Повышающего трансформатора принцип работы: Повышающий трансформатор: схема и принцип работы

Содержание

Повышающий трансформатор как работает, схема, применение

Повышающий трансформатор это обычный трансформатор (см. назначение и принцип действия трансформатора) который повышает значение напряжения электрического тока. На первичной обмотке оно ниже, а на вторичной выше. Тем самым на выходе прибора напряжение выше и за счет определенного числа витков обмотки и сечения имеет нужное значение.

Принцип работы повышающего трансформатора заключается в величине К (коэффициент трансформации).

При К>1 трансформатор является понижающим, а при К<1 — повышающим трансформатором.

U1/U2 ≈ E1/E2 = N1/N2 = К

где: U1, U2 — напряжение на первичной и вторичной обмотке; E1, E2-мгновенные значения ЭДС;  N1, N2 — количество витков первичной и вторичной обмотки

повышающий трансформаторповышающий трансформатор схема

Применение повышающих трансформаторов

Приборы устанавливаются в электрических линиях и источниках питания потребительских точек. В соответствии с законом Джоуля — Ленца при увеличении силы тока выделяется тепло, которое нагревает провод. Для транслирования энергии на большие линейные расстояния увеличивают напряжение, а токи уменьшают. При поступлении к потребителю мощность снижают, поскольку в целях безопасности пришлось бы использовать массивную изоляцию.

В начале цепочки устанавливают повышающий трансформатор, а в точке приема понижают показатели. Такие комбинации на протяжении ЛЭП используют многократно, добиваясь выгодных условий транспортировки электричества и создавая приемлемые значения для потребителя.

Из-за присутствия в сети трех фаз для трансформации энергии используют трехфазные агрегаты. Иногда применяют группу, в которой устройства объединены в модель звезды, при этому них общий проводящий стержень.

Хоть коэффициент полезного действия у агрегатов большой мощности достигает почти стопроцентного значения, всё равно выделяется много тепла. Типичный трансформатор электрической станции 1 гВт выдает несколько мегаватт. Чтобы снизить это явление, разработана охладительная система в виде бака с негорючей жидкостью или трансформаторным маслом и сильным устройством для воздушной раздачи тепла. Охлаждение чаще водяное, сухой принцип используют при небольшой мощности.

Повышающий тороидальный трансформатор

Как вы понимаете, говоря «тороидальный трансформатор», подразумевают обычно сетевой однофазный трансформатор, силовой или измерительный, повышающий или понижающий, у которого тороидальный сердечник оснащен двумя или несколькими обмотками.

Работает тороидальный трансформатор принципиально так же как и трансформаторы с другими формами сердечников: он понижает или повышает напряжение, повышает или понижает ток — преобразует электроэнергию. Но тороидальный трансформатор отличается при той же передаваемой мощности меньшими размерами и меньшим весом, то есть лучшими экономическими показателями.

Главная особенность тороидального трансформатора — небольшой общий объем устройства, доходящий до половины в сравнении с другими типами магнитопроводов.

Шихтованный сердечник вдвое больше по объему чем тороидальный ленточный сердечник при той же габаритной мощности.

Поэтому тороидальные трансформаторы удобнее устанавливать и подключать, и уже не так важно, идет ли речь о внутреннем или о наружном монтаже.

Любой специалист скажет, что тороидальная форма сердечника является идеальной для трансформатора по нескольким причинам:

  • во-первых, экономия материалов на производстве,
  • во-вторых, обмотки равномерно заполняют весь сердечник, распределяясь по всей его поверхности, не оставляя неиспользованных мест,
  • в-третьих, поскольку обмотки имеют меньшую длину, КПД тороидальных трансформаторов получается выше в силу меньшего сопротивления провода обмоток.

Охлаждение обмоток — еще один важный фактор.

Обмотки эффективно охлаждаются будучи расположены в форме тороида, следовательно плотность тока может быть более высокой.

Потери в железе при этом минимальны и ток намагничивания сильно меньше. В итоге тепловая нагрузочная способность тороидального трансформатора оказывается очень высокой.

Экономия электроэнергии — еще один плюс в пользу тороидального трансформатора.

Примерно на 30% больше энергии сохраняется при полной нагрузке, и примерно 80% на холостом ходу, в сравнении с шихтованными магнитопроводами иных форм. Показатель рассеяния у тороидальных трансформаторов в 5 раз меньше чем у броневых и стержневых трансформаторов, поэтому их можно безопасно использовать с чувствительным электронным оборудованием.

При мощности тороидального трансформатора до киловатта, он настолько легок и компактен, что для монтажа достаточно применить прижимную металлическую шайбу и болт. Потребителю всего то и нужно выбрать подходящий трансформатор по току нагрузки и по первичному и вторичному напряжениям. При изготовлении трансформатора на заводе рассчитывают площадь сечения сердечника, площадь окна, диаметры проводов обмоток, — и выбирают оптимальные габариты магнитопровода с учетом допустимой индукции в нем.

Для чего около электростанций устанавливают повышающий напряжение трансформатор?

Любой проводник имеет свое сопротивление и поэтому в ЛЭП неизбежно возникают тепловые потери на нагрев проводника. Величина нагрева пропорциональна квадрату тока в цепи, по этому повышая напряжение до сотен киловольт, мы, согласно закону Ома понижаем ток, а значит и снижает тепловые потери и размер проводников ЛЭП, экономия материалов и стоимости.

Видео: Повышающий трансформатор

Принцип действия трансформатора для повышения напряжения

Открытие в далёком 1831 году великим учёным Фарадеем принципа электромагнитной индукции позволило по-новому взглянуть на многие законы электротехники. Именно основываясь на взаимодействие электромагнитных полей, через 45 лет после этого великий русский учёный П. Н. Яблочков получил патент на изобретение трансформатора. Классическое определение звучит так: трансформатор — это электрическое устройство

, преобразующее ток первичной обмотки одного напряжения, в ток вторичной обмотки с другим напряжением.

Индукционный эффект образуется при изменении электромагнитного поля, поэтому для работы трансформатора необходимо наличие напряжения с переменным током. Трансформация (передача) осуществляется преобразованием электрической энергии первичной обмотки в магнитное поле, а затем, во вторичной обмотке происходит обратное преобразование магнитного поля в электрическую энергию. В случае если количество витков вторичной обмотки будет превышать число витков первичной обмотки, то устройство будет называться повышающим трансформатором. При подключении обмоток в обратном порядке, получается понижающее устройство.

Устройство и принцип работы

Конструктивно повышающее устройство трансформации напряжения состоит из сердечника и двух обмоток. Сердечник собран из пластин электротехнической листовой стали. На него намотаны первичная и вторичная обмотки, из медного провода, различного диаметра. Толщина провода намотки трансформатора напрямую зависит от его выходной мощности.

Сердечник устройства может быть стержневым или броневым. При использовании изделия в сетях низкочастотного напряжения чаще всего применяются стержневые магнит проводы, которые по форме могут быть:

  • П-образные.
  • Ш-образные.
  • Тороидальные.

Изготавливаются сердечники из трансформаторного специального железа, от качественных характеристик которого и зависят многие общие параметры устройства. Набирается сердечник из тонких железных пластин, которые изолированы друг от друга лаком или слоем окиси, для уменьшения потерь за счёт вихревых токов. Могут применяться и готовые половинки, которые сделаны из сплошных железных лент.

Достоинства и недостатки сердечников

  • Наборные чаще применяются для устройства магнитопроводов с произвольным сечением, ограничивающимся только шириной пластин. Лучшие параметры имеют устройства трансформации напряжения с квадратным сечением. Недостатком такого типа сердечника считается необходимость плотного стягивания пластин, малый коэффициент заполнения пространства катушки, а также повышенное рассеивание магнитного поля устройства.
  • Витые сердечники намного проще наборных в сборке. Весь сердечник Ш-образного типа состоит из четырёх частей, а П-образный тип имеет только две части в своей конструкции. Технические характеристики такого трансформатора гораздо лучше, нежели чем наборного. К недостаткам можно отнести необходимость минимального зазора между частями. При физическом воздействии пластины частей могут отслаиваться, и, в дальнейшем очень трудно добиться плотного их прилегания.
  • Тороидальные сердечники имеют форму кольца, которое свито из трансформаторной железной ленты. Такие сердечники имеют самые лучшие технические характеристики и практически полное исключение рассеивания магнитного поля. Недостатком считается сложность намотки, особенно проводов с большим сечением.

В трансформаторах Ш-образного типа все обмотки обычно делаются на центральном стержне. В П-образном устройстве вторичная обмотка может наматываться на один стержень, а первичная — на другой. Особенно часто, встречаются конструктивные решения, когда разделённые пополам обмотки наматываются на оба стержня, а после соединяются между собой последовательно. При этом существенно сокращается расход провода для трансформатора, и улучшаются технические характеристики прибора.

Технические характеристики

Основными характеристиками при эксплуатации трансформатора считаются:

  • Напряжение входное.
  • Величина напряжения на выходе.
  • Мощность прибора.
  • Ток и напряжение холостого хода.

Величина отношения напряжений на входе и выходе устройства называется коэффициентом трансформации. Это соотношение зависит только от количества витков в обмотках и остаётся неизменным при любом режиме функционирования устройства.

От диаметра проводов и от типа сердечника напрямую зависит мощность трансформатора, которая со стороны первичной намотки равна сумме мощностей вторичных обмоток, за исключением потерь.

Напряжение, получаемое на выходной обмотке устройства, без подключения нагрузки, называется напряжением холостого хода. Разница между этим показателем и напряжением с нагрузкой указывает на величину потерь за счёт разного сопротивления проводов обмотки.

От качественных показателей сердечника трансформатора полностью зависит величина тока холостого хода. В идеальном случае, ток первичной обмотки создаёт в сердечнике устройства магнитное поле переменного значения, по величине электродвижущая сила которого равна току холостого хода и противоположна по направлению. Но вот в реальности величина электродвижущей силы всегда меньше напряжения на входе, за счёт возможных потерь в сердечнике.

Именно поэтому для уменьшения величины тока холостого хода, требуется материал высокого качества при изготовлении сердечника и минимальный зазор между его пластинами. Таким условиям в большей мере соответствуют тороидальные сердечники.

Типы устройств

В зависимости от мощности, конструкции и сферы их применения, существуют такие виды трансформаторов:

  • Автотрансформатор конструктивно выполнен как одна обмотка с двумя концевыми клеммами, а также в промежуточных точках устройства имеются несколько терминалов, в которых располагаются первичные и вторичные катушки.
  • Трансформатор тока включает в себя первичную и вторичную обмотку, сердечник из магнитного материала, а также оптические датчики, специальные резисторы, позволяющие ускорять способы регулировки напряжения.
  • Силовой трансформатор — это устройство, передающее ток, при помощи индукции электромагнитного поля, между двумя контурами. Такие трансформаторы могут быть повышающими или понижающими, сухими или масляными.
  • Антирезонансные трансформаторы могут быть как однофазными, так и трёхфазными. Принцип работы такого устройства мало чем отличается от трансформаторов силового типа. Конструктивно представляет собой устройство литого типа с хорошей теплозащитой и полузакрытой структурой. Трансформаторы антирезонансного типа применяются при передаче сигнала на большие расстояния и в условиях больших нагрузок. Идеально подходят для работы в любых климатических условиях.
  • Заземляемые трансформаторы (догрузочные). Особенностью этого типа является расположение обмоток в форме звезды или зигзага. Часто заземляемые приборы применяют для подключения счётчика электрической энергии.
  • Пик — трансформаторы используются в устройствах радиосвязи и технологиях компьютерного производства, по принципу отделения постоянного и переменного тока. Конструкция такого трансформатора является упрощённой: обмотка с определённым количеством витков расположена вокруг сердечника из ферромагнитного материала.
  • Разделительный домашний трансформатор применяется при передаче энергии переменного тока к другому устройству или оборудованию, блокируя при этом способности источника энергии. В бытовых условиях такие приборы обеспечивают регулирование напряжения и гальваническую развязку. Чаще всего применяются для подавления электрических помех в чувствительных приборах и защиты от вредного воздействия электрического тока.

Обслуживание и ремонт

Желательно человеку, не знающему принцип действия электротехнических приборов, не заниматься ремонтными работами этого оборудования, из-за возможности поражения электрическим током. При ремонте и обслуживании трансформаторных устройств, единственное, что можно исправить, без недопустимых последствий, это перемотка трансформатора.

Перед началом любых ремонтных работ необходимо произвести проверку трансформатора:

  • Первым делом необходимо оценить состояние прибора при помощи визуального осмотра, так как порой, потемневшие и вздувшиеся участки, прямо указывают на неисправность обмотки трансформатора.
  • Определение правильности подключения устройства. Электрический контур, генерирующий магнитное поле обязательно должен быть подключён к первичной обмотке прибора. А вот вторая схема, потребляющая энергию трансформатора, должна быть включена в обмотку выходного напряжения.
  • Фильтрация выходного сигнала фазы определяется как для диодов и конденсаторов на вторичной обмотке устройства.
  • Следующим шагом нужно подготовить прибор к контрольному измерению параметров, т. е. снять защитные панели и крышки, чтобы получить свободный доступ к элементам схемы. С помощью тестера нужно в дальнейшем произвести измерение напряжения трансформатора.
  • Для проведения измерений, нужно подать питание на схему устройства. Измерение параметров первичной обмотки проводится тестером в режиме переменного тока. Если полученное значение меньше чем на 80% от ожидаемого, то неисправность может быть как в самом трансформаторе, так и в схеме всего устройства.
  • Проверку выходной обмотки осуществляют при помощи тестера. При этом проверяем обмотку как на возможность появления короткозамкнутых витков, так и на обрыв провода намотки катушки, по принципу измерения сопротивления (если сопротивление мало — то есть вероятность короткозамкнутых витков, а в случае когда сопротивление обмотки велико — обрыв).

После перемотки повышающего трансформатора напряжения, в случае неисправности обмотки, нужно собрать его в обратной последовательности, при этом особое внимание необходимо уделить наиболее плотному прилеганию пластин сердечника.

Самостоятельное изготовление или ремонт устройства предоставляется процессом очень сложным и трудоёмким. Для выполнения таких работ потребуется наличие необходимых материалов, а также умение производить некоторые специальные расчёты. В частности, нужно будет точно рассчитать количество витков в обмотке трансформатора, диаметр проводов для обмотки, а также сечение и тип сердечника устройства.

Поэтому лучше обратиться для проведения этих операций к квалифицированному человеку, знакомому с основными понятиями и свойствами электротехники и расчётами по необходимым формулам.

Повышающий трансформатор – история создания знакового устройства и пошаговая инструкция.

Любая сфера человеческой деятельность связана с определенными устройствами, предметами, символизирующими эту область. Судостроение, мореплавание – развивающиеся паруса, длинные яхты, корабли, морские волны. Авиация – крыло самолета, пропеллер. Автомобильная отрасль осталась бы смутной мечтой, не изобрети когда-то человек колесо. Многие вещи, которые сегодня кажутся нам привычными, естественными, были изобретены в творческих муках, трудах, но стали поворотным моментом развития не только отдельной сферы, но и всего человечества.

Повышающий трансформатор: история создания

Таким символом электротехники является повышающий трансформатор тока. Принцип, ставший основой его работы, был открыт Майклом Фарадеем еще в 1831 году. Открытое им явление электромагнитной индукции оказало несравнимое влияние на весь человеческий быт, способы производства продукции. Но использовано открытие было лишь спустя почти полвека — в 1876 году отечественным изобретателем Яблочковым П. Н., который стал владельцем патента на трансформатор.

Принцип работы и разновидности

Трансформатор – это электрический прибор, который преобразует ток входящей сети в ток с другими показателями напряжения. Работает прибор только с напряжение переменного тока, потому что лишь при изменении электромагнитного поля становится возможным использования эффекта индукции. Его устройство не отличается сложностью: пара обмоток размещается на незамкнутом сердечнике, что позволяет преобразовывать показатели напряжения тока. Передача энергии происходит посредством перевода электрической энергии в магнитное поле, а затем снова в ток с новыми показателями. Чтобы повысить параметры, необходимо иметь такую вторичную обмотку, количество оборотов которой больше чем у первичной. Чтобы понизить – наоборот. Трансформатор повышающий напряжение был первым изобретенным видом этого прибора.

По габаритам современные устройства отличаются как от первого изобретения, так и друг от друга. Сегодня используются повышенные трансформаторы размером менее одного сантиметра у небольших приборов, а также размером с двухэтажный дом для крупных промышленных комплексов. Их производство, продажа, обслуживание являются самостоятельной областью промышленности. Изобретение русского ученого используется электротехническими лабораториями, промышленностью, нефтегазовой отраслью и многими другими. Современные модели повышающих трансформаторов позволяют получать напряжение 220 В, подходящее подавляющему числу бытовых, профессиональных приборов, при минимальном входном питании сети.

Сделать самому или купить повышающий трансформатор?

Решением некоторых задач может стать преобразователь, собранный своими руками. Например, если для гаражных работ нужно подключить оборудование с питанием 220 В, а сеть имеет напряжение лишь 36 В, то собранный самостоятельно повышающий трансформатор позволит решить эту проблему.

Собираем повышающий трансформатор своими руками

  1. Первым делом определяем мощность первичной обмотки будущего преобразователя. Для этого нужно узнать мощность прибора, который мы будем подключать. Обычно эти данные указывают в паспорте устройства. Например, возьмем среднее значение 100 Вт. Следует учитывать, что потребуется некоторый запас, т.к. коэффициент полезного действия будет равен примерно 0,8 -0,9. Нам подойдет мощность 150 Вт.
  2. Нужно подобать магнитопровод. Если не прибегать к услугам специализированных магазинов, то можно взять сердечник по форме буквы «О» из, например, старого телевизора. Но придется рассчитать сечение по формуле: A1= C*C/1,44 , где A1 – мощность будущего преобразователя (Вт), а C – поперечное сечение (кв. см). У нас С должно быть равно 10,2 кв. см.
  3. Определяем число витков на 1 В. Рассчитываем по формуле: K=50/C, у нас это 50/10,2, т.е. 4,9 витков на 1 В. После мы легко рассчитаем количество оборотов первичной и вторичной обмоток. В первом случае умножаем имеющиеся напряжение питания сети на 4,9, получаем 176 витков. Во втором умножаем требуемое напряжение (220 В) на 4,9, получаем 1078.
  4. Следующий шаг – расчет тока каждой обвивки. За исходные показатели берем мощность равную 150 Вт. Тогда для первичной обвивки нужен ток в 4,2 А, вторичной – 0,7 А. Рабочий показатель равен мощности деленной на напряжение.
  5. Для правильной работы устройства важно не только количество оборотов, но и диаметр обмоток. Рассчитываем этот параметр по формуле: рабочий ток обмотки умноженный на коэффициент 0,8. У нас получается 1,64 мм и 0,67 мм для первичной и вторичной обмоток соответственно. Подбираем максимально похожие на наши диаметры из представленных магазином.
  6. Вырезаем два каркаса для магнитопровода. Берем половину первичной обмотки, плотно укладываем на каркасы. После укладки изолируем стеклотканью.
  7. Берем половину вторичной обмотки, также укладываем, изолируем.
  8. Собираем магнитопровод, стягиваем его отдельные части хомутом. Части устройства рекомендуем проклеить специальным клеем с содержанием ферропорошка, тогда оборудование не будет издавать лишних звуков во время эксплуатации. Устройство готово!

Если вы далеки от физики, самодеятельности или не обладаете свободным временем, рекомендуем просто купить готовый трансформатор в нашем интернет-магазине. Также стоит учесть, что промышленные, производственные задачи способен решить лишь прибор, собранный профессионалами. Использование самодельного устройства не всегда безопасно! Будьте осторожны.

Импульсный трансформатор принцип работы

Принцип работы импульсного трансформатора

Современные электронные и электрические приборы имеют достаточно сложное устройство.

Их эффективную и бесперебойную работу обеспечивает большое количество составляющих.

Одной из них является импульсный трансформатор, принцип работы которого основывается на активном преобразовании электрического тока.

Основная функция

Устройства, работа которых зависит от электрического тока, оснащаются импульсными трансформаторами.

Делается это для того, чтобы обеспечить защиту от короткого замыкания, слишком высокого напряжения, исходящего от сети, и перегревания корпуса электроприборов.

Он присутствует как в технике, используемой в быту (цветных телевизорах, компьютерных мониторах), так и в специальном оборудовании, в основе которого заложено действие импульса (газовых лазерах, магнетронах, триодных генераторах, дифференцирующих трансформаторах).

Механизм действия и виды устройств

Работа импульсного трансформатора обеспечивается за счёт пары катушек, соединённых магнитоводом и имеющих обмотку различной конфигурации.

Количество витков на обмотке определяет мощность электрической энергии, получаемой на выходе.

Первичный контур обмотки принимает на себя однополярные импульсные сигналы. На ней же определяются импульсы с коротким временным интервалом, имеющие прямоугольную форму. Затем эти же импульсы находят отражение на вторичной обмотке. Принцип отражения является основным в работе всех ИТ.

Трансформаторы могут иметь различное устройство.

В зависимости от типа обмотки выделяют следующие разновидности прибора:

  • тороидальный,
  • стержневой,
  • броневой,
  • бронестержневой.

Импульсный трансформатор: принцип действия и функциональные особенности

Трансформатор представляет собой достаточно сложное техническое устройство, основной функцией которого служит преобразование определенных свойств и качеств электрической энергии, таких, как напряжение или крутящий момент. Также современный трансформатор способен превращать переменный ток в постоянный и наоборот.

Среди огромного разнообразия используемых в настоящее времяприборов особо следует выделить их импульсные разновидности.

Импульсный трансформатор широко используется в системах связи, ВТ, устройствах автоматики, для внесения изменений амплитуды импульсов, а также их полярности. Главное условие для успешной работы данного вида прибора состоит в том, что искажение сигнала, который передается с его помощью, должно быть минимальным.

Импульсный трансформатор основывается в своей деятельности на следующем принципе: в то время как на его вход поступают прямоугольные импульсы определенного напряжения, в первичной обмотке постепенно появляется электрический ток, сила которого постепенно начинает увеличиваться. Это, в свою очередь, повлечет за собой изменение магнитного поля и появление электродвижущей силы во вторичной обмотке. В этом случае искажения сигнала практически не происходит, а возможные потери тока настолько малы, что ими можно пренебречь.

Что касается отрицательной части импульса, появление которой неизбежно в то время, как импульсный трансформатор выходит на проектную мощность, то его влияние можно свести к минимуму, установив простой диод во вторичную обмотку. Тем самым и здесь импульс станет максимально близким к прямоугольному.

Импульсный трансформатор отличается от других разновидностей данной технической системы тем, что работает исключительно в ненасыщенном режиме. Его магнитопровод изготавливается из специального сплава, который в обязательном порядке обладает значительной пропускной способностью магнитного поля.

Помимо импульсных, в современной энергетической и электронной промышленности используют следующие основные виды трансформаторов:

  1. Деятельность ни одного современного радиоприбора невозможна без силовых трансформаторов. Их деятельность многогранна: с одной стороны, они необходимы для того, чтобы приемники можно было запитывать от обычной сети с переменным током, а с другой, для того, чтобы повышать или понижать напряжение той или иной частоты в усилителях. С этой функцией связана и важная конструктивная особенность силовых трансформаторов – вместо стальных сердечников здесь используют вставки из магнетита или карбонильного железа.
  2. Еще одной разновидностью прибора, применяемого преимущественно в современных системах слежения и бортовых компьютерах самолетов, является вращающийся трансформатор. Его принцип действия заключается в том, что угол поворота рамки преобразуется в напряжение электрического тока. Внешне вращающийся трансформатор представляет собой небольшую электрическую машину, работающую исключительно от переменного тока. Кроме того, в зависимости от того, где эти трансформаторы применяются, они могут быть как двухполюсными, так и многополюсными.
  3. В зависимости от того, какой ток поступает на первичную обмотку, выделяют трансформаторы переменного и постоянного тока. Основной вид первого типа – автотрансформатор, который состоит исключительно из одной катушки, которая непосредственно включается в электрическую цепь. Данный вид приборов предназначен исключительно для понижения напряжения и только для очень маленьких токов. Трансформатор постоянного тока – это более сложный прибор, состоящий из динамомашины и двигателя. В этом случае первичный ток вырабатывается двигатель, а вторичный – динамомашиной, которая приводится в движение тем же электродвигателем. Нередко встречается ситуация, когда трансформатор постоянного тока представляет собой двигатель и динамомомашину, соединенные между собой одним металлическим каркасом. Делается это для экономии материала, а также для повышение качества работы прибора.

Преимущества импульсного трансформатора

Он имеет небольшие габариты, более стабилен в работе, дает качественное напряжение и независящее от параметров исходной синусоиды.

Устройство импульсного блока питания и его принцип работы

В импульсном блоке питания на входе стоит сетевой фильтр, задача которого не допустить в сеть высокочастотные колебания, вырабатываемые этим устройством. Они могут повлиять на работу рядом расположенных приборов. 

Далее стоит сглаживающий фильтр, который выпрямляет синусоиду. Полученное на его выходе пилообразное напряжение подается на инвертор, преобразуется в импульсы, имеющие положительную и отрицательную полярность. Их параметры (частота и скважность) задаются при помощи блока управления. Частота обычно выбирается высокой — от 10 кГц до 50 кГц. Именно наличие этой ступени преобразования — генерации импульсов — и дало название этому типу преобразователей.

Блок-схема ИИП с формами напряжения в ключевых точках

Высокочастотные импульсы поступают на трансформатор, который является гальванической развязкой от сети. Трансформаторы эти небольшие, так как с возрастанием частоты сердечники нужны все меньше. Причем сердечник может быть набран из ферромагнитных пластин (в линейных БП должен быть из более дорогой электромагнитной стали).

На выходном выпрямителе биполярные импульсы превращаются в положительные, а выходной фильтр на их основе формирует постоянное напряжение. Основное достоинство ИБП в том, что существует обратная связь, которая позволяет регулировать работу устройства таким образом, чтобы напряжение на выходе было близко к идеалу. Это дает возможность получать стабильные параметры на выходе, независимо от того, что имеем на входе.

Схемы импульсных блоков питания

Схема импульсного блока питания содержит пять обязательных блоков плюс обратная связь.

Вариант импульсного источника питания с выходным напряжением 5 В и 12 В и разной полярности

Входной фильтр

Схема простейшего входного фильтра

Конденсаторы используются специальные — X-типа. Икс-конденсаторы были разработаны специально для этих целей. Они выдерживают мгновенные киловольтные всплески напряжения (до 2,5 кВ), гася тем самым помехи между фазой и нейтралью (противофазные помехи). Дроссель — это ферритовый сердечник с намотанными лакированными медными проводами. В нем наводятся токи, нейтрализующие токи помех.

Приведенная выше схема входного фильтра для импульсного источника питания не устраняет помехи, которые возникают между фазой и землей (корпусом) или между нейтралью и корпусом. Для их нейтрализации в схему добавляют два конденсатора Y-типа (которые выдерживают скачки напряжения до 5 кВ). Специальная конструкция Y-конденсатора гарантирует обрыв цепи, а не короткое замыкание, в случае выхода его из строя.

Оба типа конденсаторов (X и Y), который ставят во входных фильтрах, выполняют из специальных негорючих материалов, так как они могут греться до очень высоких температур и могут стать причиной пожара. Именно в этом, да еще в конструктивных особенностях кроется причина их высокой стоимости (по сравнению с обычными).

Схема для компенсации всех типов помех

Но для корректной работы этой схемы необходимо рабочее заземление. Его надо подключить к корпусу блока питания. Без заземления, корпус блока питания будет находиться под напряжением около 110 В. Ток будет очень маленьким, но прикосновения будут ощутимы.

Сетевой выпрямитель и сглаживающий фильтр

Как уже сказано выше, выпрямитель проводит предварительное выпрямление синусоиды. Если установлен один диод, он отсекает нижние (отрицательные) полуволны.

Сравнение однополупериодного и двухполупериодного выпрямителя. 

В самом простом случае выпрямитель — диод Шоттки, но может использоваться и диодный мост с параллельно подключенным конденсатором. Для диодных мостов часто применяют обычные диоды типа 1N4007, но лучше все-таки устанавливать все те же диоды Шоттки. Они «быстрее», так что можно получить лучше результаты на выходе.

Несколько схем фильтров разной степени сложности

Один диод ставят в блоках питания к недорогой технике. На его выходе напряжение имеет вид идущих с некоторыми промежутками положительных полуволн. На выходе диодного моста пульсации намного ниже, так что такой выпрямитель ставят для более требовательных к питанию приборов. Пульсирующее напряжение с выхода диода/диодного моста подается на конденсатор (он должен быть рассчитан на напряжение 270-400 В), который из полуволн делает «зубчики». Тут уже получаем более-менее стабильное постоянное напряжение.

Инвертор или блок ключей

На следующем блоке выпрямленное напряжение преобразуется в импульсы. Частота импульсов высокая — от 10 до 50 кГц. Есть два способа реализации этих блоков: при помощи микросхем, на основе автогенератора (блокинг-генератора).

Еще одна блок-схема ИИП

Во втором случае используется пара транзисторов, которые включаются попеременно, формируя на выходе последовательность импульсов. Частота переключений задается генератором. Такие схемы встречаются и сейчас, но большинство реализуется на микросхемах.

Пример схемы инвертора на транзисторах

Если есть микросхема, зачем городить огород из нескольких десятков деталей. Тем более, что требуемый тип микросхем широко распространен и стоит немного. Это так называемые ШИМ-контроллеры ( TL494, UC384х, Dh421,  TL431, IR2151, IR2153 и др).  К этим микросхемам надо добавить всего-лишь пару полевых транзисторов и несколько мелких деталей и получим требуемый инвертор.

Схема ИИП с ШИМ контроллером для обратноходового и полумостового преобразователей

ШИМ-контроллер отлично встраивается в любой тип схем. Он совместим с обратноходовыми, полумостовыми и мостовыми схемами выпрямителей. Естественно, отличается количество элементов, но все они простые и доступные.В обратноходовых схемах транзисторы должны быть рассчитаны на более высокое напряжение, чем подается на вход.

Устройство импульсного источника напряжения с ШИМ контроллером и двухтактным и мостовым выпрямителем

По полумостовым схемам построены импульсные блоки питания в осветительных приборах, в энергосберегающих и светодиодных лампах, электронный балласт для люминисцентных ламп (ЭПРА). Мостовые схемы применяют в более мощных блоках. Например, в сварочных инверторах.

Есть и более «серьезные» контроллеры, которые параллельно с работой, проверяют параметры входного и выходного напряжения и, при неисправностях, просто блокируют свою работу. Так как в импульсном блоке питания этот компонент, обычно, самый дорогой, это очень неплохо. Заменив неисправные детали (обычно резисторы или конденсаторы), получаем рабочий агрегат.

Силовой трансформатор

Узел трансформатора на блоке питания является одним из самых стабильных. В этом блоке содержится небольшая группа элементов которая нейтрализует выброс тока, который возникает на обмотках трансформатора при смене полярностей.

Эта группа называется «снаббер».

Рассматриваемый блок обведен красным, а снаббер — зеленым

Трансформатор — один из самых надежных элементов. В нем очень редко возникают проблемы. Он может повредиться при пробое инвертора. В этом случае через обмотку течет слишком высокий ток, который и выводит из строя трансформатор.

Схема блока силового трансформатора для ИИП

Работает все это следующим образом:

  • На первом такте работы импульсного источника питания открыт ключ ВТ1 (полевой транзистор с индуцированным каналом n-типа). Ток течет через первичную обмотку трансформатора, заряд накапливается в сердечнике.
  • На втором такте ключ закрывается, ток течет во вторичной обмотке через диод VD2.
  • При переключении на первичной обмотке возникает выброс, который вызван неидеальностью деталей. Тут в работу вступает снаббер. Его задача поглотить этот выброс, так как напряжение может быть достаточно большим и может повредить ключевой транзистор, что приведет к неработоспособности схемы. Ток выброса течет через первичную обмотку трансформатора, диод VD1, через сопротивление R1 и емкость C2.
  • Далее полярность снова меняется, вступает в работу ключ ВТ1.

Номиналы выбираются исходя из параметров трансформатора. Подбор сложный, так что описывать его не имеет смысла. И еще: не во всех схемах есть снаббер, но его наличие увеличивает надежность и стабильность работы импульсного источника питания.

Несколько слов о диодах, которые используют в снабберах. Это может быть обычный диод, подобранный по параметрам, но более надежны схемы со стабилитроном. Еще может быть вариант без резистора и емкости, но с включенным навстречу супрессором (на схеме ниже).

 

Супрессор — это защитный диод, принцип работы похож на стабилитрон, вот только выравнивается импульсный ток и рассеиваемая мощность. Может быть несимметричный и симметричным.

Выходной выпрямитель и фильтр, стабилизатор

Наиболее простой и дешевый способ стабилизации используется в дешевых блоках питания — обратная связь на пассивных элементах. На схеме ниже, это два резистора R6 и R7, подключенные к вспомогательной обмотке силового трансформатора. Не слишком надежно, потому что есть влияние между обмотками, но просто и недорого.

Простой способ стабилизации

Второй вариант стабилизатора выходного напряжения сделан на стабилизаторе VD9 и оптроне HL1. Выходное напряжение складывается из падения на стабилитроне и напряжения на оптроне. Это чуть более надежная схема для ИИП средней мощности.

Стабилизация выхода ИИП при помощи стабилитрона и оптрона

Наиболее стабильные выходные показатели имеют схемы ИИП со стабилизатором  TL431.

TL431 — интегральная схема трёхвыводного регулируемого параллельного стабилизатора напряжения с улучшенной температурной стабильностью. С внешним делителем TL431 способна стабилизировать напряжения от 2,5 до 36 В при токах до 100 мА.

ИБП с использованием микросхемы TL431 более сложные, но надежные. В таких схемах может быть подстроечный переменный резистор, который позволяет изменять выходное напряжение в небольших пределах. Обычно подстройка составляет не более 20%, так как в противном случае схема может быть нестабильной.

Схема со стабильным напряжением на выходе

Если подстройка выходного напряжения не нужна, лучше подстроечный резистор заменить обычным, так как переменные менее надежны.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 3 чел.
Средний рейтинг: 3.7 из 5.

Принцип работы трехфазного трансформатора

Принцип действия трехфазного трансформатора

Трансформаторы – статические электромагнитные аппараты, с помощью которых возможно преобразовать переменный ток из одного класса напряжения в другой, при этом с неизменной частотой.

В энергосистемах трансформатор, который преобразовывает электроэнергию трехфазного напряжения, называют трехфазным силовым.

Для передачи электроэнергии от генераторов электростанций к линиям электропередач (ЛЭП) применяют повышающие трансформаторы (они увеличивают класс напряжения), от ЛЭП к распределительным подстанциям и далее к потребителям – понижающие (они уменьшают класс напряжения).

Конструктивная особенность

Трехфазный трансформатор имеет основу – магнитный сердечник, собранный из трёх ферромагнитных стержней.

На стержнях располагаются первичная обмотка высокого напряжения и вторичная обмотка низкого напряжения. Для соединения фаз первичных обмоток применяют схемы «треугольник» либо «звезда». Аналогичным способом соединения выполняются и вторичные обмотки.

На первичную обмотку подаётся электроэнергия из питающей сети, а на вторичную подключается нагрузка.

Электроэнергия передаётся за счет электромагнитной индукции.

Главная функция магнитопровода – обеспечить между обмотками магнитную связь. Магнитопровод изготавливают из тонких стальных пластин (электротехническая листовая сталь). Чтобы сократить потери, стальные листы между собой изолируют, используя оксидную пленку или специальный лак.

Трансформатор силовой трехфазный с литой изоляцией ТСЛ (ТСГЛ) и ТСЗЛ (ТСЗГЛ)

Трансформатор силовой трехфазный ТС и ТСЗ

Трансформатор-стабилизатор высоковольтный дискретный ВДТ-СН

Обмотки с магнитопроводом погружаются в бак, в котором находится трансформаторное масло. Оно одновременно выполняет функцию изоляции и охлаждающей среды. Такие трансформаторы называются масляными. Трехфазный трансформатор, у которого в качестве охлаждения и изоляции используется воздух, называют сухим. Недостаток масляных трансформаторов заключается в повышенной пожароопасности.

Принцип работы

Электромагнитная индукция является базовым явлением в работе трансформатора.

Из электрической сети подается питание к первичной обмотке, в ней появляется переменный ток, в магнитопроводе при этом образуется магнитный переменный поток. Как известно из физики, если поместить второй проводник в магнитное поле, в нем также появляется переменный ток. В качестве второго проводника в трансформаторе выступает вторичная обмотка. Таким образом, в ней появляется напряжение.

Разница между первичным и вторичным напряжением зависит от коэффициента трансформации, который определяется числом витков в обмотках.

Трехфазный трансформатор: строение, виды, принцип работы

Преобразование трёхфазной системы напряжения можно реализовать с помощью трёх однофазных трансформаторов. Но при этом будет использован аппарат значительного веса и внушительных размеров. Трехфазный трансформатор лишён этих недостатков, так как его обмотки располагаются на стержнях общего магнитопровода. Поэтому в сетях мощностью до 60 тыс. кВА его применение является оптимальным вариантом.

Назначение трёхфазного трансформатора

Главной функцией трансформаторов является передача электроэнергии на большие дистанции. Электрическая энергия переменного тока вырабатывается на электростанциях. При передаче электроэнергии появляются потери на нагревание проводов. Их можно уменьшить, снизив силу тока. Для этого необходимо увеличить напряжение таким образом, чтобы его значение находилось в диапазоне от 6 до 500 кВ.

Кратность увеличения зависит от значения передаваемой мощности и расстояния до конечного пункта.

Мощность, которая при этом передаётся, зависит от двух параметров: напряжения и силы тока.

Главной характеристикой, влияющей на изменение потерь проводов, связанных с нагревом, является значение силы тока. Для того, чтобы снизить потери на нагревание, необходимо уменьшить силу тока. Уменьшая ток, величину напряжения соответственно нужно увеличивать. Тогда значение мощности, которая передаётся, останется неизменным.

После того, как напряжение будет доставлено потребителям, его следует снизить до необходимой величины.

Соответственно, основной задачей трёхфазных трансформаторов является повышение напряжения перед передачей электроэнергии и понижение после неё.

Определение и виды прибора

Трехфазный трансформатор — это статический аппарат с тремя парами обмоток. Прибор предназначен для преобразования напряжения при передаче мощности на значительные дистанции.

Классификация по количеству фаз:

  • однофазные;
  • трехфазные.

Однофазные трансформаторы имеют небольшую мощность. Основными областями их применения являются быт и проведение работ специального назначения (сварка, измерения, испытания).

Диапазон мощности трёхфазных трансформаторов варьируется в больших пределах. Поэтому и область их применения весьма разнообразна:

  • для питания токоприёмников специального назначения;
  • для присоединения измерительных приборов;
  • для изменения значения напряжения при испытаниях;
  • для увеличения или уменьшения напряжения при подключении освещения или силовой нагрузки.

Принцип действия

Основой трёхфазного трансформатора являются магнитопровод и обмотки. В каждой фазе присутствует своя повышающая и понижающая обмотка. Так как фаз три, соответственно обмоток шесть. Между собой они не соединены.

Принцип работы трёхфазного трансформатора, как и однофазного, базируется на законе электромагнитной индукции.

При подключении к сети первичной обмотки в ней начинает протекать переменный ток. Из-за него в сердечнике магнитопровода из стали появляется основной магнитный поток, который охватывает обмотки в каждой фазе. В каждом витке появляется одинаковая по значению и величине электродвижущая сила.

Если количество витков вторичной обмотки меньше, нежели число витков первичной, то на выходе окажется напряжение меньшего значения, чем на входе и наоборот.

Тот факт, что значение электродвижущей силы зависит лишь от количества витков определённой обмотки, подтверждают формулы:

E 1 = 4, 44f 1 Ф W 1

E 2 = 4, 44 f 1 Ф W 2

E 1, Е 2 — значение электродвижущей силы в первичной и вторичной обмотках соответственно, В;

f 1 — частота тока в сети, Гц;

Ф — максимальное значение основного магнитного потока, Вб;

W 1, W 2 — количество витков в первичной и вторичной обмотках соответственно.

Строение трансформатора

Основными частями преобразователя напряжения являются:

  • магнитопровод;
  • обмотки высокого и низкого напряжения;
  • бак;
  • вводы и выводы.

К дополнительной аппаратуре относятся:

  • расширительный бак;
  • выхлопная труба;
  • пробивной предохранитель;
  • приборы для контроля и сигнализации.

Магнитопровод необходим для крепления всех частей аппарата. Он является своеобразным скелетом преобразователя напряжения. Второй его задачей является создание направление движения для основного магнитного потока. В зависимости от особенностей крепления обмоток к сердечнику, магнитопровод трансформатора может быть трёх видов:

  • бронестержневой;
  • броневой;
  • стержневой.

Для изготовления обмоток трансформаторов небольшой мощности используют провод из меди, имеющий прямоугольное или круглое сечение.

Трансформаторное масло является очень важным элементом в аппарате. В маломощных трансформаторах (сухих) его не применяют. При средней и высокой мощности его использование обязательно.

У трансформаторного масла две задачи:

  • охлаждение обмоток, нагревающихся вследствие протекания по ним тока;
  • повышение изоляции.

Схемы и группы соединения обмоток

В трёхфазных трансформаторах необходимо соединять между собой первичные обмотки по фазам и вторичные.

Существует три схемы соединения:

  • звезда;
  • треугольник;
  • зигзаг.

При соединении обмоток звездой напряжение линейное — между началами фаз — будет в 1,73 раза больше, чем фазное (между началом и концом фазы). При соединении обмоток трансформатора треугольником фазное и линейное напряжения будут одинаковы.

Соединять обмотки звездой более выгодно при высоких напряжениях, а треугольником — при значительных токах. Соединение обмоток зигзагом даёт возможность сгладить асимметрию намагничивающих токов. Но недостатком такого способа соединения является повышенная трата обмоточного материала.

Сфера использования

Такие трансформаторы в основном используются в промышленности. Почти все трехфазные трансформаторы считаются силовыми. То есть они используются в цепях, где нужно питать мощные нагрузки. Это могут быть станки ЧПУ и другое промышленное оборудование.

На схемах трехфазные трансформаторы обозначаются вот так:

Первичные обмотки обозначаются заглавными буквами, а вторичные обмотки – маленькими буквами.

Немного из истории

Изобретение трансформаторов начиналось ещё в 1876 году великим русским учёным П.Н. Яблоковым. Его изделие не имело замкнутого сердечника, он появился позже – в 1884 году. И с появлением прибора учёные активно стали интересоваться переменным током.

Например, уже в 1889 году М.О. Доливо-Добровольским (русским электротехником) была предложена трёхфазная система переменного тока. Им был построен первый трёхфазный асинхронный двигатель и трансформатор. Через два года была представлена презентация трёхфазной высоковольтной линии протяженностью 175 км, где успешно повышалась и понижалась электроэнергия.

Чуть позже появились масляные агрегаты, так как масло не только оказалось хорошим изолятором, но и прекрасной охлаждающей средой.

Источники:

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 1 чел.
Средний рейтинг: 5 из 5.

Принцип действия трансформатора — назначение, устройство и классификация

трансформатор

Принцип действия:

  1. В устройстве существуют 2 обмотки, их называют первичной и вторичной. К внешнему источнику подключается только первичная обмотка, тогда как вторичная обмотка предназначена для снятия напряжения.
  2. Включая в электросеть первичную обвивку, в магнитопроводе создаётся магнитное поле (переменное) от первичной обмотки, в результате чего образуется ток вторичной обмотки, если его замкнуть через приёмник.
  3. Синхронно в первичной обвивке образуется нагрузочный ток.
  4. Отсюда происходит трансформирование электрической энергии, когда первичная сеть передаёт её вторичной. В результате, приёмник получит ту величину, на которую рассчитан прибор.

схема работы

Явление взаимной индукции, является основой работы трансформатора:

  1. Чтобы улучшить магнитную связь 2 обмоток, они укладываются на магнитопровод стальной структуры.
  2. В свою очередь, делается изоляция не только между ними, но и с магнитопроводом.
  3. Каждая обмотка имеет свою маркировку. Если обмотка с высоким напряжением, её обозначают (ВН), низким – (НН).
  4. Первичная обмотка подключается к электросети, вторичная – к приёмнику.

Напряжение на обвивках имеют различную величину, и от того в каких целях будет применяться устройство, зависит величина на обвивках:

  1. Повышающий трансформатор будет иметь меньше напряжение на первичной обвивке, чем на второй.
  2. Понижающий прибор, в точности всё наоборот.

Использование их различно:

  1. На больших расстояниях используются повышающие приборы.
  2. Если надо распределить электроэнергию потребителям – понижающие.

Существуют приборы с 3 обмотками, когда надо получить не только высокое и низкое напряжение, но и среднюю величину (СН).

Обвивки такого устройства также изолированы друг от друга и имеют подключение от электроэнергии одной обвивкой, когда 2 другие подсоединяются к разным приёмникам:

  1. Обвивки имеют форму цилиндра и выполняются намоткой медного провода, имеющего круглое сечение для малых токов.
  2. Для тока большой величины используются шины с прямоугольным сечением.
  3. На сердечник магнитопровода делается обвивка для малого напряжения, так как она легко изолируется, по сравнению с обвивкой высокого номинала.
  4. Сам сердечник исполняется круглой формы, если обвивка в форме цилиндра. Это делается для уменьшения немагнитных зазоров, и уменьшить длину витков обвивок. Отсюда уменьшится и масса меди на заданную площадь сечения круглого магнитопровода.
  5. Круглый стержень проходит сложный процесс сборки из стальных листов. И чтобы упростить задачу, в устройствах с большим напряжением используются стержни со ступенчатым поперечным сечением, когда их число достигает всего 17 штук.
  6. В мощных агрегатах устанавливаются дополнительные вентиляционные каналы, для охлаждения магнитопровода. Это достигается расположением их перпендикулярно и параллельно поверхности листов из стали.
  7. В менее мощных устройствах сердечник выполняется с прямоугольным сечением.

Назначение и типы

трехфазный трансформатор

Трансформатор, можно назвать преобразователем одной величины напряжения или тока в другую.

Они могут быть:

  • трёхфазными;
  • однофазными;
  • понижающими;
  • повышающими;
  • измерительными и т.д.;

Назначение прибора: передаёт и распределяет электроэнергию заказчику.

В приборе есть активные компоненты: обвивка и сердечник магнитопоровода. В свою очередь, сердечник может быть стержневым и броневым. Для них используется холоднокатаная горячекатаная электротехническая сталь.

Обвивку используют непрерывную, винтовую, цилиндрическую, дисковую.

Среди современных изделий можно отметить следующие:

  • тороидальные;
  • броневые;
  • стержневые;

типы трансформаторов

Они имеют характеристики похожие друг с другом, с высокой надёжностью. Единственное, что их различает – это способ изготовления.

В стержневом варианте, обвивка наматывается вокруг сердечника, тогда как в броневом типе идёт включение в сердечник. Поэтому, в стержневом типе, обвивку можно увидеть и располагается она только горизонтально, а в броневом, она скрыта, но может быть, как горизонтально, так и вертикально размещена.

Какой бы тип мы не рассматривали, у него имеются 3 компонента:

  • система охлаждения;
  • обвивка;
  • магнитопровод;

За счёт приборов удаётся значительно повысить напряжённость, идущую с электрических станций, на дальние расстояния, при этом, потери энергии будут минимальные по проводам. На основании вышеизложенного, можно использовать провода на линиях передач, с меньшей площадью сечения.

Потребителю также можно уменьшать потребление энергии с высоковольтных линий до номинальных значений (380, 220, 127 В).

Область применения и виды

трансформатор в телевизоре

Бытовые трансформаторы защищают технику при перепадах напряжения.

Поэтому применяют их в следующих приборах:

  • в освещении;
  • осциллографах;
  • телевизорах;
  • радиоприёмниках;
  • измерительных устройствах и т.д;

Сварочные экземпляры, разделяющие силовую и сварочную сеть, активно используются при сварке и электротермических конструкциях, где успешно понижают величину напряжения до обязательных номиналов.

В энергосети используются масляные агрегаты, где напряжённость 6 и 10 кВ.

Многие автоматические конструкции используют трансформаторы, где напряжение на обвивках несуидальное.

Виды:

вращающиеся трансформаторы

  1. Вращающийся. Передача сигнала ведётся на объекты, которые вращаются. Например, видеомагнитофон, где передача сигнала ведётся на барабан узла магнитной головки. Здесь существуют 2 половины магнитопровода и вращение их происходит с минимальным зазором в отношении друг друга. На основании этого, реализуется большая скорость оборотов, в контактном способе сигнала достичь такого эффекта не считается возможным.
  2. Пик-трансформатор. В этом варианте происходит преобразование синусоидального напряжения в сплески, имеющие пикообразную форму. Активно используются в управлении тиристоров, а также электронных и полупроводниковых устройств.
  3. Согласующий. Принимает участие в согласовании сопротивлений в разных промежутках электронной схемы, при этом, форма сигнала искажается минимально. Синхронно обеспечивается гальваническая развязка между зонами схем.
  4. Разделительный. Здесь 2 обмотки не соединены между собой электрически. Такая схема даёт возможность повысить безопасность электрических сетей. Когда происходит случайное одновременное прикосновение к токоведущей части и земли, выдаётся гальваническая развязка электрической цепи.
  5. Импульсный. В этом варианте преобразуются импульсные сигналы за очень короткий промежуток времени (десятки микросекунд), при этом, искривление конфигурации импульса минимально.
  6. По напряжению. Здесь происходит конверсия большого напряжения в низкую величину. Этот вариант позволяет изолировать измерительные и логические цепи от большого напряжения.
  7. По току. В этом типе измеряются цепи с большим током. Например, в конструкциях релейных щитов электроэнергетических систем. Поэтому, применяются достаточно жёсткие требования к точности.
  8. Автотрансформатор. В этом типе соединение 2 обмоток ведётся напрямую. В результате, создаётся электрическая и электромагнитная связь, чем объясняется высокий КПД этого вида. Недостатком такого устройства, можно назвать отсутствие изоляции, то есть не существует гальваническая развязка.
  9. Силовой. Этот вариант используется при изменяемом токе и преобразует электрическую энергию в установках и электросетях. Широко применяется этот тип на линиях ЛЭП с высокой напряжённостью (35-750 кВ), городских электрических сетях (10 и 6 кВ).
  10. Сдвоенный дроссель. Наличие 2 равных обвивок, даёт возможность получить более результативный дроссель, чем обычный. Их используют на вводе фильтра в блоке питания, а также в звуковом оборудовании.
  11. Трансфлюксор. Оставшаяся намагниченность магнитного провода имеет большую величину, что позволяет использовать его для сохранения сведений.

Немного из истории

трансформатор

Изобретение трансформаторов начиналось ещё в 1876 году, великим русским учёным П.Н. Яблоковым. Тогда его изделие не имело замкнутого сердечника, который появился значительно позже – 1884 год. И с появлением прибора учёные активно стали интересоваться переменным током.

Например, уже в 1889 году, М.О. Доливо-Добровольским (русским электротехником) была предложена трёхфазная система переменного тока. Им был построен первый 3-х фазный асинхронный двигатель и трансформатор.

Уже через пару лет, электромеханик предоставил свои работы на выставке, где произошла презентация трёхфазной высоковольтной линии, имеющую протяженность 175 км, где успешно повышалась и понижалась электроэнергия.

Немного позже, пришла очередь масляным агрегатам, так как масло не только оказалось хорошим изолятором, но и прекрасной охлаждающей средой.

В 20 столетии появились изделия более компактные и экономичные. Производителями продукции являлись иностранные фирмы. На настоящий момент, выпуском продукции занимаются и отечественные фирмы.

Статья была полезна?

0,00 (оценок: 0)

Высокочастотные трансформаторы: конструкция, особенности, выбор

Высокочастотный трансформатор представляет собой электрическое устройство, которое предназначается для передачи энергии высокой частоты между двумя или более цепями посредством электромагнитной индукции. Поскольку высокочастотное переменное электромагнитное поле обеспечивает более высокие значения напряжения при тех же показателях напряженности поля, то рассматриваемые устройства отличаются компактностью и преимущественно используются как элементы сложных электрических контуров в радиопередающих системах, а также в импульсных источниках питания.

Принцип функционирования

Устройство данного устройства принципиальных отличий от низкочастотных трансформаторов не имеет. Переменный ток в первичной обмотке трансформатора создает переменный магнитный поток в сердечнике и переменное магнитное поле, которое воздействует на вторичную обмотку. Это изменяющееся (как по времени, так и по амплитуде) магнитное поле на вторичной обмотке вызывает изменение электродвижущей силы (ЭДС) или напряжения во вторичной обмотке высокочастотного трансформатора.

Высокочастотный трансформатор

Действие высокочастотного трансформатора зависит от материала сердечника и плотности намотки витков.

Важно! При малой эффективности устройство не передаёт электромагнитную энергию, а накапливает её, что приводит к росту температуры и магнитным потерям.

Выбору материала сердечника уделяют решающее внимание. Такой материал должен обладать следующими характеристиками:

  • Высокой диэлектрической проницаемостью;
  • Линейностью характеристики передачи энергии;
  • Локализацией образующихся помех;
  • Минимальными значениями рассеяния индуктивности обмоток.

Рассматриваемые далее конструкции трансформаторов не меняют частоту. Исключения составляют случаи, когда нелинейность материала сердечника вызывает искажения, которые генерируют новые спектральные компоненты.

Высокочастотный трансформатор

Устройство

Трансформаторы, которые применяются в  преобразователях с мостовыми инверторами, предназначаются для высокочастотного выпрямления и обеспечения гальванической развязки между входом и выходом. Такой агрегат состоит из двух частей:

  • Мостового инвертора на первичной обмотке.
  • Выпрямителя на вторичной обмотке.

Основные отличия низкочастотных трансформаторов от высокочастотных заключаются в особом конструктивном обеспечении связей между обмотками. Фактически параллельно включается ещё одна пара обмоток, причём первичная обмотка второй из них электрически никак не связана с первой, а вторичная обмотка подключается к соответствующим выводам первой вторичной обмотки. Это снижает энергетические потери и устранять риск перегрева устройства при передаче значительной мощности.

Высокочастотный трансформатор

Таким образом, высокочастотный трансформатор (отличия которого состоят в присутствии одной первичной и двух вторичных обмоток, соединенных между собой параллельно), позволяет подключить вторичные обмотки при условии, что они имеют одинаковое количество витков и намотаны на один и тот же магнитный сердечник.

При этом не имеется различий в отношении мощности суммарных электромагнитных помех, если принимаются одинаковыми коэффициенты поворота первичной и вторичной обмоток, а также их номинальные мощности.

Важно! Параллельное подключение вторичных элементов выполняется с целью улучшения процесса комбинированной подачи тока на нагрузку.

Если высокочастотный трансформатор используется в маломощных энергетических цепях (например, в радиопередающих комплексах), то используется один вторичный элемент, выполняемый  из толстой проволоки. Результат действия одинаков, а сложность и громоздкость системы уменьшается.

В практике использования часто имеет значение сравнение двух вышеописанных вариантов по производительности в отношении электромагнитных помех и стабильности напряжения. Если оба типа высокочастотных трансформаторов выдают ток нагрузки при равном напряжении, то падение производительности (из-за индуктивности и сопротивления утечки) несущественно. Однако при мощностях более 10 Вт имеет значение площадь поверхности провода, которая определяет так называемый скин-эффект. Например, для одного вторичного провода необходима увеличенная площадь поперечного сечения для меди, чем для двух бифилярных катушек с намоткой.

Высокочастотный трансформатор

Последовательность действия и характеристики

Независимо от конструктивной разновидности постоянный ток поступает на первичную обмотку. При этом для питания полевого транзистора требуется создание прямоугольной волны амплитудой от 0 В до + 12 В, а трансформатор будет нуждаться в первичной форме волны, которая имеет среднее значение, близкое к нулю.

Магнитный поток в ядре не сбрасывается, поэтому где-то вдоль линии получается насыщение. В результате остаточный поток, оставшийся от одного цикла переключения, создается следующим циклом: считается, что высокочастотный трансформатор «уходит в насыщение».

Параметры тока и напряжения на первичной обмоткой трансформатора изменяются с помощью однополярного истокового повторителя, причем рабочий диапазон достигает 12 В. При малой нагрузке те же колебания воспроизводятся и вторичной обмоткой. Однако имеются и отличия. Ток в первичной обмотке течет только в одном направлении. При высоком напряжении он увеличивается с одной скоростью, а при низком – с другой.

Важно! Когда выходной сигнал становится низким, ток отключается гораздо быстрее, что искажает его форму. Поэтому применяется управление трансформатором с помощью биполярного сигнала, когда ток, симметрично протекает в обоих направлениях.

Высокочастотный трансформатор

Рабочие параметры устройств включают в себя:

  • Импульс: гарантирует, что индуктивность остается в заданном диапазоне и избегает насыщения.
  • Функционал режима переключения, который содержит три дросселя и переключающий трансформатор.
  • Способ обратной связи – по выходному напряжению, которое является функцией удержания тока в трансформаторе (реже встречается обратный вариант, с управлением по току).
  • Рабочее напряжение на инверторе – от 1000 В, при низком входном напряжении.
  • Тип изоляции. Рассчитывается на общее напряжение в диапазоне 15 … 200 В.

Основные применения: установки возобновляемой энергетики,  гибридные транспортные средства, промышленные приводы, а также устройства, предназначенные для  управления энергораспределением.

внешний вид импульсного трансформатора

Особенности конструкции и использования

Позициями, по которым производится выбор рассматриваемых устройств, являются:

  • Потребляемые входные напряжения, В – 0….15000.
  • Напряжения на выходе, В – 0….6000.
  • Реактивная мощность, кВА – 0,25….5000 (для авторитетных производителей эта характеристики не зависят от длительности узла).
  • Коэффициент мощности нагрузки – 0…100% (по отставанию или по опережению).
  • Частота, Гц – 20…100000.
  • Фазность сети – одно- или трехфазная.
  • Электростатическое экранирование – обязательно, может включать в себя один или несколько защитных экранов.
  • Исполнение корпуса – для работы в обычной или агрессивной среде.

Схема Высокочастотный трансформатор

Важным параметром выбора  считается материал сердечников. Используются два типа конструкции. В оболочечном типе обмотки располагаются на общей ножке сердечника, а в трансформаторе с сердечником обмотки намотаны на разные ветви трансформатора. Ввиду того, что главной задачей эффективного использования высокочастотного трансформатора является  обеспечить максимальную связь потока, то толщина проволоки выбирается с учетом рабочего тока, который будет питать устройство. Реже встречаются третичные обмотки высокочастотных трансформаторов.

Основные материалы, используемые для изготовления сердечников, определяются назначением устройства. Например, силовые трансформаторы, работающие на частоте сети, могут иметь мягкие железные сердечники для магнитного соединения первичной и вторичной обмоток.

Важно! Для высокочастотных трансформаторов мягкое железо является неудовлетворительным, потому что материал имеет слишком много «памяти» – то есть достаточно инерционен, чтобы обратить магнитное поле тогда, когда ток в первичной обмотке меняется на противоположный.

Высокочастотный трансформатор

Для аудиотрансформаторов используют преимущественно железо, модифицированное кремнием или никелем- элементами, которые снижают эффект памяти. В конструкциях радиочастотных трансформаторов используются компактированные порошковые материалы – ферриты.

Способы намотки тоже разные. Высокочастотные преобразователи в аудиотехнике нуждаются в быстрой реакции на изменения магнитного поля, поэтому при их производстве укладывают первичную и вторичную обмотки поверх определенного места на ядре.

Наибольшей оперативности в управлении требуют радиочастотные трансформаторы, поэтому они часто наматываются бифилярно, когда первичный и вторичный провода одновременно наматываются вокруг сердечника. Такой метод минимизирует потери и обеспечивает прямую магнитную связь между обмотками.

Высокочастотный трансформатор

Принцип работы трансформатора — коэффициент поворота и трансформации

Основным принципом работы трансформатора является Закон электромагнитного поля Фарадея Индукция или взаимная индукция между двумя катушками. Ниже поясняется принцип работы трансформатора. Трансформатор состоит из двух отдельных обмоток, размещенных на сердечнике из многослойной кремнистой стали.

Обмотка, к которой подключен источник переменного тока, называется первичной обмоткой, а нагрузка — вторичной обмоткой, как показано на рисунке ниже.Он работает только с переменным током , потому что переменный поток требуется для взаимной индукции между двумя обмотками.

transformer-working-diagram

Состав:

Когда на первичную обмотку подается переменный ток с напряжением V 1 , в сердечнике трансформатора устанавливается переменный поток ϕ, который соединяется со вторичной обмоткой, и в результате этого возникает ЭДС. в нем называется взаимно индуцированная ЭДС . Направление этой наведенной ЭДС противоположно приложенному напряжению V 1 , это из-за закона Ленца, показанного на рисунке ниже:

working-of-transformer-circuit Физически между двумя обмотками нет электрического соединения, но они связаны магнитным полем.Следовательно, электрическая мощность передается из первичной цепи во вторичную через взаимную индуктивность.

Наведенная ЭДС в первичной и вторичной обмотках зависит от скорости изменения магнитной индукции, которая составляет (N dϕ / dt).

dϕ / dt — это изменение магнитного потока, одинаковое для первичной и вторичной обмоток. Индуцированная ЭДС E 1 в первичной обмотке пропорциональна числу витков N 1 первичной обмотки (E 1 ∞ N 1 ).Подобным образом наведенная ЭДС во вторичной обмотке пропорциональна количеству витков на вторичной обмотке. (E 2 ∞ N 2 ).

Трансформатор питания постоянного тока

Как уже говорилось выше, трансформатор работает от источника переменного тока и не может работать без источника постоянного тока. Если номинальное напряжение постоянного тока приложено к первичной обмотке, в сердечнике трансформатора установится магнитный поток постоянной величины, и, следовательно, не будет самоиндуцированной генерации ЭДС, поскольку для связи магнитного потока со вторичной обмоткой должна быть должен быть переменный поток, а не постоянный поток.

По закону Ома

working-of-transformer-eq

Сопротивление первичной обмотки очень низкое, а первичный ток высокий. Таким образом, этот ток намного превышает номинальный ток первичной обмотки при полной нагрузке. Следовательно, в результате количество выделяемого тепла будет больше, и, следовательно, потери на вихревые токи (I 2 R) будут больше.

Из-за этого загорается изоляция первичных обмоток, и трансформатор выходит из строя.

Передаточное число

Определяется как отношение витков первичной обмотки к вторичной.
turn-ratio-eq Если N 2 > N 1 трансформатор называется Повышающий трансформатор

Если N 2 1 трансформатор называется Понижающий трансформатор

Коэффициент трансформации

Коэффициент трансформации определяется как отношение вторичного напряжения к первичному. Обозначается К.
transformation-ratio-of-transformer

.

As (E 2 ∞ N 2 и E 1 ∞ N 1 )

Это все о работе трансформатора.

.

повышающие трансформаторы MC объяснены

Повышающие трансформаторы для картриджей с подвижной катушкой — это наиболее загадочная и неправильно понимаемая вещь в мире Hi-Fi, и это частично объясняет, почему они так редко используются. Это большой позор, потому что использование хорошего трансформатора дает наилучшие характеристики картриджа с подвижной катушкой. Эта статья предназначена для демистификации предмета и позволяет читателю с уверенностью выбрать подходящий трансформатор.Заранее приносим свои извинения, если некоторые математические расчеты немного сбивают с толку и вызывают больше путаницы, а не меньше. Несмотря на кажущуюся сложность, выводы довольно просты, и вы можете просто перейти к нижней части страницы для получения рекомендаций.
Для получения информации о трансформаторах, специально предназначенных для картриджей Denon, щелкните здесь.

Принцип действия картриджа
Картриджи с подвижными магнитами, как следует из их названия, содержат магниты, которые перемещаются кантилевером иглы, и движение индуцирует напряжение сигнала в неподвижных катушках в непосредственной близости от магнитов.В картриджах с подвижной катушкой роли поменялись местами, поэтому теперь магниты зафиксированы, а катушки перемещаются. Большим преимуществом движущихся катушек является то, что катушки намного легче магнитов, поэтому они намного лучше реагируют на движение иглы.
Большим недостатком является то, что выходное напряжение картриджей с подвижной катушкой примерно на 20 дБ ниже, чем у подвижных магнитов, поэтому требуется дополнительное усиление на 20 дБ. Дополнительное усиление может быть обеспечено за счет фонокорректора, внешнего устройства, называемого налобным усилителем, или трансформатора.Наиболее распространенное решение — увеличить коэффициент усиления фонового каскада, но повышающие трансформаторы по-прежнему являются лучшим решением там, где стоимость не имеет значения.

зачем вообще использовать трансформатор?
Раньше было невозможно добиться хорошего отношения сигнал / шум с помощью картриджа с подвижной катушкой без повышающего трансформатора. Дополнительные 20 или 30 децибел усиления не было проблемой, но сделать это с низким уровнем шума с использованием вентилей, транзисторов или операционных усилителей было проблемой.Современные транзисторы и операционные усилители теперь могут предложить гораздо лучшее соотношение сигнал / шум, но клапанам по-прежнему обычно требуются трансформаторы для успешной работы с картриджами с подвижной катушкой с малой выходной мощностью. Альтернативой повышающему трансформатору является налобный усилитель (или предусилитель). Это транзисторный усилитель или усилитель на операционном усилителе, который увеличивает выходную мощность картриджей с подвижной катушкой до уровня подвижного магнита. Rothwell предлагает Headspace как высококачественный малошумный налобный фонарь.
Помимо шума, качество звука трансформаторов — это то, чем клянутся их защитники.Искажения, создаваемые аудиотрансформаторами, имеют совершенно другую природу, чем искажения, создаваемые транзисторным усилителем. Гармонические искажения в трансформаторах максимальны на самых низких частотах и ​​быстро падают при повышении частоты, тогда как в транзисторных усилителях искажения чаще возрастают при повышении частоты. Что еще более важно, интермодуляционные искажения в трансформаторах обычно ниже, чем в транзисторных усилителях. В результате, хотя трансформаторы не являются абсолютно свободными от искажений (нет ничего), искажения очень мягкие по сравнению с искажениями, создаваемыми многими транзисторными усилителями.Это объясняет, почему звук, производимый при использовании картриджа с подвижной катушкой с хорошим трансформатором, настолько возвышен и может создать открытую и просторную звуковую сцену с удивительным разделением инструментов.
Дело против трансформаторов — это просто дело стоимости. Транзисторы могут стоить всего несколько копеек (или меньше при покупке в достаточном количестве), тогда как трансформаторы всегда стоят намного дороже, в несколько тысяч раз, из-за дорогих материалов, используемых в сердечнике, и стоимости самого трансформатора. медные обмотки с точки зрения как материала, так и труда.

загрузка картриджа
Прежде чем рассматривать вопрос о том, как согласовать картридж с подвижной катушкой с трансформатором, стоит рассмотреть влияние различных нагрузок на картриджи с подвижной катушкой.
Когда любой источник сигнала подключен к любому сопротивлению нагрузки, делитель потенциала формируется выходным сопротивлением источника и сопротивлением нагрузки. (Выходной импеданс также известен как импеданс источника или внутренний импеданс. Импеданс нагрузки также известен как входной импеданс.) Источником сигнала может быть фонокорректор, микрофон, проигрыватель компакт-дисков, микшер и т. Д., Это не имеет значения. Нагрузкой может быть фонокорректор, смеситель, трансформатор или просто резистор — опять же, это не имеет значения. Делитель потенциала, образованный импедансами источника и нагрузки, действует как аттенюатор или предварительно установленный регулятор громкости. Если импеданс нагрузки намного больше, чем импеданс источника, затухание низкое, а эффективный предварительно установленный регулятор громкости близок к максимальному. Обычное правило для звукового оборудования в целом — подавать сигнал на нагрузку, по крайней мере, в десять раз превышающую импеданс источника, чтобы избежать каких-либо значительных потерь сигнала, и это относится как к картриджам с подвижной катушкой, так и ко всему остальному.Если импеданс нагрузки в 10 раз больше, чем импеданс источника, сигнал, потерянный «предварительно установленным регулятором громкости», будет меньше 1 дБ, то есть почти весь сигнал, генерируемый источником, доступен следующему усилителю. Любая потеря сигнала на интерфейсе источник / нагрузка обычно считается плохой, так как это ухудшает отношение сигнал / шум. Больше сигнала теряется, т. Е. Предварительно установленный регулятор громкости становится более низким, если импеданс нагрузки не на значительно выше импеданса источника.Когда импедансы источника и нагрузки равны, потеря сигнала составляет 6 дБ. Когда полное сопротивление источника в 9 раз превышает сопротивление нагрузки, потеря сигнала составляет 20 дБ. Большинство современных картриджей с подвижной катушкой имеют импеданс источника около 10 Ом, и правило «импеданс нагрузки в десять раз превышает импеданс источника» предполагает, что 100 Ом является хорошим выбором для импеданса нагрузки и вызывает потерю сигнала менее 1 дБ. Это хорошо согласуется с рекомендациями многих производителей картриджей (см. Таблицу данных ниже).Все, что выше 100 Ом, должно быть одинаково подходящим.
Меняется ли тональный баланс картриджа с импедансом нагрузки? Конечно, это так, если картридж представляет собой тип движущегося магнита, но картриджи с подвижной катушкой с малой выходной мощностью гораздо менее чувствительны к изменениям импеданса нагрузки. Пользователи иногда заявляют, что более высокие импедансы нагрузки производят более яркий звук, чем более низкие, но производители картриджей, как правило, не указывают рекомендуемые импедансы нагрузки, часто рекомендуя широкий диапазон или просто что-либо выше минимального импеданса.
Рекомендация Rothwell Audio Products соответствует Ortofon, Audio Technica и большинству других производителей картриджей — что 100 Ом является хорошим значением для большинства картриджей, и что точное значение не критично, если оно намного выше источника картриджа. импеданс.
Одно можно сказать наверняка: импеданс нагрузки , а не должен быть равен импедансу источника картриджа. Это приведет к потере сигнала на 6 дБ (когда для начала часто всего несколько сотен микровольт) и серьезно ухудшит соотношение сигнал / шум.Идея о том, что импеданс нагрузки, равный импедансу источника, обеспечивает идеальное «согласование», ошибочен и является наиболее распространенным мифом о картриджах с подвижной катушкой. Это также вызывает большую путаницу, связанную с повышающими трансформаторами и тем, как выбрать правильный для любого данного картриджа. Причины мифа о «согласованном импедансе» рассматриваются ниже.

отношение витков трансформатора и коэффициент импеданса
Коэффициент витков трансформатора — это отношение количества витков провода на первичной обмотке к числу витков провода на вторичной обмотке, а напряжение на первичной обмотке равно увеличивается (или уменьшается) в той же пропорции, что и передаточное число, и отображается на вторичной обмотке.Например, трансформатор с соотношением витков 1:10 повысит напряжение на первичной обмотке в десять раз. Однако, поскольку трансформаторы являются полностью пассивными устройствами, не имеющими источника питания для получения энергии, трансформатор не может производить дополнительную мощность, и повышение напряжения будет сопровождаться соответствующим уменьшением тока. Это то, что дает начало концепции отношения импедансов. Отношение импеданса является квадратом отношения витков и заставляет импеданс вторичной обмотки трансформатора восприниматься источником, питающим первичную обмотку, как импеданс, преобразованный в квадрат отношения витков.Сам трансформатор не имеет импеданса, скорее, импеданс с одной стороны будет выглядеть как другой импеданс с другой стороны (он работает в обоих направлениях). В случае, например, повышающего трансформатора 1:10, полное сопротивление вторичной обмотки 20 кОм будет равно сопротивлению первичной обмотки 200 Ом (20 000, разделенные на 10 в квадрате, равны 200). Повышающий трансформатор 1: 2 с нагрузкой 100 кОм на вторичной обмотке будет иметь входное сопротивление источника, управляющего первичной обмоткой, равным 25 кОм (100 кОм, разделенные на 2 в квадрате, равны 25 кОм).

Таким образом, казалось бы логичным, что картридж с выходным напряжением, например, 0,5 мВ, при использовании с повышающим трансформатором с соотношением витков 1:10, будет выдавать 5 мВ на выходе трансформатора. Да, было бы, если бы импеданс источника картриджа (также известный как его внутренний импеданс или импеданс катушки) был равен нулю. На практике с картриджами с низким импедансом около 10 Ом или меньше и трансформаторами с низким коэффициентом передачи (менее примерно 1:20) выходное напряжение трансформатора составляет , очень близко к выходному напряжению картриджа, умноженному на отношение витков, и может безопасно использоваться. как хорошее приближение первого порядка для руководства.Однако импеданс источника картриджа может быть низким, но он никогда не равен нулю, и преобразованную вторичную нагрузку необходимо учитывать для более точного анализа. Рассмотрим в качестве примера трансформатор с соотношением 1:10 и картридж с катушкой 10 Ом. Если нагрузка на вторичной обмотке трансформатора представляет собой фонокорректор MM с импедансом 47 кОм, эта нагрузка представляется картриджу как 470 Ом (47 000, разделенные на 10 в квадрате), и должна управляться катушкой на 10 Ом. Нагрузка 470 Ом и источник 10 Ом образуют делитель потенциала («предварительно установленный регулятор громкости», описанный в предыдущем разделе), при этом часть напряжения картриджа падает на его собственное внутреннее сопротивление 10 Ом.Пропорция внутреннего снижения составляет 10 / (470 + 10) = 0,0208, что совсем немного — всего 0,2 дБ. Отклонение от приближения первого порядка невелико и, вероятно, не стоит беспокоиться, но оно есть. Эффект потенциального делителя становится значительным, когда используются более высокие отношения витков с более высоким импедансом источника. Рассмотрим картридж с катушкой на 40 Ом и трансформатор с соотношением 1:30. Нагрузка 47 кОм на вторичной стороне теперь выглядит как 52 Ом с первичной стороны. При питании от источника 40 Ом делитель напряжения формируется на 52 Ом и 40 Ом.Следовательно, доля сигнала, падающего на катушку картриджа, составляет 40 / (40 + 52) = 0,43, что очень важно — почти половина напряжения, создаваемого картриджем, теряется внутри. В то время как в предыдущем примере было потеряно только 0,2 дБ, здесь потеря сигнала составляет 5 дБ, и вместо достижения напряжения сигнала на выходе трансформатора, в 30 раз превышающего выходное значение картриджа, выходное напряжение составляет всего 0,43×30 раз от выходного сигнала картриджа, т. Е. повышение напряжения всего в 13 раз, а не , а не 30 раз.Очевидно, что увеличение коэффициента трансформации трансформатора в X раз не увеличивает выходное напряжение в такой же раз. По мере увеличения отношения витков увеличение выходного напряжения становится все меньше и меньше, поскольку нагрузка на картридж становится все более и более значительной, пока не будет достигнута точка, в которой дальнейшее увеличение отношения витков фактически вызывает падение выходного напряжения.
Точка, в которой достигается максимально возможное напряжение на выходе трансформатора, возникает, когда преобразованная нагрузка равна импедансу источника.В случае вторичной нагрузки 47 кОм (обычное сопротивление нагрузки фонового каскада MM) и картриджа MC с сопротивлением 40 Ом, соотношение витков должно быть 1: 34,28, чтобы получить абсолютное максимальное выходное напряжение. Это связано с тем, что 40×34,28×34,28 = 47000
. Именно поэтому возникает ошибочное представление о том, что трансформатор должен «соответствовать» импедансу картриджа. Да, это может быть правдой, что согласование импедансов дает максимально возможное напряжение на выходе трансформатора, но в системе Hi-Fi мы , а не , ищем абсолютное максимальное напряжение от трансформатора, мы ищем напряжение подходит для подачи на следующие фонокорректоры MM и , которые мы ищем для максимальной точности воспроизведения.Это редко (если вообще когда-либо) достигается путем согласования импедансов. Напряжение сигнала, подходящее для миллиметрового фонокорректора, составляет около 5 мВ. Более высокое напряжение на фоновом каскаде уменьшит запас по уровню и увеличит искажения. Более низкое напряжение ухудшит отношение сигнал / шум. Целью повышающего трансформатора должно быть достижение 5 мВ на фоновом каскаде (с максимальной точностью).
Большая ошибка, которую чаще всего совершают при выборе трансформатора для картриджа с подвижной катушкой, заключается в том, что упускают из виду напряжение, необходимое на входе фонового каскада, и вместо этого пытаются согласовать импедансы, чтобы, например, картридж с импедансом источника 5 Ом видел Нагрузка 5 Ом на входе трансформатора.При таком подходе импеданс картриджа является наиболее важным фактором, тогда как на самом деле это должно быть выходное напряжение картриджа.

Чтобы продемонстрировать, насколько ошибочным может быть подход «согласованного импеданса», возьмем в качестве примера картридж Ortofon Vivo Red с импедансом источника 5 Ом. Чтобы «согласовать импеданс», 47000 Ом на вторичной стороне трансформатора должны выглядеть как 5 Ом на первичной стороне. Это означает, что коэффициент импеданса должен быть 9400 (потому что 47000, разделенные на 5, равны 9400) и следовательно, коэффициент витков должен быть квадратным корнем из 9400, что составляет 97.Поэтому мы должны найти повышающий трансформатор с соотношением витков 1:97. Однако выходное напряжение Vivo Red составляет 0,5 мВ, а напряжение, подаваемое на фонокорректор от трансформатора 1:97, составляет 24 мВ. Этого было бы достаточно, чтобы перегрузить большинство фоностанов и было бы далеко от оптимального. Гораздо лучший подход к поиску подходящего коэффициента трансформации — это работа с выходным напряжением картриджа. Vivo Red имеет выходную мощность 0,5 мВ, а фонокорректору требуется около 5 мВ для наилучшей работы, поэтому соотношение 1:10 будет намного лучше.Приближение первого порядка предполагает, что соотношение 1:10 даст нам 5 мВ. Верно ли это, если мы также рассмотрим импеданс источника картриджа 5 Ом и импеданс нагрузки, представленный трансформатором? Да. Трансформатор 1:10 с нагрузкой 47 кОм на вторичной обмотке представляет на патрон нагрузку 470 Ом. Делитель напряжения, образованный импедансом источника 5 Ом и отраженной нагрузкой 470 Ом, означает, что только 5 / (470 + 5) падает на внутренний импеданс картриджа, а фактическое напряжение на выходе трансформатора равно 4.95 мВ, т.е. очень близко к оценке приближенным методом. Нагрузка 470 Ом, видимая картриджем, полностью совместима с рекомендованной Ortofon нагрузкой> 10 Ом. Метод «согласования импеданса» с использованием трансформатора с соотношением 1:97 даст картриджу сопротивление нагрузки 5 Ом, что выходит за рамки рекомендаций производителя. Кроме того, по причинам, описанным ниже, трансформатор 1:97 будет иметь значительно более низкие характеристики по сравнению с трансформатором 1:10.

Теперь рассмотрим другой картридж, Dynavector Karat17D3 с катушкой на 38 Ом.Используя подход согласования импеданса, чтобы найти лучший коэффициент трансформации, мы получаем соотношение 1:35, и выход картриджа 0,3 мВ становится 5,25 мВ на выходе трансформатора. На этот раз подход «согласования импеданса», похоже, сработал хорошо, но действительно ли это лучшее соотношение витков? Может быть, нет, потому что рекомендуемая нагрузка Dynavector составляет 100 Ом, а трансформатор 1:35 даст картриджу нагрузку 38 Ом. В этом случае было бы лучше использовать более низкое передаточное число. Например, трансформатор 1:20 даст картриджу нагрузку 117.5 Ом и имеют выходное напряжение 4,5 мВ. Кроме того, трансформатор 1:20, вероятно, будет иметь лучшие характеристики, чем трансформатор 1:35, как объясняется ниже.

настоящие трансформаторы
Приведенные выше расчеты предполагают идеальные трансформаторы. Это означает, что трансформаторы намотаны проводом с нулевым сопротивлением, с нулевой емкостью между обмотками, с нулевой индуктивностью рассеяния, с бесконечной первичной индуктивностью и т. Д. И т. Д., Что дает широкую полосу пропускания, охватывающую не менее 20 Гц — 20 кГц. Однако в реальном мире мы должны жить в рамках ограничений, которые природа накладывает на нас, и работать с материалами, у которых действительно есть сопротивление, емкость и т. Д.У всех трансформаторов есть ограничения, и у трансформаторов с более высоким коэффициентом увеличения обычно больше ограничений, чем у трансформаторов с более низким коэффициентом увеличения. Это связано с тем, что более высокое соотношение требует большего количества витков провода на вторичной обмотке, а большее количество витков означает большее сопротивление и большую емкость между обмотками. Эти факторы в сочетании с любой индуктивностью рассеяния приводят к ухудшению высокочастотной характеристики трансформатора. Обычно это проявляется в виде звонка на осциллограмме (см. Ниже) и более раннего спада высоких частот.
В качестве альтернативы, чтобы сохранить высокочастотную характеристику, более высокое отношение витков может быть достигнуто за счет меньшего количества витков провода на первичной обмотке, но это снижает индуктивность первичной обмотки и ухудшает низкочастотную характеристику трансформатора. Как правило, когда все остальные факторы равны, более низкий коэффициент увеличения дает лучшую производительность, чем более высокий коэффициент увеличения. Довольно часто более низкий коэффициент увеличения, дающий только на 1 или 2 дБ меньше выходного сигнала, может дать гораздо более широкую полосу пропускания. Для получения наилучших характеристик по возможности выбирайте меньшее передаточное число.

нагрузка трансформатора
Идея о том, что оптимальная производительность достигается за счет согласования импеданса нагрузки с импедансом картриджа (показанное выше, несколько случайное), также порождает другое заблуждение — нагрузку трансформатора. Ошибочная теория, которую иногда пропагандируют на веб-сайтах и ​​форумах, гласит, что нагрузочный резистор на вторичной обмотке трансформатора можно использовать для «правильной загрузки картриджа» или «согласования трансформатора с картриджем».Это действительно очень сомнительная теория, поэтому давайте проанализируем, что происходит на самом деле. В качестве примера рассмотрим рассмотренный выше картридж Ortofon Vivo Red (полное сопротивление источника 5 Ом, выходное напряжение 0,5 мВ). Как уже было определено, трансформатор 1:10 даст нам напряжение, необходимое для фонового каскада MM, но сторонники «правильной загрузки» могут быть убеждены, что картридж лучше всего работает с конкретной нагрузкой, несмотря на то, что рекомендованная производителем нагрузка составляет что-нибудь более 10 Ом. Итак, что такое «правильная нагрузка»? Часто утверждается, что он совпадает с импедансом источника картриджа, поэтому достигается «согласование».Как показано выше, соотношение витков 1:97 будет представлять нагрузку на картридж 5 Ом, но что, если такой трансформатор не может быть найден? Что делать, если ближайший доступный трансформатор 1:36? Можно ли сделать так, чтобы «картридж правильно соответствовал»? Трансформатор с нормальной нагрузкой 47 кОм даст картриджу нагрузку 36 Ом (и даст выходное напряжение 15,8 мВ). Чтобы этот трансформатор соответствовал картриджу с импедансом нагрузки на первичной обмотке 5 Ом, можно было бы использовать нагрузку на вторичной обмотке в 6480 Ом вместо 47 кОм, обычно встречающихся на фоновом каскаде MM.Это не только создаст импеданс нагрузки для картриджа 5 Ом, но и снизит выходное напряжение до 9 мВ. Сделал ли дополнительный нагрузочный резистор систему оптимальной? Нет, это не так. Теперь картридж имеет половину минимального импеданса, рекомендованного производителем, а напряжения сигнала на фоновом каскаде MM по-прежнему достаточно, чтобы значительно уменьшить его запас по запасу прочности. Ясно, что это не оптимально, но намного лучше, чем было с трансформатором 1:36 и без дополнительного нагрузочного резистора.Любой, кто применяет эмпирический подход к оптимизации своей системы и экспериментирует с нагрузочными резисторами, основываясь на идее «согласования импеданса», как пропагандируется на некоторых веб-сайтах, может прийти к выводу (по понятным причинам), что их система теперь звучит лучше, потому что «картридж загружен правильно». На самом деле это звучит лучше, потому что фонокорректор перегружается меньше, чем был раньше. Было бы еще лучше, если бы использовался трансформатор 1:10 вместо того, чтобы пытаться заставить трансформатор со слишком высоким коэффициентом вращения «соответствовать» чему-либо, подделывая его с помощью резисторов.
Мифы о «правильной нагрузке» или «согласовании нагрузки» подпитываются случайным побочным продуктом нагрузки трансформатора дополнительным резистором — затухающим звоном, более подробно анализируемым ниже.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *