Основное геометрическое условие устройства теодолита: Устройство теодолита и его назначение

Содержание

Устройство теодолита Т-30 и его назначение. Поверки и юстировки теодолита Т-30.

    Скачать с Depositfiles 

6. УСТРОЙСТВО ТЕОДОЛИТА Т-30 И ЕГО НАЗНАЧЕНИЕ

Теодолитом называется геодезический инструмент, служанки для измерения на местности горизонтальных и вертикальных углов, расстояний (по дальномеру) и магнитных азимутов в комплексе с ориентир-буссолью.

Цель работы: при изучении теодолита следует хорошо уяснить его геометрическую схему, положение основных осей и плоскостей; запомнить наименование частей инструмента и научиться производить отсчеты по горизонтальному и вертикальному кругам при помощи штрихового микроскопа.

На рис. 12 показан общий вид теодолита Т-30 повторительного типа.

Рисунок 12

Приведены следующие обозначения частей теодолита ТЗО:

1 — круглое основание; 2 — пластинчатая пружина; 3 — подъемный винт; 4 — закрепительный винт лимба; 5 — подставка теодолита; б — корпус алидады горизонтального круга; 7 — зеркало для для освещения отчетной системы; 8 — окуляр отсчетного микроскопа; 9 — кор­пус вертикального круга; 10 — зрительная труба; 11 — цилиндричес­кий уровень при трубе; 12 — закрепительный винт трубы;13 — головка кремальеры; 14 — оптический визир трубы; 15 — наводящий винт трубы 16 — цилиндрический уровень алидады горизонтального круга; 17 — за крепительный винт алидады; 18 — наводящий винт алидады; 19 — наво­дящий винт лимба.

Теодолит Т-30 является оптическим. Это означает, что он име­ет стеклянные лимбы горизонтального и вертикального кругов и отсчетные системы, передающие изображение делений лимбов в поле зре­ния отсчетного микроскопа, расположенного рядом со зрительной трубой.

Зрительная труба теодолита Т-30 имеет внутреннюю фокусировку» осуществляемую головкой кремальеры 13, вынесенной на одну из под­ставок зрительной трубы.

В теодолите Т-30 отсутствует уровень при алидаде вертикально­го круга. Вместо этого цилиндрический уровень при алидаде гори­зонтального круга 16 укреплен на одной из подставок зрительной трубы таким образом, что его ось располагается параллельно колли­мационной плоскости зрительной трубы теодолита. Коллимационной плоскостью зрительной трубы теодолита называется плоскость, обра­зованная визирной осью зрительной трубы при ее вращении вокруг го­ризонтальной оси.

Для оптического центрирования теодолита над точкой зрительную трубу устанавливают вертикально объективом вниз и визируют точку стояния через отверстие в вертикальной оси теодолита.

Основание теодолита 1 представляет собой дно металлического футляра, который одевается на теодолит при транспортировке.

Отсчетное устройство теодолита Т-30 представлено микроскопом.
В поле зрения микроскопа подаются изображения вертикального и горизонтального лимбов теодолита и, кроме того, изображение вертикального штриха-индекса, по которому на глаз оценивают десятые доли наименьшего деления лимба. Так, в примере, приведенном на рис. 1З, отсчет по вертикальному кругу равен 4°38 , отсчет по горизонталь­ному кругу равен 243°03 .

Рисунок 13

7. ПОВЕРКИ И ЮСТИРОВКИ ТЕОДОЛИТА Т-30

Перед работой необходимо проверить (произвести поверки) выполнение у теодолита ряда геометрических условий к если они не выполнены, то исправить (произвести юстировки) инструмент при помощи исправительных винтов.

Таким образом, при каждой поверке геодезического ин­струмента, во-первых, выясняют, удовлетворяются ли поставленные геометрические условия, во-вторых, исправляют соот­ветствующие части инструмента, если геометрические условия не вы­полняются.

Теодолит должен удовлетворять следующим геометрическим усло­виям (рис.14).


Рисунок 14

Первая поверка. Ось цилиндрического уровня при алидаде горизонтального круга должна быть перпендикулярна оси вращения инструмента.

  1. Поворачивают алидаду, уста­навливают ось уровня по направ­лению любых двух подъемных вин­тов. Закрепляют алидаду.

  2. Вращая подъемные винты в разные стороны, приводят пузырек уровня на середину.

3) Открепив алидаду, поворачивают ее, чтобы ось уровня установилась по направлению треть его подъемного винта. Закрепляют алидаду.

  1. Третьим подъемным винтом приводят пузырек уровня на середину

  2. Открепив алидаду, поворачивают её’ на 180°. Если пузырек уровня остался на середине или сошел не более одного деления, то усло­вие поверки считается выполненным, в противном случае необходимо исправить положение уровня.

Юстировка выполняется следующим образом:

1) исправительный винт уровня шпилькой поворачивают так, чтобы пузырек уровня переместился к середине ампулы на половину дуги его отклонения от середины;

2) подъемным винтом, по направлению которого установлен уро­вень, устанавливают пузырек уровня точно на середину.

Для контроля поверку повторяют. Она считается выполненной, если при любых поворотах алидады пузырек уровня остается на сере­дине.

Поверка уровня горизонтального круга выполняется перед нача­лом измерения углов при каждой установке теодолита в рабочее положение.

Вторая поверка. Сетка нитей зрительной трубы должна быть установлена правильно, т.е. вертикальная нить сетки должка находиться в коллимационной плоскости трубы.

Последовательность выполнения поверки:

  1. Наводим пересечение сетки нитей на какую-либо отчетливо видимую точку. Закрепляем лимб и алидаду.

  2. Наводящим винтом зрительной трубы медленно вращают трубу вокруг ее горизонтальной оси и следят за положением вертикальной нити сетки относительно выбранной точки.

  3. Если точка скользит по вертикальной нити сетки и не сходи с нее, то условие поверки выполнено, в противном случае необходим произвести исправление.

Юстировка выполняется следующим образом:

1) отвинчивают колпачок на окулярной части трубы;

  1. отверткой ослабляют винты на торцевой части корпуса трубу крепящие окуляр;

  2. поворачивают окуляр так, чтобы изображение точки визирования оказалось на вертикальной нити сетки;

4) закрепляют винты, крепящие окулярное колено.

Для контроля поверку повторяют. Поверка сетки нитей выполняется, как правило, перед началом полевых работ.

Третья поверка. Визирная ось зрительной труб и должна быть перпендикулярна ее горизонтальной оси вращения. Нев.. положение этого условия вызывает коллимационную ошибку.

Коллимационной ошибкой называется угол между перпендикуляром к горизонтальной оси вращения зрительной трубы и визирной осью этой трубы.

Последовательность выполнения поверки:

1) Лимб теодолита закрепляют и при положении вертикального круга теодолита справа от трубы (КЛ), поворачивая алидаду, наводят зрительную трубу на любую удаленную хорошо видимую нем

2) 3акрепив закрепительные винты алидады и зрительной трубы, наводящими винтами алидады и зрительной трубы точно совмещают пере­крестие сетки нитей с выбранной точкой.

3) Берут отсчет по горизонтальному кругу КП.

4) Открепив зрительную трубу, переводят ее через зенит, при этом положение вертикального круга теодолита будет слева от трубы (КЛ).

5) Открепив алидаду, вновь наводят зрительную трубу на выбран­ную точку.

б) Берут отсчет по горизонтальному кругу КЛ.

Примечание: для теодолитов с двусторонней отсчетной системой по лимбу разность отсчетов (КП

1— КЛ1), полученных при двух положе­ниях вертикального круга, должна быть равна 180°. Отклонение раз­ности от 180° равно двойной коллимационной ошибке, т.е. 2 с = КП— КЛ1.

В теодолитах с односторонней системой отсчетов по лимбу Т5, Т16, ТЗО, ТТ4 разность отсчетов КП — КЛ будет искажена не только влиянием коллимационной ошибки С, но и влиянием эксцентриситета алидады.

Определение двойной коллимационной ошибки в указанных теодо­литах рекомендуется выполнять, как описано ниже.

7) Провизировав на одну и ту же точку при двух положениях вертикального круга, получают по горизонтальному кругу разность отсчетов КП— КЛ1

Затем открепляют винт 4 (рис.13) и поворачивают теодолит на 180° и снова закрепляют его тем же закрепительным винтом 4.

8)Вновь наводят трубу на ту же точку и получают разность отсчетов КЛ2 — КП2 . Величина коллимационной ошибки равна

 (20)

9) Для исправления коллимационной ошибки — необходимо снять колпачок, закрывающий доступ к юстировочным винтам сетки нитей.

Установить по горизонтальному кругу отсчет, вычисленный по формулам

КП = КП2 + С или КЛ = КЛ2 — С

Шпилькой при слегка отпущенных вертикальных исправительных винтах переместить сетку нитей при помощи боковых исправительных винтов до совмещения перекрытия сетки с изображением наблюдаемой точки. Снова повторить поверку. Допустимое значение коллимационной ошибки не должно превышать .

Четвертая ошибка. Горизонтальная ось враще­ния зрительной трубы должна быть перпендикулярна к вертикальной оси вращения инструмента.

Последовательность выполнения поверки;

  1. Теодолит устанавливается на расстоянии 20-30 м от высокого предмета, например здания, ось вращения инструмента приводят в от­весное положение и закрепляют лимб.

  2. При КП пересечение сетки нитей наводят на хорошо видимую высокую точку на здании, например на точку М (рис.15),и закрепля­ют алидаду.

  3. Опускают зрительную трубу до тех пор, пока она не примет горизонтальное (на глаз) положение и отмечают на стене точку m1 соответствующую пересечению нитей.

  4. Открепив алидаду, поворачивают ее на 180°, переводят зри­тельную трубу через зенит.

  5. При КЛ вновь наводят пересечение сетки нитей на точку М и закрепляют алидаду.

  6. Опускают зрительную трубу до уровня прежде нанесенной на стене точки m1 и отмечают точку m2, соответствующую пересече­нию сетки нитей при КЛ.

  7. Если точки mи mсовпадают, то условие поверки вы­полнено, в противном случае необходимо произвести исправление.

  8. Устранение неперпендикулярности осей вращения теодолита Т-30 достигается вращением эксцентриковой втулки лагеры горизон­тальной оси с помощью юстировочных винтов.

Пятая поверка. Место нуля вертикального круга должно быть близким к нулю.

Место нуля вертикального крута теодолита Т-30 называется от­счет по вертикальному кругу в то время, когда визирная ось зритель­ной трубы горизонтальна, а пузырек уровня при алидаде горизонталь­ного круга находится на середине.

Последовательность выполнения поверки:

  1. Вращением подъемных винтов уточняют положение пузырька уровня при алидаде горизонтального круга.

  2. При круге право визируют на произвольно выбранную высотную точку и закрепляют зрительную трубу.

3) Берут отсчет по вертикальному кругу КП.

4) Открепив трубу, переводят ее через зенит и при круге лево от руки направляют трубу на ту же точку.

  1. Вращением подъемных винтов, в случае необходимости, уточ­няют положение пузырька уровня относительно нуль-пункта.

  2. Закрепив зрительную трубу, вновь совмещают перекрестие сетки нитей на наблюдаемую точку.

  1. Берут отсчет по вертикальному кругу КЛ.

  1. Вычисляют место нуля (МО) по формуле:

 (21)

Пример1: КЛ = 7°44′ КП = 172°2

1′

Пример 2: КЛ = 354°07′ КП = 185°50′

9) Место нуля рекомендуется определять два раза. Сначала зри­тельную трубу наводят на одну точку при двух положениях вертикаль­ного круга и вычисляют МО по формуле (21), а затем проделывают то же самое, наблюдая другую точку.

10) Из двукратного определения МО находят среднее его значение. Если среднее место нудя (МО) не превышает двойной точности отсчета на вертикальном круге, то условие выполнено. В противном
случае у теодолита ТЗО МО исправляется перемещением сетки нитей в вертикальном направлении котировочными винтами сетки.

11) Для исправления МО устанавливают на вертикальном круге отсчет, равный КЛ — МО или МО — КЛ — 180°, исправительными винта­ми перемещают оправу сетки до совмещения горизонтальной нити с изображением выбранной цели (наблюдаемой точки).

  1. После исправления МО необходимо повторить вторую и третью поверки теодолита.

Рисунок 15

 

    Скачать с Depositfiles 

Лабораторная работа 2 Изучение технических теодолитов

1.

РАБОТА С ОПТИЧЕСКИМ ТЕОДОЛИТОМ

1. РАБОТА С ОПТИЧЕСКИМ ТЕОДОЛИТОМ Задание 1. Изучение устройства теодолита серии Т30 В ходе выполнения данного задания студент должен изучить устройство теодолита серии Т30: его основные узлы, винты и

Подробнее

Лабораторная работа 5

Лабораторная работа 5 Тема: : Устройство теодолитов. Взятие отсчётов по вертикальному и горизонтальному угломерным кругам. Порядок работы с теодолитом на местности при съёмках Цель: Познакомиться с устройством

Подробнее

Лабораторная работа 5

Лабораторная работа 5 Тема: : Устройство теодолитов. Взятие отсчётов по вертикальному и горизонтальному угломерным кругам. Порядок работы с теодолитом на местности при съёмках Цель: Познакомиться с устройством

Подробнее

Руководство по эксплуатации Теодолит 2Т5К

Руководство по эксплуатации Теодолит 2Т5К Устройство теодолита 2Т5К В настоящее время при выполнении инженерно-геодезических изысканий, при монтаже строительных конструкций широко используются точные теодолиты

Подробнее

Самостоятельная работа 2.

РОССИЙСКИЙ ГОСУДАРСТВЕННЫЙ ГЕОЛОГОРАЗВЕДОЧНЫЙ УНИВЕРСИТЕТ СЕКЦИЯ МАРКШЕЙДЕРСКОГО ДЕЛА КАФЕДРЫ РМС и МД Самостоятельная работа 2. Пояснение. Устройство теодолита. Цель работы: изучить устройство технических

Подробнее

Измерение углов на местности

Измерение углов на местности Для измерения горизонтальных и вертикальных углов на местности служат теодолиты Основные узлы: Ориентирующее устройство Угловые рабочие меры 4Т30П Осевая система Отсчетные

Подробнее

«Работа с теодолитом»

ДОНСКОЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ УПРАВЛЕНИЕ ДИСТАНЦИОННОГО ОБУЧЕНИЯ И ПОВЫШЕНИЯ КВАЛИФИКАЦИИ Кафедра «Высшая геодезия и фотограмметрия» Практикум к выполнению лабораторных работ по теме

Подробнее

Р У К О В О Д С Т В О

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «МОСТЫ И ТРАНСПОРТНЫЕ ТОННЕЛИ» Ф. Е.Резницкий Р У К О В О Д С Т В О к лабораторным работам

Подробнее

Н.В. Гейко ИЗУЧЕНИЕ ТЕОДОЛИТА

Министерство образования и науки Российской Федерации Рубцовский индустриальный институт (филиал) ФГБОУ ВПО «Алтайский государственный технический университет им. И.И. Ползунова» Н.В. Гейко ИЗУЧЕНИЕ ТЕОДОЛИТА

Подробнее

Лекции 4. ГЕОМЕТРИЧЕСКОЕ НИВЕЛИРОВАНИЕ

Лекции 4. ГЕОМЕТРИЧЕСКОЕ НИВЕЛИРОВАНИЕ 4.1. Способы нивелирования. Рельеф местности это совокупность неровностей поверхности земли; он является одной из важнейших характеристик местности. Знать рельеф

Подробнее

Кафедра инженерной геодезии

МИНИСТЕРСТВО ОБЩЕГО И ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ НОВОСИБИРСКИЙ ГОСУДАРСТВЕННЫЙ АРХИТЕКТУРНО- СТРОИТЕЛЬНЫЙ УНИВЕРСИТЕТ Методические указания составлены ст. преподавателем С.А.Дроздецким;

Подробнее

Р У К О В О Д С Т В О

Федеральное агентство железнодорожного транспорта Уральский государственный университет путей сообщения Кафедра «Мосты и транспортные тоннели» Ф.Е. Резницкий Р У К О В О Д С Т В О к использованию геодезических

Подробнее

ГЕОДЕЗИЯ Измерение углов теодолитом

Федеральное агентство по образованию Вологодский государственный технический университет Кафедра городского кадастра и геодезии ГЕОДЕЗИЯ Измерение углов теодолитом Методические указания по изучению курса

Подробнее

Тема. Угловые и линейные измерения

Тема. Угловые и линейные измерения Измерения углов выполняют для определения взаимного положения точек в пространстве. Пусть на местности имеем вершину угла точку О и точки А и В, образующие угол АОВ (рис.

Подробнее

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ Государственное образовательное учреждение высшего профессионального образования Ухтинский государственный технический университет (УГТУ) НИВЕЛИР Методические указания

Подробнее

НИВЕЛИР С КОМПЕНСАТОРОМ

НИВЕЛИР С КОМПЕНСАТОРОМ серия VEGA Руководство пользователя Содержание I. Технические характеристики… 2 II. Техническое оснащение прибора… 3 III. Работа с прибором… 4 1. Установка прибора и горизонтирование…

Подробнее

CONDTROL 20X/24X/32X СОДЕРЖАНИЕ

СОДЕРЖАНИЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ 4 ТЕХНИЧЕСКОЕ ОСНАЩЕНИЕ ПРИБОРА 5 РАБОТА С ПРИБОРОМ 6 1. Установка прибора и горизонтирование 6 2. Наведение и фокусирование 7 3. Измерения 7 ПРОВЕРКИ И ЮСТИРОВКИ

Подробнее

ТЕХНИЧЕСКОЕ НИВЕЛИРОВАНИЕ

ТЕХНИЧЕСКОЕ НИВЕЛИРОВАНИЕ Ходы технического нивелирования прокладываются между двумя исходными реперами в виде одиночных ходов или в виде системы ходов с одной или несколькими узловыми точками. Проложение

Подробнее

Лабораторная работа 3

Лабораторная работа 3 Тема: Цель: Изучение оптических дальномеров ДНТ-2 и ОТД Изучить устройство и метод отсчитывания дальномерной насадки ДНТ-2 и оптического топографического дальномера ОТД Дальномерная

Подробнее

Оптический нивелир N-38

Оптический нивелир N-38 Содержание Введение 4 Устройство нивелира 4 Работа с нивелиром 6 Поверка и юстировки 8 Уход и хранение 12 Стандартная комплектация 13 Дополнительные принадлежности 13 Технические

Подробнее

Подготовка к измерениям

Содержание Устройство…… 4 Подготовка к измерениям…. 6 Установка инструмента………… 6 Подготовка инструмента……. 7 Процедура измерения…… 8 Нивелирование………….. 8 Перенос высоты……….10

Подробнее

+7 (495)

Руководство по эксплуатации нивелиров серии NL 1 Содержание I. Сводная таблица технических характеристик.3 II. Внешний вид инструмента…3 III. Руководство пользователя….4 1. Установка и горизонтирование.4

Подробнее

AC-2S AX-2S AP-8. Руководство пользователя

AC-2S AX-2S AP-8 Руководство пользователя Изделие некоторым образом может отличаться от описанного в данном руководстве. Такие технические изменения в данное руководство могут вноситься без уведомления

Подробнее

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

МИНИСТЕРСТО ОБРЗОНИЯ И НУКИ РОССИЙСКОЙ ФЕДЕРЦИИ СТРООСКОЛЬСКИЙ ФИЛИЛ ФЕДЕРЛЬНОГО ГОСУДРСТЕННОГО БЮДЖЕТНОГО ОБРЗОТЕЛЬНОГО УЧРЕЖДЕНИЯ ЫСШЕГО ОБРЗОНИЯ «РОССИЙСКИЙ ГОСУДРСТЕННЫЙ ГЕОЛОГОРЗЕДОЧНЫЙ УНИЕРСИТЕТ

Подробнее

МЕТОДИЧЕСКИЕ РЕКОМЕНДАЦИИ И УКАЗАНИЯ

Титульный лист методических рекомендаций и указаний Форма Ф СО ПГУ 7. 18.4/20 Министерство образования и науки Республики Казахстан Павлодарский государственный университет им. С. Торайгырова Кафедра «Производство

Подробнее

Журналы геодезических измерений

Геодезическая документация Журналы геодезических измерений Геодезическая документация. Журналы геодезических измерений Содержание: 1. Пример заполнения страницы журнала измерения направлений Страница журнала

Подробнее

CONDTROL GAL 20 / GAL 24 / GAL 32 СОДЕРЖАНИЕ

СОДЕРЖАНИЕ ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ 4 ТЕХНИЧЕСКОЕ ОСНАЩЕНИЕ ПРИБОРА 5 РАБОТА С ПРИБОРОМ 6 1. Установка прибора и горизонтирование 6 2. Наведение и фокусирование 7 3. Измерения 7 ПРОВЕРКИ И ЮСТИРОВКИ

Подробнее

Оптические нивелиры с компенсатором

ГЕОДЕЗИЧЕСКИЕ ИНСТРУМЕНТЫ Руководство по эксплуатации C-20, C-24, C-28, C-32 Оптические нивелиры с компенсатором Содержание 1. Введение 3 2. Устройство нивелира 4 3. Работа с нивелиром 5 3.1 Установка

Подробнее

Нивелир с компенсатором

Руководство по эксплуатации VIII. Гарантийные обязательства На прибор дается гарантия 4 года с момента покупки. В течении гарантийного срока в случае обнаружения заводского брака производится ремонт прибора.

Подробнее

ОСНОВЫ ГЕОДЕЗИИ И ТОПОГРАФИИ

ОСНОВЫ ГЕОДЕЗИИ И ТОПОГРАФИИ Раздел «Создание планово-высотного съемочного обоснования» МЕТОДИЧЕСКОЕ ПОСОБИЕ к выполнению практических и лабораторных занятий для студентов, обучающихся по специальностям

Подробнее

Лабораторный практикум по высшей геодезии

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования Уральский федеральный университет имени первого

Подробнее

СОЗДАНИЕ СЪЕМОЧНОЙ ГЕОДЕЗИЧЕСКОЙ СЕТИ

Федеральное агентство железнодорожного транспорта Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования «ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ПУТЕЙ

Подробнее

Высокоточное нивелирование

Министерство образования и науки Российской федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования «Уральский федеральный университет имени первого

Подробнее

Контрольные вопросы :

Задание 1 Тема : «Топографические карты» Работа 1. (2 часа ауд. + 4 часа самостоятельной работы) Тема : «Разграфка и номенклатура топографических карт.» Цель : Освоить методику получения и обозначения

Подробнее

Лабораторный практикум по высшей геодезии

Министерство образования и науки Российской Федерации Федеральное государственное автономное образовательное учреждение высшего профессионального образования Уральский федеральный университет имени первого

Подробнее

VEGA L24, L30, L32c. Руководство пользователя

À VEGA L24, L30, L32c Руководство пользователя Содержание ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ…3 ВНЕШНИЙ ВИД…4 ПОДГОТОВКА К РАБОТЕ…7 НАВЕДЕНИЕ НА ЦЕЛЬ И ФОКУСИРОВАНИЕ…8 КОМПЕНСАТОР…9 РАБОТА С ИНСТРУМЕНТОМ…10

Подробнее

ТОЧНОСТИ ИЗМЕРЕНИЯ ГОРИЗОНТАЛЬНЫХ УГЛОВ

Министерство образования и науки РФ Федеральное государственное бюджетное образовательное учреждение высшего образования «Сибирская государственная автомобильно-дорожная академия ()» Кафедра «Геодезия»

Подробнее

ИЗУЧЕНИЕ ОПТИЧЕСКИХ СИСТЕМ.

ЛАБОРАТОРНАЯ РАБОТА 9. ИЗУЧЕНИЕ ОПТИЧЕСКИХ СИСТЕМ. Оборудование: оптическая скамья с рейтерами, объектив, осветитель, зрительная труба, штангенциркуль, сетка, шкала, окулярный микрометр. ОПИСАНИЕ ЦЕЛЕЙ

Подробнее

3 — Основные части геодезических приборов

Основные части геодезических приборов

По назначению геодезические приборы делятся на:

1.       Приборы для угловых измерений – теодолиты.

2.       Приборы для линейных измерений – рулетки, мерные ленты и проволоки, дальномеры.

3.       Приборы для измерения превышений – нивелиры.

4.       Приборы для съемочных работ – тахеометры, кипрегели, фототеодолиты и др.

5.       Приборы для аэро–, фото– съемки – стереокомпараторы, аэрофото аппарата, стереометры.

Зрительная труба – это увеличительный прибор для наблюдения удаленных объектов. Астрономическая труба дает обратное изображение, земная – прямое.

Основными частями зрительной трубы является: объектив 1, окуляр 2, внутренняя фокусирующая линза 3, которая перемещается внутри трубы вращением кремальеры 4 (кремальерного винта или кольца) и сетки нитей 5.

Объектив и окуляр трубы располагают т.о. чтобы при установки трубы на бесконечность передний фокус окуляра совпадал с задним фокусом объектива и плоскостью сетки нитей. В окулярной части трубы находиться сетка нитей на которую проектируется изображение наблюдаемого предмета, между объективом и окуляром располагается двояковогнутая фокусирующая линза, которая перемещается при помощи кремальеры.

Зрительная труба имеет 3 основные оси.

визирная ось, прилегая проходит через оптический центр объектива и центр сетки нитей; вертикальная плоскость проходящая через визирную ось называется коллимационной.

оптическая ось проходит через центр объектива и окуляра.

геометрическая ось – прямая проходящая через центры поперечных сечений объективной части трубы.

При установке зрительной трубы по глазу необходимо получить отчетливое изображение сетки нитей и наблюдение объекта, для этого зрительную трубу наводят на светлый фон и вращением окулярного кольца добиваются отчетливого изображения нити сетей.

Для наведения резкости на предмет при помощи кремальеры перемещают фокусирующую линзу до совпадения изображения предмета с плоскостью сетки нитей.

После установки зрительной трубы следует убедиться в отсутствии параллакса сетки нитей – кажущегося смещения изображения относительно сетки при перемещении глаза наблюдателя относительно окуляра, устраняется дополнительной фокусировкой.

Увеличение зрительной трубы это отношение угла под которым предмет виден в зрительную трубу к углу, под которым предмет виден невооруженным глазом, на практике за увеличение зрительной трубы принимают соотношение фокусного расстояния объектива и окуляра.

Ход лучей в зрительной трубе

Более совершенными являются трубы с внутренней фокусировкой; в них применяется дополнительная подвижная рассеивающая линза L2, образующая вместе с объективом L1 эквивалентную линзу L. При перемещении линзы L2 изменяется расстояние между линзами l и, следовательно, изменяется фокусное расстояние f эквивалентной линзы. Изображение предмета, находящееся в фокальной плоскости линзы L, также перемещается вдоль оптической оси, и когда оно попадает на плоскость сетки нитей становится четко видным в окуляре трубы. Трубы с внутренней фокусировкой короче; они герметичны и позволяют наблюдать близкие предметы; в современных измерительных приборах применяются в основном такие зрительные трубы.

В технических приборах увеличение 20–30 крат.

Полем зрения трубы называется пространство, которое видно в  зрительную трубу при ее неподвижном положении.

Уровни предназначены для приведения в горизонтальное положение отдельных частей приборов, в геодезических приборах применяются жидкостные уровни.

Круглый уровеньпредставляет собой стеклянную ампулу округлой формы заключенной в металлической оправу и заполненную жидкостью так, чтобы оставалось свободное пространство, заполненное парами жидкости – пузырек.

На верхней внешней поверхности ампулы нанесены концентрические окружности – центр этих окружностей – нуль пункт.

Внутренняя верхняя поверхность ампулы представляет собой сферу большего радиуса. Осью круглого уровня называется прямая, походящая через нуль–пункт перпендикулярно к внутренним верхним поверхностям ампулы. Круглый уровень имеет небольшую точность, и применятся для предварительной установки прибора.

Цилиндрический уровень – стеклянная ампула цилиндрической формы, заключенная в металлическую оправу, заполненная жидкостью и имеет пузырек.

На верхней поверхности ампулы нанесены деления – середина нуль–пункт. Внутренняя и верхняя поверхность ампулы представляет собой дугу большего радиуса.

Касательная к внутренней и верхней поверхности ампулы, проходящий через нуль–пункт, называется осью уровня.

Для повышения точности установки приборов используется контактные уровни, это цилиндрические уровни с системой призм, позволяющих получать изображение концов пузырька уровня в поле зрения трубы.

Положению пузырька в нуль–пункте считается установка оптический контакт концов его изображения.

Цена деления уровня это угол, на который нужно изменить наклон оси уровня, чтобы пузырек переместился на одно деление.

Горизонтальный круг теодолита

Предназначен для измерения горизонтальных углов, состоит из лимба и алидады.

Лимб – плоское, стеклянное или металлическое кольцо по скошенному краю которого нанесены деления от 0о до 360о по часовой стрелке.

Алидада – это вспомогательное приспособление, позволяющее брать отсчеты по лимбу. Оси вращения лимба и алидады совпадают. Их принимают за основную вертикальную ось теодолита zz1. На алидаде имеется индекс (штрих) или шкала при помощи которых берут отсчет по лимбу.

Отсчет – это дуга лимба от 0о до 0о алидады по часовой стрелке.

При измерении горизонтальных углов лимб обычно движется и лежит в горизонтальной плоскости, а алидада скреплена с трубой и вращается вместе с ней.


Вертикальный круг

Вертикальный круг предназначен для измерения вертикальных углов (угол наклона). Состоит из лимба и алидады.

Лимб вертикального круга может иметь разную оцифровку от 0о до 360о по часовой стрелке или против часовой стрелки секторную оцифровку, т.е. от 0о до ±90о, ±75о, ±60о. Лимб вертикального круга скреплен с трубой и вращается вместе с ней.

Алидада вертикального круга обычно снабжена цилиндрическим уровнем для приведения ее нулевых штрихов в горизонтальное положение, в процессе измерения алидада неподвижна.

Отсчетные приспособления

Штриховой микроскоп – это индекс (штрих) на алидаде, при помощи которого берут отсчеты по лимбу.

Шкаловый микроскоп – это вспомогательная шкала на алидаде, длина которой равна минимальному делению основной шкалы лимба. Направление оцифровки основной и вспомогательной шкалы противоположны.

Верньер – это вспомогательная шкала на алидаде n–делений которых соответствует   n–1 делению основной шкалы лимба. Направление оцифровки вспомогательной шкалы совпадает  с основной.

Отсчет вычисляют по формуле:

A=A0+it.

А0 – отсчет по нулевому указателю Верньера, который был пройден этим указателем от начала лимба и номер штриха Верньера совпадающий со штрихом лимба.

iномер штриха верньера совпадающий со штрихом лимба

t – точность  Верньера.

Подставка геодезических приборов (триер) снабжена тремя подъемными винтами для горизонтирования. Все подвижные части приборов снабжены закрепительными (стопорными) винтами, которые предназначены для фиксирования этих частей в неподвижном положении.

Наводящие (микрометренные) винты предназначены для плавного и медленного поворота частей прибора, работают только при завернутых закрепленных винтах.

Угловые измерения

В геодезии измеряют горизонтальные и вертикальные углы.

Измерение горизонтальных углов, их сущность: пусть на местности закреплена точки А, В, С, находящиеся на разной высоте над уровнем моря. Необходимо измерить горизонтальный угол между АВ и АС местности.

Проведем через А, В, С отвесные линии, которые при пересечении с горизонтальной плоскостью Р дадут их проекции а, в, с. , лежащий в горизонтальной плоскости будет являться горизонтальным углом. Для получения       численного значения горизонтального  необходимо установить угломерный прибор так, чтобы его ось проходила через А в В и С. Установить вешки и взять отсчеты по горизонтальному кругу прибора в‘ и с‘. Значение  равно разности отсчетов: = в‘–с‘.

Горизонтальные углы измеряют при помощи горизонтального круга теодолита.

Классификация теодолитов

Теодолиты по точности делятся на:

1.       Высокоточные, позволяющие измерять углы со средней квадратической погрешностью 0,5″–1″

2.       Точные, СКП 2″–10″

3.       Технические, СКП 15″–30″

По материалам изготовления кругов и устройству отсчетных приспособлений Верньер:

1.       С металлическими кругами и Верньерами

2.       Со стеклянными кругами – отсчетное приспособление – штриховой или школвый микроскоп и оптический микрометр.

По конструкции на:

1.       Простые теодолиты, у которых лимб и алидада могут вращаться только отдельно.

2.       Повторительные, у которых лимб и алидада имеют как независимое так и совместное вращение.

По назначению на:

1.       Маркшейдерские.

2.       Проектировочные

и т.д.

Принципиальная схема теодолита

1-                  лимб ГК

2-                  алидада ГК

3-                  колонки

4-                  алидада ВК

5-                  лимб ВК

6-                  зрительная труба

7-                  цилиндрический уровень

8-                  подставка

9-                  подъемные винты

10-              становой винт

II1– основная (вертикальная) ось теодолита

НН1– ось вращения зрительной трубы

Теодолит должен соответствовать определенным оптико–механическим и геометрическим условиям. Оптико–механическое условие гарантирует завод изготовитель, а геометрические условия подвержены изменениям в процессе работы, транспортировки и хранения приборов.

Геометрические условия необходимо проверять после длительного хранения прибора и регулярно во время работы.

Основные геометрические условия теодолита

1.       Основная ось теодолита должна быть отвесна

2.       Лимб ГК должен быть горизонтален, визирная плоскость не должна быть отвесна. Для соблюдения выполнения этих условий производят поверки теодолита.

Поверки теодолита

Поверка 1.

Ось цилиндрического уровня при алидаде ГК (uu1) должна быть перпендикулярна основной оси теодолита zz1.

Горизонтирование

Уровень устанавливают параллельно двум винтам подставки и их вращением в противоположные стороны приводят пузырек уровня в нуль–пункт. Уровень поворачивают на 180о и проверяют положение пузырька. Если пузырек остался в нуль–пункте или сместился не более чем на одно деление – условие поверки выполнено. В противном случае половину схода устраняют подъемочными винтами подставки,  а вторую половину исправительными винтами уровня. Поверку исправления выполняют до тех пор, пока условие ее не будет выполняться.

Перед выполнением остальных поверок теодолит тщательно горизонтируют, т.е. его основную ось приводят в отвесное положение, для этого уровень устанавливают параллельно двум винтам подставки и приводят пузырек в нуль–пункт. Уровень поворачивают на 90о и третьим винтом приводят пузырек в нуль–пункт.

Эти действия повторяют до тех пор, пока при любом положение ампулы пузырек не будет располагаться в нуль–пункте, либо смещаться на одно деление.

Поверка 2.

Визирная ось трубы vv1 должна быть перпендикулярна горизонтальной оси вращения трубы hh1.

Нарушение этого условия ведет к коллимационной ошибки (с).

Для выполнения поверки визируют на удаленную точку и берут отсчеты по лимбу ГК при КЛ и КП. При соблюдении условий отсчеты будут различаться равно на 180о, т.е.        КЛ–КП±180о=0

Если условие нарушено вычисляют коллимационную погрешность , величина которая не должна превышать удвоенной точности отсчетного приспособления с≤2t. При нарушении этого условия производят исправления. Для этого вычисляют полусумму отсчетов , которую устанавливают по ГК, действую наводящим винтом алидады ГК, при этом сетка нитей сместиться с наблюдаемой точки.

Действую горизонтальными исправительными винтами сетки, совмещают ее центр с наблюдаемой точкой (предварительно ослабляют вертикальные исправительные винты, чтобы дать возможность передвигаться сетки в горизонтальном направлении). После исправления вертикальные винты затягивают.

Поверку исполняют до тех пор, пока не будет выполняться условие.

Поверка 3.

Горизонтальная ось вращения трубы должна быть перпендикулярна к основной оси прибора zz1.

Для выполнения поверки теодолит устанавливают на расстоянии 20–30 м от здания и визируют верхней части стены точку. Трубу опускают до примерно горизонтального положения и на стене фиксируют проекцию центра сетки нитей.

Эти же действия повторяют при другом положении ВК. Если проекции сетки центра совпали или расстояние между ними не превышает ширины биссектора сетки – условие считают выполненным. Нарушение условия говорит о неравенстве подставок зрительной трубы, исправление которой производят на заводе – изготовителе или в специализированных мастерских.

Поверка 4.

Одна из нитей сетки должна быть вертикальна, а вторая горизональна.

Для выполнения поверки визируют на удаленную точку и действуя наводящим винтом алидады и действуя наводящим винтом алидады ГК поварачивают прибор вокруг его оси вращения. Если изображение точки остается на горизонтальной нити сетки – условие считается выполненным, в противном случае сетку исправляют, ослабив горизононтальные и вертикальные исправительные винты, совмещают изображение точки с горизонтальной нитью.

Если производились исправления, то повторяют поверку 2.

Эксцентриситет алидады

В плоскости лимба горизонтального круга имеются три характерных точки:

D – центр круга делений лимба,
A – центр вращения алидады,
L – центр вращения лимба.

В идеальном теодолите все три точки должны совпадать, но в действительности они не совпадают. Несовпадение точки A с точкой D называется эксцентриситетом алидады, несовпадение точки L с точкой D называется эксцентриситетом лимба, несовпадение точек A и L называется эксцентриситетом осей.

Рассмотрим влияние эксцентриситета алидады на отсчеты по лимбу. Отрезок AD называется линейным элементом эксцентриситета алидады и обозначается буквой l.

Некоторые теодолиты имеют два отсчетных устройства, отстоящих одно от другого на 180o. Вследствие эксцентриситета алидады отсчет по одному отсчетному индексу будет меньше правильного отсчета на угол ε:

N’1 = N1 – ε

по другому отсчетному индексу – больше правильного на угол ε:

N’2 = N2 + ε

Средний отсчет будет свободен от влияния эксцентриситета:

N = 0.5*(N1‘ + N2‘) = 0.5*(N1 + N2) .

Чтобы получить численное значение эксцентриситета, нужно из отсчета N2′ вычесть отсчет N1‘:

N2‘ – N1′ = N2 – N1 + 2*ε,

но N2 – N1 = 180o, поэтому:

ε = 0.5*(N’2 – N’1 + 180o).

При вращении алидады взаимное положение линейного элемента эксцентриситета алидады и отсчетных индексов изменяется, и величина ошибки отсчета ε’ зависит от угла γ:

ε’ = ε * sin(γ) .                

У теодолитов с односторонним отсчитыванием отсчет по лимбу искажается на величину ε’ с одним знаком при КЛ и с другим знаком при КП; в среднем отсчете влияние эксцентриситета исключается.

Из всех ошибок отсчитывания по лимбу, возникающих вследствие нарушения геометрических условий, можно выделить симметричные ошибки, то–есть такие, которые имеют разные знаки при КЛ и КП и влияние которых в среднем отсчете устраняется, и несимметричные ошибки, влияние которых в среднем отсчете не устраняется. К симметричным ошибкам относятся коллимационная ошибка, ошибка из–за неравенства подставок, ошибка эксцентриситета. К несимметричным ошибкам относятся ошибка наклона оси вращения алидады, ошибки делений лимба и некоторые другие.

                                    

Способы измерения горизонтальных углов

Перед началом измерения теодолит устанавливают в рабочее положение в вершине угла, а в точках, на которых будет вестись визирование, вертикально устанавливают вешки.

Установка прибора в рабочее положение подразумевает его центрирование, горизонтирование и установка трубы по глазу.

Центрирование – это приведение основной оси теодолита в вершину измеряемого угла. При выполнении работ технической точности центрирование выполняют нитевым отвесом, для этого теодолит на штативе сначала устанавливают на точкой приближенно, стараясь, чтобы верхняя поверхность головки штатива была примерно горизонтальна, ножки штатива закрепляют в пункте. Ослабляют становой винт и перемещением прибора по штативу совмещают острие отвеса с вершиной угла, становой винт затягивают. Точность центрирования 2–5 мм.

Горизонтирование см. поверку 1.

Установка зрительной трубы по глазу см. устройство зрительной трубы.

Способ приемов

Состоит из двух полуприемов, которые выполняются при разных положениях вертикального круга. Для измерения угла в полуприеме закрепляют лимб ГК, открепляют алидаду ГК, визируют на правую точку и, закрепив алидаду, берут отсчет по лимбу ГК. Открепляют алидаду, визируют на левую точку и, закрепив алидаду, берут еще один отсчет. Разность отсчетов даст величину измеряемого угла. Для выполнения второго полуприема трубу переводят через зенит и смещают лимб ГК примерно на 60о, 90о. Выполняют аналогично.

Второй полуприем выполняют для контроля измерения и снижения влияния инструментальных ошибок.

Значения углов в полуприемах должно различаться не более удвоенной точности отсчетного приспособления теодолита. Если условие выполняется за окончательно значение принимают среднее из двух измерений. Для повышения точности измерения можно выполнить несколькими приемами, смещая между ними лимб на величину , где n – число приемов.

Способ круговых приемов

Применяется в тех случаях, когда нужно измерить углы, между тремя и более направлениям на станции.

Теодолит устанавливают в т.О и приводят его в рабочее положение.

Ориентируют лимб по направлению на какую–либо точку, например А (направляют 0о лимба ГК на точку А).

Для этого открепляют алидаду и ее вращением устанавливают отсчет = 0о, закрепляют ее, открепляют лимб и визируют на точку А, закрепляют.

Открепляют алидаду ее вращением по часовой стрелке последовательно визируют на точку В, С, Д и берут отсчеты по лимбу ГК.

В конце проверяют неподвижность лимба, т.е. визируют снова на точку А и берут отсчет.

Отсчет может изменяться до 2t, эти действия составляют полуприем.

Трубу переводят через зенит и выполняют еще один полуприем при другом положении ВК, но визируя против часов стрелки (т.А–Д–С–А–В).

2С – удвоенная коллимационная погрешность.

Колебание удвоенной коллимационной погрешности 2С, допускается в пределах удвоенной точности отсчетного приспособления (1′) теодолита.

Для повышения точности измерения можно выполнить несколькими приемами, переставляя между ними лимб на величину , где n–число приемов.

Способ повторений

Дает возможность повысить точность измерений за счет уменьшения влияния ошибки отсчитывания.

Прибор приводят в рабочее положения в вершине угла и выполняют измерение в процессе которого последовательно откладывают на лимбе измеряемый угол 2k – раз, k – число повторений.

Предположим, что угол измеряется двумя повторениями.

Ориентируют лимб отсчетом близким к 0, на точку А и записывают этот отсчет (n1).

Открепляют алидаду визируют на точку В и берут контрольный отсчет n2.

Открепляют лимб визирую на точку А, отсчет не берут.

В результате лимб переместился против часовой стрелки на угол β.

Открепляют алидаду визируют на точку В, и снова не берут отсчет. Теперь на лимбе отложен угол =2β.

Если необходимо сделать больше двух повторений, то эти условия продолжают до тех пор, пока на лимбе не будет отложен угол β столько раз сколько нужно повторения.

Далее трубу переводят через зенит, открепляют лимб и визируют на точку А. Отсчте при этом не изменяется. Открепляет алидаду, визируют на точку В, на лимбе отложен угол 3β.

Снова открепляют лимб визируют на точку А, открепляют алидаду, визируют на точку В, на лимбе отложен угол 4β.

Берут отсчет n2. Вычисляют угол β по формуле:, (k – число повторений) сравнивая его с контрольным.


Измерение вертикальных углов

Методика измерений зависит от конструкции и оцифровки ВК теодолита.

1 способ

Если ВК не имеет уровень при алидаде, то после приведения прибора в рабочее положение, визируют на определяемую точку. Например, при КЛ, наводящим винтом алидады вертикального круга приводят в 0–пункт уровень при ВК и берут отсчет по лимбу ВК.

Трубу переводят через зенит и действия повторяют при другом положении вертикального круга.

Вычисляют вертикальный угол и МО.

Контролем правильности измерений служит постоянство МО, колебания которого могуб быть в пределах удвоенной точности прибора. (МО=const, ∆MO≤2t).

2 способ

В случае, если алидада ВЕ не имеет уровня, и его функции выполняет уровень при алидаде ГК (Т30, 2Т30). Прибор приводят в рабочее положение, предварительно визируют на опредямую точку, подъемным винтом подставки расположенным ближе все к визирной оси, приводят в 0–пункт пузырек уровня при ГК, производят точное визирвание и берут отсчет по вертикальному кругу. Действие повторяют при другом положении ВК.

Вычисляют вертикальный угол и МО, контроль МО=const.

3 способ

Если алидада ВК не имеет уровня и вместо него используется компенсатор (алидада автоматически становится горизонтально).

Порядок измерений:

Прибор приводят в рабочее положение, визируют на определяемую точку и берут отсчет по ВК. Трубу переводят через зенит и действия повторяют. Вычисляют вертикальный угол и МО,  МО=const.

Формулы для вычисления вертикального угла и МО

1.       от 0º до 360º (лимб) по часовой стрелке:

МО=½(КЛ+КП)

V=КП–МО=МО–КЛ=½(КП–КЛ)

2.       от 0º до 360º (лимб) против часовой стрелке (Т30):

МО=½(КЛ+КП+180º)

V=КЛ–Мо=МО–КП–180º=½(КЛ–КП–180º)

от 0º до ±90º

МО=½(КЛ–КП)

от 0º до ±75º

от 0º до ±60º

v=КЛ–МО=МО–КП=½(КЛ–КП)

3.

Место нуля вертикального круга

При нарушении геометрических условий ВК возникает инструментальная ошибка, называется место нуля ВК.

Место нуля – это отсчет по ВК в момент, когда визирная ось трубы горизонтальная, а пузырек уровня при ВК находиться в нуль–пункте.

При соблюдении геометрических условий этот отсчет равен нулю, при нарушении отличается от нуля.

Геометрические условия. Место нуля – величина постоянная для прибора, его колебания может быть в пределах 2t. Желательно чтобы МО≤2t, в противном случаю его исправляют.

Исправление места нуля

Если место нуля получается большим, то при основном положении круга нужно навести трубу на точку и микрометренным винтом алидады установить отсчет, равный углу наклона; при этом пузырек уровня отклонится от нуль–пункта. Исправительными винтами уровня привести пузырек в нуль–пункт.

Измерение угла наклона местности

В точке А устанавливают теодолит. Приводят его в рабочее положение и при помощи рулетки измеряют высоту инструмента i.

i – это расстояние от оси вращения трубы до точки, над которой установлен прибор.

В точке В вертикально устанавливают рейку, на которой отмечают i. Визируют на высоту инструмента и измеряют вертикальный угол, который будет равен углу наклона местности.

Измерение длин линий

Определение расстояния между точками земной поверхности называется линейными измерениями.

Линейные измерения делятся на непосредственные и косвенные.

К непосредственным измерениям относят такие измерения, при которых мерный прибор укладывают непосредственно в створе измеряемой линии.

Створ – вертикальная плоскость, соединяющая начало и конец измеряемой линии.

Если невозможно измерить длину линии непосредственно, прибегают к косвенным измерениям. В этом случае определяемую длину находят как функцию других измеряемых величин.

Для линейных измерений используют механические и физико–оптические мерные приборы.

Механические рулетки:

– Стальные (25–100 м), эти рулетки имеющие метровые, дециметровые сантиметровые и миллиметровые деления;

– Тесьмяные рулетки (10 м) – сантиметровые, дециметровые, миллиметровые. Используются для съема контура местности.

– Стальные мерные ленты (20 м) имеющие метровые, полуметровые, дециметровые деления. В комплект входят шпильки, которые фиксируют концы ленты. Погрешность 1:2000.Используется для линейных измерений в съемках.

– Инварные проволоки (24 м) с десяти сантиметровыми и миллиметровыми шкалами на концах. Измерение производят при помощи подвесного базисного прибора. Применяется для высокоточных линейных измерений. Погрешность 1:1000000.

Достоинства: высокая точность измерений, простота устройства, не высокая стоимость, возможность откладывания проектных длин.

Недостаток: высокая трудоемкость измерений.

Физико–оптические мерные приборы – это различные лазерные, свето–, радио–, оптико–, дальномеры.

Измерения этими приборами основаны на косвенном способе.

Их достоинствами является точность и быстрота измерений, возможность измерения больших расстояний.

Недостатки: невозможность откладывать проектные расстояния, высокая цена, сложность устройства.

Измерение длин линий механическим прибором (на примере мерной ленты)

Для измерения расстояния обычно не достаточно закрепить на местности начало и конец измеряемой линии, необходимо в створе линии установить дополнительные вешки, этот процесс называется провешиванием или вешением линии. Вешение может производиться при помощи теодолита или на глаз.

Для провешивания линии АВ на глаз, в точках А и В закрепляют вешки, наблюдатель становиться возле точки А так, чтобы вешки в точках А и В совпали. Его помощник движется от точки А к точке В и устанавливает в точках 1, 2, …, n дополнительные вешки, руководясь указаниями наблюдателя.

При вешении теодолита в точке А устанавливают теодолит, в точку В вешку. Вертикальная нить сетки совмещают с вешкой в точке В, закрепляют горизонтальный круг и трубу, вспомогательные вешки устанавливают по вертикальной нити сетки.

Если между точками А и В нет прямой видимости, вешение выполняется следующим образом: выбирают две вспомогательные точки, таким образом, чтобы они обе были видны и из точки А и из точки В, и в них устанавливают вешки.

Методом последовательных приближений перемещают вешки из точки D1 в C1, C1 вD2 , D2 в C2 и т.д., до тех пор пока все вешки не будут на одной прямой.


Порядок измерения линий

После провешивания закрепляют точки перегиба местности, попадающие в створ линии. При помощи рулетки измеряют наклонные участки D1, D2, … и углы наклона местности ν1, ν2, ….

Вычисление горизонтальных проекций измеренных расстояний

d1, d2– горизонтальные проложения:

di=Dicos νi

Общая сумма горизонтального проложения АВ:

ddi

Каждое наклонное расстояние измеряют следующим образом: нулевой штрих ленты прикладывают к началу измеряемой линии, ленту укладывают в створе, встряхивают в горизонтальной и вертикальной плоскостях, натягивают и вставляют шпильку в вырез в конце ленты, снимают ленту со шпильки, одевают на шпильку нулевой вырез ленты и действия повторяют. В конце измеряют длину неполного пролета. Измеренная наклонная длина вычисляется по формуле:

D1=nl+r

r – длина неполного пролета

n – число полных проложений ленты

Для контроля длину измеряют в обратном направлении D2, за окончательно значение длины принимают среднее из двух измерений, если разница между ними не превышает 1:2000 от длины линии:

Поправки, вводимые в длины линии, измеренные механическими приборами:

1. За температуру вводят в тех случаях, когда температура измерений отличается от нормально (+20ºС). Номинальную длину мерного прибора определяют при нормальной температуре, его длина увеличивается или уменьшается в зависимости от внешней температуры:

 

D –измеренная длина

l – длина мерного прибора

α – коэффициент линейного расширения

t – температура измерения

t0 – нормальная температура

2. За наклон линии вводится в тех случаях. Когда угол наклона местности превышает 2º. Иногда необходимо на наклонной поверхности отложить расстояние так, чтобы его горизонтальное проложение было равно заданной величине.

Сначала от точки А откалывают горизонтальные проложения, а затем удлиняют его на поправку:

3. За компарирование – это определение истинной длины мерного приора, при компарировании мерным прибором измеряют заранее известную длину линии и сравнивают результаты измерений с известной величиной, а затем вычисляют поправку мерного прибора. Эта поправка вводиться в том случае если номинальная длина отличается от длины.

Измерение расстояний при помощи физико–оптических мерных приборов

(на примере нитяного дальномера)

Нитяной дальномер это две вспомогательные горизонтальные нити на сетке.

               

               Ход лучей в нитяном дальномере                               Поле зрения трубы

Определения расстояний нитяным дальномером

Для определения расстояния между точками А и В, над точкой А устанавливают прибор так, чтобы его ось вращения проходила через точку А, а в точке В вертикально устанавливают рейку с сантиметровыми делениям. Предположим, что визирная ось трубы горизонтальна и введем обозначения:

Р – расстояние между дальномерными нитями

σ – расстояние от оси вращения прибора до оптического центра объектива

f – фокусное расстояние объектива

F – передний фокус объектива

n – расстояние по рейке меду дальномерными нитями

Поскольку визирная ось горизонтальна, лучи параллельны ей и проходящие через дальномерные нити пересекут передний фокус объектива и, пройдя его, спроектируются на реку, т.е. в трубу можно будет видеть рейку, и изображение дальномерных нитей. Поскольку на рейке нанесены сантиметровые деления, можно будет определить расстояние между дальномерными нитями по рейке, т.е. взять отсчет n.

Из чертежа видно, что расстояние между точками: d = σ + f + E

σ и f постоянны, для каждого прибора и из можно заменить на постоянное слагаемое:

d = c + E (c=0.1 м)

Е – определяют из подобия треугольников:

Поскольку f и Р постоянные величины, то их можно заменить коэффициентами дальномера:

Е = kn (k=100)

D = kn + c

Поскольку точность определения расстояния при помощи дальномера ≈ 1:300 от длины линии, слагаемым с можно пренебречь:

D = kn

Поверки теодолита. | Инженерная геодезия. Часть 1.

Поверки теодолита выполняют для контроля соблюдения в приборе верного взаиморасположения его осей. Основными поверками являются следующие.

Поверка уровня. Ось цилиндрического уровня на алидаде горизонтального круга должна быть перпендикулярна к оси вращения алидады.

Перед выполнением поверки выполняют горизонтирование теодолита. Затем устанавливают уровень по направлению двух подъёмных винтов и с их помощью приводят пузырёк в нульпункт. Поворачивают алидаду на 180º. Если пузырёк уровня остался в нульпункте, то требуемое условие выполнено – ось уровня перпендикулярна к оси вращения алидады. Если пузырёк уровня ушел из нульпункта, исправительными винтами уровня изменяют его наклон, перемещая пузырёк в сторону нульпункта на половину отклонения.

Поверку повторяют, добиваясь, чтобы смещение пузырька было меньше одного деления.

Поверка сетки нитей. Вертикальный штрих сетки нитей должен быть перпендикулярен к оси вращения зрительной трубы.

Наводят вертикальный штрих сетки нитей на точку и наводящим винтом трубы изменяют ее наклон. Если изображение точки не скользит по штриху, сетку нитей надо повернуть. Для этого поворачивают корпус окуляра, ослабив четыре винта его крепления к зрительной трубе (рис. 7.9).

 

 

 

 

 

 

Рис. 7.9. Крепление сетки нитей: 1- крепёжный винт окуляра; 2, 3 — горизонтальные и вертикальные исправительные винты сетки нитей; 4 – сетка нитей.

 

Поверка визирной оси. Визирная ось трубы должна быть перпендикулярна к оси вращения трубы.

Если визирная ось перпендикулярна к оси вращения трубы, то отсчёты по горизонтальному кругу при разных положениях вертикального круга (круг слева и круг справа) и наведении на одну и ту же точку будут различаться ровно на 180º. Если разность отчетов отличается от 180°, то ось вращения трубы не перпендикулярна к визирной оси (рис. 7.10). При этом соответствующие отсчёты Л и П отличаются от правильных значений на одинаковую величину с, получившую название коллимационной ошибки.

При выполнении поверки визируют на удалённую точку при двух положениях круга и берут отсчёты Л и П. Вычисляют коллимационную погрешность с = (Л — П ± 180°) ¤ 2, которая не должна превышать двойной точности теодолита.

Если коллимационная погрешность велика, то наводящим винтом алидады устанавливают на горизонтальном круге верный отсчёт, равный (Л — с) или (П + с). При этом центр сетки нитей сместится с изображения точки. Отвинчивают колпачок, закрывающий винты сетки нитей, ослабляют один из вертикальных исправительных винтов, и, действуя горизонтальными исправительными винтами, совмещают центр сетки нитей с изображением точки. Закрепив ослабленные винты, поверку повторяют.

Рис. 7.10. Поверка визирной оси: ss — визирная ось; tt — верное положение оси вращения трубы; t1t1, t2t2 -положение оси вращения трубы при круге право и круге лево.

 

Рис. 7.11. Поверка оси вращения зрительной трубы

Поверка оси вращения трубы. Ось вращения трубы должна быть перпендикулярна к оси вращения алидады.

Установив теодолит вблизи стены здания, визируют на высоко расположенную под углом наклона 25 — 30º точку Р (рис. 7.11). Наклоняют трубу до горизонтального положения и отмечают на стене проекцию центра сетки нитей. Переводят трубу через зенит, вновь визируют на точку Р и отмечают её проекцию. Если изображения обеих проекций точки не выходят за пределы биссектора сетки нитей, требование считают выполненным. В противном случае необходимо исправить положение оси вращения трубы. Исправление выполняют в мастерской, изменяя наклон оси.

Основное геометрическое условие, необходимое для правильной работы нивелира с уровнем. Порядок выполнения поверки

Для нивелира с уровнем при трубе выполняются три поверки.

1. Ось цилиндрического уровня и визирная линия трубы должны быть параллельны и лежать в параллельных вертикальных плоскостях – это условие называется главным условием нивелира с уровнем при трубе. Первая часть главного условия проверяется двойным нивелированием вперед. На местности забивают два колышка на расстоянии около 50 м один от другого. Нивелир устанавливают над точкой А так, чтобы окуляр трубы находился на одной вертикальной линии с точкой (рис.4.34-а). От колышка до центра окуляра измеряют высоту инструмента i1. Затем рейку ставят в точку В, наводят на нее трубу нивелира, приводят пузырек уровня в нуль-пункт и берут отсчет по рейке b1. Затем нивелир и рейку меняют местами, измеряют высоту инструмента i2, приводят пузырек уровня в нуль-пункт и берут отсчет по рейке b2 (рис.4.34б).

Пусть главное условие нивелира не выполняется, и при положении пузырька уровня в нуль-пункте визирная линия не горизонтальна, а составляет с осью уровня некоторый угол i. Тогда вместо правильного отсчета b0 1 получается ошибочный – b1. Ошибку отсчета обозначим x, и превышение точки В относительно точки А будет равно:

h = i1 – (b1 + x).

При положении нивелира в точке В превышение точки А относительно точки В:

Рис.4.34

h’ = i2 – (b2 + x).

Но h = – h’, поэтому

i1 – (b1 + x) = – [i2 — (b2 + x)].

Отсюда получаем:

x = 0.5*(i1 + i2) – 0.5*(b1 + b2). (4.59)

Если x получается больше 4 мм, необходимо выполнить юстировку уровня, т.е. устранить угол i. Для этого элевационным винтом наклоняют трубу нивелира до тех пор, пока отсчет по рейке не будет равен правильному отсчету:

b02 = b2 + x,

при этом пузырек уровня уйдет из нуль-пункта. Исправительными винтами уровня приводят пузырек в нуль-пункт и повторяют поверку заново. Полная программа поверки главного условия включает еще проверку параллельности вертикальных плоскостей, проведенных через визирную линию трубы и ось уровня; порядок этой проверки изложен в [15] на стр.62.

При нивелировании строго из середины ошибка отсчета по рейке из-за невыполнения главного условия нивелира не влияет на величину измеряемого превышения (рис.4.35)

Рис.4.35

2. Ось круглого установочного уровня должна быть параллельна оси вращения нивелира. Приводят пузырек круглого уровня в нуль-пункт, затем поворачивают нивелир по азимуту на 180. Если пузырек отклонился от нуль-пункта, то на половину отклонения его перемещают с помощью подъемных винтов и на половину – исправительными винтами круглого уровня.

Существует и другой, более надежный способ поверки круглого уровня: сначала тщательно устанавливают ось вращения нивелира в отвесное положение с помощью элевационного винта и цилиндрического уровня при трубе, затем исправительными винтами круглого уровня приводят его пузырек в нуль-пункт.

3. Горизонтальная нить сетки нитей должна быть перпендикулярна оси вращения нивелира, т.е. быть горизонтальной. Рейку ставят в 30 – 40 м от нивелира и закрепляют ее, чтобы она не качалась. Затем берут отсчеты по рейке при трех положениях ее изображения: в центре поля зрения, слева от центра и справа. Если отсчеты отличаются один от другого более, чем на 1 мм, то сетку нитей нужно развернуть.

Предполагая, что сетки нитей строго перпендикулярны, можно проверить вертикальность вертикальной нити. Для этого в 20 м от нивелира подвешивают отвес, наводят на него трубу и проверяют совпадение вертикальной нити сетки с нитью отвеса.

Важнейшими характеристиками нивелира, определяющими точность измерения превышений, являются увеличение зрительной трубы и цена деления цилиндрического уровня при трубе. По этим характеристикам определяет пригодность нивелира для выполнения работ заданной точности. Чтобы получить численные значения увеличения трубы и цены деления уровня, выполняют соответствующие исследования нивелира.

Поверки теодолитов » Привет Студент!

К основным поверкам теодолитов относится установление выполнения следующих условий.

Условие 1. Ось цилиндрического уровня при алидаде горизонтального круга должна быть перпендикулярна к оси вращения теодолита.

Условие 2. Вертикальный штрих сетки нитей должен находиться в вертикальной (коллимационной) плоскости.

Коллимационная плоскость определяется плоскостью, образованной визирной осью зрительной трубы при ее вращении вокруг оси 2-2.

Условие 3. Место нуля вертикального круга должно быть близким к нулю и постоянным.

Условие 4. Визирная ось зрительной трубы должна быть перпендикулярна к горизонтальной оси ее вращения.

Условие 5. Горизонтальная ось вращения зрительной трубы должна быть перпендикулярна к вертикальной оси вращения теодолита.

Установление выполнения указанных выше условий называют поверкой.

Условие 1 проверяют в начале каждого рабочего дня, а также при необходимости и в течение рабочего дня. При использовании теодолита для ориентировки или при разбивочных работах на монтажных горизонтах — на каждой станции.

Условие 2 проверяют перед выполнением разбивочных работ, при створных измерениях, при выполнении ориентировок, перед измерениями в ходах съемочного обоснования и др.

Условие 3 поверяют перед измерениями углов наклона (тригонометрическое нивелирование), перед ориентировками, при визировании на близкие цели.

Условие 4 проверяют одновременно с проверкой условия 3 перед выполнением указанных выше работ.

Условие 5 проверяют периодически в соответствии с инструкцией по эксплуатации прибора, но не реже одного раза в 2 месяца, а также после известных наблюдателю механических воздействий, происшедших во время работы с теодолитом, либо во время его транспортировки или хранения.

Перед поверками теодолит необходимо установить в рабочее положение. Поскольку измерение горизонтальных углов при указанных поверках не производится, то центрирование теодолита не выполняют.

Перед выполнением любой поверки (2, 3, 4 и 5) поверка условия 1 обязательна.

Поверка 1. (Выполнение условия 1).

1. Установить ось цилиндрического уровня при алидаде горизонтального круга по направлению на два любых подъемных винта подставки. Вращением этих винтов в противоположные стороны привести пузырек уровня точно на середину.

2. Повернуть колонку на 180о (это можно выполнить «на глаз» по симметрии частей колонки, либо по отсчетам шкалы горизонтального круга).

Если пузырек уровня отклонился не более чем на два деления ампулы, то условие считают выполненным. В этом случае поверку следует проконтролировать по двум другим подъемным винтам подставки.

3. Если пузырек уровня отклонился более чем на два деления, то половину этого отклонения следует исправить подъемными винтами подставки, вращая их одновременно в противоположные стороны, а другую половину — юстировочными винтами уровня, перемещая его хвостовик вверх или вниз, в зависимости от положения пузырька.

После выполнения юстировки поверку повторяют на других подъемных винтах.

Юстировочные винты уровня находятся на одном из его концов. Ими зажат хвостовик уровня. Кроме того, многие уровни снабжены и боковыми юстировочными винтами. При выполнении юстировки необходимо слегка ослабить боковые юстировочные винты, а затем отпустить один из юстировочных винтов и подкрутить второй. Этим обеспечивается жесткое положение хвостовика после выполнения каждого шага юстировки. После выполнения поверки и юстировки боковые винты уровня следует снова зажать.

Часто встречаются случаи, когда после выполнения п. 2 поверки пузырек полностью уходит в один из концов ампулы, т. е. ось уровня весьма заметно отклонена от горизонтального положения. В такой ситуации не регистрируется величина полного отклонения пузырька. Для оценки полного отклонения пузырька необходимо подъемными винтами привести пузырек уровня на середину, при этом следует стараться поворачивать оба винта на один и тот же угол и считать число n таких поворотов. После этого надо возвратить пузырек назад на половину (n/2) таких же оборотов подъемных винтов, а юстировочными винтами уровня привести пузырек на середину ампулы. Такие действия выполняют до тех пор, пока исправляемое положение пузырька уровня не достигнет регистрируемой по ампуле величины.

Поверка 2. (Выполнение условия 2).

Для поверки условия 2 визируют верхний конец вертикальной нити сетки нитей на какую-либо точку и наводящим винтом зрительной трубы переводят изображение точки в нижнюю часть вертикальной нити. Если изображение точки при этом смещается не более чем на 1/3 ширины биссектора сетки нитей, то условие 2 считают выполненным. В противном случае ослабляют крепежные винты сетки и проворачивают ее до необходимого положения. После этого крепежные винты закручивают и повторяют поверку этого условия.

 

Рис. 1. Первая поверка теодолита

Урок №13. Угловые измерения. Устройство теодолита.

Схема измерения горизонтального угла

Принцип измерения горизонтального угла заключается в следующем: Пусть на местности имеются три точки А, В и С (рисунок 7.1), расположенные на разных высотах. Необходимо измерить горизонтальный угол при вершине В между направлениями ВА и ВС. Этот угол определяется проекцией угла АВС на горизонтальную плоскость Р.

Расположим над вершиной измеряемого угла параллельно горизонтальной плоскости градуированный круг, центр которого совместим с отвесной линией ВВ′. Тогда по направлению ВС на круге можно зафиксировать отсчет С′, а по направлению ВА — отсчет а′. Если деления на круге подписаны по ходу часовой стрелки, то угол горизонтальный β=а′ — с′ .

 

 

Рисунок 7.1 – Измерение горизонтальных углов

Устройство теодолита

Рассмотренная геометрическая схема измерения горизонтального угла осуществляется угломерным инструментом, называемым теодолитом

Теодолит имеет металлический или стеклянный круг, называемый лимбом (7), по скошенному краю которого нанесены деления от 0º до 360º.

Счет делений идет по часовой стрелке. Центр лимба устанавливается на отвесной линии, проходящей через вершину В (рисунок 7.1) измеряемого угла. На плоскость лимба проектируются стороны ВА и ВС измеряемого угла. При измерении угла лимб неподвижен и горизонтален.

Над лимбом помещена вращающаяся вокруг отвесной линии верхняя часть теодолита, содержащая алидаду (6) и зрительную трубу (4). Оси лимба и алидады совпадают и называются основной или вертикальной осью инструмента zz1.

 

1-подъемный винт; 2-подставка; 3-вертикальный круг; 4-зрительная труба; 5-циллиндрический уровень; 6-алидада; 7-лимб; 8-становой винт

 

Рисунок 7.2 – Схема устройства теодолита

 

Плоскость лимба устанавливается в горизонтальное положение по цилиндрическому уровню (5) с помощью трех подъемных винтов (1). Зрительная труба может быть повернута 180º вокруг горизонтальной оси, то есть переведена через зенит. На одном из концов оси вращения трубы укреплен вертикальный круг (3), который наглухо соединен с осью и вращается вместе с ней.. вертикальный круг может располагаться справа или слева от зрительной трубы, если смотреть со стороны окуляра. Первое положение называется «круг право» (КП), второе «круг лево» (КЛ)

В комплект теодолита входят штатив и отвес.

Штатив представляет собой треногу с металлической головкой. Теодолит крепится к головке штатива с помощью станового винта (8). Отвес служит для центрирования инструмента над точкой, то есть для установления центра лимба над вершиной измеряемого угла.

Вращающиеся части теодолита снабжены зажимными винтами для закрепления их в неподвижное состояние.

Для измерения горизонтального угла последовательно наводят зрительную трубу на точки АС. В обоих случаях с помощью отсчетного приспособления производится отсчет по лимбу. Разность отсчетов дает значение измеряемого угла.

 

Теодолиты

Отечественная промышленность выпускает теодолиты, измерения которыми выполняют с погрешностью 0,5 … 30,0»

Максимальная погрешность указывается в марке прибора, например 3Т30-30», и т.д.

Особый интерес представляют теодолиты серии – высокопроизводительные, удобные в работе многофункциональные приборы, эксплуатация которых возможна в пределах температур -40˚С … +50˚С.

В строительстве, изыскательских работах, при монтаже машин чаще всего применяют теодолит типа 3Т5КП (с оптическим компенсатором)

В настоящее время для автоматизации процесса измерения углов выпускают кодовые теодолиты (на основе двоичной системы — сочетания двух сигналов: темного и светлого). Считывание и обработка осуществляется автоматически, в обязанность наблюдателя входит лишь наведение трубы на цель.

Теодолит является сложным и дорогостоящим прибором, требующим умелого и бережного отношения с ним.

 

Подготовка теодолита к работе

Основные геометрические условия, которые должны быть соблюдены в теодолите, заключаются в следующем:

— вертикальная ось инструмента должна быть отвесна;

— плоскость лимба должна быть горизонтальна;

— визирная плоскость – вертикальна;

Для соблюдения этих условий выполняются следующие поверки теодолита:

1. Ось цилиндрического уровня при алидаде горизонтального круга должна быть перпендикулярна основной оси инструмента.Практически поступают таким образом: ставят уровень па­раллельно двум подъемным винтам, с помощью которых пузы­рек уровня приводят на середину; середина уровня будет в цен­тре его шкалы; взаимное положение осей уровня и вращения алидады остается неизменным. После поворота алидады на 180° исправляют положение оси уровня на половину дуги отклоне­ния пузырька от середины шкалы при втором его положении; это делается с помощью специального исправительного винта уровня М. Поверку повторяют до полного выполне­ния требуемого условия.

теодолита — GIS Wiki | Энциклопедия ГИС

Оптический теодолит, произведенный в Советском Союзе в 1958 году и использовавшийся для топографической съемки.

Теодолит (произносится как / θi˝ˈɒdəlаɪt / ) — это прибор для измерения как горизонтальных, так и вертикальных углов, используемый в сетях триангуляции. Это ключевой инструмент в геодезических и инженерных работах, особенно на труднодоступных местах, но теодолиты были адаптированы для других специализированных целей в таких областях, как метеорология и технология запуска ракет.Современный теодолит состоит из подвижного телескопа, установленного в пределах двух перпендикулярных осей — горизонтальной или цапфовой оси и вертикальной оси. Когда телескоп направлен на желаемый объект, угол каждой из этих осей может быть измерен с большой точностью, обычно по шкале угловых секунд.

« Transit » относится к специальному типу теодолита, который был разработан в начале 19 века. Он отличался телескопом, который мог «перевернуться» («проходить через прицел»), чтобы обеспечить легкое обратное прицеливание и удвоение углов для уменьшения ошибок.Некоторые транзитные приборы могли считывать углы с точностью до тридцати угловых секунд. В середине 20-го века термин «транзит» стал обозначать простую форму теодолита с меньшей точностью и отсутствием таких функций, как увеличение шкалы и механические измерители. Важность транзитов уменьшается, поскольку компактные и точные электронные теодолиты стали широко распространенными инструментами, но транзиты все еще находят применение в качестве легкого инструмента на строительных площадках. Некоторые транзиты не измеряют вертикальные углы.

Строительный уровень часто принимают за транзитный, но на самом деле это разновидность инклинометра. Он не измеряет ни горизонтальные, ни вертикальные углы. Он просто сочетает в себе спиртовой уровень и телескоп, чтобы позволить пользователю визуально установить линию обзора вдоль плоскости уровня.

Принцип работы

Схема оптического теодолита Оси и круги теодолита

Обе оси теодолита снабжены градуированными кружками, которые можно прочитать через увеличительные линзы.(Р. Андерс помог М. Денхэму открыть эту технологию в 1864 г.) Вертикальный круг (который «проходит» вокруг горизонтальной оси) должен составлять 90 ° или 100 градусов, когда ось визирования горизонтальна, или 270 ° (300 градусов), когда инструмент находится во втором положении, то есть «перевернут» или «опущен». Половина разницы между двумя позициями называется «ошибкой индекса».

Горизонтальная и вертикальная оси теодолита должны быть перпендикулярны. Состояние, при котором они отклоняются от перпендикулярности, и величина, на которую они отклоняются, называется «ошибкой горизонтальной оси».Оптическая ось телескопа, называемая «осью визирования» и определяемая оптическим центром объектива и центром перекрестия в его фокальной плоскости, аналогичным образом должна быть перпендикулярна горизонтальной оси. Любое отклонение от перпендикулярности считается «коллимационной ошибкой».

Погрешность горизонтальной оси, погрешность коллимации и погрешность индекса регулярно определяется калибровкой и устраняется механической регулировкой на заводе, если они становятся слишком большими. Их наличие учитывается при выборе методики измерения, чтобы исключить их влияние на результаты измерений.

Теодолит устанавливается на головку штатива с помощью пластины для принудительного центрирования или трегера, содержащего четыре винта с накатанной головкой, а в некоторых современных теодолитах — три для быстрого выравнивания. Перед использованием теодолит должен быть точно и вертикально размещен над измеряемой точкой — центрированием — и его вертикальная ось совмещена с местной силой тяжести — выравниванием. Первое делается с помощью отвеса, спиртового уровня, оптического или лазерного отвеса.

История

Теодолит в разрезе, демонстрирующий сложность оптических путей

Термин диоптрий иногда использовался в старых текстах как синоним теодолита. [1] Это происходит от более старого астрономического инструмента, называемого диоптрой.

До теодолита для измерения вертикального или горизонтального угла использовались такие инструменты, как геометрический квадрат и различные градуированные круги (см. Окружность) и полукруга (см. Графометр). Это был лишь вопрос времени, когда кто-нибудь поместит два измерительных прибора в один прибор, который сможет измерять оба угла одновременно. Грегориус Райш показал такой инструмент в приложении к своей книге Margarita Philosophica , которую он опубликовал в Страсбурге в 1512 году. [2] Он был описан в приложении Мартином Вальдземюллером, топографом и картографом Рейнской области, который сделал это устройство в том же году. [3] Вальдземюллер назвал свой инструмент polimetrum . [4]

Первое упоминание слова «теодолит» встречается в учебнике по геодезии Геометрическая практика под названием «Пантометрия» (1571) Леонарда Диггеса, которая была опубликована посмертно его сыном Томасом Диггесом. [2] Этимология слова неизвестна [5] .Первая часть новолатинского theo-delitus может происходить от греческого θεαομαι , «созерцать или внимательно смотреть на», [6] , но вторая часть более загадочна и часто приписывается ненаучным вариациям. из δηλος , что означает «очевидный» или «ясный». [7] [8]

Существует некоторая путаница в отношении инструмента, к которому первоначально было применено это название. Некоторые идентифицируют ранний теодолит только как азимутальный инструмент, в то время как другие определяют его как альтазимутальный инструмент.В книге Диггеса название «теодолит» описывает прибор только для измерения горизонтальных углов. Он также описал прибор, измеряющий высоту и азимут, который он назвал топографическим прибором [sic]. [9] Таким образом, название первоначально применялось только к азимутальному инструменту и только позже стало ассоциироваться с альтазимутальным инструментом. 1728 Cyclopaedia сравнивает «графометр» с «полутеодолитом». [10] Еще в 19, и годах прибор для измерения только горизонтальных углов назывался простым теодолитом , а инструмент для измерения альтазимута — простым теодолитом . [11]

Первый инструмент, больше похожий на настоящий теодолит, вероятно, был построен Джошуа Хабермелем (de: Erasmus Habermehl) в Германии в 1576 году, в комплекте с компасом и треногой. [3]

Самые ранние инструменты для измерения альтазимута состояли из основания, градуированного с полным кругом на краю, и устройства измерения вертикального угла, чаще всего полукругом. Алидада на основании использовалась для наведения на объект для измерения горизонтального угла, а вторая алидада была установлена ​​на вертикальном полукруге.У более поздних инструментов была единственная алидада на вертикальном полукруге, и весь полукруг был установлен так, чтобы его можно было использовать для непосредственного указания горизонтальных углов. В конце концов, простая алидада с открытым прицелом была заменена прицельным телескопом. Впервые это сделал Джонатан Сиссон в 1725 году. [11]

Теодолит стал современным точным инструментом в 1787 году с появлением знаменитого великого теодолита Джесси Рамсдена, который он создал с помощью очень точного делительного механизма собственной разработки. . [11] По мере развития технологий в 1840-х годах вертикальный частичный круг был заменен полным кругом, а вертикальные и горизонтальные круги были точно градуированы. Это был транзитный теодолит . Позже теодолиты были адаптированы для более широкого круга применений. В 1870-х годах Эдвард Сэмюэл Ричи изобрел интересную водную версию теодолита (использующую маятниковое устройство для противодействия волновому движению). [12] Он использовался U.S. Navy проведет первые высокоточные исследования американских гаваней на побережьях Атлантического океана и Персидского залива. [13] Благодаря постоянным усовершенствованиям инструмент постепенно превратился в современный теодолит, который сегодня используют геодезисты.

Работа на геодезии

Техники Национальной геодезической службы США проводят наблюдения с теодолитом Wild T-3 с разрешением 0,2 угловой секунды, установленным на наблюдательной стойке. Фотография сделана во время полевой вечеринки в Арктике (около 1950 г.).

Триангуляция, изобретенная Джеммой Фризиус около 1533 года, состоит из построения таких диаграмм направления окружающего ландшафта с двух разных точек зрения.После этого два графических листа накладываются друг на друга, создавая масштабную модель ландшафта или, скорее, целей в нем. Истинный масштаб можно получить, просто измерив на расстоянии как на реальной местности, так и в графическом представлении.

Современная триангуляция, как, например, практикуется Снеллием, представляет собой такую ​​же процедуру, выполняемую числовыми средствами. Фотограмметрическая блокировка стереопар аэрофотоснимков — это современный трехмерный вариант.

В конце 1780-х годов Джесси Рамсден, йоркширский житель из Галифакса, Англия, разработавший машину деления для деления угловых шкал с точностью до секунды дуги, получил заказ на создание нового инструмента для британской службы управления боеприпасами.Теодолит Рамсдена использовался в течение следующих нескольких лет для картирования всей южной Британии методом триангуляции.

В сетевом измерении использование принудительного центрирования ускоряет операции при сохранении высочайшей точности. Теодолит или мишень могут быть быстро удалены или вставлены в пластину принудительного центрирования с точностью до миллиметра. В настоящее время антенны GPS, используемые для геодезического позиционирования, используют аналогичную систему крепления. Необходимо точно измерить высоту контрольной точки теодолита — или цели — над наземным ориентиром.

Американский транзит приобрел популярность в XIX веке, когда американские инженеры-железнодорожники продвигались на запад. Транзит заменил железнодорожный компас, секстант и октант и отличался тем, что у него был телескоп короче, чем базовые рычаги, что позволяло телескопу вертикально вращаться мимо, прямо вниз. Транзит имел возможность «плюхнуться» на свой вертикальный круг и легко показать пользователю точный угол обзора 180 градусов. Это облегчало просмотр длинных прямых линий, например, при съемке американского Запада.Ранее пользователь поворачивал телескоп по его горизонтальному кругу на 180 и должен был тщательно проверять свой угол при повороте на 180 градусов.

Теодолиты современные

Современный теодолит Nikon DTM-520

В сегодняшних теодолитах считывание горизонтальных и вертикальных кругов обычно осуществляется электронным способом. Считывание осуществляется поворотным энкодером, который может быть абсолютным, например. с использованием кодов Грея или инкрементального, используя эквидистантные светлые и темные радиальные полосы. В последнем случае круги вращаются быстро, сводя измерение угла к электронному измерению разницы во времени.Кроме того, в последнее время к фокальной плоскости телескопа были добавлены ПЗС-сенсоры, позволяющие как автоматическое наведение, так и автоматическое измерение остаточного смещения цели. Все это реализовано во встроенном ПО.

Кроме того, многие современные теодолиты стоимостью до 10 000 долларов США за штуку оснащены интегрированными электрооптическими приборами для измерения расстояния, как правило, на основе инфракрасного излучения, что позволяет измерять за один проход полные трехмерные векторы, хотя и в определяемых прибором полярных координатах. -координаты — которые затем могут быть преобразованы в уже существующую систему координат в области с помощью достаточного количества контрольных точек.Этот метод называется решением обратной засечки или съемкой свободного положения станции и широко используется при картографической съемке. Инструменты, «интеллектуальные» теодолиты, называемые саморегистрирующимися тахеометрами или «тахеометрами», выполняют необходимые операции, сохраняя данные во внутренние регистрирующие устройства или на внешние устройства хранения данных. Обычно для этой цели в качестве сборщиков данных используются защищенные ноутбуки или КПК.

Гиротеодолиты

Основная статья: гиротеодолит

Гиротеодолит используется, когда требуется опорный пеленг меридиана с севера на юг в отсутствие астрономических прицелов.В основном это происходит в подземной горнодобывающей промышленности и при строительстве туннелей. Например, если водовод должен проходить под рекой, вертикальный вал на каждой стороне реки может быть соединен горизонтальным туннелем. Гиротеодолит можно использовать на поверхности, а затем снова у основания валов, чтобы определить направления, необходимые для туннелирования между основанием двух валов. В отличие от искусственного горизонта или инерциальной навигационной системы, гиротеодолит нельзя перемещать во время работы.Он должен быть перезапущен снова на каждом сайте.

Гиротеодолит состоит из обычного теодолита с приставкой, которая содержит гироскоп, установленный так, чтобы определять вращение Земли и, следовательно, выравнивание меридиана. Меридиан — это плоскость, которая содержит как ось вращения Земли, так и наблюдателя. Пересечение меридиональной плоскости с горизонталью содержит требуемый истинный географический ориентир север-юг. Гиротеодолит обычно называют способным определять или находить истинный север.

Гиротеодолит будет функционировать на экваторе, а также в северном и южном полушариях. На географических полюсах меридиан не определен. Гиротеодолит нельзя использовать на полюсах, где ось Земли точно перпендикулярна горизонтальной оси спиннера, на самом деле он обычно не используется в пределах примерно 15 градусов от полюса, потому что компонента вращения Земли с востока на запад недостаточно для получить достоверные результаты. Если возможно, астрономические прицелы могут определять пеленг меридиана с точностью более чем в сто раз выше, чем у гиротеодолита.Там, где эта дополнительная точность не требуется, гиротеодолит может быстро получить результат без необходимости ночных наблюдений.

Список литературы

  1. Краткое издание Оксфордского словаря английского языка , Oxford University Press, 1971 — см. Запись для диоптрий
  2. 2,0 2,1 Даума, Морис, Научные инструменты семнадцатого и восемнадцатого веков и их создатели , Портман Букс, Лондон 1989 ISBN 978-0713407273
  3. 3.0 3,1 Geomatica Online Colombo, Luigi, Selvini, Attilio, Sintesi di una storia degli Strumenti per la misura topografica
  4. ↑ Миллс, Джон ФитцМорис, Энциклопедия старинных научных инструментов , Aurum Press, Лондон, 1983, ISBN 0-906053-40-4
  5. ↑ http://en.wiktionary.org/wiki/theodolite
  6. ↑ http://www.searchgodsword.org/lex/grk/view.cgi?number=2300
  7. ↑ http://www.languagehat.com/archives/001935.php
  8. ↑ http: // www.takeourword.com/Issue016.html
  9. ↑ Turner, Gerard L’E., Елизаветинские производители приборов: истоки лондонской торговли точным приборостроением , Oxford University Press, 2000, ISBN 978-0198565666
  10. Циклопедия , т. 2 шт. 50 за «Полукруг»
  11. 11,0 11,1 11,2 Тернер, Жерар Л’Э. Научные инструменты девятнадцатого века , Sotheby Publications, 1983, ISBN 0-85667-170-3
  12. ↑ American Academy of Arts and Sciences, Proceedings of the American Academy of Arts and Sciences , Vol.XXIII, май 1895 — май 1896, Бостон: University Press, John Wilson and Son (1896), стр. 359-360.
  13. ↑ Американская Академия, стр. 359-360.

См. Также

теодолитов | Как работает теодолит | Теодолит против Транзита | Как использовать теодолиты

Теодолит и транзит
Как использовать теодолит
Как работает теодолит

Типы теодолитов

Существует два типа теодолитов: цифровые и нецифровые.Нецифровые теодолиты сейчас используются редко. Цифровые теодолиты состоят из телескопа, установленного на основании, а также электронного считывающего экрана, который используется для отображения горизонтальных и вертикальных углов. Цифровые теодолиты удобны, потому что цифровые показания заменяют традиционные градуированные круги, и это обеспечивает более точные показания.

Части теодолита

Как и другие нивелиры, теодолит состоит из телескопа, установленного на основании.Вверху телескопа есть прицел, который используется для выравнивания цели. Инструмент имеет ручку фокусировки, которая используется для четкости объекта. Телескоп имеет окуляр, через который пользователь видит цель. Линза объектива также находится на телескопе, но находится на противоположном конце окуляра. Линза объектива используется для прицеливания объекта и с помощью зеркал внутри телескопа позволяет увеличить объект. Основание теодолита имеет резьбу для удобной установки на штатив.

Как работает теодолит?

Теодолит работает, комбинируя оптические центриры (или отвесы), спиртовой уровень (пузырьковый уровень) и градуированные круги для определения вертикальных и горизонтальных углов при съемке. Оптический центрир обеспечивает размещение теодолита как можно ближе к вертикали над точкой съемки. Внутренний спиртовой уровень гарантирует, что устройство выровнено до горизонта. Градуированные круги, один вертикальный и один горизонтальный, позволяют пользователю фактически определять углы.

Как использовать теодолит

  1. Отметьте точку, в которой будет установлен теодолит, с помощью гвоздя геодезиста или кола. Эта точка является основой для измерения углов и расстояний.
  2. Установите штатив. Убедитесь, что высота штатива позволяет инструменту (теодолиту) находиться на уровне глаз. Отцентрованное отверстие монтажной пластины должно находиться над гвоздем или колом.
  3. Вбейте ножки штатива в землю, используя кронштейны по бокам каждой ножки.
  4. Установите теодолит, поместив его на штатив, и прикрутите его с помощью монтажной ручки.
  5. Измерьте высоту между землей и инструментом. Это будет ссылка на другие станции.
  6. Выровняйте теодолит, отрегулировав ножки штатива и используя уровень «яблочко». Вы можете сделать небольшую настройку с помощью регуляторов уровня, чтобы добиться нужного результата.
  7. Отрегулируйте маленький прицел (вертикальный центрир), расположенный на дне теодолита.Вертикальный центрир позволяет гарантировать, что инструмент остается над гвоздем или колом. Отрегулируйте отвес, используя ручки внизу.
  8. Наведите перекрестье основного прицела на точку измерения. Используйте фиксирующие ручки сбоку теодолита, чтобы держать его нацеленным на острие. Запишите горизонтальный и вертикальный углы с помощью телескопа, находящегося на стороне теодолита.

Теодолит против транзитного уровня

Теодолит — это прецизионный прибор, используемый для измерения углов как по горизонтали, так и по вертикали.Теодолиты могут вращаться как по горизонтальной, так и по вертикальной оси. Теодолиты имеют много общего с транзитами.

Транзит — это геодезический инструмент, который также выполняет точные угловые измерения. Помимо транзита, в теодолитах установлены телескопы, которые можно поворачивать в разные стороны. И теодолиты, и транзиты могут использоваться для аналогичных проектов, но между этими двумя инструментами есть небольшие различия. Транзиты используют нониусные шкалы и внешние градуированные металлические кружки для отсчета углов.В теодолитах используются замкнутые градуированные круги, а угловые показания снимаются с помощью внутренней увеличительной оптической системы. Теодолиты, как правило, имеют более точное считывание и обеспечивают большую точность измерения углов, чем транзиты.

Теодолиты в основном используются для геодезии, но они также могут быть полезны в следующих приложениях:

  • Навигация
  • Метеорология
  • Разметка углов и линий здания
  • Измерение и нанесение углов и прямых
  • Выравнивание стен деревянного каркаса
  • Формовочные панели
  • Сантехника колонны или угла здания

Преимущества использования теодолита

Теодолиты имеют много преимуществ по сравнению с другими инструментами для нивелирования:

  • Более высокая точность.
  • Внутренняя увеличивающая оптическая система.
  • Электронные показания.
  • Горизонтальные круги можно мгновенно обнулить или установить на любое другое значение.
  • Показания по горизонтальному кругу можно снимать слева или справа от нуля.
  • Повторные показания не требуются.

Теодолиты имеют внутреннее оптическое устройство, которое делает считывание кругов намного более точным, чем другие инструменты. Кроме того, поскольку теодолит позволяет снимать меньше повторных измерений, эти измерения можно проводить гораздо быстрее.Теодолиты с оптическими инструментами имеют преимущества перед другими инструментами компоновки. У них более точные измерения, они не подвержены влиянию ветра или других погодных факторов, и их можно использовать как на ровной, так и на наклонной поверхности.

Уход за цифровым теодолитом и полезные советы

Как и другие инструменты, теодолиты требуют надлежащего ухода и обслуживания для обеспечения наилучших результатов и уменьшения износа инструмента.

  • Не погружайте прибор в воду или другие химические вещества.
  • Не роняйте прибор.
  • Убедитесь, что теодолит зафиксирован в футляре во время транспортировки.
  • Во время дождя накройте инструмент крышкой.
  • Не смотрите прямо на солнечный свет через зрительную трубу на инструменте.
  • Использование деревянного штатива может защитить инструмент от вибрации лучше, чем алюминиевый штатив.
  • Важно использовать солнцезащитный козырек; любые резкие перепады температуры могут привести к неверным показаниям.
  • Никогда не держите инструмент за зрительную трубу.
  • Аккумуляторная батарея инструмента всегда должна быть достаточно заряженной.
  • Всегда очищайте инструмент после использования.
    • Пыль в корпусе или на инструменте может вызвать повреждение.
  • Если теодолит влажный или мокрый, дайте ему время высохнуть, прежде чем убирать его в футляр.
  • При хранении убедитесь, что зрительная труба на инструменте находится в вертикальном положении.
  • При повторном выравнивании теодолита положение над точкой заземления должно быть проверено и перепроверено, чтобы гарантировать то же положение.
  • Когда теодолит перемещается над точкой земли, уровень необходимо проверять и повторно проверять, чтобы убедиться в его точности.

Если вам нужна дополнительная информация, посетите полный список руководств Johnson Level по инструментам и уровням.

Магазинные теодолиты, строительные уровни и другие оптические приборы.

© 2015 Johnson Level & Tool Mfg. Co., Inc.

Теодолит Ошибка

В этой формуле δ — горизонтальное направление по часовой стрелке. отклонение луча зрения от показания шкалы, φ — истинный зенитный угол, а β — отклонение луча визирования в сторону правый конец оси цапфы в прямом положении. Линия визирования снова проецируется на горизонтальную плоскость.

Здесь отклонение меньше всего на горизонтальных прицелах, но оно никогда не равно нулю и не измените знак, поскольку φ проходит горизонт под углом 90 °.Очередной раз, инвертирование осциллографа обеспечивает считывание с компенсационной ошибкой. Конический годограф перемещается в противоположную сторону, а в формуле прогиба знак меняется.

Вертикальная ось не отвесная.

Из трех горизонтальных ошибок эта, пожалуй, наименее значимая, а проще всего исправить. Вопрос только в том, чтобы правильно выровнять инструмент. К сожалению, это тот случай, когда транзитная способность теодолит ничего не делает для исправления ошибки.

В на этом изображении шкала черного ровная и показывает истинное направление, но наклонная синяя шкала — это шкала, которая действительно читается. Есть линия пересечение, проходящее через середину обеих чешуек. Эта линия здесь произвольно задано направление 0 °, но у него нет отношение к направлению, в котором направлен инструмент. Ошибка может наблюдать, проецируя истинный масштаб на плоскость инструмента шкала.(Красная) проекция эллиптическая, и масштабы совпадают только при линия обзора проходит вдоль или перпендикулярно линии пересечения (0 °, 90 °, 180 ° и 270 °).

Это это не то, на чем это заканчивается. Это упрощенное описание предполагает, что строка прицел ровный. Предположим, что инструмент направлен вверх или вниз. В виде инструмент поворачивается, принимая постоянное значение φ , геометрическое место луча зрения представляет собой конус с вертикальной осью. Когда правда шкала проецируется на этот конус, это все еще верно (фиолетовая шкала в изображение).Эта шкала, в свою очередь, проецируется на плоскость шкалы инструмента. Результатом является перевод эллиптической шкалы выше, и это правда. только когда линия обзора перпендикулярна линии пересечения (90 ° и 270 °).

геометрическое преобразование шкалы на самом деле не так уж и сложно, но соответствующая аналитическая формула. Это не проблема, так как в формуле нет практическая ценность в любом случае. Здесь δ — это снова прогиб линии зрения по шкале и φ истинное зенитный угол.Переменная θ представляет истинное значение по часовой стрелке по горизонтали. угол от линии пересечения двух плоскостей. Когда инструмент указывается в направлении линии пересечения с «вертикальной» осью листинг вправо, тогда θ равно 0 °.

Описанное здесь состояние является проблемой нивелирования, и переход прибора не может его компенсировать. Проверьте флаконы уровня часто.

Коллимация вертикального угла не отрегулирована.

Теодолиты измерять вертикальные углы, обычно от зенитного направления, иногда от горизонт, реже от надира. Эта разница не влияет ни на что, кроме арифметика. Вертикальная ось должна указывать в зенит, но для большего точности, теодолиты имеют отдельные системы коллимации, так что угол ссылается непосредственно на вектор гравитации.Эта система может использовать выравнивающий сосуд или маятниковый компенсатор, каждый из которых может выходить из корректирование.

А теодолит сделал бы очень неэффективный уровень (за исключением триггерного выравнивания, другая тема), но по сути несет уровень в своем корпусе. Выравнивание пузырек эквивалентен наклонному уровню, а маятниковый компенсатор выполняет работа автоматического уровня. Теодолит на самом деле имеет одно преимущество перед большинством уровни. Перевернув зрительную трубу, коллимацию можно проверить с помощью одиночная установка.

Если вертикальный угол измеряется как в прямом, так и в перевернутом положении, затем сумма наблюдений должна быть 360 °. Коллимационная ошибка, ε , будет либо добавлять к обоим наблюдениям, либо вычитать из обоих, поэтому он будет отображаться в сумме двух углов. На этом снимке сделаны два наблюдения та же неподвижная цель.Измеренный вертикальный угол составляет φ 1 в прямое положение и φ 2 в перевернутое положение. Найдите ε , используя формулу ниже, и вычтите ее. от прямого наблюдения, чтобы получить истинный вертикальный угол. в иллюстрации, оба измеренных угла слишком малы, и ε отрицательный.

А ошибки в несколько секунд или даже минут здесь не оказывают заметного влияния на горизонтальные расстояния, но он может нанести ущерб высотам.в отличие от ошибки горизонтального угла, эта постоянная, то есть не влияет изменение направления взгляда. Это делает его довольно простое дело — поправить угол, даже не регулируя инструмент. В Фактически, электронные инструменты обычно имеют встроенную программу, которая Измерьте и исправьте ошибку вертикального угла. Нажмите несколько кнопок, посмотрите цель в обеих позициях, и пусть инструмент запомнит коррекцию. В процедура занимает всего пару минут, поэтому ее можно проводить в начале каждого рабочего дня.

Назад к геометрии съемки


Последнее обновление: 26 января 2012 г. … Пол Кункель [email protected]
Чтобы электронная почта доходила до меня, в теле сообщения должно быть слово geometry .

Глава G. Теодолит и тахеометр

Страница 1 из 9

1. Инструменты

Транзиты, теодолиты и тахеометры — это эволюционное семейство. Хотя более новые типы инструментов заменили старые, их использование часто перекрывалось по мере принятия.Поскольку их измерительные функции в основном одинаковы, они подвержены аналогичным инструментальным погрешностям и методам компенсации. Более сложные более поздние инструменты имеют меньше доступных пользователю настроек по дизайну и используют электронику для цифровой компенсации некоторых неправильных настроек.

а. Транзит

Традиционный переходник, рис. G-1, представляет собой инструмент открытой конструкции с четырьмя регулировочными винтами. Его регулировочные винты легко доступны, а большинство его движущихся частей, включая систему считывания углов, открыты.Это открытое воздействие приводит к более быстрому износу и более частой дезадаптации.

Рисунок G-1
Транзит


Транзиты устарели, используются в основном для демонстрации на полках, поэтому в этой главе они не рассматриваются. Большинство их проверок и регулировок аналогичны теодолитам, но, если требуется, я могу создать отдельную главу для транзитов.

г. Теодолит

Теодолит, рис. G-2, представляет собой закрытую конструкцию с оптической системой считывания и тремя регулировочными винтами.Большинство регулировочных винтов находятся под крышками или иным образом защищены, а их движущиеся части герметичнее, чем у транзитных. При осторожном использовании теодолит менее подвержен неправильной настройке, чем транзит.

Рисунок G-2
Теодолит

Теодолиты производились для широкого спектра потребностей, от строительства до высокоточных контрольных съемок, в результате чего были созданы модели с различными возможностями и элементами управления.У некоторых был отдельный пузырь для ручной ориентации вертикального круга, у других — автоматический круг, управляемый гравитацией. В повторяющемся теодолите использовались верхний и нижний горизонтальный круговой замок и замедленная съемка, в направленном теодолите — только одиночный замок / замедленная съемка. Ранние теодолиты были аналоговыми приборами с оптической системой считывания углов; более поздние инструменты были цифровыми.

За исключением ориентации вертикального круга, проверки и регулировки первичного теодолита аналогичны для разных моделей.Те, которые уникальны для конкретного инструмента, объясняются в руководстве к инструменту.

г. Тахеометр

Тахеометр (TSI), рисунок G-3, имеет общие механические характеристики, включая закрытую конструкцию и три регулировочных винта, с теодолитом. TSI использует цифровые системы считывания углов и включает возможность электронного измерения расстояния (EDM). Большинство TSI также имеют возможность самостоятельно корректировать некоторые условия неправильной настройки инструмента.

Рисунок G-3
Тахеометр


Многие искажения теодолита одинаковы для TSI.Цифровые и электронные системы, особенно те, которые не имеют эквивалента TSI, требуют специальных проверок. Они подробно описаны в руководстве к прибору. Поскольку они имеют схожие части и элементы управления, проверки теодолита и TSI объединены; вызываются те, которые относятся к одному или другому.

Современная система компенсации TSI измеряет наклон осей и соответствующим образом корректирует угловые измерения. Конкретный TSI может использовать одноосную систему, которая корректирует только зенитные / вертикальные углы для наклона оси, или двухосную систему, которая также корректирует ошибки горизонтальных углов, вызванные наклоном осей.

Это не значит, что система компенсации TSI безошибочна. Как и в случае с любым другим аспектом регулирования TSI, система компенсации не должна считаться безошибочной. В то время как компенсатор автоматического уровня относительно легко и быстро проверить, компенсатор TSI более сложен. В руководстве по прибору содержится информация о его системе компенсации, его чувствительности и о том, как проверить, что он работает правильно. Не все TSI используют одинаковую конструкцию компенсации, даже от одного производителя, поэтому следует соблюдать процедуры, описанные в руководстве.

% PDF-1.5 % 1616 0 obj> эндобдж xref 1616 83 0000000016 00000 н. 0000003115 00000 п. 0000003253 00000 н. 0000003653 00000 п. 0000002016 00000 н. 0000003698 00000 н. 0000003841 00000 н. 0000004190 00000 п. 0000004470 00000 н. 0000004617 00000 н. 0000004764 00000 н. 0000004911 00000 н. 0000005058 00000 н. 0000005205 ​​00000 н. 0000005352 00000 п. 0000005499 00000 н. 0000005646 00000 н. 0000005793 00000 н. 0000005940 00000 н. 0000006086 00000 н. 0000006233 00000 н. 0000006380 00000 н. 0000006527 00000 н. 0000006673 00000 н. 0000006820 00000 н. 0000006967 00000 н. 0000007114 00000 н. 0000007261 00000 н. 0000007408 00000 н. 0000007555 00000 н. 0000007702 00000 н. 0000007849 00000 п. 0000007995 00000 н. 0000008142 00000 н. 0000008289 00000 н. 0000008435 00000 н. 0000008581 00000 п. 0000008726 00000 н. 0000008888 00000 н. 0000009450 00000 н. 0000009960 00000 н. 0000010189 00000 п. 0000010412 00000 п. 0000010653 00000 п. 0000010731 00000 п. 0000010777 00000 п. 0000011633 00000 п. 0000012214 00000 п. 0000012722 00000 п. 0000013289 00000 п. 0000013869 00000 п. 0000014399 00000 п. 0000014905 00000 н. 0000015388 00000 п. 0000015442 00000 п. 0000015496 00000 п. 0000015550 00000 п. 0000015604 00000 п. 0000015658 00000 п. 0000015712 00000 п. 0000015766 00000 п. 0000015820 00000 п. 0000015874 00000 п. 0000015928 00000 п. 0000015982 00000 п. 0000016036 00000 п. 0000016090 00000 н. 0000016144 00000 п. 0000016198 00000 п. 0000016252 00000 п. 0000016306 00000 п. 0000016360 00000 п. 0000016414 00000 п. 0000016468 00000 п. 0000016522 00000 п. 0000016576 00000 п. 0000016630 00000 п. 0000016684 00000 п. 0000016739 00000 п. 0000016794 00000 п. 0000016849 00000 п. 0000016904 00000 п. 0000002905 00000 н. трейлер ] >> startxref 0 %% EOF 1620 0 obj> поток aJ_}

Тахеометры: рабочая лошадка геодезиста

Тахеометр — это устройство для измерения угла, также известное как теодолит, интегрированное с электронным блоком измерения расстояния (EDM).Интеграция дает возможность измерять горизонтальные и вертикальные углы, а также расстояния уклонов с использованием одного и того же устройства одновременно, что дает геодезисту преимущества с точки зрения мобильности, удобства и скорости. Сегодня тахеометры обладают широким спектром возможностей и широко используются при кадастровой съемке, гражданском строительстве и на строительных площадках. Читайте обзор функций, статуса и тенденций.

На протяжении многих десятилетий, вплоть до 1960-х годов, теодолиты были основными геодезическими инструментами для сбора геоданных, привязанных к фиксированной на Земле системе координат.На Рисунке 1 показан теодолит, который использовался для измерения геодезической основы Индии в 19 900–28 годах. На это потребовалось много десятилетий, и с которым неразрывно связано имя валлийца Джорджа Эвереста (1790 г.). Действительно, самая высокая гора на Земле — гора Эверест высотой 8848 м над уровнем моря — названа в честь землемера. Джордж Эверест был генеральным геодезистом Индии с 1830 по 1843 год. На рисунке 2 показан современный геодезист в Индии в действии, использующий тахеометр для нанесения на карту сельской местности, которая должна быть урбанизирована.

От теодолитов до тахеометров

Теодолиты измеряют углы, и для вычисления координат также требуются расстояния, которые в прошлом измерялись с помощью цепей или измерительных лент. Без тщательных мер предосторожности цепи и ленты давали неточные результаты. Важным нововведением, сделавшим измерения расстояний менее обременительным, стало электронное измерение расстояний (EDM). Разработанный примерно в 1940 году, EDM стал коммерчески доступным в 1960-х годах. Рисунок 3 демонстрирует эволюцию от теодолита к сегодняшнему тахеометру и отображает слева направо: Wild T3, теодолит, представленный в 1925 году; Aga Geodimeter 14, промышленный электроэрозионный прибор 1970 года выпуска; Электроэрозионный станок на теодолите HP 3820A; Ruide RTS R5, введен в 2009 г .; Linertec LGP300, представлен в 2014 году; Trimble S9, представленный в 2015 году; и Leica SmartStation с GNSS-приемником сверху.Невооруженным глазом разительных отличий нет, и это неудивительно, поскольку основы работы остались прежними; С момента своего появления тахеометры всегда измеряли два угла — горизонтальный и вертикальный — и расстояние или наклонное расстояние до целевой точки. Революция находится внутри: микропроцессоры, твердотельная память, сенсорная техника и беспроводная связь. Эти нововведения постепенно внедрялись в устройства с течением времени, и все они способствовали дальнейшему повышению эффективности рабочих процессов съемки и качества получаемых данных.

Принципы EDM

В приборах

EDM для измерения наклонного расстояния до целевой точки используется электромагнитная энергия (ЭМ). Используются два принципа: измерения фазового сдвига и импульса, также называемые «временем пролета». Электромагнитная энергия может излучаться как инфракрасные несущие сигналы, генерируемые небольшим твердотельным излучателем на оптическом пути прибора и модулированные как синусоидальные волны. Фаза возвращаемого сигнала сравнивается с фазой излучаемого сигнала. Это можно сделать с точностью до миллиметра.Однако общее количество полных циклов все еще неизвестно, и для их получения используются несколько длин волн. Другой метод использует лазерные импульсы. Время прохождения импульса туда и обратно (Δt) измеряется, и, умножив это значение на скорость света (c) и разделив результат на два, можно точно рассчитать расстояние (d) (рисунок 4). Вот почему метод лазерного импульса также называют измерением времени пролета (ToF). Некоторые тахеометры объединяют оба принципа измерения в одном и том же приборе.Метод фазового сдвига является наиболее точным с точностью от субмиллиметра до субсантиметра, но его диапазон измерения ограничен примерно 100 м. Блоки ToF EDM могут измерять расстояния до 10 км и более, в зависимости от атмосферных условий и типа используемой призмы, но их точность обычно колеблется от субсантиметра до сантиметра, в то время как точность ухудшается с уменьшением дальности.

Призма

Электромагнитный сигнал будет отражен любой встреченной поверхностью.Сила отдачи будет зависеть от того, как падающий сигнал взаимодействует с поверхностью; он может отражаться, поглощаться или передаваться. Только отраженные лучи будут достигать инструмента и, следовательно, будут полезны, но некоторые типы отражения лучше, чем другие. В идеале поверхность ведет себя как диффузный отражатель: отражения имеют одинаковую силу во всех направлениях, и, следовательно, уровень энергии, достигающий инструмента, является самым высоким. Однако, в отличие от этого, когда он ведет себя как зеркальная поверхность, которая действует как плоское зеркало, отражение отклоняется, и тахеометры не будут принимать сигнал или принимать его очень мало.Только когда зеркало расположено перпендикулярно траектории, большая часть сигнала будет отражаться в направлении инструмента (см. Рис. 5, вверху). Чтобы решить эту проблему, три зеркала или отражающие поверхности призм, которые взаимно перпендикулярны, отражают лучи обратно в направлении источника, но смещены (см. Рисунок 5, внизу). Несколько призм также могут быть объединены для увеличения отраженной энергии и, таким образом, для увеличения расстояния, на которое необходимо перекрыть мост, и / или для повышения точности. Например, с одной призмой Topcon IS имеет радиус действия 3 км, с тремя призмами — 4 км и с пятью призмами — 5 км.Призмы используются как для ToF, так и для EDM с фазовым сдвигом. В зависимости от области применения геодезист может выбирать из большого количества призм (рис. 6).

Безотражательный EDM

Безотражательный EDM стал стандартом в геодезической съемке. Сегодня без призмы можно преодолеть расстояние до 1 км. Эта способность EDM устраняет необходимость доступа к цели. Диапазон зависит от силы излучаемого сигнала, а также отражательной способности и геометрии цели. Таким образом, можно легко нанести на карту недоступные объекты или цели, расположенные в опасных местах.Обнаружение отражений от голых поверхностей, то есть без использования призм, требует лазерных импульсов с высоким уровнем энергии, обычно в диапазоне от 1 до 20 Вт. Напротив, большинство фазовых EDM, использующих призмы, излучают сигналы на уровне нескольких милливатт. Поскольку сигнал может отражаться от любой поверхности, находящейся на линии прямой видимости, легко могут произойти грубые ошибки. Например, сигнал может отражаться листом, который кружится на линии прямой видимости. Еще одна проблема — расходимость луча, то есть увеличение диаметра луча по мере удаления от источника: чем больше расстояние, тем больше площадь покрытия (рисунок 7).Это может вызвать ошибки или снизить точность.

Внутренняя обработка и хранение

Если тахеометр оснащен встроенным микропроцессором, первоначальные наблюдения — горизонтальное и вертикальное направления и наклонное расстояние — могут быть дополнительно обработаны для получения углов, горизонтальных расстояний и координат x, y, z целевой точки в предпочтительной привязке к Земле. система. Если он оборудован датчиками, измеряющими атмосферную температуру и давление, процессор может рассчитать поправки к первоначальным измерениям.Собранные данные хранятся во встроенном электронном блокноте, который обычно имеет достаточную емкость для хранения точек данных, собранных в течение всего рабочего дня. После загрузки на обрабатывающий компьютер или сервер данные можно удалить из записной книжки, чтобы они были готовы к повторному использованию. Однако потеря данных после продуктивного дня — это не только разочарование, но и, прежде всего, пустая трата времени и, следовательно, денег. Поэтому полезно, когда данные, хранящиеся в ноутбуке, можно регулярно экспортировать на внешние носители данных, такие как флэш-накопитель USB или карта памяти SD.

Рабочие процессы

Наблюдения, собранные в полевых условиях, можно импортировать в (защищенный) портативный компьютер и обрабатывать на месте для проверки полноты и достаточной избыточности съемки, а также для выполнения других процедур, связанных с качеством. Когда результаты удовлетворительны, их можно загрузить на сервер в офисе через Интернет или даже сохранить в облаке. Таким образом можно избежать визита в офис, а геодезист может загрузить свое следующее задание на свой ноутбук, находясь в поле или дома.Таким образом, использование Интернета позволяет значительно повысить производительность. С другой стороны, такая гибкость создает проблему управления: как главный инспектор в офисе узнает, где находится оборудование, было ли оно украдено или требует повторной калибровки или обслуживания? Некоторые из последних тахеометров оснащены программным обеспечением, которое позволяет менеджерам проверять, где находится тахеометр, а также состояние прошивки и программного обеспечения.

На некоторых стройках, эл.грамм. там, где высокие здания необходимо вести в вертикальном направлении с точностью до миллиметра, количество призм может быть настолько большим, что тахеометр может запутаться и выбрать не ту призму. У некоторых тахеометров есть приспособления, чтобы они знали, какая призма является их «помощницей». Еще одна дополнительная функция, которая облегчает жизнь геодезисту, особенно при съемке туннелей или подземных шахт, — это лазерный указатель, который визуализирует цели, находящиеся дальше от инструмента.

Evolution

Тахеометр впервые был представлен геодезистам под разными названиями, включая электронный тахеометр и теодолит EDM.Первоначально Total Station было именем собственным, введенным компанией Hewlett-Packard (HP) для продвижения своей модели 3810A примерно в 1975 году. Вероятно, из-за того, что он удобен для слуха, геодезисты вскоре применили этот термин ко всем теодолитам со встроенным EDM-устройством и общим станция стала существительным нарицательным, написанным без заглавных букв. Со временем, идя в ногу с революцией в области микроэлектроники, первоначальный дизайн тахеометра был расширен функциями, которые сделали геодезию более быстрой и удобной.Серводвигатели позволяют перемещаться по горизонтали и вертикали под углом, тем самым экономя время при разбивке координат, поскольку телескоп нацеливается сам, а геодезисту просто нужно установить призму в нужное положение. Призма определяется с помощью радиосигналов или изображений. Первые двигатели имели механический привод, но современные бесступенчатые магнитные двигатели работают быстро и бесшумно. Следующим шагом было использование беспроводной связи, чтобы управлять работой можно было с помощью внешнего контроллера, установленного на опоре.Такие роботизированные тахеометры позволяют проводить опросы только одному человеку, что сокращает затраты на рабочую силу. Требуются по крайней мере две известные точки на прямой видимости друг друга: одна для позиционирования инструмента над ней, а другая для определения азимута. Чтобы исключить необходимость в известных точках, логично дополнить тахеометр приемником GNSS. Блок GNSS также может быть установлен на призменной вехе для быстрого сбора данных, хотя сигналы могут быть слишком слабыми в непосредственной близости от деревьев или зданий или если требуется высокая точность.Здесь берет на себя тахеометр. Двойная конфигурация увеличивает эффективность сбора массивных данных, в то время как опросы может проводить один человек.

Визуализация и лазер

Цифровые камеры также были установлены в телескоп, коаксиально с оптикой и EDM. Снимки позволяют документировать участок и делать заметки цифровым карандашом на экране тахеометра. Это снижает потребность в постобработке в офисе, а также позволяет избежать поездок на места.Поскольку изображение сохраняется вместе с координатами как станций, так и точек цели, можно создавать ортоизображения. Визуализация также позволяет отслеживать призму и ее повторный захват, если она теряется из-за объектов, проходящих через линию обзора. Проверенный метод повышения точности — многократное измерение одной и той же цели и усреднение значений. Используя программное обеспечение, основанное на исследованиях компьютерного зрения, одна и та же особенность может быть автоматически обнаружена в серии изображений, полученных во время повторных измерений.Это позволяет автоматически повысить точность — это займет немного времени. Сегодня наземные лазерные сканеры (TLS) получили широкое распространение. TLS и EDM имеют много общего: TLS также работает без призмы, и оба используют либо импульсный лазер, либо измерение дальности через фазовые сдвиги. Следовательно, имеет смысл расширить тахеометр с возможностью TLS для сбора облака точек. Часть сцены обозначается геодезистом в виде окна на экране в реальном времени вместе с указанием горизонтальных и вертикальных интервалов.Скорость сбора данных при сканировании сетки составляет всего одну тысячную от того, что может выполнить TLS, поскольку это просто дополнительное средство на тахеометре. Результаты можно обработать в офисе с помощью программного обеспечения для обработки облаков точек.

Заключительные замечания

Широкий спектр различных типов тахеометров может показаться поразительным, если вы собираетесь обновить свое оборудование (Рисунок 8). Какой выбрать? Самый последний и самый сложный? Есть так много функций на выбор.Какой это должен быть бренд? Как правило, чем больше функций у инструмента или чем он сложнее, тем выше цена. Перед принятием решения о покупке целесообразно составить список типов обследований, которые необходимо провести, и требуемой точности (рис. 9). Часто становится очевидным, что простое устройство удовлетворит ваши потребности или даже что подержанное устройство десятилетней давности достаточно хорошо для разметки границ переписи для целей переписи в развивающейся стране. И одно можно сказать наверняка: каким бы продвинутым ни было устройство, если оно не находится в руках опытного человека, вывод будет мусором.

Тахеометры на рынке

Для обзора имеющихся на рынке тахеометров настоятельно рекомендуется посетить сайт www.geo-matching.com.

Автор

Матиас Лемменс получил степень доктора философии в Делфтском технологическом университете, Нидерланды. Он является международным консультантом и автором книги Geo-information — Technologies, Applications and the Environment , опубликованной Springer в 2011 году.

% PDF-1.4 % 55 0 объект > эндобдж xref 55 72 0000000016 00000 н. 0000002295 00000 н. 0000002590 00000 н. 0000002720 00000 н. 0000002809 00000 н. 0000002964 00000 н. 0000003320 00000 н. 0000003613 00000 н. 0000004055 00000 н. 0000004341 00000 п. 0000004688 00000 п. 0000040253 00000 п. 0000040449 00000 п. 0000040609 00000 п. 0000059521 00000 п. 0000059715 00000 п. 0000060979 00000 п. 0000061887 00000 п. 0000062777 00000 п. 0000063656 00000 п. 0000064541 00000 п. 0000065400 00000 п. 0000065450 00000 п. 0000066280 00000 п. 0000066876 00000 п. 0000067296 00000 п. 0000067866 00000 п. 0000076713 00000 п. 0000077108 00000 п. 0000077143 00000 п. 0000077178 00000 п. 0000077794 00000 п. 0000078298 00000 п. 0000078341 00000 п. 0000078395 00000 п. 0000078428 00000 п. 0000078477 00000 п. 0000079651 00000 п. 0000079916 00000 н. 0000493497 00000 н. 0000494191 00000 н. 0000495360 00000 н. 0000495616 00000 н. 0000996457 00000 н. 0000996549 00000 н. 0000996809 00000 н. 0000996955 00000 н. 0001010159 00000 п. 0001010355 00000 п. 0001010543 00000 п. 0001026346 00000 п. 0001026542 00000 п. 0001026586 00000 п. 0001027328 00000 п. 0001028498 00000 п. 0001028542 00000 п. 0001028577 00000 п. 0001029323 00000 п. 0001030018 00000 п. 0001031188 00000 п. 0001031232 00000 п. 0001031267 00000 п. 0001031878 00000 п. 0001032532 00000 п. 0001032575 00000 п. 0001032610 00000 п.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *