Паяльная станция схема своими руками: Паяльная станция своими руками. Проще некуда

Содержание

Паяльная станция своими руками. Проще некуда

Приветствую, Самоделкины!
В этой статье мы соберем очень простую и довольно надежную паяльную станцию.

На Ютубе уже полно роликов про паяльные станции, есть довольно интересные экземпляры, но все они сложны в изготовлении и настройке. В представленной здесь станции, все настолько просто, что справится любой, даже неопытный человек. Идею автор нашел на одном из форумов сайта «Паяльник» (forum.cxem.net), но немного ее упростил. Данная станция может работать с любым 24-х вольтовым паяльником, у которого есть встроенная термопара.

Теперь давайте рассмотрим схему устройства.
Условно автор разделил ее на 2 части. Первая, это блок питания на микросхеме IR2153.

Про нее было уже много всего сказано и на ней не будем останавливаться, примеры сможете найти в описании под видеороликом автора (ссылка в конце статьи). Если же неохота возиться с блоком питания, ее можно вообще пропустить и купить готовый экземпляр на 24 вольта и ток 3-4 ампера.


Вторая часть — это собственно мозги станции. Как уже говорилось выше, схема очень простая, выполнена на одной микросхеме, на сдвоенном операционном усилителе lm358.


Один операционник работает как усилитель термопары, а второй как компаратор.


Пару слов про работу схемы. В начальный момент времени паяльник холодный, следовательно, напряжение на термопаре минимальное, а это означает, что на инвертирующем входе компаратора напряжение отсутствует.

На выходе компаратора плюс питания. Транзистор открывается, идет нагрев спирали.


Это в свою очередь увеличивает напряжение термопары. И как только на инвертирующем входе напряжение сравняется с не инвертирующем, на выходе компаратора установится 0.

Следовательно, транзистор отключается и нагрев прекращается. Как только температура снижается на долю градуса, цикл повторяется. Также схема снабжена индикатором температуры.

Это обыкновенный цифровой китайский вольтметр, который измеряет усиленное напряжение термопары. Для его калибровки установлен подстроечный резистор.

Калибровку можно производить с помощью термопары мультиметра, или же по комнатной температуре.

Это автор продемонстрирует в ходе сборки.
Разобрались со схемами, теперь необходимо изготовить печатные платы. Для этого воспользуемся программой Sprint Layout, и начертим печатные платы.


В вашем же случае достаточно просто скачать архив (автор оставил все ссылки под видеороликом).
Теперь займёмся изготовлением опытного образца.
Распечатываем чертёж дорожек.

Далее подготавливаем поверхность текстолита. Сначала с помощью наждачной бумаги зачищаем медь, а потом спиртом обезжириваем поверхность, для лучшего переноса рисунка.


Когда текстолит готов, размещаем на нем рисунок платы. Выставляем максимальную температуру на утюге и проходимся им по всей поверхности бумаги.


Все, можно приступать к травлению. Для этого готовим раствор в пропорциях 100 мл перекиси водорода, 30 г лимонной кислоты и 5 г поваренной соли.


Помещаем вовнутрь плату. А для ускорения травления автор воспользовался своим специальным устройством, которое он собрал своими руками ранее.

Теперь получившуюся плату необходимо очистить от тонера и просверлить отверстия под компоненты.

На этом все, изготовление платы закончено, можно приступать к запайке запчастей.

Запаяли плату регулятора, отмыли от остатков флюса, теперь можно подключать к ней паяльник. Но как это сделать, если мы не знаем где какой у него выход? Чтобы решить этот вопрос, необходимо разобрать паяльник.


Далее начинаем искать какой провод куда идет, параллельно записывая на бумагу, во избежание ошибок.

Также можно заметить, что сборка паяльника явно производилась на тяп-ляп. Флюс не отмыт и это нужно исправить. Исправляется это довольно легко, ничего нового, с помощью спирта и зубной щетки.


Когда узнали распиновку, берем вот такой штекер:


Далее проводами подпаиваем его к плате, а также припаиваем и другие элементы: вольтметр, регулятор, все как на схеме.

По поводу пайки вольтметра. У него имеются 3 вывода: первый и второй — это питание, а третий – измерительный.



Зачастую измерительный провод и провода питания спаяны в один. Нам необходимо его отсоединить для измерения низкого напряжения с термопары.

Также у вольтметра можно закрасить точку, чтобы она нас не сбивала. Для этого воспользуемся маркером черного цвета.


После этого можно производить включение. Питание автор берет от лабораторного блока.


Если вольтметр показывает 0 и схема не работает, возможно вы неправильно подключили термопару. Собранная без косяков схема начинает работать сразу. Проверяем нагрев.

Все отлично, теперь можно калибровать датчик температуры. Для калибровки датчика температуры необходимо отключить нагреватель и подождать пока паяльник остынет до комнатной температуры.

Далее вращая отверткой потенциометр, выставляем заранее известную комнатную температуру. Потом на время подключаем нагреватель и даем ему остыть. Калибровку для точности лучше провести пару раз.


Теперь поговорим о блоке питания. Готовая плата выглядит так:


Также к ней необходимо намотать импульсный трансформатор.

Как его мотать, можно посмотреть в одном из предыдущих роликов автора. Ниже вы сможете ознакомиться со скриншотом расчета обмоток, может кому пригодится.

На выходе блока получаем 22-24 вольта. То же самое мы брали с лабораторного блока.

Корпус для паяльной станции.
Когда платки готовы, можно приступать к созданию корпуса. В основании будет вот такая аккуратная коробка.


В первую очередь к ней необходимо нарисовать лицевую панель для придания так сказать товарного вида. В программе FrontDesigner сделать это можно легко и просто.


Далее необходимо распечатать трафарет и с помощью двухстороннего скотча закрепляем его на торце и идем делать отверстия под запчасти.

Корпус готов, теперь осталось разместить все компоненты внутри корпуса. Автор посадил их на термоклей, так как у данных электронных компонентов практически отсутствует какой-либо нагрев, поэтому они никуда не денутся, и прекрасно будут держаться на термоклее.

На этом изготовление закончено. Можно приступать к тестам.

Как видим, паяльник отлично справляется с лужением больших проводов и пайки габаритных массивов. И вообще, станция проявляет себя отлично.

Почему просто не купить станцию? Ну, во-первых, собрать самому дешевле. Автору, изготовление данной паяльной станции обошлось в 300 гривен. Во-вторых, в случае поломки можно без труда починить такую самодельную паяльную станцию.


После эксплуатации данной станции, автор практически не заметил разницы между HAKKO T12. Единственное чего не хватает, так это энкодера. Но это уже планы на будущее.

Благодарю за внимание. До новых встреч!

Видео:


Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Паяльная станция своими руками: 3 простых способа изготовления

Пайка электронных плат требует соблюдения определенного уровня температуры для различных деталей, ведь недостаток нагрева приведет к плохому соединению припоя, равно, как и чрезмерный нагрев вызовет преждевременное окисление олова и такое же низкое качество пайки.

Помимо этого на перегретой плате могут отслаиваться дорожки, обугливаться целые участки. Если раньше для работы с мелкими и крупными деталями, лужением относительно большой площади радиолюбители использовали набор из нескольких паяльников, сегодня эта функция решается одной паяльной установкой. Но из-за высокой стоимости такого устройства не все могут позволить себе ее приобретение, поэтому мы расскажем, как собирается паяльная станция своими руками.

Принцип действия и варианты реализации

Принцип работы паяльной станции заключается в способности устройства регулировать температуру нагрева и поддерживать ее в установленных пределах на протяжении всего процесса.

Разумеется, реализация всех вышеперечисленных функций задача не из простых, поэтому изготовление полноценного аналога под силу опытным электрикам, имеющим должное оборудование и опыт сборки электронных схем, изготовления печатных плат.

Поэтому сначала мы разберем относительно простые варианты изготовления, регулировка температуры в которых осуществляется вручную. Но и таких паяльных станций вполне достаточно, чтобы выполнить качественную  пайку деталей, ориентируясь только по внешним признакам работы жала.

Способ №1. Контактная паяльная станция

Для такой паяльной станции вам понадобиться относительно классический паяльник мощностью хотя бы 80 – 100Вт, регулятор мощности (в данном примере мы будем использовать диммер), диодный мост, соединительные провода. Такая паяльная станция будет работать без обратной связи по температуре жала паяльника, поэтому результативность воздействия на припой придется определять опытным путем.

Схема изготовления простейшей станцииРис. 1: схема изготовления простейшей станции

Так как в домашней сети напряжение может быть значительно ниже 220В, в схеме паяльной станции будет использоваться диодный мост.

Процесс изготовления состоит из следующих этапов:

  • Соберите из четырех диодов мост или возьмите готовую сборку с параметрами работы с 220 В на 300 В;
  • Отрежьте питающий шнур на расстоянии 10 – 15 см от ручки, запас нужен для подключения к паяльной станции;
  • Зачистите выводы проводов как возле паяльника, так и на шнуре, его также будем использовать для подключения;
  • Подключите одну из жил шнура питания к диодному мосту через диммер, а вторую напрямую;
  • Подсоедините выводы диодного моста к жилам паяльника, лучше использовать клеммное соединение, болтовое или пайку;
  • Места электрических соединений заизолируйте для предотвращения поражения электрическим током при работе паяльной станцией;
  • Установите мост и светорегулятор на диэлектрическое основание.

Простейшая паяльная станция готова к использованию, достаточно включить ее в розетку и повернуть ручку в нужное положение. Принцип работы с ней схож с прибором для выжигания по дереву. Работая с крупными элементами, регулятор мощности устанавливается в максимальное положение. С мелкими, выводится в половинное значение, следует отметить, что конструкция регулятора температуры на основе диммера изменяет напряжение питания от 220 до 0В,  а вам ограничивать его меньше половины  смысла не имеет.

Способ №2. Бесконтактная паяльная станция

Как показывает практика, далеко не всегда нагревом жала можно воздействовать на любые элементы платы, к примеру, к тем же smd деталям крайне трудно подобраться. В таких ситуациях используется паяльный фен, направляющий поток горячего воздуха на  ножки.

Несмотря на схожесть, переделать обычное устройство для сушки волос в инфракрасную станцию не получится, так как рабочая температура должна достигать 500 — 800ºС. Для сборки такой паяльной станции вам понадобится компрессор для подачи воздуха, нагревательный элемент, корпус для элементов управления, сопло, понижающий трансформатор, выпрямитель, блок управления скоростью подачи воздуха.

Принципиальная схема такой паяльной станции приведена на рисунке ниже:

Электрическая схема термофенаРис. 2: электрическая схема термофена

Принцип действия паяльной станции основан на воздействии инфракрасного излучения от нагревательного элемента непосредственно в область пайки. Компрессор подает воздух от нагревателя через сужающееся сопло, создавая эффект турбины, производительность насоса желательно обеспечить в пределах от 20 до 30 л в минуту.

При изготовлении инфракрасной станции существует два способа для ее выполнения —  ручная модель или стационарная. Первый вариант подходит в тех ситуациях, когда корпус ИК паяльной предвидится относительно небольших размеров и будет удобно помещаться в руке. Второй способ подойдет для крупногабаритных приспособлений, в которых станция установлена неподвижно, а заготовка перемещается под соплом.

Рассмотрим такой пример изготовления паяльной станции бесконтактного типа:

  • Намотайте нагревательную спираль из нихромовой проволоки, в данном случае используется диаметром 0,8мм. Можете взять и другой вариант, к примеру, от электрической плиты. Намотайте нагревательный элементРис. 3: намотайте нагревательный элемент
  • Для намотки используйте жесткий каркас, укладывайте витки вплотную, но не делайте нахлестов и следите за тем, чтобы не закоротить намотку. Чем меньше диаметр проволоки у вас получится, тем эффективнее будет идти нагрев, достаточно будет спирали с наружным диаметром 8 – 10 мм.
  • В данном примере изготавливаются несколько спиралей, соединяемых параллельно для повышения температуры нагрева.
  • Установите полученную спираль на цилиндрический каркас из негорючего материала.
Поместите спирали на диэлектрический элементРисунок 4: поместите спирали на диэлектрический элемент

Предварительно удалите с каркаса все лишнее но если он уже готов, можете сразу осуществлять намотку.

  • Изготовьте металлический стакан для нагревательного элемента, в этом примере изготовления паяльной станции мы сделаем его из корпуса пальчиковой батарейки.
  • Из куска телескопической антенны от радиоприемника сделайте сопло, один край которого нужно расплескать и надеть на шайбу. Наденьте шайбуРис. 5. Наденьте шайбу
  • Прикрутите шайбу сопла к стакану из батарейки при помощи соразмерных болтов. Прикрутите сопло к стакануРис. 6: прикрутите сопло к стакану
  • Поместите внутрь стакана между спиралью и стенками термоизоляционный материал, чтобы предотвратить перегревание наружных деталей.
  • Соберите диодный мост из четырех полупроводниковых элементов, если под рукой уже есть готовая сборка, можете использовать и ее.
  • Изготовьте блок питания из понижающего трансформатора и выпрямительного агрегата, ваша задача получить на выходе низкое напряжение для снижения вероятности поражения электротоком. В рассматриваемом примере получается около 10 – 15В, мощность трансформатора составляет 150Вт. Аналогичная модель может браться с готового оборудования.
  • Корпус для паяльной станции мы изготовим из обычной пластиковой бутылки. В данном примере нам нужен прозрачный пластик, так как в нем легче подключать блок питания, нагнетатель воздуха и плату управления. Соедините все элементы  в корпусеРис. 7. соедините все элементы  в корпусе
  • Подключите куллер и нагревательную спираль к выводам блока питания, подсоедините регулятор напряжения. Установите кулерРис. 8. установите кулер

Регулировка мощности теплового потока может осуществляться либо по скорости подачи воздуха, либо по уровню напряжения, подаваемого на нагреватель.

  • Подключите шнур питания к выводам трансформатора – паяльная станция готова к использованию. Паяльная станция готоваРис. 9: паяльная станция готова

Способ №3. Автоматическая паяльная станция на базе Ардуино

Такая паяльная станция собирается на базе микроконтроллера Arduino, который выполняет роль логического элемента, обрабатывающего данные от индикатора температуры и регулирующего мощность нагрева жала. Отличительной особенностью такого устройства является полная автоматизация контроля за температурой – вам достаточно задать ее и дождаться нагревания. Пример схемы для сборки приведен на рисунке ниже:

Схема паяльной станции на базе ардуиноРис. 10. схема паяльной станции на базе ардуино

Чтобы собрать такую станцию вам понадобится:

  • сама плата Ардуино для управления работой паяльной станции;
  • цифровое табло для отображения температуры нагрева;
  • микросхему для программирования паяльной станции;
  • транзистор, стабилизатор и кнопки, магазин резисторов и емкостных элементов.

Для сборки такой паяльной станции воспользуйтесь приведенной схемой, в качестве нагревательного элемента будет выступать жало обычного паяльника с датчиком температуры, которые подключаются к собранной схеме.

К недостаткам такого устройства следует отнести его сложность, из-за чего начинающие радиолюбители могут попросту не собрать рабочую версию с первого раза. Также для пайки используемых в автоматической станции элементов вам понадобиться специальный паяльник и предварительные навыки работы с ним, чтобы не испортить детали.

Видео по теме

Самая простая паяльная станция своими руками

Приветствую, Самоделкины!

Прошло то время, когда паяльные станции были дорогими и не такими доступными как сейчас. Это раньше не было китайских интернет-магазинов и торговых площадок, и радиолюбители приобретали паяльные станции за баснословные деньги. В наши дни конечно же все немного по-другому. Рынок буквально завален дешевыми копиями японских жал Hakko T12.



Данные жала произвели настоящую революцию. Они способны нагреваться до рабочей температуры за считанные секунды и к тому же имеют необгораемый наконечник.



В таких жалах термопара расположена очень близко к кончику, это позволяет паяльной станции мгновенно реагировать на перепады температуры жала, что в свою очередь дает возможность контролировать температуру жала с достаточно высокой точностью.



Но было кое-что у Hakko ещё более популярней — вот эта станция:

Это Hakko 936, обычная аналоговая станция. Клонов этой станции существовало бесчисленное множество, производством 936-ой станции занимались буквально все, кому не лень, и она была самой доступной.




Идея создания этого проекта пришла автору YouTube канала «AKA KASYAN» когда он разбирался у себя на чердаке и нашел вот такой паяльник:

Было принято решение собрать простую паяльную станцию и вспомнить былое. Ниже представлена схема оригинальной паяльной станции Hakko 936:



На следующем изображении вы можете видеть упрощенную схему от китайских клонов той же станции:
Схема китайских клонов проще в разы. Автор переработал ее, что-ты добавил, что-то убавил, подогнав тем самым ее под свои нужды.

Управляющим звеном в оригинальной схеме, как видите, является симистор:

Автор же решил использовать в данном проекте полевой транзистор, и на то были свои причины, а именно, в качестве источника питания у нас с вами будет импульсный блок с чистой постоянкой на выходе. В таком случае симистор попросту не закроется, и станция работать не будет.





К тому же на симисторе мы получим потери, они конечно не столь ощутимы, но все же, поэтому выбран полевой транзистор.
Станция аналоговая, никакого ШИМ управления. Все управление построено на сдвоенном операционном усилителе lm358.
Как известно в любом нормальном паяльнике имеется термопара.

Она необходима для контроля температуры жала. Термопара — это два разнородных металла сваренных друг с другом. Термопара имеет кончик в виде шарика, и когда этот шарик нагревается, термопара вырабатывает мизерное электричество.



Если подключить термопару к мультиметру и подогреть ее, то напряжение составит всего навсего 12мВ.

Этого очень мало, чтобы задействовать термопару в реальной схеме. Данное напряжение необходимо увеличить, и поэтому первая часть схемы представляет из себя усилитель напряжения с термопары.



Для наглядности проведем тот же опыт, но с усилителем:
Как видим, напряжение на мультиметре доходит до 1,5В. Затем усиленное напряжение поступает на инверсный вход второго элемента.
На его неинвертирующий вход подается напряжение с опорного источника, которое формируется стабилитроном на 5,1В.

Далее напряжение с термопары сравнивается с опорным, и если напряжение, которое идет с термопары ниже опорного напряжения, то на выходе операционного усилителя мы получаем единицу (1) или плюс (+) питания и наоборот.



В стоковую цепь транзистора подключен нагревательный элемент паяльника и светодиод, который выполняет роль индикатора.

Если светодиод светится, это говорит о нагреве жала. В ходе работы он периодически будет включаться и выключаться, то есть, если термопара холодная — включается транзистор и начинается нагрев, а когда нагреватель, а, следовательно, и термопара нагрелись до заданного значения температуры, транзистор закроется и нагрев прекратится, и так все время.

Регулировать температуру можно с помощью переменного резистора.



В основном такие паяльники работают от напряжения 24В, а иногда чуть меньше.
Для питания схемы управления в лице операционного усилителя, напряжение уменьшается до 12В с помощью второго стабилитрона.

Конечно можно использовать и микросхемные стабилизаторы на 12В, но операционный усилитель потребляет мизерный ток и обычного стабилитрона на 1Вт хватит вполне.

Можно вполне обойтись всего одним стабилитроном, опорное напряжение взять непосредственно с питающего операционника напряжения, но в таком случае придется пересчитать многие компоненты схемы, да и к тому же иметь отдельный опорный источник более предпочтительно.

Вот такая компактная печатная плата получилась:




Ее вы можете скачать вместе с общим архивом проекта. А теперь давайте проверим работу схемы. На изображении ниже представлена распиновка разъема, используемого в данном проекте паяльника:

Далее подключаем все по схеме. Нагреватель полярности не имеет, а вот термопара – да, и, если термопара подключена неправильно, схема не будет реагировать на нагрев и транзистор все время будет открыт.


После подключения необходимо откалибровать температуру жала паяльника. Специально для этой задачи на плате предусмотрен подстроечный резистор.


Более подробно о процессе сборке, настройке и калибровке самодельной паяльной станции смотрите в оригинальном видеоролике автора:


Медленным вращением подстроечного резистора нам необходимо добиться нужной температуры. Максимальная температура у подобных паяльных станций, как правило, лежит в пределах от 420 до 480 градусов.



Итак, калибровка завершена. Далее все необходимо установить в корпус.

Теперь займемся изготовлением аналоговой шкалы. Для этого сначала ставим регулятор в минимальное положение, дожидаемся максимального нагрева, и измеряем температуру. Полученное значение наносим на шкалу.



Далее проделываем все тоже самое для различных температур: 250 градусов, 280, 300, 320, 350 и так далее до 480 градусов.

После проделанных манипуляций у нас получился клон упомянутой в начале статьи станции Нakko 936. Там все работает точно по такому же принципу.



Для того, чтобы видеть процесс нагрева в реальном времени индикаторный светодиод необходимо вывести на лицевую панель.
Вот такая паяльная станция в итоге у нас получилась. На этом все. Благодарю за внимание. До новых встреч!

Этот пост может содержать партнерские ссылки. Это означает, что я зарабатываю небольшую комиссию за ссылки, используемые без каких-либо дополнительных затрат для вас. Дополнительную информацию смотрите в моей политике конфиденциальности.

Самая простая паяльная станция своими руками


Приветствую, Самоделкины!
Прошло то время, когда паяльные станции были дорогими и не такими доступными как сейчас. Это раньше не было китайских интернет-магазинов и торговых площадок, и радиолюбители приобретали паяльные станции за баснословные деньги. В наши дни конечно же все немного по-другому. Рынок буквально завален дешевыми копиями японских жал Hakko T12.


Данные жала произвели настоящую революцию. Они способны нагреваться до рабочей температуры за считанные секунды и к тому же имеют необгораемый наконечник.


В таких жалах термопара расположена очень близко к кончику, это позволяет паяльной станции мгновенно реагировать на перепады температуры жала, что в свою очередь дает возможность контролировать температуру жала с достаточно высокой точностью.

Но было кое-что у Hakko ещё более популярней — вот эта станция:

Это Hakko 936, обычная аналоговая станция. Клонов этой станции существовало бесчисленное множество, производством 936-ой станции занимались буквально все, кому не лень, и она была самой доступной.


Идея создания этого проекта пришла автору YouTube канала «AKA KASYAN» когда он разбирался у себя на чердаке и нашел вот такой паяльник:


Было принято решение собрать простую паяльную станцию и вспомнить былое. Ниже представлена схема оригинальной паяльной станции Hakko 936:

На следующем изображении вы можете видеть упрощенную схему от китайских клонов той же станции:

Схема китайских клонов проще в разы. Автор переработал ее, что-ты добавил, что-то убавил, подогнав тем самым ее под свои нужды.

Управляющим звеном в оригинальной схеме, как видите, является симистор:


Автор же решил использовать в данном проекте полевой транзистор, и на то были свои причины, а именно, в качестве источника питания у нас с вами будет импульсный блок с чистой постоянкой на выходе. В таком случае симистор попросту не закроется, и станция работать не будет.

К тому же на симисторе мы получим потери, они конечно не столь ощутимы, но все же, поэтому выбран полевой транзистор.

Станция аналоговая, никакого ШИМ управления. Все управление построено на сдвоенном операционном усилителе lm358.

Как известно в любом нормальном паяльнике имеется термопара.

Она необходима для контроля температуры жала. Термопара — это два разнородных металла сваренных друг с другом. Термопара имеет кончик в виде шарика, и когда этот шарик нагревается, термопара вырабатывает мизерное электричество.

Если подключить термопару к мультиметру и подогреть ее, то напряжение составит всего навсего 12мВ.

Этого очень мало, чтобы задействовать термопару в реальной схеме. Данное напряжение необходимо увеличить, и поэтому первая часть схемы представляет из себя усилитель напряжения с термопары.

Для наглядности проведем тот же опыт, но с усилителем:

Как видим, напряжение на мультиметре доходит до 1,5В. Затем усиленное напряжение поступает на инверсный вход второго элемента.

На его неинвертирующий вход подается напряжение с опорного источника, которое формируется стабилитроном на 5,1В.

Далее напряжение с термопары сравнивается с опорным, и если напряжение, которое идет с термопары ниже опорного напряжения, то на выходе операционного усилителя мы получаем единицу (1) или плюс (+) питания и наоборот.



В стоковую цепь транзистора подключен нагревательный элемент паяльника и светодиод, который выполняет роль индикатора.


Если светодиод светится, это говорит о нагреве жала. В ходе работы он периодически будет включаться и выключаться, то есть, если термопара холодная — включается транзистор и начинается нагрев, а когда нагреватель, а, следовательно, и термопара нагрелись до заданного значения температуры, транзистор закроется и нагрев прекратится, и так все время.

Регулировать температуру можно с помощью переменного резистора.


В основном такие паяльники работают от напряжения 24В, а иногда чуть меньше.

Для питания схемы управления в лице операционного усилителя, напряжение уменьшается до 12В с помощью второго стабилитрона.

Конечно можно использовать и микросхемные стабилизаторы на 12В, но операционный усилитель потребляет мизерный ток и обычного стабилитрона на 1Вт хватит вполне.
Можно вполне обойтись всего одним стабилитроном, опорное напряжение взять непосредственно с питающего операционника напряжения, но в таком случае придется пересчитать многие компоненты схемы, да и к тому же иметь отдельный опорный источник более предпочтительно.
Вот такая компактная печатная плата получилась:


Ее вы можете скачать вместе с общим архивом проекта. А теперь давайте проверим работу схемы. На изображении ниже представлена распиновка разъема, используемого в данном проекте паяльника:


Далее подключаем все по схеме. Нагреватель полярности не имеет, а вот термопара – да, и, если термопара подключена неправильно, схема не будет реагировать на нагрев и транзистор все время будет открыт.

После подключения необходимо откалибровать температуру жала паяльника. Специально для этой задачи на плате предусмотрен подстроечный резистор.

Более подробно о процессе сборке, настройке и калибровке самодельной паяльной станции смотрите в оригинальном видеоролике автора:


Медленным вращением подстроечного резистора нам необходимо добиться нужной температуры. Максимальная температура у подобных паяльных станций, как правило, лежит в пределах от 420 до 480 градусов.

Итак, калибровка завершена. Далее все необходимо установить в корпус.


Теперь займемся изготовлением аналоговой шкалы. Для этого сначала ставим регулятор в минимальное положение, дожидаемся максимального нагрева, и измеряем температуру. Полученное значение наносим на шкалу.

Далее проделываем все тоже самое для различных температур: 250 градусов, 280, 300, 320, 350 и так далее до 480 градусов.

После проделанных манипуляций у нас получился клон упомянутой в начале статьи станции Нakko 936. Там все работает точно по такому же принципу.

Для того, чтобы видеть процесс нагрева в реальном времени индикаторный светодиод необходимо вывести на лицевую панель.

Вот такая паяльная станция в итоге у нас получилась. На этом все. Благодарю за внимание. До новых встреч!
Источник (Source) Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

Маленькая паяльная станция своими руками v2 / Хабр

Привет.

Некоторое время назад я собрал маленькую паяльную станцию, о которой хотел рассказать. Это дополнительная упрощенная паяльная станция к основной, и конечно не может ее полноценно заменить.


Основные функции:

1. Паяльник. В коде заданы несколько температурных режимов (100, 250 и 350 градусов), между которыми осуществляется переключение кнопкой Solder. Плавная регулировка мне тут не нужна, паяю я в основном на 250 градусах. Мне лично это очень удобно. Для точного поддержания температуры используется PID регулятор.

Заданные режимы, пины, параметры PID можно поменять в файле 3_Solder:

struct {
  static const byte   termistor   =  A2;  // пин термистора
  static const byte   pwm         =  10;  // пин нагревателя
  static const byte   use         =  15;  // A1 пин датчика движения паяльника
  int                 mode[4]     =  {0, 150, 250, 300}; // режимы паяльника
  byte                set_solder  =  0; // режим паяльника (по сути главная функция)
  static const double PID_k[3]    =  {50, 5, 5};    // KP KI KD
  static const byte   PID_cycle   =  air.PID_cycle; // Цикл для ПИД. Участвует в расчетах, а также управляет частотой расчетов ПИД
  double PID_in;  // входящее значение
  double PID_set; // требуемое значение
  double PID_out; // выходное значения для управляемого элемента
  //unsigned long time;
  unsigned long srednee;
} sol;

2. Фен. Также заданы несколько температурных режимов (переключение кнопкой Heat), PID регулятор, выключение вентилятора только после остывания фена до заданной температуры 70 градусов.

Заданные режимы, пины, параметры PID можно поменять в файле 2_Air:

struct {
  static const byte   termistor     =  A3; // пин термистора
  static const byte   heat          =  A0; // пин нагревателя
  static const byte   fan           =  11; // пин вентилятора
  int                 mode_heat[5]  =  {0, 300, 450, 600, 700}; // быстрые режимы нагревателя
  byte                set_air       =  0; // режимы фена (нагреватель + вентилятор) по сути главная функция
  static const double PID_k[3]      =  {10, 2, 10}; // KP KI KD
  static const byte   PID_cycle     =  200; // Цикл для ПИД. Участвует в расчетах, а также управляет частотой расчетов ПИД
  double PID_in;  // входящее значение
  double PID_set; // требуемое значение
  double PID_out; // выходное значения для управляемого элемента
  unsigned long time;
  unsigned long srednee;
  boolean OFF = 0;
} air;

Нюансы:
  1. Паяльник применил от своей старой станции Lukey 936A, но с замененным нагревательным элементом на китайскую копию Hakko A1321.
  2. Кнопка отключения отключает сразу все что было включено.
  3. Можно одновременно включать и паяльник и фен.
  4. На разъеме фена присутствует напряжение 220В, будьте осторожны.
  5. Нельзя отключать паяльную станцию от сети 220В пока не остынет фен.
  6. При отключенном кабеле паяльника или фена, на дисплее будут максимальные значения напряжения с ОУ, пересчитанные в градусы (не ноль). Поясню: если например просто подключить кабель холодного паяльника должен показывать комнатную температуру, при отключении покажет например 426. Какой в этом плюс: если случайно оборвется провод термопары или терморезистора, на выходе ОУ будет максимальное значение и контроллер просто перестанет подавать напряжение на нагреватель, так как будет думать что наш паяльник раскален и его нужно охладить.
  7. Защиты от КЗ нет, поэтому рекомендую установить предохранители.
  8. Стабилизатор на 5В для питания Arduino используйте любой доступный с учетом напряжения питания вашего БП и нагрева в случае линейного стабилизатор. Так как у меня напряжение 20В установил 7805.
  9. Паяльник прекрасно работает и при 30В питания, как в моей основной паяльной станции. Но при использовании повышенного напряжения учитывайте все элементы: стабилизатор 5В и то что напряжение вентилятора 24В.

Основные узлы и состав:

1. Основная плата:

— Arduino Pro mini,
— сенсорные кнопки,
— дисплей от телефона Nokia 1202.

2. Плата усилителей:

— усилитель терморезистора паяльника,
— полевой транзистор нагрева паяльника,
— усилитель термопары фена,
— полевой транзистор включения вентилятора фена.

3. Плата симисторного модуля

— оптосимистор MOC3063,
— симистор со снабберной цепочкой.

4. Блок питания:

— блок питания от ноутбука 19В 3.5А,
— выключатель,
— стабилизатор для питания Arduino.

5. Корпус.

А теперь подробнее по узлам.

1. Основная плата


Обратите внимание наименование сенсорных площадок отличается от фото. Дело в том, что в связи с отказом от регулировки оборотов вентилятора, в коде я переназначил кнопку включения фена. В самом начале регулировка оборотов была реализована, но так как напряжение моего БП 20В (увеличил на 1В добавлением переменного резистора), а вентилятор на 24В, решил отказаться. Сигнал с сенсорных кнопок TTP223 (включены в режиме переключателя Switch, на пин TOG подан 3.3В) считывается Arduino. Дисплей подключен через ограничительные резисторы для согласования 5В и 3.3В логики. Такое решение не совсем правильное, но уже работает несколько лет в разных устройствах.

Основная плата двухстороннего печатного монтажа. Металлизацию оставлял по максимуму, чтобы уменьшить влияние помех, а также для упрощения схемы сенсорных кнопок (для TTP223 требуется конденсатор по входу на землю для уменьшения чувствительности. Без него кнопка будет срабатывать просто при приближении пальца. Но так как у меня сделана сплошная металлизация этот конденсатор не требуется). Сделан вырез под дисплей.

Фото платы без деталей



На верхней стороне находятся площадки сенсорных кнопок, наклеена лицевая панель, припаивается дисплей. Площадки сенсорных кнопок и дисплей подключены к нижней стороне через перемычки тонким проводом. Типоразмер резисторов и конденсатора 0603.Изготовление лицевой панелиЛицевую панель, по размерам из 3Д модели, я сначала нарисовал в программе FrontDesigner-3.0_rus, в файлах проекта лежит исходник.

Распечатал, вырезал по контуру, а также окно для дисплея.

Далее заламинировал самоклеящейся пленкой для ламинирования и приклеил к плате. Дисплей за также приклеен к этой пленке. За счет выреза в плате дисплей получился вровень с основной платой.


На нижней стороне находится Arduino Pro mini и микросхемы сенсорных кнопок TTP223.
2. Плата усилителей


Небольшое исправлениеКак правильно заметил easyJet в схеме дифференциального усилителя была ошибка, отсутствовал резистор R11 (выделил цветом). Но ошибка не критичная, влияет при равенстве сопротивления R3 и терморезистора в паяльнике, то есть при комнатной температуре. В случае исправления потребуется калибровка температуры паяльника. В своей паяльной станции решил оставить как есть.

Схема паяльника состоит из дифференциального усилителя с резистивным мостом и полевого транзистора с обвязкой.

  1. Для увеличения «полезного» диапазона выходного сигнала при низкоомном терморезисторе (в моем случае в китайской копии Hakko A1321 56 Ом при 25 градусах, для сравнения в 3д принтерах обычно стоит терморезистор сопротивлением 100 кОм при 25 градусах) применен резистивный мост и дифференциальный усилитель. Для уменьшения наводок параллельно терморезистору и в цепи обратной связи стоят конденсаторы. Данная схема нужна только для терморезистора, если в вашем паяльнике стоит термопара, то нужна схема усилителя аналогичной в схеме фена. Настройка не требуется. Только измерить сопротивление вашего терморезистора при 25 градусах и поменять при необходимости резистор 56Ом на измеренный.
  2. Полевой транзистор был выпаян из материнской платы. Резистор 100 кОм нужен чтобы паяльник сам не включился от наводок если ардуина например отключится, заземляет затвор полевого транзистора. Резисторы по 220 Ом для ограничения тока заряда затвора.

Схема фена состоит из неинвертирующего усилителя и полевого транзистора.
  1. Усилитель: типовая схема. Для уменьшения наводок параллельно термопаре и в цепи обратной связи стоят конденсаторы.
  2. Обвязки у полевого транзистора ME9926 нет, это не случайно. Включение ничем не грозит, просто будет крутится вентилятор. Ограничения тока заряда затвора тоже нет, так как емкость затвора небольшая.

Типоразмер резисторов и конденсаторов 0603, за исключением резистора 56 Ом — 1206.
Настройка не требуется.

Нюансы: применение операционного усилителя LM321 (одноканальный аналог LM358) для дифферециального усилителя не является оптимальным, так как это не Rail-to-Rail операционный усилитель, и максимальная амплитуда на выходе будет ограничена 3.5-4 В при 5В питания и максимальная температура (при указанных на схеме номиналах) будет ограничена в районе 426 градусов. Рекомендую использовать например MCP6001. Но нужно обратить внимание что в зависимости от букв в конце отличается распиновка:

3. Плата симисторного модуля

Схема стандартная с оптосимистором MOC3063. Так как MOC3063 сама определяет переход через ноль напряжения сети 220В, а нагрузка — нагреватель инерционный элемент, использовать фазовое управление нет смысла, как и дополнительных цепей контроля ноля.

Нюансы: можно немного упростить схему если применить симистор не требующий снабберной цепочки, у них так и указано snubberless.

4. Блок питания

Выбор был сделан по габаритным размерам и выходной мощности в первую очередь. Также я немного увеличил выходное напряжение до 20В. Можно было и 22В сделать, но при включении паяльника срабатывала защита БП.
5. Корпус

Корпус проектировался под мой БП, с учетом размеров плат и последующей печати на 3Д принтере. Металлический даже не планировался, приличный алюминиевый анодированный корпус дороговато и царапается, и куча других нюансов. А гнуть самому красиво не получится.

Разъемы:

1. Фен — «авиационный» GX16-8.

2. Паяльник — «авиационный» GX12-6.


Исходники лежат тут.
На этом все.

P.S. Первую версию я сохранил в черновиках на память.

схема инфракрасной самодельной станции с феном

На чтение 10 мин. Просмотров 10k. Опубликовано Обновлено

Многие радиолюбители не могут подобрать подходящий инструмент различных микросхем и компонентов. Паяльная станция своими руками для таких умельцев – это один из лучших вариантов решения всех проблем.

Больше не нужно выбирать из множества несовершенных фабричных устройств, достаточно найти подходящие комплектующие, потратить немного времени и сделать идеальное устройство, удовлетворяющее все требования, своими руками.

Виды паяльных станций

Современный рынок предлагает радиолюбителям огромное количество всевозможных видов с разной комплектацией.

В большинстве случаев станции для пайки делятся на:

  1. Контактные станции.
  2. Цифровые и аналоговые устройства.
  3. Индукционные аппараты.
  4. Бесконтактные устройства.
  5. Демонтажные станции.

Первый вариант станций представляет собой паяльник, подключенный к блоку регулировки температуры.

схема электрическаяЭлектрическая схема паяльной станции.

Контактные паяльные устройства делятся на:

  • устройства для работы со свинцовосодержащими припоями;
  • устройства для работы с безсвинцовыми припоями.
, позволяющие плавить безсвинцовый припой, обладают мощными нагревательными элементами. Такой выбор паяльников обусловлен высокой температурой плавления припоя без свинца. Безусловно, благодаря наличию регулятора температуры, подобные аппараты применимы для работы со свинцовосодержащим припоем.

Аналоговые аппараты для пайки регулируют температуру жала при помощи термодатчика. Как только наконечник перегревается, питание отключается. При остывании сердечника питание вновь подается на паяльник и начинается нагрев.

Цифровые устройства управляют температурой паяльника при помощи специализированного ПИД регулятора, который в свою очередь подчиняется своеобразной программе, заложенной в микроконтроллер.

[box type=”info”]Отличительной особенностью индукционных устройств является нагрев сердечника паяльника при помощи импульсной катушки. В процессе работы происходят колебания высоких частот, образующие в ферромагнетиковом покрытии аппаратуры вихревые токи.[/box]

Остановка нагрева происходит из-за достижения ферромагнетиком точки Кюри, после которой меняются свойства металла и прекращается эффект от воздействия высоких частот.

Бесконтактные аппараты для пайки делятся на:

  • инфракрасные;
  • термовоздушные;
  • комбинированные.
паяльная станция состоит из нагревательного элемента в виде кварцевого или керамического излучателя.

Инфракрасные паяльные станции, по сравнению с термовоздушными, обладают следующими ощутимыми преимуществами:

  • отсутствие необходимости в поиске насадок на паяльный фен;
  • хорошо подходят для работы со всеми видами микросхем;
  • отсутствие термической деформации печатных плат из-за равномерного прогрева;
  • радиодетали не сдуваются воздухом с платы;
  • равномерный прогрев места пропая.

Важно отметить, что инфракрасные устройства для пайки являются профессиональным оборудованием и редко используются простыми радиолюбителями.

график температурыЗависимость температуры от времени пайки.

В большинстве случаев инфракрасные аппараты состоят из:

  • верхнего керамического или кварцевого нагревателя;
  • нижнего нагревателя;
  • стола для поддержки печатных плат;
  • микроконтроллера, управляющего станцией;
  • термопар для контроля текущих температур.

Термовоздушные станции для пайки используются для монтажа радиодеталей. В большинстве случает термовоздушными станциями удобно паять компоненты, находящиеся в SMD корпусах. Такие детали имеют миниатюрные размеры и хорошо паяются по средствам подачи на них горячего воздуха из термофена.

Комбинированные устройства, как правило, сочетают в себе несколько видов паяльного оборудования, например, термофен и паяльник.

Демонтажные станции комплектуются компрессором, работающим на втягивание воздуха. Такое оборудование оптимально подходит для снятия излишков припоя или демонтажа ненужных компонентов на печатной плате.

Все мало-мальски приличные станции компонентов в разных корпусах, имеют в наличие такое дополнительное оборудование:

  • лампы подсветки;
  • дымоуловители или вытяжки;
  • пистолеты для демонтажа и всасывания излишков припоя;
  • вакуумные пинцеты;
  • инфракрасные излучатели для прогрева всей печатной платы;
  • термофен для прогрева определенного участка;
  • термопинцет.

Паяльная станция своими руками

Наиболее функциональная и удобная станция – это инфракрасная.

Перед тем, как сделать инфракрасную паяльную станцию своими руками, следует приобрести следующие элементы:

  • галогеновый обогреватель на четырех инфракрасных лампах мощностью 2КВт;
  • верхний инфракрасный нагреватель для паяльной станции в виде керамической инфракрасной головки на 450 Вт;
  • алюминиевые уголки для создания каркаса конструкции;
  • шланг для душа;
  • проволока из стали;
  • нога от любой настольной лампы;
  • программируемый микрокомпьютер, например, Ардуино;
  • несколько твердотельных реле;
  • две термопары для контроля текущей температуры;
  • блок питания на 5 вольт;
  • небольшой экран;
  • зуммер на 5 вольт;
  • крепежные элементы;
  • при необходимости, паяльный фен.
[box type=”fact”]В качестве верхнего нагревателя можно использовать кварцевые или керамические нагреватели.[/box] схема паяльникаИзготовление паяльной станции своими руками.

Преимущества керамических излучателей представлены:

  • невидимым спектром излучения, не повреждающим глаза радиолюбителя;
  • более длительным временем безотказной работы;
  • большой распространенностью.

В свою очередь, кварцевые ИК подогреватели обладают следующими плюсами:

  • большая однородность температуры в зоне подогрева;
  • меньшая стоимость.

Этапы сборки ИК паяльной станции представлены ниже:

  1. Монтаж элементов нижнего нагревателя для работы с bga элементами.
    Наиболее простым методом добычи четырех галогеновых ламп служит демонтаж их из старенького обогревателя. После того, как вопрос с лампами решен, следует придумать вид корпуса.
  2. Сборка конструкции паяльного стола и продумывание системы удержания плат на нижнем нагревателе.
    Установка системы крепления печатных плат заключается в отрезке шести кусков алюминиевого профиля и прикреплении их к корпусу при помощи гаек из перфорированной ленты. Получившаяся система крепления позволяет перемещать печатную плату и подстраивать ее под нужды радиолюбителя.
  3. Монтаж элементов верхнего нагревателя и паяльного фена.
    Керамический нагреватель на 450 – 500 Вт можно приобрести в китайском интернет магазине. Для монтажа верхнего подогрева необходимо взять лист металла и согнуть его по размерам нагревателя. После этого верхний нагреватель самодельной ик вместе с феном следует разместить на ножке от старой настолько лампы и подключить к блоку питания.
  4. Программирование и подключение микрокомпьютера.
    Наиболее ответственный этап создания собственного инфракрасного устройства для пайки, включающий: создание корпуса для микроконтроллера с продумыванием места под остальные компоненты и кнопки. В корпусе вместе с контроллером должны быть следующие элементы: два твердотельных реле, дисплей, блок питания, кнопки и соединительные клеммы.

Большинство радиолюбителей предпочитают использовать старые системные блоки в качестве основы корпуса и алюминиевые уголки для крепления всех основных элементов нижнего нагревателя. При подключении ламп рекомендуется использовать штатную проводку разобранного галогенового обогревателя.

По завершению процесса сборки станции следует переходить к непосредственной настройке микроконтроллера. Радиолюбителям, сделавшим самому инфракрасную паяльную станцию, зачастую приходилось использовать микрокомпьютер Ардуино ATmega2560.

Программное обеспечение, написанное специально для устройств, основанных на данном типе контроллера, можно найти в интернете.

Схема

схема инфракрасной паяльной станцииПринципиальная схема инфракрасного паяльника.

Типовая схема паяльной станции включает:

  • блок усилителей термопар;
  • микроконтроллер с экраном;
  • клавиатуру;
  • звуковой сигнализатор, например, компьютерный спикер;
  • элементы питания и поддержки паяльного фена;
  • чертежи элементов детектора нуля;
  • элементы силовой части;
  • блок питания всей аппаратуры.

В большинстве случаев, схема станции представлена следующими микрокомпонентами:

  • опторазвязка;
  • мосфет;
  • симистор;
  • несколько стабилизаторов;
  • потенциометр;
  • подстроечный резистор;
  • резистор;
  • светодиоды;
  • резонатор;
  • несколько резонаторов в СМД корпусах;
  • конденсаторы;
  • переключатели.
[box type=”info”]Точные маркировки деталей разнятся в зависимости от потребностей и предполагаемых рабочих режимов.[/box]

Процесс

Процесс сборки инфракрасной паяльной станции во многом зависит от предпочтений мастера.

Типовой вариант устройства на микроконтроллере Ардуино, устраивающий большинство радиолюбителей, собирается в такой последовательности:

  • подбор необходимых элементов;
  • подготовка радиодеталей и нагревателей к проведения монтажных работ;
  • сборка корпуса паяльной станции;
  • установка нижних предварительных нагревателей для равномерного разогрева массивных печатных плат;
  • установка платы управления комбайном для пайки и ее фиксация при помощи заранее подготовленных крепежных элементов;
  • монтаж верхнего нагревателя и паяльного термофена;
  • установка креплений для термопар;
  • программирование микроконтроллера под определенные условия паяльных работ;
  • проверка всех элементов, включая галогеновые лампы нижнего нагревателя, инфракрасный излучатель и паяльный фен.
изготовление паяльной станцииУстройство паяльной станции.

После полной сборки инфракрасной станции следует проверить все элементы на работоспособность.

Отдельное внимание нужно уделить проверке корректности работы термопар, поскольку в данной системе отсутствует их компенсация.

Это означает, что при перемене температуры воздуха в помещении термопара начнет измерять температуру с существенной погрешностью.

Проверка головки керамического нагревателя также важна. В случае, если инфракрасный излучатель перегревается, необходимо обеспечить обдув воздухом или охлаждение при помощи дополнительного радиатора.

Настройка

Настройка режимов работы ИК паяльной станции в основном заключается в:

  • установке допустимых режимов работы паяльных фенов;
  • проверке режимов работы нижнего нагревательного элемента;
  • выставлении рабочих температур верхнего кварцевого излучателя;
  • установке специальных кнопок для быстрого изменения параметров нагрева;
  • программировании микроконтроллера.
изготовление паяльной станции своими рукамиОсобенности устройства паяльной станции.

По мере выполнения паяльных работ может потребоваться изменение температур и режимов.

Такие действия можно произвести при помощи кнопок, связанных с микрокомпьютером:

  • кнопка + должна быть настроена на повышение температуры покупного или самодельного кварцевого излучателя с шагом в 5 – 10 градусов;
  • кнопки – должна понижать температуру также с небольшим шагом.

Основные настройки микрокомпьютера представлены:

  • регулировкой значений P, I и D;
  • подстройкой профилей, в которых прописан шаг изменения тех или иных параметров;
  • настройкой критических температур, при которых станция отключается.
[box type=”fact”]Некоторые конструкторы верхний нагреватель делают из фена. Такой подход подойдет лишь для пайки небольших элементов в SMD корпусах.[/box]

Рекомендации по работе

Самодельные ИК паяльные станции отлично подойдут для небольшого ремонта дома или в частных мастерских. Благодаря относительной простоте конструкции и широкому функционалу инфракрасные станции пользуются невероятным спросом.

схема для изготовления ИК паяльникаЭлектрическая схема паяльника.

Основными рекомендациями при сборке станций и работе на них являются:

  1. Грамотная настройка параметров микроконтроллера.
    В случае, если в компьютер внесены неверные параметры, паяльная установка может некачественно пропаивать компоненты и повреждать маску печатных плат.
  2. Надевание средств защиты при выполнении паяльных работ.
    Кварцевый излучатель, в отличие от керамического, при работе порождает излучение на видимой для глаза длине волны. Поэтому, если в устройстве используется кварцевый инфракрасный излучатель рекомендуется надевать специальные защитные очки, защищающие оператора от повреждения зрения.
  3. Электрическая принципиальная схема станции должна содержать только надежные элементы.
    Кроме этого, все конденсаторы и резисторы, используемые при сборке, должны иметь быть выбраны с небольшим запасом.
  4. Контроллер для ИК паяльной станции можно выбрать из популярных моделей Ардуино.
    При желании, контроллер можно изготовить и из неизвестного микрокомпьютера, однако, в этом случае мастеру придется самостоятельно разработать программное обеспечение для работы паяльной станции.
  5. При сборке станции следует предусмотреть разъем для подключения паяльника.
    Иногда, компоненты платы удобнее точечно выпаивать при помощи обычного паяльника или устройства с термофеном вместо жала. Подобное решение можно реализовать, путем проектирования дополнительной термопары для контроля температуры паяльника.
  6. Для пайки с использованием активных флюсов и припоев с высоким содержанием свинца следует обеспечить циркуляцию воздуха.
    Хорошая вытяжка или вентилятор значительно облегчат дыхание оператора и позволяет ему не дышать испарениями вредных металлов.

Заключение

ИК паяльные станции – это одни из лучших установок в самых разных корпусных исполнениях. Сделать паяльную станцию на инфракрасных подогревающих элементах можно даже в домашних условиях.

Как правило, домашние мастера для нижних нагревателей предпочитают использовать мощные галогеновые лампы. Основные распиновки разъемов, параметры микросхем, модели микроконтроллера, инструкции о том, как из бытового фена сделать паяльный и другая информация доступна в интернете.

cxema.org — Крутая паяльная станция своими руками

Давно хотел купить станцию, но из-за финансовых проблем не представилась возможность и чуть подумав решил — а нельзя ли ее сделать своими руками?

Немного порылся в сети и нашел такой ролик https://www.youtube.com/watch?v=wzGbTwlyZxo. Станция как раз то, что мне нужно — управление микроконтроллером, вывод данных на жк дисплей 16х2, на котором отображается.

Верхняя строка — заданная температура паяльника и действующая температура на нем, данные обновляются несколько раз в секунду (0-480гр)

Нижняя строка — заданная температура фена, действующая температура на нем (0-480гр), а также скорость вращения встроенного в фен вентилятора (0-99)

Плата и схема

Печатную плату можете скачать (+ схема и прошивка) тут, все в оригинале, как у автора.

Несколько советов для тех, кому лень смотреть ролики (хотя в них я все довольно подробно пояснил)

Размеры печатной платы уже установлены, зеркалить тоже не нужно. Клеммы, через которые органы управления стыкуются с платой желательно заменить, т.е вместо клемм использовать обычный способ — взять провода и запаять в соответствующие отверстия на плате.

Во время травления ОБЯЗАТЕЛЬНО сверить участки платы с шаблоном , поскольку в некоторых местах выводы SMD компонентов могут образовать КЗ, на фото все это прекрасно видно

МК типа ATMEGA328 — тот же микроконтроллер, которых на платках программатора с набором arduino uno, в Китае стоит копейки, но с мк вам будет нужен либо самодельный программатор, либо родной arduino uno, а также кварцевый резонатор на 16МГц.

3896930087.png

МК полностью отвечает за управление и вывод данных на ЖК дисплей. Управление станцией довольно простое — 3 переменных резистора на 10кОм (самые обычные, моно — 0,25 или 0,5 ватт) первых отвечает за температуру паяльника, второй — вена, третий увеличивает или уменьшает обороты встроенного в фен кулера.

Паяльник управляется мощным полевым транзистором, через который будет протекать ток в до 2-х Ампер, следовательно на нем будет нагрев, будет также нагреваться и симистор — его вместе с транзистором и стабилизатором на 12 Вольт проводами вывел на общий теплоотвод, дополнительно изолировал корпуса этих компонентов от радиатора.

Светодиоды обязательно взять 3мм с небольшим потреблением (20мА) из за использования более мощных светодиодов 5мм (70мА) у меня не работал фен, точнее не шел нагрев. Причина в том, что светодиод на плате и светодиод, который встроен в опторазвязку ( он и собственно управляет всем узлом нагрева фена) подключены последовательно и попросту не хватало питания, чтобы светодиод в опторазвязке засвечивался.

Паяльник

Сам взял паяльник Ya Xun для станций такого типа 40 ватт с долговечным жалом. Штекер имеет 5 пинов (контактных отверстий), распиновка штекера ниже

Учитывайте, что на фото распиновка штекера, который на самом паяльнике,

Паяльник имеет встроенную термопару, данные из которого принимаются и расшифруются уже самой станцией. ОБЯЗАТЕЛЬНО нужен паяльник с термопарой, а не с термистором в качестве датчика температуры.

Термопара имеет полярность, при неверном подключении термопары паяльник после включении наберет максимальную температуру и станет неуправляемым.

Фен

В принципе мощность может быть от 350 до 700 ватт, советую не более 400 ватт,

того сполна хватит для любых нужд. Фен тоже со встроенной термопарой в качестве температурного датчика. Фен должен быть со встроенным кулером. Имеет гнездо 8 пин, распиновка гнезда на фене представлена ниже.

Внутри фена имеется сам нагреватель на 220 Вольт, термопара, вентилятор и геркон, последний сразу можно выкинуть, в этом проекте он не нужен.

Нагреватель не имеет полярности , а термопара и кулер — имеют, так, что соблюдайте полярность подключения, в противном случае мотор не будет крутиться, а нагреватель наберет максимальную температуру и станет неуправляемым.

Блок питания

Любой (желательно стабилизированный адаптер) 24 Вольт минимум 2 Ампер, совету- 4-5 Ампер. Отлично подойдут универсальные зарядники для ноутбуков, в которых есть возможность подстройки выходного напряжение 12 до 24 Вольт, защита от коротких замыканий и стабилизированных выход — а стоит копейки, сам выбрал именно такой.

55135589.png

Можно также использовать маломощный блок питания для светодиодных лент 24 Вольт, есть с током от 1 Ампер.

1156134837.png

Можно также слегка доработать электронный трансформатор ( как самый бюджетный вариант) и внедрить в схему, более детально о блоках питания я пояснил в конце видеоролика (часть 1)

Можно также использовать трансформаторный блок питания — можно и не стабилизированный, но повторюсь — стабилизацию иметь желательно.

Монтаж и корпус

Корпус от китайской магнитолы, к ней отлично подошел дисплейчик 16х2, все органы управления установлены на отдельный пластиковый лист и стыкованы к нижней части магнитолы.

Основные силовые компоненты укреплены на теплоотвод, через дополнительные изоляционные прокладки и пластиковые шайбы. Теплоотвод взят от нерабочего бесперебойника.

1967332780.jpg4145252989.jpg

Он нагревается, но только после долгой работы феном на большой мощности, но все это терпимо, к стати — на плате предусмотрен дополнительный выход 12 Вольт для подключения купера, так, что можно и отдувать радиатор если в этом есть нужда.

Настройка

В принципе для настройки нужен либо термометр либо тестер с термопарой и возможностью измерения температуры.

Для начала нужно выставить на паяльнике некоторую температуру (к примеру 400гр) дальше прижать термопару к жалу паяльника, чтобы понять реальную температуру на жале, ну а дальше просто с помощью подстроечного резистора на плате (медленное вращение) добиваемся того, чтобы сравнить реальную температуру на паяльнике (которая выводится на дисплей) с той, что показывает термометр.

То же самое нужно проделать с феном, только термометр нужно поставить под струю горячего воздуха.

Очень совету- подстроечные резисторы взять многооборотные для удобной и наиточной настройки.

К стати — третий подстроечник на плате отвечает за контраст дисплея.

Минусы

Честно скажу — не заметил, конструкция универсальна, удобна, проста и одновременно получаем профессиональную паяльную станцию для любых нужд, за что и автору большой респект.

1011833304.jpg

Основные достоинства и затраты.

Ценовая категория таких станций в районе 100 — 150 $, у нас есть полное управление феном и паяльником и достаточно умная начинка, которая выводит все данные на жк дисплей, в бюджетных станциях вместо дисплея обычные светодиодные индикаторы.

Умная система управления термофеном — при отключении самого фена кулер будет работать до тех пор, пока не охладит нагреватель, затем сам по себе отключится, тоже очень продуманное решение для безопасности, которое имеется на всех профф. станциях.

Также имеется возможность регулировки оборотов кулера.

И в случае фена и в случае паяльника максимальная температура 480гр.

На счет затрат

  • Паяльник можно купить тут
  • Фен тут
  • Насадки для фена тут
  • Плата ардуино с мк тут
  • ЖК дисплей тут
  • Набор жал для паяльника тут
  • Блок питания тут

P.S. данная статья была напечатана за пол часа, если что пропустил — простите.

Самодельные паяльные станции для дешевых утюгов

У каждого, кто читал этот пост, были дешевые паяльники в виде карандаша, которые в какой-то момент своей жизни вставлялись прямо в стену. Даже если вы перешли на профессиональную паяльную станцию, у вас, вероятно, есть один из этих дешевых утюгов, который медленно нагревается до неизвестной температуры. [Пантелис] подумал, что сможет решить последнюю проблему с помощью своей самодельной паяльной станции для этих простых паяльников.

Поскольку паяльная станция предназначалась для контроля температуры утюга, [Pantelis] должен был придумать способ измерения температуры.Он сделал это, прикрепив термопару к утюгу возле наконечника. Провода были пропущены через ручку, а затем вдоль шнура питания.

И заводская железная заглушка, и выводы термопары вставляются в коробку, собранную специально для этого проекта. На фотографии вы увидите ЖК-экран, на котором отображаются как заданная, так и фактическая температура. Линейный потенциометр под ЖК-экраном используется для установки целевой температуры. Светодиод справа предупреждает оператора о том, что утюг нагревается, и когда он нагрелся до нужной температуры.

Несмотря на то, что информации о схемах или перечнях деталей не так много, [Пантелис] сделал хорошую фотографию, документируя свою сборку. Проверьте это, на это стоит посмотреть.

.

Maker Hub — Пайка | Jaycar Electronics

Железный могучий

Паяльник прошел долгий путь со времен карандаша, который вы подключаете к сети переменного тока.

От беспроводной работы до регулировки температуры и индукционного нагрева — вы обязательно найдете паяльник с точным набором необходимых вам функций.

Что такое силовая установка?

Нагрев точки Кюри, возможно, является наиболее передовым методом достижения рабочей температуры.Он основан на электромагнитной индукции, что делает наконечник нагревательным элементом .

«Обычный» паяльник просто использует нагревательный элемент переменного тока для нагрева жала. Они предназначены для достижения заданной температуры и доступны в различных номинальных мощностях.

Беспроводные электронные модели могут питаться как от стандартных элементов питания AA, так и от встроенной аккумуляторной батареи.

Паяльники

на бутановом топливе имеют каталитический нагреватель в головке, который обеспечивает более стабильную температуру, чем обычное пламенное горение .Многие поставляются со сменными паяльными головками для высокотемпературного пламени до 1300 ° C .

Как настроить нагрев?

Паяльные станции

позволяют регулировать температуру с помощью , регулируя мощность , подаваемую на нагревательный элемент.

Аналоговые блоки — это более простая разновидность, часто включающая в себя регулируемый регулятор мощности (похожий на диммер), для выбора температуры и термостат для поддержания ее постоянной.

Цифровые станции

обеспечивают более высокую точность благодаря микропроцессорному управлению и включают светодиодный индикатор, показывающий температуру наконечника.

В качестве автономной альтернативы газовые паяльники имеют регулируемый дроссель , который регулирует поток топлива к каталитическому нагревателю.

Подробнее о паяльниках см. Ниже.

— сентябрь 2019

Интернет-магазин

Soldering Irons

Выбор подходящего паяльника

Пайка используется в качестве метода склеивания на протяжении тысячелетий.Это довольно просто, и техника практически не изменилась — только материалы и технология. Все, что вам нужно, — это качественные материалы, твердая рука и хороший глаз (или увеличительное стекло!). Читайте дальше, чтобы понять, какой тип железа подойдет для ваших проектов.

Что такое пайка?

Пайка соединяет несколько металлических предметов с помощью наполнителя (припоя). Паяльник нагревает припой и область нанесения припоя, перемещая припой в структуру металлических предметов, которые мгновенно расширяются в ответ на высокую температуру.Когда припой и металлическая поверхность остывают, структура сжимается, припой превращается из жидкого в твердое, и образуется связь. Компоненты, требующие пайки, включают провода, выводы компонентов, контактные площадки на печатных платах (PCB), радиаторы и кожухи двигателей. Практически все типы постоянных электрических соединений требуют пайки (за исключением специальных штекерных узлов). Паяльники в ассортименте Jaycar стоят от менее 20 до нескольких сотен долларов; при этом основными ценовыми факторами являются мощность, контроль температуры и мощность.

Мощность

Мощность, вероятно, является наиболее важным фактором, который следует учитывать, поскольку она определяет доступную мощность нагрева, время нагрева и регулирование температуры. Последнее очень важно, поскольку вы не хотите углубляться в пайку и обнаруживать, что ваш утюг не поддерживает тепло, создавая непоследовательные паяные соединения. Для работы с электроникой 16 Вт считается низким уровнем, 50 Вт — средним диапазоном, а 130 Вт — высоким. По сути, вам нужен утюг, который поддерживает равномерное соотношение потерь тепла к тепловыделению.Это особенно важно, если в вашем утюге нет контроля температуры. Мощность не обязательно соответствует определенной температуре.

Температура

Контроль температуры также имеет решающее значение для успешной пайки. Металлический наконечник утюга страшно нагревается — до 480 ° C! Большинство утюгов нагревается за считанные секунды, но то, как это тепло поддерживается, зависит от мощности утюга и количества тепла, которое он теряет во время работы. Более дорогие утюги предлагают точный регулируемый контроль температуры.Менее дорогие утюги предлагают ограниченный ассортимент (или вообще без него). Важно учитывать температуру, поскольку разные припои имеют разные температуры плавления. Ваш утюг должен нагреваться до 180–300 ° C для припоев на основе свинца и 220–245 ° C для бессвинцовых. Ваша идеальная рабочая температура также определяется типом выполняемой вами работы. Для небольшой электроники потребуется более низкая температура, чем для пайки толстых кабелей.

Подача электроэнергии

Последним важным фактором при выборе паяльника является подача питания.Чаще всего используется питание от сети, поскольку оно постоянное и надежное, но утюги также могут работать на газе или от батареек. Газовые утюги отлично подходят для удаленной работы, где доступ к электросети сомнительна. Большинство газовых утюгов в ассортименте Jaycar имеют среднее время работы 45+ минут и легко пополняются с помощью переносной баллончика бутана. Утюги с батарейным питанием идеально подходят для использования там, где существует опасность испарений бензина или взрыва, но в остальном они громоздки и не рентабельны.

Утюги, комплекты или станции?

Паяльники

можно приобрести отдельно, в комплекте или встраивать в станцию.Станции, как правило, предлагают более точные элементы управления и операции, а в некоторых случаях и дополнительные функции (такие как распайка, маломощный режим холостого хода или горячая замена наконечников). То, как вы планируете использовать утюг, определяет, какие функции ему потребуются. Планируете ли вы пайку мелких деталей, требующих точного контроля? Вы паяете более крупные проекты, которые не такие деликатные? Можете ли вы рассчитывать на питание от сети или вам нужен портативный утюг? Как часто вы будете пользоваться утюгом? Ожидаете ли вы, что ваши сеансы пайки будут короткими или превысят полчаса?

Если вы планируете использовать утюг для небольших работ, рассмотрите паяльник Duratech 25 Вт (TS1465).Это недорогой вариант для новичков в пайке, он отлично подходит для сборки и небольших проектов. Если вы планируете использовать свой утюг для более крупных и сложных работ, тогда паяльник с регулируемой температурой Duratech 48 Вт (TS1564) для вас. Станция оснащена точной регулировкой температуры, губкой для чистки наконечников и подставкой. Обе модели входят в число самых популярных моделей Jaycar. Наш стартовый набор (TS1651) — это доступный вариант для молодых энтузиастов пайки, который включает паяльник, подставку, припойный провод и присоску для припоя.Если вас интересует вариант с газовым двигателем, комплект газовых паяльных инструментов Portasol Pro (TS1113) включает качественный утюг, 3 сменных металлических наконечника и чистящую губку — все в удобном футляре.

Jaycar продает более 25 электрических, газовых и аккумуляторных паяльников! Наши сотрудники готовы провести вас через ассортимент и позаботиться о том, чтобы вы уехали с тем, что вам нужно.


.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *