Медь это сплав чего с чем: названия, состав, химические и физические свойства

Содержание

названия, состав, химические и физические свойства

Сплавы меди — это соединение цветного металла с некоторыми элементами таблицы Менделеева. В процессе их формирования атомы кристаллической решетки меди замещаются атомами другого вещества. В результате образовывается новое твердое соединение. Каждое из них обладает своими физическими и химическими показателями.

Чаще всего, на основе меди получают бронзу и латунь, путем добавления цинка и олова. Новые соединения снижают цену основного металла, улучшая некоторые параметры. Идет повышение пластичности и коррозионной стойкости. Это дает возможность использовать их в некоторых отраслях промышленности.

Сплав медиСплав меди

Исторический ракурс

Согласно историческим данным, первый медный сплав появился к 7 тыс. до н.э. Позже в качестве добавки стало использоваться олово. В это время, именуемое бронзовым веком, из такого материала изготавливалось оружие, зеркала, посуда и украшения.

Технология производства менялась. Появились добавки в виде мышьяка, свинца, цинка и железа. Все зависело от требований, предъявляемых к предмету. Материал для украшений нуждался в особом подходе. Состав сплава состоял из меди, олова и свинца.

Начиная с 8 в. до н. э. в Малой Азии была разработана технология получения латуни. В это время еще не научились добывать чистый цинк. Поэтому в качестве сырья использовалась его руда. С течением времени производство медных сплавов постоянно расширялось и до сих пор находится на первых местах.

Сплавы химического элемента меди

Медь, в соединении с другими металлами, образует сплавы с новыми свойствами. В качестве основных добавок используются олово, никель или свинец. Каждый вид соединения обладает особыми характеристиками. Отдельно медь используется редко, поскольку у нее невысокая твердость.

Немного о бронзе

Бронза — название сплава меди и олова. Также в состав соединения входит кремний, свинец, алюминий, марганец, бериллий. У полученного материала показатели прочности выше, чем у меди. Он обладает антикоррозионными свойствами.

С целью улучшения характеристик в сплав добавляются легирующие элементы: титан, цинк, никель, железо, фосфор.

Существует несколько разновидностей бронзы:

  1. Деформируемые. Количество олова не превышает 6%. Благодаря этому, металл обладает хорошей пластичностью и поддается обработке давлением.
  2. Литейные. Высокая прочность позволяет использовать материал для работы в сложных условиях.

Сплав никель и медь

В этом соединении используется медь и никель. Если к этой паре добавляются другие элементы, соединения носят такие названия:

  1. Куниали. К 6–13% никеля еще добавляется 1,5–3% алюминия. Остальное медь.
  2. Нейзильбер. Содержит 20% цинка и 15% хрома.
  3. Мельхиор. Присутствует 1% марганца.
  4. Копелем. Сплав с содержанием 0,5% марганца.

Латунь

Это сплав меди с цинком. Колебание количественного содержания цинка влечет за собой изменение характеристик и цвета сплава.

Кроме этих 2 основных элементов в сплаве содержатся легирующие добавки. Их показатель составляет небольшой процент.

Латунь обладает высокими прочностными характеристиками, пластичностью и способностью противостоять коррозии. Также характеризуется немагнитными свойствами.

ЛатуньЛатунь

Физические и химические свойства сплавов

Химический состав и механические свойства медных сплавов обеспечивают им не только прочность, но и хорошую электро- и теплопроводность. Особенно это относится к латуни.

Все медные сплавы характеризуются хорошими антифрикционными свойствами. Отдельно стоит отметить бронзу.

Благодаря хорошим антифрикционным свойствам бронзы, материал идет на изготовление втулок в качестве подшипников скольжения. Такое изделие не требует смазки, поскольку с внутреннего диаметра, по которому идет скольжение, сминаются все шероховатости. Именно это и является источником смазки. Установка таких подшипников ведется даже на высокоточном оборудовании — координатно-расточных и координатно-шлифовальных станках.

Температура плавления меди без добавок составляет 1083 градуса. В зависимости от количества добавления цинка и олова, этот показатель меняется. Величина температуры плавления латуни составляет 900–1050 градусов, а бронзы — 930–1140 градусов.

Коррозионные свойства медных сплавов отличаются стойкостью. Связано это с тем, что медь не активный элемент. Особенно не корродируют полированные поверхности.

Коррозионная стойкость медных соединений проявляется в пресной воде и ухудшается в присутствии кислоты, которая препятствует образованию защитной оболочки.

Применение сплавов

Благодаря своим свойствам медь и ее сплавы нашли применение не только в промышленности, но и ювелирном деле.

Соединения меди также используются для изготовления следующих изделий:

  • проволоки, благодаря хорошей электропроводности;
  • труб, материал которых не вступает в реакцию с водой;
  • посуды, в которой не развиваются бактерии;
  • кровли для крыши, служащей длительное время;
  • в качестве фурнитуры для мебели.
Работа с медным сплавомРабота с медным сплавом

Основные сплавы на основе меди — латунь и бронза. Их процесс производства следующий:

  1. Латунь. Предварительно идет плавка меди. Затем цинк разогревается до 100 градусов и добавка его ведется на конечной стадии получения латуни. В качестве источника тепла используется древесный уголь.
  2. Бронза. Для ее производства применяются индукционные установки. Сначала плавится медь, а потом добавляется олово.

В обоих случаях формируются слитки, поступающие в прокатный цех, где происходит их обработка давлением в горячем и холодном виде.

Плавление меди в домашних условиях

Чтобы получить сплав меди в домашних условиях, нужно изготовить самодельное оборудование для плавления. Процесс проводится следующим образом:

  1. Изготавливается из силикатного кирпича опора.
  2. Сверху укладывается сетка из металла с мелкими ячейками.
  3. Насыпается уголь и разогревается газовой горелкой. Чтобы огонь разгорелся лучше, направляется струя воздуха из пылесоса.
  4. На огонь ставится тигель с мелкими кусочками металла.
  5. По окончании процесса жидкий металл сливается в форму.

Физические свойства медных сплавов сделали их незаменимыми во многих сферах хозяйственной деятельности. Без них не обойдется самолетостроение и судостроение. Нельзя представить без такого металла и часовые механизмы. Любая конструкция, в которой имеются работающие в паре детали, нуждается в антифрикционном материале.

Медные сплавы: маркировка, применение, свойства, характеристика

Медные сплавы – продукция металлургического производства, процесс изготовления которой человечество освоило с давних времён. Первый медный сплав – сплав меди с оловом – дал начало целой технологической эпохе истории цивилизации, получившей название «бронзовый век».

Медь

Мягкий, пластичный металл розовато-золотистого цвета. Его красота издревле привлекала человека, поэтому первыми изделиями из меди были украшения.

В присутствии кислорода медные слитки и изделия из меди приобретают красновато-жёлтый оттенок за счёт образования плёнки из оксидов. Во влажной среде в присутствии углекислого газа медь становится зеленоватой.

Медь имеет высокие показатели теплопроводности и электропроводности, что обеспечивает ей использование в электротехнике. Не меняет свойств в значительном диапазоне температур от очень низких до очень высоких. Не магнитная.

 

 

В природе залежи медной руды чаще, чем других металлов, находятся на поверхности. Это позволяет вести добычу открытым способом. Встречаются крупные медные самородки с высокой чистотой меди и медные жилы. Помимо этого медь получают из таких соединений:

  • медный колчедан,
  • халькозин,
  • борнит,
  • ковеллин,
  • куприт,
  • азурит,
  • малахит.

Медные сплавы, их свойства, характеристики, марки

Изготовление медных сплавов позволяет улучшить свойства меди, не теряя основных преимуществ данного металла, а также получить дополнительные полезные свойства.

К медным сплавам относят: бронзу, латунь и медно-никелевые сплавы.

Бронза

Сплав меди с оловом. Однако, с развитием технологий появились также бронзы, в которых вместо олова в состав сплава вводятся алюминий, кремний, бериллий и свинец.

 

Бронзы твёрже меди. У них более высокие показатели прочности. Они лучше поддаются обработке металла давлением, прежде всего, ковке.

Маркировка бронз производится буквенно-цифровыми кодами, где первыми стоят буквы Бр, означающими собственно бронзу. Добавочные буквы означают легирующие элементы, а цифры после букв показывают процентное содержание таких элементов в сплаве.

Буквенные обозначения легирующих элементов бронз:

  • А – алюминий,
  • Б – бериллий,
  • Ж – железо,
  • К – кремний,
  • Мц – марганец,
  • Н – никель,
  • О – олово,
  • С – свинец,
  • Ц – цинк,
  • Ф – фосфор.

Пример маркировки оловянистой бронзы: БрО10С12Н3. Расшифровывается как «бронза оловянистая с содержанием олова до 10%, свинца – до 12%, никеля – до 3%».

Пример расшифровки алюминиевой бронзы: БрАЖ9-4. Расшифровывается как «бронза алюминиевая с содержанием алюминия до 9% и железа до 4%».

Латунь

Это сплав меди с цинком. Кроме цинка содержит и иные легирующие добавки, также и олово.

Латуни – коррозионно устойчивые сплавы. Обладают антифрикционными свойствами, позволяющими противостоять вибрациям. У них высокие показатели жидкотекучести, что даёт изделиям из них высокую степень устойчивости к тяжёлым нагрузкам. В отливках латуни практически не образуются ликвационные области, поэтому изделия обладают равномерной структурой и плотностью.

 

 

Маркируются латуни набором буквенно-цифровых кодов, где первой всегда стоит буква Л, означающая собственно латунь. Далее следует цифровой указатель процентного содержания меди в латуни. Остальные буквы и цифры показывают содержание легирующих элементов в процентном соотношении. В латунях используются те же буквенные обозначения легирующих элементов, что и в бронзах.

Пример маркировки латуни двойной: Л85. Расшифровывается как «латунь с содержанием меди до 85%, остальное – цинк».

Пример маркировки латуни многокомпонентной: ЛМцА57-3-1. Расшифровывается как «латунь с содержанием меди до 57%, марганца – до 3%, алюминия – до 1%, остальное – цинк».

Медно-никелевые сплавы

  • Мельхиор —  сплав меди и никеля. В качестве добавок в сплаве могут присутствовать железо и марганец. Частные случаи технических сплавов на основе меди и никеля:
  • Нейзильбер – дополнительно содержит цинк,
  • Константан – дополнительно содержит марганец.

У мельхиора высокая коррозионная устойчивость. Он хорошо поддаётся любым видам механической обработки. Немагнитен. Имеет приятный серебристый цвет.

Благодаря своим свойствам мельхиор является, прежде всего, декоративно-прикладным материалом. Из него изготавливают украшения и сувениры. В декоративных целях является отличным заменителем серебра.

Выпускается 2 марки мельхиора:

  • МНЖМц – сплав меди с никелем, железом и марганцем;
  • МН19 – сплав меди и никеля.

Область применения сплавов меди

Медь обладает невысоким удельным сопротивлением. Это свойство обеспечило меди широкое применение в электротехнической промышленности. Из меди изготавливаются проводники, провода, кабели. Медь используется при изготовлении печатных плат различных электронных устройств. Медные провода используются в электрических двигателях и трансформаторах.

У меди высокая теплопроводность. Это обеспечивает ей применение при изготовлении охладительных и отопительных радиаторов, кондиционеров, кулеров.

Прочность и коррозиоустойчивость меди послужили основанием для изготовления из неё труб, находящих значительную сферу применения: в водопроводных, газовых и отопительных системах, в охладительном оборудовании, в кондиционировании.

В строительстве медь применяется при изготовлении крыш и фасадных деталей зданий.

Бактерицидные особенности меди дают ей возможность использования в медицинских заведениях как дезинфицирующего материала: при изготовлении деталей интерьера, которых люди касаются больше всего – дверных ручек, перил, поручней, бортиков кроватей и т.п.

Медные сплавы имеют не меньшую сферу применения.

Бронзы (по маркам) применяются при производстве деталей машин: паровой и водяной арматуры, элементов ответственного назначения, подшипников, втулок. Оловянистые деформируемые бронзы используют для производства сеток, используемых в целлюлозно-бумажной промышленности.

Латуни (по маркам) находят применение при производстве деталей машин в области теплотехники и химической аппаратуры. Из них изготавливают различные змеевики и сильфоны. В автомобилестроении латуни используют для изготовления конденсаторных труб, патрубков, метизов. В судостроении и авиастроении латуни также используются для изготовления деталей, конденсаторных труб, метизов. Из латуней изготавливаются детали часовых механизмов, полиграфические матрицы.

Мельхиор МНЖМц используется для производства конденсаторных трубок морских судов, работающих в наиболее тяжёлых условиях. Мельхиор МН19 используется для изготовления медицинских инструментов, монет, украшений, столовых приборов.

Источники меди для вторсырья

Экономия ресурсов – важная экологическая и технологическая задача. Медь – слишком ценный элемент, чтобы запросто им разбрасываться. Поэтому при утилизации бытовых устройств и приборов (телевизоров, холодильников, компьютерной техники) нужно срезать все медь содержащие элементы и сдавать их на пункты сбора вторсырья. На производствах должен быть организован централизованный сбор списанных силовых кабелей и трансформаторов, электродвигателей, прочих медь содержащих деталей и устройств. Определённое содержание меди есть в испорченных люминесцентных лампах, что тоже стоит учитывать при утилизации.

Медь и медные сплавы, освоенные человечеством на самой заре цивилизации, остаются востребованными материалами и в технологическую эпоху, основу которой составляет железо. Современное промышленное производство невозможно себе представить без использования цветных металлов. В дальнейшем потребность в меди её сплавах будет только расти, поэтому очень важно относиться к данным материалам экономно и использовать их рационально.

Оцените статью:

Рейтинг: 0/5 — 0 голосов

Медь и ее основные и популярные сплавы. Маркировка по ГОСТ.

 
Медь и ее сплавы — отличное вещество, которое применяется во всех отраслях промышленности. Сейчас сложно представить жизнь без этого металла.

med-metall

Медь – металл, который необходимый во всех отраслях промышленности

Основные факты

Медь является очень важным материалом для человека. Первыми орудиями труда у людей были именно медные изделия. Раньше обработка металла производилась холодным методом, что подтверждают различные археологические находки на территории Северной Америки. Еще до приезда Колумба индейцы сохранили такие традиции. Установлено, что еще 7 000 лет назад человек добывал и использовал медную руду. Именно благодаря его податливости он стал очень популярным.

Медь имеет красноватый оттенок за счет небольшого количества кислорода в составе. Если полностью исключить этот элемент, то оттенок будет желтоватым. Если начистить медь, то она будет иметь яркий блеск. Чем больше будет валентность, тем слабее оттенок. К примеру, медные карбонаты обычно имеют зеленый либо синий цвет.

После серебра медь является вторым металлом, который обладает хорошей электропроводностью. Из-за этого он активно применяется в электронике. Медь плохо реагирует на кислород. Она покрывается пленкой из-за окисления на свежем воздухе.

Медный оксид можно получить, если прокалить медь, гидрокарбонат или нитрат на воздухе. Это соединение способно окисляюще воздействовать на соединения органического характера.

Если растворить медь в серной кислоте, то выходит медный купорос. Его применяют в химической промышленности, а также использует в качестве профилактики вредителей урожая.

В зависимости от влияния примесей на характер общего медного сплава можно выделить 3 основные группы.

  • К первой относятся те соединения, которые вместе с медью создают твердые вещества. Это касается мышьяка и сурьмы. Сюда же относятся железо, цинк, никель, олово, алюминий, фосфор и прочие.
  • Вторую группу составляют соединения, которые практически не растворяются в меди. Примером является висмут, свинец и прочие. Из-за них обработка посредством давления затруднена. На способность к электропроводности это практически не влияет.
  • Третья группа — это сера и кислород. Вместе с медью они создают химические соединения, которые отличаются своей хрупкостью.

Маркировка по ГОСТ

медь по гост

Существуют различные маркировки меди

В зависимости от добавок, примесей и их доли в общем объеме, сплав имеет разные свойства. Это может быть устойчивость к коррозии, прочность, антифрикционный эффект и прочее. Самыми распространенными являются смеси меди с алюминием, цинком, марганцем, магнием. Но в промышленности применяются варианты и с другими химическими веществами.

Разработано специальная таблица с маркировкой меди и ее характеристиками. Она применяется, когда нужно определить состав по классификации ГОСТ.

  • К примеру, в Марке М00 содержание меди должно быть не менее 99,99%.
  • В марке М0 содержится примерно 99,95% меди. В марке М0б присутствует примерно 99,97% основного компонента.
  • Если медь обозначается как М1, это значит, что ее доля во всем составе около 99,9%.
  • Если имеется пометка М1р, то это означает, что в веществе содержится 99,9 меди.
  • Если имеется обозначение М2, то меди будет 99,7%, а вот в марке М2р тоже такая же концентрация основного компонента.
  • Если пишется марка М3 иМ3р, то количество меди составляет 99,5%. Если марка М4, то количество основного вещества равняется 99%.
  • Несмотря на то что количество меди в марках М1 и М1р, М2 и М2р, М3 и М3р одинаковое, при этом в продуктах с буквой «р» содержание кислорода меньше и составляет только не более 0,01%, а вот в других – примерно 0,05-0,08%. Кроме того, в состав включен фосфор, но его доля не более 0,04%.

А вот в продукте с маркой М0б совсем отсутствует кислород, в отличие от продукта с пометкой М0, где содержание кислорода составляет примерно 0,02%.

В большинстве случаев применяется катодная медь либо полуфабрикаты из меди (это касается проката, катанок и прочих изделий). Особенности и область применения зависят от процентного содержания примесей в общем продукте. В различных марках может быть 10–50 примесей. Чаще всего медь разделяют на 2 группы:

  1. Сплавы, которые содержат минимальное количество кислорода — не более 0,011%. По ГОСТу они обозначаются как М00, М01 и М3. Обычно применяются они для токопроводников либо создания сплавов, которые отличаются высокой чистотой.
  2. Металл рафинированного типа, которые имеет примеси фосфора в общем объеме. Предназначен для общего применения. По ГОСТу обозначается как М1ф, М2р, М3р. Обычно применяется для создания фольги, труб и листов горячего и холоднокатаного типа.

Для создания чистых и высокоточных металлов применяется только медь той марки, где отсутствует кислород. Это очень важно для криогенной промышленности. В остальных же случаях используются другие виды меди. Например, применение бывает следующим в зависимости от марки:

  1. М0 и М00 используется в производстве электропроводниковых деталей и деталей с высокой частотой. Обычно такие элементы получаются дороже, и делают их на заказ.
  2. М001б и М001бф применяется для медной проволоки с небольшим диаметром сечения. Также подходит для другой проводки и электрических шин.
  3. М1 (в том числе М1р, М1ре и М1ф) применяются как проводники для электрического тока. Они задействованы для создания бронзы высокого качества, где минимальное количество олова. Обычно делают электроды и прутья для сварки чугуна и прочих металлов, которые трудно сваривать.
  4. М2 (в том числе М2к, М2р) используется обычно для деталей, которые применяются в криогенной промышленности. Еще подходит для литого проката, который будет подвергаться обработки под давлением.
  5. М3 (в том числе М3р и М3к) подходит для производства полуфабрикатов прессованного типа либо проката плоского характера. Еще используется для проволоки, которая задействуется для сварки электромеханического характера чугунных и медных деталей.

Популярные сплавы меди

В качестве легирующего компонента в сплавах меди обычно применяется фосфор, золото, цинк и марганец. Их концентрация обычно составляет меньше 10%. Исключением является только латунь. Такая доля зависит от того, какие свойства сплавов требуются, а также учитывается его назначение.

Вот основные разновидности сплавов меди:

  1. Смесь с оловом. Она считается одной из самых первых, которые были открыты. Еще в Древней Греции активно применялась для создания шедевров, которые на данный момент являются ценностью для людей. Сегодня процесс создания такого сплава значительно улучшен. Используются электрически печи дугового типа. Для защиты от окисления задействован вакуум. Сплав закаливают, чтобы увеличить его прочность и пластичность.
  2. Алюминиевая бронза. Этот сплав меди и алюминия может деформироваться. Практически не подвержен коррозии. Его применяют обычно для создания деталей, которые будут подвергаться высокотемпературному воздействию.
  3. Смесь меди со свинцом. Этот материал отличается антифрикционными свойствами. За счет добавления свинца значительно увеличен показатель прочности.
  4. Латунь. Это сплав из 2 либо 3 компонентов.
  5. Нейзильбер — сплав на основе меди, причем добавлен никель — примерно от 6 до 34%. Еще в состав включен цинк. Стоимость такого материала меньше, чем у мельхиора, однако по внешним данным, характеристикам и свойствам они идентичные.
  6. Смесь меди и железа. Это возможно благодаря тому, что оба материала обладают схожими химическими показателями, но при этом температура плавления у них разная, так что выходит пористый сплав.
сплавы меди

Сплавы с медью используют во многих отраслях промышленности

Сплавы на основе меди применяются в промышленности. Трудно найти хотя бы одну отрасль, где бы ни задействовали медь для производства различных деталей. В чистом виде металл используется в коммуникациях электротехнического типа. Камеры теплообмена, трубопровод, вакуумные механизмы на 1/3 состоят из этого металла.

Сплавы активно применяются в производстве автомобилей и сельскохозяйственного оборудования. Благодаря высокой резистентности к коррозии сплавы меди применяют для производства аппаратуры в химической отрасли. Смесь свинца и меди используется в создании техники сверхпроводникового типа.

Когда нужно сделать детали со сложным узором, то требуется сплав, обладающий пластичностью и вязкостью. Этим критериям соответствует мягкая медь. Из нее можно сделать любые шнуры и детали. Проволока хорошо гнется. К тому же ее можно соединять (паять) с серебряными и золотыми поверхностями. Сплавы меди отлично взаимодействуют с эмалью. Такая поверхность долго будет сохраняться, она не отслоится, не растрескается.

Бронза как сплав меди

бронза сплав меди

Бронза как сплав меди активно используется в жизни человека

Медь и сплавы на ее основе очень разнообразны. Одним из ярких примером является бронза. Это смесь из меди, кремния, алюминия, бериллия и прочих элементов (исключением является только цинк). Марка заключается в символе Бр и других буквах, которые указывают на легирующее вещество. Затем пишется цифра, которая указывает на их пропорции. К примеру, марка БрОЦС4-4-2,5. Такой набор символов означает, что бронза содержит 4% олова, столько же цинка и 2,5% свинца. Всем остальным является уже медь.

Существует классификация по содержанию дополнительных веществ в общем сплаве. Выделяют бронзу оловянного и безоловянного типа. Последняя имеет подвиды. Характеристики бронзы:

  1. Оловянная. Эта смесь с оловом имеет высокий показатель резистентности к коррозии, имеется еще и антифрикционный эффект. Благодаря этому материал часто используется в химической отрасли. Это обычно смесь с никелем. Еще могут добавлять фосфор и цинк. Последнего материала добавляют не более 10%. Благодаря этому сплав по цене недорогой, но его характеристики не изменяются. Благодаря последним двум элементам улучшается антифрикционное действие. БрОц4–5 задействуют в производстве пружин. Это касается деформируемых бронз. Относительно литейных бронз, то обычно их применяют для арматуры, антифрикционных изделий. К примеру, это БрО4Ц4С17, БрО5ЦНС5, БрО3Ц12С5.
  2. Алюминиевая. Обладает хорошей сопротивляемостью коррозии в соленой воде и климатических условиях тропиков. Если бронза 1-фазная, то она отличается хорошей гибкостью и применяется для штамповки глубокого типа. Если бронза 2-фазная, то ее подвергают деформации горячего типа либо используют для фасонного литья. По литейным характеристикам алюминиевая бронза уступает оловянной, но благодаря ей получаются более плотные изделия. Примерами алюминиевой бронзы является БрАЖН10-4-4, БрА10Ж3Мц2.
  3. Кремнистые. За счет добавления кремния (не более 3,5%) материал становится прочнее и эластичнее. За счет никеля и марганца улучшаются коррозионные и механические показатели. Такую бронзу легко обрабатывать с помощью резания, давления и сварки. За счет упругости, механических характеристик и устойчивости к коррозии кремнистые бронзы применяются для создания пружинящих изделий различных приборов, в том числе и радиооборудования. Причем детали устанавливают в аппаратуру, которая будет работать в агрессивных условиях — морская вода, температура до 2 500°С. Примером кремнистой бронзы является БрКМц3–1.
  4. Бериллиевые. Эти сплавы отличаются тем, что они упрочнены за счет температурной обработки. Обладают высокой характеристикой к временному сопротивлению, хорошими пределами текучести, упругостью. Имеет устойчивость к коррозии. Подвергаются резанию и сварке. Активно используются для создания пружин, мембран и прочих деталей, которые будут работать на износ. Элементы обычно используются для приборов электронной техники. Примером бериллиевой бронзы является БрБ2.
  5. Свинцовые. В жидкой меди свинец почти не растворяется. После того как сплав затвердеет, он будет состоять их отдельных кристаллов меди и свинца. Благодаря такой необычной структуре имеются антифрикционные свойства. Из-за этого такие сплавы применяются для создания подшипников и вкладышей, которые будут работать с высокими показателями скорости и давления. Теплопроводность бронзы БрС30 в 4 раза больше, чем у оловянных сплавов. Благодаря этому она хорошо убирает нагревание, которое возникает из-за сильного трения. Довольно часто в свинцовые сплавы добавляют олово и никель, чтобы улучшить коррозионные и механические характеристики.

Все эти разновидности бронзы активно применяются в промышленности и других отраслях.

Внимание: латунь

Под латунью понимают смесь из меди и цинка, причем последнего компонента может быть от 5 до 44%. Если в состав включен еще и цинк (от 5 до 20%), то такая латунь называется красной либо томпаком. Если содержание цинка от 20 до 35%, то латунь называется желтой. Латунь, где концентрация цинка более 45%, редко применяется на практике.

Классификация латуни следующая:

  • Двухкомпонентная. Еще ее называется простой. Входит только медь, цинк и небольшое количество примесей.
  • Многокомпонентная — специальная. Кроме цинка и меди в состав включены другие легирующие компоненты.

Марка латуни обозначается как буква Л и двузначное число, которое указывает на долю меди. К примеру, если марка латуни Л80, то содержание меди составляет 80%, а цинка – 20%.

Томпак может обозначаться как Л96. Тогда содержание меди составляет примерно 95-96%. Еще томпак может обозначаться как Л90. В это случае мед содержится примерно 88–91%. В обоих случаях допускается не более 0,2% примесей.

Полутомпак обозначается как Л85. Это означает, что меди в нем будет от 84 до 86%. Если полутомпак записан как Л80, то содержание меди составит от 79 до 81%. В обоих случаях допускается содержание примесей не более 0,3%.

Латунь обозначается еще как Л70. В этом случае меди будет примерно 69–72%, примесей разрешено не более 0,2%. Если марка Л68, то концентрация основного вещества — от 67 до 70%, а примесей допускается не более 0,3%. Марка Л63 предполагает, что содержание меди составит от 62 до 65%, а примесей может быть до 0,5%. Если записана марка Л69, то основного компонента будет от 59 до 62%, причем примесей — не более 1%.

Латунь 2-компонентного типа довольно просто подвергается давлению. Обычно из нее делают изделия в виде труб, листов и прочего. Латунные детали могут растрескиваться из-за большого внутреннего напряжения. Когда они долго хранятся на открытом воздухе, то появляются трещины, которые могут располагаться как по ширине, так и по длине. Чтобы предотвратить это, нужно воспользоваться низкотемпературным воздействием (температура 200–300°С).

А вот марок латуни поликомпонентного типа намного больше, чем 2-компонентного. В обозначения сначала пишется Л. Потом записаны буквы, указывающие на легирующие компоненты, которые включены в состав вещества помимо цинка. После этого идет дефис и записываются числа. Первая цифра указывает на концентрацию основного вещества (в процентах). Все остальные — это доли легирующих веществ. Их последовательность будет такой же, как и в части с буквенными обозначениями. Сначала записываются те элементы, доля которых больше. К примеру, если марка записана как ЛАЖМц66-6-3-2, то это означает, что меди содержится 66%, алюминия – 6%, железа – 3% и марганца – 2%.

Для информации

Основные легирующие вещества в латуни многокомпонентного типа следующие:

  1. Марганец. Он применяется для улучшения прочности готового изделия. Повышается устойчивость к коррозии. Особенно это касается сочетания с железом. Еще это подходит для олова и алюминия.
  2. Олово. Тоже используется для улучшения прочности. Еще конечное вещество будет отличаться высокой устойчивостью к коррозии, особенно в соленой воде. Такие материалы, которые имеет включения олова, часто именуются еще морскими.
  3. Никель. Это вещество тоже улучшает прочность и добавляет устойчивость к коррозии, причем в различных условиях.
  4. Свинец. Из-за него ухудшаются механические характеристики, но при этом улучшается способность к обработке посредством резания. Обычно добавляют немного — содержание в латуни не более 1–2%. Это используется для деталей, которые будут подвергаться обработке на станках. Вот почему такую латунь еще именуют автоматной.
  5. Кремний. Из-за него твердость материала ухудшается, как и прочность. Но если добавлять сразу и кремний, и свинец, то антифрикционные свойства увеличиваются. Такой латунью можно будет заменить бронзу, которая применяется в подшипниках и считается более дорогой по цене.
латунь

Латунь – один из популярных металлов используемых в промышленности

Заключение

Медь, сплавы меди — это материалы, без которых сейчас трудно представить современный мир. Они обладают различными свойствами и используются в разных отраслях промышленности. Самыми известными сплавами являются бронза и латунь.

Медь — свойства меди, сплавы и применение

Знакомство человека с медью исчисляется тысячелетиями, где ее прямым конкурентом может выступать только золото, успевшее приобрести статус благородного металла.

Свойства меди и место в жизни человека

В чистом состоянии, элемент таблицы Менделеева, именуемый Cu, встречается крайне редко. Это – пластичный металл с легким розовым оттенком. Человеку же он знаком под другим цветом: желто-красным, чаще коричнево-красным. Это связано с высокой окислительной способностью вещества. Попадая на воздух, медь покрывается тонкой оксидной пленкой, что и делает цвет металла ближе к красному.

медь в чистом виде

Первобытная тяга человека к меди основывалась на свойстве пластичности, позволяющей придавать этому металлу требуемую форму путем несложной обработки. Медь легко поддается гравировке, нанесению резьбы, оставаясь при этом достаточно прочным. Современная ценность меди, как металла – высокие показатели проводимости: электрической и тепловой. Подобная информация позволяет выделить основные направления поиска этого цветного металла в виде отходов и лома.

Удельный вес меди, составляющий округленно 8.9 г/см3, также полезен сборщику металлолома. Зная объем собранного лома, в частности проводов, жил, легко рассчитать его оценочный вес.

к содержанию ↑

Сплавы меди

Помимо относительно чистой формы, характеризуемой ничтожным содержанием примесей, медь – составляющий элемент многих сплавов, среди которых наиболее известны:

Латунь – сплав меди

Бронза

Мельхиор – больше относится к серебру, нежели к меди

Отдельно стоит выделить медный сплав с никелем, именуемый мельхиор. Он известен широкой аудитории по разменным монетам советских времен, начиная с 10 копеек а также подарочные наборы столовых приборов, но существенно уступает первым двум в степени востребованности.

Наиболее перспективными для нужд человека остаются: латунь и бронза. Желтая медь, так иначе называют латунь, на бытовом уровне широко востребована в сантехнике. Те, кто сталкивался с подбором крана или смесителя, хорошо знают это. По химическому составу различают:

  • двойные латуни – сплав меди с цинком;
  • многокомпонентные, в которых Zn остается основным легирующим элементом.

Процентное содержание цинка, даже в двойной латуни, широко варьируется. Сплавы, где доля Zn составляет не более 20%, именуют томпаком.

Пули из томпака

Определить состав латуни можно исходя из маркировки: для двойных сплавов после буквы «Л» указывается процентное содержание меди, например Л60. Маркировка многокомпонентных сплавов строится аналогично, только за «Л» следуют легирующие примеси с их концентрациями. Таким образом, многокомпонентная латунь марки ЛМц58- 2, использования при изготовлении деталей машин, гаек, болтом, арматуры, подразумевает содержание меди – 58%, цинка – 40%, марганца – 2%.

Бронза – в стандартном понимании, представляет медный сплав с оловом, однако на практике также обладает весьма вариативным составом. Фактически под бронзой принято понимать любой медный сплав, где никель и цинк не являются основными легирующими элементами. Стоит отметить, что найти оловянную бронзу достаточно сложно. Большее распространение получили ее безоловянные сорта.

к содержанию ↑

Взвешивая «чистый» металл и его сплавы на весах прибыльности при сдаче металлолома, можно сказать, что стоимость первого в полтора – два раза выше. Однако весовое содержание меди в металлических конструкциях часто уступает на выходе ее сплавам.

Так, медные сплавы можно обнаружить среди пришедших в негодность изделий сантехники: водопроводные краны, вентили, душевые шланги и трубки. Многие старые светильники, дверная фурнитура также изготовлены из медных сплавов, однако верх пьедестала, по весовому содержанию, занимают радиаторы отопления.

Непосредственно медь стоит искать среди бытовых приборов, желательно уже выработавших свой эксплуатационный ресурс:

  • ламповый телевизор – 1,5 кг;

Ламповый телевизор с медью

  • полупроводниковый ТВ приемник – 0,5 кг;
  • компрессионный холодильник – около килограмма в двигателе, еще столько же могут содержать трубки радиатора;

Незаслуженно обходят вниманием магнитные пускатели, хотя оборудование помимо обмотки содержит медь в шинах. Небольшое содержание металла, менее килограмма принесут автомобильные стартеры и генераторы, дроссели люминесцентных ламп, трансформаторы, реле, компрессоры холодильников.

Смотрите статью – Где искать металлолом меди?

к содержанию ↑

Первичная медь, получение и применение

В зависимости от чистоты металла, различают следующие марки:

Катодная медь М0

Одним из источников сырья для получения металла выступает медный лом, перерабатываемый согласно технологии огневого рафинирования.

Природные ресурсы металла составляет самородная медь и сульфидные руды, в частности медные колчедан и блеск. Существует два металлургических способа получения металла из руды. На основной метод – пирометаллургический, приходится 90% первичного металла, оставшиеся 10% – результат гидрометаллургической технологии.

Медная руда

Физические свойства меди не могли остаться незамеченными в промышленности. Ее высокая электропроводность позволяет использовать металл при изготовлении электродов, проводов, особенно силовых кабелей (марка М0). Относительная химическая инертность меди нашла применение металлу в узлах аппаратуры для работы с огнеопасными веществами.

Высокая теплопроводность металла, наряду с устойчивостью к коррозии, используются  при изготовлении сантехнических конструкций, узлов, а также кровельных покрытий. В настоящее время, медь вытеснили тут другие, более дешевые материалы.

Достаточно широкий рынок применения меди – производство сплавов. Латунь и бронза, где Cu является основным компонентом, уже были рассмотренные ранее. Широко используется другой сплав дюралюминий, где содержание меди доходит до 5%.

Медь. Описание, свойства, происхождение и применение металла

Самородная медь размером около 4 см

Самородная медь размером около 4 см

Медь — минерал из класса самородных элементов. В природном минерале обнаруживаются Fe, Ag, Au, As и другие элементы в виде примеси или образующие с Cu твёрдые растворы. Простое вещество медь — это пластичный переходный металл золотисто-розового цвета (розового цвета при отсутствии оксидной плёнки). Один из первых металлов, широко освоенных человеком из-за сравнительной доступности для получения из руды и малой температуры плавления. Он входит в семёрку металлов, известных человеку с очень древних времён. Медь является необходимым элементом для всех высших растений и животных.

СТРУКТУРА


Кристаллическая структура меди

Кристаллическая структура меди

Кубическая сингония, гексаоктаэдрический вид симметрии m3m, кристаллическая структура — кубическая гранецентрированная решётка. Модель представляет собой куб из восьми атомов в углах и шести атомов , расположенных в центре граней (6 граней). Каждый атом данной кристаллической решетки имеет координационное число 12. Самородная медь встречается в виде пластинок, губчатых и сплошных масс, нитевидных и проволочных агрегатов, а также кристаллов, сложных двойников, скелетных кристаллов и дендритов. Поверхность часто покрыта плёнками «медной зелени» (малахит), «медной сини» (азурит), фосфатов меди и других продуктов её вторичного изменения.

СВОЙСТВА


Кристаллы самородной меди, Верхнее озеро, округ Кинави, Мичиган, США. Размер 12 х 8,5 см

Кристаллы самородной меди, Верхнее озеро, округ Кинави, Мичиган, США. Размер 12 х 8,5 см

Медь — золотисто-розовый пластичный металл, на воздухе быстро покрывается оксидной плёнкой, которая придаёт ей характерный интенсивный желтовато-красный оттенок. Тонкие плёнки меди на просвет имеют зеленовато-голубой цвет.

Наряду с осмием, цезием и золотом, медь — один из четырёх металлов, имеющих явную цветовую окраску, отличную от серой или серебристой у прочих металлов. Этот цветовой оттенок объясняется наличием электронных переходов между заполненной третьей и полупустой четвёртой атомными орбиталями: энергетическая разница между ними соответствует длине волны оранжевого света. Тот же механизм отвечает за характерный цвет золота.

Медь обладает высокой тепло- и электропроводностью (занимает второе место по электропроводности среди металлов после серебра). Удельная электропроводность при 20 °C: 55,5-58 МСм/м. Медь имеет относительно большой температурный коэффициент сопротивления: 0,4 %/°С и в широком диапазоне температур слабо зависит от температуры. Медь является диамагнетиком.

Существует ряд сплавов меди: латуни — с цинком, бронзы — с оловом и другими элементами, мельхиор — с никелем и другие.

ЗАПАСЫ И ДОБЫЧА


Образец меди, 13,6 см. Полуостров Кинави, Мичиган, США

Образец меди, 13,6 см. Полуостров Кинави, Мичиган, США

Среднее содержание меди в земной коре (кларк) — (4,7-5,5)·10−3% (по массе). В морской и речной воде содержание меди гораздо меньше: 3·10−7% и 10−7% (по массе) соответственно. Большая часть медной руды добывается открытым способом. Содержание меди в руде составляет от 0,3 до 1,0 %. Мировые запасы в 2000 году составляли, по оценке экспертов, 954 млн т, из них 687 млн т — подтверждённые запасы, на долю России приходилось 3,2 % общих и 3,1 % подтверждённых мировых запасов. Таким образом, при нынешних темпах потребления запасов меди хватит примерно на 60 лет.
Медь получают из медных руд и минералов. Основные методы получения меди — пирометаллургия, гидрометаллургия и электролиз. Пирометаллургический метод заключается в получении меди из сульфидных руд, например, халькопирита CuFeS2. Гидрометаллургический метод заключается в растворении минералов меди в разбавленной серной кислоте или в растворе аммиака; из полученных растворов медь вытесняют металлическим железом.

ПРОИСХОЖДЕНИЕ


Медь

Небольшой самородок меди

Обычно самородная медь образуется в зоне окисления некоторых медносульфидных месторождений в ассоциации с кальцитом, самородным серебром, купритом, малахитом, азуритом, брошантитом и другими минералами. Массы отдельных скоплений самородной меди достигают 400 тонн. Крупные промышленные месторождения самородной меди вместе с другими медьсодержащими минералами формируются при воздействии на вулканические породы (диабазы, мелафиры) гидротермальных растворов, вулканических паров и газов, обогащенных летучими соединениями меди (например, месторождение озера Верхнее, США).
Самородная медь встречается также в осадочных породах, преимущественно в медистых песчаниках и сланцах.
Наиболее известные месторождения самородной меди — Туринские рудники (Урал), Джезказганское (Казахстан), в США (на полуострове Кивино, в штатах Аризона и Юта).

ПРИМЕНЕНИЕ


Браслеты из меди

Браслеты из меди

Из-за низкого удельного сопротивления, медь широко применяется в электротехнике для изготовления силовых кабелей, проводов или других проводников, например, при печатном монтаже. Медные провода, в свою очередь, также используются в обмотках энергосберегающих электроприводов и силовых трансформаторов.
Другое полезное качество меди — высокая теплопроводность. Это позволяет применять её в различных теплоотводных устройствах, теплообменниках, к числу которых относятся и широко известные радиаторы охлаждения, кондиционирования и отопления.
В разнообразных областях техники широко используются сплавы с использованием меди, самыми широко распространёнными из которых являются упоминавшиеся выше бронза и латунь. Оба сплава являются общими названиями для целого семейства материалов, в которые помимо олова и цинка могут входить никель, висмут и другие металлы.
В ювелирном деле часто используются сплавы меди с золотом для увеличения прочности изделий к деформациям и истиранию, так как чистое золото очень мягкий металл и нестойко к этим механическим воздействиям.
Прогнозируемым новым массовым применением меди обещает стать её применение в качестве бактерицидных поверхностей в лечебных учреждениях для снижения внутрибольничного бактериопереноса: дверей, ручек, водозапорной арматуры, перил, поручней кроватей, столешниц — всех поверхностей, к которым прикасается рука человека.


Медь (англ. Copper) — Cu

Молекулярный вес63.55 г/моль
Происхождение названияОт греческого «Kyprium», то есть «кипрский металл», по названию острова Кипр
IMA статусдействителен, описан впервые до 1959 (до IMA)

КЛАССИФИКАЦИЯ


Hey’s CIM Ref1.1

Strunz (8-ое издание)1/A.01-10
Nickel-Strunz (10-ое издание)1.AA.05
Dana (7-ое издание)1.1.1.3
Dana (8-ое издание)1.1.1.3

ФИЗИЧЕСКИЕ СВОЙСТВА


Цвет минераламедно-красный, тускнеющий в черный или зеленый на воздухе
Цвет чертымедно-красный
Прозрачностьнепрозрачный
Блескметаллический
Спайностьнет
Твердость (шкала Мооса)2,5-3
Прочностьковкий
Изломзазубренный
Плотность (измеренная)8.94 — 8.95 г/см3
Радиоактивность (GRapi)0
Магнетизмдиамагнетик

ОПТИЧЕСКИЕ СВОЙСТВА


Цвет в отраженном светерозовато-белый
Плеохроизмне плеохроирует
Люминесценция в ультрафиолетовом излучениине флюоресцентный

КРИСТАЛЛОГРАФИЧЕСКИЕ СВОЙСТВА


Точечная группаm3m (4/m 3 2/m) — гексоктаэдрический
Пространственная группаFm3m (F4/m 3 2/m)
Сингониякубическая
Параметры ячейкиa = 3.615Å
Морфологиякубы, додекаэдры и тетрагексаэдры; редко октаэдры и сложные комбинации; нитевидные, древовидные
ДвойникованиеДвойники по {111} по шпинелевому закону

Интересные статьи:

mineralpro.ru   28.07.2016  

медь — это… Что такое медь?

медь — металл розовато-красного цвета, пластичный, с высокими коррозионной стойкостью, электро- и теплопроводностью. В древности из меди изготовляли различные бытовые изделия и орудия труда. Ныне она — один из наиболее ценных конструкционных материалов. Медь используют для изготовления кабелей, проводов, деталей электротехнических установок, в химическом машиностроении и теплотехнике. Широко распространены сплавы на основе меди: бронза, латунь, мельхиор, константан.

Бронза — сплав меди с различными элементами: оловом, алюминием, свинцом, марганцем и т. д., кроме цинка и никеля (сплав меди с цинком называется латунью, а с никелем — медно-никелевым сплавом). Имеет золотисто-жёлтый цвет; при окислении поверхностного слоя приобретает другую окраску — от зелёной до густокоричневой и чёрной; применяется для изготовления сантехнических приборов, деталей машин, художественных изделий и т. д.

Латунь — сплав меди с цинком, часто с добавками алюминия, никеля, железа, марганца, олова и другие.гих элементов. Имеет цвет от красноватого до золотисто-жёлтого в зависимости от содержания цинка. Из латуни протягивают прутки, прокатывают листы, получают изделия литьём, ковкой, штамповкой и прессованием; изготовляют винты, гайки, детали сантехнического оборудования и электротехнических устройств; применяется в художественном литье, чеканке, гравировке, ювелирном деле.

Мельхиор — коррозионностойкий сплав меди с никелем (5—30%), иногда с добавлением железа (0,8%) и марганца (1%). По внешнему виду напоминает серебро; применяется для производства посуды, создания художественных изделий и в других целях.

Константан — сплав меди с никелем (39—41%) и марганцем (1—2%). Обладает относительно высоким электрическим сопротивлением; используется для изготовления реостатов, резисторов, термопар.

Энциклопедия «Жилище». — М.: Большая Российская энциклопедия. А. А. Богданов, В. И. Бородулин, Е. А. Карнаухов, В. И. Штейман. 1999.

Медь и ее сплавы — история материала, его свойства и применение + Видео

Медь и ее сплавы — прекрасные материалы, которые используются практически во всех сферах промышленного производства. Будет достаточно трудно представить без нее современный мир. Это неудивительно, ведь любой доклад подтверждает ее исключительные характеристики.

1 Исторический ракурс

Медь имеет большое значение для человека. Медными были первые орудия труда, выполненные из металла. Обрабатывали металл холодным способом, о чем свидетельствуют раскопки на побережье реки Гудзон в Северной Америке. Эту традицию индейцы сохранили до прибытия на континент Христофора Колумба.

Доподлинно известно, что наши предки начали добычу металла из медной руды около 7 тысяч лет тому назад.

Этот податливый материал во многом определил последующие тенденции в развитии человеческой культуры и истории.

Царствование меди в мире металлов продолжалось всего тысячу лет, ровно до той поры, пока не был открыт первый медный сплав, названный бронзой (в честь маленького купеческого городка). Древние люди быстро перешли на изготовление изделий из нового сплава, поскольку он обладал лучшими характеристиками: бронза тверже и плотнее меди, к тому же температура плавления у нее ниже. Египтяне, ассирийцы и индусы активно использовали бронзовые изделия, но отливать массивные сооружения научились только к V веку до нашей эры, о чем свидетельствуют найденные археологами древнегреческие статуи. Известное чудо древности — Колосс Родосский — был отлит из бронзы и установлен над входом в гавань порта Родос в III веке до нашей эры.

Древнегреческие статуи из бронзы

Древнегреческие статуи из бронзы

Медные листы использовали на Руси для кровли храмов. Специальные медные сплавы применялись для отливки пушечных орудий и церковных колоколов.

Медь обнаружена в составе почти 200 минералов, но стратегически важными оказались всего 17 из них, например, такие как медный колчедан (CuFeS2), халькозин (Сu2S), бронзит (Cu5FeS4) и ковеллин (CuS).

Формирование залежей медной руды в земной коре происходило неравномерно. Самые большие месторождения меди сегодня расположены в районе Конго. На территории России первые выработки меди производились в Закавказье и Сибири. Из летописей известно, что первые медные заводы в России появились в XVII веке.

Обнаружены значительные залежи руды на океаническом дне.

2 Физико-химические свойства меди

Незначительная примесь кислорода обеспечила меди красноватый оттенок. Если воздействие кислорода исключить полностью, цвет металла изменится на желтый.

Начищенная медь обладает ярко выраженным блеском. Чем выше валентность, тем слабее окрас. Так, оксид CuCl имеет белый цвет, Cu2O — красный, CuO — черный. Карбонаты меди, как правило, синего или зеленого цвета.

Начищенная медь с ярко выраженным блеском

Начищенная медь с ярко выраженным блеском

Медь — второй металл после серебра, обладающий высокой электропроводностью, благодаря чему он широко используется в электронике.

Медь слабо вступает в реакцию с кислородом, имеет свойство окисляться на воздухе и покрываться пленкой. В сухом воздухе окисление происходит очень медленно: 4Cu+O2=2Cu2O. Металлы этой группы не способны вытеснить водород из воды и кислот.

3 Особенности оксида меди

Этот оксид можно получить, прокаливая медь, нитрат или гидрокарбонат на воздухе. Оксид меди способен окислять органические соединения, что позволяет проводить анализ соединений на предмет наличия в них водорода или углерода.

Оксид меди

Оксид меди

Купроксные выпрямители электрического тока имеют в своей основе закись меди.

Растворением меди в концентрате серной кислоты получают медный купорос. Он необходим в химической промышленности и до сих пор применяется для защиты урожая.

4 Широко применяемые сплавы меди

Легирующий компонент практически во всех ныне используемых в производстве сплавах меди составляет менее 10%, исключением из этого правила является латунь. В качестве легирующего компонента могут использоваться такие элементы, как золото, фосфор, марганец, цинк.

Все зависит от того, какие свойства сплава необходимы. Среди интересующих характеристик особенно выделяют прочность, износоустойчивость и термостойкость. Олово, алюминий и кремний улучшают пластичность, большое количество легирующего компонента, напротив, увеличивает хрупкость. Так, например, медно-никелевый сплав (его маркировка — МНЖ5-1) хорошо обрабатывается давлением как в горячем, так и в холодном состоянии. Именно поэтому его используют при чеканке монет, а сплав серебра и меди — в ювелирном деле.

Медно-никелевый сплав

Медно-никелевый сплав

Основные виды сплавов меди и их классификация:

  1. Сплав меди с оловом — один из первых сплавов. Великолепные статуи Греции, произведения, имеющие и сегодня непревзойденную художественную ценность, отливались именно из оловянистых бронз. Сегодня процесс производства сплава с оловом усовершенствован. В технологическом процессе задействованы электрические дуговые печи, а защита сплава от окисления производится в вакууме. Для увеличения прочности и пластичности бронзы в технологический процесс производства включают такие этапы, как закаливание и старение сплава с оловом.
  2. Алюминиевая бронза — это сплав алюминия с медью, он хорошо деформируется и слабо поддается коррозии. Его применяют для изготовления конструкционных элементов и деталей, подвергающихся воздействию высоких температур.
  3. Сплавы меди и свинца являются непревзойденными материалами с антифрикционными свойствами. Добавление свинца значительно повышает прочность.
  4. Латунь. Двухкомпонентный или многокомпонентный сплав, в основе которого имеется медь, такой как томпак или полутомпак, называется латунью.
  5. Нейзильбер — это медно-никелевый сплав с никелем от 5 до 35% и цинком. Его стоимость дешевле мельхиора, но полностью аналогичен ему по внешнему виду и свойствам.
  6. Сплав меди с железом возможен благодаря близким физико-химическим параметрам металлов, однако разница в температурах плавления придает такому сплаву высокую пористость.

Латуни славятся высокой прочностью благодаря содержанию в них цинка (40-45%). Легкость в обработке делает латунь предпочтительней чистой меди. Этот сплав на основе меди используется преимущественно в приборостроении. Прочность латуни, которая содержит небольшой процент алюминия, марганца и других металлов, достигает 90 кг/мм². Она применяется при изготовлении запорной арматуры, подшипниковых вкладышей.

5 Применение сплавов

Пожалуй, трудно отыскать производственную отрасль, которая бы не использовала изделия из меди или ее сплавов. В чистом виде такой металл, как медь, задействован в электротехнических коммуникациях. Электрическая проводка, электродвигатели и кабельные изделия невозможно представить без участия меди.

Медное кабельное изделие

Медное кабельное изделие

Трубопроводы, вакуумные машины, теплообменные камеры на 1/3 состоят из меди.

Сплавы благодаря их выверенным свойствам применяют в автомобильной промышленности и сельскохозяйственном машиностроении. Высокая устойчивость к коррозии позволяет медным сплавам участвовать в изготовлении химической аппаратуры, а сплав меди со свинцом используется в производстве сверхпроводниковой техники.

Изделия со сложным узором требуют вязких и пластичных сплавов, например, сплав серебра. Этим запросам отвечает мягкая медь, из которой можно формировать любые шнуры и элементы. Проволоку легко гнуть и паять вместе с такими элементами, как золото и серебро.

Медные сплавы хорошо взаимодействуют с эмалями. Эмалированная поверхность может сохраняться длительное время, не отслаиваясь и не растрескиваясь, на поверхности меди. Таково применение сплавов.

PPT — Медь и ее сплавы Презентация PowerPoint, скачать бесплатно

  • Медь и ее сплавы ХасибУллах Хан Джатой Департамент химического машиностроения UET Lahore

  • Цветные металлы и сплавы Обычно металлы и сплавы делятся на две категории . Черные и цветные металлы (все металлические элементы, кроме железа, называются цветными). Особое место среди сплавов занимает железо благодаря своей доступности, сравнительно невысокой стоимости и полезному диапазону сплавов.

  • Однако у них есть некоторые явные ограничения, в основном: (1) относительно высокая плотность , (2) сравнительно низкая электрическая проводимость и (3) собственная подверженность коррозии в некоторых обычных средах. Так что есть потребность в цветных сплавах. Из всех цветных сплавов только восемь производятся в относительно больших количествах: Al, Cu, Pb, Mg, Ni, Sn, Ti и Zn

  • Медь и ее сплавы Самый старый металл, известный человеку.В ранней цивилизации медь наряду с бронзой использовалась в декоративных и утилитарных целях. Чрезвычайно полезный, но из-за высокой стоимости медь и ее сплавы во многих областях заменяются другими дешевыми материалами, такими как пластик, алюминий. Происхождение: Высокое сродство к сере, поэтому встречается в формах оксидов и сульфидов. Сульфид меди и железа, оксид меди и силикаты меди.

  • Самородная медь Медный рудник в Нью-Мексико

  • Свойства Высокая электропроводность • Высокая теплопроводность • Высокая коррозионная стойкость (не зависит от окислительной среды) • Хорошая пластичность и пластичность.• Приемлемая прочность на разрыв. Легкость соединения (путем добавления других металлов, пайки, пайки, сварки). Обрабатываемость и пригодность для вторичной переработки. Повышенное сродство к сере

  • Физические свойства меди и медных сплавов Кристаллическая структура FCC Атомный номер 29 Атомный вес 63,546 Плотность (г · см-3) 8,933 Точка плавления (oC) 1084,62 Прочность на растяжение (МПа) 220 Коррозионная стойкость Очень хорошая

  • Применение меди в автомобилестроении Медь: работа за кадром в автомобильной промышленности Расширение использования электронных компонентов в автомобилях приводит к увеличению количества меди, используемой на одно транспортное средство.

  • Минеральные руды меди Борнит (Cu5FeS4), халькопирит (CuFeS2), ковеллит (CuS), халькоцит (сульфидные руды), малахит (Cu2CO3 (OH) 2), азурит (Cu3 (CO3) 2 OH) 2, Куприт (оксидная форма) Самородная Cu (100% Cu, красного цвета)

  • Халькопирит (CuFeS2), Халькоцит (Cu2S), куприт (Cu2O), борнит

  • Извлечение меди Руды меди обычно представляют собой сложные смеси сульфидов меди и железа.Добыча в горном деле. При добыче получают руды с содержанием 1% у. Руда дробится, измельчается и отделяется, в результате чего материал концентрируется с содержанием 40-60% куб. Шлифовка обычно проводится для увеличения площади поверхности.

  • Отражательная печь Отражательная печь — это металлургическая или технологическая печь, которая изолирует обрабатываемый материал от контакта с топливом, но не от контакта с газами сгорания.

  • Обжиг (концентрация) В обжиговой печи медь концентрат частично окисляется с образованием оксида железа, сульфида меди и газообразного диоксида серы.Стехиометрия протекающей реакции: 2 CuFeS2 + 3 O2 → 2 FeO + 2 CuS + 2 SO2

  • Отражательная печь Затем кальцин смешивают с кремнеземом и коксом и плавят в экзотермической реакции при 1200 ° C. (выше точки плавления меди, но ниже температуры плавления железа и кремнезема) с образованием жидкости, называемой «медным штейном». Высокая температура позволяет реакциям протекать быстро, а штейн и шлак плавятся. Оксиды и сульфиды железа превращаются в шлак, менее плотную расплавленную массу, которая всплывает с штейна.

  • Реакции образования шлака: FeO (s) + SiO2 (s) → FeSiO3 (l) Параллельная реакция превращает сульфид железа в шлак: 2 FeS (l) + 3 O2 + 2 SiO2 ( l) → 2 FeSiO3 (l) + 2 SO2 (г) Шлак сбрасывается или перерабатывается для извлечения оставшейся меди.

  • Конвертер меди Штейн, производимый на плавильном заводе, содержит около 70% меди, в основном в виде сульфида меди, а также сульфида железа. Сера удаляется при высокой температуре в виде диоксида серы путем продувки воздуха через расплавленный штейн: 2 CuS + 3 O2 → 2 CuO + 2 SO2 CuS + O2 → Cu + SO2 В параллельной реакции сульфид железа превращается в шлак: 2 FeS + 3 O2 → 2 FeO + 2 SO2 2 FeO + 2 SiO2 → 2 FeSiO3

  • Чистота этого продукта составляет 98%, он известен как как пузырек из-за разорванной поверхности, образовавшейся в результате утечки газообразного диоксида серы.

  • Печь для рафинирования Огневое рафинирование черновой меди — интересный процесс. Затем ванну с окисленной медью подвергают восстановительным условиям для снижения содержания кислорода. Полученный продукт называют медью с твердым пеком с остаточным содержанием кислорода около 0,03%. Необходимые восстановительные условия были получены путем полировки жидкой ванны.

  • Медь с твердой смолой не подходит для сварки из-за содержания кислорода в материале.Не подходит для применений, требующих высокой электропроводности. Мышьяковая медь Некоторые марки меди содержат до 0,5% мышьяка. Мышьяк-медь, которая имеет улучшенные свойства при растяжении и повышенную стойкость к окислению при высоких температурах, производится путем добавления до 0,5% мышьяка в вязкий пек.

  • Электролитическое рафинирование Медь рафинируется электролизом. Аноды, отлитые из обработанной черновой меди, помещают в водный раствор 3–4% сульфата меди и 10–16% серной кислоты.Катоды представляют собой тонкие катаные листы из высокочистой меди. Для начала процесса требуется потенциал всего 0,2–0,4 вольт. На аноде растворяются медь и менее благородные металлы. Более благородные металлы, такие как серебро и золото, а также селен и теллур оседают на дно электролизера в виде анодного шлама, который образует побочный продукт, пригодный для продажи.

  • Ионы меди (II) мигрируют через электролит к катоду . На катоде осаждается металлическая медь, но в растворе остаются менее благородные компоненты, такие как мышьяк и цинк.Реакции следующие: На аноде: Cu (s) → Cu2 + (водн.) + 2e– На катоде: Cu2 + (водн.) + 2e– → Cu (s) Полученная таким образом медь называется катодной медью (99,9%).

  • Сплавы меди Медь может быть легирована рядом элементов, чтобы получить ряд полезных сплавов. 1. Медно-никелевый (мельхиоровый) Ni растворяется в твердой меди. Этот сплав отличается прочностью, пластичностью и отличной устойчивостью к коррозии. Применяется для изготовления трубок конденсатора и теплообменника. 2.Никель-серебряный сплав (немецкое серебро) Этот сплав получается при добавлении цинка к меди и никелю. Они пластичные. Нейзильбер используется для посеребрения столовых приборов, ключей более высокого качества, бижутерии, изготовления музыкальных инструментов (например, тарелок), производства монет. Его промышленное и техническое применение включает сантехническую арматуру из-за его устойчивости к коррозии.

  • 3. Бериллий-медный сплав Он содержит до 2,7% Be, что является самой высокой прочностью среди всех доступных медных сплавов.Эти сплавы могут быть упрочнены термообработкой на твердый раствор, и с помощью этого процесса можно получить предел прочности при растяжении до 1400 МН / м2. Обычно Be-Cu содержит 2% Be. Приложения. Производство пружинной мембраны и искробезопасного инструмента. 4. Сплавы кадмий — медь. Добавление 1% Cd к меди дает сплав с пределом прочности на растяжение примерно на 50% выше, чем у меди с высокой проводимостью, но это снижает его электропроводность.

  • Заявление.Основные области применения: телефонные провода, электроды , электрододержатели для оборудования для контактной сварки сопротивлением. 5. Хром-медный сплав. Он содержит 0,5% Cr, и в результате образуется продукт, имеющий высокую прочность в сочетании с высокой электрической и теплопроводностью. 6. Сплав теллура и меди. Этот сплав содержит 0,3-0,7% Te и является сплавом с высокой электропроводностью. Это сплав без механической обработки. Те практически не растворяется в меди и проявляется в микроструктуре в виде мелких частиц теллурида меди.Они будут действовать как внутренние стружколомы.

  • Основные сплавы меди Латунь (питаль) Это бинарный сплав меди и цинка. Обладает низкой плотностью, низкой температурой плавления. Zn можно добавлять от 5 до 40%. При добавлении Zn он удешевляется, его можно использовать при изготовлении сосудов под давлением. Cu обладает хорошими термическими, электрическими и коррозионными свойствами, но при добавлении Zn до 36% ее механические свойства улучшаются за счет снижения термической, электрической и коррозионной стойкости.Некоторые из распространенных применений латунных сплавов включают бижутерию, гильзы для картриджей, автомобильные радиаторы, музыкальные инструменты, электронную упаковку и монеты.

  • Бронза (каанси) Бронза — это металлический сплав, состоящий в основном из меди, обычно с оловом в качестве основной добавки, но также могут использоваться Al, Si и Ni. Она твердая и хрупкая. Обычно бронза состоит на 88% из меди и на 12% из олова. Из него делают монеты, пружины, турбины, медали и лезвия. Применение меди Около 37% меди используется в строительстве, строительстве, электромонтаже, сантехнике, отоплении, коммерческом холодильном оборудовании, производстве оборудования и архитектурных материалов.26% у.е. используется в электрических и электронных устройствах.

  • 15% у.е. используется в промышленных машинах и оборудовании. 11% у.е. используется в транспортном оборудовании, таком как морская пехота, автомобили, автобусы и грузовики. Остальные 11% используются для изготовления столовых приборов, монет и украшений

  • .

    Пайка меди и медных сплавов

    Рисунок 1. Пайка происходит при температуре выше 840 ° F, но ниже точки плавления основного металла. Источник: CDA, Справочник по медным трубам.

    Четыре процесса, которые следует учитывать при соединении меди и медных сплавов, — это механическое соединение, сварка, пайка и пайка. Пайка подходит для небольших деталей и когда требуется высокая прочность соединения. Согласно Американскому сварочному обществу (AWS), прочность паяного соединения может соответствовать или превышать прочность соединяемых металлов.Важно знать, когда выбрать пайку и как выполнять процесс.

    С технологической точки зрения пайка и пайка по сути идентичны. Единственная разница заключается в используемом присадочном металле, а также в количестве времени и тепла, необходимых для завершения соединения. AWS определяет пайку как процесс соединения, который происходит при температуре ниже 840 градусов по Фаренгейту, а пайка — выше 840 градусов по Фаренгейту, но ниже точки плавления основного металла. На практике для медных систем большая часть пайки выполняется при температуре примерно от 450 до 600 градусов по Фаренгейту, в то время как большая часть пайки выполняется при температуре от 1100 до 1500 градусов по Фаренгейту.Однако при пайке медной трубки отжиг трубки и фитинга, вызванный повышенным нагревом, может привести к тому, что номинальное давление в системе будет ниже, чем у паяного соединения.

    Температура плавления меди составляет 1 981 градус F (ликвидус) и 1 949 градусов F (солидус). При пайке важно знать температуру плавления соединяемых металлов и присадочного металла. Разница между состоянием солидуса и ликвидуса заключается в диапазоне плавления, который может быть важным при выборе присадочного металла.Он указывает ширину рабочего диапазона для присадочного металла и скорость затвердевания присадочного металла после пайки. Присадочные металлы с узкими диапазонами, с серебром или без него, затвердевают быстрее и, следовательно, требуют осторожного нагрева. Температура ликвидуса — это минимум, при котором будет происходить пайка. См. , рис. 1 , где указаны диапазоны плавления некоторых распространенных припоев.

    Паять или не паять

    Согласно книге Лукаса-Мильгаупта «Что такое пайка» (www.lucasmilhaupt.com) выбор пайки зависит от пяти факторов:

    1. Размер соединяемых деталей. Пайка чаще используется для мелких деталей и требует нагрева широкой поверхности для доведения присадочного материала до точки текучести, что часто непрактично для больших деталей.
    2. Толщина металлических профилей. Более широкий нагрев и более низкая температура, используемые при пайке, в отличие от сварки, позволяют соединять секции без коробления или деформации металла. Сильный жар сварки может вызвать прожиг или деформацию тонкого среза.
    3. Конфигурация стыка. Пайка не требует ручного отслеживания, а присадочный металл протягивается через область стыка за счет капиллярного действия, которое одинаково легко работает на прямых, неровных или трубчатых стыках.
    4. Природа неблагородных металлов. Для соединения разнородных металлов пайка не расплавит один или оба металла, если присадочный металл металлургически совместим с обоими основными металлами и имеет температуру плавления ниже, чем у любого из соединяемых металлов. Обратите внимание, что медные сплавы можно легко паять с другими металлами, такими как чугун, инструментальная и нержавеющая сталь, никелевые сплавы и титановые сплавы.
    5. Количество выполняемых стыков. Если вы выполняете много стыков, ручная пайка выполняется быстро и просто, а автоматическая пайка может быть выполнена недорого с использованием простых производственных технологий.

    Паяльные флюсы

    Паяльные флюсы для меди имеют водную основу, растворяют и удаляют остаточные оксиды с поверхности металла, защищают металл от окисления во время нагрева и способствуют смачиванию соединяемых поверхностей. Паяльные флюсы также показывают температуру (см. , рис. 2 ).

    Наиболее часто используемые флюсы и припои для меди и медных сплавов показаны на рис. 3 , а руководство по их использованию показано на рис. 4 . Эту и другую подробную информацию можно найти в The Welding Handbook , 8th Edition, Vol. 8, опубликованный Американским обществом сварки и доступный в Ассоциации разработчиков меди под названием Welding Copper and Copper Alloys , A1050-72 / 97.

    Процесс

    Для пайки используются те же основные этапы, что и для пайки, с единственной разницей в использовании флюсов, присадочных металлов и количества используемого тепла.

    Как правило, могут выполняться соединения внахлестку и стык. Перед соединением металлов обязательно удалите все оксиды и поверхностные масла абразивной тканью, подушечками или щетками. Такие загрязнения мешают правильному течению присадочного металла и могут снизить прочность соединения или вызвать разрушение. Можно использовать химические чистящие средства, если их тщательно смыть, но не прикасайтесь к чистой поверхности голыми руками или в масляных перчатках.

    Нанесите тонкий, равномерный слой флюса кистью на обе поверхности вскоре после очистки.Не наносите флюс пальцами, потому что химические вещества, содержащиеся во флюсе, могут быть опасны при попадании в глаза, рот или открытые порезы. Металлы медь-фосфор и медь-серебро-фосфор (BCuP) считаются самофлюсующимися на медных металлах.

    Надежно поддержите поверхности и обеспечьте между ними достаточное капиллярное пространство для потока расплавленного припоя. Чрезмерный зазор в шарнире может привести к растрескиванию под нагрузкой или вибрацией. Совместный зазор от 0,001 до 0.005 дюймов развивает максимальную прочность и надежность соединения.

    Рис. 2. В таблице показано, как флюсы реагируют на различные температуры и при какой максимальной температуре флюс защищает металл. Источник: CDA, Copper Tube Handbook.

    Используйте только количество тепла, необходимое для расплавления присадочного металла. Перегрев стыка или направление пламени в капиллярное пространство может сжечь флюс, нарушив его эффективность и не допуская правильного проникновения присадочного металла в стык.Подайте тепло вокруг области стыка, чтобы втянуть присадочный металл в капиллярное пространство. При работе с открытым пламенем, высокими температурами и горючими газами необходимо соблюдать меры предосторожности, описанные в ANSI / AWS Z49.1, «Безопасность при сварке, резке и смежных процессах».

    Дайте готовому стыку естественным образом остыть. Шоковое охлаждение водой может привести к его повреждению или растрескиванию. Когда он остынет, счистите все оставшиеся остатки флюса влажной тряпкой и проверьте все готовые сборки на целостность соединения.

    .

    Простая английская Википедия, бесплатная энциклопедия

    Сплав представляет собой однородную смесь. Он состоит из двух или более химических элементов, по крайней мере один из которых является металлом. Сплав имеет свойства, отличные от свойств металлов, из которых он сделан.

    Большинство сплавов получают путем плавления металлов, их смешивания, пока они являются жидкими, с образованием раствора, а затем их остывания и повторного превращения в твердое тело.

    Комбинирование чистого металла с одним или несколькими другими металлами или неметаллами часто улучшает его.Например, сталь — это сплав, сделанный из железа, но он прочнее железа. Физические свойства, такие как плотность, реакционная способность, электрическая и тепловая (теплопроводность), могут не сильно отличаться от элементов (веществ), из которых состоит сплав. Но такие свойства, как прочность, могут сильно отличаться.

    Первым обнаруженным сплавом была бронза. Бронза изготавливается из меди и олова. Бронза была обнаружена очень давно, в доисторический период. Тогда из бронзы делали инструменты и оружие.Этот период был известен как бронзовый век. Но позже были обнаружены лучшие сплавы, которые заменили бронзу для изготовления инструментов и оружия. Сейчас из бронзы делают украшения, статуи и колокольчики. Латунь — это еще один сплав меди и цинка.

    Точка плавления — это температура, при которой твердое вещество превращается в жидкость. Большинство сплавов не имеют единой точки плавления. У них есть диапазон плавления, в котором сплав представляет собой смесь твердой и жидкой стадий. Температура, при которой только начинается плавление, называется солидусом, а температура, при которой плавление только что заканчивается, называется ликвидусом.

    Термин «сплав» означает смесь атомов, в которой основным веществом или первичным компонентом является металл. Этот первичный металл называется основанием или матрицей .

    Если сплав имеет только два типа атомов, например медно-никелевый сплав, то такой сплав называется бинарным сплавом . Если сплав имеет три типа атомов, таких как железо, никель и хром, то он называется тройным сплавом . Сплав с четырьмя типами атомов называется четвертичным сплавом , а сплав с пятью типами атомов называется пятикомпонентным сплавом .

    Различные разновидности или формы сплавов могут быть изготовлены из одних и тех же составляющих материалов (веществ, из которых образован сплав). Эти разные формы или разновидности могут быть образованы с использованием различных количеств компонентов. Весь спектр возможных разновидностей сплава называется системой . Все формы сплава, состоящие только из двух компонентов, называются двойной системой . Все формы сплава, состоящего из трех компонентов, называются тройной системой .

    Распространенные сплавы :

    • Латунь состоит из 35% цинка и 65% меди и используется для изготовления музыкальных инструментов, украшений, смесителей и декоративной фурнитуры.
    • Нержавеющая сталь в основном состоит из железа, плюс более 11% хрома и различных количеств никеля и углерода, и используется для изготовления посуды, кухонной посуды и хирургических инструментов.
    • Сталь состоит из 99% железа и 1% углерода и используется для изготовления инструментов, кузовов автомобилей, механизмов, балок и рельсов.
    • Бронза состоит в основном из меди и небольшого количества олова и используется для изготовления лодочного оборудования, винтов и решеток.
    • Alnico представляет собой смесь алюминия, никеля и кобальта, которая используется для изготовления постоянных магнитов.
    Викискладе есть медиафайлы, связанные со сплавами .
    .

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *