Отличие тиристора от симистора: Симисторные и тиристорные стабилизаторы напряжения: что лучше выбрать?

Содержание

Тиристоры и Триаки (симисторы) — Десять Золотых Правил

 В этой статье мы рассмотрим 10 основных правил применения тиристоров и триаков (симисторов) при проектировании устройств управления мощностью.

Тиристор
Тиристор — управляемый диод, в котором управление током от анода к катоду происходит за счет малого тока управляющего электрода (затвора).

Вольтамперная характеристика тиристора показана на Рис. 2.

Открытое состояние тиристора.
Тиристор переходит в открытое состояние при подаче положительного смещения на затвор относительно катода. При достижении порогового значения напряжения затвора VGT (ток через затвор имеет значение IGT), тиристор переходит в открытое состояние. Для стабильного перехода в открытое состояние при коротком управляющем импульсе (менее 1 мкс), пиковое значение порогового напряжения необходимо увеличить.


После достижения тока нагрузки значения IL, тиристор будет оставаться в открытом состоянии, при отсутствии тока затвора.
Необходимо отметить, что значения параметров VGT, IGT и IL указаны в спецификации для температуры перехода 25°C. Эти значения возрастают при понижении температуры. Поэтому внешние цепи тиристора должны рассчитываться для поддержания необходимых амплитуд VGT, IGT и IL при минимальной ожидаемой рабочей температуре.


Правило 1. Для того чтобы тиристор (триак) перевести в открытое состояние: ток затвора Е IGT необходимо подавать до достижения тока нагрузки Е I

L. Эти условия должны выполняться при минимальной ожидаемой рабочей температуре перехода.


Чувствительный затвор тиристоров, таких как BT150, при увеличении температуры перехода выше Tjmax может вызывать ложное срабатывание за счёт тока утечки от анода к катоду.
Во избежание ложных срабатываний можно посоветовать следующие рекомендации:

  1. Рабочая температура перехода должна быть меньше значения Tjmax.
  2. Использовать тиристоры с меньшей чувствительностью, такие как BT151, или уменьшить чувствительность имеющегося тиристора включением резистора номиналом 1КОм или менее между затвором и катодом.
  3. При невозможности использования менее чувствительного тиристора, необходимо приложить небольшое обратное смещение к затвору в фазе закрытого состояния тиристора для увеличения IL. В фазе отрицательного тока затвора необходимо уделить внимание уменьшению мощности рассеивания затвора.

Коммутация тиристора.
Для перехода тиристора в закрытое состояние ток нагрузки должен снизится ниже значения тока удержания IHна время, позволяющее всем свободным носителям заряда освободить переход. В цепях постоянного тока это достигается тем, что цепь нагрузки уменьшает ток до нуля, чтобы дать возможность тиристору выключиться.

В цепях переменного тока цепь нагрузки уменьшает ток в конце каждой полуволны. В этой точке тиристор переходит в закрытое состояние.
Тиристор может перейти в состояние проводимости, если ток нагрузки не будет удерживаться ниже IHдостаточное время.
Обратите внимание, что значение IH указывается для температуры перехода 25°C и, подобно IL, оно уменьшается при повышении температуры. Поэтому, для успешной коммутации, цепь должна позволять уменьшаться току нагрузки ниже I
H
 достаточное время при максимальной ожидаемой рабочей температуре перехода.


Правило 2. Для переключения тиристора (или триака), ток нагрузки должен быть < IH в течение достаточного времени позволяющего вернуться к состоянию отсутствия проводимости. Это условие должно быть выполнено при самой высокой ожидаемой рабочей температуре перехода.


Триак (симистор)
Триак представляет собой «двунаправленный тиристор». Особенностью триака является способностью проводить ток как от анода к катоду, так и в обратном направлении.

Состояние проводимости.
В отличие от тиристоров, триак может управляться как положительным, так и отрицательным током между затвором и T1. (Правила для VGT, IGT и IL те же, что для тиристоров См. Правило 1.) Это свойство позволяет триаку работать во всех четырёх секторах, как показано в рис. 4.

Когда затвор управляется постоянным током или однополярными импульсами с нулевым значением тока нагрузки, в квадрантах (3+,3-) предпочтителен отрицательный ток затвора по нижеследующим причинам.
(Внутреннему строению переходов триака характерно то, что затвор наиболее отдален от области основной проводимости в квадранте 3+ )

  1. При более высоком значении IGT требуется более высокий пиковый IG.
  2. При более длинной задержке между IG и током нагрузки требуется большая продолжительность IG.
  3. Низкое значение dIT/dt может вызывать перегорание затвора при управлении нагрузками, создающими высокий dI/dt (включение холодной лампы накаливания, ёмкостные нагрузки),
  4. Чем выше IL (это относится и к квадранту 1-), тем большая продолжительность IG будет необходима для малых нагрузок, что позволит току нагрузки с начала полупериода достичь значения выше I
    L
    .

В стандартных цепях управления фазой переменного тока, таких как регуляторы яркости и регуляторы скорости вращения, полярность затвора и T2 всегда одинаковы. Это означает, что управление производится всегда в 1+ и 3- квадрантах, в которых коммутирующие параметры триака одинаковы, а затвор наиболее чувствителен.
Примечание: 1+, 1-, 3- и 3+ это система обозначений четырех квадрантов, использующаяся для краткости: вместо того, чтобы записать «MT2+, G+» пишется 1+, и т.д. Эти данные получены из графика вольтамперной характеристики триака.

Положительному напряжению T2 соответствует положительное значение тока через T2, и наоборот (см. Рис. 5).

Следовательно, управление осуществляется только в квадрантах 1 и 3. А указатели (+) и (-) относятся к направлению тока затвора.


Правило 3. При проектировании необходимо избегать включения триака в 3+ квадранте (MT2-, G +).


Ложные срабатывания триака.
В ряде случаев возможны нежелательные случаи включения триаков. Некоторые из них не приведут к серьёзным последствиям, в то время как другие потенциально разрушительны.

(а) Уменьшение шумовых сигналов затвора.
В электрически шумных окружающих средах ложное срабатывание может происходить, если шумовое напряжение на затворе превышает VGT ,поэтому тока затвора достаточно для включения триака. Первый способ защиты — минимизировать возникающий шум. Лучше всего это может быть достигнуто уменьшением длины проводников ведущих к затвору и соединением цепи управления затвором непосредственно с выводом T1 (или катодом для тиристора). В случае если это невозможно следует использовать витую пару или экранированный кабель.
Дополнительную шумовую устойчивость можно обеспечить, уменьшив чувствительность затвора с помощью включения резистора до 1Ком между затвором и T1. Если в качестве высокочастотного шунта используется конденсатор, желательно включить последовательно резистор между ним и затвором, чтобы уменьшить пик тока конденсатора через затвор и минимизировать возможность повреждения затвора от перегрузки.
В качестве решения этих проблем можно использовать триаки ряда «H» (например BT139-600H). Этот нечувствительный ряд (IGT min =10mA) специально разработан для обеспечения высокой шумовой устойчивости.


Правило 4. Для минимизации шумового срабатывания следует свести к минимуму длину проводников к затвору. Подключить общий провод непосредственно к T1 (или катоду). Желательно использовать витую пару или экранированный кабель. Можно поставить резистор до 1Ком между затвором и T1, или шунтировать затвор конденсатором и соединённым с ним последовательно резистором.


Один из вариантов — использование нечувствительных триаков ряда «H».


(b) Превышение максимального значения скорости нарастания напряжения коммутации dVCOM/dt.
Этот эффект может возникнуть при питании реактивных нагрузок, где есть существенный сдвиг фазы между напряжением и током нагрузки. При выключении триака в то время, когда фаза тока нагрузки проходит через ноль, напряжение не будет нулевым из-за сдвига по фазе (см. рис.6).

Если при этом скорость изменения напряжения превысит допустимое значение dVCOM/dt, триак может остаться в состоянии проводимости. Это происходит из-за того, что носителям заряда не хватает времени, чтобы освободить переход.
На параметр dVCOM/dt влияют два условия:

  1. Скорость спадания тока нагрузки при переключении, dICOM/dt. Высокое значение dICOM/dt снижает значение dVCOM/dt.
  2. Температура перехода Tj. Чем выше Tj, тем ниже значение dVCOM/dt.

Если возможно превышение значения dVCOM/dt триака, то ложного срабатывания можно избежать использованием RC демпфера между T1-T2. Это ограничит скорость изменения напряжения. Обычно выбирается углеродный резистор 100 Ом, и конденсатор 100nF.
В качестве альтернативы можно предложить использование Hi-Com триаков (более подробно об этих триаках можно прочесть в номере 7 журнала «Компоненты и Технологии» за 2002 год).
Обратите внимание, что резистор не может быть удалён из демпфера, так как он используется в качестве ограничителя тока, во избежание возникновения высокого значения dIT/dt в моменты коммутации.

(c) Превышение максимального значения скорости нарастания тока коммутации dICOM/dt.
Высокое значение dICOM/dt может быть вызвано повышенным током нагрузки, повышенной рабочей частотой (синусоидального тока) или несинусоидальным током нагрузки.
Известный пример такого — выпрямитель питания для индуктивных нагрузок, где применение стандартных триаков невозможно из-за того, что напряжение питания оказывается ниже напряжения обратной электромагнитной индукции нагрузки и ток триака резко стремиться к нулю. Этот эффект проиллюстрирован на (рис. 7).

При нулевом токе триака, ток нагрузки будет спадать через мостовой выпрямитель. При индуктивных нагрузках возможно такое высокое значение dICOM/dt, при котором триак не может поддерживать даже небольшого значения dV/dt 50Hz синусоиды при прохождении нуля. В этом случае не будет эффекта от добавления демпфера. Решение проблемы в том, что значение dICOM/dt может быть ограничено добавлением дросселя, последовательно с нагрузкой.

Альтернативное решение — использование Hi-Com триаков.

(d) Превышение максимального значения скорости нарастания напряжения в закрытом состоянии dVD/dt
Высокая скорость изменения напряжения на силовых электродах непроводящего триака (или тиристора с чувствительным затвором) без превышения его VDRM (см. рис. 8), вызывает внутренние ёмкостные токи. При этом внутреннего тока затвора может быть достаточно, чтобы перевести триак (тиристор) в состояние проводимости. Чувствительность к этому параметру увеличивается с ростом температуры.

Там где возникает эта проблема, значение dVD/dt должно быть ограничено RC демпфером между T1 и T2 для триака (или Анодом и Катодом для тиристора).
Использование Hi-Com триаков в таких случаях может снять эти проблемы.


Правило 5. Если есть вероятность превышения значения dVD/dt или dVCOM/dt, необходимо включить RC демпфер между T1 и T2. Если есть вероятность превышения значения dICOM/dt, необходимо включить последовательно с нагрузкой катушку индуктивности в несколько mH.
Альтернатива — использование HI-Com триаков


(e) Превышение повторяющегося пикового напряжения в закрытом состоянии VDRM
Если напряжение на T2 превышает VDRM (это может происходить во время переходных процессов), то ток утечки T2-T1 достигнет значения, при котором триак может спонтанно перейти в состояние проводимости (см. рис. 9)
При нагрузке, допускающей выбросы тока, ток чрезвычайно высокой плотности может проходить через узкую открытую область перехода. Это может привести к выгоранию перехода и разрушению кристалла. Это может происходить в схемах управления лампами накаливания, емкостных нагрузках и схемах защиты мощных электронных ключей.

Превышение VDRM или dVD/dt не всегда приводит к потере работоспособности триака, а вот создаваемая dIT/dt скорость нарастания тока It может привести к выходу из строя прибора. Из-за того, что требуется некоторое время для распространения проводимости по всему переходу, допустимое значение dIT/dt ниже чем, если бы триак был включен сигналом затвора. Если значение dIT/dt не будет превышать минимального значения, которое даётся в его характеристиках, то, скорее всего, триак не выйдет из строя. Эта проблема может быть решена, подключением не насыщающейся индуктивности (без сердечника), последовательно с нагрузкой. Если это решение неприемлемо, то альтернативное решение может быть в том, чтобы обеспечить дополнительную фильтрацию и ограничение выбросов. Это повлечёт использование, параллельно питанию, Метал-Оксидного Варистора (МОВ) для ограничения напряжения и последовательное подключение LС цепочки перед варистором.
Некоторые изготовители выражают сомнения в надежности схем с использованием MOB, так как они при высоких температурах окружающей среды входят в тепловой пробой и выходят из строя. Это является следствием того, что рабочее напряжение МОВ обладает обратным температурным коэффициентом. Однако, при применении МОВ на 275В (среднеквадратичное значение) для 230В цепей, риск перегорания МОВ минимален. Такие проблемы вероятны, если варистор на 250В используется при высокой температуре окружающей среды в цепях со среднеквадратичным значением 230В.


Правило 6. Если есть вероятность превышения VDRM триака во время переходных процессов, необходимо принять следующие меры:
Ограничить высокое значение dIT/dt ненасыщаемой катушкой индуктивности на единицы mH последовательно с нагрузкой; Использовать MOB параллельно питанию в комбинации с фильтром к источнику питания.


Состояние проводимости, dIT/dt
Когда триак(тиристор) находятся в состоянии проводимости под действием сигнала затвора, проводимость начинается в участке кристалла смежным к затвору, и затем быстро распространяясь на активную область. Эта задержка накладывает ограничение на значение допустимой скорости нарастания тока нагрузки. Высокое значение dIT/dt может быть причиной выгорания прибора, в результате чего произойдёт короткое замыкание между T1 и T2.
При работе в 3+ квадранте, ещё больше снижается разрешенное значение dIT/dt из-за структуры перехода. Это может привести к мгновенному лавинному процессу в затворе и перегоранию во время быстрого нарастания тока. Разрушение триака может произойти не сразу, а при постепенном выгорании перехода Затвор-T1, что приведёт к короткому замыканию после нескольких включений. Чувствительные триаки наиболее подвержены этому. Эти проблемы не относятся к Hi-Com триакам, так как они не работают в 3+ квадранте.
Значение dIT/dt связано со скоростью нарастания тока затвора(dIG/dt) и максимальным значением IG. Высокие значения dIG/dt и пикового IG (без превышения номинальные мощности затвора) дают более высокое значение dIT/dt.


Правило 7. Продуманная схема управления затвором и отказ от работы в квадранте 3+ увеличивает значение dIT/dt.


Самый простой пример нагрузки создающей высокий начальный бросок тока — лампа накаливания, которая имеет низкое сопротивление в холодном состоянии. Для резистивных нагрузок этого типа значение dIT/dt достигнет максимального значение при начале перехода в состояние проводимости в пике напряжения сети. Если есть вероятность превышения номинального значение dIT/dt триака, необходимо ограничить это включением катушки индуктивности mH или терморезистором с обратным температурным коэффициентом последовательно с нагрузкой.
Дроссель не должен насыщаться в течение максимума пика тока. Для ограничения значения dIT/dt необходимо использовать катушку индуктивности без сердечника.
Есть более правильное решение, с помощью которого можно избежать необходимости включения последовательно с нагрузкой токоограничивающих приборов. Оно состоит в том, чтобы использовать режим включения при нулевой разности потенциалов. Это дало бы плавный рост тока с начала полуволны.
Примечание: Важно помнить, что режим включения при нулевой разности потенциалов применим только к резистивным нагрузкам. Использование того же метода для реактивных нагрузок, где есть сдвиг фазы между напряжением и током, может вызвать однополярную проводимость, ведущую к возможному режиму насыщения индуктивных нагрузок, разрушительно высокому току и перегреву. В этом случае требуется более совершенный способ переключения при нулевом токе и/или схема управления фазой включения.


Правило 8. Если есть вероятность превышения значения dIT/dt необходимо установить последовательно с нагрузкой индуктивность в несколько mH или терморезистор с обратным температурным коэффициентом.
Для резистивных нагрузок можно использовать режим включения при нулевой разности потенциалов.


Отключение Триаки использующиеся в цепях переменного тока коммутируются в конце каждого полупериода тока нагрузки, если не приложен сигнал затвора, чтобы поддержать проводимость с начала следующего полупериода. Правила для IH те же что для тиристора. См. Правило 2.

Некоторые особенности Hi-Com триаков
Hi-Com триаки имеют отличную от обычных триаков внутреннюю. Одно из отличий состоит в том, что две половины тиристора лучше изолированы друг от друга, что уменьшает их взаимное влияние. Это дает следующие преимущества:

  1. Увеличение допустимого значения dVCOM/dt. Это позволяет управлять реактивными нагрузками (в большинстве случаев) без необходимости в демпфирующем устройстве, без сбоев в коммутации. Это сокращает количество элементов, размер печатной платы, стоимость, и устраняет потери на рассеивание энергии демпфирующим устройством.
  2. Увеличение допустимого значения dICOM/dt. Это значительно улучшает работу на более высоких частотах и для несинусоидальных напряжений без необходимости в ограничении dICOM/dt при помощи индуктивности последовательно с нагрузкой.
  3. Увеличение допустимого значения dVD/dt. Триаки очень чувствительны при высоких рабочих температурах. Высокое значение dVD/dt уменьшает тенденцию к самопроизвольному включению из состояния отсутствия проводимости за счёт dV/dt при высоких температурах. Это позволяет применять их при высоких температурах для управления резистивными нагрузками в кухонных или нагревательных приборах, где обычные триаки не могут использоваться.

Из-за различной внутренней структуры работа Hi-Com триаков в квадранте 3+ невозможна. В большинстве случаев это не является проблемой, так как это наименее желательный и наименее используемый квадрант. Поэтому замена обычного триака на Hi-Com почти всегда возможна.
Более подробную информацию по Hi-Com триакам можно найти в специальной литературе:
Factsheet 013 — Understanding Hi-Com Triacs, and
Factsheet 014 — Using Hi-Com Triacs.

Способы монтажа триаков.
При малых нагрузках или коротких импульсных токах нагрузки (меньше чем 1 секунда), можно использовать триак без теплоотводящего радиатора. Во всех остальных случаях его применение необходимо.
Существует три основных метода фиксации триака к теплоотводу — крепление зажимом, крепление винтом и клёпка. Наиболее распространены первые два способа. Клёпка — в большинстве случаев не рекомендуется, так как может вызвать повреждение или деформацию кристалла , что приведёт к выходу прибора из строя.

Фиксация к теплоотводу зажимом.
Это — предпочтительный метод с минимальным тепловым сопротивлением, так как зажим достаточно плотно прижимает корпус прибора к радиатору. Это одинаково подходит как для неизолированных (SOT82 и SOT78), так и для изолированных корпусов (SOT186 F-корпус и более ранних SOT186A X-корпус).
Примечание: SOT78 известен как TO220AB.

Фиксация к теплоотводу при помощи винта

  1. Набор для монтажа корпуса SOT78 включает прямоугольную шайбу, которая должна быть установлена между головкой винта и контактом, без усилий на пластиковый корпус прибора.
  2. Во время установки наконечник отвертки не должен воздействовать на пластиковый корпус триака (тиристора).
  3. Поверхность теплоотвода в месте контакта с электродом должна быть обработана с чистотой до 0.02mm.
  4. Крутящий момент (с установкой шайбы) должен быть между 0.55Nm- 0.8Nm.
  5. По возможности следует избегать использования винтов-саморезов, так как это снижает термоконтакт между теплоотводом и прибором.
  6. Прибор должен быть механически зафиксирован перед пайкой выводов. Это минимизирует чрезмерную нагрузку на выводы.

Правило 9. При монтаже триака (тиристора) необходимо избегать приложения чрезмерных механических усилий. Перед пайкой необходимо закрепить прибор одним из трёх выше перечисленных способов. Особое внимание необходимо уделить плотности прилегания корпуса прибора к радиатору.


Тепловое сопротивление
Тепловое сопротивление Rth — это сопротивление между корпусом прибора и радиатором. Этот параметр аналогичен электрическому сопротивлению R = V/I, поэтому тепловое сопротивление Rth = T(K)/P(W), где T — температура в Кельвинах, и P-рассеяние энергии в ваттах.

Для прибора, установленного вертикально без радиатора, тепловое сопротивление задаётся тепловым сопротивлением переход-окружающая среда Rth =Rth j-a.
-Для корпуса SOT82 значение равно 100 K/W;
-Для корпуса SOT78 значение равно 60K/W; -Для корпусов F и X значение равно 55K/W .

Для не изолированных приборов, установленных на теплоотвод, тепловое сопротивление является суммой сопротивлений переход-корпус, корпус-теплоотвод и теплоотвод-окружающая среда.

Rth j-a = Rth j-mb + Rth mb-h + Rth h-a
(не изолированный корпус).

Для изолированных корпусов нет ссылки на термосопротивление Rth j-mb ,так как Rth mb-h принят постоянным и дан с учётом использования термопасты. Поэтому, тепловое сопротивление для изолированного корпуса является суммой тепловых сопротивлений переход-теплоотвод и теплоотвод-окружающая среда.

Rth j-a = Rth j-h + Rth h-a
(изолированный корпус).

Rth j-mb или Rth j-h фиксированы и даны в документации к каждому прибору.
Rth mb-h также даются в инструкциях по установке для некоторых вариантов изолированного и неизолированного монтажа, с использованием или без использования термопасты.
Rth h-a регулируется размером теплоотвода и степенью воздушного потока через него.
Для улучшения теплоотдачи всегда рекомендуется использование термопасты.

Расчет теплового сопротивления
Для вычисления теплового сопротивления теплоотвода для данного триака (тиристора) и данного тока нагрузки, мы должны сначала вычислить рассеяние энергии в триаке (тиристоре), используя следующее уравнение:

P = Vo * IT (AV) + Rs * IT(RMS)2

Vo и Rs получены из «on-state» характеристики триака (тиристора). Если значения не указанны, то они могут быть получены из графика путём вычерчивания касательной к VT max. Точка на оси VT, где её пересекает касательная, даёт Vo, в то время как тангенс угла наклона касательной дает Rs. Используя уравнение теплового сопротивления, данное выше, получаем: Rth j-a = T/P. Максимально допустимая температура перехода будет, когда Tj достигает Tj max при самой высокой температуре окружающей среды. Это дает нам T.

Полное тепловое сопротивление
Все расчёты по вычислению теплового сопротивления имеет смысл проводить для уже установившегося режима продолжительностью больше чем 1 секунда. Для импульсных токов или длительных переходных процессов меньше чем 1 секунда эффект отвода тепла уменьшается. Температура просто рассеивается в объеме прибора с очень небольшим достижением теплоотвода. В таких условиях, нагрев перехода зависит от полного теплового сопротивления переход-корпус прибора Zth j-mb.
Поэтому Zth j-mb уменьшается при уменьшении продолжительности импульса тока благодаря меньшему нагреву кристалла. При увеличении продолжительности до 1 секунды, Zth j-mb увеличивается до значения соответствующего установившемуся режиму Rth j-mb.
Характеристика Zth j-mb приводится в документации для двунаправленного и однонаправленного электрического тока импульсами продолжительностью до 10 секунд.


Правило 10. Для надёжной работы прибора, необходимое значение Rth j-a должно быть достаточно низко, чтобы держать температуру перехода в пределах Tj max при самой высокой ожидаемой температуре окружающей среды.


Номенклатура и корпуса
Промышленный ряд тиристоров Philips начинается с 0.8A в SOT54 (TO92) и заканчивается 25A в SOT78 (TO220AB).
Промышленный ряд триаков (симисторов) Philips начинается с 0.8A в SOT223 и заканчивается 25A в SOT78.
Самый маленький корпус триака (тиристора) для поверхностного монтажа SOT223 (рис. 11). Мощность рассеивания зависит от степени рассеивания тепла печатной платой, на которую устанавливается прибор.
Тот же кристалл устанавливается в неизолированный корпус SOT82 (рис. 13). Улучшенная теплоотдача этого корпуса, позволяет использовать его при более высоких номинальных токах и большей мощности.
На (рис. 12) показан наименьший корпус для обычного монтажа SOT54. В этот корпус ставиться кристалл, которым оснащаются SOT223.
SOT78 самый широко распространенный неизолированный корпус, большинство устройств для бытовой техники производится с использованием этого корпуса (рис. 14).
На (рис. 15) показан SOT186 (F-корпус). Этот корпус допускает в обычных условиях разность потенциалов 1,500V между прибором и теплоотводом.
Один из последних — корпус SOT186A (X-корпус), показанный на рис. 16. Он обладает несколькими преимуществами перед предыдущими типам:

  1. Корпус имеет те же размеры, как корпус SOT78 в зазорах выводов и монтажной поверхности, поэтому он может непосредственно заменять SOT78, без изменений в монтаже.
  2. Корпус допускает в обычных условиях разность потенциалов 2,500V между прибором и теплоотводом.

10 ПРАВИЛ

Правило 1. Для того чтобы тиристор (триак) перевести в открытое состояние: ток затвора Е IGT необходимо подавать до достижения тока нагрузки Е IL. Эти условия должны выполняться при минимальной ожидаемой рабочей температуре перехода.

Правило 2. Для переключения тиристора (или триака), ток нагрузки должен быть < IH в течение достаточного времени позволяющего вернуться к состоянию отсутстви

отличия, принцип работы и критерии выбора электронных стабилизирующих устройств

Автор: Александр Старченко

Эти два типа стабилизаторов напряжения относятся к электронным приборам. В них отсутствуют любые механические и электромеханические устройства. Они собраны полностью на полупроводниковых элементах, отличаются бесшумностью, высокой скоростью реакции на изменение напряжения и надёжностью. Такие стабилизаторы широко применяются в быту и на производстве.

Содержание:

  1. Принцип работы электронных стабилизаторов
  2. Тиристорный стабилизатор
  3. Симисторный стабилизатор
  4. Мощный электронный стабилизатор

Принцип работы электронных стабилизаторов

Принцип работы электронных стабилизаторов этого типа можно сравнить с принципом работы полупроводникового стабилизатора. В основе конструкции лежит использование мощного силового трансформатора. Только роль элементов переключающих его обмотки выполняют не электромагнитные реле, а мощные полупроводниковые ключи, собранные на тиристорах или симисторах.

Большое количество тиристорных стабилизаторов представлено на официальном сайте компании Энергия — Энергия.ру.

Если вы хотите приобрести симисторный стабилизатор, тогда посмотрите варианты на сайте компании по этой ссылке.

Поскольку все жилые дома, а также офисы и большинство общественных учреждений питаются по двухпроводной линии, состоящей из одной фазы и нуля, то для питания различных технических устройств используется однофазный тиристорный стабилизатор напряжения. Стабилизатор напряжения состоит из следующих элементов:

  • Входной фильтр напряжения сети;
  • Плата управления и контроля;
  • Трансформатор;
  • Силовые ключи;
  • Устройство индикации.

Очень часто в линиях электропитания переменного тока могут наводиться импульсные высокочастотные помехи, а так же короткие (5-15 мск) выбросы напряжения. Всё это может привести к нарушениям в работе электронной техники, поэтому напряжение на входе стабилизатора проходит через фильтр. Он собран на дросселях, выполненных на ферритовых кольцах и конденсаторах. Такой L/C фильтр препятствует проникновению на вход стабилизатора напряжения сетевых наводок.

Силовой трансформатор имеет секционированную вторичную обмотку, что позволяет менять коэффициент трансформации в ступенчатом режиме, и, следовательно, управлять величиной выходного напряжения. Однофазный симисторный стабилизатор напряжения собран по аналогичной схеме, а вся разница между этими стабилизаторами заключается в типе полупроводниковых ключей.

Плата управления и контроля постоянно анализирует величину напряжения сети и при её отклонении в любую сторону, с помощью электронных ключей переключает секции вторичной обмотки, изменяя тем самым величину напряжения на выходе стабилизатора. Переключающими элементами являются тиристоры или симисторы.

Схема симисторного стабилизатора напряжения может иметь до 15 переключаемых ступеней, что обеспечивает высокую точность установки напряжения на выходе. Для питания платы управления и контроля в схеме стабилизатора предусмотрен дополнительный трансформатор и выпрямитель.

Для удобства пользователей, стабилизаторы напряжения оборудованы светодиодной индикацией режимов работы:

  • «Сеть»;
  • «Нагрузка»;
  • «Перегрузка»;
  • «U вх. min»;
  • «U вх.max».

Кроме этого стабилизатор может иметь цифровой дисплей, на который выводятся данные о напряжении на входе, на выходе и частота сети переменного тока.

Большое количество тиристорных стабилизаторов представлено на официальном сайте компании Энергия — Энергия.ру.

Если вы хотите приобрести симисторный стабилизатор, тогда посмотрите варианты на сайте компании по этой ссылке.

Тиристорный стабилизатор

Тиристорный стабилизатор напряжения представляет собой трансформаторное устройство, в котором выравнивание напряжения осуществляется с помощью переключения обмоток силового трансформатора с помощью электронных ключей. Тиристор – это полупроводниковый прибор являющийся аналогом электромагнитного реле. Он имеет анод, катод и управляющий электрод.

Поскольку тиристор проводит ток только в одном направлении, то для работы в цепях переменного тока применяется встречно-параллельное соединение тиристоров. Следовательно, один ключ, подключающий часть обмотки трансформатора, будет состоять из двух тиристоров.

Тиристорный стабилизатор может обеспечить достаточно большую точность установки напряжения. Это достигается увеличением числа переключающих ступеней. Практические схемы электронных стабилизаторов на тиристорах могут обеспечить точность стабилизации порядка 3-5%.

Стабилизатор такого типа обладает следующими положительными качествами:

  • Высокая скорость стабилизации;
  • Хорошая защита от внешних помех;
  • Большой диапазон регулировки;
  • Высокая надёжность устройства.

При своих достоинствах, тиристорный стабилизатор напряжения имеет определённые недостатки, которые заметно ограничивают его сферу применения.

Большой выбор тиристорных стабилизаторов напряжения отечественного производства смотрите на официальном сайте компании Энергия по этой ссылке.

Отрицательные стороны:

  • Ограничение работы с реактивными нагрузками;
  • Потеря мощности при заниженных входных напряжениях;
  • Высокая стоимость;
  • Сложный ремонт.

Дело в том, что стабилизаторы напряжения собранные на тиристорах выдают на выходе форму напряжения далёкую от синусоидальной. Она может иметь форму трапеции или меандра. Питание электродвигателей от такого стабилизатора, особенно асинхронного типа, может привести к выходу мотора из строя. Существуют модели стабилизаторов, которые выдают нормальную форму напряжения на выходе, но такие устройства имеют сложную электронную схему и стоят заметно дороже. В связи с этим сфера применения данных стабилизаторов уже ограничивается, их нельзя будет использовать в качестве стабилизаторов для циркуляционных насосов в системах отопления, скважинах, и т. д.

Тиристорный стабилизатор напряжения при работе сам является источником помех, поэтому к нему не рекомендуется подключать измерительную аппаратуру высокой точности.

Симисторный стабилизатор

В этом устройстве в качестве электронных ключей, управляющих переключением секций силового трансформатора, используются симисторы. Это полупроводниковые приборы, объединяющие в одном корпусе два тиристора. Симистор, или симметричный тиристор, проводит ток в двух направлениях, поэтому силовой ключ выполнен на одном полупроводниковом приборе.

Симисторный стабилизатор напряжения имеет ряд недостатков по сравнению с тиристорными устройствами. Стабилизатор очень критичен к выбросам напряжения при работе с индуктивной нагрузкой. Вместе с тем он обеспечивает высокую точность регулирования.

Если вы хотите приобрести симисторный стабилизатор, тогда посмотрите варианты на сайте компании Энергия по этой ссылке.

В отличие от электромагнитных реле, симисторы переключаются за короткий промежуток времени, а отсутствие контактов и других механических элементов делает такие стабилизаторы очень надёжными. Мощные электронные ключи сильно нагреваются в процессе работы, поэтому симисторы монтируются на радиаторы, что увеличивает габариты прибора. Для лучшего охлаждения электронных компонентов симисторный стабилизатор напряжения оборудуется вентилятором.

Мощный электронный стабилизатор

Одним из лидеров в производстве энергетических систем является компания «Энергия», она применяет в своих разработках инновационные технологии, что позволяет свести до минимума некоторые недостатки тиристорных стабилизаторов напряжения.

Однофазный тиристорный стабилизатор «Энергия Classic 12 000» представляет собой современное и надёжное устройство с высокими параметрами. Устройство работает в интервале входных напряжений от 125 до 254 вольт. Предельно допустимые величины могут составлять 60 вольт по минимуму и 265 вольт по максимуму. Стабилизатор имеет переключающую схему на 12 ступеней, выполненную на мощных тиристорах. Время переключения не превышает 20 мс.

Этот, и большое количество других тиристорных стабилизаторов представлено на официальном сайте компании, Энергия.ру.

Если вы хотите приобрести симисторный стабилизатор, тогда посмотрите варианты по этой ссылке.

Стабилизатор имеет защиту от пониженного напряжения, повышенного напряжения и перегрузки. При температуре силового  трансформатора свыше 120°C так же срабатывает защита и стабилизатор отключается. Допустимая кратковременная перегрузка до 180%, может составлять 0,3 секунды. Входной фильтр подавляет все виды высокочастотных и импульсных помех. При питании нагрузки с нормальным напряжением сети используется система «байпас». Данный стабилизатор компании Энергия рассчитан на эксплуатацию в отапливаемом помещении с уровнем влажности не более 80%.

С этим читают:

Понравилась статья? Поделись с друзьями в соц сетях!

Динисторы тринисторы и симисторы

В электронике тиристорами называют изготовленные на основе монокристаллов полупроводниковые приборы, которые имеют четырехслойную pnpn структуру. В них наличествует три последовательных pn перехода, которые характеризуются двумя устойчивыми состояниями электрического равновесия: закрытым в обратном направлении и открытым в прямом.

Полупроводниковые тиристоры

 

 

Диодным тиристором (или динистором) называют такую разновидность этого полупроводникового прибора, который имеет выводы только от крайних слоев. Такой прибор, у которого еще есть дополнительный вывод от одного из средних слоев, называется тринистором (или триодным тиристором).

Двухэлектродные тиристоры ( динисторы )

Динистором (или диодным тиристором) в электронике принято именовать неуправляемый тиристор, у которого наличествует только два выхода. Один из них называется анодом (это крайняя p-область), а второй – катодом (это крайняя n-область).

Двухэлектродный тиристор ( динистор )

 

В тех случаях, когда на анод динистора от источника напряжения подается «минус», а на катод, соответственно, «плюс», то через него протекает совсем небольшой обратный ток. Это происходит потому, что при таком подключении крайние pn-переходы оказываются включенными не в прямом, а в обратном направлении.

Если полярность подключения внешнего источника изменяется на обратную, то в прямом направлении включаются переходы 1 и 3, а переход 2, расположенный между ними – в направлении обратном. Что касается такого показателя, как сопротивление между катодом динистора и его анодом, то оно при этом также достаточно велико. Это приводит к тому, что через прибор протекает ток I зкр, имеющий небольшое значение. Его измеряют при напряжении U пр.зкр.макс, то есть максимально допустимым тогда, когда тиристор находится в закрытом положении.

В тех случаях, когда происходит дальнейшее увеличение прямого напряжения, обратное напряжение, имеющееся на среднем pn переходе, падает. Как следствие, растет проходящий через динистор прямой ток. Когда прямое напряжение достигает некоторого значения, называющегося напряжением включения (U вкл), происходит открытие среднего перехода. Вследствие этого сопротивление между катодом и анодом падает достаточно серьезно и составляет всего несколько десятых долей Ом. В таких случаях говорят, что динистор находится в открытом состоянии, и при этом падение напряжения на нем составляет только около 12 В. Следует заметить, что оно очень незначительно зависит от величины того тока, который протекает через этот полупроводниковый прибор. Чаще всего в справочниках указывается только то значение напряжения открытого динистора U откр, которое возникает тогда, когда через него протекает максимально допустимый постоянный ток I откр. макс..

Для того чтобы привести динистор в открытое состояние требуется такое напряжение его включения, которое составляет несколько сотен вольт. До тех пор, пока через этот прибор протекает ток, величина которого не меньше, чем ток удержания I уд., он находится в открытом состоянии. Чтобы перевести его в состояние закрытое, надо или произвести полное отключение, или хотя бы уменьшить напряжение внешнего источника до величины 1 В.

Трехэлектродные тиристоры ( тринисторы )

От динистра тринистор с точки зрения своей конструкции отличается только тем, что у него есть еще один, третий вывод, который выведен от одной из средних областей. Он является управляющим, и именно благодаря его наличию прибор можно открывать даже тогда, когда значение напряжения меньше, чем U вкл. и даже U пр.зкр.макс.. Чтобы это сделать, нужно всего лишь пропустить открывающий ток I у.от. через управляющий электрод. Чем большее значение этого тока, тем меньше величина напряжения U вкл., при котором тринистор отпирается.

Трехэлектродный тиристор ( тринистор )

Если в качестве нагрузки в анодную цепь тринистора включено активное сопротивление (лампа накаливания, резистор, паяльник и т.п.), то следующий от анода к катоду основной ток растет очень быстро, практически мгновенно. Для того чтобы открыть тринистор, достаточно подать на управляющий электрод очень короткий импульс (несколько микросекунд). Стоит отметить, что положительный импульс подаётся если управляющий электрод присоединен к р-базе, а отрицательный импульс если соединение планируется с n-базой.

Чтобы перевести тринистор в закрытое состояние из состояния открытого, то нужно всего лишь значение основного тока сделать меньше, чем I уд.. Чаще всего в цепях, где протекает постоянный ток, это делается краткосрочным пропусканием через прибор обратного тока (его значение должно быть больше, чем значение тока основного). Чтобы это сделать, применяют специализированное коммутационное устройство.

Те тринисторы, которые функционируют в цепях переменного тока, автоматически запираются тогда, когда полуволна основного тока завершается. Именно этим объясняется то обстоятельство, что тринисторы весьма широко используются для того, чтобы управлять электродвигателями переменного тока, в импульсных схемах, инверторах, выпрямителях, различных устройствах автоматики и т.п.

Что касается значений напряжения и тока цепи управления, то они совсем невелики, а вот значение основного тока порой достигает сотен ампер, а основного напряжения – нескольких тысяч вольт. По этой причине у тринисторов такой показатель, как коэффициент усиления по мощности, может достигать 104105.

Симметричные тиристоры ( симисторы )

И динисторы, и тринисторы отличаются тем, что способны пропускать основной рабочий ток только в одном направлении. Если по каким-либо причинам это естественно ограничение необходимо обойти, то применяется два тиристора, которые включаются по встречно-параллельной схеме. Есть, однако, и более простое решение, заключающееся в том, что используются полупроводниковые ключи вида pnpnp, то есть двусторонние.

Симметричный тиристор ( симистор )

 

 

Их в электронике принято именовать симисторами, симметричными тиристорами или триаками. Полупроводниковая структура этих приборов – пятислойная, на обратной и прямой ветвях вольтамперной характеристики они обладают отрицательным сопротивлением. Для того чтобы открыть симистор, надо на управляющий электрод подать соответствующий сигнал, а чтобы закрыть – изменить полярность подключения или между силовыми электродами снять разность потенциалов.

Тиристоры и Триаки (симисторы) — Десять Золотых Правил — Компоненты и технологии

Промышленный ряд тиристоров и триаков (симисторов) Philips предоставляет широкие возможности для создания устройств управления мощностью. Соблюдение же десяти несложных правил по использованию тиристоров и триаков поможет избежать трудностей и ошибок при проектировании.

Тиристоры

Тиристор — управляемый диод, в котором управление током от анода к катоду происходит за счет малого тока управляющего электрода (затвора).

Открытое состояние тиристора

Тиристор переходит в открытое состояние при подаче на затвор положительного смещения относительно катода. При достижении порогового значения напряжения затвора VGT (ток через затвор имеет значение IGT), тиристор переходит в открытое состояние. Для стабильного перехода в открытое состояние при коротком управляющем импульсе (менее 1 мкс) пиковое значение порогового напряжения необходимо увеличить.

После достижения тока нагрузки значения IL тиристор будет оставаться в открытом состоянии при отсутствии тока затвора.

Необходимо отметить, что значения параметров VGT, IGT и IL указаны в спецификации для температуры перехода 25 °C. Эти значения возрастают при понижении температуры. Поэтому внешние цепи тиристора должны рассчитываться для поддержания необходимых амплитуд VGT, IGT и IL при минимальной ожидаемой рабочей температуре.

Чувствительный затвор тиристоров, таких, как BT150, при увеличении температуры перехода выше Tj max может вызывать ложное срабатывание за счет тока утечки от анода к катоду.

Во избежание ложных срабатываний можно посоветовать следующие рекомендации:

  1. Рабочая температура перехода должна быть меньше значения Tj max.
  2. Использовать тиристоры с меньшей чувствительностью, такие, как BT151, либо уменьшить чувствительность имеющегося тиристора включением резистора номиналом 1 кОм или менее между затвором и катодом.
  3. При невозможности использования менее чувствительного тиристора необходимо приложить небольшое обратное смещение к затвору в фазе закрытого состояния тиристора для увеличения IL. В фазе отрицательного тока затвора необходимо уделить внимание уменьшению мощности рассеивания затвора.

Коммутация тиристора

Для перехода тиристора в закрытое состояние ток нагрузки должен снизиться ниже значения тока удержания IH на время, позволяющее всем свободным носителям заряда освободить переход. В цепях постоянного тока это достигается тем, что цепь нагрузки уменьшает ток до нуля, чтобы дать возможность тиристору выключиться. В цепях переменного тока цепь нагрузки уменьшает ток в конце каждой полуволны. В этой точке тиристор переходит в закрытое состояние.

Тиристор может перейти в состояние проводимости, если ток нагрузки не будет удерживаться ниже IH достаточное время.

Обратите внимание, что значение IH указывается для температуры перехода 25 °C и, подобно IL, оно уменьшается при повышении температуры. Поэтому для успешной коммутации цепь должна позволять уменьшаться току нагрузки ниже IH достаточное время при максимальной ожидаемой рабочей температуре перехода.

Триаки (симисторы)

Триак представляет собой «двунаправленный тиристор». Особенностью триака является способность проводить ток как от анода к катоду, так и в обратном направлении.

Состояние проводимости

В отличие от тиристоров триак может управляться как положительным, так и отрицательным током между затвором и T1. (Правила для VGT, IGT и IL те же, что для тиристоров, см. «Правило 1».) Это свойство позволяет триаку работать во всех четырех секторах, как показано на рис. 4.

Когда затвор управляется постоянным током или однополярными импульсами с нулевым значением тока нагрузки, в квадрантах (3+,3–) предпочтителен отрицательный ток затвора по нижеследующим причинам. (Внутреннее строение переходов триака характерно тем, что затвор наиболее отдален от области основной проводимости в квадранте 3+.)

  1. При более высоком значении IGT требуется более высокий пиковый IG.
  2. При более длинной задержке между IG и током нагрузки требуется большая продолжительность IG.
  3. Низкое значение dIT/dt может вызывать перегорание затвора при управлении нагрузками, создающими высокий dI/dt (включение холодной лампы накаливания, емкостные нагрузки).
  4. Чем выше IL (это относится и к квадранту 1–), тем большая продолжительность IG будет необходима для малых нагрузок, что позволит току нагрузки с начала полупериода достичь значения выше IL.

В стандартных цепях управления фазой переменного тока, таких, как регуляторы яркости и регуляторы скорости вращения, полярность затвора и T2 всегда одинаковы. Это означает, что управление производится всегда в 1+ и 3– квадрантах, в которых коммутирующие параметры триака одинаковы, а затвор наиболее чувствителен.

Примечание: 1+, 1–, 3– и 3+ это система обозначений четырех квадрантов, использующаяся для краткости: вместо того, чтобы записать «MT2+, G+», пишется 1+ и т. д. Эти данные получены из графика вольт-амперной характеристики триака. Положительному напряжению T2 соответствует положительное значение тока через T2, и наоборот (см. рис. 5). Следовательно, управление осуществляется только в квадрантах 1 и 3. А указатели (+) и (–) относятся к направлению тока затвора.

Ложные срабатывание триака

В ряде случаев возможны нежелательные случаи включения триаков. Некоторые из них не приведут к серьезным последствиям, в то время как другие потенциально разрушительны.

1. Уменьшение шумовых сигналов затвора

В электрически шумных окружающих средах ложное срабатывание может происходить, если шумовое напряжение на затворе превышает VGT, поэтому тока затвора достаточно для включения триака. Первый способ защиты — минимизировать возникающий шум. Лучше всего это может быть достигнуто уменьшением длины проводников, ведущих к затвору, и соединением цепи управления затвором непосредственно с выводом T1 (или катодом для тиристора). В случае, если это невозможно, следует использовать витую пару или экранированный кабель.

Дополнительную шумовую устойчивость можно обеспечить, уменьшив чувствительность затвора с помощью включения резистора до 1 кОм между затвором и T1. Если в качестве высокочастотного шунта используется конденсатор, желательно включить последовательно резистор между ним и затвором, чтобы уменьшить пик тока конденсатора через затвор и минимизировать возможность повреждения затвора от перегрузки.

В качестве решения этих проблем можно использовать триаки ряда «H» из номенклатуры Philips (например BT139-600H). Этот нечувствительный ряд (IGT min = 10 мA) специально разработан для обеспечения высокой шумовой устойчивости.

2. Превышение максимального значения скорости нарастания напряжения коммутации dVCOM/dt

Этот эффект может возникнуть при питании реактивных нагрузок, где есть существенный сдвиг фазы между напряжением и током нагрузки. При выключении триака в то время, когда фаза тока нагрузки проходит через ноль, напряжение не будет нулевым из-за сдвига по фазе (см. рис. 6).

Если при этом скорость изменения напряжения превысит допустимое значение dVCOM/dt, триак может остаться в состоянии проводимости. Это происходит из-за того, что носителям заряда не хватает времени, чтобы освободить переход.

На параметр dVCOM/dt влияют два условия:

  • Скорость уменьшения тока нагрузки при переключении dICOM/dt. Высокое значение dICOM/dt снижает значение dVCOM/dt.
  • Температура перехода Tj. Чем выше Tj, тем ниже значение dVCOM/dt.

Если возможно превышение значения dVCOM/dt триака, то ложного срабатывания можно избежать использованием RC-демпфера между T1-T2. Это ограничит скорость изменения напряжения. Обычно выбирается углеродный резистор 100 Ом и конденсатор 100 нФ.

В качестве альтернативы можно предложить использование триаков Hi-Com (более подробно об этих триаках можно прочесть на сайте www.dectel.ru в разделе «Публикации» или в «КиТ» № 7’2002).

Обратите внимание, что резистор не может быть удален из демпфера, так как он используется в качестве ограничителя тока во избежание возникновения высокого значения dIT/dt в моменты коммутации.

3. Превышение максимального значения скорости нарастания тока коммутации dICOM/dt

Высокое значение dICOM/dt может быть вызвано повышенным током нагрузки, повышенной рабочей частотой (синусоидального тока) или несинусоидальным током нагрузки.

Известный пример — выпрямитель питания для индуктивных нагрузок, где применение стандартных триаков невозможно из-за того, что напряжение питания оказывается ниже напряжения обратной электромагнитной индукции нагрузки и ток триака резко стремится к нулю. Этот эффект проиллюстрирован на рис. 7.

При нулевом токе триака ток нагрузки будет спадать через мостовой выпрямитель. При индуктивных нагрузках возможно такое высокое значение dICOM/dt, при котором триак не может поддерживать даже небольшого значения dV/dt 50-герцовой синусоиды при прохождении нуля. В этом случае не будет эффекта от добавления демпфера.

Решение проблемы в том, что значение dICOM/dt может быть ограничено добавлением дросселя последовательно с нагрузкой. Альтернативное решение — использование Hi-Com-триаков.

4. Превышение максимального значения скорости нарастания напряжения в закрытом состоянии dVD/dt

Высокая скорость изменения напряжения на силовых электродах непроводящего триака (или тиристора с чувствительным затвором) без превышения его VDRM (см. рис. 8), вызывает внутренние емкостные токи. При этом внутреннего тока затвора может быть достаточно, чтобы перевести триак (тиристор) в состояние проводимости. Чувствительность к этому параметру увеличивается с ростом температуры.

Там, где возникает эта проблема, значение dVD/dt должно быть ограничено RC-демпфером между T1 и T2 для триака (или анодом и катодом для тиристора). Использование триаков Hi-Com в таких случаях может снять эти проблемы.

5. Превышение повторяющегося пикового напряжения в закрытом состоянии VDRM

Если напряжение на T2 превышает VDRM (это может происходить во время переходных процессов), то ток утечки T2-T1 достигнет значения, при котором триак может спонтанно перейти в состояние проводимости (рис. 9).

При нагрузке, допускающей выбросы тока, ток чрезвычайно высокой плотности может проходить через узкую открытую область перехода. Это может привести к выгоранию перехода и разрушению кристалла. Это может происходить в схемах управления лампами накаливания, емкостных нагрузках и схемах защиты мощных электронных ключей.

Превышение VDRM или dVD/dt не всегда приводит к потере работоспособности триака, а вот создаваемая dIT/dt скорость нарастания тока It может привести к выходу из строя прибора. Из-за того что требуется некоторое время для распространения проводимости по всему переходу, допустимое значение dIT/dt ниже чем, если бы триак был включен сигналом затвора. Если значение dIT/dt не будет превышать минимального значения, которое дается в его характеристиках, то, скорее всего, триак не выйдет из строя. Эта проблема может быть решена подключением ненасыщающейся индуктивности (без сердечника) последовательно с нагрузкой. Если это решение неприемлемо, то альтернативное решение может быть в том, чтобы обеспечить дополнительную фильтрацию и ограничение выбросов. Это повлечет использование параллельно питанию метал-оксидного варистора (МОВ) для ограничения напряжения и последовательное подключение LС-цепочки перед варистором.

Некоторые изготовители выражают сомнения в надежности схем с использованием MOB, так как они при высоких температурах окружающей среды входят в тепловой пробой и выходят из строя. Это является следствием того, что рабочее напряжение МОВ обладает обратным температурным коэффициентом. Однако при применении МОВ на 275 В (среднеквадратичное значение) для цепей 230 В риск перегорания МОВ минимален. Такие проблемы вероятны, если варистор на 250 В используется при высокой температуре окружающей среды в цепях со среднеквадратичным значением 230 В.

Состояние проводимости, dIT/dt

Когда триак (тиристор) находится в состоянии проводимости под действием сигнала затвора, проводимость начинается в участке кристалла, смежном с затвором, и затем быстро распространяется на активную область. Эта задержка накладывает ограничение на значение допустимой скорости нарастания тока нагрузки. Высокое значение dIT/dt может быть причиной выгорания прибора, в результате чего произойдет короткое замыкание между T1 и T2.

При работе в квадранте 3+ еще больше снижается разрешенное значение dIT/dt из-за структуры перехода. Это может привести к мгновенному лавинному процессу в затворе и перегоранию во время быстрого нарастания тока. Разрушение триака может произойти не сразу, а при постепенном выгорании перехода Затвор-T1, что приведет к короткому замыканию после нескольких включений. Чувствительные триаки наиболее подвержены этому. Эти проблемы не относятся к Hi-Com триакам, так как они не работают в квадранте 3+.

Значение dIT/dt связано со скоростью нарастания тока затвора (dIG/dt) и максимальным значением IG. Высокие значения dIG/dt и пикового IG (без превышения номинальной мощности затвора) дают более высокое значение dIT/dt.

Самый простой пример нагрузки, создающей высокий начальный бросок тока, — лампа накаливания, которая имеет низкое сопротивление в холодном состоянии. Для резистивных нагрузок этого типа значение dIT/dt достигнет максимального значения при начале перехода в состояние проводимости в пике напряжения сети. Если есть вероятность превышения номинального значения dIT/dt триака, необходимо ограничить это включением катушки индуктивности или терморезистором с обратным температурным коэффициентом последовательно с нагрузкой.

Дроссель не должен насыщаться в течение максимума пика тока. Для ограничения значения dIT/dt необходимо использовать катушку индуктивности без сердечника.

Есть более правильное решение, с помощью которого можно избежать необходимости включения последовательно с нагрузкой токоограничивающих приборов. Оно состоит в том, чтобы использовать режим включения при нулевой разности потенциалов. Это дало бы плавный рост тока с начала полуволны.

Примечание: Важно помнить, что режим включения при нулевой разности потенциалов применим только к резистивным нагрузкам. Использование того же метода для реактивных нагрузок, где есть сдвиг фазы между напряжением и током, может вызвать однополярную проводимость, ведущую к возможному режиму насыщения индуктивных нагрузок, разрушительно высокому току и перегреву. В этом случае требуется более совершенный способ переключения при нулевом токе или схема управления фазой включения.

Отключение

Триаки, использующиеся в цепях переменного тока, коммутируются в конце каждого полупериода тока нагрузки, если не приложен сигнал затвора, чтобы поддержать проводимость с начала следующего полупериода. Правила для IH те же, что и для тиристора (см. «Правило 2»).

Некоторые особенности триаков Hi-Com

Триаки Hi-Com имеют отличную от обычных триаков внутреннюю структуру. Одно из отличий состоит в том, что две половины тиристора лучше изолированы друг от друга, что уменьшает их взаимное влияние. Это дает следующие преимущества:

  1. Увеличение допустимого значения dVCOM/dt. Это позволяет управлять реактивными нагрузками (в большинстве случаев) без использования демпфирующего устройства, без сбоев в коммутации. Это сокращает количество элементов, размер печатной платы, стоимость и устраняет потери на рассеивание энергии демпфирующим устройством.
  2. Увеличение допустимого значения dICOM/dt. Это значительно улучшает работу на более высоких частотах и для несинусоидальных напряжений без необходимости в ограничении dICOM/dt при помощи индуктивности последовательно с нагрузкой.
  3. Увеличение допустимого значения dVD/dt. Триаки очень чувствительны при высоких рабочих температурах. Высокое значение dVD/dt уменьшает тенденцию к самопроизвольному включению из состояния отсутствия проводимости за счет dV/dt при высоких температурах. Это позволяет применять их при высоких температурах для управления резистивными нагрузками в кухонных или нагревательных приборах, где обычные триаки не могут использоваться.

Из-за особой внутренней структуры работа триаков Hi-Com в квадранте 3+ невозможна. В большинстве случаев это не является проблемой, так как это наименее желательный и наименее используемый квадрант. Поэтому замена обычного триака на Hi-Com возможна почти всегда.

Более подробную информацию по триакам Hi-Com можно найти в специальной документации Philips: «Factsheet 013 — Understanding Hi-Com Triacs» и «Factsheet 014 — Using Hi-Com Triacs».

Способы монтажа триаков

При малых нагрузках или коротких импульсных токах нагрузки (меньше 1 с), можно использовать триак без теплоотводящего радиатора. Во всех остальных случаях его применение необходимо.

Существует три основных метода фиксации триака к теплоотводу — крепление зажимом, крепление винтом и клепка. Наиболее распространены первые два способа. Клепка в большинстве случаев не рекомендуется, так как может вызвать повреждение или деформацию кристалла, что приведет к выходу прибора из строя.

Фиксация к теплоотводу зажимом

Это — предпочтительный метод с минимальным тепловым сопротивлением, так как зажим достаточно плотно прижимает корпус прибора к радиатору. Это одинаково подходит как для неизолированных (SOT82 и SOT78), так и для изолированных корпусов (SOT186 F-корпусов и более ранних SOT186A X-корпусов). SOT78 известен еще как TO220AB.

Фиксация к теплоотводу при помощи винта

  1. Набор для монтажа корпуса SOT78 включает прямоугольную шайбу, которая должна быть установлена между головкой винта и контактом без усилий на пластиковый корпус прибора.
  2. Во время установки наконечник отвертки не должен воздействовать на пластиковый корпус триака (тиристора).
  3. Поверхность теплоотвода в месте контакта с электродом должна быть обработана с чистотой до 0,02 мм.
  4. Крутящий момент (с установкой шайбы) должен быть между 0,55–0,8 Н·м.
  5. По возможности следует избегать использования винтов-саморезов, так как это снижает термоконтакт между теплоотводом и прибором.
  6. Прибор должен быть механически зафиксирован перед пайкой выводов. Это минимизирует чрезмерную нагрузку на выводы.

Тепловое сопротивление

Тепловое сопротивление Rth — это сопротивление между корпусом прибора и радиатором. Этот параметр аналогичен электрическому сопротивлению R = V/I, поэтому тепловое сопротивление Rth = T/P, где T — температура в кельвинах, и P — рассеяние энергии в ваттах.

Для прибора, установленного вертикально без радиатора, тепловое сопротивление задается тепловым сопротивлением «переход — окружающая среда» Rth = Rth j–a.

  • Для корпуса SOT82 значение равно 100 К/Вт;
  • Для корпуса SOT78 значение равно 60 К/Вт;
  • Для корпусов F и X значение равно 55 К/Вт.

Для не изолированных приборов, установленных на теплоотвод, тепловое сопротивление является суммой сопротивлений «переход — корпус», «корпус — теплоотвод» и «теплоотвод — окружающая среда».

Для изолированных корпусов нет ссылки на термосопротивление Rth j–mb, так как Rth mb–h принят постоянным и дан с учетом использования термопасты. Поэтому тепловое сопротивление для изолированного корпуса является суммой тепловых сопротивлений «переходтеплоотвод» и «теплоотвод — окружающая среда».

Rth j–mb или Rth j–h фиксированы и даны в документации к каждому прибору. Rth mb–h также даются в инструкциях по установке для некоторых вариантов изолированного и неизолированного монтажа с использованием или без использования термопасты. Rth h–a регулируется размером теплоотвода и степенью воздушного потока через него. Для улучшения теплоотдачи всегда рекомендуется использование термопасты.

Расчет теплового сопротивления

Для вычисления теплового сопротивления теплоотвода для данного триака (тиристора) и данного тока нагрузки необходимо сначала вычислить рассеяние энергии в триаке (тиристоре), используя следующее уравнение:

Vo и Rs получены из «on-state» характеристики триака (тиристора). Если значения не указанны, то они могут быть получены из графика путем вычерчивания касательной к VT max. Точка на оси VT, где ее пересекает касательная, дает Vo, в то время как тангенс угла наклона касательной дает Rs.

Используя уравнение теплового сопротивления, данное выше, получаем:

Максимально допустимая температура перехода будет достигнута, когда Tj достигает Tj max при самой высокой температуре окружающей среды. Это дает нам T.

Полное тепловое сопротивление

Все расчеты по вычислению теплового сопротивления имеет смысл проводить для уже установившегося режима продолжительностью больше 1 с. Для импульсных токов или длительных переходных процессов меньше 1 с эффект отвода тепла уменьшается. Температура просто рассеивается в объеме прибора с очень небольшим достижением теплоотвода. В таких условиях нагрев перехода зависит от полного теплового сопротивления «переход — корпус прибора» Zth j–mb. Поэтому Zth j–mb уменьшается при уменьшении продолжительности импульса тока благодаря меньшему нагреву кристалла. При увеличении продолжительности до 1 с Zth j–mb увеличивается до значения, соответствующего установившемуся режиму Rth j–mb. Характеристика Zth j–mb приводится в документации для двунаправленного и однонаправленного электрического тока импульсами продолжительностью до 10 с.

Номенклатура и корпуса

Промышленный ряд тиристоров Philips начинается с 0,8 A в SOT54 (TO92) и заканчивается 25 A в SOT78 (TO220AB).

Промышленный ряд триаков (симисторов) Philips начинается с 0,8 A в SOT223 и заканчивается 25 A в SOT78.

Самый маленький корпус триака (тиристора) для поверхностного монтажа — SOT223 (рис. 11). Мощность рассеивания зависит от степени рассеивания тепла печатной платой, на которую устанавливается прибор.

Тот же кристалл устанавливается в неизолированный корпус SOT82 (рис. 13). Улучшенная теплоотдача этого корпуса позволяет использовать его при более высоких номинальных токах и большей мощности.

На рис. 12 показан наименьший корпус для обычного монтажа — SOT54. В этот корпус ставится кристалл, которым оснащаются SOT223.

SOT78 — самый распространенный неизолированный корпус, большинство устройств для бытовой техники производится с использованием этого корпуса (рис. 14).

На рис. 15 показан SOT186 (F-корпус). Этот корпус допускает в обычных условиях разность потенциалов 1500 В между прибором и теплоотводом.

Один из последних корпусов — SOT186A (X-корпус), показанный на рис. 16. Он обладает несколькими преимуществами перед предыдущими типами:

  1. Корпус имеет те же размеры, что и корпус SOT78 в зазорах выводов и монтажной поверхности, поэтому он может непосредственно заменять SOT78 без изменений в монтаже.
  2. Корпус допускает в обычных условиях разность потенциалов 2500 В между прибором и теплоотводом.

принцип работы и способы управления

Тиристор — электронный компонент, изготовленный на основе полупроводниковых материалов, может состоять из трёх или более p-n-переходов и имеет два устойчивых состояния: закрытое (низкая проводимость), открытое (высокая проводимость).

Это сухая формулировка, которая для тех, кто только начинает осваивать электротехнику, абсолютно ни о чём не говорит. Давайте разберём принцип работы этого электронного компонента для обычных людей, так сказать, для чайников, и где его можно применить. По сути, это электронный аналог выключателей, которыми вы каждый день пользуетес

Есть много типов этих элементов, обладающие различными характеристиками и имеющие различные области применения. Рассмотрим обычный однооперационный тиристор.

Способ обозначения на схемах показан на рисунке 1.

Электронный элемент имеет следующие выводы:

  • анод — положительный вывод;
  • катод — отрицательный вывод;
  • управляющий электрод G.

Принцип действия тиристора

Основное применение этого типа элементов — это создание на их основе силовых тиристорных ключей для коммутации больших токов и их регулирования. Включение выполняется сигналом, переданным на управляющий электрод. При этом элемент является не полностью управляемым, и для его закрытия необходимо применение дополнительных мер, которые обеспечат падение величины напряжения до нуля.

Если говорить, как работает тиристор простым языком, то он, по аналогии с диодом, может проводить ток только в одном направлении, поэтому при его подключении нужно соблюдать правильную полярность. При подаче напряжения к аноду и катоду этот элемент будет оставаться закрытым до момента, когда на управляющий электрод будет подан соответствующий электрический сигнал. Теперь, независимо от наличия или отсутствия управляющего сигнала, он не изменит своего состояния и останется открытым.

Условия закрытия тиристора:

  1. Снять сигнал с управляющего электрода;
  2. Снизить до нуля напряжение на катоде и аноде.

Для сетей переменного тока выполнение этих условий не вызывает особых трудностей. Синусоидальное напряжение, изменяясь от одного амплитудного значения до другого, снижается до нулевой величины, и если в этот момент управляющего сигнала нет, то тиристор закроется.

В случае использования тиристоров в схемах постоянного тока для принудительной коммутации (закрытия тиристора) используют ряд способов, наиболее распространённым является использование конденсатора, который был предварительно заряжен. Цепь с конденсатором подключается к схеме управления тиристором. При подключении конденсатора в цепь произойдёт разряд на тиристор, ток разряда конденсатора будет направлен встречно прямому току тиристора, что приведёт к уменьшению тока в цепи до нулевого значения и тиристор закроется.

Можно подумать, что применение тиристоров неоправданно, не проще ли использовать обычный ключ? Огромным плюсом тиристора является то, что он позволяет коммутировать огромные токи в цепи анода-катода при помощи ничтожно малого управляющего сигнала, поданного в цепь управления. При этом не возникает искрения, что немаловажно для надёжности и безопасности всей схемы.

Схема включения

Схема управления может выглядеть по-разному, но в простейшем случае схема включения тиристорного ключа имеет вид, показанный на рисунке 2.

К аноду присоединена лампочка L, а к ней выключателем К2 подключается плюсовая клемма источника питания G. B. Катод соединяется с минусом питания.

После подачи питания выключателем К2 к аноду и катоду будет приложено напряжение батареи, но тиристор остаётся закрытым, лампочка не светится. Для того чтобы включить лампу, необходимо нажать на кнопку К1, сигнал через сопротивление R будет подан на управляющий электрод, тиристорный ключ изменит своё состояние на открытое, и лампочка загорится. Сопротивление ограничивает ток, подаваемый на управляющий электрод. Повторное нажатие на кнопку К1 никакого влияния на состояние схемы не оказывает.

Для закрытия электронного ключа нужно отключить схему от источника питания выключателем К2. Этот тип электронных компонентов закроется, и в случае снижения напряжения питания на аноде до определённой величины, которая зависит от его характеристик. Вот так можно описать, как работает тиристор для чайников.

Характеристики

К основным характеристикам можно отнести следующие:

  • Максимально допустимый прямой ток — наибольшая возможная величина тока открытого элемента;
  • Максимально допустимый обратный ток — ток при максимальном обратном напряжении;
  • Прямое напряжение — падение величины напряжения при максимальном токе;
  • Обратное напряжение — наибольшая допустимая величина напряжения в закрытом состоянии;
  • Напряжение включения — наименьшее напряжение при котором сохраняется работоспособность электронного устройства;
  • Минимальный и максимальный ток управляющего электрода;
  • Максимально допустимая рассеиваемая мощность.

Рассматриваемые элементы, кроме электронных ключей, часто применяются в регуляторах мощности, которые позволяют изменять подводимую к нагрузке мощность за счёт изменения среднего и действующего значений переменного тока. Величина тока регулируется изменением момента подачи на тиристор открывающего сигнала (за счёт варьирования угла открывания). Углом открытия (регулирования) называется время от начала полупериода до момента открытия тиристора.

Типы данных электронных компонентов

Существует немало различных типов тиристоров, но наиболее распространены, помимо тех что мы рассмотрели выше, следующие:

  • динистор — элемент, коммутация которого происходит при достижении определённого значения величины напряжения, приложенного между анодом и катодом;
  • симистор;
  • оптотиристор, коммутация которого осуществляется световым сигналом.

Симисторы

Хотелось бы более подробно остановиться на симисторах. Как говорилось ранее, тиристоры могут проводить ток только в одном направлении, поэтому при установке их в цепи переменного тока, такая схема регулирует один полупериод сетевого напряжения. Для регулирования обоих полупериодов необходимо установить встречно-параллельно ещё один тиристор либо применить специальные схемы с использованием мощных диодов или диодных мостов. Все это усложняет схему, делает её громоздкой и ненадёжной.

Вот для таких случаев и был изобретён симистор. Поговорим о нем и о принципе работы для чайников. Главное отличие симисторов от рассмотренных выше элементов заключается в способности пропускать ток в обоих направлениях. По сути, это два тиристора с общим управлением, подключённые встречно-параллельно (рисунок. 3 А).

Условное графическое обозначение этого электронного компонента показано на Рис. 3 В. Следует заметить, что называть силовые выводы анодом и катодом будет не корректно, так как ток может проводиться в любом направлении, поэтому их обозначают Т1 и Т2. Управляющий электрод обозначается G. Для того чтобы открыть симистор, необходимо подать управляющий сигнал на соответствующий вывод. Условия для перехода симистора из одного состояния в другое и обратно в сетях переменного тока не отличаются от способов управления, рассмотренных выше.

Применяется этот тип электронных компонентов в производственной сфере, бытовых устройствах и электроинструментах для плавного регулирования тока. Это управление электродвигателями, нагревательными элементами, зарядными устройствами.

В завершение хотелось бы сказать, что и тиристоры и симисторы, коммутируя значительные токи, обладают весьма скромными размерами, при этом на их корпусе выделяется значительная тепловая мощность. Проще говоря, они сильно греются, поэтому для защиты элементов от перегрева и теплового пробоя используют теплоотвод, который в простейшем случае представляет собой алюминиевый радиатор.

Продолжение саги о тиристорах

В одной из предыдущих новостей были упомянуты «старые знакомые» — тиристоры. Основной особенностью их применения, можно сказать недостатком, является односторонняя проводимость в открытом состоянии. Другими словами, включая тиристоры в цепь переменного тока, мы получаем на нагрузке напряжение с постоянной составляющей. Не всегда нагрузка «её переносит», особенно если это первичная обмотка трансформатора. Подобного явления можно избежать, если тиристор включить в диагональ выпрямительного моста, а через другую диагональ моста подключить нагрузку, как показано на рисунке.

 

 

Несинусоидальность напряжения на нагрузке всё равно останется, а постоянной составляющей не будет. Избавиться от громоздкости схемы позволит применение симметричного тиристора.

 

Симметричный тиристор


Симметричный тиристор, симистор (или «триак» — от англ. triac) – полупроводниковый прибор, предназначенный для коммутации нагрузки в сети переменного тока. Он представляет собой «двунаправленный тиристор» и имеет также три электрода: один управляющий и два основных (силовых) для пропускания рабочего тока.

Основной особенностью симистора является способность проводить ток в обоих направлениях между силовыми электродами. Это очевидно по его вольт-амперной характеристике (ВАХ).

 

Как видно из рисунка, отрицательная (обратная) ветвь ВАХ симистора, в отличие от ВАХ тиристора повторяет прямую ветвь. Также, в отличие от тиристоров, прибор может управляться как положительным, так и отрицательным током между управляющим и силовым электродом. Для управления используется низковольтный сигнал. При подаче управляющего напряжения симистор переходит из закрытого состояния в открытое и пропускает через себя ток. При питании от сети переменного тока смена состояний симистора вызывается изменением полярности напряжения между основными электродами. Симистор перейдёт в закрытое состояние после изменения полярности или когда значение рабочего тока станет меньше тока удержания (IG на ВАХ).

 

Режимы работы симистора отображены на рисунке.

 

 

 

 

Здесь показаны G — управляющий вывод (затвор) и Т2 – силовой вывод.

В стандартных цепях управления переменным током, таких как регуляторы яркости и регуляторы скорости вращения, полярность затвора и T2 всегда одинаковы. Это означает, что управление симистором производится всегда в 1+ и 3- квадрантах, в которых коммутирующие параметры симистора одинаковы, а затвор наиболее чувствителен. Данные о режимах работы получены на основании ВАХ прибора. Положительному напряжению на T2 соответствует прямая ветвь ВАХ, отрицательному – обратная. В практике применения бытуют трёхквадрантные (3Q) и четырёхквадрантные (4Q) симисторы. Диаграммы напряжения на нагрузке приведены на рисунке:

Здесь Iупр – ток управления симистором, Ԏ — длительность импульса управления. Видно, что для 3Q — симисторов длительность импульса управления не влияет на закрывание прибора.

Отличие между 3Q — и 4Q – симисторами показано на рисунке:

Для предотвращения ложных срабатываний симисторов, вызванных шумами и пульсациями, создаваемыми двигателями, цепи, использующие 4Q — симисторы, должны иметь дополнительные компоненты защиты. Это демпферная RC-цепочка между силовыми электродами, которая используется для ограничения скорости изменения нарастания напряжения и тока, таким образом подавляя помехи (снабберная цепь). Существуют приборы со встроенной снабберной цепью, однако они увеличивают габариты устройства и его стоимость.

 

В результате применения симистора схема будет иметь вид: 

В данном случае в качестве нагрузки возможно включение сетевого трансформатора.

Основные параметры симисторов:
  • VDRM — пиковое прямое напряжение выключения (VBO на ВАХ)
  • IDRM — пиковый прямой ток выключения (IL на ВАХ)
  • VRRM — пиковое обратное напряжение отключения (-VBO на ВАХ)
  • IRRM — пиковый обратный ток выключения (-IL на ВАХ)
  • VTM — максимальное входное напряжение
  • IH – ток удержания
  • диапазон рабочих температур
  • время включения и выключения
Ведущим производителем приборов является фирма STMicroelectronics. Изначально в июне 1987 года фирма была создана как SGS-THOMSON Microelectronics, в результате слияния компаний SGS Microelettronica (Италия) и Thomson Semiconducteurs (Франция). В мае 1998 года компания была переименована в STMicroelectronics. На сегодняшний день это известный производитель интегральных устройств, в составе которого около 7400 человек, работающих в различных областях НИОКР. Только  за 2017 год было оформлено более 17 000 патентов, 9500 патентных предложений и 500 новых патентных заявок.

 

 

Другим наиболее известным производителем симисторов является фирма WeEn. Деятельность этого производителя освещена в предыдущей новости.


 

 

В семействе выпускаемых симисторов широкого применения имеются приборы на коммутируемые токи до 40 А и напряжения до 1200 В, что в несколько раз превышает величины параметров у их «собратьев» — тиристоров. При этом напряжения управления начинаются от 900 мВ, а токи управления — от 3 мА. Существует класс приборов, предназначенный для применения в цифровой технике, управляемый сигналами логического уровня – «Logic sensitive gate». Отдельного упоминания заслуживают симисторы, производящиеся со встроенной снабберной защитой от импульсных перенапряжений при коммутации (BTA06-600BRG, BTA16-600BRG). Кроме того, у нас в продаже имеются и бесснаберные (Snubberless, Alternistor — Snubberless) симисторы, без встроенной защиты (BTA10-800BWRG, BTA12-800CWRG).

 

Симисторы также, как и тиристоры, изготавливаются в корпусах для монтажа в отверстия и для поверхностного монтажа.

 

Примеры обозначения серий симисторов


В настоящее время симисторы применяются:

  • Управление мощными цепями переменного тока (сварочные аппараты, электродвигатели локомотивов подвижного железнодорожного состава, и т. д.)
  • Коммутация цепей переменного тока
  • Мощные регулируемые источники первичного электропитания

В ЧЕМ ОСНОВНАЯ РАЗНИЦА МЕЖДУ ТИРИСТОРОМ, ТРИАКОМ И ДИАКОМ И ЧТО ЕСТЬ

Что такое процедура? Процедура выбора ТТ и ТТ в Подстанция 66кВ и выше?

3 ответа Infotech, Vijai Electricals,


Кто-нибудь может дать мне параметры, формулу рассчитать автоматические выключатели для строительства services.Спасибо

0 ответов Бел,


Почему одножильный кабель требует соединения с двойным концом.

1 ответов


что произойдет, если лампочка подключится к двум фазам трехфазный источник, подключенный по схеме треугольника?

6 ответов


ЧТО ТАКОЕ МОДУЛЯЦИЯ И НЕОБХОДИМО ДЛЯ МОДУЛЯЦИИ?

1 ответов



способ работы железнодорожного электровоза в однопроводном исполнении 25000 вольт

1 ответов


в чем суть заземления? Кратко объясните заземление?

5 ответов IOCL,


если увеличить частоту строки, то как будет струна эффективность зависит от него.

2 ответа


Почему лампа tesa светится между двумя фазами?

0 ответов


Что произойдет, если первичная обмотка емкостного трансформатора напряжения нейтраль не заземлена. Между трансформатором стоит вариатор и источник, а нейтраль вариатора трансформатора не заземлен, влияет ли это на трансформатор во время зарядки или влияет ли это на процесс зарядки трансформатора.

1 ответов


Как студент-электрик, почему я должен нанять вас?

0 ответов ТКС,


Как рассчитать нагрузку трансформатора тока

при испытаниях

0 ответов НТПК,


Поставщики средств беспроводной связи и ресурсы

О мире беспроводной связи RF

Веб-сайт RF Wireless World является домом для поставщиков и ресурсов радиочастотной и беспроводной связи.На сайте представлены статьи, руководства, поставщики, терминология, исходный код (VHDL, Verilog, MATLAB, Labview), тестирование и измерения, калькуляторы, новости, книги, загрузки и многое другое.

Сайт RF Wireless World охватывает ресурсы по различным темам, таким как RF, беспроводная связь, vsat, спутник, радар, волоконная оптика, микроволновая печь, wimax, wlan, zigbee, LTE, 5G NR, GSM, GPRS, GPS, WCDMA, UMTS, TDSCDMA, bluetooth, Lightwave RF, z-wave, Интернет вещей (IoT), M2M, Ethernet и т. Д. Эти ресурсы основаны на стандартах IEEE и 3GPP.Здесь также есть академический раздел, который охватывает колледжи и университеты по инженерным дисциплинам и MBA.

Статьи о системах на основе Интернета вещей

Система обнаружения падений для пожилых людей на основе Интернета вещей : В статье рассматривается архитектура системы обнаружения падений, используемой для пожилых людей. В нем упоминаются преимущества или преимущества системы обнаружения падений Интернета вещей. Читать дальше➤
Также обратитесь к другим статьям о системах на основе Интернета вещей следующим образом:
• Система чистоты туалетов самолета. • Система измерения столкновения • Система отслеживания скоропортящихся продуктов и овощей • Система помощи водителю • Система умной торговли • Система мониторинга качества воды • Система Smart Grid • Система умного освещения на базе Zigbee • Система интеллектуальной парковки на основе Zigbee. • Система интеллектуальной парковки на основе LoRaWAN


RF Статьи о беспроводной связи

В этом разделе статей представлены статьи о физическом уровне (PHY), уровне MAC, стеке протоколов и сетевой архитектуре на основе WLAN, WiMAX, zigbee, GSM, GPRS, TD-SCDMA, LTE, 5G NR, VSAT, Gigabit Ethernet на основе IEEE / 3GPP и т. Д. .стандарты. Он также охватывает статьи, относящиеся к испытаниям и измерениям, по тестированию на соответствие, используемым для испытаний устройств на соответствие RF / PHY. УКАЗАТЕЛЬ СТАТЕЙ >>.


Физический уровень 5G NR : Обработка физического уровня для канала 5G NR PDSCH и канала 5G NR PUSCH рассмотрена поэтапно. Это описание физического уровня 5G соответствует спецификациям физического уровня 3GPP. Читать дальше➤


Основы повторителей и типы повторителей : В нем объясняются функции различных типов ретрансляторов, используемых в беспроводных технологиях.Читать дальше➤


Основы и типы замирания : В этой статье описаны мелкомасштабные замирания, крупномасштабные замирания, медленные, быстрые замирания и т. Д., Используемые в беспроводной связи. Читать дальше➤


Архитектура сотового телефона 5G : В этой статье рассматривается блок-схема сотового телефона 5G с внутренними модулями 5G. Архитектура сотового телефона. Читать дальше➤


Основы помех и типы помех: В этой статье рассматриваются помехи в соседнем канале, помехи в совмещенном канале, ЭМ помехи, ICI, ISI, световые помехи, звуковые помехи и т. Д.Читать дальше➤


5G NR Раздел

В этом разделе рассматриваются функции 5G NR (New Radio), нумерология, диапазоны, архитектура, развертывание, стек протоколов (PHY, MAC, RLC, PDCP, RRC) и т. Д. 5G NR Краткий указатель ссылок >>
• Мини-слот 5G NR • Часть полосы пропускания 5G NR • 5G NR CORESET • Форматы DCI 5G NR • 5G NR UCI • Форматы слотов 5G NR • IE 5G NR RRC • 5G NR SSB, SS, PBCH • 5G NR PRACH • 5G NR PDCCH • 5G NR PUCCH • Эталонные сигналы 5G NR • 5G NR m-последовательность • Золотая последовательность 5G NR • 5G NR Zadoff Chu Sequence • Физический уровень 5G NR • Уровень MAC 5G NR • Уровень 5G NR RLC • Уровень 5G NR PDCP


Учебные пособия по беспроводным технологиям

В этом разделе рассматриваются учебные пособия по радиочастотам и беспроводной связи.Он охватывает учебные пособия по таким темам, как сотовая связь, WLAN (11ac, 11ad), wimax, bluetooth, zigbee, zwave, LTE, DSP, GSM, GPRS, GPS, UMTS, CDMA, UWB, RFID, радар, VSAT, спутник, WLAN, волновод, антенна, фемтосота, тестирование и измерения, IoT и т. Д. См. УКАЗАТЕЛЬ Учебников >>


Учебное пособие по 5G — В этом руководстве по 5G также рассматриваются следующие подтемы по технологии 5G:
Учебное пособие по основам 5G. Полосы частот руководство по миллиметровым волнам Волновая рамка 5G мм Зондирование волнового канала 5G мм 4G против 5G Тестовое оборудование 5G Сетевая архитектура 5G Сетевые интерфейсы 5G NR канальное зондирование Типы каналов 5G FDD против TDD Разделение сети 5G NR Что такое 5G NR Режимы развертывания 5G NR Что такое 5G TF


Этот учебник GSM охватывает основы GSM, архитектуру сети, элементы сети, системные спецификации, приложения, Типы пакетов GSM, структура кадров GSM или иерархия кадров, логические каналы, физические каналы, Физический уровень GSM или обработка речи, вход в сеть мобильного телефона GSM, установка вызова или процедура включения питания, MO-вызов, MT-вызов, VAMOS, AMR, MSK, модуляция GMSK, физический уровень, стек протоколов, основы мобильного телефона, Планирование RF, нисходящая линия связи PS и восходящая линия связи PS.
➤Подробнее.

LTE Tutorial , охватывающий архитектуру системы LTE, охватывающий основы LTE EUTRAN и LTE Evolved Packet Core (EPC). Он обеспечивает связь с обзором системы LTE, радиоинтерфейсом LTE, терминологией LTE, категориями LTE UE, структурой кадра LTE, физическим уровнем LTE, Стек протоколов LTE, каналы LTE (логические, транспортные, физические), пропускная способность LTE, агрегация несущих LTE, передача голоса по LTE, расширенный LTE, Поставщики LTE и LTE vs LTE продвинутые.➤Подробнее.


RF Technology Stuff

Эта страница мира беспроводной радиосвязи описывает пошаговое проектирование преобразователя частоты радиочастоты на примере преобразователя RF UP диапазона 70 МГц в диапазон C. для микрополосковой платы с использованием дискретных радиочастотных компонентов, а именно. Смесители, гетеродин, MMIC, синтезатор, опорный генератор OCXO, колодки аттенюатора. ➤Подробнее.
➤Проектирование и разработка радиочастотных трансиверов ➤Конструкция RF фильтра ➤VSAT Система ➤Типы и основы микрополосковой печати ➤Основы волновода


Секция испытаний и измерений

В этом разделе рассматриваются контрольно-измерительные ресурсы, испытательное и измерительное оборудование для тестирования DUT на основе Стандарты WLAN, WiMAX, Zigbee, Bluetooth, GSM, UMTS, LTE.ИНДЕКС испытаний и измерений >>
➤ Система PXI для T&M. ➤ Генерация и анализ сигналов ➤Измерения слоя PHY ➤Тест устройства на соответствие WiMAX ➤ Тест на соответствие Zigbee ➤ Тест на соответствие LTE UE ➤Тест на соответствие TD-SCDMA


Волоконно-оптическая технология

Оптоволоконный компонент , основы, включая детектор, оптический соединитель, изолятор, циркулятор, переключатели, усилитель, фильтр, эквалайзер, мультиплексор, разъемы, демультиплексор и т. д.Эти компоненты используются в волоконно-оптической связи. Оптические компоненты INDEX >>
➤Учебное пособие по оптоволоконной связи ➤APS в SDH ➤SONET основы ➤SDH Рамочная конструкция ➤SONET против SDH


Поставщики, производители радиочастотных беспроводных устройств

Сайт RF Wireless World охватывает производителей и поставщиков различных компонентов, систем и подсистем RF для ярких приложений, см. ИНДЕКС поставщиков >>.

Поставщики радиочастотных компонентов, включая радиочастотный изолятор, радиочастотный циркулятор, радиочастотный смеситель, радиочастотный усилитель, радиочастотный адаптер, радиочастотный разъем, радиочастотный модулятор, радиочастотный трансивер, PLL, VCO, синтезатор, антенну, генератор, делитель мощности, сумматор мощности, фильтр, аттенюатор, диплексор, дуплексер, микросхема резистора, микросхема конденсатора, индуктор микросхемы, ответвитель, оборудование ЭМС, программное обеспечение для проектирования радиочастот, диэлектрический материал, диод и т.Производители RF компонентов >>
➤Базовая станция LTE ➤RF Циркулятор ➤RF Изолятор ➤Кристаллический осциллятор


MATLAB, Labview, встроенные исходные коды

Раздел исходного кода RF Wireless World охватывает коды, связанные с языками программирования MATLAB, VHDL, VERILOG и LABVIEW. Эти коды полезны для новичков в этих языках. ИНДЕКС ИСХОДНОГО КОДА >>
➤3-8 декодер кода VHDL ➤Код MATLAB для дескремблера ➤32-битный код ALU Verilog ➤T, D, JK, SR триггеры labview коды


* Общая информация о здравоохранении *

Выполните эти пять простых действий, чтобы остановить коронавирус (COVID-19).
СДЕЛАЙ ПЯТЬ
1. РУКИ: Часто мойте их
2. КОЛЕНО: Откашляйтесь.
3. ЛИЦО: не трогайте его
4. НОГИ: держитесь на расстоянии более 3 футов (1 м) друг от друга
5. ЧУВСТВОВАТЬ: Болен? Оставайся дома

Используйте технологию отслеживания контактов >>, соблюдайте >> рекомендации по социальному дистанцированию и установить систему видеонаблюдения >> чтобы спасти сотни жизней. Использование концепции телемедицины стало очень популярным в таким странам, как США и Китай, чтобы остановить распространение COVID-19, поскольку это заразное заболевание.


RF Беспроводные калькуляторы и преобразователи

Раздел «Калькуляторы и преобразователи» охватывает ВЧ-калькуляторы, беспроводные калькуляторы, а также преобразователи единиц. Сюда входят беспроводные технологии, такие как GSM, UMTS, LTE, 5G NR и т. Д. СПРАВОЧНЫЕ КАЛЬКУЛЯТОРЫ Указатель >>.
➤ Калькулятор пропускной способности 5G NR ➤5G NR ARFCN против преобразования частоты ➤Калькулятор скорости передачи данных LoRa ➤LTE EARFCN для преобразования частоты ➤ Калькулятор антенны Яги ➤ Калькулятор времени выборки 5G NR


IoT-Интернет вещей Беспроводные технологии

Раздел IoT охватывает беспроводные технологии Интернета вещей, такие как WLAN, WiMAX, Zigbee, Z-wave, UMTS, LTE, GSM, GPRS, THREAD, EnOcean, LoRa, SIGFOX, WHDI, Ethernet, 6LoWPAN, RF4CE, Bluetooth, Bluetooth Low Power (BLE), NFC, RFID, INSTEON, X10, KNX, ANT +, Wavenis, Dash7, HomePlug и другие.Он также охватывает датчики Интернета вещей, компоненты Интернета вещей и компании Интернета вещей.
См. Главную страницу IoT >> и следующие ссылки.
➤ НИТЬ ➤EnOcean ➤Учебник по LoRa ➤Учебник по SIGFOX ➤WHDI ➤6LoWPAN ➤Zigbee RF4CE ➤NFC ➤Lonworks ➤CEBus ➤UPB



СВЯЗАННЫЕ ЗАПИСИ


RF Wireless Учебники



Различные типы датчиков


Поделиться страницей

Перевести страницу

Основные типы тиристоров и их применение

В этой статье мы поговорим о различных типах тиристоров.Тиристоры — это полупроводниковые устройства с 2 на 4 контакта, которые действуют как переключатели. Например, двухконтактный тиристор проводит ток только тогда, когда напряжение на его выводах превышает напряжение пробоя устройства. Для 3-контактного тиристора путь тока управляется третьим контактом, и когда на этот контакт подается напряжение или ток, тиристор проводит ток. В отличие от транзисторов, тиристоры работают только в состояниях ВКЛ и ВЫКЛ, и между этими двумя состояниями нет состояния частичной проводимости. Основные типы тиристоров: SCR, SCS, Triac, Четырехслойный диод и Diac.

Выпрямитель с кремниевым управлением (SCR)

Кремниевый выпрямитель обычно находится в состоянии ВЫКЛ, но когда небольшой ток поступает на его затвор G, он переходит в состояние ВКЛ. Если ток затвора удаляется, тиристор остается в состоянии «ВКЛ», и для переключения анода на катод ток должен быть снят или анод должен быть установлен на отрицательное напряжение по отношению к катоду. Ток течет только в одном направлении от анода к катоду. SCR используются в цепях переключения, цепях управления фазой, инвертирующих цепях и т. Д.

Кремниевый управляемый коммутатор (SCS)

Работа SCS аналогична SCR, но ее также можно отключить, подав положительный импульс на анодный затвор. SCS также можно включить, подав отрицательный импульс на анодный затвор. Ток течет только от анода к катоду. СКС используются в счетчиках, драйверах ламп, логических схемах и т. Д.

Симистор

Triac похож на SCR, но он проводит в обоих направлениях, что означает, что он может переключать переменный и постоянный токи.Симистор остается во включенном состоянии только при наличии тока на затворе G и выключается, когда этот ток снимается. Ток течет в обоих направлениях между MT1 и MT2.

Четырехслойный диод

Четырехслойный диод имеет 2 контакта и работает как чувствительный к напряжению переключатель. Когда напряжение между двумя контактами превышает напряжение пробоя, он включается, в противном случае он выключается. Ток течет от анода к катоду.

Diac

Diac похож на четырехслойный диод, но он может проводить в обоих направлениях, что означает, что он может контактировать как с переменным, так и с постоянным током.

Основные приложения SCR

Базовая схема фиксации

В этой схеме SCR используется для формирования основной схемы фиксации. S1 — нормально разомкнутый переключатель, а S2 — нормально замкнутый переключатель. При кратковременном нажатии на S1 небольшой ток проходит через затвор SCR и включает его, запитывая нагрузку. Чтобы выключить его, мы должны нажать кнопку S2, чтобы ток через SCR прекратился. Резистор RG используется для установки напряжения затвора тринистора.

Цепь управления мощностью

В этой схеме SCR используется для изменения синусоидального сигнала, чтобы нагрузка получала меньшую мощность, чем при непосредственном приложении напряжения источника.Синусоидальный сигнал подается на затвор SCR через R1. Когда напряжение на затворе превышает триггерное напряжение SCR, он переходит в состояние ON, и на нагрузку подается Vs. Во время отрицательной части синусоидальной волны SCR находится в состоянии ВЫКЛ. Увеличение R1 приводит к уменьшению напряжения, приложенного к затвору тринистора, и, таким образом, к задержке во времени проводимости. В этом случае нагрузка получает питание в течение меньшего времени, и поэтому средняя мощность нагрузки ниже.

Регулятор скорости двигателя постоянного тока

Это контроллер двигателя постоянного тока с регулируемой скоростью, использующий UJT, SCR и несколько пассивных компонентов.UJT вместе с резисторами и конденсатором образуют генератор, который подает переменное напряжение на затвор SCR. Когда напряжение затвора превышает напряжение срабатывания SCR, SCR включается, и двигатель работает. Регулируя потенциометр, изменяется выходная частота генератора, и, следовательно, изменяется время срабатывания тринистора, что, в свою очередь, изменяет скорость двигателя. Таким образом, двигатель получает серию импульсов, которые усредняются во времени, и скорость регулируется.

Основные приложения TRIAC

Диммер переменного тока

Это диммер переменного тока, состоящий из диака, симистора и некоторых пассивных компонентов.Конденсатор заряжается через два резистора, и когда напряжение на одном конце диака превышает напряжение пробоя, он включается и посылает ток на затвор симистора, переводя симистор в состояние ВКЛ и тем самым запитывая лампу.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *