Онлайн расчет трансформатора тока: Онлайн расчет трансформатора тока

Содержание

Выбор трансформаторов тока для присоединения расчетных счетчиков

Для правильного выбора трансформаторов тока (ТТ) для расчетных счетчиков, нам нужно правильно выбрать коэффициент трансформации трансформатора тока, исходя из того, что расчетная нагрузка присоединения, будет работать в аварийном режиме.

Коэффициент трансформации считается завышенным, если при 25%-ной нагрузке присоединения в нормальном режиме, ток во вторичной обмотке будет меньше 10% от номинального тока подключенного счетчика – 5 А.

Для того, чтобы присоединенные приборы, работали в требуемом классе точности (напоминаю что для счетчиков коммерческого учета класс точности трансформаторов тока должен быть – 0,2; 0,2S; для технического учета – 0,5; 0,5S), необходимо чтобы, подключаемая вторичная нагрузка Zн не превышала номинальной вторичной нагрузки трансформатора тока, для данного класса точности, при этом должно выполняться условие Zн ≤ Zдоп. Подробно это рассмотрено в статье: «Выбор трансформаторов тока на напряжение 6(10) кВ».

Еще одним условием правильности выбора трансформаторов тока, является проверка трансформаторов тока на токовую ΔI и угловую погрешность δ.

Угловая погрешность учитывается только в показаниях счетчиков и ваттметров, и определяется углом δ между векторами I1 и I2.

Токовая погрешность определяется по формуле [Л1, с61]:

где:

  • Kном. – коэффициент трансформации;
  • I1 – ток первичной обмотки ТТ;
  • I2 – ток вторичной обмотки ТТ;

Пример выбора трансформатора тока для установки расчетных счетчиков

Нужно выбрать трансформаторы тока для отходящей линии, питающей трансформатор ТМ-2500/6. Расчетный ток в нормальном режиме составляет – 240,8А, в аварийном режиме, когда трансформатор будет перегружен на 1,2, ток составит – 289А.

Выбираем ТТ с коэффициентом трансформации 300/5.

1. Рассчитываем первичный ток при 25%-ной нагрузке:

2. Рассчитываем вторичный ток при 25%-ной нагрузке:

Как видим, трансформаторы тока выбраны правильно, так как выполняется условие:

I2 > 10%*Iн.счетчика, т. е. 1 > 0,5.

Рекомендую при выборе трансформаторов тока к расчетным счетчикам использовать таблицы II.4 – II.5.

Таблица II.5 Технические данные трансформаторов тока

Таблица II.4 Выбор трансформаторов тока

Максимальная расчетная мощность, кВА Напряжение
380 В 10,5 кВ
Нагрузка, А Коэффициент трансформации, А Нагрузка, А Коэффициент трансформации, А
10 16 20/5
15 23 30/5
20 30 30/5
25 38 40/5
30 46 50/5
35 53 50/5 (75/5)
40 61 75/5
50 77 75/5 (100/5)
60 91 100/5
70 106 100/5 (150/5)
80 122 150/5
90 137 150/5
100 152 150/5 6 10/5
125 190 200/5
150 228 300/5
160 242 300/5 9 10/5
180
10
10/5 (15/5)
200 304 300/5
240 365 400/5 13 15/5
250 14 15/5
300 456 600/5
320 487 600/5 19 20/5
400 609 600/5 23 30/5
560 853 1000/5 32 40/5
630 960 1000/5 36 40/5
750 1140 1500/5 43 50/5
1000 1520 1500/5 58 75/5

Примечание.

Учитывая необходимость подключения трансформаторов тока для питания измерительных приборов и реле, для которых нужны различные классы точности, высоковольтные трансформаторы тока выполняются с двумя вторичными обмотками.

Литература:

1. Справочник по расчету электрических сетей. И.Ф. Шаповалов. 1974г.

Всего наилучшего! До новых встреч на сайте Raschet.info.

Поделиться в социальных сетях

Программа для проверки трансформаторов тока 0,4кВ

Чтобы не получать замечания от энергосбыта нужно правильно выбирать трансформаторы тока для счетчика трансформаторного включения. В одной из статей я уже приводил пример проверки ТТ. Сегодня представлю свою программу для проверки трансформаторов тока 0,4кВ.


В конце статьи представлены нормативные документы, на основании которых была выполнена программа по проверке трансформаторов тока 0,4кВ.

Необходимо иметь ввиду, что при токах до 100А необходимо предусматривать счетчики прямого включения.

Получается минимальный трансформатор тока, который мы можем использовать на стороне 0,4кВ – 150/5.

Для подключения расчетных счетчиков необходимо использовать трансформаторы тока и напряжения класса точности не более 0,5.

Коэффициент трансформации (отношение первичной обмотки ТТ к вторичной обмотке) трансформаторов тока выбирается по расчетному току. Значение расчетного тока не должно превышать номинальный ток трансформатора тока.

Если коэффициент трансформации  ТТ будет завышен, то счетчик будет считать электроэнергию с классом точности не гарантированным заводом-изготовителем. Согласно ГОСТ 7746—2001 трансформаторы тока допускают перегрузку в 20%, но не более двух часов в неделю.  Об этом следует помнить при организации учета электроэнергии на двухтрансформаторной подстанции с возможностью подключения всей нагрузки на один трансформатор, т.к. трансформаторы тока выбираются по аварийному режиму.

Завышение коэффициента трансформации трансформаторов тока недопустимо.

Поскольку белорусские нормы немного отличаются от российских, я сделал отдельно 2 отдельных файла по проверке ТТ. На самом деле программы практически ничем не отличаются. Основное отличие в трактовке п.1.5.17 ПУЭ и п.4.2.4.4 ТКП39-2011. Слова разные, а суть одна и та же

Внешний вид программы:

Внешний вид программы для проверки трансформаторов тока

В отличие от других моих программ внешний вид немного изменился. Теперь весь расчет прозрачен и при необходимости может быть предоставлен для обоснования своего выбора.

Для расчета достаточно ввести расчетный ток, минимальный потребляемый ток и выбрать номинальный ток первичной обмотки трансформатора. Ток вторичной обмотки, как правило, равен 5А.

Чтобы получить программу, зайдите на страницу МОИ ПРОГРАММЫ.

В программе производится проверка согласно ПУЭ (ТКП), т.к. там представлены более жесткие требования, чем в РМ-2559. В РМ-2559 сказано, что минимальный ток вторичной обмотки для электронных счетчиков должен быть 0,1А или 2%.

В ПУЭ (ТКП) про электронные счетчики ничего не сказано, значит  требования распространяются на все счетчики и минимальный ток вторичной обмотки нужно принимать не менее 0,25А или 5%.

Нормативные документы по выбору трансформаторов тока 0,4кВ:

1 ТКП 339-2011. Электроустановки на напряжение до 750 кВ…

2 ПУЭ 7. Правила устройства электроустановок.

3 РМ-2559. Инструкция по проектированию учета электропотребления в жилых и общественных зданиях.

4 ГОСТ 7746—2001. Трансформаторы тока. Общие технические условия.
Советую почитать:

Расчет габаритной мощности трансформатора по сердечнику онлайн. Расчет трансформатора с броневым магнитопроводом

Виктор Хрипченко пос. Октябрьский Белгородской обл.

Занимаясь расчетами мощного источника питания, я столкнулся с проблемой — мне понадобился трансформатор тока, который бы точно измерял ток. Литературы по этой теме не много. А в Интернете только просьбы — где найти такой расчет. Прочитал статью ; зная, что ошибки могут присутствовать, я детально разобрался с данной темой. Ошибки, конечно, присутствовали: нет согласующего резистора Rc (см. рис. 2) для согласования на выходе вторичной обмотки трансформатора (он и не был рассчитан) по току. Вторичная цепь трансформатора тока рассчитана как обычно у трансформатора напряжения (задался нужным напряжением на вторичной обмотке и произвел расчет).

Немного теории

Итак, прежде всего немного теории . Трансформатор тока работает как источник тока с заданным первичным током, представляющим ток защищаемого участка цепи. Величина этого тока практически не зависит от нагрузки вторичной цепи трансформатора тока, поскольку его сопротивление с нагрузкой, приведенное к числу витков первичной обмотки, ничтожно мало по сравнению с сопротивлениями элементов электрической схемы. Это обстоятельство делает работу трансформатора тока отличной от работы силовых трансформаторов и трансформаторов напряжения.

На рис. 1 показана маркировка концов первичной и вторичной обмоток трансформатора тока, навитых на маг-нитопровод в одном и том же направлении (I1 — ток первичной обмотки, I2 -ток вторичной обмотки). Ток вторичной обмотки I2 пренебрегая малым током намагничивания, всегда направлен так, чтобы размагничивать магнитопровод.

Стрелками показано направление токов. Поэтому если принять верхний конец первичной обмотки за начало то началом вторичной обмотки н также является ее верхний конец. Принятому правилу маркировки соответствует такое же направление токов, учитывая знак. И самое главное правило: условие равенства магнитных потоков.

Алгебраическая сумма произведений I 1 x W 1 — I 2 x W 2 = 0 (пренебрегая малым током намагничивания), где W 1 — количество витков первичной обмотки трансформатора тока, W 2 — количество витков вторичной обмотки трансформатора тока.

Пример. Пусть вы, задавшись током первичной обмотки в 16 А, произвели расчет и в первичной обмотке 5 витков — рассчитано. Вы задаетесь током вторичной обмотки, например, 0,1 А и согласно вышеупомянутой формулы I 1 x W 1 = I 2 x W 2 рассчитаем количество витков вторичной обмотки трансформатора.

W 2 = I 1 x W 1 / I 2

Далее произведя вычисления L2 -индуктивности вторичной обмотки, ее сопротивление XL1 , мы вычислим U2 и потом Rc . Но это чуть позже. То есть вы видите, что задавшись током во вторичной обмотке трансформатора I2 , вы только тогда вычисляете количество витков. Ток вторичной обмотки трансформатора тока I2 можно задать любой — отсюда будет вычисляться Rc . И еще -I2 должен быть больше тех нагрузок, которые вы будете подключать

Трансформатор тока должен работать только на согласованную по току нагрузку (речь идет о Rc).

Если пользователю требуется трансформатор тока для применения в схемах защиты, то такими тонкостями как направление намоток, точность резистивной нагрузки Rc можно пренебречь, но это уже будет не трансформатор тока, а датчик тока с большой погрешностью. И эту погрешность можно будет устранить, только создав нагрузку на устройстве (я и имею в виду источник питания, где пользователь собирается ставить защиту, применяя трансформатор тока), и схемой защиты установить порог ее срабатывания по току. Если пользователю требуется схема измерения тока, то как раз эти тонкости должны быть обязательно соблюдены.

На рис. 2 (точки — начало намоток) показан резистор Rc, который является неотьемлимой частью трансформатора тока для согласования токов первичной и вторичной обмотки. То есть Rc задает ток во вторичной обмотке. В качестве Rc не обязательно применять резистор, можно поставить амперметр, реле, но при этом должно соблюдаться обязательное условие — внутреннее сопротивление нагрузки должно быть равным рассчитанному Rc.

Если нагрузка не согласованная по току — это будет генератор повышенного напряжения. Поясняю, почему так. Как уже было ранее сказано, ток вторичной обмотки трансформатора направлен в противоположную сторону от направления тока первичной обмотки. И вторичная обмотка трансформатора работает как размагничивающая. Если нагрузка во вторичной обмотке трансформатора не согласованная по току или будет отсутствовать, первичная обмотка будет работать как намагничивающая. Индукция резко возрастает, вызывая сильный нагрев магнито-провода за счет повышенных потерь в стали. Индуктируемая в обмотке ЭДС будет определяться скоростью изменениями потока во времени, имеющей наибольшее значение при прохождении трапецеидального (за счет насыщения магнитопровода) потока через нулевые значения. Индуктивность обмоток резко уменьшается, что вызывает еще больший нагрев трансформатора и в конечном итоге — выход его из строя.

Типы магнитных сердечников приведены на рис. 3 .

Витой или ленточный магнитопровод — одно и то же понятие, также как и выражение кольцевой или тороидальный магнитопровод: в литературе встречаются и то, и другое.

Это может быть ферритовый сердечник или Ш-образное трансформаторное железо, или ленточные сердечники. Ферритовые сердечники обычно применяется при повышенных частотах — 400 Гц и выше из-за того, что они работают в слабых и средних магнитных полях (Вт = 0,3 Тл максимум). И так как у ферритов, как правило, высокое значение магнитной проницаемости µ и узкая петля гистерезиса, то они быстро заходят в область насыщения. Выходное напряжение, при f = 50 Гц, на вторичной обмотке составляет единицы вольт либо меньше. На ферритовых сердечниках наносится, как правило, маркировка об их магнитных свойствах (пример М2000 означает магнитную проницаемость сердечника µ, равную 2000 единиц).

На ленточных магнитопроводах или из Ш-образных пластин такой маркировки нет, и поэтому приходится определять их магнитные свойства экспериментально, и они работают в средних и сильных магнитных полях (в зависимости от применяемой марки электротехнической стали — 1,5.. .2 Тл и более) и применяются на частотах 50 Гц.. .400 Гц. Кольцевые или тороидальные витые (ленточные) магнитопроводы работают и на частоте 5 кГц (а из пермаллоя даже до 25 кГц). При расчете S — площади сечения ленточного тороидального магнитопровода, рекомендуется результат умножить на коэффициент к = 0,7…0,75 для большей точности. Это объясняется конструктивной особенностью ленточных магнитопроводов.

Что такое ленточный разрезной магнитопровод (рис. 3)? Стальную лента, толщиной 0,08 мм или толще, наматывают на оправку, а затем отжигают на воздухе при температуре 400.. .500 °С для улучшения их магнитных свойств. Потом эти формы разрезаются, шлифуются края, и собирается магнитопровод. Кольцевые (неразрезные) витые магнитопроводы из тонких ленточных материалов (пермаллоев толщиной 0,01.. .0,05 мм) во время навивки покрывают электроизолирующим материалом, а затем отжигают в вакууме при 1000.. .1100 °С.

Для определения магнитных свойств таких магнитопроводов надо намотать 20…30 витков провода (чем больше витков, тем точнее будет значение магнитной проницаемости сердечника) на сердечник магнитопровода и измерить L-индуктивность этой обмотки (мкГн). Вычислить S — площадь сечения сердечника трансформатора (мм2), lm-среднюю длину магнитной силовой линии (мм). И по формуле рассчитать jll — магнитную проницаемость сердечника :

(1) µ = (800 x L x lm) / (N2 x S) — для ленточного и Ш-образного сердечника.

(2) µ = 2500*L(D + d) / W2 x C(D — d) — для кольцевого (тороидильного) сердечника.

При расчете трансформатора на более высокие токи применяется провод большого диаметра в первичной обмотке, и здесь вам понадобится витой стержневой магнитопровод (П-образный), витой кольцевой сердечник или ферритовый тороид.

Если кто держал в руках трансформатор тока промышленного изготовления на большие токи, то видел, что первичной обмотки, навитой на магнитопровод, нет, а имеется широкая алюминиевая шина, проходящая сквозь магнитопровод.

Я напомнил об этом затем, что расчет трансформатора тока можно производить, либо задавшись Вт — магнитной индукцией в сердечнике, при этом первичная обмотка будет состоять из нескольких витков и придется мучиться, наматывая эти витки на сердечник трансформатора. Либо надо рассчитать магнитную индукцию Вт поля, создаваемую проводником с током, в сердечнике.

А теперь приступим к расчету трансформатора тока, применяя законы .

Вы задаетесь током первичной обмотки трансформатора тока, то есть тем током, который вы будете контролировать в цепи.

Пусть будет I1 = 20 А, частота, на которой будет работать трансформатор тока, f = 50 Гц.

Возьмем ленточный кольцевой сердечник OJ125/40-10 или (40x25x10 мм), схематично представленный на рис. 4.


Размеры: D = 40 мм, d = 25 мм, С = 10 мм.

Далее идет два расчета с подробными пояснениями как именно расчитывается трансформатор тока, но слишком большое количество формул затрудняет выложить расчеты на странице сайта. По этой причине полная версия статьи о том как расчитать трансформатор тока была конвертирована в PDF и ее можно скачать воспользовавшись

Определение мощности силового трансформатора

Как узнать мощность трансформатора?

Для изготовления трансформаторных блоков питания необходим силовой однофазный трансформатор, который понижает переменное напряжение электросети 220 вольт до необходимых 12-30 вольт, которое затем выпрямляется диодным мостом и фильтруется электролитическим конденсатором . Эти преобразования электрического тока необходимы, поскольку любая электронная аппаратура собрана на транзисторах и микросхемах, которым обычно требуется напряжение не более 5-12 вольт.

Чтобы самостоятельно собрать блок питания , начинающему радиолюбителю требуется найти или приобрести подходящий трансформатор для будущего блока питания. В исключительных случаях можно изготовить силовой трансформатор самостоятельно. Такие рекомендации можно встретить на страницах старых книг по радиоэлектронике.

Но в настоящее время проще найти или купить готовый трансформатор и использовать его для изготовления своего блока питания.

Полный расчёт и самостоятельное изготовление трансформатора для начинающего радиолюбителя довольно сложная задача. Но есть иной путь. Можно использовать бывший в употреблении, но исправный трансформатор. Для питания большинства самодельных конструкций хватит и маломощного блока питания, мощностью 7-15 Ватт.

Если трансформатор приобретается в магазине, то особых проблем с подбором нужного трансформатора, как правило, не возникает. У нового изделия обозначены все его главные параметры, такие как мощность , входное напряжение , выходное напряжение , а также количество вторичных обмоток, если их больше одной.

Но если в ваши руки попал трансформатор, который уже поработал в каком-либо приборе и вы хотите его вторично использовать для конструирования своего блока питания? Как определить мощность трансформатора хотя бы приблизительно? Мощность трансформатора весьма важный параметр, поскольку от него напрямую будет зависеть надёжность собранного вами блока питания или другого устройства. Как известно, потребляемая электронным прибором мощность зависит от потребляемого им тока и напряжения, которое требуется для его нормальной работы. Ориентировочно эту мощность можно определить, умножив потребляемый прибором ток (I н на напряжение питания прибора (U н ). Думаю, многие знакомы с этой формулой ещё по школе.

P=U н * I н

Где U н – напряжение в вольтах; I н – ток в амперах; P – мощность в ваттах.

Рассмотрим определение мощности трансформатора на реальном примере. Тренироваться будем на трансформаторе ТП114-163М. Это трансформатор броневого типа, который собран из штампованных Ш-образных и прямых пластин. Стоит отметить, что трансформаторы такого типа не самые лучшие с точки зрения коэффициента полезного действия (КПД ). Но радует то, что такие трансформаторы широко распространены, часто применяются в электронике и их легко найти на прилавках радиомагазинов или же в старой и неисправной радиоаппаратуре. К тому же стоят они дешевле тороидальных (или, по-другому, кольцевых) трансформаторов, которые обладают большим КПД и используются в достаточно мощной радиоаппаратуре.

Итак, перед нами трансформатор ТП114-163М. Попробуем ориентировочно определить его мощность. За основу расчётов примем рекомендации из популярной книги В.Г. Борисова «Юный радиолюбитель».

Для определения мощности трансформатора необходимо рассчитать сечение его магнитопровода. Применительно к трансформатору ТП114-163М, магнитопровод – это набор штампованных Ш-образных и прямых пластин выполненных из электротехнической стали. Так вот, для определения сечения необходимо умножить толщину набора пластин (см. фото) на ширину центрального лепестка Ш-образной пластины.

При вычислениях нужно соблюдать размерность. Толщину набора и ширину центрального лепестка лучше мерить в сантиметрах. Вычисления также нужно производить в сантиметрах. Итак, толщина набора изучаемого трансформатора составила около 2 сантиметров.

Далее замеряем линейкой ширину центрального лепестка. Это уже задача посложнее. Дело в том, что трансформатор ТП114-163М имеет плотный набор и пластмассовый каркас. Поэтому центральный лепесток Ш-образной пластины практически не видно, он закрыт пластиной, и определить его ширину довольно трудно.

Ширину центрального лепестка можно замерить у боковой, самой первой Ш-образной пластины в зазоре между пластмассовым каркасом. Первая пластина не дополняется прямой пластиной и поэтому виден край центрального лепестка Ш-образной пластины. Ширина его составила около 1,7 сантиметра. Хотя приводимый расчёт и является ориентировочным , но всё же желательно как можно точнее проводить измерения.

Перемножаем толщину набора магнитопровода (2 см .) и ширину центрального лепестка пластины (1,7 см .). Получаем сечение магнитопровода – 3,4 см 2 . Далее нам понадобиться следующая формула.

Где S — площадь сечения магнитопровода; P тр — мощность трансформатора; 1,3 — усреднённый коэффициент.

После нехитрых преобразований получаем упрощённую формулу для расчёта мощности трансформатора по сечению его магнитопровода. Вот она.

Подставим в формулу значение сечения S = 3,4 см 2 , которое мы получили ранее.

В результате расчётов получаем ориентировочное значение мощности трансформатора ~ 7 Ватт. Такого трансформатора вполне достаточно, чтобы собрать блок питания для монофонического усилителя звуковой частоты на 3-5 ватт, например, на базе микросхемы усилителя TDA2003.

Вот ещё один из трансформаторов. Маркирован как PDPC24-35. Это один из представителей трансформаторов — «малюток». Трансформатор очень миниатюрный и, естественно, маломощный. Ширина центрального лепестка Ш-образной пластины составляет всего 6 миллиметров (0,6 см.).

Толщина набора пластин всего магнитопровода – 2 сантиметра. По формуле мощность данного мини-трансформатора получается равной около 1 Вт.

Данный трансформатор имеет две вторичные обмотки, максимально допустимый ток которых достаточно мал, и составляет десятки миллиампер. Такой трансформатор можно использовать только лишь для питания схем с малым потреблением тока.

Трансформатор представляет собой тип электрического компонента, который предназначен для преобразования напряжения и тока из одной величины в другую, пропорциональную потребляемой мощности на входе и выходе. Этот элемент силовой аппаратуры может содержать обычно одну первичную обмотку, и одну или несколько вторичных.

Являясь достаточно сложным устройством, расчет трансформатора порой отнимает много времени и не каждому под силу выполнить его качественно. А ведь от правильности процесса зависит многое. Стабильность работы готового устройства, КПД, потребляемая мощность. Кроме этого при неправильном расчете с намоточным устройством могут происходить самые разнообразные непонятные вещи:

  • перегреваться;
  • издавать звенящие звуки при работе;
  • потреблять большое количество мощности при низком КПД и прочее.

В более серьезных ситуациях он и вовсе может возгореться, доставив дополнительные неприятности. Поэтому многих интересует вопрос, как рассчитать трансформатор того или иного типа, чтобы тот выдавал необходимое количество электрической мощности и коэффициент полезного действия был максимально приближен к 1 .

Но сразу, стоит уверить вас, что КПД равный 1 – это нереальный фактор, потому что потери присутствуют всегда, поэтому выполняя расчет онлайн или традиционным методом, увидев показатель равный 40% при расчете силового трансформатора на железе – это уже хорошо. Для импульсных же устройств программа расчета выдаст по меньшей мере 55-60%. Поэтому, если вы хотите сделать устройство наиболее эффективное, то выбирайте именно импульсный тип трансформатора, но если требуется сделать надежный силовой агрегат, где неважна потребляемая мощность, то, конечно, берем в расчет трансформаторное железо.

Порядок расчета трансформаторов

Все программы расчета трансформаторов производят обработку данных по известным нам формулам из научных изданий, поэтому правильность ее программы всегда можно проверить. Но необходимость знания табличных величин может завести вас в заблуждение . Поэтому сейчас разберем некоторые подробности расчета трансформаторов с тороидальным сердечником на трансформаторном железе или на феррите.

Тороид обладает наилучшими качествами по сравнению со всеми другими типами сердечников, так как в нем отсутствуют зазоры, и как результат, минимизированы потери на вихревые токи. Поэтому КПД у таких трансформаторов существенно выше, поэтому если хотите сделать качественное устройство, то используйте именно такой тип сердечника, правда, на него сложнее мотать обмотку, но дело того стоит.

Этапы определения параметров

Первым делом для правильности расчета потребуется определить основные параметры будущего трансформатора. К ним относятся:

  • напряжение и ток на первичной обмотке;
  • эти же показатели на вторичной обмотке.

Далее, выполняется расчет количества витков на каждой из обмоток, выбирается тип провода по таблице и полученным результатам расчета тока, но прежде потребуется измерять размеры сердечника, если он имеется. Либо же, наоборот, задаться необходимой мощностью, и рассчитать параметры кольца. Именно это предлагают все онлайн-программы расчета трансформаторов.

Выбирая количество витков на первичной обмотке, необходимо помнить о том, что при их недостаточном числе она будет сильно греться, и в конечном итоге сгорит. А при достаточно большем будет невелико напряжение на вторичной, поэтому необходимо пользоваться строго справочными данными и формулами из учебников.

Рассмотрим пример расчета трансформатор, намотанного на тороидальном типе сердечника и питаемый от сети с частотой 50 Гц.

Для упрощения процесса расчета устройства можно воспользоваться табличными данными, которая показывает формулы и переменные, используемые для определения параметров намоточного изделия, сведенные в таблице ниже:

Для изготовления сердечников таких сетевых трансформаторов применяется 2 типа стали:

  • Э310-330 холоднокатанного типа и толщиной пластин в пределах 0,35- 0,5 мм;
  • Э340-360 обычная сталь толщиной 0,05 – 0,1 мм.

Следует понимать, что число витков для каждого типа стали может быть различным, что связано с магнитной проницаемостью сердечника, прочих показателей. В таблице же ω 1 и ω 2 – это число витков для холоднокатанной и обычной стали соответственно. Рг – габаритная мощность трансформатора; S – параметры сердечника (площадь сечения), ∆ — максимально допустимая плотность тока в обмотках; η – коэффициент полезного действия устройства.

Одной из особенностей изготовления тороидального трансформатора является то, что в нем используется наружная и межобмоточная изоляции, поэтому проводники должны быть с достаточно эластичным покрытием. В качестве таковых часто выбирают ПЭЛШО или ПЭШО также пользуется популярностью ПЭВ-2. В качестве наружного типа изоляции применяются следующие типы материалов:

  • лакоткань;
  • батистовая лента;
  • триацетатная пленка;
  • фторопластовая пленка.

Преимущества использования программ

Одним из преимуществ использования онлайн-калькуляторов для расчета параметров трансформатора является отсутствие необходимости во всех вышеперечисленных нюансах. Но результат получается приблизительным , поэтому это важно помнить, используя ту или иную программу. Конечно, есть более качественные проекты с расчетом трансформаторов, в которых учитывается толщина изоляционной пленки, тип стали, плотность намотки.

Основные формулы и порядок их применения

Далее, необходимо задаться основными параметрами будущего трансформатора. К ним относятся напряжение сети Uс и выходное напряжение со вторичной обмотки Uн. Также задаемся током в нагрузке Iн, именно этот показатель зачастую является самым главным, определяющим характеристики устройства.

Некоторые калькуляторы совместно с внесением данных в форму также показывают основные формулы, по которым было определено полученное значение. Это намного облегчает процесс и одновременно позволяет более углубленно понять принцип расчета. В любом случае при задании основных данных в форму программа первым делом определяет мощность нВ вторичной обмотке по известной формуле:

Следующим шагом при расчете параметров любого тороидального трансформатора является определение сечения сердечника. Она вычисляется по формуле:

S расч=√Рг/1,2.

Для правильного выбора сердечника, необходимо воспользоваться следующей формулой расчета сечения:

S =(Dc — dc) hc /2.

После чего, пользуясь справочной таблицей параметров сердечников, выбираем ближайший по характеристикам. Подбирать необходимо магнитопровод с большей мощностью, чем рассчитанная по формуле.

Следующим шагом, который выполняет программа расчета сварочного или силового трансформатора с питанием от сети 50Гц , является определение количества витков на 1 вольт. Для этого необходимо воспользоваться постоянными величинами, взятыми из справочника. Дело в том, что для каждого типа сердечника имеется своя константа. Например, для магнитопровода из стали Э320 она равна 33,3, а формула выглядит следующим образом:

W 1-1 = ω 1 х Uc ;

W 1-2 = ω 1 х U н.

Осуществляя расчеты числа витков на обмотках сварочного тороидального трансформатора, необходимо учесть рассеиваемую мощность, из-за чего напряжение на выходе будет занижено на 3%. Поэтому для корректности расчетов рекомендуется увеличить число витков на вторичной обмотке ровно на эту разницу.

Следующим шагом будет определение диаметра проводов обеих обмоток. Для этого вычисляется значение тока в первичной обмотке:

I 1=1,1(Р2/ Uc). А по формуле:

d 1=1,13√ I 1/∆ определяется параметр провода.

Такой расчет справедлив для всех типов трансформаторов как силовых, так и сварочных с питанием от сети частотой 50Гц. Программа расчета производит те же операции, что были приведены выше. Только она может оперировать данными в любом порядке. Например, задавая количество витков, можно определить напряжение и мощность сердечника, вводя параметры сердечника, можно узнать мощность и электрические характеристики трансформатора.

Расчет импульсного трансформатора

Как и в случае с обычным силовым трансформатором, импульсные также могут быть рассчитаны с помощью онлайн-калькуляторов и различных программ. Формулы будут похожи, но необходимо будет учесть магнитную проницаемость и прочие параметры ферритового сердечника. Потому, что от его свойств напрямую зависит качество и корректность работы готового устройства.

При выполнении расчетов сварочных импульсных трансформаторов при помощи программ, многие из них дают подсказки, представляя мостовые схемы выпрямителей и прочее. Все это намного облегчает процесс, так как традиционными методами он сложен. Но, в общем, принцип остается таким же. А что насчет программ калькуляторов, то их в интернете можно найти большое количество для выполнения расчета любых импульсных или обычных сетевых устройств различной мощности и электрических параметров.

Трансформаторы постоянно используются в различных схемах, при устройстве освещения, питании цепей управления и прочем электронном оборудовании. Поэтому довольно часто требуется вычислить параметры прибора, в соответствии с конкретными условиями эксплуатации. Для этих целей вы можете воспользоваться специально разработанным онлайн калькулятором расчета трансформатора. Простая таблица требует заполнения исходными данными в виде значения входного напряжения, габаритных размеров, а также выходного напряжения.

Преимущества онлайн калькулятора

В результате расчета трансформатора онлайн, на выходе получаются параметры в виде мощности, силы тока в амперах, количества витков и диаметра провода в первичной и вторичной обмотке.


Существуют , позволяющие быстро выполнить расчеты трансформатора. Однако они не дают полной гарантии от ошибок при проведении вычислений. Чтобы избежать подобных неприятностей, применяется программа онлайн калькулятора. Полученные результаты позволяют выполнять конструирование трансформаторов для различных мощностей и напряжений. С помощью калькулятора осуществляются не только расчеты трансформатора. Появляется возможность для изучения его устройства и основных функций. Запрошенные данные вставляются в таблицу и остается только нажать нужную кнопку.

Благодаря онлайн калькулятору не требуется проводить каких-либо самостоятельных подсчетов. Полученные результаты позволяют выполнять перемотку трансформатора своими руками. Большинство необходимых расчетов осуществляется в соответствии с размерами сердечника. Калькулятор максимально упрощает и ускоряет все вычисления. Необходимые пояснения можно получить из инструкции и в дальнейшем четко следовать их указаниям.


Конструкция трансформаторных магнитопроводов представлена тремя основными вариантами — броневым, стержневым и . Прочие модификации встречаются значительно реже. Для расчета каждого вида требуются исходные данные в виде частоты, входного и выходного напряжения, выходного тока и размеров каждого магнитопровода.

Онлайн расчет трансформатора за 6 простых шагов

Силовой трансформатор является нестандартным изделием, которое часто применяется радиолюбителями, промышленности и при конструировании многих бытовых приборов. Под этим понятием подразумевается намоточное устройство, изготовленное на металлическом сердечнике, набранном из пластин электротехнической стали. Стандартными являются немногие подобные изделия, поэтому чаще всего радиолюбители изготавливают их самостоятельно. Поэтому весьма актуален вопрос: как выполнить расчет трансформатора по сечению сердечника калькулятор использовав для этого?

Расчет силового трансформатора

Для точного расчета трансформатора требуются довольно сложные вычисления. Тем не менее, существуют упрощенные варианты формул, используемые радиолюбителями при создании силовых трансформаторов с заданными параметрами.

В начале нужно заранее рассчитать величину силы тока и напряжения для каждой обмотки. С этой целью на первом этапе определяется мощность каждой повышающей или понижающей вторичной обмотки. Расчет выполняется с помощью формул: P2 = I2xU2; P3 = I3xU3;P4 = I4xU4, и так далее. Здесь P2, P3, P4 являются мощностями, которые выдают обмотки трансформатора, I2, I3, I4 – сила тока, возникающая в каждой обмотке, а U2, U3, U4 – напряжение в соответствующих обмотках.

Определить общую мощность трансформатора (Р) необходимо отдельные мощности обмоток сложить и полученную сумму умножить на коэффициент потерь трансформатора 1,25. В виде формулы это выглядит как: Р = 1,25 (Р2 + Р3 + Р4 + …).

Исходя из полученной мощности, выполняется расчет сечения сердечника Q (в см2). Для этого необходимо извлечь квадратный корень из общей мощности и полученное значение умножить на 1,2:

. С помощью сечения сердечника необходимо определить количество витков n, соответствующее 1 вольту напряжения: n= 50/Q.


На следующем этапе определяется количество витков для каждой обмотки. Вначале рассчитывается первичная сетевая обмотка, в которой количество витков с учетом потерь напряжения составит: n1 = 0,97 xnxU1. Вторичные обмотки рассчитываются по следующим формулам: n2 = 1,03 x n x U2; n3 = 1,03 x n x U3;n4 = 1,03 x n x U4;…

Назначение и функциональность

Итак, какие функции выполняет трансформатор?

  1. Это снижение напряжения до необходимых параметров.
  2. С его помощью снижается гальваническая развязка сети.

Что касается второй функции, то необходимо дать пояснения. Обе обмотки (первичная и вторичная) трансформатора тока между собой напрямую не соединены. Значит, сопротивление прибора, по сути, должно быть бесконечным. Правда, это идеальный вариант. Соединение же обмоток происходит через магнитное поле, создаваемой первичной обмоткой. Вот такой непростой функционал.



Как рассчитать мощность трансформатора

Чаще всего необходимость расчета мощности трансформатора возникает при работе со сварочной аппаратурой, особенно когда технические характеристики заранее неизвестны.

Мощность трансформатора тесно связана с силой тока и напряжением, при которых аппаратура будет нормально функционировать. Самым простым вариантом расчета мощности будет умножение значения напряжения на величину силы тока, потребляемого устройством. Однако на практике не все так просто, прежде всего из-за различия в типах устройств и применяемых в них сердечников. В качестве примера рекомендуется рассматривать Ш-образные сердечники, получившие наиболее широкое распространение, благодаря своей доступности и сравнительно невысокой стоимости.



Выполнение обмоток

Обмотки трансформатора выполняют на каркасе из изоляционного материала. Каркас может быть цельным или разборным. Несмотря на кажущуюся сложность, разборный каркас изготовить легче, к тому же его размеры легко пересчитать под любой имеющийся сердечник. Из материалов для каркаса можно взять листовой гетинакс, текстолит или стеклотекстолит. В щечках каркаса нужно предусмотреть отверстия для выводов.


Разборный каркас

Как расшифровать маркировку трансформатора

Выводы обмоток выполняют гибким многожильным проводом, тщательно заизолировав место пайки. Саму обмотку выполняют, по возможности, виток к витку. Такая намотка позволяет лучше использовать свободное место, сокращает расход провода, а главное – в местах пересечения проводов при некачественно выполненной намотке существует риск повреждения изоляции и междувитковых замыканий. Это правило не касается тонкого провода с диаметром менее 0.2 мм, поскольку рядовую обмотку в домашних условиях на нем выполнить очень тяжело.

Каждую обмотку необходимо изолировать одна от другой, особенно первичную обмотку. Для изоляции можно использовать несколько слоев ФУМ ленты. Она выполнена из фторопласта, который обладает хорошими электроизоляционными свойствами.

Важно! ФУМ лента имеет малую толщину, а фторопласт обладает текучестью, поэтому делать нужно несколько слоев изоляции.


ФУМ лента



Типы магнитопроводов

Основой трансформатора переменного тока является магнитопровод, который должен обладать определенными магнитными свойствами. В трансформаторах используется сталь особого состава и со специфической обработкой (трансформаторное железо). В процессе работы трансформатора в магнитопроводе образуются вихревые токи, которые нагревают сердечник и ведут к снижению КПД трансформатора. Для снижения вихревых токов сердечник выполняют не монолитным, а собранным из тонких стальных пластин или лент, покрытых непроводящим оксидным слоем.

По типу используемого металла сердечники разделяют на:

  • Пластинчатые;
  • Ленточные.

Первый тип сердечников собирается в виде пакета из отдельных пластин соответствующей формы, а второй – наматывается из ленты. В дальнейшем ленточный сердечник может быть разрезан на отдельные сегменты для удобства намотки провода.

По типу магнитопровода различают сердечники:

  • Броневые;
  • Стержневые.

Каждый из перечисленных типов может различаться формой пластин или сегментов:

  • Броневый;
  • Ш образный;
  • Кольцевой.

Форма и тип сердечника в теории не влияют на методику расчета, но на практике это следует учитывать при определении КПД и количества витков обмоток.


Типы сердечников

Кольцевой (тороидальный) сердечник отличается наилучшими свойствами. Трансформатор, выполненный на таком магнитопроводе, будет иметь максимальный КПД и минимальный ток холостого хода. Это оправдывает самую большую трудоемкость выполнения обмоток, поскольку в домашних условиях эта работа выполняется исключительно вручную, без использования намоточного станка.

Определение нагрузки на трансформаторы тока для релейной защиты

Нагрузка на ТТ для релейной защиты складывается из последовательно включенных сопротивлений релейной аппаратуры , соединительных проводов и переходных сопротивлений в контактных соединениях. Величина вторичной нагрузки зависит также от схемы соединения ТТ и от вида КЗ.

Релейная защита в условиях КЗ обычно работает при больших токах, которые во много раз превышают номинальный ток ТТ. Расчетами и опытом эксплуатации установлено, что для обеспечения правильной работы релейной защиты погрешности ТТ не должны превышать предельно допустимых значений.

По ПУЭ эта погрешность, как правило, не должна быть более 10%.

В ГОСТ 7746-88 точность ТТ, используемых для релейной защиты, нормируется по их полной погрешности (ε), обусловленной током намагничивания. По условию ε < 10% построены кривые предельных кратностей ТТ.

При этом наибольшее отношение первичного тока к его номинальному значению, при котором полная погрешность при заданной вторичной нагрузке не превышает 10%, называется предельной кратностью (К10).

Согласно тому же ГОСТ заводы-поставщики ТТ обязаны гарантировать значение номинальной предельной кратности (К10н), при которой полная погрешность ТТ, работающего с номинальной вторичной нагрузкой, не превышает 10%.

Чтобы найти допустимую нагрузку по кривым предельных кратностей, необходимо предварительно определить расчетную кратность тока К.З., т. е. отношение тока КЗ в расчетной точке к минимальному току ТТ (Красч.)

Общая часть

Всем доброго времени суток! Представляю Вашему вниманию типовую работу «Указания по расчету нагрузок трансформаторов тока» №48082-э «Теплоэлектропроект».

Вторичная нагрузка на трансформаторы тока (ТТ) складывается из:

  • а) сопротивления проводов — rпр;
  • б) полного сопротивления реле и измерительных приборов — Zр и Zп;
  • в) переходного сопротивления принимаемого равным — rпер = 0,05 Ом.

Согласно ГОСТ трансформаторы тока должны соответствовать одному из следующих классов точности: 0,5; 1; 3; 5Р; 10Р.

Класс точности 0,5 должен обеспечиваться при питании от трансформатора тока расчетных счетчиков. При питании щитовых измерительных приборов класс точности трансформаторов тока должен быть не ниже 3. При необходимости для измерения иметь более высокий класс точности трансформаторы тока должны выбираться по классу точности на ступень выше, чем соответствующий измерительный прибор.

Например: для приборов класса 1 трансформаторов тока должен обеспечивать класс 0,5; для приборов — 1,5 трансформаторов тока должен обеспечивать класс точности 1,0.

Требования к трансформаторам тока для релейной защиты рассмотрены ниже.

При расчете нагрузки на ТТ в целях упрощения допускается сопротивления элементов вторичной цепи ТТ складывать арифметически, что создает некоторый расчетный запас.

Потребление токовых обмоток релейной и измерительной аппаратуры приведено в разделе «7. Справочные данные по потреблению релейной аппаратуры». Для удобства и упрощения расчета в указанных приложениях потребление дано в Омах. Для тех приборов и реле, для которых в каталогах указано их потребление в ВА, сопротивление в Омах определяется по выражению

где: S – потребляемая мощность по токовым цепям, ВА; I – ток, при котором задана потребляемая мощность, А.

При расчете сопротивления проводов (кабеля) во вторичных цепях ТТ используется:

где:

  • rпр — активное сопротивление проводов (жилы кабеля) от трансформатора тока до прибора или реле, Ом;
  • l – длина провода (кабеля) от трансформатора тока до места установки измерительных приборов или релейной аппаратуры, м;
  • S – сечение провода или жилы кабеля, мм2;
  • γ –удельная проводимость, м/Ом.мм2(для меди γ = 57, для алюминия γ =34,5).

Мощность трансформатора тока

Электрическая мощность трансформатора определяют максимальную нагрузку, которую можно к нему подключить. Например, если мощность разделительного трансформатора составляет 250 Ватт, то к нему можно подключить паяльник на 250 Ватт, либо паяльник мощностью 100 Ватт и 3 лампочки на 40 Ватт.

При этом к такому трансформатору нельзя подключать потребители выше 250 Ватт, например, шлифовальную машинку мощностью 1200 Ватт. Трансформатор попросту сгорит, да и для питания такого устройства выходной мощности будет недостаточно.

Кроме электрической мощности, существует еще и габаритная. Она характеризует сердечник трансформатора:

  • габариты;
  • частотные свойства;
  • магнитные свойства.

На практике габаритная мощность сердечника помогает выбрать подходящее устройство среди множества моделей, представленного на полках магазинов. Электрическая мощность, в свою очередь, устанавливает, какую нагрузку нельзя подключать к его выходу.

При расчете мощности и конструировании трансформатора должно выполняться условие: электрическая мощность трансформатора не должна превышать габаритную. В свою очередь электрическая мощность представляет собой половину суммы мощностей первичной и вторичной обмотки.

Первичная обмотка – это обмотка, через которую подается ток от источника энергии. Через вторичную обмотку энергия подается к приемнику энергии. Энергия между обмотками передается посредством магнитного потока.

Мощность обмотки трансформатора представляет собой произведение напряжения на обмотке и силы тока. Напряжение источника энергии нам известно, осталось определить максимальный ток, который способна выдержать обмотка. Для этого вводится понятие плотности тока в проводе. Она рассчитывается как отношение тока, проходящего через провод к его поперечному сечению. Для обмоток с медным проводом оптимальная плотность находится в диапазоне от 2,5 при габаритной мощности больше 200 Ватт до 5 при мощности меньше 10 Ватт. Увеличение плотности приведет к перегреву обмотки и выходу трансформатора из строя.

Зная диаметр провода обмотки можно определить плотность. Для этого понадобится таблица «Медный обмоточные провода», которую можно найти в Интернете. Далее, чтобы узнать максимально допустимый ток обмотки, нужно плотность умножить на сечение.

Теперь имеются все данные для расчета мощности первичной обмотки, а, соответственно, и электрической мощности трансформатора.


Расчет трансформатора на ферритовом кольце онлайн. Расчет трансформаторов импульсных источников питания

Импульсные источники питания, все чаще встречающиеся в радиолюбительской практике благодаря высокому коэффициенту полезного действия, малым габаритам и весу, обычно требуют расчета одного или нескольких (по числу каскадов) трансформаторов. Это продиктовано тем, что приводимые в литературе значения числа витков, их диаметра, зачастую не совпадают с желаемыми выходными данными собираемого или проектируемого источника питания, либо имеющиеся в наличии у радиолюбителя ферритовые кольца или транзисторы не соответствуют приводимым в схеме.
В литературе приводилась упрощенная методика расчета трансформаторов импульсных источников питания. Общий порядок расчета трансформатора импульсного источника питания следующий:
1. Рассчитать (в Вт) используемую мощность трансформатора
Рисп.=1,ЗРн, где Рн — мощность, потребляемая нагрузкой.
2. Выбрать тороидальный ферритовый магнитопровод, удовлетворяющий условию Ргаб>Рисп., где Ргаб. — габаритная мощность трансформатора, Вт, вычисляемая как:

Где D — наружный диаметр ферритового кольца, см; d— внутренний диаметр; h — высота кольца; f — частота работы преобразователя, Гц; Вmах — максимальное значение индукции (в Тесла), которое зависит от марки феррита и определяется по справочнику.
3. Задавшись напряжением на первичной обмотке трансформатора
U1 определяют с округлением в большую сторону
число ее витков:

Для полумостового преобразователя U1=Uпит/2-UКЭнас, где Uпит — напряжение питания преобразователя, UКЭнас — напряжение насыщения коллектор — эмиттер транзисторов VT1, VT2.
4. Определяют максимальный ток первичной обмотки (в А):

Где η — КПД трансформатора (обычно 0,8).
5. Определяют диаметр провода первичной обмотки (в мм):

6. Находят число витков и диаметр провода выходной (вторичной) обмотки:

М.А. Шустов; «Практическая схемотехника. Преобразователи напряжения»; «Альтекс-А», 2002г.

Сегодня я расскажу о процедуре расчета и намотки импульсного трансформатора, для блока питания на ir2153.

Моя задача стоит в следующем, нужен трансформатор c двумя вторичными обмотками, каждая из которых должна иметь отвод от середины. Значение напряжения на вторичных обмотках должно составить +-50В. Ток протекать будет 3А, что составит 300Вт.

Расчет импульсного трансформатора.

Для начала загружаем себе программу расчета импульсного трансформатора и запускаем её.

Выбираем схему преобразования – полумостовая. Зависит от вашей схемы импульсного источника питания. В статье схема преобразования –полумостовая.


Напряжение питания указываем постоянное. Минимальное = 266 Вольт, номинальное = 295 Вольт, максимальное = 325 Вольт.


Тип контроллера указываем ir2153, частоту генерации 50кГц.


Стабилизации выходов – нет. Принудительное охлаждение – нет.


Диаметр провода, указываем тот, который есть в наличии. У меня 0,85мм. Заметьте, указываем не сечение, а диаметр провода.

Указываем мощность каждой из вторичных обмоток, а также напряжение на них.Я указал 50В и мощность 150Вт в двух обмотках.


Схема выпрямления – двухполярная со средней точкой.


Указанные мною напряжения (50 Вольт) означают, что две вторичных обмотки, каждая из которых имеет отвод от середины, и после выпрямления, будет иметь +-50В относительно средней точки. Многие подумали бы, что указали 50В, значит, относительно ноля будет 25В в каждом плече, нет! Мы получим 50В вкаждом плече относительно среднего провода.



Намотка импульсного трансформатора.

Итак, вот мое колечко с размерами 40-24-20 мм.


Теперь его нужно изолировать каким-либо диэлектриком. Каждый выбирает свой диэлектрик, это может быть лакоткань, тряпочная изолента, стеклоткань и даже скотч, что лучше не использовать для намотки трансформаторов. Говорят скотч, разъедает эмаль провода, не могу подтвердить данный факт, но я нашел другой минус скотча. В случае перемотки, трансформатор тяжело разбирать, и весь провод становится в клею от скотча.

Я использую лавсановую ленту, которая не плавится как полиэтилен при высоких температурах. А где взять эту лавсановую ленту? Все просто, если есть обрубки экранированной витой пары, то разобрав её вы получите лавсановую пленочку шириной примерно 1,5см. Это самый идеальный вариант, диэлектрик получается красивым и качественным.


Скотчем подклеиваем лавсаночку к сердечнику и начинаем обматывать колечко, в пару слоев.




Выводы первичной обмотки скручиваем и залуживаем.



Следующим шагом вновь изолируем диэлектриком еще пару слоев.


Теперь начинаются самые «непонятки» и множество вопросов. Как мотать? Одним проводом или двумя? В один слой или в два слоя класть обмотку?

В ходе моего расчета я получил две вторичных обмотки с отводом от середины. Каждая обмотка содержит 13+13 витков.

Мотаем двумя жилами, в ту же сторону, как и первичную обмотку. В итоге получилось 4 вывода, два уходящих и два приходящих.


Теперь один из уходящих выводов соединяем с одним из приходящих выводов. Главное не запутаться, иначе получится, что вы соедините один и тот же провод, то есть замкнете одну из обмоток. И при запуске ваш импульсный источник питания сгорит.

Программное обеспечение, предназначенное для расчёта импульсных трансформаторов двухтактных push-pull, мостовых и полумостовых преобразователей напряжения источников питания.

Из основных достоинств Lite-CalcIT стоит отметить удобный и понятный графический интерфейс, контроль и учет различных особенностей рассматриваемых электромагнитных устройств, а также формирование довольно достоверных результатов.

Рассматриваемое ПО дает возможность рассчитать диаметры обмоточных проводов (учитывая скин-эффект – глубину проникновения тока в массив проводника на определенной частоте), мощность потерь в магнитопроводе, количество витков в обмотках трансформатора и его габаритную мощность, ток намагничивания первичной обмотки и её индуктивность, перегрев магнитопровода, а также многое другое. Важной особенностью Lite-CalcIT является возможность выбора схемы выпрямления и наличие различных вариантов ШИМ-контроллеров: TL494, SG3525, IR2153 и подобных им. Также предлагается два способа охлаждения трансформатора: принудительное и естественное. Форма сердечника может быть E, ER, EI, ETD или R типа, кроме этого база магнитопроводов является пополняемой. Данные на изделия других образцов необходимо вносить самостоятельно согласно документации производителя. При добавлении нового сердечника в поле комбинированного списка программа автоматически дописывает к его названию префикс формы и название материала. Lite-CalcIT предлагает рассчитать до четырех вторичных обмоток одного трансформатора, причем для каждой вторичной обмотки в соответствии с рисунками указывается своя схема выпрямления. При выводе результатов работы данный софт приводит не только диаметры проводов, но и во сколько жил должна производиться намотка этими проводами. При наличии двухполярного питания со средней точкой число витков для каждого плеча будет указано через значок «+».

На отдельных результатах расчета и полях ввода размещены всплывающие подсказки. Кроме этого, если ряд параметров выйдет за разумные пределы (например, нагрев сердечника), то данное ПО предупредит об этом пользователя и самостоятельно ограничит ряд установленных значений. Все данные предыдущего расчета сохраняются при перезапуске программы.

Данное ПО является упрощенной версией программы ExcellentIT и подходит для тех, кто не желает возиться с огромным количеством различных специфичных параметров (которые по умолчанию берутся усредненными). Однако следствием этого является более высокая погрешность расчетов. Основные отличия от полной версии – отсутствие возможности рассчитать индуктивность выходного дросселя, а также сохранять, загружать и распечатывать результаты работ. При работе с Lite-CalcIT нельзя забывать, что диаметр провода по лаку будет больше вводимого диаметра по меди.

Автором данного ПО является отечественный программист Владимир Денисенко, проживающий в городе Пскове. Помимо ExcellentIT и Lite-CalcIT он написал еще несколько других программ для определения моточных компонентов различных устройств: Booster (заточенный на расчет понижающих и повышающих импульсных стабилизаторов), Forward (трансформаторы прямоходовых однотактных преобразователей) и Flyback (дроссель-трансформаторы обратноходовых преобразователей). Автор следит за пожеланиями пользователей и постоянно дорабатывает вышеприведенное ПО. Его программы получили известность не только в странах бывшего СССР, но и за рубежом.

Программа Lite-CalcIT распространяется абсолютно бесплатно. Инсталляция при установке не требуется.

Язык интерфейса рассматриваемого калькулятора импульсных трансформаторов – русский.

Размер программы составляет менее 1 MB. Платформа для работы – операционные системы Microsoft Windows XP, Vista и 7 (работоспособность проверена в 32- и 64-разрядных версиях). Lite-CalcIT функционирует и в среде Linux при запуске под Wine.

Скачать: (скачиваний: 953)

Распространение программы: бесплатная

Приведены образцы схем преобразования и выпрямления. На некоторых полях ввода программы и на некоторых результатах расчета, которые нуждаются в комментариях, размещены всплывающие подсказки.

Подробнее о программе

1. Основная работа в программе происходит в группе «Оптимизация».
Автоматический расчет применяется при выборе другого сердечника или при изменении любых исходных данных (за пределами группы «Оптимизация») для получения отправной точки при оптимизации намоточных данных трансформатора.

2. В группе «Оптимизация» при изменении значений с помощью стрелок старт оптимизации запускается автоматически.
Но если новое значение введено «вручную», то следует запускать оптимизацию этой кнопкой.

3. Для ШИМ-контроллеров задается частота, равная половине частоты задающего генератора микросхемы. Импульсы задающего генератора подаются на выходы по очереди, поэтому частота на каждом выходе (и на трансформаторе) в 2 раза ниже частоты задающего генератора.
Микросхемы IR2153, и подобные ей этого семейства микросхем, не являются ШИМ-контроллерами, и частота на их выходах равна частоте задающего генератора.
Не стоит гнаться за большой частотой. При высокой частоте увеличиваются коммутационные потери в транзисторах и диодах. Также при большой частоте из-за малого числа витков ток намагничивания получается слишком велик, что приводит к большому току холостого хода и, соответственно, низкому КПД.


4. Коэффициент заполнения окна характеризует, какую часть окна сердечника займет медь всех обмоток.

5. Плотность тока зависит от условий охлаждения и от размеров сердечника.
При естественном охлаждении следует выбирать 4 — 6 А/мм2.
При вентиляции плотность тока можно выбрать больше, до 8 — 10 А/мм2.
Большие значения плотности тока соответствуют маленьким сердечникам.
При принудительном охлаждении допустимая плотность тока зависит от интенсивности охлаждения.

6. Если выбрана стабилизация выходных напряжений, то первый выход является ведущим. И на него надо назначать выход с наибольшим потреблением.
Остальные выходы считаются по первому.
Для реальной стабилизации всех выходов следует применять дроссель групповой стабилизации.

7. При однополярном выпрямлении, несмотря на больший расход меди, имеет преимущество схема выпрямления со средней точкой, так как потери на двух диодах будут в 2 раза меньше, чем на четырех диодах в мостовой схеме.

8. Для правильной работы дросселя в выпрямителе после диодов перед дросселем не должно быть никаких конденсаторов! Даже маленького номинала.

9. На числах витков обмоток в результатах расчета помещены всплывающие подсказки с числом слоев, занимаемых обмотой.

10. На числах проводов в обмотках в результатах расчета помещены всплывающие подсказки с плотностью тока в обмотке.

Содержание:

В электронике и электротехнике широко используются различные типы трансформаторов. Это дает возможность применения электронных систем во многих областях производственной и хозяйственной деятельности. Поэтому наряду с основными расчетами, большое значение приобретает расчет импульсного трансформатора. Данные устройства являются важными элементами, которые используются во всех схемах современных блоков питания.

Назначение и действие импульсного трансформатора

Импульсные трансформаторы применяются в системах связи и различных автоматических устройствах. Их основной функцией является внесение изменений в амплитуду и полярность импульсов. Основным условием нормальной работы этих устройств считается минимальное искажение передаваемых ими сигналов.

Принцип действия импульсного трансформатора заключается в следующем: при поступлении на его вход прямоугольных импульсов напряжения с определенным значением, в первичной обмотке происходит постепенное возникновение электрического тока и дальнейшее увеличение его силы. Подобное состояние, в свою очередь, приводит к изменению магнитного поля во вторичной обмотке и появлению электродвижущей силы. В этом случае сигнал практически не искажается, а небольшие потери тока ни на что не влияют.

При выходе трансформатора на проектную мощность, обязательно появляется отрицательная часть импульса. Его воздействие вполне возможно сделать минимальным, путем установки во вторичную обмотку простого диода. В результате, в этом месте импульс также максимально приблизится к прямоугольной конфигурации.

Главным отличием импульсного трансформатора от других аналогичных технических систем считается его исключительно ненасыщенный режим работы. Для изготовления магнитопровода применяется специальный сплав, обеспечивающий высокую пропускную способность магнитного поля.

Расчет исходных данных и выбор элементов устройства

В первую очередь необходимо правильно выбрать наиболее подходящий магнитопровод. К универсальным конструкциям относятся броневые сердечники с Ш-образной и чашеобразной конфигурацией. Установка необходимого зазора между частями сердечника делает возможным применение их в любых импульсных блоках питания. Однако, если собирается полумостовой двухтактный преобразователь, можно обойтись обычным кольцевым магнитопроводом. При расчетах необходимо учитывать внешний диаметр кольца (D), внутренний диаметр кольца (d) и высота кольца (Н).


Существуют специальные справочники по магнитопроводам, где размеры кольца представлены в формате КDxdxH.

Перед тем как производить расчет импульсного трансформатора необходимо получить определенный набор исходных данных. Сначала нужно определиться с питающим напряжением. Здесь имеются свои сложности, в связи с возможными . Поэтому для расчетов берется максимальное значение в 220 В + 10%, к которому применяются специальные коэффициенты:

  • Амплитудное значение составляет: 242 В х 1,41 = 341,22 В.
  • Далее 341,22 — 0,8 х 2 = 340 В за вычетом падения напряжения на выпрямителе.

Значение индукции и частоты определяется с помощью таблиц:

1. Марганец-цинковые ферриты.

Параметры

Марка феррита

2. Никель-цинковые ферриты.

Параметры

Марка феррита

Граничная частота при tgδ ≤ 0,1, МГц

Магнитная индукция B при Hм = 800 А / м, Тл

Намотка импульсных трансформаторов

При намотке импульсных трансформаторов необходимо учитывать особенности этих устройств. В первую очередь следует обращать внимание на равномерное распределение обмотки по всему периметру магнитопровода. В противном случае произойдет значительное снижение мощности устройства, а в некоторых случаях — его выход из строя.

В случае намотки провода своими руками, используется обмотка «виток к витку», выполненная в один слой. Исходя из такой технической характеристики, выполняется и расчет импульсного трансформатора в части определения необходимого количества витков. Диаметр провода, используемого для обмотки, нужно подобрать таким образом, чтобы весь провод точно уложился в один слой, а количество витков в этом случае будет совпадать с расчетными данными. Разница между и результатом, полученным с помощью формулы, может составлять от 10 до 20%, что позволяет делать обмотку, не обращая внимания на точное количество витков.

Для выполнения расчетов существует формула: W = n (D — 10 S — 4 d ) / d , в которой W -является количеством витков в первичной обмотке, n — постоянная величина, равная 3,1416, D — внутренний диаметр кольца магнитопровода, S — толщина изоляционной прокладки, d — диаметр изолированного провода. Максимальный допуск ошибок при вычислениях составляет от -5 до +10% в зависимости от плотности укладки проводов.

онлайн-калькуляторы, особенности автотрансформаторов и торов

Данный онлайн расчет трансформатора выполнен по типовым расчетам электрооборудования. В типовых расчётах все начинается с определения необходимой мощности вторичной обмотки, а уж потом с поправкой на КПД — коэффициент полезного действия, находим мощность всего трансформатора, и на основании этого рассчитываем необходимое сечение и тип сердечника и так далее.

Изначально так и было в моём расчете. Пока не появились предложения от посетителей сайта внести изменения в расчет. По имеющимся размерам трансформаторного железа рассчитываем полную мощность трансформатора, а уж потом видим, какой ток и напряжение можно снять с этого железа. Далее все как по типовому расчёту, выбираем тип: броневой или стержневой, указываем напряжение первичной обмотки, вторичной, частоту переменного тока и так далее.

В результате получаем необходимые расчетные данные трансформатора, например сечение обмоточных проводов, которые сравниваются со стандартными обмоточными проводами и представляются для дальнейшего расчёта. Диапазон обмоточных проводов сечением от 0,000314 до 4,906 мм 2 , всего 63 позиции. На основании имеющихся данных рассчитывается площадь занимаемой обмотками трансформатора, для определения возможности их размещения в окнах трансформатора. Хотелось бы узнать в комментариях ваше мнение, и практические результаты, чтобы если это возможно сделать более качественный расчёт.

Просмотр и ввод комментариев к статье

Трансформаторы часто используются для питания цепей управления, для освещения и в различных электронных устройствах. С такой задачей, как расчет трансформатора тока, сталкиваются не только специалисты в данных областях, но и обычные любители. Поэтому очень часто мы сталкиваемся с проблемой, когда не знаем, как производится простой расчет трансформатора и расчет параметров трансформатора. К счастью существует решение этой проблемы.

Принцип работы устройства

Трансформатор — это электротехническое устройство, предназначенное для передачи энергии без изменения её формы и частоты. Используя в своей работе явление электромагнитной индукции, устройство применяется для преобразования переменного сигнала или создания гальванической развязки. Каждый трансформатор собирается из следующих конструктивных элементов:

  • сердечника;
  • обмотки;
  • каркаса для расположения обмоток;
  • изолятора;
  • дополнительных элементов, обеспечивающих жёсткость устройства.

В основе принципа действия любого трансформаторного устройства лежит эффект возникновения магнитного поля вокруг проводника с текущим по нему электрическим током. Такое поле также возникает вокруг магнитов. Током называется направленный поток электронов или ионов (зарядов). Взяв проволочный проводник и намотав его на катушку и подключив к его концам прибор для измерения потенциала можно наблюдать всплеск амплитуды напряжения при помещении катушки в магнитное поле. Это говорит о том, что при воздействии магнитного поля на катушку с намотанным проводником получается источник энергии или её преобразователь.

В устройстве трансформатора такая катушка называется первичной или сетевой. Она предназначена для создания магнитного поля. Стоит отметить, что такое поле обязательно должно всё время изменяться по направлению и величине, то есть быть переменным.

Классический трансформатор состоит из двух катушек и магнитопровода, соединяющего их. При подаче переменного сигнала на контакты первичной катушки возникающий магнитный поток через магнитопровод (сердечник) передаётся на вторую катушку. Таким образом, катушки связаны силовыми магнитными линиями. Согласно правилу электромагнитной индукции при изменении магнитного поля в катушке индуктируется переменная электродвижущая сила (ЭДС). Поэтому в первичной катушки возникает ЭДС самоиндукции, а во вторичной ЭДС взаимоиндукции.

Количество витков на обмотках определяет амплитуду сигнала, а диаметр провода наибольшую силу тока. При равенстве витков на катушках уровень входного сигнала будет равен выходному. В случае когда вторичная катушка имеет в три раза больше витков, амплитуда выходного сигнала будет в три раза больше, чем входного — и наоборот.

От сечения провода, используемого в трансформаторе, зависит нагрев всего устройства. Правильно подобрать сечение возможно, воспользовавшись специальными таблицами из справочников, но проще использовать трансформаторный онлайн-калькулятор.

Отношение общего магнитного потока к потоку одной катушки устанавливает силу магнитной связи. Для её увеличения обмотки катушек размещаются на замкнутом магнитопроводе. Изготавливается он из материалов имеющих хорошую электромагнитную проводимость, например, феррит, альсифер, карбонильное железо. Таким образом, в трансформаторе возникают три цепи: электрическая — образуемая протеканием тока в первичной катушке, электромагнитная — образующая магнитный поток, и вторая электрическая — связанная с появлением тока во вторичной катушке при подключении к ней нагрузки.

Правильная работа трансформатора зависит и от частоты сигнала. Чем она больше, тем меньше возникает потерь во время передачи энергии. А это означает, что от её значения зависят размеры магнитопровода: чем частота больше, тем размеры устройства меньше. На этом принципе и построены импульсные преобразователи, изготовление которых связано с трудностями разработки, поэтому часто используется калькулятор для расчёта трансформатора по сечению сердечника, помогающий избавиться от ошибок ручного расчёта.

Как измерить диаметр провода.

Если у Вас дома завалялся микрометр, то можно им замерить диаметр провода.

Провод сначала лучше прогреть на пламени спички и лишь потом скальпелем удалить ослабленную изоляцию. Если этого не сделать, то вместе с изоляцией можно удалить и часть меди, что снизит точность измерения особенно для тонкого провода.

Если микрометра нет, то можно воспользоваться обыкновенной линейкой. Нужно намотать на жало отвёртки или на другую подходящую ось 100 витков провода, сжать витки ногтем и приложить полученный набор к линейке. Разделив полученный результат на 100, получим диаметр провода с изоляцией. Узнать диметр провода по меди можно из таблицы приведённой ниже.

Пример.

Я намотал 100 витков провода и получил длину набора –39 мм.

39 / 100 = 0,39 мм

По таблице определяю диметр провода по меди – 0,35мм.

Таблица данных обмоточных проводов.
Диаметр без изоляции, ммСечение меди, мм²Сопротив-ление 1м при 20ºС, ОмДопустимая нагрузка при плотности тока 2А/мм²Диаметр с изоляцией, ммВес 100м с изоляцией, гр
0,030,000724,7040,00140,0450,8
0,040,001313,920,00260,0551,3
0,050,0029,290,0040,0651,9
0,060,00286,440,00570,0752,7
0,070,00394,730,00770,0853,6
0,080,0053,630,01010,0954,7
0,090,00642,860,01270,1055,9
0,10,00792,230,01570,127,3
0,110,00951,850,0190,138,8
0,120,01131,550,02260,1410,4
0,130,01331,320,02660,1512,2
0,140,01541,140,03080,1614,1
0,150,01770,990,03540,1716,2
0,160,02010,8730,04020,1818,4
0,170,02270,7730,04540,1920,8
0,180,02550,6880,0510,223,3
0,190,02840,6180,05680,2125,9
0,20,03140,5580,06280,22528,7
0,210,03460,5070,06920,23531,6
0,230,04160,4230,08320,25537,8
0,250,04910,3570,09820,27544,6
0,270,05730,3060,1150,3152,2
0,290,06610,2бб0,1320,3360,1
0,310,07550,2330,1510,3568,9
0,330,08550,2050,1710,3778
0,350,09620,1820,1920,3987,6
0,380,11340,1550,2260,42103
0,410,1320,1330,2640,45120
0,440,15210,1150,3040,49138
0,470,17350,1010,3460,52157
0,490,18850,09310,3780,54171
0,510,20430,08590,4080,56185
0,530,22060,07950,4410,58200
0,550,23760,07370,4760,6216
0,570,25520,06870,510,62230
0,590,27340,06410,5470,64248
0,620,30190,0580,6040,67273
0,640,32170,05450,6440,69291
0,670,35260,04970,7050,72319
0,690,37390,04690,7480,74338
0,720,40720,0430,8140,78367
0,740,43010,04070,860,8390
0,770,46570,03760,930,83421
0,80,50270,03481,0050,86455
0,830,54110,03241,0820,89489
0. 860,58090,03011,160,92525
0,90,63620,02751,270,96574
0,930,67930,02581,360,99613
0,960,72380,02421,451,02653
10,78540,02241,571,07710
1,040,84950,02061,71,12764
1,080,91610,01911,831,16827
1,120,98520,01781,971,2886
1,161,0570,01662,1141,24953
1,21,1310,01552,261,281020
1,251,2270,01432,451,331110
1,31,3270,01322,6541,381190
1,351,4310,01232,861,431290
1,41,5390,01133,0781,481390
1,451,6510,01063,31,531490
1,51,7670,00983,5341,581590
1,561,9110,00923,8221,641720
1,622,0610,00854,1221,711850
1,682,2170,00794,4331,771990
1,742,3780,00744,7561,832140
1,812,5730,00685,1461,92310
1,882,7770,00635,5551,972490
1,952,9870,00595,982,042680
2,023,2050,00556,4092,122890
2,13,4640,00516,922,23110
2,264,0120,00448,0232,363620
2,444,6760,00379,3522,544220

Советуем изучить Указатель напряжения, разновидности, функции, инструкции по использованию

Виды сердечников

Трансформаторы отличаются между собой не только сферой применения, техническими характеристиками и размерам, но и типом магнитопровода. Очень важным параметром, влияющим на величину магнитного поля, кроме отношения витков, является размер сердечника. От его значения зависит способность насыщения. Эффект насыщения наступает тогда, когда при увеличении тока в катушке величина магнитного потока остаётся неизменной, т. е. мощность не изменяется.
Для предотвращения возникновения эффекта насыщения понадобится правильно рассчитать объём и сечение сердечника, от размеров которого зависит мощность трансформатора. Следовательно, чем больше мощность трансформатора, тем большим должен быть его сердечник.

По конструкции сердечник разделяют на три основных вида:

  • стержневой;
  • броневой;
  • тороидальный.

Стержневой магнитопровод представляет собой П-образный или Ш-образный вид конструкции. Собирается из стержней, стягивающихся ярмом. Для защиты катушек от влияния внешних электромагнитных сил используются броневые магнитопроводы. Их ярмо располагается на внешней стороне и закрывает стержень с катушкой. Тороидальный вид изготавливается из металлических лент. Такие сердечники из-за своей кольцевой конструкции экономически наиболее выгодны.

Зная форму сердечника, несложно рассчитать мощность трансформатора. Находится она по несложной формуле: P=(S/K)*(S/K), где:

  • S — площадь сечения сердечника.
  • K — постоянный коэффициент равный 1,33.

Площадь сердечника находится в зависимости от его вида, её единица измерения — сантиметр в квадрате. Полученный результат измеряется в ваттах. Но на практике часто приходится выполнять расчёт сечения сердечника по необходимой мощности трансформатора: Sс = 1.2√P, см2. Исходя из формул можно подтвердить вывод: что чем больше мощность изделия, тем габаритней используется сердечник.

Как пользоваться онлайн калькулятором для расчета трансформатора пошагово

Подготовка исходных данных за 6 простых шагов

Шаг №1. Указание формы сердечника и его поперечного сечения

Лучшим распределением магнитного потока обладают сердечники, набранные из Ш-образных пластин. Кольцевая форма из П-образных составляющих деталей обладает большим сопротивлением.

Для проведения расчета надо указать форму сердечника по виду пластины (кликом по точке) и его измеренные линейные размеры:

  1. Ширину пластины под катушкой с обмоткой.
  2. Толщину набранного пакета.

Вставьте эти данные в соответствующие ячейки таблицы.

Шаг №2. Выбор напряжений

Трансформатор создается как повышающей, понижающей (что в принципе обратимо) или разделительной конструкцией. В любом случае вам необходимо указать, какие напряжения вам нужны на его первичной и вторичной обмотке в вольтах.

Заполните указанные ячейки.

Шаг №3. Частота сигнала переменного тока

По умолчанию выставлена стандартная величина бытовой сети 50 герц. При необходимости ее нужно изменить на требуемую по другому расчету. Но, для высокочастотных трансформаторов, используемых в импульсных блоках питания, эта методика не предназначена.

Их создают из других материалов сердечника и рассчитывают иными способами.

Шаг №4. Коэффициент полезного действия

У обычных моделей сухих трансформаторов КПД зависит от приложенной электрической мощности и вычисляется усредненным значением.

Но, вы можете откорректировать его значение вручную.

Шаг №5. Магнитная индуктивность

Параметр определяет зависимость магнитного потока от геометрических размеров и формы проводника, по которому протекает ток.

По умолчанию для расчета трансформаторов принят усредненный параметр в 1,3 тесла. Его можно корректировать.

Шаг №6. Плотность тока

Термин используется для выбора провода обмотки по условиям эксплуатации. Среднее значение для меди принято 3,5 ампера на квадратный миллиметр поперечного сечения.

Для работы трансформатора в условиях повышенного нагрева его следует уменьшить. При принудительном охлаждении или пониженных нагрузках допустимо увеличить. Однако 3,5 А/мм кв вполне подходит для бытовых устройств.

Выполнение онлайн расчета трансформатора

После заполнения ячеек с исходными данными нажимаете на кнопку «Рассчитать». Программа автоматически обрабатывает введенные данные и показывает результаты расчета таблицей.

Онлайн калькулятор (ссылка откроется в новой вкладке)

Рекомендации по сборке и намотке

При сборке трансформатора своими руками пластины сердечника собираются «вперекрышку». Магнитопровод стягивается обоймой или шпилечными гайками. Для того чтобы не нарушить изоляцию, шпильки закрываются диэлектриком. Стягивать «железо» нужно с усилием: если его окажется недостаточно при работе устройства возникнет гул.

Проводники наматываются на катушку плотно и равномерно, каждый последующий ряд изолируется от предыдущего тонкой бумагой или лавсановой плёнкой. Последний ряд обматывается киперной лентой или лакотканью. Если в процессе намотки выполняется отвод, то провод разрывается, а на место разрыва впаивается отвод. Это место тщательно изолируется. Закрепляются концы обмоток с помощью ниток, которыми привязываются провода к поверхности сердечника.

При этом существует хитрость: после первичной обмотки не следует наматывать всю вторичную обмотку сразу. Намотав 10—20 витков, нужно измерить величину напряжения на её концах.

По полученному значению можно представить, сколько витков потребуется для получения нужной амплитуды выходного напряжения, тем самым контролируя полученный расчёт при сборке трансформатора.

Возможные схематические решения

Схем подключения вторичной обмотки трансформаторов, да и вообще всей электроники две:

  • Звезда, которая используется для повышения мощности сети.
  • Треугольник, который поддерживает постоянное напряжение в сети.

Вне зависимости от выбранной схемы, наиболее трудными считается изготовление и подключение небольших трансформаторов. Сюда относится и столь популярный в запросах поисковиков аtx. Это модель, которая устанавливается в системных блоках компьютеров, и изготовить ее самостоятельно крайне трудно.

В число трудностей при изготовлении маленьких трансформаторов стоит отнести сложность обмотки и изоляции, правильного подключения вторичной обмотки вне зависимости от выбранной схемы, а так же сложности с поиском сердечника. Короче говоря, проще и дешевле такой трансформатор купить. А вот как выбрать подходящую модель – это совсем другая история.

Принцип действия аппарата

Принцип действия устройства основан на импульсной подачи энергии. Оборудование разделяется на две обширных группы: с сигмамодуляцией и импульсной модуляцией. Первые отличаются тем, что они изменяются соотношения продолжительности импульсов с их частотой. Момент выбирается, когда закончится подача энергии и включится транзистор.

Продолжительность функционирования зависит от характеристик выходного напряжения. Если говорить о вариантах с широтно-импульсной модуляцией, то тут частота идентичная и постоянная. Напряжение — характеристика стабильная, определяется оно длительностью импульса к периоду его прохождения.

Также принцип работы определяется тем непрерывный или прерывистый поток магнитного поля установлен. Нельзя сказать, что какой-то из них лучше, просто это определяет вариативность использования.

Любой одноходовый импульсный трансформатор имеет как достоинства, так и недостатки. Среди преимуществ использования выделяют:

  • минимальный вес и размеры, если сравнивать с другим видом оборудования, предназначенным для работы с частотой около 50 Гц;
  • не нужна защита от короткого замыкания, так как оно произойти теоретически не может;
  • сокращение использования меди, в результате чего трансформатор имеет минимальную цену;
  • изменение показателей в зависимости от характеристик питающей цепи;
  • нет помех, передача туда и обратно исключена из-за конструктивных особенностей.

Но, как и любое другое оборудование, обратноходовый импульсный трансформатор имеет и недостатки. К их числу относятся:

  • максимальный запас энергии составляет 200 Вт — показатель ограничен работой дросселя;
  • нет возможности работы на холостом ходу, то есть нагрузка подключается в обязательном порядке;
  • возникают электромагнитные помехи и передаются, так как они есть в нагрузке, а она нужна.

Калькулятор коэффициента трансформатора тока

и формула расчета коэффициента трансформатора тока

Калькулятор коэффициента трансформации

:

Просто введите первичный ток и коэффициент трансформации, затем нажмите кнопку расчета, чтобы получить точный вторичный ток. Кроме того, с помощью этого калькулятора вы можете получить коэффициент ТТ вместе со значением сопротивления нагрузки.

Для очистки значения нажмите кнопку очистки, значение в поле автоматически очищается. Он перейдет к расчету по умолчанию с соотношением 100: 1.

Перейти на страницу калькулятора

Расчет коэффициента трансформации:

Трансформаторы тока — это повышающие трансформаторы напряжения, которые используются для понижения уровня тока с высокого до низкого.Поскольку методы прямого измерения не подходят для оборудования с более высоким номинальным током.

Таким образом, трансформатор тока действует как понижающий трансформатор, который уменьшает ток относительно первичной обмотки.

Давайте обсудим, как рассчитать коэффициент CT.

Что такое коэффициент ТТ:

Коэффициент

CT — это не что иное, как соотношение между первичным током и вторичным током. Это будет указано на паспортной табличке ТТ. Допустим,

I (P) = Первичный ток в амперах

I (с) = Вторичный ток в амперах

В (p) = первичное напряжение в вольтах

В (с) = вторичное напряжение в вольтах

Формула соотношения
CT:

Коэффициент трансформации = I (P) / I (s) ————- 1

Пример: 1000: 1. Здесь 1000 означает, что это первичный ток, а 1 означает вторичный ток. Кроме того, мы можем переписать как 1000/1.

Вторичный ток

CT всегда будет 1 или 5, чтобы упростить расчет, а также мы можем создать вторичные цепи с малым номиналом, чтобы выдерживать до 5 ампер.

Примечание: Чувствительный измерительный трансформатор тока всегда имеет вторичный ток 1 А.

Давайте возьмем простой пример трансформатора тока, который имеет коэффициент ТТ 2000: 1, предположим, что первичный ТТ имеет 1500 А, вычислим вторичный ток относительно первичного.

Рассмотрим неизвестный вторичный ток как x в амперах,

Примените нашу формулу коэффициента трансформации трансформатора тока,

2000/1 = 1500 / х

х = 1500/2000 = 0,75 А

Следовательно, вторичный трансформатор ТТ показывает 0,75 А

Как рассчитать коэффициент ТТ по коэффициенту напряжения:

Как известно уравнение трансформатора,

V (p) * I (P) = V (s) * I (s)

От этого напряжения соотношение будет

В (p) / V (s) = I (s) / I (P) ———— 2

Посмотрите на формулы 1 и 2

Коэффициент трансформации ТТ является обратной величиной коэффициента напряжения. Если ваш трансформатор имеет соотношение напряжений 1:25, значит, соотношение ТТ будет 25: 1. Это означает, что если первичный ток трансформатора тока равен 25 ампер, на выходе вы получите 1 ампер. Ток будет значительно уменьшен.

Применение коэффициента ТТ:

Расчет коэффициента ТТ используется при настройке тока реле защиты и при расчете электроэнергии счетчика электроэнергии.

Основы трансформатора тока

— Peak Demand Inc

Основные сведения о трансформаторе тока

Опубликовано в h в инструментальных трансформаторах к

Основные сведения о трансформаторе тока

Джон Ренни

Рисунок с сайта www.electronics-tutorials.ws

Трансформаторы тока

(ТТ) широко используются в электрических распределительных системах для измерения, измерения и защиты. Это простые устройства, предназначенные для создания переменного тока во вторичной обмотке, который прямо пропорционален току в первичном проводе.

Самый распространенный тип ТТ — это тороидальный ТТ. Тороидальные трансформаторы тока характеризуются тем, что первичный токопроводящий проводник проходит непосредственно через центральную жилу.Тороидальные трансформаторы тока всегда подключаются последовательно, поэтому их часто называют «последовательными трансформаторами».

Конструкция ТТ проста. Вторичные обмотки из медной магнитной проволоки намотаны вокруг полого сердечника из электротехнической стали, а первичный проводник проходит через центр сердечника. Магнитный поток первичного проводника улавливается сердечником и индуцирует ток во вторичных обмотках, пропорциональный количеству вторичных обмоток. ТТ бывают разных конфигураций, но все имеют эту базовую конструкцию.

ТТ

обычно имеют стандартный вторичный выходной ток 1 или 5 ампер. Коэффициент CT — это просто первичный и вторичный токи, выраженные как соотношение, где вторичный ток равен 1 или 5 ампер. ТТ с коэффициентом 100/5 означает, что первичный ток в 20 раз больше вторичного тока. Когда по первичному проводнику течет 100 ампер, во вторичной обмотке течет 5 ампер.

Увеличивая количество вторичных обмоток, вторичный ток может быть намного меньше, чем ток в первичной цепи.По мере увеличения количества витков вторичный ток уменьшается на пропорциональную величину. В ТТ количество витков вторичной обмотки и ток во вторичной обмотке обратно пропорциональны. Например, трансформатор тока с коэффициентом 100/5 имеет 20 витков, тогда как трансформатор тока с коэффициентом 100/1 имеет 100 витков. Увеличение числа оборотов снижает вторичный выходной ток.

Сопутствующие товары

Журнал «Низкая плата за обработку» в EEE / ECE / E & I / ECE / ETE — Impact Factor-7.122

IJAREEIE — это инициатива по обеспечению международной платформы для качественных исследовательских работ.Для управления различными расходами, связанными с ведением журнала, для всех принятых статей предусмотрена плата за обработку или обработку рукописей. Авторы могут зачислить платеж на соответствующие номера счетов, указанные в письме о приеме, и способ оплаты может быть либо через онлайн-банкинг (NEFT), либо через прямой перевод в филиале.


ПУБЛИКАЦИОННЫЙ ПЛАТА ЗА КАЖДОЙ ПРИНЯТЫЙ ДОКУМЕНТ

Из-за проблем с COVID-19 плата за обработку немедленно пересматривается следующим образом:

Название

Индийские авторы

Иностранные авторы

Тип публикации / тарифы

рупий.700
[только для онлайн-публикации + электронный сертификат для каждого автора]

или

900 рупий
[если онлайн-публикация + электронные сертификаты + бумажные копии сертификатов]

или

1300 рупий
[Если и бумажная копия онлайн с сертификатами]

50USD
[только при публикации в Интернете + электронные сертификаты]

или

100USD
[Включая онлайн, бумажную и бумажную копии сертификатов]

Дополнительная печатная копия

рупий. 500 за копию

40 долларов США за копию

Электронная копия свидетельства о публикации

Бесплатно

Бесплатно

Если превышает 8 страниц:

100 рупий за каждую дополнительную страницу

5USD за каждую дополнительную страницу

Авторы из зарубежных стран (кроме ИНДИИ) могут оплатить сбор за публикацию рукописи через Paypal.Нажмите кнопку ниже, чтобы оплатить сбор.

Выбор трансформаторов тока — Janitza electronics

Коэффициент трансформации

Коэффициент трансформации — это отношение между номинальным током первичной обмотки и номинальным током вторичной обмотки, которое указано на паспортной табличке в виде неупрощенной дроби.

Чаще всего используются трансформаторы тока х / 5 А. Большинство измерительных приборов имеют наивысший класс точности при 5 A. По техническим и, более того, экономическим причинам, трансформаторы тока x / 1 A рекомендуются с большой длиной измерительного кабеля.Потери в линии с трансформаторами на 1 А составляют всего 4% по сравнению с трансформаторами на 5 А. Однако измерительные устройства здесь часто демонстрируют более низкую точность измерения.

Номинальный ток

Номинальный или номинальный ток (предыдущее обозначение) — это значение первичного и вторичного тока, указанное на паспортной табличке (номинальный первичный ток, вторичный номинальный ток), на которое рассчитан трансформатор тока. Стандартизированные номинальные токи (кроме классов 0.2 S и 0,5 S) 10 — 12,5 — 15 — 20 — 25 — 30 — 40 — 50 — 60 — 75 A, а также их десятичные кратные и дробные части. Стандартные вторичные токи составляют 1 и 5 А, предпочтительно 5 А.

Стандартизованные номинальные токи для классов 0,2 S и 0,5 S составляют 25-50-100 A и их десятичные кратные, а также вторичный (только) 5 A.

Правильный выбор первичного номинального тока важен для точности измерения. Рекомендуется соотношение, немного превышающее измеренный / определенный максимальный ток нагрузки (In).

Пример: In = 1,154 А; выбранный коэффициент трансформации = 1,250 / 5.

Номинальный ток также можно определить на основании следующих соображений:

  • В зависимости от сетевого трансформатора номинальный ток, умноженный на прибл. 1.1 (следующий размер трансформатора)
  • Защита (номинальный ток предохранителя = первичный ток ТТ) измеряемой части системы (LVDSB, вспомогательные распределительные щиты)
  • Фактический номинальный ток, умноженный на 1,2 (если фактический ток значительно ниже номинального тока трансформатора или предохранителя, следует выбрать этот подход)

Следует избегать завышения размеров трансформатора тока, в противном случае точность измерения значительно снизится, особенно при малых токах нагрузки.

Рис .: Расчет номинальной мощности Sn (медная линия 10 м)

Номинальная мощность

Номинальная мощность трансформатора тока является произведением номинальной нагрузки на квадрат вторичного номинального тока и выражается в ВА. Стандартные значения составляют 2,5 — 5 — 10 — 15 — 30 ВА. Также разрешается выбирать значения более 30 ВА в зависимости от случая применения. Номинальная мощность описывает способность трансформатора тока «управлять» вторичным током в пределах погрешности через нагрузку.

При выборе подходящей мощности необходимо учитывать следующие параметры: потребляемая мощность устройства (при последовательном подключении), длина линии, сечение линии. Чем больше длина линии, тем меньше ее поперечное сечение, тем выше потери через источник питания, т.е. номинальная мощность ТТ должна быть выбрана такой, чтобы она была достаточно высокой.

Потребляемая мощность должна быть близка к номинальной мощности трансформатора. Если потребляемая мощность очень низкая (недогрузка), то коэффициент перегрузки по току увеличится, и измерительные устройства будут недостаточно защищены в случае короткого замыкания при определенных обстоятельствах.Если потребление энергии слишком велико (перегрузка), это отрицательно сказывается на точности.

Трансформаторы тока часто уже встроены в установку и могут использоваться в случае дооснащения измерительным устройством. В этом случае необходимо отметить номинальную мощность трансформатора: достаточно ли ее для работы дополнительных измерительных устройств?

Классы точности

Трансформаторы тока делятся на классы в зависимости от их точности.Стандартные классы точности — 0,1; 0,2; 0,5; 1; 3; 5; 0,1 с; 0,2 S; 0,5 S. Знак класса соответствует кривой погрешности, относящейся к текущей и угловой погрешностям.

Класс точности трансформаторов тока зависит от измеряемой величины. Если трансформаторы тока работают с малым током по отношению к номинальному току, то точность измерения снижается. В следующей таблице показаны значения пороговой погрешности с учетом номинальных значений тока:

Мы всегда рекомендуем трансформаторы тока с таким же классом точности для измерительных устройств UMG.Трансформаторы тока 1 с более низким классом точности приводят во всей системе — трансформатор тока + измерительное устройство — к более низкой точности измерения, которая в данном случае определяется классом точности трансформатора тока. Однако использование трансформаторов тока с более низкой точностью измерения, чем измерительный прибор, технически возможно.

Измерительный трансформатор тока по сравнению с защитным трансформатором

В то время как измерительные трансформаторы тока предназначены для достижения точки насыщения как можно быстрее, как только они превышают свой рабочий диапазон тока (выраженный коэффициентом перегрузки по току FS), чтобы избежать увеличения вторичной обмотки ток с замыканием (например,грамм. короткое замыкание) и для защиты подключенных устройств. С защитными трансформаторами насыщение должно лежать как можно дальше.

Защитные трансформаторы

используются для защиты системы в сочетании с необходимым распределительным устройством. Стандартные классы точности для защитных трансформаторов — 5P и 10P. «P» означает здесь «защита». Номинальный коэффициент перегрузки по току помещается после обозначения класса защиты (в%). Следовательно, 10P5, например, означает, что при пятикратном номинальном токе отрицательное отклонение вторичной стороны от ожидаемого значения будет не более 10% в соответствии с соотношение (линейное).

Для работы измерительных устройств UMG настоятельно рекомендуется использовать измерительные трансформаторы тока.

Стандартная шина трансформатора тока

Как рассчитать нагрузку CT


Нагрузка трансформатора тока выражается в ВА. Следует учитывать общую нагрузку ВА, когда ТТ используется для измерения или защиты.

Общее сопротивление вторичной цепи ТТ, известное как нагрузка, представляет собой сумму сопротивлений вторичной обмотки ТТ, соединительных проводов (сопротивление выводов) и сопротивления реле / ​​счетчика.Таким образом, общую нагрузку ВА трансформатора тока можно рассчитать, добавив следующую нагрузку ВА.


  1. Нагрузка в ВА для измерительного оборудования, такого как реле защиты и измерительные приборы
  2. Нагрузка в ВА проводов, подключенных между трансформатором тока и реле / ​​измерительным прибором
  3. Сопротивление вторичной обмотки трансформатора тока


ВА Нагрузка счетчиков и реле защиты:



Нагрузка в ВА счетчиков электроэнергии, вольтметра, амперметра, измерителя коэффициента мощности и реле защиты указана в каталоге прибора. Электронные счетчики и цифровые реле имеют меньшую нагрузку в ВА по сравнению с аналоговыми счетчиками и электромеханическими реле.

При проектировании системы защиты или измерительной системы необходимо учитывать нагрузку в ВА всех измерительных приборов и реле защиты для построения надежной системы измерения и защиты.

Нагрузка в ВА различного электрического оборудования указана ниже.

VA Нагрузку счетчика или реле защиты можно найти в паспорте производителя оборудования.2 * 2 D / (CS x 57)

Где: I = вторичный ток в амперах
D = расстояние между выводами в метрах.
CS = Площадь поперечного сечения подводящего провода.

Чем толще провод, тем меньше будет сопротивление, и в результате большей площади поперечного сечения проводника нагрузка соединительного провода будет меньше. Измерительный прибор или реле защиты должны быть установлены как можно ближе к току трансформатора, насколько это возможно, чтобы можно было минимизировать сопротивление проводов. Сопротивление проводника зависит от температуры, и сопротивление измеряется при 75 ° C.

Сопротивление медного провода разной площади поперечного сечения при 75 ° C указано ниже.


Сопротивление выводных проводов можно рассчитать для 6-проводной и 4-проводной конфигурации. Три набора подключения ТТ могут быть введены в реле или измерительную панель двумя способами.


  1. К панели можно подвести 2 провода каждого ТТ.Шесть проводов трех трансформаторов тока могут быть подключены к счетчику / реле защиты.
  2. Общая точка может быть сделана на тестовой клеммной колодке, а четыре провода могут быть подведены к реле / ​​измерительной панели.

Схема подключения приведена ниже.

Если расстояние между ТТ и реле или измерительной панелью составляет 10 метров, общее расстояние составляет 10 x 2 = 20 метров для 6-проводного подключения. однако расстояние для 4-проводного подключения, когда один провод используется в качестве обратного, равно 1. 2 х 10 = 12 метров. Это правило применимо для трехфазного подключения.

Сопротивление вторичной обмотки ТТ:

Где,

Rct — Сопротивление вторичной обмотки CT
RL — Сопротивление выводов
RR — Сопротивление реле или измерителя
R (сек) — Общая нагрузка CT в Ом


Расчет нагрузки ТТ:


Пример: Если сопротивление реле 0.2 Ом , , сопротивление соединительных проводов составляет 0,2 Ом , , а сопротивление вторичной обмотки ТТ составляет 0,2 Ом . Суммарное сопротивление вторичной цепи i с 0,2 + 0,2 + 0,2 = 0,6 Ом .

Общая нагрузка ТТ составляет 0,6 Ом .

Если номинальный вторичный ток ТТ составляет 5 ампер. Вторичное напряжение 0,6 * 5 = 3 вольта,

Нагрузка трансформатора тока в ВА составляет;

CT (ВА) = номинальный вторичный ток CT x вторичное напряжение CT

= 5 * 3 = 15 ВА.


Номинальные характеристики нагрузки ТТ в соответствии со стандартом IEC / ANSI: Нагрузка ТТ — это, в основном, резистивное сопротивление вторичной цепи ТТ. Нагрузка ТТ может быть выражена в ВА или в импедансе.Стандарт IEC определяет нагрузку трансформатора тока в ВА, и обычно номинальные значения нагрузки составляют 1,5 ВА, 3 ВА, 5 ВА, 10 ВА, 15 ВА, 20 ВА, 30 ВА, 45 ВА и 60 ВА. Стандарт ANSI определяет нагрузку ТТ в Ом, и обычно номинальные характеристики нагрузки ТТ составляют B-0,1, B-0,2, B-0,5, B-1,0, B-2,0 и B-4,0. ТТ B-0.1 будет поддерживать заявленную точность с сопротивлением до 0,1 Ом во вторичной цепи.

Почему данные о нагрузке ТТ важны для системы защиты:

Надежность системы защиты зависит от работы ТТ ниже уровня насыщения на кривой B-H. Напряжение точки перегиба изменяется с изменением нагрузки ТТ. Следовательно, нагрузка ТТ должна быть рассчитана при проектировании системы защиты.

Как на рабочее напряжение ТТ влияет изменение нагрузки ТТ?


Рабочее напряжение трансформатора тока изменяется при изменении нагрузки ТТ. Если защитный ТТ выходит из строя, новый ТТ должен быть проверен на предмет его номинальной нагрузки, потому что повышенная нагрузка заставит ТТ работать при напряжении выше нормального напряжения ТТ на кривой намагничивания ТТ, и если ТТ работает при напряжении точки перегиба BH. кривая при КЗ с повышенной нагрузкой ТТ, реле защиты может не сработать.Работа ТТ вблизи точки перегиба может вызвать насыщение ТТ во время повреждения.

Если нагрузка ТТ увеличивается, чистый магнитный поток, протекающий через сердечник ТТ, будет увеличиваться, потому что вторичный ток уменьшается с увеличением нагрузки ТТ, а сердечник ТТ будет нагреваться из-за насыщения сердечника, что может вызвать необратимый отказ КТ. Когда нагрузка на цепь становится слишком большой, вторичное напряжение ТТ искажается. Это потому, что CT начинает иметь плотность потока, которая намного больше, чем при нормальной работе.Напряжение возбуждения ТТ также увеличивается выше нормального напряжения с увеличением нагрузки ТТ, и это может вызвать насыщение сердечника ТТ.



Microsoft Word — Трансформатор тока v21.docx

% PDF-1.5 % 1 0 obj > endobj 6 0 obj > endobj 2 0 obj > / Шрифт> >> / Поля [] >> endobj 3 0 obj > транслировать application / pdf

  • Microsoft Word — Трансформатор тока v21.docx
  • Альфонсо Конеса
  • 2014-04-24T10: 25: 11 + 02: 00PScript5.dll Версия 5.2.22014-07-01T10: 19: 18 + 02: 002014-07-01T10: 19: 18 + 02: 00Acrobat Distiller 9.4.6 (Windows) uuid: 997aa995-d9cb-47f7-86d2-cd7b6eefad34uuid: 631ebb9a- 8e1d-4b54-8ef9-fd1d27e2e76c конечный поток endobj 4 0 obj > endobj 5 0 obj > endobj 7 0 объект > endobj 8 0 объект > endobj 9 0 объект > endobj 10 0 obj > endobj 11 0 объект > endobj 12 0 объект > / XObject> / Шрифт> >> / MediaBox [0 0 594. 95996 840.95996] / Аннотации [28 0 R 29 0 R 30 0 R 31 0 R 32 0 R 33 0 R 34 0 R 35 0 R 36 0 R 37 0 R 38 0 R 39 0 R 40 0 ​​R 41 0 R] / Содержание 42 0 руб. / StructParents 0 / Родитель 5 0 R >> endobj 13 0 объект > endobj 14 0 объект > endobj 15 0 объект > endobj 16 0 объект > endobj 17 0 объект > endobj 18 0 объект > endobj 19 0 объект > endobj 20 0 объект > endobj 21 0 объект > endobj 22 0 объект > транслировать xyp} h if & i22S4dIҤMIv1M6N2iCMdhJƷ | `cc | bԧ $> uCƦHZmp: ˫ ߻ Z ~ Ϯ} ww? ~ _R ​​

    Расчеты CT и PT a Как направлять


    Итак, я получил много запросов о том, как делать КТ и ПК расчеты.Эта страница посвящена демонстрации примеров расчетов CT и PT. Есть несколько примеров только с расчетами CT и несколько примеров с расчетами CT и PT. Часть этой информации повторяется со страниц CT и PT. Итак, если вы еще не проверили это, зайдите туда, чтобы узнать, что такое CT и PT и их роль в измерении.

    Вы можете спросить себя, зачем вам нужно знать, как производить эти вычисления. Эти расчеты очень важны для точности вашего измерительного оборудования.Одна из ошибок измерения, которая приводит к самой большой потере дохода или завышению счета, — это неправильные множители. Эти неправильные множители могут быть результатом плохих расчетов.

    Кроме того, важно знать, как выполнять эти вычисления CT и PT, чтобы убедиться, что размеры CT и PT указаны правильно. Это гарантирует, что их размер соответствует услуге. Это также гарантирует, что их размер соответствует используемому счетчику. Это означает, что вы не будете перегружать счетчик.Это также означает, что у вас будет достаточно тока, проходящего через трансформаторы тока, чтобы измерять значения тока, близкие к номинальным значениям, указанным на паспортной табличке. Итак, давайте займемся математикой!

    Расчет ТТ и ТТ, пример 1

    Хорошо, для первого примера предположим, что у нас есть служба с ТТ 200: 5, и когда мы проверим провод, который проходит через ТТ, с помощью нашего амперметра, мы получим 100 ампер. Сколько ампер мы получим на вторичной стороне трансформатора тока?

    Прежде всего нам нужно помнить, что соотношение 200: 5 также можно записать как 200/5 или 200, разделенное на 5.Это первое вычисление, которое нам нужно сделать, так как это даст нам множитель. Итак, 200/5 = 40. Таким образом, наш множитель равен 40. Теперь мы можем разделить 100 на 40 и получить ответ 2,5 ампер. Итак, если на первичной стороне трансформатора тока 100 ампер, то на вторичной стороне должно быть 2,5 ампера.

    Пример 2

    Для нашего следующего примера давайте начнем с основания счетчика. Предположим, что мы также используем в этой службе трансформаторы тока 200: 5. Мы проверяем усилители в основании измерителя и обнаруживаем, что у нас есть 3 ампера на вторичной стороне.Сколько ампер должно быть на первичной стороне? Помните, что раньше наш множитель для CT 200: 5 равен 40. В этом примере нам нужно умножить, чтобы получить ответ, а не делить. Итак, 3 ампера x 40 = 120 ампер. Если на вторичной стороне течет 3 ампера, то на первичной стороне должно течь 120 ампер.
    Щелкните здесь, чтобы узнать больше о программе №1 по производству энергии из ветра и солнца для дома!

    Пример 3

    Для третьего примера давайте включим в уравнение номинальный коэффициент трансформатора тока.Допустим, у нас есть ТТ 400: 5 с коэффициентом рейтинга 4. Что это означает? Это означает, что производитель заявляет, что ТТ рассчитан на работу в 4 раза больше, чем указано на паспортной табличке. Номинальный ток на паспортной табличке — 400 ампер. Таким образом, мы умножим 400 ампер на номинальный коэффициент 4 = 1600 ампер. Это максимум, на который рассчитан данный ТТ.

    Пример 4

    Четвертый пример будет включать ТТ и ТТ. Предположим, что у нас есть ТТ 400: 5 и ТТ 2,4: 1 в трехфазном 4-проводном соединении «звезда» 277/480. У нас на первичной стороне трансформатора тока течет 250 ампер.Сколько ампер на вторичной стороне трансформатора тока? Кроме того, сколько вольт мы должны ожидать увидеть на базе счетчика? Однако помните, что нам нужно найти множитель CT, чтобы сначала найти ток.

    Добавить комментарий

    Ваш адрес email не будет опубликован.