. [c.636]
Следует отметить, что русские мастера не только нашли состав сплава (употреблялся преимущественно состав из 78 частей меди и 22 частей олова с температурой плавления около 880°), называемого колокольной бронзой, но и знали, что существует связь между химическим составом сплава и звуком, который он издает. Уже в XIV—XVII вв. русские мастера при всей сложности и опасности литейного производства умели отливать многопудовые колокола заданного тона [1]. [c.13]
Как расплавить медь на костре
Медь – пластичный материал, не подверженный окислению. Из него делают небольшие детали, используют в ремонтных работах. Переплавить лом можно самостоятельно в гараже, хозяйственной постройке или на собственной кухне. Специалисты подскажут, как расплавить медь в кустарных условиях. Технология несложная, главное при расплавлении учитывать физические свойства меди и сплавов.
Основные характеристики и температура плавления меди
Медь в древности использовать, расплавлять стали раньше, чем другие металлы. Металл ценится за химическую нейтральность, долговечность, электромагнитные свойства. Теплопроводность у медных сплавов чуть ниже, чем у серебра.
Домашняя плавка меди по сути ничем не отличается от промышленного литья. Переплавить можно кусочки отслуживших радиодеталей, недорогие ювелирные изделия, столовые предметы из мельхиора. Плавка меди в чистом виде происходит при +1083°С, такой режим в бытовых условиях создать не проблематично. Сплав с цинком, оловом не нужно расплавлять до температуры плавки меди, достаточно до +900 – 950°С. Подбирая кусочки лома, важно знать, что для электротехнических деталей используют чистые сплавы. Бронза, латунь может содержать вредные химические компоненты, они начнут выделяться из металла при расплавлении. Кипит металл при сравнительно низкой температуре, +2560°С, сплав начинает пузыриться.
Плавка меди в домашних условиях: пошаговая инструкция
Для расплавления не подойдет жестяная банка и костер. Нужны другие источники тепла, например, самодельные печи или готовые горелки с высокой температурой пламени. Для расплавления выбирают жаропрочные посудины, лучше всего использовать готовый тигель из огнеупорного сырья, выдерживающий температуру до +300°С. Для литья используют изложницу или форму. При работе с тиглем применяют специальные щипцы с длинными ручками, они должны хорошо зажимать тигель.
Теперь небольшой поэтапный инструктаж, как плавить медный лом в домашних условиях:
- Подготовка лома, в качестве сырья используют небольшие кусочки металла.
- Подготовка очага, где будет установлен тигель. Для расплавления лома используют готовые или импровизированные печи, горелки.
- Лом засыпают в тигель для расплавления металла. Специалисты советуют предварительно нагреть тигель, чтобы металл равномернее прогревался.
- Подготовка формы или изложницы – место, куда будет выливаться металл после расплавления. Для изготовления используют материал, имеющий температуру расплавления выше, чем у меди.
- Перед разливом с горячего металла снимают окалину с помощью длинной ложечки. Окислы не должны попасть в литье.
- Расплав осторожно выливают в подготовленную формочку. Работать нужно аккуратно, от капель остаются плохо заживающие ожоги.
Для подставки используют огнеупорный ровный лист, на него ставят тигель или специальный бокс для расплавления.
Муфельная печь
Лабораторный муфель – самое удобное устройство для расплавления металла.
Несколько советов, как расплавить медный сплав в лабораторных условиях:
- у муфельной печи есть ручка температурного регулятора, ее нужно поставить на отметку, незначительно превышающую температуру расплавления сплава;
- графитовый или керамический тигель перед загрузкой шихты хорошо прогревают;
- после отливки с горячего тигля проволочным крюком снимают окалину.
Литье в муфеле прогревается равномерно, плавильщик изолирован от летучих вредных компонентов, Через огнеупорное стекло дверцы удобно наблюдать за ходом расплавления меди.
Газовая горелка
Плавка меди в небольших объемах осуществляется ручной газовой горелкой. Мощность портативного устройства большого значения не имеет. Горелку располагают под тиглем, в котором будут плавить медный лом, направляют пламя на донце, языки должны охватывать его полностью. Процесс трудоемкий, длительный. Для защиты от кислорода цветной лом присыпают угольной крошкой.
Плавят медь в домашних условиях, используя тигельную печь или горн. Он представляет собой ограниченное пространство, куда на подставке помещается тигель. Снизу поджигаются угли или подводится горелка. Необходимо организовать воздухоподдув, чтобы повысить температуру горения топлива. Для ускорения процесса расплавления сверху горн прикрывают плотной крышкой. Хорошо раскаленный древесный уголь разогревают, засыпают в тигель с ломом. Метод используют специалисты, часто занимающиеся литьем в небольших объемах.
Паяльная лампа
Сплав с цинком, оловом плавится при невысокой температуре. В качестве источника энергии для расплавления используют обычную паяльную лампу, ее располагают вертикально под тиглем так, чтобы пламя охватывало поверхность дна и нижнюю часть боковой стенки. Для снижения объема окалины лом присыпают древесным углем. Процесс окисления при расплавлении под слоем угольной крошки будет протекать не так интенсивно.
Микроволновая печь
Плавить медь в домашних условиях можно в микроволновке, из нее достают поворотный механизм. Под размер тигля делают огнеупорный контейнер с крышкой из шамотного кирпича. Сначала в течение 15 минут на максимальном режиме нагревают керамический тигель, он разогревается до желтоватого свечения. Затем в него засыпают подготовленный лом, снова убирают шамотный контейнер в печь, плавить медный лом необходимо 20-30 минут на максимальном режиме, создается температура порядка +1200°С. Затем сплав выливают в заранее подготовленную изложницу или форму.
Для изготовления мелких деталей лучше выбирать многокомпонентные сплавы: латуни, бронзы, они не такие текучие, их проще плавить, не нужны слишком высокие температуры. Когда плавят медь в домашних условиях, соблюдают технику безопасности, предусматривают противопожарные меры.
Медь считается одним из самых распространенных сплавов на сегодняшний день. Довольно распространенным вопросом можно назвать то, как расплавить медь в домашних условиях. Высокие литейные свойства позволяют получать качественные и точные изделия, использовать сплав в качестве покрытия. Литье меди может проводится при отсутствии специального оборудования. Процесс характеризуется большим количеством различных особенностей, которые будут рассмотрены ниже.
Температура плавления
Одним из наиболее важных параметров каждого сплава можно назвать температуру плавления. Она может зависеть от концентрации легирующих элементов в составе. Литье меди в чистом виде проводится при температуре 1080 °C, при которой кристаллическая решетка перестраивается и сплав становится жидким. Расплавлять медь можно даже в случае наличия примеси в виде олова, но при этом температура плавления может варьировать в пределе от 930 до 1140 °C.
В состав могут добавлять цинк, за счет чего получается латунь. От концентрации этого легирующего элемента плавка может проводится при 900 ⁰C.
При рассмотрении особенностей плавки меди учитывается температура кипения. Этот показатель составляет 2 560 °C. В домашних условиях достигнуть подобной температуры практически невозможно. На процесс кипения указывает появление пузырьков газа.
Нельзя доводить сплав до состояния кипения. Это связано с тем, что после выделения газов структура становится пористой. За счет этого снижаются не только декоративные, но и механические качества.
Последовательность действий
При необходимости в домашних условиях можно получить изделия декоративного характера или практического назначения. Плавка меди в домашних условиях пошаговая инструкция выглядит следующим образом:
- Сырье измельчается, после чего помещается в тигель. Стоит учитывать, что при уменьшении размеров кусочков металла существенно ускоряется процесс плавки.
- После заполнения тигеля, он помещается в печь, которая заранее разогревается.
- Расплавленный сплав нужно извлечь из печи при помощи специальных клещей. Из-за активного процесса окисления на поверхности может образовываться однородная пленка. Перед тем как проводить литье из меди ее нужно убрать.
- Металл аккуратно заливают в подготовленную емкость. Стоит учитывать, что при попадании расправленного сплава на открытые участки тела могут появится серьезные травмы. Кроме этого, некоторые материалы при контакте возгораются. Поэтому нужно соблюдать крайнюю осторожность.
При рассмотрении того, как плавить медь в домашних условиях стоит учитывать, что можно использовать не только печи. В некоторых случаях применяется газовая горелка, которой нагревается дно тигля. Процесс менее продуктивный, но при этом на подготовку уходит мало времени.
В качестве нагревательного оборудования может использоваться обычная паяльная лампа. При применении этой технологии стоит учитывать, что контакт меди с воздухом приводит к быстрому появлению окиси. В некоторых случаях для уменьшения интенсивности окисления поверхность покрывается измельченным древесным углом.
Оборудование для плавки меди
Подготовительный этап предусматривает приобретение специального оборудования. Расплавить медь в домашних условиях можно при наличии:
- Муфельной печи. Современные варианты исполнения позволяют контролировать мощность нагрева с высокой точностью, за счет чего существенно упрощается процесс плавки и можно достигнуть более качественного результата.
- Тигель, предназначенный для размещения шихты и ее плавки.
- Щипцы, при помощи которых тигель вытягивается с печи. Стоит учитывать, что поверхность будет накалятся, поэтому нужно использовать специальный механизм из жаростойкого сплава.
- Крюк и бытовой пылесос.
- Древесный уголь для покрытия поверхности.
- Форма из жаропрочного материала, по которой будет проводится литье.
- Газовая горелка или горн для повышения пластичности сплава.
Плавка газовой горелкой
Приобретают профессиональное оборудование только в том случае, когда литье меди проводится периодически. Оно характеризуется высокой стоимостью, а также эффективностью в применении.
Муфельная печь
Проще всего проводить переплавку меди в домашних условиях при установке муфельной печи. Среди ее особенностей отметим:
- Можно нагревать шихту до более высоких температур, за счет чего повышается текучесть. Это связано с высоким КПД, так как стенки конструкции отражают и аккумулируют тепло.
- Ускоряется процесс плавки.
- Высокая производительность. Равномерное распределение тепла позволяет одновременно плавить большое количеств меди.
Плавление меди в самодельной печи
Кроме этого, муфельная печь довольно проста в установке если соблюдать все правила безопасности. Проблемы по установке подобного оборудования в домашних условиях зачастую возникают по причине больших размеров конструкции.
Газовая горелка
Литье из меди в домашних условиях при применении газовой горелки часто проводится в случае, если медные изделия изготавливают крайне редко. Подобные процесс характеризуется небольшими финансовыми затратами. При выборе подобной технологии учитывается:
- Малый показатель КПД.
- На момент плавки возникают трудности с равномерным распределением тепла.
- Проводить работу следует на открытом пространстве с соблюдением правил пожарной безопасности.
Газовая горелка может разогреть тигель в течение нескольких минут. Стоит учитывать, что медь будет быстро окисляться.
Паяльная лампа
Плавление при применении паяльных ламп проводится крайне редко. Это связано с невысокой эффективностью подобного метода. Как и в предыдущем случае, при использовании паяльной лампы происходит активное окисление поверхности.
Плавка меди в самодельной печи при помощи паяльной лампы
При применении паяльной лампы учитывается тот момент, что для разогрева металла требуется довольно много времени. При этом нагрев должен проходить без перерыва, так как металл остывает быстро, после чего начинает кристаллизоваться.
В домашних условиях отливка медных заготовок может проводится в горне. Подобная печь характеризуется следующими особенностями:
- Она часто используется в кузнечном деле.
- Стоит учитывать низкий показатель КПД, за счет которого на плавку меди уходит намного больше времени.
- Различают две конструкции: открытого и закрытого типа.
Температура плавки при применении горна относительно низкая. Поэтому не вся медь может плавится рассматриваемым способом.
Плавление с помощью самодельных приспособлений
Плавку можно проводить при применении самодельных конструкций. Зачастую они представлены сочетанием источника тепла и корпуса из теплоотражающего материала. Переплавить медь в домашних условиях можно при использовании подобных устройств.
Как правило, за счет создания специальной отражающей конструкции повышается КПД и ускоряется процесс нагрева шихты. Сделать отражающий корпус для тигля можно при использовании жаропрочного кирпича.
Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter.
Предметы из меди, а также различные изделия, в состав которых она входит, получили широкое распространение в бытовых условиях. Поэтому многие задаются вполне стандартным вопросом: «Как расплавить медь самостоятельно?»
Температура плавления
Плавление – это процесс, характеризующий постепенный переход металла из стандартного твердого состояния в жидкую консистенцию. Каждому металлическому соединению или металлу в чистом виде свойственная своя температура, под воздействием которой он начинает плавиться.
Немаловажным фактором в данном случае является то, какие примеси входят в состав расплавляемого соединения.
Так, медь начинает плавиться при температуре 1083 градусов по Цельсию. Если к ней добавить олово, то температура плавления снизится и составит примерно 930-1140 градусов по Цельсию.
В данном случае такое колебание обусловлено количеством олова, входящего в сплав. Соединение из меди и цинка плавится при еще более низкой температуре – 900-1050 градусов. Нагревание любых металлов связано с постепенным разрушением решетки, образованной из множества кристаллов.
С нагреванием температура плавления поднимается до максимально необходимой отметки, затем ее рост останавливается и сохраняется на достигнутом уровне до того момента, пока не расплавится весь металл, после чего начинает снижаться.
Медь, разогретая до максимально возможной отметки, закипает при температуре, достигшей отметки в 2560 градусов. По внешнему виду ее кипение схоже с кипением любых жидких веществ, на поверхности которых по мере нагревания появляются пузырьки, и выделяется газ. Так, из меди в процессе кипения выходит углерод, образовавшийся в результате окисления и ее тесного контакта с воздухом.
Плавление меди
Технология плавления меди получила широкое применение с древних времен, когда люди с помощью костра расплавляли металл для изготовления стрел, наконечников и другого оружия, и предметов быта.
Плавка меди в домашних условиях также возможна. Для этого понадобятся:
- Тигель, где будет плавиться медь, и щипцы, необходимые для того, чтобы извлечь тигель из печи или снять его с огня.
- Древесный уголь.
- Муфельная печь (лучше, если в ней будет регулироваться температура нагрева).
- Горн.
- Обычный пылесос.
- Форма, в которую выливается расплавленная жидкость.
- Крюк, изготовленный из стальной проволоки.
- Газовая горелка, если нет муфельной печи.
Алгоритм плавления включает несколько поэтапных шагов:
- Металл измельчить и пересыпать в тигель. Причем чем более мелкие фрагменты будут, тем скорее он достигнет расплавленного состояния. Тигель поставить в печь, раскаленную до максимально высокой температуры, необходимой для начала процесса плавления (здесь кстати придется регулятор температур). Во многих муфельных печах на двери вырезано окошко. Через него можно безопасно осуществлять наблюдение за процессом.
- По достижении медью жидкого окончательно расплавленного состояния, тигель с помощью щипцов нужно постараться как можно аккуратнее и скорее вынуть из печи. На поверхности жидкого вещества будет образована пленка, ее подвинуть к краю тигля, используя крюк из проволоки. Очищенный от пленки металл максимально быстро перелить в заранее подготовленную форму.
- Если муфельная печь отсутствует, осуществить плавку меди можно с применением обычной газовой горелки. Но тогда медь будет находиться в тесном контакте с воздухом, а сам процесс окисления пройдет значительно быстрее. Поэтому для предотвращения образования толстой пленки на поверхности металла, медь, когда она достигнет жидкого состояния, присыпают растолченным древесным углем.
- Расплавить медь и ее сплавы можно также с помощью горна. Для этого древесный уголь нужно хорошо раскалить и поместить на него тигель с металлом (предварительно измельчить медь). Для ускорения нагревательного процесса на уголь направить пылесос, включенный на режиме выдувания. Особое внимание стоит уделить наконечнику трубы. Она должна быть металлической, поскольку пластик расплавится под воздействием высокой температуры.
Тогда стоит использовать сплавы. Например, латунь, оттенок которой светлее остальных. Это говорит о том, что для ее плавления нужны менее высокие температуры.
Советы для самостоятельной работы
Медь — это твердый металл с высокой температурой плавления, достигающей 1085 ° C.
Традиционный способ плавки меди заключается в использовании крупномасштабного оборудования для массового производства меди в больших количествах, такого как индукционные печи и литейные производства.
Тем не менее, с повсеместной доступностью и практичностью меди возникла новая, более мелкая технология плавления меди. Нам больше не нужно вкладывать средства в дорогостоящее оборудование, с которым должны работать только обученные слесари.
Вместо этого мы рассмотрим более простой метод, который может использовать каждый.
Существуют различные способы плавления меди, и каждый метод использует определенный тип контейнера и нагревательного элемента, которые могут отличаться от других методов. Мы собираемся найти самый простой и эффективный способ плавления меди в обычных домашних условиях, который заключается в использовании ацетиленовой горелки и плиты.
Как плавить медь с помощью кислородно-ацетиленовой горелкиВот шаги:
1.Подготовить необходимые материалы
- Медь — металл для плавления
- Кислородно-ацетиленовая горелка — паяльная лампа промышленного класса, в которой используется смесь ацетилена и кислорода для получения интенсивного пламени, достаточно горячего для резки, ковки и / или формовки металла
- Щипцы — используются для удержания и захвата предметов, которые слишком горячие для обработки
- Тигель — металлический или керамический контейнер, который может выдерживать очень высокие температуры и часто используется как плавильный котел для других металлов
- Формы для прутка — контейнер куда будет наливаться только что расплавленная жидкость
- Боракс и другие чистящие средства для металла
2.Надевайте соответствующую защитную одежду.
Для обеспечения максимальной безопасности используйте перчатки, маски для лица и защитные очки. Кроме того, плавите медь в хорошо вентилируемом помещении, вдали от горючих материалов.
3. Разрежьте медь на мелкие кусочки
Если медь имеет форму медных монет, то нет необходимости проходить этот этап, потому что монеты легко помещаются в тигель. Однако, если медь имеет форму медных проводов, сначала необходимо снять внешнее изоляционное покрытие с помощью кусачков, потому что они токсичны при сгорании.Затем скрутите медные проволоки в более мелкие завитки и поместите их в тигель.
Предупреждение: плавить гроши не рекомендуется, потому что во многих странах это запрещено.
4. Включите кислородно-ацетиленовую горелку.
Включите горелку и отрегулируйте кислородные клапаны, чтобы при необходимости повысить температуру пламени. Направьте горелку на медь внутри тигля и перемещайте ее вперед и назад, чтобы тепло распределялось равномерно.
5. Залейте бура
Чтобы остановить окисление, налейте хотя бы чайную ложку буры в только что расплавленную медную жидкость.
6. Залить металл в формы для прутков
Равномерно залить медную жидкость в формы для прутков.
7. Дайте ему сиять
Дайте жидкости остыть, пока она не превратится в твердые медные бруски. На этом этапе вы можете улучшить блеск меди, протерев ее предпочтительными чистящими средствами. Вы можете использовать соляную кислоту, ацетон, лимонную кислоту, моющее средство на основе аммония и т. Д.
How to M elt Copper на S tovetop1.Подготовьте плиту
В методе варочной панели железная сковорода используется в качестве контейнера, а плита — в качестве нагревательного элемента. Не забывайте использовать железную сковороду, а не любую другую сковороду, сделанную из металла с более низкой температурой кипения, чем медь. В противном случае ваша сковорода может расплавиться даже раньше, чем ваша медь.
2. Поместите обрезки в сковороду.
Поместите медные обрезки в сковороду и накройте ее крышкой, чтобы поддерживать температуру.
3. Включите печь.
Включите печь и установите максимально возможную температуру.Вам придется время от времени проверять свой прогресс, чтобы видеть, достаточно ли расплавлена медь.
При использовании этого метода не забудьте зарезервировать железную сковороду для конкретной цели плавления меди. В целях безопасности храните его в совершенно другом месте, чем остальные сковороды, чтобы он не перепутался с посудой, которая используется при приготовлении пищи.
Этот метод может показаться очень простым. Однако разные плиты имеют разные настройки температуры. Следовательно, некоторые из них могут достигать высокой температуры, необходимой для плавления меди, а некоторые — нет.
Ссылки:http://www.wikihow.com/Set-Up-an-Oxy-Acetylene-Torch
http://www.wikihow.com/Melt-Copper
http: // www.ehow.com/info_8795882_simple-ways-melt-copper-scrap.html
http://www.ehowplus.net/how_8505171_melt-copper-wire-home-bars.html
http: //www.technologystudent. com / equip_flsh / ace1.html
http://www.doityourself.com/stry/what-chemicals-clean-copper-best#b
машиностроение — Точка плавления тонкой медной проволоки
машиностроение — Точка плавления тонкой медной проволоки — Engineering Stack ExchangeСеть обмена стеков
Сеть Stack Exchange состоит из 176 сообществ вопросов и ответов, включая Stack Overflow, крупнейшее и пользующееся наибольшим доверием онлайн-сообщество, где разработчики могут учиться, делиться своими знаниями и строить свою карьеру.
Посетить Stack Exchange- 0
- +0
- Авторизоваться Зарегистрироваться
Engineering Stack Exchange — это сайт вопросов и ответов для профессионалов и студентов инженерных специальностей.Регистрация займет всего минуту.
Зарегистрируйтесь, чтобы присоединиться к этому сообществуКто угодно может задать вопрос
Кто угодно может ответить
Лучшие ответы голосуются и поднимаются наверх
Спросил
Просмотрено 4к раз
$ \ begingroup $Температура плавления меди около 1000 C.Если вы поместите тонкую медную проволоку, скажем, 50 микрон или около того, на пламя газовой плиты, она немедленно сломается. Достигнута ли его точка плавления? Или тут какое-то другое явление?
задан 20 мая ’17 в 23:08
lkjhglkjhg1111 серебряный знак22 бронзовых знака
$ \ endgroup $ 3 $ \ begingroup $Температура плавления меди = 1085 ° C (1984 ° F).Температура пламени метана = ~ 1950 ° C (3542 ° F). Таким образом, ваша тонкая медная нить очень быстро достигает точки плавления.
Поместите пенни в то же пламя и посмотрите, сколько времени потребуется, чтобы пенни растаял. Он может даже не расплавиться, если пламя не применяется должным образом, потому что медь является отличным рассеивателем тепла.
Создан 20 мая.
Сделай сам14133 бронзовых знака
$ \ endgroup $ 5 $ \ begingroup $Да, пламя бутана плавит медную проволоку.Согласно Википедии, бутановые горелки могут легко достигать температуры $ 1430 \ unicode {xb0} C $. Как вы отметили в своем вопросе, это намного выше точки плавления меди. Фактически, максимальная температура, которую может достичь бутановое пламя, почти вдвое выше точки плавления меди, хотя это трудно воспроизвести в реальных приложениях.
Причина того, что провод может так легко порваться, может показаться странным, заключается в том, что металлы являются хорошими проводниками тепла. Если бы проволока была намного толще, тепло от пламени уносилось вниз по проволоке и рассеивалось в атмосфере.Однако у тонкой проволоки отношение площади поверхности к массе очень велико, поэтому проволока может нагреться до точки плавления, прежде чем тепло сможет пройти по проволоке.
Создан 20 мая ’17 в 23: 482017-05-20 23:48
Drew_JDrew_J59322 серебряных знака1414 бронзовых знаков
$ \ endgroup $ Engineering Stack Exchange лучше всего работает с включенным JavaScriptВаша конфиденциальность
Нажимая «Принять все файлы cookie», вы соглашаетесь с тем, что Stack Exchange может хранить файлы cookie на вашем устройстве и раскрывать информацию в соответствии с нашей Политикой в отношении файлов cookie.
Принимать все файлы cookie Настроить параметры
Как плавить медь на плите
Если вам нравится делать украшения, скульптуры или другие безделушки, вы можете задаться вопросом, можно ли плавить медь самостоятельно дома.Вы можете плавить медь на плите, но вы должны делать это правильно и соблюдать необходимые меры безопасности. Неудачный подход к плавке меди может вызвать сильные ожоги и даже болезнь легких. Готовясь к этой задаче, всегда следите за тем, чтобы дети или домашние животные не стояли под ногами, пока вы работаете, и не забывайте ставить безопасность прежде всего.
Точка плавления меди
Перед тем, как плавить медь в домашних условиях, ознакомьтесь с руководством пользователя печи или проконсультируйтесь с производителем, чтобы убедиться, что ваша печь подходит для этой задачи.Температура плавления меди невероятно высокая — 1 981 градус по Фаренгейту. Это делает медь более трудной для плавления, чем другие металлы, с которыми вы, возможно, работали в прошлом. Например, температура плавления алюминия составляет всего 1218 градусов по Фаренгейту, а у серебра — 1761 градус по Фаренгейту.
Если ваша плита может стать достаточно горячей, чтобы плавить медь, вам нужно будет найти подходящую сковороду. Выберите не тот, и ваша сковорода расплавится раньше, чем медь, и вы можете оказаться на рынке в поисках новой плиты.Поэтому всегда плавите медь в чугунной сковороде. Чугун не плавится, пока не достигнет 2200 градусов по Фаренгейту.
Процесс плавления меди
Чтобы расплавить медь, поставьте чугунную кастрюлю на плиту и бросьте в нее медь. Убедитесь, что медь умещается в кастрюле и не торчит по бокам. Медь является отличным проводником тепла, поэтому любые случайные провода, свисающие с края сковороды, могут легко вас обжечь. Как только медь будет правильно размещена в сковороде, накройте сковороду крышкой и включите плиту на максимальную мощность.
Никогда не оставляйте плавящуюся медь без присмотра. Держитесь поближе к плите и каждые несколько минут проверяйте продвижение котла, приподнимая крышку и выглядывая.
К сожалению, волшебной формулы для расчета времени плавления меди не существует. Он плавится быстрее, когда он состоит из более мелких частей, но время, необходимое для плавления, также будет зависеть от чистоты металла. Время, в течение которого плита нагревается, также влияет на время таяния.
Важные соображения безопасности
При плавке меди и других металлов всегда надевайте перчатки и защитные очки.Это поможет предотвратить ожоги, так как при нагревании медь иногда может плеваться. При плавке меди работайте в хорошо проветриваемом помещении и избегайте вдыхания паров при проверке ее состояния и заливке в форму. Пары меди могут вызвать серьезные заболевания легких, поэтому будьте предельно осторожны.
Если медь, которую вы плавите, представляет собой лом электрического провода или кабелепровода, полностью удалите с проводов любое покрытие, прежде чем плавить его. Эти пластиковые покрытия могут содержать токсичные при нагревании химические вещества.Когда вы завершите свой проект, переместите плавильную сковороду где-нибудь отдельно от повседневной посуды и больше не используйте ее для приготовления пищи.
Когда вы попадаете в тающее настроение, помните, что не стоит таять гроши. Пенни, произведенные после 1982 года, состоят на 97,5% из цинка и всего на 2,5% из меди, поэтому их плавка не стоит усилий. Пенни, сделанные до 1982 года, были сделаны из 95 процентов меди, и сейчас их стоимость примерно вдвое превышает их номинальную стоимость. Однако эти монеты по-прежнему являются законным платежным средством, и их уничтожение является нарушением закона.
Медный двигатель Ротор: производственный процесс: плавление меди: типы печей
Индукционные печи обычно используются для плавления меди из-за более высокой температуры плавления 1083 ° C (1981 ° F). Для литья под давлением медного ротора предлагаются индукционные печи двух типов:
- Двойные выталкивающие печи рекомендуются при планировании прототипов или мелкосерийного производства, хотя их также можно использовать для крупномасштабного производства. Наклонные печи
- также рекомендуются для крупномасштабного непрерывного производства.
Описание этих печей приведено ниже.
9.4.1 Двойные вытяжные печи
Печи с двойным выталкиванием используют метод однократной плавки. Как показано на рис. 9.4.1.1 , при однократном плавлении быстро расплавляется достаточно металла, достаточное для одного цикла, а затем процесс плавления повторяется для следующего цикла. Очевидным преимуществом этого подхода является то, что процесс плавления может быть быстро запущен или остановлен, что обеспечивает гибкость при производстве только ограниченного количества роторов.
Рисунок 9.4.1.1: Однократная плавка измельченной медной катанки.Двойная выталкивающая печь используется для увеличения производительности однократной плавки (см. Рисунок 9.4.1.2 ). Этот тип печи имеет два тигля, оба нагреваются от одного индукционного блока питания. Каждый тигель окружен индукционной катушкой и установлен на керамическом постаменте, который можно поднять с помощью цилиндра с пневматическим приводом. Мощность передается вперед и назад между двумя катушками. После того, как медь в первом змеевике будет расплавлена, цилиндр выталкивает тигель из змеевика, чтобы жидкая медь могла переместиться в машину для литья под давлением (см. , рис.9.4.1.3 ). За несколько секунд мощность индукции может быть передана на вторую катушку, чтобы начать плавление меди в этой катушке.
Рисунок 9.4.1.2: Двойная выталкивающая печь для однократной плавки меди. Рисунок 9.4.1.3: Двойная выталкивающая печь, показывающая нагретый тигель в поднятом положении для разливки. В автоматизированной ячейке робот берет тигель и переносит его на машину для литья под давлением.Из-за меньшего размера тиглей, используемых для однократной плавки, срезанный катод обычно не используется в качестве расплава.Вместо этого рубленая медная катанка обеспечивает увеличенную площадь поверхности и лучшую плотность упаковки, что приводит к более быстрому плавлению. Медный стержень в тигле, показанный на рисунке , рис. 9.4.1.1 , имеет диаметр примерно 12,5 мм (дюйм), нарезанный на куски длиной около 19 мм (дюйм). Такой рубленый стержень часто широко доступен по всему миру и лишь ненамного дороже, чем катод со срезом.
Печи с двойным выдвижением вверх могут обеспечивать скорость цикла, необходимую для литья под давлением с ротором.Во время опытно-конструкторских испытаний было показано, что индукционный источник питания мощностью 60 кВт способен расплавить 3,6 кг (8 фунтов) измельченной медной катанки менее чем за две минуты. Роторы, требующие дроби более 3,6 кг, просто будут использовать более крупную индукционную силовую установку для достижения заданной частоты цикла (обычно от 2 до 2 минут для литья ротора). Печи с двойным выталкиванием можно приобрести в различных размерах, соответствующих производительности, необходимой для большинства медных роторов.
Поскольку время плавления, используемое для однократной плавки, очень короткое, может не потребоваться использование покровного газа для предотвращения поглощения кислорода жидкой медью.Однако, если окажется необходимым покровный газ, на верхнюю часть каждого тигля можно легко нанести покров из инертного газа (обычно азота) или восстановительного газа (азот с добавлением 5% водорода).
9.4.2 Наклонные печи
Для высокой производительности, связанной с непрерывным производством, рекомендуется использовать наклонную печь. При таком подходе большее количество меди плавится в индукционной печи, показанной на рис. 9.4.2.1 . Больший размер тигля обеспечивает большую гибкость в выборе материала для загрузки, в том числе обрезанного медного катода, высококачественного медного лома для электротехники, цехового скрапа (печенье и бегунки) или рубленой катанки.Чтобы защитить жидкую медь от поглощения кислорода, сверху на тигель помещают металлическую или керамическую крышку, а сверху жидкой ванны наносят покрытие из азота и 5% водорода.
Когда жидкая медь нагреется до нужной температуры, печь гидравлически наклоняют, чтобы налить контролируемое количество жидкой меди в керамическую чашку (см. Рисунок 9.4.2.2 ). Затем используется робот, который забирает стакан и переносит жидкую медь в дробильную втулку машины для литья под давлением.
Рисунок 9.4.2.1: Наклоняемая индукционная печь Рисунок 9.4.2.2: Гидравлический наклон печи для заливки жидкой меди в стакан для передачи в машину для литья под давлением.Медь — точка плавления — точка кипения
Медь — точка плавления и температура кипения
Температура плавления меди 1084,62 ° C .
Температура кипения меди 2927 ° C .
Обратите внимание, что эти точки связаны со стандартным атмосферным давлением.
Точка кипения — насыщение
В термодинамике термин насыщение определяет состояние, при котором смесь пара и жидкости может существовать вместе при заданных температуре и давлении. Температура, при которой начинает происходить испарение (кипение) для данного давления, называется температурой насыщения или точкой кипения .Давление, при котором начинается испарение (кипение) для данной температуры, называется давлением насыщения. Если рассматривать температуру обратного перехода от пара к жидкости, ее называют точкой конденсации.
Точка плавления — насыщение
В термодинамике точка плавления определяет состояние, при котором твердое тело и жидкость могут находиться в равновесии. Добавление тепла превратит твердое вещество в жидкость без изменения температуры.Температура плавления вещества зависит от давления и обычно указывается при стандартном давлении. Когда рассматривается как температура обратного перехода от жидкости к твердому телу, она упоминается как точка замерзания или точка кристаллизации.
Медь — Свойства
Элемент | Медь |
---|---|
Атомный номер | 29 |
Символ | Cu |
Категория элемента | Переходный металл |
Фаза на STP | Цельный |
Атомная масса [а.е.м.] | 63.546 |
Плотность при стандартном давлении [г / см3] | 8,92 |
Электронная конфигурация | [Ar] 3d10 4s1 |
Возможные состояния окисления | +1,2 |
Сродство к электрону [кДж / моль] | 118,4 |
Электроотрицательность [шкала Полинга] | 1,9 |
Энергия первой ионизации [эВ] | 7,7264 |
Год открытия | неизвестно |
Первооткрыватель | неизвестно |
Тепловые свойства | |
Точка плавления [шкала Цельсия] | 1084.62 |
Точка кипения [шкала Цельсия] | 2927 |
Теплопроводность [Вт / м · К] | 401 |
Удельная теплоемкость [Дж / г К] | 0,38 |
Теплота плавления [кДж / моль] | 13,05 |
Теплота испарения [кДж / моль] | 300,3 |
–
–
–
В какой момент плавится металл? Стол для плавки металлов
Металлы, как правило, имеют более высокую температуру плавления, чем многие другие материалы, и они способны менять форму под воздействием тепла — в отличие от древесины, которая просто разлагается.Когда температура становится достаточно высокой, ионы, из которых состоит металл, вибрируют все больше и больше, в конечном итоге разрывая связи, которые имеют его ионы, и позволяя им двигаться свободно.
Когда внутренняя структура металла начинает сдвигаться и связи ослабляются, он становится жидкостью. Прочность связи, которая зависит от самого материала, обычно определяет температуру плавления металла. Некоторые металлические сплавы будут иметь более высокие или более низкие температуры плавления, чем сами металлы, и они не всегда могут плавиться плавно.
Ваш путеводитель по плавке металловОбычно, когда кто-то спрашивает о температурах плавления металла, они ищут твердую температуру, до которой металл должен быть нагрет, что приведет к ожижению. Ниже представлена интерактивная таблица, которая основана на различных научных источниках для определения точек плавления различных металлов:
Металл | Температура плавления (° F) | |||||||
---|---|---|---|---|---|---|---|---|
Адмиралтейство Латунь | 1650 | |||||||
Алюминий | 1220 | |||||||
903 903 903 903 903 903 903 Алюминий 903 — 1900 | ||||||||
Сурьма | 1170 | |||||||
Бериллий | 2345 | |||||||
Бериллий Медь | 1587 | |||||||
Желтая 903 903 903 903 903 903 903 903 903 903 | ||||||||
Кадмий | 610 | |||||||
Хром | 3380 | |||||||
Кобальт | 2723 | |||||||
Медь | 1983 | 2 | ||||||
1945 | ||||||||
Сплав инконель | 2540 — 2600 | |||||||
Иридий | 4440 | |||||||
Железо (кованое) | 2700 | |||||||
Железо (серое литье) | 2060 | |||||||
Железо ( | 621 | |||||||
Магний | 1200 | |||||||
Магниевый сплав | 660-1200 | |||||||
Марганец | 2271 | |||||||
Марганец | 3 | 8 | Марганец | 8 Бронза 90 | 95||||
Молибден | 4750 | |||||||
Никель | 2647 | |||||||
Ниобий (колумбий) | 4473 | |||||||
Палисин | 903 903 903 | 111 | ||||||
Платина | 3220 | |||||||
Плутоний | 1180 | |||||||
Калий | 146 | |||||||
Красная латунь | 13 903 903 903 903 903 903 903 903 903 903 903 3569||||||||
Рутений | 4500 | |||||||
Селен | 423 | |||||||
Кремний | 2572 | |||||||
Серебро (чистое) Серебро (чистое) | 903 903 903 903 9030 903 903 903 903 903 9030Натрий | 208 9031 3 | ||||||
Сталь, углеродистая | 2600 | |||||||
Сталь, нержавеющая | 2750 | |||||||
Тантал | 5400 | |||||||
Торий | 3123 | |||||||
Титан | 3040 |
В нашем температурном списке присутствует множество металлических сплавов, но важно знать, что большинство из них имеют значительный температурный диапазон, которого они должны достичь. По мере изменения состава температура нагрева изменяется, и диапазоны расширяются примерно на 200 ° F.
Диапазон сплава означает, что он начинает иметь жидкое и твердое состояние, иногда одновременно, когда вы приближаетесь к общему диапазону плавления.
Плавление сразуПри работе с чистыми металлами вы, вероятно, заметите, что он плавится почти равномерно. Это контрастирует с другими элементами, такими как лед, который постепенно тает, и жидкость видна, в то время как куски твердых частиц все еще находятся вокруг.
Теплопроводность — одна из главных причин такого равномерного плавления, поскольку металлы обладают исключительной теплопередачей. По сравнению со льдом, проводимость металла на порядки выше. Это означает, что если приложить тепло к одной части металлического стержня или стержня, то тепло будет распределяться очень равномерно по всей поверхности.
Чем плотнее металл, тем лучше его теплопроводность. Это позволяет металлообработке безопасно применять тепло в одном месте, но при этом должным образом нагревать весь кусок металла.
Как плавить пенни с автомобильным аккумулятором
Изображение любезно предоставлено Exploritarium
У большинства людей сложилось впечатление, что пенни сделаны из меди. Это правда лишь отчасти. До 1982 года пенни были сделаны из 95% меди и 5% цинка.Поскольку цена на медь росла, Монетный двор США был вынужден изменить состав пенни, чтобы цена монеты не превышала одного цента.
Сейчас гроши состоят на 97,5% из цинка и 2,5% из меди. Это меняет результат эксперимента по переплавке монет из разных периодов времени и делает эксперимент гораздо более интересным.
Медь имеет температуру плавления 1984,32 ° F (1084,62 ° C), а цинк — 787,15 ° F (419,53 ° C). Из-за такой большой разницы в точках плавления вы можете нагреть пенни, и цинк расплавится задолго до того, как это сделает медь.Проблема заключается в том, что цинк содержится внутри меди, которая его окружает, поэтому вам нужно создать способ, позволяющий цинку улетучиваться.
Процесс
Возьмите обычный автомобильный аккумулятор и прикрепите кусок меди к положительному (+) и отрицательному (-) полюсам аккумулятора. Убедитесь, что кусочки меди не соприкасаются, а между ними есть зазор примерно в ¼ дюйма, чтобы вы могли прикоснуться к обоим концам меди для соединения.Во избежание ударов удерживайте пенни плоскогубцами с резиновыми ручками. Затем прижмите каждую монету к обоим кускам меди, сделав соединение достаточно длинным, чтобы получить полный эффект.
Таяние копейки с автомобильным аккумулятором
Так как состав металла со временем изменился в разы, результаты также будут другими, если вы воспользуетесь автомобильным аккумулятором, чтобы попытаться его расплавить. Пенни более старого образца, отчеканенные до 1982 года, при нагревании будут светиться красным по всей длине в униформе.Когда вы вынимаете пенни из батареи, внешняя сторона монеты почернеет, в том числе по всей площади монеты.