Магнитный пускатель как работает: Магнитные пускатели. Принцип действия и схемы включения

Содержание

Магнитный пускатель назначение и принцип работы | Энергофиксик

Магнитные пускатели очень широко используются во всех сферах промышленности и предназначены они для запуска трехфазных двигателей большой мощности. В этой статье я расскажу вам о том, как устроены эти коммутационные аппараты и по какому принципу они функционируют.

Магнитный пускатель назначение и принцип работы

Разновидности магнитных пускателей

Итак, магнитный пускатель служит для подключения, отключения мощных трехфазных асинхронных двигателей с короткозамкнутым ротором. Также отлично функционирует в схемах дистанционного управления светом, в схемах коммутации компрессоров, насосов, кран-балок, тепловых печей и т. д. Как вы видите, спектр использования очень широк. И работают пускатели на различные напряжения, но в основном на 220-380 Вольт с промышленной частотой в 50 Герц.

Магнитный пускатель назначение и принцип работы

Если магнитный пускатель укомплектован с тепловым реле, то он способен защитить электродвигатель от вероятных длительных перегрузок. А в некоторых модификациях даже присутствует защита от перенапряжений.

yandex.ru

yandex.ru

В зависимости от того, какая использована схема соединения, пускатели могут быть реверсивными и нереверсивными.

В зависимости от того, где предполагается монтаж пускатели могут быть выполнены следующим образом:

1. Открытого исполнения. Такие аппараты монтируются в закрытых помещениях, боксах, панелях без доступа пыли и влаги.

2. Защищенного исполнения. Устанавливается в таких помещениях, где мало пыли и нет высокой влажности.

3. Пылебрызгонепроницаемого исполнения. Монтируются в помещениях или на открытом воздухе, но под навесами.

yandex.ru

yandex.ru

По техническим характеристикам магнитные пускатели делятся:

— По наличию или отсутствию дополнительных блок контактов. Они уже могут быть встроены или идти отдельной планкой. С помощью них можно реализовывать блокировку при реверсивном использовании пускателя. Также блок контакты обычно используются в цепях пуска или сигнализации (например, через такой дополнительный контакт можно подключить лампочку, которая будет сигнализировать о работе подключенного механизма).

— На какой ток и напряжение выполнена катушка.

— Есть или нет теплового реле.

Устройство магнитного пускателяyandex.ru

yandex.ru

Конструктивно магнитный пускатель можно условно разделить на две части. В верхней находятся следующие компоненты: подвижная группа контактов и дугогасящая камера и подвижная часть электромагнита (соединенная механическим образом с контактной группой).

В нижней же половине размещены следующие детали: электромагнитная катушка, вторая часть магнитопровода и возвратная пружина.

Магнитный пускатель назначение и принцип работы

Давайте теперь пройдемся по деталям конструкции более подробно.

Возвратная пружина. Данная деталь изделия служит для того, чтобы вернуть в первоначальное расположение верхнюю часть пускателя после того, как будет прекращена подача напряжения и случится размагничивание магнитопровода.

Магнитный пускатель назначение и принцип работы

Электромагнит выполнен из двух Ш — образных частей, собранных из электромагнитной стали.

Магнитный пускатель назначение и принцип работы

Катушка с обмоткой из медного провода, которая может быть рассчитана на напряжение на 24, 36, 110, 220 и 380 вольт.

Магнитный пускатель назначение и принцип работы

Группа контактов, которая в изначальном положении разомкнута, а в рабочем положении замкнута.

Магнитный пускатель назначение и принцип работы

Итак, с внутренними компонентами изделия мы познакомились, давайте теперь узнаем каков принцип работы.

Как работает магнитный пускатель

Итак, магнитный пускатель работает так: как только на катушку поступает напряжение создается магнитное поле, которое за счет своей силы (оно также преодолевает сопротивление возвратной пружины) соединяет две половинки Ш — образного магнитопровода, а так как верхняя подвижная часть имеет механическую связь с группой контактов, то они также притягиваются и происходит замыкание группы контактов.

На двигатель начинает поступать напряжение и он начинает работать.

Как только напряжение на катушке пропало, магнитопровод размагничивается и возвратная пружина возвращает верхнюю половину магнитного пускателя в исходное положение.

Магнитный пускатель назначение и принцип работы

Правила монтажа электромагнитных пускателей

В первую очередь, для обеспечения правильного монтажа следует учесть, что монтаж должен осуществляться на ровную хорошо закрепленную в вертикальном положении планку. Это нужно чтобы избежать вибрации при срабатывании пускателя.

Монтаж пускателя с тепловым элементом следует производить в помещениях с минимальным температурным перекосом. Если не соблюсти это требование, то при повышенной окружающей температуре могут быть ложные срабатывания. Так же не следует располагать пускатели с тепловым реле возле источников тепла.

Если под контактный зажим подводится один проводник, то обязательно следует выполнять соединение типа «барашек» для того, чтобы клемма при зажиме не шла на перекос.

В случае если под один зажим подводится два проводника, следует использовать соединение прямого типа.

Магнитный пускатель назначение и принцип работы

При этом медные проводники следует предварительно залудить.

Перед первым пуском следует в обязательном порядке еще раз по схеме проверить правильность выполненного монтажа.

Неисправности и уход за пускателем

В принципе магнитный пускатель довольно неприхотлив в обслуживании, но он требует периодического сервисного обслуживания.

Если замечено, что в процессе работы пускатель стал сильно перегреваться, то, вероятнее всего, вышла из строя катушка (межвитковое замыкание), но перегреваться пускатель может также от повышенного напряжения в сети, значительной перегрузки и при ослабленных контактных соединениях.

Сильное гудение аппарата может быть вызвано целым комплексом причин, например: неплотное прилегание магнитопровода по причине загрязнения контактных поверхностей или же пониженное напряжение в питающей сети.

Магнитный пускатель назначение и принцип работы

Плановый осмотр и уход за изделием позволит избежать большинство этих проблем.

Заключение

Это все, что я хотел рассказать о таком интересном и нужном коммутационном аппарате как магнитный пускатель. Если статья оказалась вам полезна, то оцените ее лайком и спасибо за ваше внимание!

Принцип работы магнитного пускателя и его технические характеристики

В статье рассмотрим принцип работы магнитного пускателя и его технические характеристики, разграничим эту группу приборов с контакторами. В статьях Рунета настолько размытые определения, что даже представленная информация уже окажется полезна. Попутно рассмотрим назначение пускателей, объясним, почему в отдельных случаях без них обойтись нельзя. Узнаете массу интересного – не просто перечисление сухих фактов, но одновременно и анализ множества вещей, связанный с темой.

Чем магнитные пускатели отличаются от контакторов

Пускатель магнитный

Интересна терминология: почему используется слово «магнитный». Причина проста – внутри непременно стоит катушка магнитного пускателя, позволяющая выполнить быстрый и безошибочный старт. Причём производится это не движением руки, а при помощи импульса тока, что делает возможным создание дистанционных устройств управления. Везде присутствуют катушки, чем же отличаются контакторы и магнитные пускатели? Рассмотрим вначале причины, вызывающие необходимость в принятии защитных мер:

Двигатель считается сложным механизмом, а на практике – вдобавок дорогим. Следовательно, требуется бережно обращаться с оборудованием, чтобы не тратить лишних денег. Налицо первая причина. При традиционном прямом пуске развивается большой крутящий момент, но одновременно резкие толчки не всегда подходят для указанного типа устройств. К примеру, применительно к насосам способен образоваться гидравлический удар, что потенциально приводит к выходу клапанов из строя.

Любой бытовой водонагреватель должен эксплуатироваться бок о бок с защитой от подобных перегрузок. Частично удар способен принять гидроаккумулятор. Но скачки все равно вредят защитной эмали. В результате – трещины, в перспективе – разрушение защитного покрытия. Вредит слишком резкий пуск и двигателю. Отдельные детали быстрее приходят в негодность. Таким образом, магнитный пускатель признаётся необходимым сопровождением для дорогого оборудования.

  • Токопотребление и перегрузка

На старте асинхронный двигатель потребляет чрезвычайно большой ток в сети 220 В, ничего не поделаешь. На заводе обычно подобных двигателей в избытке, а лишние помехи по шине питания не нужны. Добавочная веская причина: возможность одновременного запуска нескольких устройств, что в перспективе грозит перегрузкой электропроводки и срабатыванием систем защиты. В части окажутся ложными, но повреждение изоляции кабелей не приветствуется, замена их – долгий и сложный процесс, не говоря уже о цене. Пусковой ток возможно снижать. Рассматриваемый класс устройств это и делает.

Схема магнитного пускателя с реверсивной возможностью

  • Многофункциональность

Одновременно магнитные пускатели представляют ряд других функций. К примеру, реверс. При необходимости изменением коммутации обмоток реверсивный магнитный пускатель меняет направление вращения вала на противоположное. Внутри стоит схема предохранения от одновременного включения обеих цепей. В результате магнитный пускатель позволяет выполнить процесс реверса безболезненно. Известны прочие специфические особенности, которые рассмотрим ниже. Избранные модели прекращают питание при исчезновении одной фазы или даже контролируют перекосы напряжения.

Из сказанного понятно, что контактор просто замыкает и размыкает цепь, тогда как магнитные пускатели одновременно выполняют дополнительные функции по защите либо снижению пускового тока. Вывод: контактор территориально входит в состав пускателя и выполняет приблизительно аналогичные функции (не всегда) совместно с другим оборудованием.

Как устроены магнитные пускатели, разновидности

Основной исполнительной частью магнитного пускателя считается контактор. Это катушка с частично подвижным сердечником. За счёт возникающих магнитных полей в нужный момент контактор срабатывает под действием напряжения. В ход идёт магнитная индукция, и чтобы не получилось, как в электрической плитке, сердечник состоит из множества тонких пластин. Используется специальная электротехническая сталь. Этим обеспечивается разбиение объёма сердечника на части. Меж пластинами применяется лаковая изоляция.

В результате вихревые токи по толще материала не наводятся, снижаются потери. Вдобавок к общей части прилагается целый сонм оборудования. Но прежде, нежели описать упомянутую груду, рассмотрим, как проводится запуск электродвигателя, исключающий перегрузку сети.

Перекоммутация типа объединения

Первой методикой станет перекоммутация типа объединения обмоток со звезды на треугольник. Первый используется в период запуска, а второй – когда двигатель разгонится. Эффект снижения пускового тока достигается за счёт изменения напряжения, приложенного к обмоткам. В первом случае это 220 В (разница между фазой и нейтралью), во втором – 380 В (линейное напряжение сети). В результате подобного оборота мощность понижается, что закономерно вызывает меньший пусковой момент, ток пуска падает. Когда вал наберёт обороты, магнитный пускатель перекоммутирует обмотки на треугольник, оборудование выйдет на режим. В этом случае реле внутри два. Причём сконструированных так, чтобы одновременно не замкнуться (этим блокируется возникновение аварийной ситуации на линии). Внешнее питание подходит лишь к реле, отвечающему за включение треугольника.

Изменение питающего напряжения

Часто регулировка пускового тока производится вариациями амплитуды питающего напряжения. Смысл идентичный рассмотренному. Требуется снизить величину питающего напряжения, потом упадёт и мощность. Обмоткам без разницы, за счёт чего происходят изменения. В результате простейшие магнитные пускатели выполняются на потенциометрах, а более сложные включают в состав тиристорные ключи. В первом случае образуется резистивный делитель, на котором падает часть напряжения. Отсюда прибор греется сильнее, зато конструкция предельно простая. Более продвинутые схемы на ключах требуют сложной организации. В литературе их иногда называют полупроводниковыми магнитными пускателями.

Изменение частоты

Принцип действия магнитного пускателя основывается порой на изменении частоты. Подобный метод управления подходит не всем двигателям. Требуется тип с короткозамкнутый ротором. Правда, большая часть оборудования сюда и относится. С уменьшением частоты уменьшением качество захвата полей растёт, скорость вращения вала ниже. В результате достигается нужный эффект – надёжный старт (без срыва) в сочетании с понижением тока. Реализация схемы требует присутствия инвертора. Входное напряжение вначале выпрямляется, а потом снижается частота. В случае сложных электронных инверторов становится возможным постепенно довести параметры до нужного уровня.

Устройство пускателя

Автотрансформатор

Пуск через автотрансформатор часто применяется для снижения начального тока асинхронных двигателей. Обычно процесс проходит ряд этапов, в течение которых последовательно задействуются разные выводы (это причина применения непосредственно автотрансформаторов, в результате вдвое снижается число переключаемых контактов). Напряжение ступенями растёт постепенно, пока оборудование не включается в сеть напрямую.

К приведённым выше способам дадим пояснения. К примеру, как работает магнитный пускатель 380В с повышенным напряжением? Суть в том, что при включении звездой возможно использовать вольтаж приблизительно в корень из трёх раз больший, нежели номинальный. Разумеется, запрещается включать обмотки треугольником. А сделать наоборот – уменьшить питание в корень из трёх раз – не получится, произойдёт падение мощности.

За счёт описанного принципа работают устройства на автотрансформаторах и делители на потенциометрах (реостатах). Рассмотрим управление магнитными пускателями с точки зрения плюсов и минусов:

  1. Включение напрямую используется чаще. В этом случае получается наибольший крутящий момент на старте, но одновременно возникает скачок тока, до 10 раз превышающий номинал. Вдобавок оборудование подвергается наибольшему риску перегрузки.
  2. Коммутация соединений с звезды на треугольник убирает первый и второй недостатки прямого пуска, но обзаводится другими. Во-первых, на треть падает начальный крутящий момент, во-вторых, невозможно таким образом обеспечить надёжную работу устройств со слишком малой нагрузкой (к примеру, холостой ход небольшого мотора). Сверхток вырастет лавинообразно, и эффект применения устройства нивелируется.
  3. Случай с потенциометром характеризуется сходными моментами: возникают скачки тока при смене номинала сопротивлений. Это устранимо, если применяется плавный магнитный пускатель (см. описание прибора, техническую документацию). Остаётся лишь пониженный пусковой крутящий момент.

    Современное оборудование

  4. Частотный магнитные пускатели, как сказано выше, годятся не для любых типов двигателей. Присутствует пониженный пусковой момент. Регулировка ведётся без резких скачков напряжения. Благодаря высокой стоимости изделия становится возможна плавная подстройка, что устраняет различные скачки и передады.
  5. Обмотки автотрансформатора меняют входное напряжение всегда резко. Скачков напряжения не избежать, снижается и пусковой крутящий момент. Среди достоинств появляется возможность резкого уменьшения тока на старте двигателя.

Итак, технические характеристики магнитных пускателей во всех случаях характеризуются недостатками. Но для дорогого оборудования этот тип устройств непременно идёт в паре.

Дополнительные опции магнитных пускателей

Согласно определениям стандартов магнитный пускатель предусматривает конкретную защиту, не единственно перегрев. Классификация по ГОСТ 2491 описывает ряд параметров:

  1. Лишённые устройства защиты.
  2. Биметаллическое или иное тепловое реле.
  3. Схема измерения на позисторе (терморезистор).

Пусть написано, что защиты нет, все-таки производится регуляция тока, уже подразумевая более бережное отношение к питающей сети. Помните, защита может быть внутренней (от перегрева двигателя, как в пускозащитном реле холодильника) либо функциональной (снижение тока для предотвращения срабатывания автоматов или прочих предохранительных устройств).

Надеемся, читателям теперь понятно выражение магнитный пускатель. Изложенная информация поможет понять, как производится старт трёхфазного асинхронного двигателя на 220В. В этом случае менять скорость допустимо лишь подачей нужной амплитуды. По этой же причине коммутирующий магнитный пускатель 220В обычно не применяется. Ему просто нечего контролировать. Обмотки постоянно включены по одинаковой схеме. А вот реверс возможно обеспечить, но это новая история.

Из характеристик отметим количество циклов срабатывания. Эта величина магнитного пускателя напрямую определяет срок жизни прибора в большинстве случаев.

Принцип работы магнитного пускателя: описание, характеристики

Автор Почемучка На чтение 24 мин. Просмотров 2.5k. Опубликовано

Для отключения необходимо обесточить катушку, и возвратная пружина возвращает якорь на место- блок и главные контакты размыкаются.

Освещение в доме мы включаем обыкновенным выключателем, при этом через него проходит ток небольшой величины. Для включения мощных нагрузок однофазных на 220 Вольт и 3 фазных на 380 Вольт используются специальные коммутирующие электротехнические аппараты— магнитные пускатели. Они позволяют дистанционно при помощи кнопок (можно сделать и от обычного выключателя) включать-выключать мощные нагрузки, например освещение целой улицы или мощный электродвигатель.

В квартирах пускатели не используются, за то довольно часто применяются на производстве, в гаражах на даче для запуска, защиты и реверсирования асинхронных электрических двигателей. Да же из названия понятно, что главное его предназначение заключается в запуске электродвигателей. А кроме того вместе с тепловым реле, магнитный пускатель защищает мотор от ошибочных включений и повреждений в аварийных ситуациях: возникновении перегрузок, нарушении изоляции обмоток, пропадании одной фазы и т. п.

Часто пускатели устанавливаются для включения и выключения не только двигателей, но и других много киловаттных нагрузок- уличное освещение, обогреватели и т. п.

Обращаем Ваше внимание на то, что мгновенное размыкание контактов произойдет не только, после намеренного отключения питания, но и если напряжение в сети упадет больше, чем на 60% от номинального значения.

Первым делом рассмотрим устройство магнитного пускателя. На самом деле конструкция не сложная и включает в себя подвижную и неподвижную часть. Чтобы информация была более понятной, рассмотрим конструкцию аппарата, опираясь на модель серии ПМЕ:

Конструкция аппарата ПМЕ

  1. Контактные пружины, которые обеспечивают плавное замыкание контактов при включении пускателя, а также создают необходимое усилие нажатия.
  2. Контактные мостики.
  3. Контактные пластины.
  4. Пластмассовая траверса.
  5. Якорь.
  6. Обмотка.
  7. Ш-образная часть сердечника (неподвижная)
  8. Дополнительные контакты.

Помимо этого устройство магнитного пускателя может включать в себя амортизаторы, назначение которых – смягчить удар во время пуска аппарата. В серии ПМ12 амортизаторы обозначены цифрой 8, но более понятно они показаны на второй картинке – конструкции магнитного пускателя ПАЕ-311 (обозначение «10»).

Мы рассказали, из чего состоит магнитный пускатель, однако вряд ли это дало Вам что-либо понять, особенно если Ваш уровень знаний «чайник в электрике». Чтобы все стало на свои места, далее мы рассмотрим принцип работы аппарата.

В зависимости от назначения пускатели выполняют трех- или четырехполюсными. Но есть и аппараты, имеющие один или два полюса.

Электрические характеристики магнитных пускателей

Номинальный ток пускателя – это ток, выдерживаемый силовыми контактами в течение продолжительного времени. У некоторых моделей устаревших пускателей для разных диапазонов токов меняются габаритные размеры или «величина».

Номинальное напряжение – напряжение питающей сети, которое выдерживает изоляция между силовыми контактами.

Напряжение катушки управления – рабочее напряжение, на котором работает катушка управления пускателя. Выпускаются пускатели с катушками, работающие от сети постоянного или переменного тока.

Управление пускателем не обязательно питается напряжением силовых цепей, в некоторых случаях схемы управления имеют независимое питание. Поэтому катушки управления выпускаются на широкий ассортимент напряжений.

Напряжения катушек управления пускателей
Переменный ток123648110
220
380
Постоянный ток123648110220

Для нормальной работы теплового реле температура окружающей среды не должна превышать 40 0 С. Также не рекомендуется установка рядом с нагревательными элементами (реостаты) и не устанавливать их в наиболее нагреваемых частях шкафа, например вверху шкафа.

Советы по монтажу магнитных пускателей

При монтаже магнитных пусковых устройств с тепловыми реле необходимо устанавливать с минимальной разностью температур окружающей среды между электродвигателем и магнитным пусковым устройством.

Нежелательна установка магнитных устройств в местах подверженных сильным ударам или вибрациям, а также рядом с мощными электромагнитными аппаратами, токи которых превышают 150 А, так как они при срабатывании создают довольно большие удары и толчки.

Для нормальной работы теплового реле температура окружающей среды не должна превышать 40 0 С. Также не рекомендуется установка рядом с нагревательными элементами (реостаты) и не устанавливать их в наиболее нагреваемых частях шкафа, например вверху шкафа.

Сравнение магнитного и гибридного пускателя:

Реверсивные пускатели могут также иметь механическую блокировку , которая располагается под основание (панелью) пускателя и также служит для предотвращения одновременного включения двух магнитных пускателей. При электрической блокировке через нормально-замкнутые контакты самого пускателя (что предусмотрено его внутренними соединениями) реверсивные пускатели надежно работают и без механической блокировки.

Магнитные пускатели предназначены, главным образом, для дистанционного управления трехфазными асинхронными электродвигателями с короткозамкнутым ротором, а именно:

  • для пуска непосредственным подключением к сети и остановки (отключения) электродвигателя (нереверсивные пускатели),
  • для пуска, остановки и реверса электродвигателя (реверсивные пускатели).

Кроме этого, пускатели в исполнении с тепловым реле осуществляют также защиту управляемых электродвигателей от перегрузок недопустимой продолжительности.

Магнитные пускатели открытого исполнения предназначены для установки на панелях, в закрытых шкафах и других местах, защищенных от попадания пыли и посторонних предметов.

Магнитные пускатели защищенного исполнения предназначены для для установки внутри помещений, в которых окружающая среда не содержит значительного количества пыли.

Магнитные пускатели пылебрызгонепроницаемого исполнения предназначены как для внутренних, так и для наружных установок в местах, защищенных от солнечных лучей и от дождя (под навесом).

Магнитный пускатель серии ПМЛ

Устройство магнитного пускателя

Магнитные пускатели имеют магнитную систему , состоящую из якоря и сердечника и заключенную в пластмассовый корпус. На сердечнике помещена втягивающая катушка . По направляющим верхней части пускателя скользит траверса, на которой собраны якорь магнитной системы и мостики главных и блокировочных контактов с пружинами .

Принцип работы пускателя прост : при подаче напряжения на катушку якорь притягивается к сердечнику, нормально-открытые контакты замыкаются, нормально-закрытые размыкаются. При отключении пускателя происходит обратная картина: под действием возвратных пружин подвижные части возвращаются в исходное положение, при этом главные контакты и нормально-открытые блокконтакты размыкаются, нормально-закрытые блокконтакты замыкаются.

Реверсивные магнитные пускатели представляют собой два обычных пускателя, укрепленных на общей основании (панели) и имеющем электрические соединения, обеспечивающие электрическую блокировку через нормально-замкнутые блокировочные контакты обоих пускателей, которая предотвращает включение одного магнитного пускателя при включенном другом.

Самые распространенные схемы включения нереверсивного и реверсивного магнитного пускателя смотрите здесь: Схемы включения магнитным пускателем асинхронного электродвигателя. В этих схемах предусмотрена нулевая защита с помощью нормально-открытого контакта пускателя, предотвращающая самопроизвольное включение пускателя при внезапном появлении напряжения.

Реверсивные пускатели могут также иметь механическую блокировку , которая располагается под основание (панелью) пускателя и также служит для предотвращения одновременного включения двух магнитных пускателей. При электрической блокировке через нормально-замкнутые контакты самого пускателя (что предусмотрено его внутренними соединениями) реверсивные пускатели надежно работают и без механической блокировки.

Реверсивный магнитный пускатель

Реверс электродвигателя при помощи реверсивного пускателя осуществляется через предварительную остановку, т.е. по схеме: отключение вращающегося двигателя — полная остановка — включение на обратное вращения. В этом случает пускатель может управлять электродвигателем соответствующей мощности.

В случае применения реверсирования или торможения электродвигателя противовключением его мощность должна быть выбрана ниже в 1,5 — 2 раза максимальной коммутационной мощности пускателя, что определяется состоянием контактов, т.е. их износоустойчивостью, при работе в применяемом режиме. В этом режиме пускатель должен работать без механической блокировки. При этом электрическая блокировка через нормально-замкнутые контакты магнитного пускателя обязательна.

Магнитные пускатели защищенного и пылебрызгонепроницаемого исполнений имеют оболочку. Оболочка пускателя пылебрызгонепроницаемого исполнения имеет специальные резиновые уплотнения для предотвращения попадания внутрь пускателя пыли и водяных брызг. Входные отверстия в оболочку закрыты специальными пробами с применением уплотнений.

Ряд магнитных пускателей комплектуется тепловыми реле , которые осуществляют тепловую защиту электродвигателя о перегрузок недопустимой продолжительности. Регулировка тока уставки реле — плавная и производится регулятором уставки путем поворота его отверткой. Здесь смотрите про устройство тепловых реле. В случае невозможности осуществления тепловой защиты в повторно-краковременном режиме работы следует применять магнитные пускатели без теплового реле. От коротких замыканий тепловые реле не защищают

Тепловые реле

Схема прямого пуска и защиты асинхронного двигателя с короткозамкнутым ротором (а), (б) – пусковая характеристика двигателя (1) и защитная характеристика теплового реле (2)

Монтаж магнитных пускателей

Для надежной работы монтаж магнитных пускателей должен производится на ровной, жестко укрепленной вертикальной поверхности. Пускатели с тепловым реле рекомендуется устанавливать при наименьшей разности температуры воздуха, окружающего пускатель и электродвигатель.

Что бы не допустить ложных срабатываний не рекомендуется устанавливать пускатели с тепловым реле в местах подверженных ударам, резким толчкам и сильной тряске (например, на общей панели с электромагнитными аппаратами на номинальные токи более 150 А), так как при включении они создают большие удары и сотрясения.

Для уменьшения влияния на работу теплового реле дополнительного нагрева от посторонних источников тепла и соблюдении требования о недопустимости температуры окружающего пускатель воздуха более 40 о рекомендуется не размещать рядом с магнитными пускателями аппараты теплового действия (реостаты и т.д.) и не устанавливать их с тепловым реле в верхних, наиболее нагреваемых частях шкафов.

При присоединении к контактному зажиму магнитного пускателя одного проводника его конец должен быть загнут в кольцеобразную или П-образную форму (для предотвращения перекоса пружинных шайб этого зажима). При присоединении к зажиму двух проводников примерно равного сечения их концы должны быть прямыми и распологаться по обе стороны от зажимного винта.

Присоединяемые концы медных проводников должны быть залужены. Концы многожильных проводников перед лужением должны быть скручены. В случае присоединения алюминиевых проводов их концы должны быть зачищены мелким надфилем под слоем смазки ЦИАТИМ или технического вазелина и дополнительно покрыты после зачистки кварцевазилиновой или цинко-вазелиновой пастой. Контакты и подвижные части магнитного пускателя смазывать нельзя.

Перед пуском магнитного пускателя необходимо произвести его наружный осмотр и убедится в исправности всех его частей, а также в свободном передвижении всех подвижных частей (от руки), сверить номинальное напряжение катушки пускателя с напряжением, подаваемым на катушку, убедится, что все электрические соединения выполнены по схеме.

При использовании пускателей в реверсивных режимах, нажав от руки подвижную траверсу до момента соприкосновения (начало замыкания) главных контактов, проверить наличие раствора нормально-замкнутых контактов, что необходимо для надежной работы электрической блокировки.

У включенного магнитного пускателя допускается небольшое гудение электромагнита , характерное для шихтованных магнитных систем переменного тока.

Уход за магнитными пускателями в процессе эксплуатации

Уход за пускателями должен заключаться, прежде всего, в защите пускателя и теплового реле от пыли, грязи и влаги . Необходимо следить, чтобы винты контактных зажимов были плотно затянуты. Надо также проверять состояние контактов.

Контакты современных магнитных пускателей особого ухода не требуют. Срок износа контактов зависит от условий и режима работы пускателя. Зачистка контактов пускателей не рекомендуется, так как удаление контактного материала при зачистке приводит к уменьшению срока службы контактов. Только в отдельных случаях сильного оплавления контактов при отключении аварийного режима электродвигателя допускается их зачистка мелким надфилем.

При появлении после длительной эксплуатации магнитного пускателя гудения, носящего, характер дребезжания, необходимо чистой ветошью очистить от грязи рабочие поверхности электромагнита, проверить наличие воздушного зазора, а также проверить отсутствие заеданий подвижных частей и трещин на короткозамкнутых витках, расположенных на сердечнике.

При разборке и последующей сборке магнитного пускателя следует сохранять взаимное расположение якоря и сердечника, бывшее до разборки, так как их приработавшиеся поверхности способствуют устранению гудения. При разборках магнитных пускателей необходимо чистой и сухой ветошью протирать пыль с внутренних и наружных поверхностей пластмассовых деталей пускателя.

Сделайте небольшой донат на развитие сайта «Школа для электрика»!

Пуск через автотрансформатор часто применяется для снижения начального тока асинхронных двигателей. Обычно процесс проходит ряд этапов, в течение которых последовательно задействуются разные выводы (это причина применения непосредственно автотрансформаторов, в результате вдвое снижается число переключаемых контактов). Напряжение ступенями растёт постепенно, пока оборудование не включается в сеть напрямую.

Как устроены магнитные пускатели, разновидности

Основной исполнительной частью магнитного пускателя считается контактор. Это катушка с частично подвижным сердечником. За счёт возникающих магнитных полей в нужный момент контактор срабатывает под действием напряжения. В ход идёт магнитная индукция, и чтобы не получилось, как в электрической плитке, сердечник состоит из множества тонких пластин. Используется специальная электротехническая сталь. Этим обеспечивается разбиение объёма сердечника на части. Меж пластинами применяется лаковая изоляция.

В результате вихревые токи по толще материала не наводятся, снижаются потери. Вдобавок к общей части прилагается целый сонм оборудования. Но прежде, нежели описать упомянутую груду, рассмотрим, как проводится запуск электродвигателя, исключающий перегрузку сети.

Перекоммутация типа объединения

Изменение питающего напряжения

Изменение частоты

Автотрансформатор

Пуск через автотрансформатор часто применяется для снижения начального тока асинхронных двигателей. Обычно процесс проходит ряд этапов, в течение которых последовательно задействуются разные выводы (это причина применения непосредственно автотрансформаторов, в результате вдвое снижается число переключаемых контактов). Напряжение ступенями растёт постепенно, пока оборудование не включается в сеть напрямую.

К приведённым выше способам дадим пояснения. К примеру, как работает магнитный пускатель 380В с повышенным напряжением? Суть в том, что при включении звездой возможно использовать вольтаж приблизительно в корень из трёх раз больший, нежели номинальный. Разумеется, запрещается включать обмотки треугольником. А сделать наоборот – уменьшить питание в корень из трёх раз – не получится, произойдёт падение мощности.

За счёт описанного принципа работают устройства на автотрансформаторах и делители на потенциометрах (реостатах). Рассмотрим управление магнитными пускателями с точки зрения плюсов и минусов:

Итак, технические характеристики магнитных пускателей во всех случаях характеризуются недостатками. Но для дорогого оборудования этот тип устройств непременно идёт в паре.

2. Во — вторых необходимо знать номинальную силу тока нагрузки в Амперах, чтобы подобрать оптимальный вариант прибора для его нормальной эксплуатации;

Принцип работы магнитного пускателя

Принцип работы магнитного контактора довольно простой. На управляющую катушку подается напряжение питания (управляющее напряжение). За счет этого появляется магнитное поле катушки, которое притягивает вовнутрь сердечник магнитопровода, на котором закреплена группа силовых (рабочих) контактов контактора. Контакты замыкаются и через контактор начинает течь ток потребляемый нагрузкой.

Особенности выбора контакторов:

1. В первую очередь нужно узнать род нагрузки (нагрузка переменного или постоянного тока). Это связано из некоторым различием в контакторах переменного и постоянного тока, в первую очередь с конструкцией дугогасительной камеры;

2. Во — вторых необходимо знать номинальную силу тока нагрузки в Амперах, чтобы подобрать оптимальный вариант прибора для его нормальной эксплуатации;

3. Число полюсов силовых контактов. Может быть от одного до четырех, в зависимости от числа полюсов подключаемой нагрузки;

4. Рабочее напряжение катушки управления. Этот параметр выбирается из требований безопасности эксплуатации оборудования;

5. Наличие теплового реле. Если контактор включает и выключает электрический двигатель, то необходимо устанавливать тепловое реле для отслеживания состояния перегрева двигателя и своевременного отключения его от сети. На рисунке 3 показано внешний вид теплового реле компании LSIS. Тепловое реле подключается к нижним силовым контактам контактора;

6. Способ монтажа контактора. Монтаж можно осуществлять как на DIN – рейку, так и на крепежные болты. Все зависит от габаритов контактора и от места установки.

За более детальной информацией обращайтесь к нашим менеджерам, которые помогут выбрать лучшый вариант.

С точки зрения конструкции любой магнитный пускатель включает в себя подвижной якорь, который перемещается по специальным полозьям относительно стационарно закрепленной неподвижной части.

Исходя из названия, данное электротехническое устройство выступает в качестве электромагнита, который срабатывает при прохождении по обмотке катушки электрического тока. При этом основное назначение магнитного пускателя – это запуск в работу электродвигателя.

С точки зрения конструкции любой магнитный пускатель включает в себя подвижной якорь, который перемещается по специальным полозьям относительно стационарно закрепленной неподвижной части.

Принцип действия электромагнитной системы

Если рассматривать пускатель максимально упрощенно, то его можно представить в виде обычной кнопки с расположенными на ее корпусе клеммами подключения стационарных контактов и силовых цепей. Подвижная часть выступает в роли контактного мостика, назначение которого следующее:

1. Обеспечение двойного размыкания силовой цепи целью отключения питания электродвигателя;
2. Обеспечение надежного контакта проводников при функционирующей схеме.

Так, если обмотка катушки обесточена, соответственно, магнитного поля вокруг нее нет, поэтому якорь отбрасывается в исходное положение усилием пружин. Но как только магнитные силы начинают действовать при прохождении тока через обмотку, якорь переходит в рабочее положение.

Принцип действия системы силовых контактов

Учитывая тот факт, что силовые контакты постоянно подвергаются большим нагрузкам и агрессивному воздействию, их надежная и длительная эксплуатация достигается, за счет принятия следующих мер:

• применение сплавов технического серебра в качестве материала посредством нанесения специальным методом на медные перемычки;
• изготовление контактов с существенным запасом прочности;
• силовые контакты изготавливаются в форме, специально разработанной для достижения максимального электрического контакта при минимальном воздействии дуги при разрыве контакта.

В случае с трехфазными схемами в конструкции пускателя присутствуют три силовых контакта и несколько дополнительных, которые повторяют положение якоря и применяются для управления работой двигателя. В зависимости от назначения, управляющие контакты в процессе срабатывания магнитного пускателя могут, как замыкать цепь, так и размыкать ее.

Современные магнитные пускатели, которые поставляют отечественные производители, классифицируются на семь групп, исходя из возможностей работы с нагрузками той или иной мощности. Для их обозначения используются определенные значения по возрастанию, начиная с нулевой величины (ток коммутации составляет до 6,3 ампера) и заканчивая шестой с током коммутации 160 А.

Для классификации пускателей импортного производства применяются собственные, отличные от описанных выше критерии.

Различные модели магнитных пускателей и их конструктивные особенности

Достаточно ранние модели магнитных пускателей снабжались силовыми контактами и повторителями на размыкание и замыкание в количестве, как правило, одного-двух штук. Современные же модели получают ряд дополнительных конструктивных элементов, благодаря чему, их набор функций значительно расширяется.

Одним из ярких примеров сказанного выше служат изделия в комплектном исполнении, которые способны управлять работой трехфазных электродвигателей в различных режимах и реверсивном, в том числе, за счет применения дополнительного оснащения. Все что требуется в данном случае от потребителя – подключить к имеющемуся модулю питание и электродвигатель. Сама же схема является смонтированной и отлаженной, исходя из тех или иных нагрузок.

Магнитные пускатели достаточно высокой мощности, помимо всего прочего, снабжаются системой гашения дуги, которая возникает при размыкании силовых контактов.

Катушка находится в нижней части вместе с возвратной пружиной. Свойством пружины возврата является возвращение верхней половины в исходное состояние после отключения питания на обмотке. Так осуществляется разъединение силовых контактов.

Конструкция пускателя простая, так же, как и его принцип работы. Пускатель состоит из контактов двух видов: неподвижных и подвижных. При замыкании этих контактов электродвигатель запускается, а при разъединении контактов происходит остановка и выключение питания.

Разновидности

Магнитные пускатели предназначены в основном для управления работой 3-фазных электромоторов на дистанционном уровне. Основные операции, проводимые с помощью магнитных пускателей – это запуск, отключение или реверс.

Вспомогательной функцией пускателя вместе с тепловым реле является защита электродвигателя от излишних нагрузок. Имеются схемы пускателей с ограничителями напряжения на основе полупроводниковых элементов. По схемам подключения нагрузки бывают реверсивными и нереверсивными.

По типу расположения магнитные пускатели классифицируются:
  • Открытого типа . Располагают в защищенных шкафах, панелях, и других местах, не доступных для влаги, пыли и других вредных факторов.
  • Защищенного исполнения . Монтируются в помещениях с пониженным содержанием пыли в воздухе, исключающих доступ воды к устройству.
  • Влагонепроницаемого исполнения . Монтируются внутри зданий, снаружи под оборудованными навесами от воды и солнца.
Вспомогательная классификация:
  • Блок с кнопками на корпусе пускателя. Пускатели без реверса имеют две кнопки: Пуск и Стоп, устройства с реверсом оснащены тремя кнопками, две из них те же, что и в прошлом виде, добавлена кнопка Пуска назад. Некоторые исполнения устройств предусматривают лампу, сигнализирующую включение.
  • Устройства со вспомогательными контактами сигналов и блокировок. Применяются в различных сочетаниях, как замыкающие или разъединяющие. Контакты бывают встроенными, либо выполнены на отдельной подставке. Иногда вспомогательные контакты применяются в общем составе схемы пускателя. В устройствах с реверсом с помощью дополнительных контактов выполняется электрическая блокировка.
  • Значение напряжения и тока силовой обмотки.
  • Тепловое реле. Его свойство – это ток номинала, при котором реле не срабатывает на средних настройках. Это значение тока может регулироваться в некоторых пределах от номинального значения тока.

Некоторые магнитные пускатели комплектуются ограничителями напряжения и другими блокировками.

Конструктивные особенности

Все устройство пускателя делится на две половины: верхнюю и нижнюю. В верхней половине расположены двигающиеся контакты вместе с камерой гашения дуги. Там же расположена и подвижная часть магнита. Она действует на силовые контакты.

Катушка находится в нижней части вместе с возвратной пружиной. Свойством пружины возврата является возвращение верхней половины в исходное состояние после отключения питания на обмотке. Так осуществляется разъединение силовых контактов.

Принцип действия

Название устройства говорит о его способе работы. Он действует по принципу электромагнита, во время прохождения тока по катушке. После притягивания контактов электродвигатель запускается.

1 — Подвижные контакты
2 — Подвижный якорь
3 — Пружины
4 — Катушка
5 — Стационарный сердечник
6 — Подвижный сердечник
7 — Стационарные контакты

Общее устройство состоит из основной части и якоря, который двигается по направляющим. Проще сказать, что все магнитные пускатели выполнены в виде большой кнопки с клеммами силовых контактов, и неподвижных контактов.

Двигающаяся часть имеет мостик с контактами, который обеспечивает разрыв цепи в двух местах, для выключения напряжения. Также мостик служит для качественного соединения проводов во время подключения схемы в действие. Система проверяется вручную. Надавливают на якорь и чувствуют усилие пружин, которое при работе преодолевается электромагнитом. При отпускании якоря контакты возвращаются назад.

В работе подобное управление не требуется, оно нужно для контроля. Реально применяется дистанционная форма подключения электромагнитным полем, которое возникает в обмотке от электрического тока. Шихтованный магнитопровод обеспечивает хорошую проводимость тока.

Когда в цепи отсутствует электрический ток, то вокруг обмотки магнитное поле исчезает, что приводит к отходу якоря в первоначальное положение. При подаче напряжения происходит обратный процесс. Рабочее включенное положение якоря влияет на функционирование устройства. В таком положении должно быть качественное соединение контактов. При малейшем ослаблении пружин контакты начинают подгорать, нагреваться, происходит отгорание концов проводов.

Установка и подключение

Для возможности качественной эксплуатации пускателей, их установку проводят на ровной неподвижной поверхности, вертикально. Устройства с тепловым реле нужно ставить так, чтобы не было разницы температуры с внешней средой.

Монтаж с нарушением приводит к ложным срабатываниям. Поэтому нельзя устанавливать магнитные пускатели в местах с вибрацией, ударами. Устройства с током номинала более 150 ампер при запуске сильно вибрируют и сотрясаются.

Корпус теплового реле может нагреться от других устройств. Это отрицательно действует на правильность работы пускателя. Поэтому не рекомендуется размещать пускатели рядом с горячим оборудованием.

При соединении провода с контактом пускателя, его конец загибают в виде кольца. Это не дает возникнуть перекосу пружинных шайб в зажиме. При подключении двух проводов с одним сечением, их располагают по двум противоположным сторонам от винта.

Перед монтажом концы проводов лудят. В многожильных проводах перед тем, как проводить лужение, концы скручивают. Концы алюминиевых проводов чистят надфилем, покрываются специальной пастой. Подвижные контакты и части пускателя смазывать запрещается. Перед запуском магнитные пускатели осматривают снаружи и контролируют исправность частей. От руки двигающиеся части должны легко перемещаться. Схема соединения сверяется.

Техническое обслуживание

Для качественного ухода за пускателем нужно знать возможные признаки поломок устройства. Обычно это высокая температура корпуса, сильное гудение.

Для предотвращения таких поломок нужен постоянный уход. В общем, магнитные пускатели не нуждаются в дорогостоящих работах. Нельзя допускать внутрь грязи, влаги и пыли. Необходимо регулярно контролировать плотность прилегания и качество контактов. Составляют перечень работ по техническому уходу и ремонту электромонтерами-ремонтниками.

TeSys F
Контакторы до 450кВт/400В и 1600А/АС1

Магнитный пускатель является коммутационным устройством, относящимся к ряду электромагнитных контакторов. Он позволяет коммутировать мощные нагрузки постоянного и переменного тока, а также, предназначен для частых включений и отключений силовых электрических цепей.

Магнитные пускатели, в основном, служат для запуска, остановки и реверса (переключения направления вращения его ротора) трехфазных асинхронных электродвигателей. Также, они отлично работают в схемах дистанционного управления освещением, системах управления компрессорами, насосами, тепловыми печами, кран-балками, кондиционерами, ленточными конвейерами и т.д. В общем, у магнитного пускателя большая сфера применения.

Для примера, рассмотрим пускатель EasyPact TVS от известного производителя Schneider Electric.

Серия EasyPact TVS, включающая в себя контакторы, промежуточные реле, тепловые реле перегрузки и автоматические выключатели, предназначена для защиты и управления электродвигателями в стандартных видах применения.

Серия EasyPact TVS предлагает оптимальный баланс рабочих характеристик, удобство выбора, приобретения и хранения и расширенную гибкость.

Пускатели серии EasyPact TVS предназначены для стандартных видов применения.

Контакторы на токи от 6 до 630 А

Тепловые реле перегрузки

Промежуточные реле

Автоматические выключатели защиты двигателя

Принцип работы магнитного пускателя.

Принцип работы совершенно прост: подается напряжение питания на катушку пускателя, в катушке появляется магнитное поле. За счет этого в середину катушки втягивается металлический сердечник, к которому закреплена группа силовых (рабочих) контактов. Контакты замыкаются, и через них начинает течь электрический ток. Основное управление магнитным пускателем осуществляется кнопками «Пуск», «Стоп», «Вперед» и «Назад».

Устройство магнитного пускателя.

Магнитный пускатель состоит из двух частей — пускатель и блок контактов.

Варианты пускателей

Блок контактов не является основной частью магнитного пускателя и далеко не всегда используется. Но при использовании пускателя в схеме, где должны быть задействованы дополнительные контакты этого пускателя, например, реверс электродвигателя, сигнализация работы пускателя или включение дополнительного оборудования пускателем, то для размножения контактов, как раз, и служит блок контактов или, как его еще называют — приставка контактная.

Реверсивные и нереверсивные контакторы

TeSys B
Реечные контакторы до 2750А

TeSys D
Реверсивные или нереверсивные контакторы до 75 кВт/400В и 250А/АС1

TeSys F
Контакторы до 450кВт/400В и 1600А/АС1

TeSys K
Реверсивные или нереверсивные контакторы до 5,5 кВт 400/415В

Пускатели прямого включения

TeSys GV2, LC
Пускатели прямого включения с автоматическим выключателем до 15кВт/400В

TeSys LUTM
Контроллеры TeSys U до 450кВт м

TeSys U
Многофункциональные устройства управления и защиты TeSys U до 15кВт

Пускатели в корпусе

TeSys GV2-ME
Пускатели безопасности в корпусе

TeSys LE
Пускатели в корпусе до 132кВт/400В

TeSys LG, LJ
Пускатели безопасности в корпусе

За более детальной информацией о продукции обращайтесь к нашим менеджерам.

Данная цепь поделена на две части:

Схема подключения

Одним из базовых элементов магнитного контактора является кнопка.

Кнопки осуществляют «Пуск», «Назад», «Вперед», «Стоп»

Вышеупомянутые элементы обеспечивают дистанционное управление пускателя.

Кнопка «Стоп» задействует размыкающий контакт, благодаря которому напряжение попадает на схему управления.

Кнопка «Пуск» нужна для того, чтобы контакт замкнулся, через него будет течь ток.

Схема, представленная на рис. 7, показывает стандартный запуск мотора двигателя.

Как подключить магнитный пускатель? Нужно уделить надлежащее внимание вышеупомянутой схеме.

Данная цепь поделена на две части:

  • Силовая – питание приходит от переменного источника напряжения (380 V) и подразделяется на три основных фазы:

Силовой блок содержит выключать QF1, несколько силовых выводов: 1L1-2T1, 3L2-4L2, 5L3-6T3 и двигатель «М».

  • Цепь управления – получает сигнал с фазы «А». В этой же цепи присутствуют:
    • сигнал «стоп» – SB1;
    • сигнал «пуск» – SB2;
    • обмотки контактора КМ1;
    • дополнительный элемент 13НО-14НО.

Схема включение 13НО-14НО осуществляется параллельно SB2.

Запуская QF1 фазы «А», «В», «С» попадают на контакты 1L1, 3L2, 5L3 и переходят в дежурное положение. Поступление фазы «А» на контакт «3» осуществляется через кнопку «Стоп». Элемент 13НО продолжает оставаться в дежурном положении на этих двух контактах. Электрическая цепь готова. Обязательным условием работы с электродвигателями – электрические схемы с тепловым реле, имеющее свойство защиты прибора от токовых перегрузок.

Современные пускатели контакторные, авто-выключатели могут быть размещены в одном щитке на одной DIN-рейке. Система автоматизированного управления (САУ), отвечающая за взаимодействие всех элементов магнитных установок, технологических процессов и контроллеров основана на применении магнитных пускателей.

Приведенная информация данной статьи, позволит с легкостью сконструировать такого рода схему и использовать ее по необходимому назначению.

Источники

Источник — http://jelektro.ru/elektricheskie-terminy/vybor-rabota-puskatelej.html
Источник — http://samelectrik.ru/kak-rabotaet-magnitnyj-puskatel.html
Источник — http://electric-tolk.ru/princip-raboty-i-xarakteristiki-magnitnogo-puskatelya/
Источник — http://elenergi.ru/magnitnye-puskateli.html
Источник — http://electricalschool.info/main/electromontag/751-magnitnye-puskateli.html
Источник — http://vashtehnik.ru/elektrika/princip-raboty-magnitnogo-puskatelya-i-ego-texnicheskie-xarakteristiki.html
Источник — http://electricshop.com.ua/blog/printsip-raboty-magnitnogo-puskatelya
Источник — http://1.jelektrik.by/jelektrika-spravochnik/640-magnitnyj-puskatel-ustrojstvo-i-printsip-raboty
Источник — http://electrosam.ru/glavnaja/jelektrooborudovanie/ustrojstva/magnitnye-puskateli/
Источник — http://www.nek2000.ru/magnitnyy-puskatel/
Источник — http://amperof.ru/elektropribory/montazh/podklyuchenie-puskatelya-magnitnogo.html

Магнитный пускатель устройство и принцип работы

На заре электротехники коммутация трехфазных электродвигателей осуществлялась с помощью ручных рубильников. Они не обеспечивали в должной мере электробезопасность и требовали соединения с пультом управления с помощью силовых линий. Дальнейшее развитие коммутационных процессов привело к изобретению магнитного пускателя, лишенного недостатков обычного рубильника. Данное устройство дало возможность дистанционного включения нагрузки и автоматического управления рабочими процессами оборудования.

Виды магнитных пускателей

Сам магнитный пускатель имеет довольно простое устройство и принцип работы. Он состоит из двух видов контактов – подвижных и стационарных. Их замыкание вызывает запуск электродвигателя, а размыкание – отключение и остановку. Работа контактов осуществляется под действием магнитного поля.

Основным предназначением магнитных пускателей является дистанционное управление трехфазными асинхронными электродвигателями с короткозамкнутым ротором. Они работают при переменном токе, напряжением 380 и 660 вольт, с частотой 50 Гц. В число основных операций входят пуск, остановка и реверсирование.

Дополнительно, магнитные пускатели в совокупности с тепловыми реле, защищают управляемые электродвигатели от возможных перегрузок с недопустимой продолжительностью. В некоторых конструкциях пускателей имеются ограничители перенапряжений, используемые в полупроводниковых системах управления.

В соответствии со схемой включения нагрузки могут быть реверсивными и нереверсивными. Классификация по размещению предполагает магнитные пускатели следующих типов:

  • Открытого исполнения. Устанавливаются в закрытых шкафах, на панелях, и прочих местах, куда не может попасть пыль, влага и посторонние предметы.
  • Защищенного исполнения. Монтируются внутри помещений с низким содержанием пыли в окружающей среде. Исключается попадание воды на оболочку устройства.
  • Пылебрызгонепроницаемого исполнения. Устанавливаются внутри помещений и снаружи под навесами, защищающими от дождя и солнечных лучей.

Дополнительная классификация пускателей осуществляется по следующим признакам:

  • Кнопочный пост на корпусе прибора. Нереверсивные пускатели оборудованы кнопками ПУСК и СТОП, а реверсивные устройства имеют кнопки ПУСК ВПЕРЕД, ПУСК НАЗАД и СТОП. На некоторых моделях в корпусе монтируется сигнальная лампа ВКЛЮЧЕНО.
  • Дополнительные блокировочные и сигнальные контакты. Используются в разных комбинациях, в качестве замыкающих или размыкающих. Они могут быть встроенными или оборудоваться как отдельная приставка. Некоторые дополнительные контакты могут использоваться в качестве составной части общей схемы пускателя. Например, в реверсивных устройствах с их помощью осуществляется электрическая блокировка.
  • Ток и напряжение втягивающей катушки.
  • Наличие в схеме теплового реле. Его основной характеристикой является номинальный ток несрабатывания на средних установках. Регулировка тока несрабатывания выполняется в допустимых пределах +15% от номинала.

Отдельные виды магнитных пускателей могут быть укомплектованы ограничителями перенапряжения и другими видами установочных изделий

Устройство магнитного пускателя

Конструкция магнитного пускателя условно разделяется на верхнюю и нижнюю части. Вверху располагается подвижная система контактов совместно с дугогасительной камерой. Здесь же находится и подвижная половинка электромагнита, имеющая механическую связь с силовыми контактами, входящими в подвижную контактную систему.

В нижней части устройства расположена катушка, возвратная пружина и вторая часть электромагнита. Основной функцией возвратной пружины является возврат верхней половинки в исходное положение после того как прекращается подача питания на катушку. Таким образом, происходит разрыв силовых контактов пускателя.

В конструкцию обеих половинок электромагнита входят Ш-образные пластины, для изготовления которых использована электромагнитная сталь. В качестве обмотки применяется медный провод с определенным количеством витков, рассчитанных на работу с определенным питающим напряжением, значением 24, 36, 110, 220 и 380 В. Подача напряжения приводит к появлению в катушке магнитного поля. В результате, обе половинки стремятся соединиться, что приводит к образованию замкнутого контура. При отключении питания, магнитное поле исчезает, и верхняя часть возвращается в исходное положение под действием возвратной пружины.

Принцип работы

Принцип действия магнитного пускателя заложен уже в его названии. Он срабатывает как электромагнит, когда электрический ток проходит по обмотке катушки. После срабатывания силовых контактов, происходит запуск электродвигателя.

Общая конструкция устройства включает в себя основную часть, закрепленную стационарно и подвижный якорь, передвигающийся по направляющим. В самом упрощенном виде пускатель является единой кнопкой, корпус которой оборудован клеммами для подключения силовых цепей и стационарных контактов.

Подвижная часть оборудована контактным мостиком, обеспечивающим двойной разрыв силовой цепи, чтобы отключить питание нагрузки. Кроме того, эта деталь предназначена для надежного электрического соединения проводов входа и выхода, когда схема включается в работу. Проверить работу системы можно вручную. Для этого нужно надавить на якорь и ощутить усилие от сжатия пружин. Именно это усилие должно преодолеваться магнитным полем. Когда якорь отпускается, контакты отбрасываются пружинами в отключенное положение.

В процессе работы такое ручное управление не применяется, оно необходимо только для проверок. Фактически используется только дистанционная коммутация под действием электромагнитного поля. Само поле возникает в катушке под влиянием электротока, проходящего через ее витки. Прохождение тока значительно улучшается за счет шихтованного стального магнитопровода, разделенного на две части.

При отсутствии электрического тока, магнитное поле вокруг катушки тоже исчезает. Это приводит к отбрасыванию якоря вверх за счет энергии пружин. Когда ток вновь начинает проходить по обмотке, возникают магнитные силы, обеспечивающие движение якоря вниз.

Нижнее положение якоря оказывает влияние на работу всего устройства. В этом положении контакты должны надежно соединяться между собой. В случае ослабления возможно подгорание контактов, чрезмерный нагрев и последующее отгорание проводов.

Монтаж и подключение электромагнитного пускателя

Для обеспечения дальнейшей надежной работы магнитных пускателей, монтаж этих устройств рекомендуется выполнять на ровной поверхности, закрепленной жестко, в вертикальном положении. Установка пускателей с тепловыми реле должна производиться в условиях минимальной разности температур окружающего воздуха.

Неправильная установка может привести к ложным срабатываниям. Поэтому следует избегать мест, подверженных вибрации, сильным толчкам и ударам. Например, электромагнитные устройства с номинальным током свыше 150 А во время включения создают заметные сотрясения и удары.

Тепловые реле могут подвергаться дополнительному нагреву от других источников тепла. Это оказывает отрицательное влияние на всю работу данных устройств. Поэтому их нельзя размещать рядом с аппаратурой теплового действия или в тех частях шкафов, которые более всего подвержены нагреву.

Когда с контактным зажимом пускателя соединяется один проводник, его конец загибается в кольцо или П-образно. Такой способ соединения предотвращает перекос пружинных шайб, установленных в зажиме. Если же к зажиму подключаются сразу два проводника с примерно одинаковым сечением, их концы должны иметь прямую форму и располагаться по обеим сторонам от зажимного винта.

До того, как подключать медные провода, их концы необходимо залудить. В многожильных проводах концы перед лужением предварительно скручиваются. Концы проводов из алюминия зачищаются мелким надфилем, после чего покрываются техническим вазелином или специальной пастой. Смазка контактов и подвижных частей устройства не допускается.

Перед пуском необходимо осмотреть магнитный пускатель снаружи и проверить исправность всех его частей. Все подвижные элементы должны свободно двигаться от руки. Сверить все электрические соединения со схемой.

Уход за магнитным пускателем

Для того чтобы правильно ухаживать за магнитным пускателем, необходимо хорошо знать возможные неисправности этого устройства. Как правило, это повышенная температура деталей и сильное гудение прибора.

Повышенная температура в первую очередь связана с межвитковыми замыканиями катушки. В подобных случаях требуется ее замена. Кроме того, излишний нагрев может произойти в связи с повышением напряжения сети выше номинального, а также при перегрузках, слабых контактных соединениях и недопустимом износе контактов.

Чрезмерное гудение устройства может происходить по целому ряду причин. Среди них в первую очередь следует отметить неплотное прилегание якоря к сердечнику, в результате загрязнения поверхностей или их повреждения. Другой серьезной причиной становится заедание подвижных частей, а также снижение напряжения в сети более чем на 15% от номинала.

Для того чтобы избежать подобных неисправностей, требуется своевременный уход. В целом, магнитный пускатель не требует каких-либо дорогостоящих мероприятий. Прежде всего, нужно не допускать попадания внутрь прибора грязи, пыли и влаги. Нужно регулярно проверять состояние контактов и плотность зажимов. Существует определенный перечень мероприятий по техническому обслуживанию и ремонту, выполняемый специалистами-электротехниками.

Как работает магнитный пускатель на 220в

На заре электротехники коммутация трехфазных электродвигателей осуществлялась с помощью ручных рубильников. Они не обеспечивали в должной мере электробезопасность и требовали соединения с пультом управления с помощью силовых линий. Дальнейшее развитие коммутационных процессов привело к изобретению магнитного пускателя, лишенного недостатков обычного рубильника. Данное устройство дало возможность дистанционного включения нагрузки и автоматического управления рабочими процессами оборудования.

Сам магнитный пускатель имеет довольно простое устройство и принцип работы. Он состоит из двух видов контактов – подвижных и стационарных. Их замыкание вызывает запуск электродвигателя, а размыкание – отключение и остановку. Работа контактов осуществляется под действием магнитного поля.

Виды магнитных пускателей

Основным предназначением магнитных пускателей является дистанционное управление трехфазными асинхронными электродвигателями с короткозамкнутым ротором. Они работают при переменном токе, напряжением 380 и 660 вольт, с частотой 50 Гц. В число основных операций входят пуск, остановка и реверсирование.

Дополнительно, магнитные пускатели в совокупности с тепловыми реле, защищают управляемые электродвигатели от возможных перегрузок с недопустимой продолжительностью. В некоторых конструкциях пускателей имеются ограничители перенапряжений, используемые в полупроводниковых системах управления.

В соответствии со схемой включения нагрузки могут быть реверсивными и нереверсивными. Классификация по размещению предполагает магнитные пускатели следующих типов:

  • Открытого исполнения. Устанавливаются в закрытых шкафах, на панелях, и прочих местах, куда не может попасть пыль, влага и посторонние предметы.
  • Защищенного исполнения. Монтируются внутри помещений с низким содержанием пыли в окружающей среде. Исключается попадание воды на оболочку устройства.
  • Пылебрызгонепроницаемого исполнения. Устанавливаются внутри помещений и снаружи под навесами, защищающими от дождя и солнечных лучей.

Дополнительная классификация пускателей осуществляется по следующим признакам:

  • Кнопочный пост на корпусе прибора. Нереверсивные пускатели оборудованы кнопками ПУСК и СТОП, а реверсивные устройства имеют кнопки ПУСК ВПЕРЕД, ПУСК НАЗАД и СТОП. На некоторых моделях в корпусе монтируется сигнальная лампа ВКЛЮЧЕНО.
  • Дополнительные блокировочные и сигнальные контакты. Используются в разных комбинациях, в качестве замыкающих или размыкающих. Они могут быть встроенными или оборудоваться как отдельная приставка. Некоторые дополнительные контакты могут использоваться в качестве составной части общей схемы пускателя. Например, в реверсивных устройствах с их помощью осуществляется электрическая блокировка.
  • Ток и напряжение втягивающей катушки.
  • Наличие в схеме теплового реле. Его основной характеристикой является номинальный ток несрабатывания на средних установках. Регулировка тока несрабатывания выполняется в допустимых пределах +15% от номинала.

Отдельные виды магнитных пускателей могут быть укомплектованы ограничителями перенапряжения и другими видами установочных изделий

Устройство магнитного пускателя

Конструкция магнитного пускателя условно разделяется на верхнюю и нижнюю части. Вверху располагается подвижная система контактов совместно с дугогасительной камерой. Здесь же находится и подвижная половинка электромагнита, имеющая механическую связь с силовыми контактами, входящими в подвижную контактную систему.

В нижней части устройства расположена катушка, возвратная пружина и вторая часть электромагнита. Основной функцией возвратной пружины является возврат верхней половинки в исходное положение после того как прекращается подача питания на катушку. Таким образом, происходит разрыв силовых контактов пускателя.

В конструкцию обеих половинок электромагнита входят Ш-образные пластины, для изготовления которых использована электромагнитная сталь. В качестве обмотки применяется медный провод с определенным количеством витков, рассчитанных на работу с определенным питающим напряжением, значением 24, 36, 110, 220 и 380 В. Подача напряжения приводит к появлению в катушке магнитного поля. В результате, обе половинки стремятся соединиться, что приводит к образованию замкнутого контура. При отключении питания, магнитное поле исчезает, и верхняя часть возвращается в исходное положение под действием возвратной пружины.

Принцип работы

Принцип действия магнитного пускателя заложен уже в его названии. Он срабатывает как электромагнит, когда электрический ток проходит по обмотке катушки. После срабатывания силовых контактов, происходит запуск электродвигателя.

Общая конструкция устройства включает в себя основную часть, закрепленную стационарно и подвижный якорь, передвигающийся по направляющим. В самом упрощенном виде пускатель является единой кнопкой, корпус которой оборудован клеммами для подключения силовых цепей и стационарных контактов.

Подвижная часть оборудована контактным мостиком, обеспечивающим двойной разрыв силовой цепи, чтобы отключить питание нагрузки. Кроме того, эта деталь предназначена для надежного электрического соединения проводов входа и выхода, когда схема включается в работу. Проверить работу системы можно вручную. Для этого нужно надавить на якорь и ощутить усилие от сжатия пружин. Именно это усилие должно преодолеваться магнитным полем. Когда якорь отпускается, контакты отбрасываются пружинами в отключенное положение.

В процессе работы такое ручное управление не применяется, оно необходимо только для проверок. Фактически используется только дистанционная коммутация под действием электромагнитного поля. Само поле возникает в катушке под влиянием электротока, проходящего через ее витки. Прохождение тока значительно улучшается за счет шихтованного стального магнитопровода, разделенного на две части.

При отсутствии электрического тока, магнитное поле вокруг катушки тоже исчезает. Это приводит к отбрасыванию якоря вверх за счет энергии пружин. Когда ток вновь начинает проходить по обмотке, возникают магнитные силы, обеспечивающие движение якоря вниз.

Нижнее положение якоря оказывает влияние на работу всего устройства. В этом положении контакты должны надежно соединяться между собой. В случае ослабления возможно подгорание контактов, чрезмерный нагрев и последующее отгорание проводов.

Монтаж и подключение электромагнитного пускателя

Для обеспечения дальнейшей надежной работы магнитных пускателей, монтаж этих устройств рекомендуется выполнять на ровной поверхности, закрепленной жестко, в вертикальном положении. Установка пускателей с тепловыми реле должна производиться в условиях минимальной разности температур окружающего воздуха.

Неправильная установка может привести к ложным срабатываниям. Поэтому следует избегать мест, подверженных вибрации, сильным толчкам и ударам. Например, электромагнитные устройства с номинальным током свыше 150 А во время включения создают заметные сотрясения и удары.

Тепловые реле могут подвергаться дополнительному нагреву от других источников тепла. Это оказывает отрицательное влияние на всю работу данных устройств. Поэтому их нельзя размещать рядом с аппаратурой теплового действия или в тех частях шкафов, которые более всего подвержены нагреву.

Когда с контактным зажимом пускателя соединяется один проводник, его конец загибается в кольцо или П-образно. Такой способ соединения предотвращает перекос пружинных шайб, установленных в зажиме. Если же к зажиму подключаются сразу два проводника с примерно одинаковым сечением, их концы должны иметь прямую форму и располагаться по обеим сторонам от зажимного винта.

До того, как подключать медные провода, их концы необходимо залудить. В многожильных проводах концы перед лужением предварительно скручиваются. Концы проводов из алюминия зачищаются мелким надфилем, после чего покрываются техническим вазелином или специальной пастой. Смазка контактов и подвижных частей устройства не допускается.

Перед пуском необходимо осмотреть магнитный пускатель снаружи и проверить исправность всех его частей. Все подвижные элементы должны свободно двигаться от руки. Сверить все электрические соединения со схемой.

Уход за магнитным пускателем

Для того чтобы правильно ухаживать за магнитным пускателем, необходимо хорошо знать возможные неисправности этого устройства. Как правило, это повышенная температура деталей и сильное гудение прибора.

Повышенная температура в первую очередь связана с межвитковыми замыканиями катушки. В подобных случаях требуется ее замена. Кроме того, излишний нагрев может произойти в связи с повышением напряжения сети выше номинального, а также при перегрузках, слабых контактных соединениях и недопустимом износе контактов.

Чрезмерное гудение устройства может происходить по целому ряду причин. Среди них в первую очередь следует отметить неплотное прилегание якоря к сердечнику, в результате загрязнения поверхностей или их повреждения. Другой серьезной причиной становится заедание подвижных частей, а также снижение напряжения в сети более чем на 15% от номинала.

Для того чтобы избежать подобных неисправностей, требуется своевременный уход. В целом, магнитный пускатель не требует каких-либо дорогостоящих мероприятий. Прежде всего, нужно не допускать попадания внутрь прибора грязи, пыли и влаги. Нужно регулярно проверять состояние контактов и плотность зажимов. Существует определенный перечень мероприятий по техническому обслуживанию и ремонту, выполняемый специалистами-электротехниками.

Магнитный пускатель, или электромагнитный контактор, это коммутационный аппарат, коммутирующий мощные потоки постоянного и переменного тока. Его роль – систематическое включение и отключение источников электричества.

Назначение и устройство

Магнитные пускатели встраиваются в электрические цепи для удаленного пуска, остановки и обеспечения защиты электрооборудования, электродвигателей. В основе работы лежит использование принципа действия электромагнитной индукции.

Основой конструкции являются тепловое реле и контактор, объединенные в одно устройство. Такое устройство способно работать в том числе и в трехфазной сети.

Подобные устройства постепенно вытесняются с рынка контакторами. Они по своим конструктивным и техническим характеристикам ничем не отличаются от пускателей, и различить их возможно только по названию.

Между собой они отличаются напряжением питания магнитной катушки. Оно бывает 24, 36, 42, 110, 220, 380 Вт переменного тока. Устройства выпускают с катушкой для постоянного тока. Их использование в сети переменного тока тоже возможно, для чего нужен выпрямитель.

Конструкцию пускателя принято делить на верхнюю и нижнюю часть. В верхней части находится подвижная система контактов, совмещенная с дугогасительной камерой. Также здесь размещается подвижная часть электромагнита, механически соединенная с силовыми контактами. Все это составляет подвижную контактную схему.

В нижней части находится катушка, вторая половина электромагнита и возвратная пружина. Возвратная пружина возвращает верхнюю половину в первоначальное состояние после обесточивания катушки. Так происходит разрыв контактов пускателя.

  1. Нормально замкнутые. Контакты замкнуты, и питание подается постоянно, отключение происходит только после срабатывания пускателя.
  2. Нормально разомкнутые. Контакты замкнуты, и питание подается, пока работает пускатель.

Наиболее часто встречается второй вариант.

Принцип работы

Принцип действия магнитного пускателя основывается на явлении электромагнитной индукции. Если через катушку ток не проходит, значит, магнитное поле в ней отсутствует. Это приводит к тому, что пружина механически отталкивает подвижные контакты. Как только питание катушки восстановлено, в ней возникают магнитные потоки, сжимающие пружину и притягивающие якорь к неподвижно закрепленной части магнитопровода.

Так как работает пускатель только под воздействием электромагнитной индукции, размыкание контактов происходит при перебоях с электричеством и при снижении напряжения в сети больше чем на 60% от номинального показателя. Когда напряжение вновь восстановлено, контактор не включается самостоятельно. Для его активации потребуется нажатие кнопки «Пуск».

При необходимости изменения направления вращения асинхронного двигателя применяются реверсивные устройства. Реверс происходит благодаря 2 контакторам, активирующимся по очереди. При одномоментном включении контакторов происходит короткое замыкание. Для исключения таких ситуаций в конструкцию входит специальная блокировка.

Разновидности и типы

Пускатели, изготавливаемые по российским стандартам, разделяют на 7 групп в зависимости от номинальной нагрузки. Нулевая группа выдерживает нагрузку в 6,3 A, седьмая группа – 160 A.

Об этом необходимо помнить при выборе магнитных пускателей.

Классификация зарубежных аналогов может отличаться от принятой в России.

Необходимо руководствоваться типом исполнения:

  1. Открытые. Подходят для установки в закрытых шкафах или местах, изолированных от пыли.
  2. Закрытые. Устанавливаются отдельно, в помещениях без пыли.
  3. Пылебрызгонепроницаемые. Возможна установка в любом месте, в том числе и вне помещений. Основное условие – установка козырька, защищающего от солнечных лучей и дождя.

По типам пускатель электромагнитный можно подобрать по следующим параметрам:

  1. Стандартные версии, в которых подается напряжение на пускатель с дальнейшим притягиванием сердечника и активацией контактов. В этом случае в зависимости от того, нормально замкнутый или нормально разомкнутый это пускатель, происходит включение либо отключение электрооборудования.
  2. Реверсивные модификации. Такое устройство представляет собой реверс с электромагнитами. Такая конструкция позволяет исключить одновременное включение 2 устройств.

В маркировке магнитного пускателя зашифрованы его технические характеристики. Обозначение размещено на корпусе и может содержать следующие значения:

  1. Серия прибора.
  2. Номинальный ток, обозначение которого вписано диапазоном значений.
  3. Наличие и конструкция теплового реле. Существует 7 степеней.
  4. Степень защиты и кнопки управления. Всего существует 6 позиций.
  5. Наличие дополнительных контактов и их разновидности.
  6. Соответствие креплений стандартным монтажным рамкам.
  7. Климатическое соответствие.
  8. Варианты размещения
  9. Износостойкость.

Существует несколько вариантов установки магнитных контакторов в системах управления, начиная с самого простого управления электродвигателями и заканчивая установкой с удержанием кнопки контактов, или реверсов.

Схема подключения на 220 в

Любая электрическая схема подключения содержит 2 цепи, в том числе и для однофазной сети. Первая – силовая, через которую осуществляется подача питания. Вторая – сигнальная. С ее помощью происходит контроль работы устройства.

Соединенные контактор, тепловое реле и кнопки управления составляют единое устройство, которое отмечается как магнитный пускатель на схеме. Он обеспечивает надлежащее функционирование и безопасность электродвигателей при различных режимах функционирования.

Контакты для подключения питания устройства размещаются в верхней части корпуса. Они обозначаются A1 и A2. Так, для 220 В катушки подается 220 В напряжения. Порядок подключения «ноля» и «фазы» роли не играет.

На нижней части корпуса находятся несколько контактов с отметками L1, L2, L3. К ним подключается источник питания для нагрузки. Постоянный он или переменный – не важно, главное – ограничение в 220 В. Снимается напряжение с контактов T1, T2, T3.

Схема подключения на 380 в

Стандартная схема используется в тех случаях, когда необходим запуск двигателя. Управление осуществляется при помощи кнопок «Пуск» и «Стоп». Вместо двигателя через магнитные пускатели может быть подключена любая нагрузка.

В случае питания от трехфазной сети в силовую часть входит:

  1. Трехполюсный автоматический выключатель.
  2. Три пары силовых контактов.
  3. Трехфазный асинхронный электродвигатель.

Цепь управления питается от первой фазы. В нее же включены кнопки «Пуск» и «Стоп», катушка и подключенный параллельно кнопке «Пуск» вспомогательный контакт.

При нажатии на кнопку «Пуск» на катушку попадает первая фаза. После этого пускатель срабатывает, и все контакты замыкаются. Напряжение проходит на нижние силовые контакты и по ним поступает на электродвигатель.

Схема может отличаться в зависимости от номинального напряжения катушки и напряжения используемой питающей сети.

Подключение через кнопочный пост

Схема, подключающая магнитные пускатели через кнопочный пост, предусматривает использование аналогового переходника. Блоки контактов бывают на 3 или 4 выхода. При присоединении необходимо определить направленность катода. Затем через переключатель подсоединяют контакты. Для этого используют триггер двухканального вида.

Если подключать устройство с автоматическими переключателями, то для них используют электронный регулятор. Блоки при этом могут находиться на контроллере. Чаще всего встречаются устройства с широкополосными разъемами.

Обычно мы видим это устройство в виде аккуратной коробки с двумя кнопками: «пуск» и «стоп». Если снять верхнюю крышку, внутри обнаружится коммутатор довольно сложной конструкции, который может выполнять несколько задач (как по очереди, так и одновременно).

Это электромагнитный пускатель. Возникает вопрос: а зачем создавать сложные электротехнические устройства, если нужно всего лишь замкнуть два (или больше) контакта? Есть кнопки с фиксацией, рычажные включатели, защитные автоматы, рубильники. Рассмотрим типовое применение магнитного пускателя: включение мощной электроустановки (например, асинхронный электродвигатель).

  • Необходима мощная контактная группа с дугогасителями, соответственно потребуется большое усилие для смыкания контактов. Ручной привод будет достаточно громоздким (использование классического рубильника не всегда вписывается в эстетику рабочего места).
  • Ручными переключателями сложно обеспечить оперативное изменение режима работы (например, изменение направления вращения мотора). Устройство магнитного пускателя позволяет собрать такую схему подключения.
  • Организация защиты. Любой автомат с аварийным отключением не рассчитан на многократное включение. Назначение (пусть и не основное) магнитного пускателя не только многократно производить коммутацию, но и отключать цепь питания при перегрузках и коротком замыкании. При этом, у него есть неоспоримое преимущество перед иными коммутаторами. Отключение необратимо: то есть, после аварийного размыкания контактов, или кратковременного прекращения подачи энергии, рабочие контакты не возвращаются в положение «ВКЛ» по умолчанию. Принцип работы магнитного пускателя подразумевает только принудительное повторное включение.

Устройство и принцип работы устройства

Главное отличие пускателя от любого другого коммутационного устройства — подключенное к нему электропитание одновременно является и управляющим. Как это работает?

Рассмотрим общий принцип действия магнитного пускателя с помощью иллюстрации:

  • Силовые контакты (3), через которые проходит питание с высоким током на потребителя (электроустановку).
  • Они соединяются между собой с помощью контактных мостиков (2). Сила нажатия обеспечивается пружинами (1), которые представляют собой особым образом отформованную стальную пластину. Сами контактные группы изготовлены из медных сплавов, для лучшей электропроводности.
  • Пластиковая траверса (4), на которой закреплены мостики (2), соединена с подвижным якорем (5). Вся конструкция может перемещаться вертикально с помощью внешнего усилия (кнопки), и возвращается обратно после прекращения давления на нее.
  • С помощью катушки электромагнита (6) создается магнитное поле, которое прижимает подвижный якорь (5) к неподвижной части сердечника (7). Силы достаточно, чтобы преодолеть сопротивление возвратной пружины.
  • Питание на электромагнит подается с помощью дополнительных контактов (8). Чтобы обеспечить правильную работу схемы, питание на эти контакты заводится параллельно силовым (3), от единого источника. Для размыкания всей контактной группы предусматривается кнопка отключения, которая устанавливается в цепь дополнительных контактов.

Виды контакторов

По оснащению средствами защиты: практически все модели включают в себя блок термореле, который размыкает цепь дополнительных контактов в случае перегрузки по току. В этом смысле принцип работы магнитного пускателя не отличается от защитного автомата. После аварийного отключения, и остывания защитной группы (цепь питания обмотки электромагнита восстанавливается), замыкание силовых контактов не происходит. Предполагается, что оператор устранит причину возникновения аварийной ситуации, и произведет повторный пуск электроустановки.

По способу замыкания контактов, имеются следующие виды магнитных пускателей:

  1. Прямого подключения, то есть с одной группой силовых контактов. Он работает по принципу: «вкл» или «выкл», плюс защита от перегрузки или короткого замыкания.
  2. Реверсивного подключения. Электромагнитный пускатель такого типа оснащен двумя группами контактов, с помощью которых можно комбинировать линии питания. Например, чередование фаз для асинхронного электромотора. При замыкании различных групп контактов, вал электродвигателя вращается в разные стороны, то есть происходит реверс.
  3. Работающие только на замыкание силовых контактов, либо имеющие нормально замкнутые и нормально разомкнутые контактные группы.Такие коммутаторы могут управлять (в противофазе) двумя электроустановками. Одно устройство подключается, второе синхронно обесточивается.
  4. По количеству контактов силовой группы:
  5. Двух контактные (для однофазных потребителей).
  6. Трех контактные (подключаются только фазные группы, нейтраль всегда соединена). Это самая распространенная модель пускателя, к ней можно подключать как одно — так и трех фазные электроустановки.
  7. Четыре и более контакта в силовых группах. Под группой подразумевается либо нормально замкнутый, либо нормально разомкнутый комплект. Применяются редко, только в специальных устройствах, работающих по особой схеме подключения.

Большинство пускателей выглядят так:

Силовые контакты (три фазы), в одной плоскости расположены дополнительные, для питания обмотки.

Для удобства монтажа, дополнительные контакты вынесены на отдельную площадку, ниже и сбоку.

Схемы подключения

Для чего нужен магнитный пускатель? Преимущественно для организации безопасного подключения (и управления) асинхронных трехфазных двигателей. Поэтому рассмотрим варианты работы схемы при различных условиях. На всех иллюстрациях присутствует защитное реле, обозначенное литерой «P». Биметаллические пластины, приводящие в действие аварийный размыкатель (установленный в цепи управления), располагаются на силовых линиях контактной группы. Они могут размещаться на одном или нескольких фазных проводниках. При перегреве (он возникает при превышении нагрузки или банальном коротком замыкании), управляющая линия разрывается, питание на катушку «KM» не подается. Соответственно, силовые контактные группы «KM» размыкаются.

Классическая схема прямого включения трехфазного электродвигателя

Схема управления использует питание от напряжения между двумя соседними фазными линиями. При нажатии кнопки «Пуск», с помощью основного ее контакта замыкается цепь катушки «KM». При этом все контактные группы, включая дополнительные контакты в цепи управления, соединяются под управлением электромагнита катушки. Разомкнуть цепь можно двумя способами: при срабатывании аварийного реле, или нажав на кнопку «Стоп». В этом случае магнитный пускатель возвращается в исходное положение «все выключено» (или в случае с двумя категориями контактов, нормально замкнутые группы будут подключены).

Этот же вариант подключения, только управляющая цепь соединяется с фазой и нейтралью. С точки зрения работы пускателя, разницы нет. Так же точно срабатывают кнопки, и защитное термореле.

Реверсивное подключение трехфазного электродвигателя

Как правило, для этого применяются два электромагнитных пускателя, в которых выхода фазных контактов комбинированы со сдвигом. Устройства скомбинированы в один коммутатор, поэтому его можно рассматривать как единый элемент.

В зависимости от того, какая контактная группа подключена к электродвигателю, его ротор крутится в одну либо другую сторону. Такой вариант незаменим при использовании на конвейерах, станках, и прочих электроустановках, в которых предусмотрено 2 направления вращения (движения).

Как работает эта схема на практике? Смотрим иллюстрацию:

Единая схема управления с двумя группами кнопок пуска: «Вперед» и «Назад». Каждая из них включает соответствующую катушку электромагнита. Почему схема общая? Кнопка «Стоп» по условиям безопасности должна быть единой. Иначе при возникновении аварийной ситуации, оператор потеряет драгоценные секунды в поисках необходимой кнопки (для «Вперед» или для «Назад»).

Проверка работоспособности магнитного пускателя и его ремонт

Проверяется устройство путем подачи питания на управляющие (дополнительные, или блок контакты). Если происходит смыкание рабочей группы, выполняется прозвонка ее контактов с помощью мультиметра. Затем провоцируется короткое замыкание, для проверки защитного реле.

Любой коммутационный прибор состоит из схожих по конструкции элементов. Поэтому ремонт магнитного пускателя выполняется по общему принципу: поиск неисправного узла, восстановление или замена.

Механические части (мостик, прижимная либо возвратная пружина) меняются, контакты можно зачистить. Катушка управления перематывается, или производится восстановление сгоревшего витка с помощью пайки.

Видео по теме

Неисправности в управлении магнитных пускателей — Пусковая аппаратура — Справочник

Основные неисправности магнитных пускателей
1. Признак неисправности:
«Упрямый козел»
Пускатель не включается
Причина.
а) Нет питания на зажимах верхних контактов, отсутствие «нуля» на корпусе.
Способ устранения.
Проверить питание на зажимах контактов. При отсутствии напряжения, подать питание на контакты. Напряжение должно быть как между контактами, так и относительно корпуса. Если нет напряжения между корпусом, а между фазами присутствует, значит, нет «нуля». Проверить нулевой провод на корпусе.
б) Сработало тепловое реле или неисправны его контакты.
Определить причину срабатывания теплового реле, устранить ее, взвести контакты теплового реле в рабочее положение (после остывания тепловых элементов). Если пускатель не включается, проверить состояние контактов. В случае подгорания последних, зачистить или заменить.
 
в) Обрыв в цепи управления катушкой
Прозвонить кнопки, катушку, контакты теплового реле и провода, подходящие к ним (стоповая кнопка должна прозваниваться, пусковая прозванивается при нажатии на нее, контакты теплового реле прозваниваются в рабочем положении, выводы катушки должны прозваниваться)), а также проверить правильность соединения схемы: все элементы схемы кроме блок-контактов должны соединяться последовательно, блок-контакты параллельно пусковой кнопке.
При необходимости заменить неисправные кнопки, катушку, контакты теплового реле или само реле, провода.
 
г) Провода стоповой кнопки подключены к нормально разомкнутым контактам (рис. 2): при одновременном нажатии на пусковую и стоповую кнопку, пускатель включается, при отпускании пусковой кнопки, пускатель работает, при отпускании стоповой кнопки, пускатель отключается.
Проверить, к какой группе контактов подключены провода на стоповой кнопке (см. рис. 1). Контакты должны быть нормально замкнутыми. В противном случае переподсоединить провода на нормально замкнутые, в отсутствии последних, заменить кнопку.
 
д) Перепутаны  провода кнопок (рис. 3).
Прозвонить блок-контакты и между стоповым и средним проводом кнопок. В случае электрической связи между блок-контактами, а связь между проводом стоповой кнопкой и средним проводом кнопок отсутствует, означает, что кнопки перепутаны. Поменять провода пусковой и стоповой кнопок (средний провод остается на месте) местами и вновь прозвонить цепь: блок-контакты не должны прозваниваться (при нажатии на пусковую кнопку, цепь замыкается), а между стоповым и средним проводом должна быть связь, при нажатии на стоповую цепь разрывается.
 
е) Обрыв перемычки между кнопками.
Прозвонить цепь между стоповой и пусковой кнопкой. При нажатии на пусковую кнопку цепь должна прозваниваться. Если нет цепи, значит обрыв связи между кнопками. Вскрыть кнопку и осмотреть перемычку. Восстановить контакт между кнопками.
 
При нажатии на пусковую кнопку, пускатель не включается, при нажатии на стоповую, пускатель включается и отключается.
  
3. «Хозяин, рядом!»
Пускатель включается, но не блокируется
 
а) Обрыв в цепи блок-контактов.
Прозвонить блок-контакты и провода, подходящие к ним
Зачистить или заменить блок-контакты, устранить обрыв проводов
 
б) Блок-контакты соединены параллельно стоповой кнопке (рис. 3).
При включении пусковой кнопки, пускатель включается, удерживая кнопку и нажимая на стоповую, пускатель не отключается. При отпускании пусковой кнопки, пускатель не работает.
Проверить соединение блок-контактов.
Посадить провода блок-контактов на пусковую кнопку. Если схема собрана согласно рис.4, то провод, соединяющий блок-контакт со стоповой кнопкой отсоединить и соединить с пусковым проводом и катушкой (рис. 1).  
4. «Сам себе режиссер» 
Пускатель самостоятельно повторно включается и отключается. При нажатии на стоповую кнопку, пускатель отключается, при ее отпускании, все повторяется вновь.
Провода блок-контактов подключены на нормально замкнутые контакты (см. рис. 5).
Проверить, на какие контакты подключены провода блок-контактов.
Установить провода на нормально открытые контакты.
 
5. «Брызги шампанского».
 
а) При нажатии на пусковую кнопку происходит короткое замыкание
Контакты пусковой кнопки или (и) блок-контакты включены параллельно катушке (например, как на рис. 6).
Проверить, чтобы параллельно катушке ничего не было подсоединено.
Несмотря на радостное название, ничего хорошего Вам не принесет. Ваше счастье, если автомат быстро сработает (например, АП-50), тогда остается подсоединить цепь управления согласно схемы (рис. 1).
 
б) Короткое замыкание на нагрузке или в кабеле нагрузке или замыкание между силовыми контактами пускателя.
Отсоединить кабель нагрузки (двигателя). Проверить, нет ли замыкания между нижними контактами. При наличии к. з., осмотреть контакты и корпус крепления контактов. В случае токопроводящих дорожек, прочистить или заменить корпус.
Если контакты «чистые», отсоединить кабель от двигателя и прозвонить кабель и двигатель, найти замыкание и устранить неисправность.
 
6. «Иду на взлет»
Пускатель гудит, контакты искрят.
 
а) Катушка подключена на низкое напряжение.
Проверить напряжение в цепи катушки.
Если катушка, рассчитанная на 380 В, подключена на 220, второй провод отсоединить от «нуля» и подключить к другой фазе. В, общем, подать на цепь управления, напряжение, соответствующее напряжению катушки.
 
б) Загрязнились соприкасающиеся части магнитопровода, плотность прилегания частей недостаточно.
Проверить состояние чистоты соприкасающихся частей магнитопровода.
Почистить «железо». Если пускатель все равно гудит, проверить плотность прилегания соприкасающихся частей с помощью копировальной бумаги. Площадь прилегания должна составлять не менее 70% от площади соприкосновения. В противном случае поверхности отшабрить.
 
в) Нарушены ампер-витки на ярме (неподвижная часть магнитопровода).
Проверить целостность ампер-витков. В случае нарушения произвести ремонт или заменить ярмо.
 
г) Витковые замыкания в катушке.
Проверить катушку на витковые замыкания.
Заменить катушку.
 
7. «Курильская сопка»
Катушка греется, дымится, перегорает.
 
а) На катушку подается завышенное напряжение.
Проверить напряжение на катушке.
Подать напряжение на катушку, соответствующее расчетному катушки.
б) Повреждены, неправильно установлены или отсутствуют возвратные пружины, на контакторах сильно затянуты пружины.
Проверить состояние и установку пружин, ослабить пружину.
 
в) Витковые замыкания в катушке.
Проверить катушку на витковые замыкания или заменить катушку.
Заменить катушку
 
8. «Вечный двигатель – Perpetuum Mobile»
При нажатии на стоповую кнопку, нагрузка (двигатель) не отключается
 
а) Залипание силовых контактов.
Проверить ход подвижных контактов.
Рассоединить контакты и зачистить, при необходимости заменить.
 
б) Повреждены, неправильно установлены или отсутствуют возвратные пружины.
Проверить состояние и установку пружин.
Установить правильно пружины, при необходимости заменить.
 
в) Параллельно стоповой (и пусковой) кнопке подключены блок-контакты, контакты теплового реле, еще какая-либо замкнутая связь.
Проверить схему подключения стоповой кнопки (см. рис.1). Если при разъединении контактов теплового реле пускатель отключается, то схема может быть собрана по рис. 7. Провод блок-контакта переподсоединить с вывода стоповой кнопки на средний провод. Средний провод – провод, соединяющий пусковую и стоповую кнопки.
Параллельно стоповой кнопке ничего не должно быть подключено, сама стоповая кнопка включается в разрыв в цепь с катушкой.
 
г) Неисправны стоповая или (и) пусковая кнопки.
Прозвонить стоповую кнопку. При нажатии на кнопку, цепь должна разрываться. При прозвонке пусковой кнопки цепь должна также быть разомкнута без нажатия на кнопку.
Если цепь не разрывается, отремонтировать или заменить кнопки.
 
9. «Впереди планеты всей»
При подаче напряжении на пускатель, двигатель сразу запускается без нажатия на пусковую кнопку
 
а) Провода пусковой кнопки подключены на нормально замкнутые контакты или неисправна кнопка.
Проверить, на какую группу контактов посажены провода, в случае неправильного подсоединения, подсоединить провода на нормально открытые.
Если провода к пусковой кнопке подсоединены верно, прозвонить кнопку. Если кнопка прозванивается без нажатия на нее, перебрать ее и отремонтировать либо заменить на исправную.
б) Параллельно пусковой кнопке подключены контакты теплового реле или другая замкнутая цепь.
Разомкнуть контакты теплового реле. Если при этом контакты пусковой кнопки не прозваниваются, отключить контакты теплового реле и подключить согласно схеме (рис. 1).
 
 
в) Параллельно пусковой кнопке включена стоповая кнопка (рис. 8). В случае замкнутой цепи между контактами исправной пусковой кнопки, нажать на стоповую. Если цепь пропадает, стоповую кнопку переставить согласно схеме (рис. 1).
 
11. «Полет шмеля»
Двигатель сильно гудит, не развивает оборотов, корпус двигателя сильно греется.
Двигатель работает на двух фазах.
 
а) На верхних контактах присутствуют не все фазы.
Проверить напряжение на контактах между как между корпусом, так и между собой. Если между корпусом есть напряжение на всех контактах, а между контактами не везде, значит присутствует одноименная фаза.
Проверить питание, идущее на пускатель.
 
б) На верхних контактах напряжение есть.
Отсоединить два провода, идущих к двигателю. Проверить напряжение на контактах и на проводах. Если на одном из контактов отсутствует напряжение, проверить состояние контактов: зачистить или заменить их.
Если на нижних контактах напряжение есть, а на выходе от одного из тепловых элементов отсутствует, данный тепловой элемент следует заменить.
Если нет напряжения на одном из проводов кабеля (провод, оставшийся соединенным с пускателем, должен быть под напряжением), значит нужно искать поиски в обрыве кабеля, или в двигателе.
 
 
12. Пускатель не отключается при перегреве двигателя.
а) Тепловые элементы не соответствуют номинальному току двигателя.
Подобрать элементы и откорректировать винтом точное срабатывание реле по току.
б) Пригорели контакты реле.
Проверить, рассоединяются ли контакты, а также их состояние. В случае залипания, попробовать рассоединить их и зачистить либо заменить.
в) Неисправно само тепловое реле.
Протестировать реле на стенде. В случае не срабатывания, отремонтировать или заменить на рабочее.
 
13. Пускатель работает нормально, двигатель не работает.
Проверить напряжение на входе и выходе пускателя, а также с теплового реле, предварительно отключив два провода кабеля двигателя. Если нет напряжения на верхних контактах, искать причину питания пускателя. Если нет на контактах, смотреть состояние контактов, при необходимости заменить. Если нет напряжения с тепловых элементов, осмотреть их крепеж, при необходимости заменить. Если нет напряжения на проводах кабеля, прозвонить кабель, предварительно отсоединив его от двигателя. Если кабель целый, прозвонить выводы двигателя.
PS
Еще один способ узнать какие провода идут с кнопок не вскрывая корпуса. Отсоединить все три кнопочные провода от пускателя и прозвонить между собой. тот провод, который не будет прозваниваться ни с одним из проводов будет пусковой. чтобы узнать, какой из оставшихся проводов стоповый, а какой общий, нужно нажать на обе кнопки. теперь, тот провод, который не будет прозваниваться ни с одним из проводов, будет стоповым, а провод, не прозванивающийся со стоповым, но имеющий связь с пусковым проводом, будет общим.

Ну вот пока и все. Надеюсь, моя статья пригодиться начинающим электромонтерам. Удачи вам в поиске причин и ремонте пусковой и другой аппаратуры. Пусть Ваше большее время проходит с пользой, а не на долгие поиски всевозможных причин неисправностей.

Ваш браузер не поддерживает рисование.

Статьи » Магнитный пускатель — устройство автоматического запуска электричества.


Магнитный пускатель является достаточно важным элементом в системе обеспечения источников электричеством. Главная его роль – производить систематическую работу по включению и отключению электропитания.

Назначение устройства

Магнитный пускатель устанавливают в электрическую цепь, чтобы он обеспечивал надежную защиту электрооборудования от перепадов в электросети. Основной принцип работы – электромагнитная индукция.

Основные детали конструкции – это тепловое реле и контактор, которые являются одним устройством, способным работать также и в трехфазной сети.

Как работает?

Итак, как уже было сказано ранее, магнитный пускатель работает на принципе электромагнитной индукции. Если катушка внутри устройства не получает ток, пружина отталкивает контакты. Если катушка получает ток, в ней появляется магнитное поле, которое сжимает пружину к магнитопроводу.

Магнитные пускатели работают от электромагнитной индукции. Смысл заключается в том, чтобы удерживать электричество в необходимом количестве, в случаях перебоев или снижения уровня напряжения более 60%. Таким образом, важные электроустройства и приборы продолжают работать в нормальном режиме.

Виды пускателей

Магнитные пускатели российского стандарта делятся на 7 групп, которые отличаются номинальной нагрузкой: от 6,3А до 160А. Этот момент важно учитывать при подборе магнитного пускателя.

Если говорить о зарубежных аналогах, то возможны отличия. Именно поэтому есть различия по типу исполнения:

  • Открытые устанавливают в закрытые места, куда не попадает пыль.
  • Закрытые можно ставить отдельно, но также нежелательно попадание пыли.
  • Пылебрызгонепроницаемые – универсальные пускатели, которые можно устанавливать в любое место. Единственное условие – это защита от солнечных лучей и дождя.
  • Стандартные
  • Реверсивные

Более того, магнитные пускатели бывают:

В первом случае подается полное напряжение на пускатель, который включает или отключает электрооборудование. Во втором случае возможно отключение одновременного включения 2-х устройств.

Прежде чем выбрать магнитный пускатель, стоит заранее изучить значения маркировки, так как она проставлена на всех устройствах, и говорит о его технических характеристиках: серия, ток, конструкция теплового реле, степень защиты и т.д.


【Магнитный контактор】 Его значение, типы, части и функции

Что такое магнитный контактор?

Магнитные контакторы аналогичны электрическим реле, используемым в ряде электродвигателей. Магнитные контакторы используются в электродвигателях для уравновешивания изменения частоты электродвигателя или состояния электродвигателя, что можно назвать переключением электродвигателя из состояния ВКЛ и ВЫКЛ. Изменение частоты двигателя происходит из-за различных параметров источников питания, которые являются прямыми источниками энергии, а также из-за высокой нагрузки электродвигателей.Магнитные контакторы служат защитой для защиты источника питания и двигателя. Магнитные контакторы иногда рассматриваются как автоматические выключатели из-за их схожести формы с автоматическими выключателями, но их функциональность отличается от функциональных возможностей автоматических выключателей. Когда цепь между двигателем и источником питания находится в коротком состоянии, соединение прерывается для защиты прибора. Магнитные контакторы легко снимаются с двигателей, и работа с двигателем может выполняться легко.После снятия магнитного контактора с двигателя вероятность прохождения постоянного тока в двигатель снижается до 0%. Реле и магнитные контакторы считаются одним и тем же оборудованием на промышленном уровне, но между реле и магнитными контакторами есть много различий. Реле используется для нагрузок до 10 А или менее 10 А, тогда как магнитный контактор используется для нагрузок более 10 А. Реле обычно используются в однофазных устройствах, тогда как магнитный контактор используется в трехфазных устройствах.Реле имеет общий контакт для подключения к прибору, в то время как магнитный контактор имеет 2 полюса для его соединения с прибором.

Подробнее: КОНТАКТОРЫ | ВСЕ, ЧТО НЕОБХОДИМО ЗНАТЬ О КОНТАКТОРАХ

Типы магнитных контакторов

Основными категориями, по которым классифицируются магнитные контакторы, являются контакторы переменного тока и контакторы постоянного тока.

Есть несколько магнитных контакторов, которые используются на каждом уровне с различными приборами, такими как:

  1. Магнитный пускатель.
  2. Реверсивный стартер.
  3. Стартер звезда-треугольник.
  4. Контактор Mercury.
  5. Вакуумный контактор.
  6. Контактор, смачиваемый ртутью.

магнитные контакторы типов

Магнитный контактор Детали

Магнитный контактор состоит из трех основных частей / компонентов. Ток в магнитном контакторе проводится по контактам. Контакт включает в себя различные контакты, такие как силовые контакты, контактные пружины и вспомогательные контакты.Цепь магнитного контактора заключена в изоляционный материал, такой как нейлон 6, термореактивные пластмассы и бакелит. Цепь закрыта для защиты от прикосновения. Электрическая дуга, которая является основной частью контактора, перемещается обмотками продувки в случае возникновения магнитного выброса. В качестве дополнительной цепи иногда в цепь магнитного контактора также включают цепи экономайзера. Этот экономайзер используется для снижения мощности, необходимой магнитному контактору для уменьшения тока катушки в замкнутом состоянии.Экономайзеры обычно используются в катушках контакторов постоянного тока и на больших катушках контакторов переменного тока.

Магнитный контактор Функции

Магнитное поле создается электромагнитом в магнитном контакторе, когда электричество начинает течь в магнитном контакторе. Создаваемое магнитное поле представляет собой сильное магнитное поле, которое тянет за собой железный сердечник магнитного контактора в катушке, и в результате возникает электрическая дуга. Таким образом, электричество передается в магнитный контактор.Чтобы остановить работу магнитного контактора, его просто снимают с устройства, к которому он прикреплен. При отсутствии электрического тока в магниторезателе соединение сердечника с катушкой также разрывается и соединение цепи разрывается.

Функции магнитного контактора

Как выбрать магнитный контактор?

Необходимо принять правильное решение для магнитного контактора, чтобы выбрать подходящий контактор для двигателя.При выборе магнитного контактора следует учитывать следующие три вещи:

  • Категория использования.
  • Пусковой ток двигателя. AC1, AC3, номинальная мощность кВт / л.
  • Участок электроснабжения. Напряжение питания.

Эти три параметра следует учитывать при выборе магнитного контактора.

Как правильно выбрать магнитный контактор

В то время как два шага при выборе правильного контактора для указанного двигателя:

Шаг 1 : Сбор правильной информации о двигателе.

Шаг 2 : Извлечение нужной информации из правильного описания продукта.

Где купить магнитные контакторы: https://sg.electgo.com/categories/27-mintage-contactors

Почему до сих пор используются механические пускатели двигателей? : Repco Inc

Простой ответ — они работают хорошо. А в некоторых случаях механические пускатели обеспечивают лучшую производительность или являются лучшим вариантом. При работе с высоким напряжением они обеспечивают превосходную производительность и надежность.Кроме того, они предлагают возможность почти мгновенно прерывать ток (даже при возникновении дуги высокого напряжения). Это делает механические пускатели предпочтительным решением для производственных линий (например, конвейерных систем) и в ситуациях, когда запуск и остановка повторяются (например, краны, лифты и т. Д.).

Что такое механический стартер?

Механический пускатель — это простое устройство, которое механически размыкает или замыкает цепь. Обычно он состоит из контактора, который содержит катушку управления и шунты.Шунты передают ток катушке управления, запитывая ее, затем катушка создает магнитное поле, которое размыкает или замыкает контактор. Электрический контактор также имеет неподвижные и подвижные контакты. Когда катушка находится под напряжением, магнитное поле «механически перемещает» контактор для замыкания или размыкания контактов.

Несложная и надежная работа механического пускателя часто делает его лучшим выбором. Например, когда устройства работают с током более 15 ампер или более нескольких киловатт, контакторы превосходят реле или электрические пускатели.Электрические контакты также могут выдерживать более высокие напряжения и хорошо работают как с переменным, так и с постоянным током. Контакторы также переносят «более грязные» условия лучше, чем решения для электронного управления. Вот почему вы найдете электромагнитные пускатели двигателей на производственных предприятиях, тяжелых подъемных кранах, портальных кранах, на горнодобывающих предприятиях и везде, где условия могут быть «грязными».

Электромагнитно-механические пускатели всех типов

Как и двигатели, электрические контакторы и катушки в механических пускателях бывают самых разных форм и размеров.Требования к характеристикам и функция определяют их форму и тип, но основная работа контакторов и механического пускателя остается неизменной. Катушка находится под напряжением, подвижные контакты размыкаются или замыкаются, и ток в двигатель регулируется.

Простота и надежность механического пускателя двигателя по-прежнему делают его предпочтительным стандартом — даже в современном цифровом мире.

Руководство по плавному запуску | Что такое Soft Start

Вы когда-нибудь задумывались, есть ли альтернативный способ запуска двигателей ваших различных машин и единиц оборудования? Обычный стартап выполняет свою работу, но во многих отношениях она не идеальна.Есть ли альтернативный метод, который вы могли бы использовать? Если так, то, что это?

Если вы когда-либо задавали себе какой-либо из этих вопросов, мы будем рады сообщить вам, что ответ положительный — есть альтернативный метод. Это называется «мягкий старт». Сегодня мы потратим немного времени на то, чтобы обсудить это с вами.

Что такое плавный пуск двигателя?

Устройство плавного пуска — это дополнительное устройство, которое можно добавить к обычному электродвигателю переменного тока, что позволит двигателю использовать другой метод запуска.Назначение этого устройства — снизить нагрузку на двигатель во время типичной фазы включения двигателя.

Для этого устройство плавного пуска будет медленно и постепенно подавать на двигатель возрастающие напряжения. Это обеспечивает плавное ускорение мощности вместо внезапного и резкого скачка мощности, который потенциально может вызвать повреждение двигателя и машины в целом.

В то время как в большинстве типичных запусков в двигатель сразу подается электрический ток, плавный пуск обеспечивает плавный и устойчивый линейный наклон мощности.Это снижает общий износ цепей двигателя, в результате чего в целом машина становится более здоровой, и вероятность ее быстрого выхода из строя снижается. В зависимости от того, какую конкретную модель устройства плавного пуска вы выберете, некоторые из них могут регулировать пусковое напряжение и время, необходимое для полного включения двигателя.

Как работает мягкий старт?

По сути, устройство плавного пуска работает, контролируя величину напряжения, проходящего через цепи двигателя.Это достигается за счет ограничения крутящего момента в двигателе. Это, в свою очередь, позволяет устройству плавного пуска снижать напряжение и позволяет ему постепенно прекращать снижение напряжения, чтобы обеспечить плавное изменение тока.

В дополнение к этому в некоторых моделях устройств плавного пуска могут использоваться твердотельные устройства. Эти устройства являются еще одним средством управления количеством электрического тока, протекающего через двигатель. Это позволяет устройству плавного пуска управлять током в трех отдельных фазах, чтобы обеспечить более точные уровни управления.

Многие электрические устройства плавного пуска также используют серию кремниевых выпрямителей (SCR) или тиристоров, чтобы ограничить напряжение до более управляемой величины для двигателя, когда он начинает запускаться. Эти тиристоры имеют состояние ВКЛ, когда они позволяют току течь, и состояние ВЫКЛ, где они контролируют и ограничивают электрический ток. Когда вы включаете свою машину, эти SCR активируются, ограничивают напряжение, а затем расслабляются, когда машина достигает полной мощности. Это снижает нагрев двигателя и снижает общую нагрузку.

Хотя электрические устройства плавного пуска являются одним из примеров возможного решения для плавного пуска, они не единственное доступное решение. Существуют также механические варианты, которые меньше зависят от электрического тока и больше от физических и механических решений.

В механических устройствах плавного пуска

используются муфты и различные муфты, в которых используются жидкости, стальная дробь или магнитные силы для уменьшения крутящего момента в двигателе. Как обсуждалось ранее, это ограничивает скачок напряжения, протекающего через двигатель, и позволяет ему включаться более мягко и легко.

Какие общие области применения устройств плавного пуска?

Теперь, когда у вас есть некоторый опыт в том, что такое мягкий пуск, как он работает и для чего он используется, возникает следующий логичный вопрос: когда мне нужен плавный пуск? Он нужен для каждого мотора? Это необходимо только для некоторых ваших машин, или вам следует установить устройство плавного пуска на каждый свой двигатель?

Первый ответ: ни один двигатель не нуждается в устройстве плавного пуска. Без них может обойтись любой мотор.Это означает, что вы не должны испытывать чрезмерного давления при их установке.

Тем не менее, существует множество двигателей, для которых установка устройства плавного пуска принесет большую пользу, и некоторые двигатели выиграют больше, чем другие. Это связано с тем, что некоторые двигатели более подвержены поломке и износу из-за избыточного электрического тока во время фазы запуска. Вот лишь несколько мест, где устройства плавного пуска обычно используются для облегчения процесса запуска:

1. Насосы

В различных применениях насосов существует риск скачков напряжения. При установке устройства плавного пуска и постепенной подачи электрического тока на двигатель этот риск значительно снижается.

2. Конвейерные ленты

С конвейерными лентами всегда возможно, что внезапный запуск может вызвать проблемы. Ремень может дергаться и смещаться. Обычный пуск также увеличивает ненужную нагрузку на компоненты привода ремня.При установке устройства плавного пуска ремень будет запускаться более плавно, и у ремня будет больше шансов оставаться на правильном пути.

3. Вентиляторы и аналогичные системы

В системах с ременными приводами потенциальные проблемы аналогичны тем, которые возникают с конвейерными лентами. Внезапный и резкий старт означает, что ремень может соскользнуть с пути. Мягкий запуск исправляет эту проблему.

4. Электрические вертолеты

Нетрудно понять, почему внезапный, резкий старт вертолета может иметь катастрофические последствия.Это может быть опасно, если пропеллеры внезапно и резко начнут работать с внезапным всплеском. Вместо этого мягкий пуск позволяет гребным винтам запускаться плавно.

В чем преимущество использования устройств плавного пуска?

Почему вам следует использовать устройства плавного пуска? В конце концов, это будет означать вложение дополнительных денег. Это действительно того стоит? Стоит ли вкладывать свое время и деньги в это дополнение к вашему мотору?

Хотя это зависит от самого двигателя, мы думаем, что оно того стоит.Вот некоторые из основных преимуществ, которые вы можете ожидать от установки устройства плавного пуска на свой двигатель:

1. Снижение энергопотребления

Снижение количества энергии, необходимой вашим машинам, всегда является идеальной целью. Имеет смысл только то, что устройство плавного пуска может этому способствовать. При обычном запуске двигатель немедленно начинает расходовать максимальное количество энергии и продолжает это делать в течение всего времени работы двигателя.

При плавном пуске напряжение постепенно нарастает до максимума.Это означает, что в целом расходуется меньше энергии.

2. Снижение риска скачков напряжения

Когда максимальное напряжение немедленно достигает вашего двигателя, чтобы запустить его, всегда существует вероятность того, что цепи будут перегружены, и ваш двигатель испытает скачок напряжения. Плавный пуск — отличная мера защиты от скачков напряжения. Вместо того, чтобы бросать в цепи сразу всю мощность, напряжение нарастает постепенно.

3. Регулируемое время разгона

Не все устройства плавного пуска оснащены этой опцией, но некоторые из них есть, и это дает значительное преимущество. С помощью этой опции вы можете выбрать, сколько времени вы хотите, чтобы ваш двигатель включался.

Если вы знаете, что ваш двигатель или машина подвержены скачкам напряжения или, например, старые и изношенные, вы можете настроить их так, чтобы они включались через некоторое время. С другой стороны, если вы знаете, что ваша машина прочная и надежная, возможно, у вас все в порядке, если ей потребуется меньше времени для включения.В любом случае такая гибкость и настраиваемость — огромное преимущество.

4. Возможное увеличение количества возможных пусков в час

Для обычного включения двигателя требуется много энергии. Это означает, что, в зависимости от машины, она может не включать чрезмерное количество раз в течение определенного часа.

Однако при плавном пуске ваш двигатель будет расходовать меньше энергии при каждом включении, а это означает, что он может включаться чаще.

5. Снижение риска перегрева

Большой скачок энергии, связанный с обычным запуском, иногда может вызвать перегрев двигателя. Этот перегрев может быть безвредным, но он также может привести к временному отключению двигателя и даже вызвать его долговременное повреждение.

Само собой разумеется, что мягкий пуск не требует этого начального выброса мощности. Вместо этого на двигатель подается небольшой скачок электричества, что значительно снижает риск перегрева.

6. Повышение операционной эффективности

Обычные стартапы иногда могут работать отлично. Однако в других случаях они могут вызвать проблемы. Двигатель может перегреться. Машина может работать неправильно. Возможно, произошел скачок напряжения.

Поскольку риск этих проблем устраняется или значительно снижается с плавным пуском, ваша машина сможет работать более эффективно и с меньшим риском проблем и повреждений.

7. Увеличенный срок службы

Невозможно гарантировать что-то вроде срока службы машины.Все может случиться, и в любой момент может произойти повреждение. Однако можно поспорить, что, добавив к машине устройство плавного пуска, вы продлите срок ее службы.

В этом есть смысл — вы снижаете риск многих инцидентов и несчастных случаев, которые могут привести к окончанию срока службы машины.

В чем разница между плавным пуском и ЧРП?

ЧРП имеет некоторое сходство с устройством плавного пуска, но существует достаточно различий, чтобы выделить его в отдельный класс.ЧРП, официально известный как частотно-регулируемый привод, представляет собой устройство управления двигателем, которое контролирует скорость асинхронного двигателя переменного тока. Это означает, что он может контролировать, насколько быстро двигатель работает во время циклов пуска и останова, а также во время обычного рабочего цикла.

Исходя из этого, легко увидеть сходство между ЧРП и плавным пуском. У обоих есть способ контролировать количество мощности, проходящей через двигатель во время его запуска, и оба могут помочь предотвратить такие вещи, как скачки напряжения и проблемы во время запуска.Однако они различаются по методу, который они используют для достижения этой цели.

Что использовать: устройство плавного пуска или частотно-регулируемый привод?

ЧРП обычно предпочтительнее, если вашей главной целью является экономия энергии. Это связано с тем, что частотно-регулируемый привод ограничивает не только скорость двигателя во время фазы включения. Это также может помочь вам контролировать скорость во время обычного рабочего цикла, а также во время фазы отключения питания. Это делает их идеальными для снижения мощности, когда она не нужна, что приводит к снижению общих затрат энергии.

Частотно-регулируемые приводы

также являются хорошим выбором в ситуациях, когда важно иметь возможность контролировать скорость и плавность работы машины. Под это описание подходят такие приложения, как лифты и эскалаторы. В подобных приложениях вы сможете контролировать постоянную скорость этих единиц оборудования и не допускать возникновения неожиданных скачков напряжения.

Каковы некоторые общие причины неудач плавного пуска?

Каким бы прекрасным ни был плавный пуск, он не безошибочен.Как и в случае с любым другим оборудованием или механизмами, правильное сочетание проблем может привести к их выходу из строя или поломке. Хотя в обозримом будущем устройство плавного пуска должно быть в хорошем рабочем состоянии, вы никогда не знаете, что может случиться.

Если вы заметили проблему или неисправность в устройстве плавного пуска, это может быть связано с одной из следующих проблем:

  • Слишком много тепла: Как упоминалось ранее, перегретая машина может вызвать множество других проблем.Вероятность перегрева машины с плавным пуском меньше, чем у машины с обычным пуском, но это все же возможно.
  • Слишком высокое напряжение: Поскольку вся цель плавного пуска состоит в том, чтобы сначала ограничить величину электрического тока, это маловероятно. Однако, если во время запуска на двигатель подается более высокое напряжение, чем обычно, это может привести к проблемам.
  • Слишком большой ток: Это проблема, аналогичная проблеме слишком большого напряжения.Если вначале в двигатель будет протекать слишком большой ток, это может привести к перегрузке цепей и неисправности.

Хотя это может создать впечатление, что плавный пуск чреват проблемами и сбоями, на самом деле все наоборот. Плавный запуск делает ваши двигатели и оборудование менее склонными к сбоям и отлично защищает их от таких вещей, как перегрев и скачки напряжения. Они также значительно продлевают срок службы большинства двигателей.

Нельзя сказать, что плавный пуск никогда не выходит из строя и не вызывает проблем, но, как правило, он очень надежен и обеспечивает дополнительный уровень безопасности и защиты ваших двигателей.

Ремонт устройств плавного пуска

Обратитесь в глобальную электронную службу по вопросам ремонта сегодня

Есть ли у вас двигатели, промышленная электроника, гидравлика или другое оборудование, которые нуждаются в обслуживании и ремонте? Если да, то Global Electronic Services всегда готова помочь. Наш стандартный срок ремонта составляет от одного до пяти дней, и мы также предлагаем срочные услуги от одного до двух дней, если работа требует срочного внимания. Чтобы начать ремонт, просто свяжитесь с нами и запросите ценовое предложение.Если у вас возникнут дополнительные вопросы, мы будем рады ответить на них по телефону 877-249-1701.

Запросить цену

Стартер с постоянным магнитом (автомобиль)

15.7.

Стартер с постоянным магнитом

Стартеры с постоянными магнитами были внедрены на автомобили в конце 1980-х годов. Меньший вес и небольшие размеры — два преимущества этих двигателей по сравнению с двигателями обычных типов. Это приводит к тому, что стартер с постоянным магнитом становится более популярным, поскольку в современных автомобилях для электрической части двигателя остается меньше места.Снижение веса также способствует снижению расхода топлива. Выпускаемые стандартные пускатели с постоянными магнитами подходят для двигателей с искровым зажиганием объемом до 2 л и рассчитаны на мощность 1 кВт или меньше. Некоторыми примерами являются линейка Bosch DM (рис. 15.23) и модели Lucas M78R / M80R (рис. 15.24)

Рис. 15.23. Стартер с постоянным магнитом Bosch.

Рис. 15.24. Lucas M78R I Стартер M80R.
Принцип работы почти аналогичен обычному стартеру с предварительным включением, в котором обмотки возбуждения и полюсные наконечники заменены на высококачественные постоянные магниты.Это обеспечивает снижение веса до 15 процентов. Диаметр ярма также может быть уменьшен на аналогичную величину. Постоянные магниты обеспечивают постоянное возбуждение, благодаря чему характеристики скорости и крутящего момента
должны быть постоянными. Однако из-за падения напряжения аккумуляторной батареи под нагрузкой и низкого сопротивления обмоток якоря характеристика сравнима с характеристикой двигателей с последовательной обмоткой. Иногда между основными магнитами устанавливают элементы-концентраторы или межполюсники (рис.15.25). Эффект коробления магнитного поля приводит к тому, что характеристическая кривая очень похожа на кривую последовательного двигателя.

Произошло значительное улучшение конструкции щеток. Смесь меди и графита используется для изготовления щеток из двух частей, так что более высокое содержание меди находится в зоне мощности, а более высокое содержание графита — в зоне коммутации. Это увеличивает срок службы и снижает падение напряжения, обеспечивая более высокую выходную мощность пускателя.
Двигатели с постоянными магнитами для более мощных приложений были разработаны с промежуточной передачей, как правило, эпициклического типа (рис. 15.26). Это позволяет якорям вращаться с более высокой и более эффективной скоростью, передавая крутящий момент за счет редуктора. Пускатели с постоянными магнитами и промежуточной трансмиссией доступны с выходной мощностью около 1,7 кВт, подходящие для двигателей с искровым зажиганием до около 5 л или двигателей с воспламенением от сжатия до около 1,6 л. Принцип действия этого типа двигателей с постоянными магнитами снова аналогичен. по сравнению с обычным стартером с предварительным включением, но может обеспечить снижение веса до 40 процентов.

Рис. 15.25. Поля постоянных магнитов с межполюсными полюсами.

Рис. 15.26. Стартер промежуточной передачи.
В промежуточной трансмиссии планетарного типа солнечная шестерня находится на валу якоря, а шестерня приводится в движение водилом планетарной передачи. Кольцевая шестерня или кольцо остаются неподвижными, действуя как промежуточный подшипник. Такое расположение шестерен обеспечивает передаточное число около 5: 1, которое можно рассчитать по простой формуле;
Передаточное отношение = (A + S) / S
, где A = количество зубьев в кольцевом пространстве
S — количество зубцов на солнечной шестерне.
Кольцевые шестерни в некоторых случаях изготавливаются из высококачественного полиамидного компаунда с минеральными добавками для повышения прочности и износостойкости. Однако солнечная и планетарная шестерни изготовлены из обычной стали. Такое сочетание материалов обеспечивает более тихую и эффективную работу. Ожидается, что в будущем будут разработаны пускатели с постоянными магнитами более высокой мощности для общего использования.

Электростартеры Электромонтаж Кливленд Огайо

Электростартеры представляют собой эволюцию промышленного применения для распределения электроэнергии.Стартер контролирует использование электроэнергии в оборудовании путем установки двигателя. Стартер может не только запускать электрооборудование, но и останавливать его. Пускатель двигателя обеспечивает защиту от перегрузки, не позволяя двигателям потреблять слишком большой ток, перегреваться и выгорать. В промышленном применении используются пускатели двух типов: ручные пускатели и пускатели магнитных двигателей переменного тока.

При работе ручного пускателя нажимается кнопка или тумблер, которые заставляют открывать или закрывать механические соединения, запускающие или останавливающие двигатель. Хотя этот процесс проще и понятнее, он приводит к повышенному износу станка из-за быстрого ускорения. Другая опасная ситуация, которую создают ручные пускатели, заключается в том, что они не могут обеспечить защиту от низкого напряжения. Когда происходит отключение питания или сбой, и ручной пускатель не был переключен в положение «выключено», при восстановлении питания двигатель автоматически перезапустится.

Магнитные пускатели переменного тока — это пускатели с электромагнитным управлением, которые решают проблему повреждения оборудования за счет управления фазами ускорения и замедления работы. Расширенные функции магнитных пускателей переменного тока обеспечивают защиту от пониженного напряжения и перегрузки, а также автоматическое отключение в случае сбоя. сбой питания. Использование этого усовершенствованного пускателя обеспечит эффективную работу ваших двигателей и принесет экономические выгоды, так как ваша компания обнаружит, что срок службы ее оборудования был увеличен.

Магнитные пускатели переменного тока имеют расширенные функции управления, которые позволяют профессиональным лицензированным промышленным электрикам из Portman, Inc. спроектировать пускатель двигателя в Кливленде и северо-восточном Огайо, с гибким диапазоном управления двигателем и защитой, чтобы соответствовать постоянным параметрам вашей компании. скорость приложения требует.

Как промышленный подрядчик по электротехнике Portman Electric может предоставить следующие услуги:

Преимущества использования пускателя двигателя

Повышенная безопасность: более быстрое отключение и меньшие пропускаемые токи

Защита от короткого замыкания контроллера мотора с автоматическим выключателем обычно обеспечивается уставкой мгновенного максимального тока реле защиты мотора. Хотя этот тип защиты работает без преднамеренной задержки по времени, важно отметить, что унаследованные задержки существуют из-за операций реле и выключателя или общего времени отключения.

Чтобы получить время срабатывания реле, инженер по защите должен учитывать выходной контакт реле и мгновенное время срабатывания защиты. Реле обычно имеют время срабатывания контакта 8 мс при максимальном времени срабатывания 30 мс. Это означает, что общее время срабатывания реле составляет около 38 мсек или около 2 цикла. Как только реле срабатывает и замыкает свой выходной контакт для отключения выключателя, потребуется дополнительно от 50 до 83 мс (от 3 до 5 циклов) для полного размыкания его контактов и устранения неисправности.Суммируя время срабатывания реле и выключателя, общее время отключения составляет 88-121 мс (5-7 циклов).

Контроллеры двигателей

класса E2 используют главный контактор для включения и отключения нагрузки и токов перегрузки, в дополнение к предохранителям, ограничивающим средний ток, для отключения токов короткого замыкания, превышающих отключающую способность главного контактора.

Большинство контакторов среднего напряжения 400 А имеют отключающие характеристики от 6000 до 8 500 А; и контакторы на 800 А MV имеют отключающие характеристики от 7 200 до 12 500 А.Чтобы получить более высокие отключающие характеристики, в качестве резервной защиты поставляются токоограничивающие предохранители для прерывания и ограничения токов короткого замыкания, превышающих номинальные значения контактора. Конструкция пускателя двигателя должна гарантировать, что контактор не размыкается при превышении допустимого значения отключения, а вместо этого позволяет предохранителю отключать эту неисправность.

В таблице ниже приведены минимальное и общее время отключения, а также сквозной ток общих предохранителей, используемых в пускателях двигателей на 400 А и 800 А.Как видно из этой таблицы, чем выше уровни предполагаемого тока короткого замыкания в месте расположения предохранителя, тем быстрее предохранитель очищается и ограничивает пропускаемый ток короткого замыкания, питающий замыкание. Эта функция ограничения тока устраняет неисправность в течение ½ цикла или, по крайней мере, в 10 раз быстрее, чем мгновенная защита выключателя, что значительно снижает количество энергии дугового разряда, производимой во время повреждения, что делает его более безопасным для пользователей.

Цепи стартера электродвигателя

— Inst Tools

Ручной стартер DOL:

Прямой пускатель с контакторным управлением:

Чтение: простой стартер DOl с использованием ПЛК

Мотор Star Delta Starter:

Считывание: звезда — принцип треугольника

Мотор автоматический пускатель трансформатора

Пускатель с автотрансформатором подходит как для двигателей, соединенных звездой, так и треугольником.В этом методе пусковой ток ограничивается с помощью трехфазного автотрансформатора для уменьшения начального приложенного напряжения статора.

Вместо резисторов при пуске автотрансформатора используется понижающий автотрансформатор (однообмоточный трансформатор) для понижения сетевого напряжения. Автотрансформаторные пускатели обеспечивают максимальное снижение сетевого тока из всех методов пуска с пониженным напряжением. Несколько ответвлений на трансформаторе позволяют регулировать напряжение, ток и крутящий момент для соответствия множеству различных условий запуска.При пуске с закрытым переходом двигатель никогда не отключается от сетевого источника во время разгона.

Пускатель сопротивления первичной обмотки двигателя

Двигатель запускается включением главного контактора. Это подает питание на двигатель через последовательное пусковое сопротивление. Контактор (между резисторами R1, R2, R3) разомкнут, поэтому ток должен проходить через резисторы, что приводит к падению напряжения. Из-за падения напряжения на этих резисторах на двигателе падает напряжение.Установлен таймер с заданной выдержкой времени.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *