Как проверить транзистор мультиметром не выпаивая из платы: Как проверить транзисторы не выпаивая из схемы

Содержание

Как проверить igbt транзистор мультиметром не выпаивая

Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе.

Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

Проверка биполярного PNP транзистора мультиметром

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов,…

Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Проверка транзисторов — обязательный шаг при диагностике и ремонте микросхем

Что такое транзистор

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.

Транзистор один из основных компонентов микросхем и электрических схем

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.

Принцип работы полевого транзистора

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.

Чтобы определить состояние транзистора, необходимо протестировать каждый его элемент

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.

Схема проверки транзисторов с помощью мультиметра

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.

Точки проверки транзистора p-n-p

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.

Принцип работы биполярного транзистора

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.

Схема проверки тиристора мультиметром

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.

IGBT-транзисторы с напряжением коллектор-эмиттер

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.

Проверка транзистора мультиметром без выпаивания из микросхемы

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали типа MOSFET имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Полезный совет! Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее.

Устройство полевого транзистора с N-каналом

Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.

Пошаговая проверка полевого транзистора мультиметром

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время. Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения (см. п.7 и 8).

Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального. Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную.

Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.

Как проверить мультиметром транзистор: видео инструкция

Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.

Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.

Рисунок 2. Фрагмент спецификации на 2SD2499

Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.

Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т. д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).

Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

Отклонения от этих значений говорят о неисправности компонента.

Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.

Рис 4. Полевые транзисторы (N- и P-канальный)

Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):

Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.

Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.

Рис 5. IGBT транзистор SC12850

Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.

В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.

Рис. 7. Схема для проверки составного транзистора

Тестирование производится следующим образом:

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.

Рис 8. КТ117, графическое изображение и эквивалентная схема

Проверка элемента осуществляется следующим образом:

Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.

Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.

Как проверить транзистор мультиметром — картинки, рекомендации, видео

Проверка биполярного транзистора мультиметром

Проверку работоспособности биполярного транзистора можно выполнить с помощью цифрового мультиметра. Этим прибором проводятся измерения постоянных и переменных токов, а также напряжение и сопротивление. Перед началом измерений прибор нужно правильно настроить. Это позволит более эффективно решить проблему, как проверить биполярный транзистор мультиметром не выпаивая.

Современные мультиметры могут работать в специальном режиме измерения, поэтому на корпусе изображается значок диода. Когда решается вопрос, как проверить биполярный транзистор тестером, устройство переключается в режим проверки полупроводников, а на дисплее должна отображаться единица. Выводы устройства подключаются так же, как и в режиме измерения сопротивления. Провод черного цвета соединяется с портом СОМ, а провод красного цвета — с выходом, измеряющим сопротивление, напряжение и частоту.

В мультиметрах старой конструкции функция проверки диодов и транзисторов может отсутствовать. В таких случаях все действия проводятся в режиме измерения сопротивления, установленном на максимум. До начала работы батарея мультиметра должна быть заряжена. Кроме того, нужно проверить исправность щупов. Для этого их кончики соединяются между собой. Писк устройства и нули, отображенные на дисплее, свидетельствуют об исправности щупов.

Проверка биполярного транзистора мультиметром выполняется в следующем порядке:

  • Прежде всего, нужно правильно соединить выводы мультиметра и транзистора. Для этого необходимо точно определить, где находятся база, коллектор и эмиттер. Чтобы определить базу, щуп черного цвета подключается к первому электроду, который предположительно считается базовым. Другой щуп красного цвета поочередно подключается вначале ко второму, а затем к третьему электроду. Щупы меняются местами до тех пор, пока прибор не определит падение напряжения. После этого окончательно проводится проверка биполярного транзистора мультиметром и определяются пары: «база-эмиттер» или «база-коллектор». Электроды эмиттера и коллектора определяются с помощью цифрового мультиметра. В большинстве случаев падение напряжения и сопротивление у эмиттерного перехода выше, чем у коллектора.
  • Определение р-п-перехода «база-коллектор»: щуп красного цвета подключен к базе, а черный — к коллектору. Такое соединение работает в режиме диода и пропускает ток лишь в одном направлении.
  • Определение р-п-перехода «база-эмиттер»: красный щуп остается подключенным к базе, а щуп черного цвета нужно подключить к эмиттеру. Так же, как и в предыдущем случае, при таком соединении ток проходит только при прямом включении. Это подтверждает проверка npn транзистора мультиметром
  • Определение р-п-перехода «эмиттер-коллектор»: в случае исправности данного перехода сопротивление на этом участке будет стремиться к бесконечности. На это указывает единица, отображенная на дисплее.
  • Подключение мультиметра осуществляется к каждой паре контактов в двух направлениях. То есть транзисторы р-п-р типа проверяются путем обратного подключения к щупам. В этом случае к базе подключается черный щуп. После измерений полученные результаты сравниваются между собой.
  • После того как проведена проверка pnp транзистора мультиметром, работоспособность биполярного транзистора подтверждается, когда при измерении одной полярности мультиметр показывает конечное сопротивление, а при замерах обратной полярности получается единица. Данная проверка не требует выпаивания детали из общей платы.

Очень многие пытаются решить вопрос, как проверить транзистор без мультиметра с помощью лампочек и других устройств. Этого делать не рекомендуется, поскольку элемент с высокой вероятностью может выйти из строя.

Полевой транзистор

Полевой транзистор — это полупроводниковый прибор, в котором ток стока (С) через полупроводниковый канал п- или р-типа управляется электрическим полем, возникающим при приложении напряжения между затвором (З) и истоком (И).

Полевые транзисторы изготавливают:

— с управляющим затвором типа p-n-перехода для использования в высокочастотных (до 12_18 ГГц) преобразовательных устройствах. Условное их обозначение на схемах приведено на рис. 24, а, б;

— с изолированным (слоем диэлектрика) затвором для использования в устройствах, работающих с частотой до 1_2 ГГц. Их изготавливают или со встроенным каналом в виде МДП_структуры (см. их условное обозначение на рис. 24, в и г), или с индуцированным каналом в виде МОП_структуры (см. их условное обозначение на рис. 24, д, е).

Рисунок 24-Виды полевых транзисторов

Схема включения полевого транзистора с затвором типа p-n-перехода и каналом n-типа, его семейство выходных характеристик IС= f(UС), UЗ = const и стокозатворная характеристика IC= f(UЗ), UС= const изображены на рис. 25.

Рисунок 25 — Схема включения полевого транзистора и его стокозатворной характеристикой

При подключении выходов стока С и истока И к источнику питания Un по каналу n- типа протекает ток IC, так как p-n-переход не перекрывает сечение канала (рис. 25, а).

При этом электрод, из которого в канал входят носители заряда, называют истоком, а электрод, через который из канала уходят основные носители заряда, называют стоком.

Электрод, служащий для регулирования поперечного сечения канала, называют затвором. С увеличением обратного напряжения UЗ уменьшается сечение канала, его сопротивление увеличивается, и уменьшается ток стока IC.

Итак, управление током стока ICпроисходит при подаче обратного напряжения на p-n-переход затвора З. В связи с малостью обратных токов в цепи затвор-исток, мощность, необходимая для управления током стока, оказывается ничтожно малой.

При напряжении -UЗ = -UЗО, называемым напряжением отсечки, сечение канала полностью перекрывается обеднённым носителями заряда барьерным слоем, и ток стока I(ток отсечки) определяется неосновными носителями заряда p-n-перехода (см. рис. 25, б).

Схематичная структура полевого транзистора с индуцированным n-каналом представлена на рис 26. При напряжении на затворе относительно истока, равным нулю, и при наличии напряжения на стоке, ток стока оказывается ничтожно малым. Заметный ток стока появляется только при подаче на затвор напряжения положительной полярности относительно истока, больше так называемого порогового напряжения UЗПОР.

Рисунок 26-Схематичная структура полевого транзистора с индуцированным n-каналом

При этом в результате проникновения электрического поля через диэлектрический слой в полупроводник при напряжениях на затворе, больших UЗПОР, у поверхности полупроводника под затвором возникает инверсный слой, который и является каналом, соединяющим исток со стоком.

Толщина и поперечное сечение канала изменяются с изменением напряжения на затворе, соответственно будет изменяться ток стока. Так происходит управление тока стока в полевом транзисторе с индуцированным затвором. Важнейшей особенностью полевых транзисторов является высокое входное сопротивление (порядка нескольких мегаом) и малый входной ток. Одним из основных параметров полевых транзисторов является крутизна S стоко-затворной характеристики (см. рис. 25, в). Например, для полевого транзистора типа КП103Ж S = (3…5) мА/В.

  • Типы биполярных транзисторов и их диодные схемы замещения.
  • Полевые транзисторы с изолированным затвором.
  • Силовые (мощные) полевые транзисторы. IGBT-транзистор.
  • Транзисторы со статической индукцией.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Основные типы транзисторов

Существует два основных типа транзисторов — биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае — только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов — дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов — «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам — эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов — носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.

Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта — исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.

Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.

Проверка работоспособности полевого транзистора

Полевые транзисторы нашли широкое применение в аудио и видеоаппаратуре, мониторах и блоках питания. От их работоспособности зависит функционирование большинства электронных схем. Поэтому в случае каких-либо неисправностей выполняется проверка этих элементов различными способами, в том числе и проверка транзисторов без выпайки из схемы мультиметром.

Типовая схема полевого транзистора представлена на рисунке. Основные выводы — затвор, сток и исток могут быть расположены по-разному, в зависимости от марки транзистора. При отсутствии маркировки, необходимо уточнить справочные данные, касающиеся той или иной модели.

Основной проблемой, возникающей при ремонте электронной аппаратуры с полевыми транзисторами, является проверка транзистора мультиметром не выпаивая. Как правило неисправности касаются полевых транзисторов с высокой мощностью, которые используются в блоках питания. Кроме того, эти устройства очень чутко реагируют на статические разряды. Поэтому перед решением вопроса, как прозвонить транзистор мультиметром на плате, следует надеть специальный антистатический браслет и ознакомиться с правилами техники безопасности при выполнении этой процедуры.

Проверка с использованием мультиметра предполагает такие же действия, как и в отношении биполярных транзисторов. Исправный полевой транзистор обладает бесконечно большим сопротивлением между выводами, независимо от тестового напряжения, приложенного к нему.

Тем не менее, решение вопроса, как прозвонить транзистор мультиметром имеет свои особенности. Если положительный щуп мультиметра приложен к затвору, а отрицательный — к истоку, то в этом случае произойдет зарядка затворной емкости и наступит открытие перехода. При замерах между стоком и истоком, прибор показывает наличие небольшого сопротивления. Иногда электротехники при отсутствии практического опыта, могут посчитать это за неисправность, что не всегда соответствует действительности

Это может быть важно при проверки строчного транзистора мультиметром. Перед началом проверки канала сток-исток рекомендуется выполнить короткое замыкание всех выводов полевого транзистора, чтобы разрядить емкости переходов

После этого их сопротивления вновь увеличатся, после чего можно повторно прозванивать транзисторы мультиметром. Если данная процедура не дала положительного результата, значит данный элемент находится в нерабочем состоянии.

В полевых транзисторах, используемых для мощных импульсных блоков питания, очень часто на переходе сток-исток устанавливаются внутренние диоды. Поэтому данный канал во время проверки проявляет свойства обычного полупроводникового диода. Поэтому чтобы исключить ошибку, перед тем как проверить исправность транзистора мультиметром, следует убедиться в присутствии внутреннего диода. После первой проверки щупы мультиметра нужно поменять местами. После этого на экране появится единица, указывающая на бесконечное сопротивление. Если подобного не случится, велика вероятность неисправности полевого транзистора. С помощью прибора можно не только проверить, но и измерить транзистор мультиметром.

Подготовка инструментов

У каждого современного радиолюбителя есть универсальный инструмент под названием цифровой мультиметр. Он позволяет измерять постоянные и переменные токи и напряжение, сопротивление элементов. Он также позволяет проверить работоспособность элементов схемы. Рядом с переключателем в режим «прозвонки», как правило, нарисован диод и динамик (см. фото на рис. 1).

Рисунок 1 – Лицевая панель мультиметра

Перед проверкой элемента необходимо убедиться в работоспособности самого мультиметра:

  1. Батарея должна быть заряжена.
  2. При переключении в режим проверки полупроводников дисплей должен отображать цифру 1.
  3. Щупы должны быть исправны, т. к. большинство приборов – китайские, и разрыв провода в них является очень частым явлением. Проверить их нужно, прислонив кончики щупов друг к другу: в этом случае на дисплее отобразятся нули и раздастся писк – прибор и щупы исправны.
  4. Щупы подключаются согласно цветовой маркировке: красный щуп — в красный разъем, черный – в черный разъем с надписью COM.

Если Вы не знаете, как использовать данный прибор, рекомендуем прочитать подробную инструкцию для чайников о том, как пользоваться мультиметром!

Советы: как проверить полевой транзистор

Чтобы диод начал пропускать ток, необходимо к аноду подключить щуп красного цвета (плюс), а щуп черного цвета (минус) подключить к катоду, после чего на мультиметре будет отражено прямое напряжение

Важно понимать, что на величину напряжения влияет тип полупроводника. Так, например, кремниевые диоды характеризуются напряжением от 650 до 800 мВ, в то время как на германиевых транзисторах от 180 до 300 мВ

Как только вы поменяете плюс и минус местами, мультиметр покажет «1», что подтверждает закрытие перехода, т. е. ток не проходит.

В целом, прозвонить биполярный транзистор можно следующим образом:

  1. Производим проверку обратного сопротивления, для чего необходимо подключить плюс к базе транзистора.
  2. Производим подключение минуса к эмиттеру, чтобы протестировать переход.
  3. Чтобы проверить коллектор, к нему нужно подключить минус.

По итогам измерительных операций на дисплее должны появляться показатели в пределах единицы, что говорит о бесконечности сопротивления. Если же ток проходит в двух направлениях, то переход «пробит» (что сопровождается характерным звуковым сигналом), а если ток не проходит вообще, то это является признаком «обрыва». В этом случае можно утверждать о неисправности транзистора. Стоит отметить, что данным способом можно проверять только транзисторы биполярного типа, а вот для полевых или составных приборов это может оказаться бесполезным.

Проверка составного транзистора

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.

Рис 6. Эквивалентная схема транзистора КТ827А

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.

Рис. 7. Схема для проверки составного транзистора

Обозначение:

  • Т – тестируемый элемент, в нашем случае КТ827А.
  • Л – лампочка.
  • R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A – 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).

Тестирование производится следующим образом:

  1. Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
  2. Подаем минус – лампочка гаснет.

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять

Это важно, так как при определении работоспособности, эта информация нам понадобится

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Читать также: Лазерный излучатель для резки металла

Определение вывода базы (затвора)

Наиболее простой способ определить назначение выводов транзистора (цоколевку) — скачать на него документацию. Поиск ведется по маркировке на корпусе. Этот буквенно-цифровой код набирают в строке поиска и далее добавляют «даташит».

Если документацию обнаружить не удается, базу и прочие выводы биполярного транзистора распознают исходя из его особенностей:

  • p-n-p транзистор: открывается приложением к базе отрицательного напряжения;
  • n-p-n транзистор: открывается приложением к базе положительного напряжения.

Действуют так:

  1. Настраивают мультиметр: красный щуп подсоединяют к разъему со значком «V/Ω» (плюсовой потенциал), черный — к разъему COM (минусовой потенциал), а  переключатель устанавливают в режим «прозвонка» или, если такого нет, в сектор измерения сопротивления (значок «Ω») на верхнюю позицию (обычно «2000 Ом»).
  2. Определяют базу. Красный щуп подсоединяют к первому выводу транзистора, черный — поочередно к остальным. Затем красный подсоединяют ко второму выводу, черный снова по очереди к 1-му и 3-му. Признак того, что красный подсоединен к базе, — одинаковое поведение прибора при контакте черного щупа с другими выводами. Прибор оба раза пискнул или показал на дисплее некое конечное сопротивление — транзистор относится к n-p-n типу; прибор оба раза промолчал или отобразил на дисплее «1» (отсутствие проводимости) – транзистор принадлежит p-n-p типу.
  3. Распознают коллектор и эмиттер. Для этого к базе подсоединяют щуп, соответствующий типу проводимости: для n-p-n транзистора – красный, для p-n-p транзистора: черный.

Конструкция полевого транзистора с управляющим p-n-переходом и канлом n-типа а) с затвором со стороны подложки; b) с диффузионным затвором

Второй щуп поочередно подсоединяют к другим выводам. При контакте с коллектором на дисплее отображается меньшее значение сопротивления, чем с эмиттером.

Выводы полевого транзистора обычно промаркированы:

  • G: затвор;
  • S: исток;
  • D: сток.

Если маркировки нет, затвор обнаруживают по той же схеме, что и у биполярного транзистора.

Полевые транзисторы чувствительны к статическому электричеству. Из-за этого их выводы при хранении закорачивают фольгой, а перед началом манипуляций надевают антистатический браслет или хотя бы касаются заземленного металлического предмета (приборный шкаф), чтобы снять статический заряд.

Оцените статью:

Проверка радиодеталей мультиметром не выпаивая

В жизни каждого домашнего мастера, умеющего держать в руках паяльник и пользоваться мультиметром, наступает момент, когда поломалась какая-то сложная электронная техника и он стоит перед выбором: сдать на ремонт в сервис или попытаться отремонтировать самостоятельно. В этой статье мы разберем приемы, которые могут помочь ему в этом.

Итак, у вас сломалась какая-либо техника, например ЖК телевизор, с чего нужно начать ремонт? Все мастера знают, что начинать ремонт надо не с измерений, или даже сходу перепаивать ту деталь, которая вызвала подозрение в чем-либо, а с внешнего осмотра. В это входит не только осмотр внешнего вида плат телевизора, сняв его крышку, на предмет подгоревших радиодеталей, вслушивание с целью услышать высокочастотный писк либо щелканье.

Включаем в сеть прибор

Для начала нужно просто включить телевизор в сеть и посмотреть: как он себя ведет после включения, реагирует ли на кнопку включения, либо моргает светодиод индикации дежурного режима, или изображение появляется на несколько секунд и пропадает, либо изображение есть, а звук отсутствует, или же наоборот. По всем этим признакам, можно получить информацию, от которой можно будет оттолкнуться при дальнейшем ремонте. Например в мигании светодиода, с определённой периодичностью, можно установить код поломки, самотестирования телевизора.

Коды ошибок ТВ по миганию LED

После того, как признаки установлены, следует поискать принципиальную схему устройства, а лучше если выпущен Service manual на устройство, документацию со схемой и перечнем деталей, на специальных сайтах посвященных ремонту электроники. Также не лишним, будет в дальнейшем, вбить в поисковик полное название модели, с кратким описанием поломки, передающим в нескольких словах, ее смысл.

Правда иногда лучше искать схему по шасси устройства, либо названию платы, например блока питания ТВ. Но как же быть, если схему все же найти не удалось, а вы не знакомы со схемотехникой данного устройства?

Блок схема ЖК ТВ

В таком случае, можно попробовать попросить помощи на специализированных форумах по ремонту техники, после проведения предварительной диагностики самостоятельно, с целью собрать информацию, от которой мастера, помогающие вам смогут оттолкнуться. Какие этапы включает в себя, эта предварительная диагностика? Для начала, вы должны убедиться в том, что питание поступает на плату, если устройство вообще не подает никаких признаков жизни. Может быть это покажется банальным, но не лишним будет прозвонить шнур питания на целостность, в режиме звуковой прозвонки. Читайте тут как пользоваться обычным мультиметром.

Тестер в режиме звуковой прозвонки

Затем в ход идет прозвонка предохранителя, в этом же режиме мультиметра. Если у нас здесь все нормально, следует померять напряжения на разъемах питания, идущих на плату управления ТВ. Обычно напряжения питания, присутствующие на контактах разъема, бывают подписаны рядом с разъемом на плате.

Разъем питания платы управления ТВ

Итак, мы замеряли и напряжение какое-либо у нас отсутствует на разъеме — это говорит о том, что схема функционирует не правильно, и нужно искать причину этого. Наиболее частой причиной поломок встречающейся в ЖК ТВ, являются банальные электролитические конденсаторы, с завышенным ESR, эквивалентным последовательным сопротивлением. Про ESR подробнее здесь.

Таблица ESR конденсаторов

В начале статьи я писал про писк, который вы возможно услышите, так вот, его проявление, в частности и есть следствие завышенного ESR конденсаторов небольшого номинала, стоящих в цепях дежурного напряжения. Чтобы выявить такие конденсаторы требуется специальный прибор, ESR (ЭПС) метр, либо транзистор тестер, правда в последнем случае, конденсаторы придется выпаивать для измерения. Фото своего ESR метра позволяющего измерять данный параметр без выпаивания выложил ниже.

Мой прибор ESR метр

Как быть если таких приборов нет в наличии, а подозрение пало на эти конденсаторы? Тогда нужно будет проконсультироваться на форумах по ремонту, и уточнить, в каком узле, какой части платы, следует заменить конденсаторы, на заведомо рабочие, а таковыми могут считаться только новые (!) конденсаторы из радиомагазина, потому что у бывших в употреблении этот параметр, ESR, может также зашкаливать или уже быть на грани.

Фото — вздувшийся конденсатор

То что вы могли выпаять их из устройства, которое ранее работало, в данном случае значения не имеет, так как этот параметр важен только для работы в высокочастотных цепях, соответственно ранее, в низкочастотных цепях, в другом устройстве, этот конденсатор мог прекрасно функционировать, но иметь параметр ESR сильно зашкаливающий. Сильно облегчает работу то, что конденсаторы большого номинала имеют в своей верхней части насечку, по которой в случае прихода в негодность просто вскрываются, либо образовывается припухлость, характерный признак их непригодности для любого, даже начинающего мастера.

Мультиметр в режиме Омметра

Если вы видите почерневшие резисторы, их нужно будет прозвонить мультиметром в режиме омметра. Сначала следует выбрать режим 2 МОм, если на экране будут значения отличающиеся от единицы, или превышения предела измерения, нам следует соответственно уменьшить предел измерения на мультиметре, для установления его более точного значения. Если же на экране единица, то скорее всего такой резистор находится в обрыве, и его следует заменить.

Цветовая маркировка резисторов

Если есть возможность прочитать его номинал, по маркировке цветными кольцами, нанесенными на его корпус, хорошо, в противном случае без схемы, не обойтись. Если схема есть в наличии, то нужно посмотреть его обозначение, и установить его номинал и мощность. Если резистор прецизионный, (точный) его номинал можно набрать, путем включения двух обычных резисторов последовательно, большего и меньшего номиналов, первым мы задаем номинал грубо, последним мы подгоняем точность, при этом их общее сопротивление сложится.

Транзисторы разные на фото

Транзисторы, диоды и микросхемы: у них не всегда можно определить неисправность по внешнему виду. Потребуется измерение мультиметром в режиме звуковой прозвонки. Если сопротивление какой либо из ножек, относительно какой то другой ножки, одного прибора, равно нулю, или близко к к этому, в диапазоне от нуля до 20-30 Ом, скорее всего, такая деталь подлежит замене. Если это биполярный транзистор, нужно вызвонить в соответствии с распиновкой, его p-n переходы.

Проверка транзистора мультиметром

Чаще всего такой проверки бывает достаточно, чтобы считать транзистор рабочим. Более качественный метод описан тут. У диодов мы также вызваниваем p-n переход, в прямом направлении, должны быть цифры порядка 500-700 при измерении, в обратном направлении единица. Исключение составляют диоды Шоттки, у них меньшее падение напряжения, и при прозвонке в прямом направлении на экране будут цифры в диапазоне 150-200, в обратном также единица. Мосфеты, полевые транзисторы, обычным мультиметром без выпаивания так не проверить, приходится часто считать их условно рабочими, если их выводы не звонятся между собой накоротко, или в низком сопротивлении.

Мосфет в SMD и обычном корпусе

При этом следует учитывать, что у мосфетов между Стоком и Истоком стоит встроенный диод, и при прозвонке будут показания 600-1600. Но здесь есть один нюанс: в случае, если например вы прозваниваете мосфеты на материнской плате и при первом прикосновении слышите звуковой сигнал, не спешите записывать мосфет в пробитый. В его цепях стоят электролитические конденсаторы фильтра, которые в момент начала заряда, как известно, на какое-то время ведут себя, как будто цепь замкнута накоротко.

Мосфеты на материнской плате ПК

Что и показывает наш мультиметр, в режиме звуковой прозвонки, писком, первые 2-3 секунды, а затем на экране побегут увеличивающиеся цифры, и установится единица, по мере заряда конденсаторов. Кстати по этой же причине, с целью сберечь диоды диодного мостика, в импульсных блоках питания ставят термистор, ограничивающий токи заряда электролитических конденсаторов, в момент включения, через диодный мост.

Диодные сборки на схеме

Многих знакомых начинающих ремонтников, обращающихся за удаленной консультацией в Вконтакте, шокирует — им говоришь прозвони диод, они прозваниют и сразу-же говорят: он пробитый. Тут стандартно всегда начинается объяснение, что нужно либо приподнять, выпаять одну ножку диода, и повторить измерение, либо проанализировать схему и плату, на наличие параллельно подключенных деталей, в низком сопротивлении. Таковыми часто бывают вторичные обмотки импульсного трансформатора, которые как раз и подключаются параллельно выводам диодной сборки, или иначе говоря сдвоенного диода.

Параллельное и последовательное соединение резисторов

Здесь лучше всего один раз запомнить, правило подобных соединений:

  1. При последовательном соединении двух и более деталей, их общее сопротивление будет больше большего каждой, по отдельности.
  2. А при параллельном соединении, сопротивление будет меньше меньшего каждой детали. Соответственно наша обмотка трансформатора, имеющая сопротивление в лучшем случае 20-30 Ом, шунтируя, имитирует для нас “пробитую” диодную сборку.

Конечно все нюансы ремонтов, к сожалению, в одной статье раскрыть не реально. Для предварительной диагностики большинства поломок, как выяснилось, бывает достаточно обычного мультиметра, применяемого в режимах вольтметра, омметра, и звуковой прозвонки. Часто при наличии опыта, в случае простой поломки, и последующей замены деталей, на этом ремонт бывает закончен, даже без наличия схемы, проведенный так зазываемым “методом научного тыка”. Что конечно не совсем правильно, но как показывает практика, работает, и, к счастью, совсем не так как изображено на картинке выше). Всем удачных ремонтов, специально для сайта Радиосхемы — AKV.

Обсудить статью ДИАГНОСТИКА И РЕМОНТ ЭЛЕКТРОНИКИ БЕЗ СХЕМ

Многим из нас часто приходилось сталкиваться с тем, что из-за одной, вышедшей из строя, детальки перестаёт работать целое устройство. Что бы избежать недоразумений, следует уметь быстро и правильно проверять детали. Этому я и собираюсь Вас научить. Для начала, нам потребуется мультиметр

Транзисторы биполярные

Чаще всего, сгорают в схемах транзисторы. По крайней мере у меня. Проверить их на работоспособность очень просто. Для начала, стоит прозвонить переходы База-Эмиттер и База-Коллектор. Они должны проводить ток в одном направлении, но не пускать в обратном. В зависимости от того, ПНП это транзистор или НПН, ток они будут проводить к Базе или от Базы. Для удобства, можем представить его в виде двух диодов

Так же стоит прозвонить переход Эмиттер-Коллектор. Точнее это 2 перехода. . . Ну в прочем не суть. В любом транзисторе, ток не должен проходить через них в любом направлении, пока транзистор закрыт. Если же на Базу подали напряжение, то ток протекая через переход База-Эмиттер откроет транзистор, и сопротивление перехода Эмиттер-Коллектор резко упадёт, почти до нуля. Учтите, что падение напряжения на переходах транзистора обычно не ниже 0,6В. А у сборных транзисторов (Дарлингтонов) более 1,2В. По этому некоторые «китайские» мультиметры с батарейкой в 1,5В просто не смогут их открыть. Не поленитесь/поскупитесь достать себе мультиметр с «Кроной»!

Учтите, что в некоторых современных транзисторах параллельно с цепью Коллектор-Эмиттер встроен диод. Так что стоит изучить даташит на Ваш транзистор, если Коллектор-Эмиттер звонится в одну сторону!

Если хотя бы одно из утверждений не подтверждается, то транзистор нерабочий. Но прежде чем заменить его, проверьте оставшиеся детали. Возможно причина в них!

Транзисторы униполярные (полевые)

У исправного полевого транзистора между всеми его выводами должно быть бесконечное сопротивление. Причем бесконечное сопротивление прибор должен показывать независимо от прикладываемого тестового напряжения. Следует заметить, что имеются некоторые исключения.

Если при проверке приложить положительный щуп тестового прибора к затвору транзистора n-типа, а отрицательный — к истоку, зарядится емкость затвора и транзистор откроется. При замере сопротивления между стоком и истоком прибор покажет некоторое сопротивление. Неопытные ремонтники могут принять такое поведение транзистора за его неисправность. Поэтому перед «прозвонкой» канала «сток-исток» замкните накоротко все ножки транзистора, чтобы разрядить емкость затвора. После этого сопротивление сток-исток должно стать бесконечным. В противном случае транзистор признается неисправным.

Учтите ещё, что в современных мощных полевых транзисторах между стоком и истоком имеется встроенный диод поэтому канал «сток-исток» при проверке ведет себя как обычный диод. Для того чтобы избежать досадных ошибок, помните о наличии такого диода и не примите это за неисправность транзистора. Проверить это легко, пролистав даташит на Ваш экземпляр.

Конденсаторы

Конденсаторы – ещё одна разновидность радиодеталей. Они тоже довольно часто выходят из строя. Чаще всего умирают электролитические, плёнки и керамика портятся несколько реже. . .

Для начала, платы стоит обследовать визуально. Обычно мёртвые электролиты надуваются, а многие даже взрываются. Присмотритесь! Керамические конденсаторы не надуваются, но могут взорваться, что тоже заметно! Их, как и электролиты надо прозванивать. Ток они проводить не должны.

Перед началом электронной проверки конденсатора необходимо провести механическую проверку целостности внутреннего контакта его выводов.

Для этого достаточно поочерёдно согнуть выводы конденсатора под небольшим углом, и аккуратно поворачивая их в разные стороны, а также слегка потягивая на себя, убедиться в их неподвижности. В случае, если хотя бы один вывод конденсатора свободно вращается вокруг своей оси, или свободно вынимается из корпуса, то такой конденсатор считается не пригодным и дальнейшей проверке не подлежит.

Ещё один интересный факт – заряд/разряд конденсаторов. Это можно заметить, если мерять сопротивление конденсаторов, ёмкостью более 10мкФ. Оно есть и у меньших емкостей, но не так заметно выражен! Как только мы подключим щупы, сопротивление будет единицы Ом, но в течении секунды вырастет до бесконечности! Если мы поменяем щупы местами, эффект повторится.

Соответственно, если конденсатор проводит ток, или не заряжается, то он уже ушёл в мир иной.

Резисторы

Резисторы – их больше всего на платах, хотя они не так то уж и часто выходят из строя. Проверить их просто, достаточно сделать одно измерение – проверить сопротивление.

Если оно меньше бесконечности и не равно нулю, то резистор скорее всего пригоден к использованию. Обычно, мёртвые резисторы чёрные – перегретые! Но чёрные бывают и живыми, хотя их тоже стоит заменить. После нагрева, их сопротивление могло измениться от номинального, что плохо повлияет на работу устройства! Вообще стоит прозвонить все резисторы, и если их сопротивление отличается от номинального, то лучше заменить. Заметьте, что отличие от номинала на ± 5% считается допустимым. . .

Диоды

Проверить диоды по моему проще всего. Померили сопротивление, с плюсом на аноде, показывать должно несколько десятков/сотен Ом. Померили с плюсом на катоде – бесконечность. Если не так, то диод стоит заменить. . .

Индуктивность

Редко, но всё же из строя выходят индуктивности. Причины тому две. Первая – КЗ витков, а вторая – обрыв. Обрыв вычислить легко – достаточно проверить сопротивление катушки. Если оно меньше бесконечности, то всё ОК. Сопротивление индуктивностей обычно не более сотен Ом. Чаще всего несколько десятков. . .

КЗ между витков вычислить несколько труднее. Надо проверить напряжение самоиндукции. Это работает только на дросселях/трансформаторах, с обмотками в хотя бы 1000 витков. Надо подать импульс низковольтный на обмотку, А после, замкнуть эту обмотку лампочкой газоразрядной. Фактически, любя ИН-ка. Импульс обычно подают, слегка касаясь контактов КРОНЫ. Если ИН-ка в итоге мигнёт, то всё норм. Если нет, то либо КЗ витков, либо очень мало витков. . .

Как видите, способ не очень точный, и не очень удобный. Так что сначала проверьте все детали, и лишь потом грешите на КЗ витков!

Оптопары

Оптопара фактически состоит из двух устройств, поэтому проверять её немного сложнее. Сначала, надо прозвонить излучающий диод. Он должен как и обычный диод прозваниваться в одну сторону и служить диэлектриком в другую. Затем надо подав питание на излучающий диод померить сопротивление фотоприёмника. Это может быть диод, транзистор, тиристор или симистор, в зависимости от типа оптопары. Его сопротивление должно быть близким к нулю.

Затем убираем питание с излучающего диода. Если сопротивление фотоприёмника выросло до бесконечности, то оптопара целая. Если что-то не так, то её стоит заменить!

Тиристоры

Ещё один важный ключевой элемент – тиристор. Так же любит выходить из строя. Тиристоры так же бывают симметричные. Называются симисторы! Проверить и те и другие просто.

Берём омметр, плюсовой щуп подключаем к аноду, минусовой к катоду. Сопротивление равно бесконечности. Затем управляющий электрод (УЭ) подсоединяем к аноду. Сопротивление падает до где-то сотни Ом. Затем УЭ отсоединяем от анода. По идее, сопротивление тиристора должно остаться низким – ток удержания.

Но учтите, что некоторые «китайские» мультиметры могут выдавать слишком маленький ток, так что если тиристор закрылся, ничего страшного! Если он всё же открыт, то убираем щуп от катода, а через пару секунд присоединяем обратно. Теперь тиристор/симистор точно должен закрыться. Сопротивление равно бесконечности!

Если некоторые тезисы не совпадают с действительностью, то Ваш тиристор/симистор нерабочий.

Стабилитроны

Стабилитрон – фактически один из видов диода. По этому проверяется он так же. Заметим, что падение напряжения на стабилитроне, с плюсом на катоде равно напряжению его стабилизации – он проводит в обратную сторону, но с бОльшим падением. Чтоб это проверить, мы берём блок питания, стабилитрон и резистор на 300. 500Ом. Включаем их как на картинке ниже и меряем напряжение на стабилитроне.

Мы плавно подымаем напряжение блока питания, и в какой-то момент, на стабилитроне напряжение перестаёт расти. Мы достигли его напряжения стабилизации. Если этого не случилось, то либо стабилитрон нерабочий, либо надо ещё повысить напряжение. Если Вы знаете его напряжение стабилизации, то прибавьте к нему 3 вольта и подайте. Затем повышайте и если стабилитрон не начал стабилизировать, то можете быть уверены, что он неисправен!

Стабисторы

Стабисторы – одна из разновидностей стабилитронов. Единственное их отличие в том, что при прямом включении – с плюсом на аноде, падение напряжения на стабисторе равно напряжению его стабилизации, а в другую сторону, с плюсом на катоде, ток они не проводят вообще. Достигается это включением нескольких кристаллов-диодов последовательно.

Учтите, что мультиметр с напряжением питания в 1,5В чисто физически не сможет вызвонить стабистор скажем на 1,9В. По этому включаем наш стабистор как на картинке ниже и меряем напряжение на нём. Подать надо напряжение около 5В. Резистор взять сопротивлением в 200. 500Ом. Повышаем напряжение, меряя напряжение на стабисторе.

Если на какой то точке оно перестало расти, или стало расти очень медленно, то это и есть его напряжение стабилизации. Он рабочий! Если же он проводит ток в обе стороны, или имеет крайне низкое падение напряжения в прямом включении, то его стоит заменить. По видимому, он сгорел!

Шлейф/разъём

Проверить различного рода шлейфы, переходники, разъёмы и др. довольно просто. Для этого надо прозвонить контакты. В шлейфе каждый контакт должен звониться с одним контактом на другой стороне. Если контакт не звонится ни с каким другим, то в шлейфе обрыв. Если же он звонится с несколькими, то скорее всего в шлейфе КЗ. Тоже самое с переходниками и разъёмами. Те из них, которые с обрывом или КЗ считаются бракованными и использованию не подлежат!

Микросхемы/ИМС

Их великое множество, они имеют много выводов и выполняют разные функции. Поэтому проверка микросхемы должна учитывать её функциональное назначение. Точно убедиться в целости микросхем довольно трудно. Внутри каждая представляет десятки-сотни транзисторов, диодов, резисторов и др. Есть такие гибриды, в которых одних только транзисторов более 2000000000 штук.

Одно можно сказать точно – если Вы видите внешние повреждения корпуса, пятна от перегрева, раковины и трещины на корпусе, отставшие выводы, то микросхему стоит заменить – она скорее всего с повреждением кристалла. Греющаяся микросхема, назначение которой не предусматривает её нагрева, должна быть так же заменена.

Полная проверка микросхем может осуществляться только в устройстве, где она подключена так, как ей полагается. Этим устройством может быть либо ремонтируемая аппаратура, либо специальная, проверочная плата. При проверке микросхем используются данные типового включения, имеющиеся в спецификации на конкретную микросхему.

Ну всё, ни пуха Вам, и поменьше горелых деталек!

Ни одна современная схема не обходится без полупроводниковых приборов. Самый распространённый из них — транзистор и именно он часто выходит из строя. Тому причиной — перепады напряжения, которые есть в наших сетях, нагрузки и т. д. Рассмотрим два способа позволяющие проверить исправность транзистора при помощи мультиметра.

Необходимый минимум сведений

Чтобы понять исправен биполярный транзистор или нет, нам необходимо знать хотя бы в самых общих чертах, как он устроен и работает. Это активный электронный компонент, который является полупроводниковым прибором. Есть два основных вида — NPN и PNP. Каждый из них имеет три электрода: база, эмиттер и коллектор.

Виды транзисторов и принцип работы

Коротко сформулировать принцип работы транзисторов можно таким образом, это управляемый электронный ключ. Он пропускает ток по направлению от коллектора к эмиттеру в случае NPN типа и от эмиттера к коллектору у PNP, при наличии напряжения на базе. Причём изменяя потенциал на базе, меняем степень «открытости» перехода, регулируя величину пропускаемого тока. То есть, если на базу подавать больший ток, имеем больший ток коллектор-эмиттер, уменьшим потенциал на базе, снизим ток, протекающий через транзистор.

Ещё важно знать, это то, что в обратном направлении ток течь не может. И неважно, есть потенциал на базе или нет. Он всегда течёт в направлении, на схеме указанном стрелкой. Собственно, это вся информация, которая нам нужна, чтобы знать как работает транзистор.

Цоколевка

У биполярных транзисторов средней и большой мощности цоколевка одинаковая в основном, слева направо — эмиттер, коллектор, база. У транзисторов малой мощности лучше проверять. Это важно, так как при определении работоспособности, эта информация нам понадобится.

Внешний вид биполярного транзистора средней мощности и его цоколевка

То есть, если вам необходимо определить рабочий или нет биполярный транзистор, нужно искать его цоколевку. Хотите убедиться или не знаете, где «лицо», то ищите информацию в справочнике или наберите на компьютере «имя» вашего полупроводникового прибора и добавьте слово «даташит». Это транслитерация с английского Datasheet, что переводится как «технические данные». По этому запросу вам в выдаче будет перечень характеристик прибора и его цоколёвка.

Как проверить транзистор мультиметром со встроенной функцией

Начнём с того, что есть мультиметры с функцией проверки работоспособности транзистора и определения коэффициента усиления. Их можно опознать по наличию характерного блока на лицевой панели. В ней есть гнездо под установку транзистора, круглая цветная пластиковая вставка с отверстиями под ножки полупроводникового прибора. Цвет вставки может быть любым, но обычно, он выделяется.

Первым делом переводим переключатель диапазонов (большую ручку) в соответствующее положение. Опознать режим можно по надписи — hFE. Перед тем как проверить транзистор мультиметром, определяемся с типом NPN или PNP.

Мультиметр с функцией проверки транзисторов

Далее рассматриваем разъёмы, в которые надо вставлять электроды. Они подписаны латинскими буквами: E — эмиттер, B — база, C — коллектор. В соответствии с надписями, ставим выводы полупроводникового элемента в гнёзда. Через несколько мгновений на экране высвечивается результат измерений, это коэффициент усиления транзистора. Если прибор неисправен, показаний не будет, транзистор неисправен.

Как видите, проверить рабочий транзистор или нет мультиметром со встроенной функцией проверки просто. Вот только в гнёзда нормально вставляются далеко не все электроды. Удобно устанавливать транзисторы с тонкими выводами S9014, S8550, КТ3107, КТ3102. У больших, надо пинцетом или плоскогубцами менять форму выводов, ну а транзистор на плате так не проверишь. В некоторых случаях проще проверить переходы транзистора в режиме прозвонки и определить его исправность.

Проверка на плате

Чтобы проверить транзистор мультиметром не выпаивая или нужен мультиметр с функцией прозвонки диодов. Переключатель переводим в это положение, подключение щупов стандартное: чёрный в общее звено (COM или со значком земли), красный — в среднее (гнездо для измерения сопротивления, тока, напряжения).

Как проверить транзистор мультиметром не выпаивая

Чтобы понять принцип проверки, надо вспомнить структуру биполярных транзисторов. Как уже говорили, они бывают двух типов: PNP и NPN. То есть это три последовательные области с двумя переходами, объединёнными общей областью — базой.

Строение биполярного транзистора и как его можно представить, чтобы понять как его будем проверять

Условно, мы можем представить этот прибор как два диода. В случае с PNP типом они включены навстречу друг другу, у NPN — в зеркальном отражении. Это представление на картинке в правом столбике и ни в коем случае не отображает устройство этого полупроводникового прибора, но поясняет, что мы должны увидеть при прозвонке.

Проверка биполярного транзистора PNP типа

Итак, начнём с проверки биполярника PNP типа. Вот что у нас должно получиться:

  • Если подать на базу плюс (красный щуп), на эмиттер или коллектор — минус (чёрный щуп), должно быть бесконечно большое сопротивление. В этом случае диоды закрыты (смотрим на эквивалентной схеме).
  • Если подаём на базу минус (чёрный щуп), а на эмиттер или коллектор плюс (красный щуп), видим ток от 600 до 800 мВ. В этом случае получается, что переход открыт.

Проверка биполярного PNP транзистора мультиметром

Итак, PNP транзистор будет открыт только тогда, когда плюс подаётся на эмиттер или коллектор. Если во время испытаний есть хоть какие-то отклонения, элемент неработоспособен.

Тестируем исправность NPN транзистор

Как видим, в NPN приборе ситуация будет другой. Практически она диаметрально противоположна:

  • Если подать на базу плюс (красный щуп), а на эмиттер или коллектор минус, переход будет открыт, на экране высветятся показания — от 600 до 800 мВ.
  • Если поменять местами щупы: плюс на коллектор или эмиттер, минус на базу — переходы заперты, тока нет.
  • При прикосновении щупами к эмиттеру и коллектору тока по-прежнему быть не должно.

Проверка работоспособности биполярного NPN транзистора мультиметром

Как видим, этот прибор работает в противоположном направлении. Для того чтобы понять, рабочий транзистор или нет, необходимо знать его тип. Только так можем проверить транзистор мультиметром не выпаивая его с платы.

И ещё раз обращаем ваше внимание, картинки с диодами никак не отображают устройство этого полупроводникового прибора. Они нужны только для понимания того, что мы должны увидеть при проверке переходов. Так проще запомнить, и понимать показания на экране мультиметра.

Как определить базу, коллектор и эмиттер

Иногда бывают ситуации, когда нет под рукой справочника и возможности найти цоколёвку в интернете, а надпись на корпусе транзистора стала нечитаемой. Тогда, пользуясь схемами с диодами, можно опытным путём найти базу и определить тип прибора.

Строение биполярного транзистора и как его можно представить чтобы понять как его будем проверять

Путём перебора ищем положение щупов, при котором «звонятся» все три электрода. Тот вывод, относительно которого появляются показания на двух других и будет базой. Потому, плюс или минус подан на базу определяем тип, PNP или NPN. Если на базу подаём плюс — это NPN тип, если минус — это PNP.

Чтобы определить, где эмиттер,а где коллектор, надо сравнить показания мультиметра при измерении. На эмиттере ток всегда больше. Так и найдём опытным путём базу, эмиттер и коллектор.

P channel mosfet схема включения. Как проверить транзистор мультиметром, не выпаивая их схемы

Инструкция

Проверить полевой транзистор, когда он впаян в электронную схему не получится, поэтому перед проверкой выпаяйте его. Осмотрите корпус. Если на корпусе есть дырка от расплавления кристалла, то проверять транзистор нет смысла. Если же корпус целый, то можно приступать к проверке.

Подавляющее большинство мощных полевых транзисторов имеют структуру MOS-FET и n-канал с изолированным затвором. Реже встречаются с p-каналом, в основном в оконечных каскадах звуковых усилителей. Разные структуры полевых транзисторов требуют разных способов их проверки.

Выпаяв транзистор, дайте ему остыть.

Положите транзистор на сухой лист бумаги. Вставьте провода омметра красный в плюсовой разъем, а черный в минусовой. Установите предел измерений на 1кОм. Сопротивление канала открытого транзистора зависит от приложенного напряжения к затвору относительно истока, поэтому в процессе работы с транзистором, вы можете установить более удобный для вас предел измерения. Подключение электродов внутри корпуса показано на фото.

Коснитесь черным щупом электрода «исток» транзистора, а красным прикоснитесь к электроду «сток». Если прибор покажет короткое замыкание, уберите щупы и соедините все три электрода плоской отверткой. Цель – разрядить емкостный переход затвора, возможно, он был заряжен. После этого повторите измерение сопротивления канала. Если прибор по-прежнему показывает короткое замыкание, значит, транзистор неисправен и подлежит замене.

Если прибор показал сопротивление близкое к бесконечности, то проверьте переход затвора. Она проверяется аналогично переходу канала. Коснитесь любым щупом электрода «исток» транзистора, а другим прикоснитесь к электроду «затвор». Сопротивление должно быть бесконечно большим. Изолированный затвор электрически не связан с каналом транзистора и любое обнаруженное сопротивление в этой цепи говорит о неисправности транзистора.

Методика проверки полностью исправного транзистора выглядит так: Прикоснитесь черным щупом омметра к электроду «исток» транзистора, коснитесь красным щупом электрода «затвор». Сопротивление должно быть бесконечно большим, затем, не замыкая «затвор» на другие электроды, коснитесь красным щупом электрода «сток». Прибор покажет маленькое сопротивление на этом участке. Величина этого сопротивления зависит от напряжения между щупами омметра. Теперь коснитесь красным щупом электрода «исток», повторите вышеописанную процедуру. Сопротивление канала будет очень большое, близкое к бесконечности. Способ проверки MOS-FET транзистора с p-каналом отличается тем, что при измерениях надо поменять между собой красный и черный щупы омметра.

Отказ системы, в которой используется одновременно множество электромагнитных реле , может быть вызван неисправностью всего одного из них. Не допустить такой ситуации можно лишь путем их регулярной проверки.

Инструкция

Независимо от способа проверки реле , на время его испытания обязательно подключите параллельно его обмотке диод типа 1N4007 в обратной полярности. Такой же диод желательно установить и в схему, где оно работает постоянно, если только по алгоритму ее работы на обмотку не подается по очереди напряжение различной полярности. Извлечение реле и установку его в устройство производите тогда, когда последнее обесточено.

Если необходимо провести проверку реле в статическом режиме, просто подавайте на его обмотку напряжение, равное минимальному напряжению срабатывания. Когда оно подано, должны гарантированно размыкаться все нормально замкнутые контакты и замыкаться все нормально разомкнутые. При снятия напряжения с обмотки ситуация должны меняться на противоположную в отношении всех контактных групп. Для проверки состояния контактов используйте обычный омметр или даже пробник с батарейкой и лампочкой.

Проверку реле в динамическом режиме осуществляйте при помощи обычного мультивибратора на двух транзисторах. Подключите его в качестве нагрузки одного из транзисторов. Меняя номиналы частотозадающих элементов, сделайте частоту срабатывания реле близкой к предельной для него (она указана в документации). Чтобы проверить ту или иную контактную группу, подайте на нее напряжение через лампочку или мощный резистор таким образом, чтобы ток через нее не превышал предельный. Параллельно группе подключите осциллограф. Убедитесь по изображению на его экране, что в срабатывании контактов отсутствуют перебои. Проверьте таким образом поочередно все группы. Не держите реле в таком режиме слишком долго, поскольку при быстром срабатывании оно изнашивается.

В случае выявления неисправности реле дальнейшие действия осуществляйте в зависимости от его типа. Если оно допускает регулировку контактов, осуществите таковую, если же нет, замените реле целиком. В случае, если неправильно функционирует только одна контактная группа, просто задействуйте вместо нее другую либо переставьте реле в такой узел, где она не задействована.

Видео по теме

Некоторые модели тестеров оснащены встроенными измерителями коэффициента усиления маломощных транзисторов . Если же вы таким прибором не обладаете, то исправность транзисторов можно проверить обычным тестером в режиме омметра, либо же при помощи цифрового тестера в режиме проверки диодов.


Инструкция

Для проверки биполярных транзисторов присоедините один щуп мультиметра подключите к базе транзистора, второй щуп подносите поочередно к эмиттеру и коллектору, потом поменяйте щупы местами повторите те же действия. Обратите внимание, что внутри электродов многих цифровых либо же мощных транзисторов могут располагаться защитные диоды между коллектором и эмиттером и встроенные резисторы между базой и эмиттером или в цепи базы, если вы этого не знаете, то по ошибке можете посчитать этот элемент неисправным.

При проверке полевых транзисторов учитывайте тот факт, что они бывают самых разнообразных видов. К примеру, проверка транзисторов , имеющих затвор на основе запорного слоя p-n-перехода, осуществляется так. Возьмите обычный стрелочный омметр или цифровой (второй более удобный).

Измерьте сопротивление между стоком и истоком, оно должно иметь небольшую величину и быть приблизительно равным в обоих направлениях. Теперь измерьте прямое и обратное сопротивление перехода, для этого подключите щупы к затвору и стоку (либо истоку). Если транзистор исправен, сопротивление будет разным в обоих направлениях.

Когда проверяете сопротивление между стоком и истоком, снимите заряд с затвора, для этого в течение пар секунд замкните его с истоком, если этого не сделать – вы получите неповторяющийся результат. Большинство маломощных полевых транзисторов крайне чувствительно к статике. Потому перед тем, как взять транзистор в руки, убедитесь, что на вашем теле не осталось зарядов. Чтобы освободиться от них, коснитесь рукой любого заземленного прибора (подойдет батарея отопления). Мощные полевые транзисторы чаще всего оснащены защитой от статики, но даже несмотря на это защита при работе с ними также не повредит.

Красивое и романтичное название полевого цветка иван-да-марья связано с древними славянскими легендами о запретной и нерушимой любви. Этот цветок собирали в числе прочих в купальскую ночь и использовали для различных обрядов.

Какой полевой цветок называют Иван-да-Марья

На самом деле этим именем называют несколько совершенно различных растений, относящихся к разным семействам. Поэтому довольно сложно сказать точно, какой именно цветок звали так наши предки. Во всяком случае, известно, что это название носит двухцветный цветок, обычно желтый с фиолетовым.

Чаще всего иваном-да-марьей называют растение, известное в ботанике как марьянник дубравный – однолетнее дикорастущее растение, отличающееся ярко-желтыми цветками с фиолетовыми прицветниками. Другие названия этого растения – иванова трава, брат с сестрой.

Иногда иваном-да-марьей зовут также фиалку трехцветную (анютины глазки) или луговой шалфей, реже – барвинок малый.

Легенды об Иване-да-Марье

Наиболее распространенная версия легенды, объясняющей название цветка, связана с именем Ивана Купалы.

Родились когда-то в одной семье близнецы – мальчик и девочка, Купала и Кострома. Когда они были еще маленькими детьми, Купалу унесла в далекие края птица Сирин. Спустя много лет молодой человек плыл по реке на лодке, странствуя в незнакомых землях. Тем часом мимо его лодки проплывал девичий венок. Купала подобрал его, а сойдя на берег, встретил и его хозяйку – красавицу Кострому. Молодые люди всем сердцем полюбили друг друга. Они поженились по славянскому обычаю. И лишь потом, придя в родную деревню, узнали о том, что приходятся друг другу родными братом и сестрой.

Согласно одной из версий легенды, боги покарали Кострому и Купалу за их запретную любовь, обратив их в цветок. По другой версии, несчастные влюбленные сами попросили об этом богов, чтобы никогда не разлучаться.

Еще один вариант предания рассказывает о том, что Кострома, не вынеся позора, пошла топиться в реке и превратилась в русалку, мару.

Самая жестокая легенда повествует о сестре, которая попыталась соблазнить своего брата, за что и была им убита. Перед смертью же она попросила посадить этот цветок на ее могиле.

Более «мягкая» история – о брате и сестре, которые жили на берегу реки. Однажды сестру заманили русалки и превратили в мару, жену водяного. Тогда ее брат собрал полынь-траву и с ее помощью одолел водяного.

Символика растения

Иван-да-марья – один из главных символов праздника Ивана Купалы, знак нерушимой любви.

Кроме того, считается, что желтый цвет символизирует огонь, а фиолетовый – воду (росу). Таким образом, иван-да-марья – символ единения противоположностей, знак огня и воды.

Видео по теме

Источники:

  • как проверить полевые транзисторы
Содержание:

В радиоэлектронике и электротехнике транзисторы относятся к одним из основных элементов, без которых не будет работать ни одна схема. Среди них, наиболее широкое распространение получили полевые транзисторы, управляемые электрическим полем. Само электрическое поле возникает под действием напряжения, следовательно, каждый полевой транзистор является полупроводниковым прибором, управляемым напряжением. Наиболее часто применяются элементы с изолированным затвором. В процессе эксплуатации радиоэлектронных устройств и оборудования довольно часто возникает необходимость проверить полевой транзистор мультиметром, не нарушая общей схемы и не выпаивая его. Кроме того, на результаты проверки оказывает влияние модификация этих устройств, которые технологически разделяются на п- или р-канальные.

Устройство и принцип действия полевых транзисторов

Полевые транзисторы относятся к категории полупроводниковых приборов. Их усиливающие свойства создаются потоком основных носителей, который протекает через проводящий канал и управляется электрическим полем. Полевые транзисторы, в отличие от биполярных, для своей работы используют основные носители заряда, расположенные в полупроводнике. По своим конструктивным особенностям и технологии производства полевые транзисторы разделяются на две группы: элементы с управляющим р-п-переходом и устройства с изолированным затвором.

К первому варианту относятся элементы, затвор которых отделяется от канала р-п-переходом, смещенным в обратном направлении. Носители заряда входят в канал через электрод, называемый истоком. Выходной электрод, через который носители заряда уходят, называется стоком. Третий электрод — затвор выполняет функцию регулировки поперечного сечения канала.

Когда к истоку подключается отрицательное, а к стоку положительное напряжение, в самом канале появляется электрический ток. Он создается за счет движения от истока к стоку основных носителей заряда, то есть электронов. Еще одной характерной особенностью полевых транзисторов является движение электронов вдоль всего электронно-дырочного перехода.

Между затвором и каналом создается электрическое поле, способствующее изменению плотности носителей заряда в канале. То есть, изменяется величина протекающего тока. Поскольку управление происходит с помощью обратно смещенного р-п-перехода, сопротивление между каналом и управляющим электродом будет велико, а мощность, потребляемая от источника сигнала в цепи затвора, очень мала. За счет этого обеспечивается усиление электромагнитных колебаний не только по току и напряжению, но и по мощности.


Существуют полевые транзисторы, у которых затвор отделяется от канала слоем диэлектрика. В состав элемента с изолированным затвором входит подложка — полупроводниковая пластина, имеющая относительно высокое . В свою очередь, она состоит из двух областей с противоположными типами электропроводности. На каждую из них нанесен металлический электрод — исток и сток. Поверхность между ними покрывает тонкий слой диэлектрика. Таким образом, в полученную структуру входят металл, диэлектрик и полупроводник. Данное свойство позволяет проверить полевой транзистор мультиметром не выпаивая. Поэтому данный вид транзисторов сокращенно называют МДП. Они различаются наличием индуцированных или встроенных каналов.

Проверка мультиметром

Перед началом проверки на исправность полевого транзистора мультиметром, рекомендуется принять определенные меры безопасности, с целью предотвращения выхода транзистора из строя. Полевые транзисторы обладают высокой чувствительностью к статическому электричеству, поэтому перед их проверкой необходимо организовать заземление. Для снятия с себя накопленных статических зарядов, следует воспользоваться антистатическим заземляющим браслетом, надеваемым на руку. В случае отсутствия такого браслета можно просто коснуться рукой батареи отопления или других заземленных предметов.


Хранение полевых транзисторов, особенно с малой мощностью, должно осуществляться с соблюдением определенных правил. Одно из них заключается в том, что выводы транзисторов в этот период, находятся в замкнутом состоянии между собой. Конфигурация цоколей, то есть расположение выводов в различных моделях транзисторов может отличаться. Однако их маркировка остается неизменной, в соответствии с общепринятыми стандартами. Затвор по-английски означает Gate, сток — Drain, исток — Source, а для маркировки используются соответствующие буквы G, D и S. Если маркировка отсутствует необходимо воспользоваться специальным справочником или официальным документом от производителя электронных компонентов.

Проверку можно выполнить с помощью , но более удобной и эффективной будет прозвонка цифровым мультиметром, настроенным на тестирование p-n-переходов. Полученное значение сопротивления, отображаемое на дисплее, на пределе х100 численно будет соответствовать напряжению на р-п-переходе в милливольтах. После подготовки можно переходить к непосредственной проверке. Прежде всего нужно знать, что исправный транзистор обладает бесконечным сопротивлением между всеми его выводами. Прибор должен показывать такое сопротивление независимо от полярности щупов, то есть прикладываемого напряжения.


Современные мощные полевые транзисторы имеют встроенный диод, расположенный между стоком и истоком. В результате, при решении задачи, как прозвонить полевой транзистор мультиметром, канал сток-исток, ведет себя аналогично обычному диоду. Отрицательным щупом черного цвета необходимо коснуться подложки — стоку D, а положительным красным щупом — вывода истока S. Мультиметр покажет наличие прямого падения напряжения на внутреннем диоде до 500-800 милливольт. В обратном смещении, когда транзистор закрыт, прибор будет показывать бесконечно высокое сопротивление.

Далее, черный щуп остается на месте, а красный щуп касается вывода затвора G и вновь возвращается к выводу истока S. В этом случае мультиметр покажет значение, близкое к нулю, независимо от полярности приложенного напряжения. Транзистор откроется в результате прикосновения. Некоторые цифровые устройства могут показывать не нулевое значение, а 150-170 милливольт.

Если после этого, не отпуская красного щупа, коснуться черным щупом вывода затвора G, а затем возвратить его к выводу подложки стока D, то в этом случае произойдет закрытие транзистора, и мультиметр вновь отобразит падение напряжения на диоде. Такие показания характерны для большинства п-канальных устройств, используемых в видеокартах и материнских платах. Проверка р-канальных транзисторов осуществляется таким же образом, только со сменой полярности щупов мультиметра.

Такие полупроводниковые элементы, как транзисторы, являются неотъемлемой частью практически всех электронных схем — от радиоприемников до системных плат сверхсложных вычислительных центров. Проверка этого элемента на работоспособность — операция, которую обязан уметь выполнять любой человек, так или иначе занимающийся ремонтом электронных плат, будь он профессиональный ремонтник или любитель.

Для осуществления этой операции можно применять специальный тестер транзисторов, но если его нет под рукой, или в его надежности есть сомнения, можно воспользоваться самым обыкновенным мультиметром. Даже те модели, которые не имеют специального гнезда для проверки биполярных или полевых транзисторов, могут быть использованы для точной проверки. Для этого мультиметр выставляется в режим максимального сопротивления, либо «прозвонки», если таковой есть.

Общий алгоритм проверки

Как проверить транзистор мультиметром? В общем и целом алгоритм выглядит так:

Дальнейшие действия по проверке будут зависеть от того, какого типа элемент требуется проверить. В основном в электронике применяются полупроводниковые элементы двух видов — биполярный и полевой.

Биполярный

Как проверить биполярный транзистор мультиметром? В первую очередь нужно выяснить, к какому из двух подтипов — npn или pnp он относится. Для этого вспомним, что же вообще такое биполярный транзистор.

Это полупроводниковый элемент, в котором реализован так называемый npn или pnp переход. N-p-n — это переход «электрон — дырка — электрон», p-n-p, соответственно, наоборот, «дырка — электрон — дырка». Конструктивно он состоит из трех частей — эмиттера, коллектора и базы. Фактически биполярник — это два сопряженных обыкновенных диода, у которых база является общей точкой соединения.

На схеме pnp транзистор отличается от своего npn-собрата направлением стрелки в круге — стрелки эмиттерного перехода. У схемы p-n-p она направлена к базе, у n-p-n — наоборот.

Эту разницу нужно знать для проверки биполярного транзистора. Pnp-схема открывается приложением к базе отрицательного напряжения, npn — положительного. Но перед этим необходимо выяснить, какой из контактов проверяемого транзистора является базой, какой эмиттером, а какой коллектором.

Обратите внимание, что определить описанным ниже способом, какой из контактов — база, а какие — эмиттер и коллектор, можно только у исправного элемента. Сам по себе факт прохождения транзистором этой проверки говорит о том, что он, скорее всего, исправен.

Инструкция здесь может быть следующая:

  1. красный (плюсовой) щуп подключается к первому попавшемуся выводу, например левому, черным (минусовым) поочередно касаются центрального и правого. Фиксируют значение «1» на центральном, и 816 Ом, например, на правом;
  2. красный щуп мультиметра закорачивают с центральным контактом, черный — поочередно с боковыми. Прибор выдает «1» на левом и какое-либо значение, допустим, 807 — на правом;
  3. при контакте красного щупа мультиметра с правым выводом, а черного — с левым и центральным получаем в обоих случаях «1». Это означает, что база определена — это и есть правый контакт транзистора. А сам транзистор — pnp-типа.

В принципе, этого достаточно, чтобы сказать, что транзистор исправен. Теперь, чтобы проверить его структуру и конкретное расположение эмиттера и коллектора, закорачиваем черный (минусовой) щуп мультиметра с базой, а красный — по очереди с левым и центральным контактом.


Тот контакт, что дает меньшую величину сопротивления, будет коллекторным (в нашем случае 807 Ом). Тот, что большую — 816 Ом — является эмиттерным.

Проверка транзистора npn типа происходит так же, только к базе прикладывается плюсовой контакт.

Это способ проверки p-n переходов между базой и коллектором и базой и эмиттером. Показания мультиметра могут быть разными, в зависимости от типа транзистора, но всегда будут лежать в пределах 500-1200 Ом. Для завершения испытания коснитесь щупами эмиттера и коллектора. Исправный элемент при этом будет выдавать бесконечно большое сопротивление вне зависимости от своего типа, как бы вы ни меняли полярность. Если значение на экране отличается от «1» — один из переходов пробит, деталь непригодна к работе.

Проверка без выпаивания

Если у вас нет уверенности, что проверять нужно именно этот транзистор, измерить его параметры можно и на плате, не выпаивая. Но при этом мультиметр должен показывать значения в пределах 500-1200 Ом. Если они измеряются единицами или даже десятками Ом — схема зашунтирована низкоомными резисторами. Для точной проверки транзистор придется выпаять.

Полевой

Полевой, он же — mosfet транзистор отличается от биполярного тем, что в нем может протекать либо только положительный заряд, либо только отрицательный («дырка» или электрон). Его контакты имеют иное значение — затвор, сток, исток.


Как проверить полевой транзистор мультиметром? Методика проверки почти та же, что и в предыдущем случае, но предварительно, во избежание выхода элемента из строя, необходимо снять с себя заряд статического электричества, так как полевик очень чувствителен к статике. Используйте антистатический браслет либо просто коснитесь рукой заземленного металлического элемента, например корпуса приборного шкафа.

Полевики всегда имеют небольшую проводимость между стоком и истоком, которая выявляется на экране мультиметра как сопротивление порядка 400-700 Ом. Если поменять полярность, сопротивление незначительно изменится, возрастет или упадет на 40-60 Ом. Перед этим необходимо закоротить исток и сток между собой, чтобы «обнулить» емкости переходов.

Если при проверке с помощью мультиметра между истоком и стоком обнаруживается бесконечно большое сопротивление, полевой транзистор неисправен.
Между истоком и затвором либо стоком и затвором также будет обнаруживаться проводимость, но только в одну сторону. Плюс, приложенный к затвору, а минус — к истоку, вызовет открытие перехода и, соответственно, значение на экране в границах 400-700 Ом. Обратная схема — плюс к истоку, минус к затвору — у исправного полевика даст «1», то есть. очень большое сопротивление.

Проверка линии сток-затвор проходит аналогично. Если же линия исток-затвор или сток-затвор имеет проводимость в обе стороны, это значит, что полевой транзистор пробит.

В заключение надо сказать несколько слов о составном типе. Составной транзистор — это элемент, соединяющий в себе два обычных биполярных транзистора (иногда три и более). Проверка мультиметром производится аналогично методологии для простого «биполярника».

Полевые транзисторы — полупроводниковые приборы, в которых управление переходными процессами, а также величиной выходного тока осуществляется изменением величины электрического поля. Существует два вида данных устройств: с (в свою очередь делятся на транзисторы со встроенным каналом и с индукционным каналом) и с управляемым переходом. Полевые транзисторы благодаря своим уникальным характеристикам находят широкое применение в радиоэлектронной аппаратуре: блоках питания, телевизорах, компьютерах и др.

При ремонте такой техники наверняка каждый начинающий радиолюбитель сталкивался с таким вопросом: как проверить полевой транзистор? Чаще всего с проверкой таких элементов можно столкнуться при ремонте импульсных блоков питания. В этой статье мы подробно расскажем, как это правильно сделать.

Как проверить полевой транзистор омметром

В первую очередь, чтобы приступить к проверке полевого транзистора, необходимо разобраться с его «цоколевкой», то есть с расположением выводов. На сегодняшний день существует множество различных исполнений таких элементов, соответственно, расположение электродов у них отличается. Часто можно встретить полупроводниковые транзисторы с подписанными контактами. Для маркировки используют латинские литеры G, D, S. Если же подписи нет, то необходимо воспользоваться справочной литературой.

Итак, разобравшись с маркировкой контактов, рассмотрим, как проверить полевой транзистор. Следующим шагом будет принятие необходимых мер безопасности, потому что полевые приборы очень чувствительны к статическому напряжению, и чтобы предотвратить выход из строя такого элемента, необходимо организовать заземление. Чтобы снять с себя накопленный статический заряд, обычно надевают на запястье антистатический заземляющий браслет.

Не следует также забывать, что хранить полевые транзисторы необходимо с замкнутыми выводами. Сняв статическое напряжение, можно переходить к процедуре проверки. Для этого понадобится простой омметр. У исправного элемента между всеми выводами сопротивление должно стремиться к бесконечности, но при этом существуют некоторые исключения. Сейчас мы рассмотрим, как проверить полевой транзистор n-типа.

Прикладываем положительный щуп прибора к электроду затвора (G), а отрицательный щуп к контакту истока (S). В этот момент начинает заряжаться емкость затвора и элемент открывается. При измерении сопротивления между истоком и стоком (D) омметр покажет некоторую величину сопротивления. В разных типах транзисторов эта величина различна. Если закоротить выводы транзистора, то сопротивление между стоком и истоком снова будет стремиться к бесконечности. Если этого не произошло, значит, транзистор неисправен.

Если вы спросите, как проверить полевой транзистор P-типа, то ответ прост: повторяем вышеописанную процедуру, только меняем полярность. Не следует также забывать, что современные мощные полевые транзисторы между истоком и стоком имеют встроенный диод, соответственно «прозванивается» он только в одну сторону.

Проверка полевого транзистора мультиметром

При наличии прибора «мультиметра», можно проверить полевой транзистор. Для этого выставляем в режим «прозвонки» диодов и вводим полевой элемент в режим насыщения. Если транзистор N-типа, то минусовым щупом касаемся стока, а плюсовым — затвора. Исправный транзистор в таком случае открывается. Переносим плюсовой щуп, не отрывая минусового, на исток, и мультиметр показывает какое-то значение сопротивления. После этого запираем транзистор: не отрывая щупа от истока, минусовым касаемся затвора и возвращаем на сток. Транзистор заперт, и сопротивление стремится к бесконечности.


Многие радиолюбители спрашивают: «Как проверить полевой транзистор, не выпаивая?» Сразу ответим, что стопроцентного способа не существует. Для этого используют мультиметр с колодкой HFE, но этот метод часто дает сбой, и можно потратить много времени впустую.

Транзистор является наиболее популярным активным компонентом, входящим в состав электрических схем. У любого, кто интересуется электроникой, время от времени возникает необходимость проверить подобный элемент. Особенно часто проверку приходится делать начинающим радиолюбителям, которые в своих схемах используют транзисторы, бывшие в употреблении, например, выпаянные из старых плат. Для «прозвонки» можно использовать специальные приборы-тестеры, позволяющие измерять параметры транзисторов, чтобы потом их можно было сравнить их с указанными в справочнике. Однако для элементов, входящих в любительскую схему достаточно выполнить проверку по правилу: «исправен, неисправен». Эта статья рассказывает, как проверить транзистор мультиметром именно по такому методу тестирования.

Подготовка инструментов

У каждого современного радиолюбителя есть универсальный инструмент под названием цифровой мультиметр. Он позволяет измерять постоянные и переменные токи и напряжение, сопротивление элементов. Он также позволяет проверить работоспособность элементов схемы. Рядом с переключателем в режим «прозвонки», как правило, нарисован диод и динамик (см. фото на рис. 1).

Рисунок 1 – Лицевая панель мультиметра

Перед проверкой элемента необходимо убедиться в работоспособности самого мультиметра:

  1. Батарея должна быть заряжена.
  2. При переключении в режим проверки полупроводников дисплей должен отображать цифру 1.
  3. Щупы должны быть исправны, т. к. большинство приборов – китайские, и разрыв провода в них является очень частым явлением. Проверить их нужно, прислонив кончики щупов друг к другу: в этом случае на дисплее отобразятся нули и раздастся писк – прибор и щупы исправны.
  4. Щупы подключаются согласно цветовой маркировке: красный щуп — в красный разъем, черный – в черный разъем с надписью COM.

Технологии проверки

Биполярный

Структура биполярного транзистора (БТ) включает в себя 2 p-n или 2 n-p перехода. Выводы этих переходов называются эмиттером и коллектором. Вывод срединного слоя называется базой. Упрощенно БТ можно представить как два включенных встречно диода, как изображено на рисунке 2.

Проверить биполярный транзистор мультиметром не сложно, в чем Вы сейчас и убедитесь. Как известно основным свойством p-n перехода является его односторонняя проводимость. При подключении положительного (красный) щупа к аноду, а черного к катоду на дисплее мультиметра будет отображена величина прямого напряжения на переходе в милливольтах. Величина напряжения зависит от типа полупроводника: для германиевых диодов это напряжение будет порядка 200–300 мВ, а для кремниевых от 600 до 800 мВ. В обратном направлении диод ток не пропускает, поэтому если поменять щупы местами, то на дисплее будет отображена 1, свидетельствующая о бесконечно большом сопротивлении.

Если же диод «пробит», то скорей всего раздастся звуковой сигнал, причем в обоих направлениях. В случае если диод «в обрыве», то на индикаторе, так и будет отображаться единица.

Таким образом, суть проверки исправности транзистора заключается в «прозвонке» p-n переходов база-коллектор, база-эмиттер и эмиттер-коллектор в прямом и обратном включении:

  • База-коллектор: Красный щуп подключается к базе, черный к коллектору. Соединение должно работать как диод и проводить ток только в одном направлении.
  • База-эмиттер: Красный щуп остается подключенным к базе, черный подключается к эмиттеру. Аналогично предыдущему пункту соединение должно проводить ток только при прямом включении.
  • Эмиттер-коллектор: У исправного перехода сопротивление данного участка стремится к бесконечности, о чем будет говорить единица на индикаторе.

При проверке работоспособности pnp типа «диодный» аналог будет выглядеть также, но диоды будут подключены наоборот. В этом случае черный щуп подключается к базе. Переход эмиттер-коллектор проверяется аналогично.

На видео ниже наглядно показывается проверка биполярного транзистора мультиметром:

Полевой

Полевые транзисторы (ПТ) или «полевики» используются в блоках питания, мониторах, аудио и видеотехнике. Поэтому с необходимостью проверки более часто сталкиваются мастера по ремонту аппаратуры. Самостоятельно проверить такой элемент в домашних условиях можно также с помощью обычного мультиметра.

На рисунке 3 представлена структурная схема ПТ. Выводы Gate (затвор), Drain (сток), Source (исток) могут располагаться по-разному. Очень часто производители маркируют их буквами. Если маркировка отсутствует, то необходимо свериться со справочными данными, предварительно узнав наименование модели.

Рисунок 3 – Структурная схема ПТ

Стоит иметь в виду, что при ремонте аппаратуры, в которой стоят ПТ, часто возникает задача проверки работоспособности и целостности без выпаивания элемента из платы. Чаще всего выходят из строя мощные полевые транзисторы, устанавливаемые в импульсные блоки питания. Также следует помнить, что «полевики» крайне чувствительны к статическим разрядам. Поэтому перед тем, как проверить полевой транзистор не выпаивая, необходимо надеть антистатический браслет и соблюдать технику безопасности.

Рисунок 4 – Антистатический браслет

Проверить ПТ мультиметром можно по аналогии с прозвонкой переходов биполярного транзистора. У исправного «полевика» между выводами бесконечно большое сопротивление вне зависимости от приложенного тестового напряжения. Однако, имеются некоторые исключения: если приложить положительный щуп тестера к затвору, а отрицательный – к истоку, то зарядится затворная емкость, и переход откроется. При замере сопротивления между стоком и истоком мультиметр может показать некоторое значение сопротивления. Неопытные мастера часто принимают подобное явление как признак неисправности. Однако, это не всегда соответствует реальности. Необходимо перед проверкой канала сток-исток замкнуть накоротко все выводы ПТ, чтобы разрядились емкости переходов. После этого их сопротивления снова станут большими, и можно повторно проверить работает транзистор или нет. Если подобная процедура не помогает, то элемент считается нерабочим.

«Полевики», стоящие в мощных импульсных блоках питания часто имеют внутренний диод на переходе сток-исток. Поэтому этот канал при проверке ведет себя как обычный полупроводниковый диод. Во избежание ложной ошибки необходимо перед тем, как проверить транзистор мультиметром, удостовериться в наличии внутреннего диода. Следует поменять местами щупы тестера. В этом случае на экране должна отобразиться единица, что свидетельствует о бесконечном сопротивлении. Если этого не происходит, то, скорее всего, ПТ «пробит».

Технология проверки полевого транзистора показана на видео:

Составной

Типовой составной транзистор или схема Дарлингтона изображена на рисунке 5. Эти 2 элемента расположены в одном корпусе. Внутри также находится нагрузочный резистор. У такой модели аналогичные выводы, что и у биполярного. Нетрудно догадаться, что проверить составной транзистор мультиметром можно точно также, как и БТ. Следует отметить, что некоторые типы цифровых мультиметров в режиме тестирования имеют на клеммах напряжение меньшее 1,2 В, что недостаточно для открывания р-n перехода, и в этом случае прибор показывает разрыв в цепи.

Как прозвонить транзистор мультиметром видео

Полупроводниковые элементы используются практически во всех электронных схемах. Те, кто называют их наиболее важными и самыми распространенными радиодеталями абсолютно правы. Но любые компоненты не вечны, перегрузка по напряжению и току, нарушение температурного режима и другие факторы могут вывести их из строя. Расскажем (не перегружая теорией), как проверить работоспособность различных типов транзисторов (npn, pnp, полярных и составных) пользуясь тестером или мультиметром.

С чего начать?

Прежде, чем проверить мультиметром любой элемент на исправность, будь то транзистор, тиристор, конденсатор или резистор, необходимо определить его тип и характеристики. Сделать это можно по маркировке. Узнав ее, не составит труда найти техническое описание (даташит) на тематических сайтах. С его помощью мы узнаем тип, цоколевку, основные характеристики и другую полезную информацию, включая аналоги для замены.

Например, в телевизоре перестала работать развертка. Подозрение вызывает строчный транзистор с маркировкой D2499 (кстати, довольно распространенный случай). Найдя в интернете спецификацию (ее фрагмент показан на рисунке 2), мы получаем всю необходимую для тестирования информацию.

Рисунок 2. Фрагмент спецификации на 2SD2499

Большая вероятность, что найденный даташит будет на английском, ничего страшного, технический текст легко воспринимается даже без знания языка.

Определив тип и цоколевку, выпаиваем деталь и приступаем к проверке. Ниже приведены инструкции, с помощью которых мы будем тестировать наиболее распространенные полупроводниковые элементы.

Проверка биполярного транзистора мультиметром

Это наиболее распространенный компонент, например серии КТ315, КТ361 и т.д.

С тестированием данного типа проблем не возникнет, достаточно представить pn переход в как диод. Тогда структуры pnp и npn будут иметь вид двух встречно или обратно подключенных диодов со средней точкой (см. рис.3).

Рисунок 3. «Диодные аналоги» переходов pnp и npn

Присоединяем к мультиметру щупы, черный к «СОМ» (это будет минус), а красный к гнезду «VΩmA» (плюс). Включаем тестирующее устройство, переводим его в режим прозвонки или измерения сопротивления (достаточно установить предел 2кОм), и приступаем к тестированию. Начнем с pnp проводимости:

  1. Присоединяем черный щуп к выводу «Б», а красный (от гнезда «VΩmA») к ножке «Э». Смотрим на показания мультиметра, он должен отобразить величину сопротивления перехода. Нормальным считается диапазон от 0,6 кОм до 1,3 кОм.
  2. Таким же образом проводим измерения между выводами «Б» и «К». Показания должны быть в том же диапазоне.

Если при первом и/или втором измерении мультиметр отобразит минимальное сопротивление, значит в переходе(ах) пробой и деталь требует замены.

  1. Меняем полярность (красный и черный щуп) местами и повторяем измерения. Если электронный компонент исправный, отобразится сопротивление, стремящееся к минимальному значению. При показании «1» (измеряемая величина превышает возможности устройства), можно констатировать внутренний обрыв в цепи, следовательно, потребуется замена радиоэлемента.

Тестирование устройства обратной проводимости производится по такому же принципу, с небольшим изменением:

  1. Красный щуп подключаем к ножке «Б» и проверяем сопротивление черным щупом (прикасаясь к выводам «К» и «Э», поочередно), оно должно быть минимальным.
  2. Меняем полярность и повторяем измерения, мультиметр покажет сопротивление в диапазоне 0,6-1,3 кОм.

Отклонения от этих значений говорят о неисправности компонента.

Проверка работоспособности полевого транзистора

Этот тип полупроводниковых элементов также называют mosfet и моп компонентами. На рисунке 4 показано графическое обозначение n- и p-канальных полевиков в принципиальных схемах.

Рис 4. Полевые транзисторы (N- и P-канальный)

Для проверки этих устройств подключаем щупы к мультиметру, таким же образом, как и при тестировании биполярных полупроводников, и устанавливаем тип тестирования «прозвонка». Далее действуем по следующему алгоритму (для n-канального элемента):

  1. Касаемся черным проводом ножки «с», а красным – вывода «и». Отобразится сопротивление на встроенном диоде, запоминаем показание.
  2. Теперь необходимо «открыть» переход (получится только частично), для этого щуп с красным проводом соединяем с выводом «з».
  3. Повторяем измерение, проведенное в п. 1, показание изменится в меньшую сторону, что говорит о частичном «открытии» полевика.
  4. Теперь необходимо «закрыть» компонент, с этой целью соединяем отрицательный щуп (провод черного цвета) с ножкой «з».
  5. Повторяем действия п. 1, отобразится исходное значение, следовательно, произошло «закрытие», что говорит об исправности компонента.

Для тестирования элементов p-канального типа последовательность действий остается той же, за исключением полярности щупов, ее нужно поменять на противоположную.

Заметим, что биполярные элементы, у которых изолированный затвор (IGBT), тестируются также, как описано выше. На рисунке 5 показан компонент SC12850, относящийся к этому классу.

Рис 5. IGBT транзистор SC12850

Для тестирования необходимо выполнить те же действия, что и для полевого полупроводникового элемента, с учетом, что сток и исток последнего будут соответствовать коллектору и эмиттеру.

В некоторых случаях потенциала на щупах мультиметра может быть недостаточно (например, чтобы «открыть» мощный силовой транзистор), в такой ситуации понадобится дополнительное питание (хватит 12 вольт). Подключать его нужно через сопротивление 1500-2000 Ом.

Проверка составного транзистора

Такой полупроводниковый элемент еще называют «транзистор Дарлингтона», по сути это два элемента, собранные в одном корпусе. Для примера, на рисунке 6 показан фрагмент спецификации к КТ827А, где отображена эквивалентная схема его устройства.

Рис 6. Эквивалентная схема транзистора КТ827А

Проверить такой элемент мультиметром не получится, потребуется сделать простейший пробник, его схема показана на рисунке 7.

Рис. 7. Схема для проверки составного транзистора

Обозначение:

  • Т – тестируемый элемент, в нашем случае КТ827А.
  • Л – лампочка.
  • R – резистор, его номинал рассчитываем по формуле h31Э*U/I, то есть, умножаем величину входящего напряжения на минимальное значение коэффициента усиления (для КТ827A — 750), полученный результат делим на ток нагрузки. Допустим, мы используем лампочку от габаритных огней автомобиля мощностью 5 Вт, ток нагрузки составит 0,42 А (5/12). Следовательно, нам понадобится резистор на 21 кОм (750*12/0,42).

Тестирование производится следующим образом:

  1. Подключаем к базе плюс от источника, в результате должна засветиться лампочка.
  2. Подаем минус – лампочка гаснет.

Такой результат говорит о работоспособности радиодетали, при других результатах потребуется замена.

Как проверить однопереходной транзистор

В качестве примера приведем КТ117, фрагмент из его спецификации показан на рисунке 8.

Рис 8. КТ117, графическое изображение и эквивалентная схема

Проверка элемента осуществляется следующим образом:

Переводим мультиметр в режим прозвонки и проверяем сопротивление между ножками «Б1» и «Б2», если оно незначительное, можно констатировать пробой.

Как проверить транзистор мультиметром, не выпаивая их схемы?

Этот вопрос довольно актуальный, особенно в тех случаях, если необходимо тестировать целостность smd элементов. К сожалению, только биполярные транзисторы можно проверить мультиметром не выпаивая из платы. Но даже в этом случае нельзя быть уверенным в результате, поскольку не редки случаи, когда p-n переход элемента зашунтирован низкоомным сопротивлением.

Современные электронные мультиметры имеют специализированные коннекторы для проверки различных радиодеталей, включая транзисторы.

Это удобно, однако, проверка не совсем корректная. Радиолюбители со стажем помнят, как проверить транзистор тестером со стрелочной индикацией. Техника проверки на цифровых приборах не изменилась. Для точного определения состояния полупроводникового прибора, каждые его элемент тестируется отдельно.

Классика вопроса: как проверить биполярный транзистор мультиметром

Этот популярный проводник выполняет две задачи:

  • Режим усиления сигнала. Получая команду на управляющие выводы, прибор дублирует форму сигнала на рабочих контактах, только с большей амплитудой;
  • режим ключа. Подобно водопроводному крану, полупроводник открывает или закрывает путь электрическому току по команде управляющего сигнала.

Полупроводниковые кристаллы соединены в корпусе, образуя p-n переходы. Такая же технология применяется в диодах. По сути – биполярный транзистор состоит из двух диодов, соединенных в одной точке одноименными выводами.
Чтобы понять, как проверить транзистор мультиметром, рассмотрим отличие pnp и npn структуры.

Так называемый «прямой» (см. фото)

С обратным переходом, как изображено на фото

Разумеется, если вы спаяете диоды так, как показано на условной схеме – транзистор не получится. Но с точки зрения проверки исправности – можно представить, что у вас обычные диоды в одном корпусе.

То есть, положив перед собой схему полупроводниковых переходов, вы легко определите не только исправность детали в целом, но и локализуете конкретный неисправный p-n переход. Это поможет понять причину поломки, ведь полупроводник работает не автономно, а в составе электросхемы.

Как проверить биполярный транзистор мультиметром — видео.

Возникает резонный вопрос: Как определить маркировку выводов транзистора, не имея каталога? Такая практика пригодится не только для проверки радиодеталей. При сборке монтажной платы, незнание конструкции транзистора приведет к его перегоранию.

С помощью мультиметра можно определить назначение выводов.

Мультиметр выставляем в режим измерения сопротивления, предел шкалы – 2000 Ом. Выводы прибора – красный плюс, черный минус. Транзистор располагаем любым удобным способом, выводу условно определяем как «левый», «средний», «правый».

Определение базы

Красный щуп на левый контакт, замеряем сопротивление на среднем и правом выводах. В нашем случае это значение «бесконечность» (на индикаторе «1»), и 816 Ом (типичное сопротивление исправного p-n перехода при прямом подключении). Фиксируем результат измерений.

Красный щуп на середину, производим замер левого и правого контактов. С «бесконечностью» все понятно, обращаем внимание на то, что вторая пара показала результат, отличный от первого измерения. Это нормально, эмиттерный и коллекторный переходы имеют разное сопротивление. Об этом позже.

Красный щуп на правый контакт, производим замеры оставшихся комбинаций. В обоих случаях получаем единичку, то есть «бесконечное» сопротивление.

При таком раскладе, база находится на правом выводе. Этих данных недостаточно для пользования деталью. У производителей нет единого стандарта по расположению эмиттера и коллектора, поэтому определяем выводы самостоятельно.

Определение остальных выводов

Черный щуп на «базу», меряем сопротивление переходов. Одна ножка показала 807 Ом (это коллекторный переход), вторая – 816 Ом (эмиттерный переход).

Точно таким же способом производится проверка исправности биполярного транзистора. В ходе определения контактов, мы заодно проверили исправность детали. Если вам известно расположение выводов – проверяете переходы «база-эмиттер» и «база коллектор», меняя полярность щупов.

При прямом подключении – вы увидите значения, аналогичные предыдущим замерам. При обратном – сопротивление должно быть бесконечным. Если это не так – переходы относительно базы неисправны.
Последняя проверка – переход «эмиттер-коллектор». В обоих направлениях исправная деталь покажет бесконечное сопротивление.

Если в ходе тестирования вы получили именно такие результаты – ваш биполярный транзистор исправен.

Как проверить транзистор мультиметром не выпаивая

Прежде всего, проверьте расположение на монтажной плате остальных радиодеталей, относительно выводов транзистора. Иногда переходы шунтируются резисторами с небольшим сопротивлением.

Если при замерах переходов, сопротивление будет измеряться десятками Ом – транзистор придется выпаивать. Если шунтов нет – см. методику, описанную выше, проверить транзистор на плате не получится.

Как проверить полевой транзистор мультиметром

Полупроводниковые транзисторы – MOSFET (на слэнге радиолюбителей – «мосфеты»), имеют несколько иное расположение p-n переходов. Название выводов также отличается: «сток», «исток», «затвор». Тем не менее, методика проверки прекрасно моделируется диодными аналогиями.

Принципиальное отличие – канал между «истоком» и «стоком» в состоянии покоя имеет небольшую проводимость с фиксированным сопротивлением. Когда «мосфет» получает запирающее напряжение на «затворе», этот переход закрывается. При проверке он принимается открытым (в случае, если транзистор исправен).

Проверить полевой транзистор с помощью тестера можно по такой же методике, что и биполярный. Прибор в положение «измерение сопротивления» с пределом 2000 Ом.

Сопротивление по линии «исток» «сток» проверяется в обе стороны. Значение должно быть в пределах 400-700 Ом, и немного отличаться при смене полярности.

Линия «исток» «затвор» должна иметь проводимость с аналогичным сопротивлением, но только в одном направлении. Такая же ситуация при проверке «сток» «затвор».

Проверить полевой транзистор мультиметром не выпаивая из схемы можно, если нет шунтирующих деталей. Определить их наличие можно визуально. Однако, «мосфеты» обычно окружены т.н. обвесом из управляющих элементов. Поэтому их проверку лучше проводить отдельно от схемы.
P.S.
Если ваш прибор стрелочный – проверка производится также точно.
Метод проверки полевого транзистора от Чип и Дип — видео

01 Окт 2012г | Раздел: Радио для дома

Здравствуйте уважаемые читатели сайта sesaga.ru. Сегодня хочу рассказать, как проверить исправность транзистора обычным мультиметром. Хотя для этого существуют специальные пробники, и даже в самом мультиметре имеется гнездо для проверки транзисторов, но, на мой взгляд, все они не совсем практичны. Вот чтобы подобрать пару транзисторов с одинаковым коэффициентом усиления (h31э) пробники вещь даже очень нужная. А для определения исправности достаточно будет и обыкновенного мультика.

Мы знаем, что транзистор имеет два p-n перехода, причем каждый переход можно представить в виде диода (полупроводника). Поэтому можно утверждать, что транзистор — это два диода включенных встречно, а точка их соединения будет являться «базой».

Отсюда получается, что один диод образован выводами, например, базы и коллектора, а другой диод выводами базы и эмиттера. Тогда нам будет достаточно проверить прямое и обратное сопротивление этих диодов, и если они исправны, значит, и транзистор работоспособен. Все очень просто.

Начнем с транзисторов структуры (проводимость) p-n-p. На принципиальных схемах структура транзисторов обозначается стрелкой эмиттерного перехода. Если стрелка направлена к базе, значит это структура p-n-p, а если от базы, значит это транзистор структуры n-p-n. Смотрите рисунок выше.

Так вот, чтобы открыть p-n-p транзистор, на вывод базы подается отрицательное напряжение (минус). Мультиметр переводим в режим измерения сопротивлений на предел «2000», можно в режиме «прозвонка» — не критично.

Минусовым щупом (черного цвета) садимся на вывод базы, а плюсовым (красного цвета) поочередно касаемся выводов коллектора и эмиттера — так называемые коллекторный и эмиттерный переходы. Если переходы целы, то их прямое сопротивление будет находиться в пределах 500 – 1200 Ом.

Теперь проверяем обратное сопротивление коллекторного и эмиттерного переходов.
Плюсовым щупом садимся на вывод базы, а минусовым касаемся выводов коллектора и эмиттера. На этот раз мультиметр должен показать большое сопротивление на обоих p-n переходах.

В данном случае на индикаторе высветилась «1», означающая, что для предела измерения «2000» величина сопротивления велика, и составляет более 2000 Ом. А это говорит о том, что коллекторный и эмиттерный переходы целы, а значит, наш транзистор исправен.

Таким способом можно проверять исправность транзистора и на печатной плате, не выпаивая его из схемы.

Конечно, встречаются схемы, где p-n переходы транзистора сильно зашунтированы низкоомными резисторами. Но это редкость. Если при измерении будет видно, что прямое и обратное сопротивление коллекторного или эмиттерного переходов слишком мало, тогда придется выпаять вывод базы.

Исправность транзисторов структуры n-p-n проверяется так же, только уже к базе подключается плюсовой щуп мультиметра.

Мы рассмотрели, как проверить исправный транзистор. А как понять, что транзистор неисправный?
Здесь тоже все просто. Если прямое и обратное сопротивление одного из p-n переходов бесконечно велико, т.е. на пределе измерения «2000» и выше мультиметр показывает «1», значит, этот переход находится в обрыве, и транзистор однозначно неисправен.

Вторая распространенная неисправность транзистора – это когда прямое и обратное сопротивления одного из p-n переходов равны нулю или около того. Это говорит о том, что переход пробит, и транзистор не годен.

И тут уважаемый читатель Вы меня спросите: — А где у этого транзистора находится база, коллектор и эмиттер. Я его вообще в первый раз вижу. И будете правы. А ведь действительно, где они? Как их определить? Значит, будем искать.

В первую очередь, нужно определить вывод базы.
Плюсовым щупом мультиметра садимся, например, на левый вывод транзистора, а минусовым касаемся среднего и правого выводов. При этом смотрим, какую величину сопротивления показывает мультиметр.

Между левым и средним выводами величина сопротивления составила «1», а между левым и правым мультиметр показал 816 Ом. На данном этапе это нам ничего не говорит. Идем дальше.
Плюсовым щупом садимся на средний вывод, а минусовым касаемся левого и правого.

Здесь результат измерения получился почти таким же, как и на рисунке выше. Между средним и левым величина сопротивления составила «1», а между средним и правым получилось 807 Ом. Тут опять ничего не ясно, поэтому идем дальше.

Теперь садимся плюсовым щупом на правый вывод, а минусовым касаемся среднего и левого выводов транзистора.

На рисунке видно, что величина сопротивления между правым-средним и правым-левым выводами одинаковая и составила бесконечность. То есть получается, что мы нашли и измерили обратное сопротивление обоих p-n переходов транзистора. В принципе, уже можно смело утверждать, что вывод базы найден. Он оказался правым. Но нам еще надо определить, где у транзистора коллектор и эмиттер. Для этого измеряем прямое сопротивление переходов. Минусовым щупом садимся на вывод базы, а плюсовым касаемся среднего и левого выводов.

Величина сопротивления на левой ножке транзистора составила 816 Ом – это эмиттер, а на средней 807 Ом – это коллектор.

Запомните! Величина сопротивления коллекторного перехода всегда будет меньше по отношению к эмиттерному. Т.е. вывод коллектора будет там, где сопротивление p-n перехода меньше, а эмиттера, где сопротивление p-n перехода больше.

Отсюда делаем вывод:

1. Транзистор структуры p-n-p;
2. Вывод базы находится с правой стороны;
3. Вывод коллектора в середине;
4. Вывод эмиттера – слева.

А если у Вас остались вопросы, то можно дополнительно посмотреть мой видеоролик о проверке обычных транзисторов мультиметром.

Ну и напоследок надо сказать, что транзисторы бывают малой, средней мощности и мощные. Так вот, у транзисторов средней мощности и мощных, вывод коллектора напрямую связан с корпусом и находится в середине между базой и эмиттером. Такие транзисторы устанавливаются на специальные радиаторы, предназначенные для отвода тепла от корпуса транзистора.

Зная расположение коллектора, базу и эмиттер определить будет легко.
Удачи!

Как проверить транзистор мультиметром

В электронике и радиотехнике большое значение имеет не только правильная сборка схемы, но и последующая проверка ее работоспособности. Проверяться может все устройство или его отдельные элементы. В связи в этим довольно часто возникает вопрос, как проверить транзистор мультиметром, не нарушая схемы. Существуют различные способы, которые применяются индивидуально к каждому виду элементов. Прежде чем начинать подобную проверку и тестирование, рекомендуется изучить общее устройство и принцип работы транзисторов.

Основные типы транзисторов

Существует два основных типа транзисторов – биполярные и полевые. В первом случае выходной ток создается при участии носителей обоих знаков (дырок и электронов), а во втором случае – только одного. Определить неисправность каждого из них поможет прозвонка транзистора мультиметром.

Биполярные транзисторы по своей сути являются полупроводниковыми приборами. Они оборудованы тремя выводами и двумя р-п-переходами. Принцип действия этих устройств предполагает использование положительных и отрицательных зарядов – дырок и электронов. Управление протекающими токами выполняется с помощью специально выделенного управляющего тока. Данные устройства широко применяются в электронных и радиотехнических схемах.

Биполярные транзисторы состоят из трехслойных полупроводников двух типов – «р-п-р» и «п-р-п». Кроме того в конструкции имеется два р-п-перехода. Соединение полупроводниковых слоев с внешними выводами осуществляется через невыпрямляющие полупроводниковые контакты. Средний слой считается базой, которая подключается к соответствующему выводу. Два слоя, расположенные по краям, также подключены к выводам – эмиттеру и коллектору. На электрических схемах для обозначения эмиттера используется стрелка, показывающая направление тока, протекающего через транзистор.

В разных типах транзисторов у дырок и электронов – носителей электричества могут быть собственные функции. Более всего распространен тип п-р-п из-за лучших параметров и технических характеристик. Ведущую роль в таких устройствах играют электроны, выполняющие основные задачи по обеспечению всех электрических процессов. Они примерно в 2-3 раза более подвижные, чем дырки, поэтому и обладают повышенной активностью. Качественные улучшения приборов происходят также за счет площади перехода коллектора, которая значительно больше площади перехода эмиттера.

В каждом биполярном транзисторе имеется два р-п-перехода. Когда выполняется проверка транзистора мультиметром, это позволяет проверять работоспособность устройств, контролируя значения сопротивлений переходов при подключении к ним прямого и обратного напряжения. Для нормальной работы п-р-п-устройства на коллектор подается положительное напряжение, под действием которого открывается базовый переход. После возникновения базового тока, появляется коллекторный ток. При возникновение в базе отрицательного напряжения, транзистор закрывается и течение тока прекращается.

Базовый переход в р-п-р-устройствах открывается под действием отрицательного напряжения на коллекторе. Положительное напряжение дает толчок для закрытия транзистора. Все необходимые коллекторные характеристики на выходе можно получить, плавно изменяя значения тока и напряжения. Это позволяет эффективно проверить биполярный транзистор тестером.

Существуют электронные устройства, все процессы в которых управляются действием электрического поля, направленного перпендикулярно току. Эти приборы называются полевыми или униполярными транзисторами. Основными элементами являются три контакта – исток, сток и затвор. Конструкция полевого транзистора дополняется проводящим слоем, исполняющим роль канала, по которому течет электрический ток.

Данные устройства представлены модификациями «р» или «п»-канального типа. Каналы могут располагаться вертикально или горизонтально, а их конфигурация бывает объемной или приповерхностной. Последний вариант также разделяется на инверсионные слои, содержащие обогащенные и обедненные. Формирование всех каналов происходит под воздействием внешнего электрического поля. Устройства с приповерхностными каналами имеют структуру, в состав которой входит металл-диэлектрик-полупроводник, поэтому они называются МДП-транзисторами.

Проверка биполярного транзистора мультиметром

Проверку работоспособности биполярного транзистора можно выполнить с помощью цифрового мультиметра. Этим прибором проводятся измерения постоянных и переменных токов, а также напряжение и сопротивление. Перед началом измерений прибор нужно правильно настроить. Это позволит более эффективно решить проблему, как проверить биполярный транзистор мультиметром не выпаивая.

Современные мультиметры могут работать в специальном режиме измерения, поэтому на корпусе изображается значок диода. Когда решается вопрос, как проверить биполярный транзистор тестером, устройство переключается в режим проверки полупроводников, а на дисплее должна отображаться единица. Выводы устройства подключаются так же, как и в режиме измерения сопротивления. Провод черного цвета соединяется с портом СОМ, а провод красного цвета – с выходом, измеряющим сопротивление, напряжение и частоту.

В мультиметрах старой конструкции функция проверки диодов и транзисторов может отсутствовать. В таких случаях все действия проводятся в режиме измерения сопротивления, установленном на максимум. До начала работы батарея мультиметра должна быть заряжена. Кроме того, нужно проверить исправность щупов. Для этого их кончики соединяются между собой. Писк устройства и нули, отображенные на дисплее, свидетельствуют об исправности щупов.

Проверка биполярного транзистора мультиметром выполняется в следующем порядке:

  • Прежде всего, нужно правильно соединить выводы мультиметра и транзистора. Для этого необходимо точно определить, где находятся база, коллектор и эмиттер. Чтобы определить базу, щуп черного цвета подключается к первому электроду, который предположительно считается базовым. Другой щуп красного цвета поочередно подключается вначале ко второму, а затем к третьему электроду. Щупы меняются местами до тех пор, пока прибор не определит падение напряжения. После этого окончательно проводится проверка биполярного транзистора мультиметром и определяются пары: «база-эмиттер» или «база-коллектор». Электроды эмиттера и коллектора определяются с помощью цифрового мультиметра. В большинстве случаев падение напряжения и сопротивление у эмиттерного перехода выше, чем у коллектора.
  • Определение р-п-перехода «база-коллектор»: щуп красного цвета подключен к базе, а черный – к коллектору. Такое соединение работает в режиме диода и пропускает ток лишь в одном направлении.
  • Определение р-п-перехода «база-эмиттер»: красный щуп остается подключенным к базе, а щуп черного цвета нужно подключить к эмиттеру. Так же, как и в предыдущем случае, при таком соединении ток проходит только при прямом включении. Это подтверждает проверка npn транзистора мультиметром
  • Определение р-п-перехода «эмиттер-коллектор»: в случае исправности данного перехода сопротивление на этом участке будет стремиться к бесконечности. На это указывает единица, отображенная на дисплее.
  • Подключение мультиметра осуществляется к каждой паре контактов в двух направлениях. То есть транзисторы р-п-р типа проверяются путем обратного подключения к щупам. В этом случае к базе подключается черный щуп. После измерений полученные результаты сравниваются между собой.
  • После того как проведена проверка pnp транзистора мультиметром, работоспособность биполярного транзистора подтверждается, когда при измерении одной полярности мультиметр показывает конечное сопротивление, а при замерах обратной полярности получается единица. Данная проверка не требует выпаивания детали из общей платы.

Очень многие пытаются решить вопрос, как проверить транзистор без мультиметра с помощью лампочек и других устройств. Этого делать не рекомендуется, поскольку элемент с высокой вероятностью может выйти из строя.

Проверка работоспособности полевого транзистора

Полевые транзисторы нашли широкое применение в аудио и видеоаппаратуре, мониторах и блоках питания. От их работоспособности зависит функционирование большинства электронных схем. Поэтому в случае каких-либо неисправностей выполняется проверка этих элементов различными способами, в том числе и проверка транзисторов без выпайки из схемы мультиметром.

Типовая схема полевого транзистора представлена на рисунке. Основные выводы – затвор, сток и исток могут быть расположены по-разному, в зависимости от марки транзистора. При отсутствии маркировки, необходимо уточнить справочные данные, касающиеся той или иной модели.

Основной проблемой, возникающей при ремонте электронной аппаратуры с полевыми транзисторами, является проверка транзистора мультиметром не выпаивая. Как правило неисправности касаются полевых транзисторов с высокой мощностью, которые используются в импульсных блоках питания. Кроме того, эти устройства очень чутко реагируют на статические разряды. Поэтому перед решением вопроса, как прозвонить транзистор мультиметром на плате, следует надеть специальный антистатический браслет и ознакомиться с правилами техники безопасности при выполнении этой процедуры.

Проверка с использованием мультиметра предполагает такие же действия, как и в отношении биполярных транзисторов. Исправный полевой транзистор обладает бесконечно большим сопротивлением между выводами, независимо от тестового напряжения, приложенного к нему.

Тем не менее, решение вопроса, как прозвонить транзистор мультиметром имеет свои особенности. Если положительный щуп мультиметра приложен к затвору, а отрицательный – к истоку, то в этом случае произойдет зарядка затворной емкости и наступит открытие перехода. При замерах между стоком и истоком, прибор показывает наличие небольшого сопротивления. Иногда электротехники при отсутствии практического опыта, могут посчитать это за неисправность, что не всегда соответствует действительности. Это может быть важно при проверки строчного транзистора мультиметром. Перед началом проверки канала сток-исток рекомендуется выполнить короткое замыкание всех выводов полевого транзистора, чтобы разрядить емкости переходов. После этого их сопротивления вновь увеличатся, после чего можно повторно прозванивать транзисторы мультиметром. Если данная процедура не дала положительного результата, значит данный элемент находится в нерабочем состоянии.

В полевых транзисторах, используемых для мощных импульсных блоков питания, очень часто на переходе сток-исток устанавливаются внутренние диоды. Поэтому данный канал во время проверки проявляет свойства обычного полупроводникового диода. Поэтому чтобы исключить ошибку, перед тем как проверить исправность транзистора мультиметром, следует убедиться в присутствии внутреннего диода. После первой проверки щупы мультиметра нужно поменять местами. После этого на экране появится единица, указывающая на бесконечное сопротивление. Если подобного не случится, велика вероятность неисправности полевого транзистора. С помощью прибора можно не только проверить, но и измерить транзистор мультиметром.

Как проверить составной транзистор мультиметром

Составной транзистор или транзистор Дарлингтона представляет собой схему, объединяющую в своем составе два и более биполярных транзистора. Это позволяет значительно увеличить коэффициент усиления по току. Такие транзисторы применяются в схемах, предназначенных для работы с большими токами, например, в стабилизаторах напряжения или выходных каскадах усилителей мощности. Они необходимы, когда требуется обеспечение большого входного импеданса, то есть полного комплексного сопротивления.

Общие выводы у составного транзистора такие же, как и у биполярной модели. Точно так же и происходит проверка npn транзистора мультиметром. В этом случае применяется методика, аналогичная проверке обычного биполярного транзистора.

Как проверить работоспособность разных видов биполярных транзисторов мультиметром? Особенности проверки транзистора мультиметром без выпаивания.

Такие полупроводниковые элементы, как транзисторы, являются неотъемлемой частью практически всех электронных схем — от радиоприемников до системных плат сверхсложных вычислительных центров. Проверка этого элемента на работоспособность — операция, которую обязан уметь выполнять любой человек, так или иначе занимающийся ремонтом электронных плат, будь он профессиональный ремонтник или любитель.

Для осуществления этой операции можно применять специальный тестер транзисторов, но если его нет под рукой, или в его надежности есть сомнения, можно воспользоваться самым обыкновенным мультиметром. Даже те модели, которые не имеют специального гнезда для проверки биполярных или полевых транзисторов, могут быть использованы для точной проверки. Для этого мультиметр выставляется в режим максимального сопротивления, либо «прозвонки», если таковой есть.

Общий алгоритм проверки

Как проверить транзистор мультиметром? В общем и целом алгоритм выглядит так:

Дальнейшие действия по проверке будут зависеть от того, какого типа элемент требуется проверить. В основном в электронике применяются полупроводниковые элементы двух видов — биполярный и полевой.

Биполярный

Как проверить биполярный транзистор мультиметром? В первую очередь нужно выяснить, к какому из двух подтипов — npn или pnp он относится. Для этого вспомним, что же вообще такое биполярный транзистор.

Это полупроводниковый элемент, в котором реализован так называемый npn или pnp переход. N-p-n — это переход «электрон — дырка — электрон», p-n-p, соответственно, наоборот, «дырка — электрон — дырка». Конструктивно он состоит из трех частей — эмиттера, коллектора и базы. Фактически биполярник — это два сопряженных обыкновенных диода, у которых база является общей точкой соединения.

На схеме pnp транзистор отличается от своего npn-собрата направлением стрелки в круге — стрелки эмиттерного перехода. У схемы p-n-p она направлена к базе, у n-p-n — наоборот.

Эту разницу нужно знать для проверки биполярного транзистора. Pnp-схема открывается приложением к базе отрицательного напряжения, npn — положительного. Но перед этим необходимо выяснить, какой из контактов проверяемого транзистора является базой, какой эмиттером, а какой коллектором.

Обратите внимание, что определить описанным ниже способом, какой из контактов — база, а какие — эмиттер и коллектор, можно только у исправного элемента. Сам по себе факт прохождения транзистором этой проверки говорит о том, что он, скорее всего, исправен.

Инструкция здесь может быть следующая:

  1. красный (плюсовой) щуп подключается к первому попавшемуся выводу, например левому, черным (минусовым) поочередно касаются центрального и правого. Фиксируют значение «1» на центральном, и 816 Ом, например, на правом;
  2. красный щуп мультиметра закорачивают с центральным контактом, черный — поочередно с боковыми. Прибор выдает «1» на левом и какое-либо значение, допустим, 807 — на правом;
  3. при контакте красного щупа мультиметра с правым выводом, а черного — с левым и центральным получаем в обоих случаях «1». Это означает, что база определена — это и есть правый контакт транзистора. А сам транзистор — pnp-типа.

В принципе, этого достаточно, чтобы сказать, что транзистор исправен. Теперь, чтобы проверить его структуру и конкретное расположение эмиттера и коллектора, закорачиваем черный (минусовой) щуп мультиметра с базой, а красный — по очереди с левым и центральным контактом.

Тот контакт, что дает меньшую величину сопротивления, будет коллекторным (в нашем случае 807 Ом). Тот, что большую — 816 Ом — является эмиттерным.

Проверка транзистора npn типа происходит так же, только к базе прикладывается плюсовой контакт.

Это способ проверки p-n переходов между базой и коллектором и базой и эмиттером. Показания мультиметра могут быть разными, в зависимости от типа транзистора, но всегда будут лежать в пределах 500-1200 Ом. Для завершения испытания коснитесь щупами эмиттера и коллектора. Исправный элемент при этом будет выдавать бесконечно большое сопротивление вне зависимости от своего типа, как бы вы ни меняли полярность. Если значение на экране отличается от «1» — один из переходов пробит, деталь непригодна к работе.

Проверка без выпаивания

Если у вас нет уверенности, что проверять нужно именно этот транзистор, измерить его параметры можно и на плате, не выпаивая. Но при этом мультиметр должен показывать значения в пределах 500-1200 Ом. Если они измеряются единицами или даже десятками Ом — схема зашунтирована низкоомными резисторами. Для точной проверки транзистор придется выпаять.

Полевой

Полевой, он же — mosfet транзистор отличается от биполярного тем, что в нем может протекать либо только положительный заряд, либо только отрицательный («дырка» или электрон). Его контакты имеют иное значение — затвор, сток, исток.

Как проверить полевой транзистор мультиметром? Методика проверки почти та же, что и в предыдущем случае, но предварительно, во избежание выхода элемента из строя, необходимо снять с себя заряд статического электричества, так как полевик очень чувствителен к статике. Используйте антистатический браслет либо просто коснитесь рукой заземленного металлического элемента, например корпуса приборного шкафа.

Полевики всегда имеют небольшую проводимость между стоком и истоком, которая выявляется на экране мультиметра как сопротивление порядка 400-700 Ом. Если поменять полярность, сопротивление незначительно изменится, возрастет или упадет на 40-60 Ом. Перед этим необходимо закоротить исток и сток между собой, чтобы «обнулить» емкости переходов.

Если при проверке с помощью мультиметра между истоком и стоком обнаруживается бесконечно большое сопротивление, полевой транзистор неисправен.
Между истоком и затвором либо стоком и затвором также будет обнаруживаться проводимость, но только в одну сторону. Плюс, приложенный к затвору, а минус — к истоку, вызовет открытие перехода и, соответственно, значение на экране в границах 400-700 Ом. Обратная схема — плюс к истоку, минус к затвору — у исправного полевика даст «1», то есть. очень большое сопротивление.

Проверка линии сток-затвор проходит аналогично. Если же линия исток-затвор или сток-затвор имеет проводимость в обе стороны, это значит, что полевой транзистор пробит.

В заключение надо сказать несколько слов о составном типе. Составной транзистор — это элемент, соединяющий в себе два обычных биполярных транзистора (иногда три и более). Проверка мультиметром производится аналогично методологии для простого «биполярника».

Занимаясь ремонтом и конструированием электроники, частенько приходится проверять транзистор на исправность.

Рассмотрим методику проверки биполярных транзисторов обычным цифровым мультиметром, который есть практически у каждого начинающего радиолюбителя.

Несмотря на то, что методика проверки биполярного транзистора достаточно проста, начинающие радиолюбители порой могут столкнуться с некоторыми трудностями.

Об особенностях тестирования биполярных транзисторов будет рассказано чуть позднее, а пока рассмотрим самую простую технологию проверки обычным цифровым мультиметром.

Для начала нужно понять, что биполярный транзистор можно условно представить в виде двух диодов, так как он состоит из двух p-n переходов. А диод, как известно, это ничто иное, как обычный p-n переход.

Вот условная схема биполярного транзистора, которая поможет понять принцип проверки. На рисунке p-n переходы транзистора изображены в виде полупроводниковых диодов.

Устройство биполярного транзистора p-n-p структуры с помощью диодов изображается следующим образом.

Как известно, биполярные транзисторы бывают двух типов проводимости: n-p-n и p-n-p . Этот факт нужно учитывать при проверке. Поэтому покажем условный эквивалент транзистора структуры n-p-n составленный из диодов. Этот рисунок нам понадобиться при последующей проверке.

Транзистор со структурой n-p-n в виде двух диодов.

Суть метода сводиться к проверке целостности этих самых p-n переходов, которые условно изображены на рисунке в виде диодов. А, как известно, диод пропускает ток только в одном направлении. Если подключить плюс (+ ) к выводу анода диода, а минус (-) к катоду, то p-n переход откроется, и диод начнёт пропускать ток. Если проделать всё наоборот, подключить плюс (+ ) к катоду диода, а минус (-) к аноду, то p-n переход будет закрыт и диод не будет пропускать ток.

Если вдруг при проверке выясниться, что p-n переход пропускает ток в обоих направлениях, то значит он «пробит». Если же p-n переход не пропускает ток ни в одном из направлений, то значит переход в «обрыве». Естественно, что при пробое или обрыве хотя бы одного из p-n переходов транзистор работать не будет.

Обращаем внимание, что условная схема из диодов необходима лишь для более наглядного представления о методике проверки транзистора. В реальности транзистор имеет более изощрённое устройство.

Функционал практически любого мультиметра поддерживает проверку диода. На панели мультиметра режим проверки диода изображается в виде условного изображения, который выглядит вот так.

Думаю, уже понятно, что проверять транзистор мы будем как раз с помощью этой функции.

Небольшое пояснение. У цифрового мультиметра есть несколько гнёзд для подключения измерительных щупов. Три, а то и больше. При проверке транзистора необходимо минусовой щуп (чёрный ) подключить к гнезду COM (от англ. слова common – «общий»), а плюсовой щуп (красный ) в гнездо с обозначением буквы омега Ω , буквы V и, возможно, других букв. Всё зависит от функционала прибора.

Почему я так подробно рассказываю о том, как подключать измерительные щупы к мультиметру? Да потому, что щупы можно элементарно перепутать и подключить чёрный щуп, который условно считается «минусовым» к гнезду, к которому нужно подключить красный, «плюсовой» щуп. В итоге это вызовет неразбериху, и, как следствие, ошибки. Будьте внимательней!

Теперь, когда сухая теория изложена, перейдём к практике.

Какой мультиметр будем использовать?

Вначале проведём проверку кремниевого биполярного транзистора отечественного производства КТ503 . Он имеет структуру n-p-n . Вот его цоколёвка.

Для тех, кто не знает, что означает это непонятное слово цоколёвка , поясняю. Цоколёвка — это расположение функциональных выводов на корпусе радиоэлемента. Для транзистора функциональными выводами соответственно будут коллектор (К или англ.- С ), эмиттер (Э или англ.- Е ), база (Б или англ.- В ).

Сначала подключаем красный (+ ) щуп к базе транзистора КТ503, а чёрный (-) щуп к выводу коллектора. Так мы проверяем работу p-n перехода в прямом включении (т. е. когда переход проводит ток). На дисплее появляется величина пробивного напряжения. В данном случае оно равно 687 милливольтам (687 мВ).

Как видим, p-n переход между базой и эмиттером тоже проводит ток. На дисплее опять показывается величина пробивного напряжения равная 691 мВ. Таким образом, мы проверили переходы Б-К и Б-Э при прямом включении.

Чтобы удостовериться в исправности p-n переходов транзистора КТ503 проверим их и в, так называемом, обратном включении . В этом режиме p-n переход ток не проводит, и на дисплее не должно отображаться ничего, кроме «1 ». Если на дисплее единица «1 », то это означает, что сопротивление перехода велико, и он не пропускает ток.

Чтобы проверить p-n переходы Б-К и Б-Э в обратном включении, поменяем полярность подключения щупов к выводам транзистора КТ503. Минусовой («чёрный») щуп подключаем к базе, а плюсовой («красный») сначала подключаем к выводу коллектора…

…А затем, не отключая минусового щупа от вывода базы, к эмиттеру.

Как видим из фотографий, в обоих случаях на дисплее отобразилась единичка «1 », что, как уже говорилось, указывает на то, что p-n переход не пропускает ток. Так мы проверили переходы Б-К и Б-Э в обратном включении .

Если вы внимательно следили за изложением, то заметили, что мы провели проверку транзистора согласно ранее изложенной методике. Как видим, транзистор КТ503 оказался исправен.

Пробой P-N перхода транзистора.

В случае если какой либо из переходов (Б-К или Б-Э) пробиты, то при их проверке на дисплее мультиметра обнаружиться, что они в обоих направлениях, как в прямом включении, так и в обратном, показывают не пробивное напряжение p-n перехода, а сопротивление. Это сопротивление либо равно нулю «0» (будет пищать буззер), либо будет очень мало.

Обрыв P-N перехода транзистора.

При обрыве, p-n переход не пропускает ток ни в прямом, ни в обратном направлении – на дисплее в обоих случаях будет «1 ». При таком дефекте p-n переход как бы превращается в изолятор.

Проверка биполярных транзисторов структуры p-n-p проводится аналогично. Но при этом необходимо сменить полярность подключения измерительных щупов к выводам транзистора. Вспомним рисунок условного изображения транзистора p-n-p в виде двух диодов. Если забыли, то гляньте ещё раз и вы увидите, что катоды диодов соединены вместе.

В качестве образца для наших экспериментов возьмём отечественный кремниевый транзистор КТ3107 структуры p-n-p. Вот его цоколёвка.

В картинках проверка транзистора будет выглядеть так. Проверяем переход Б-К при прямом включении.

Как видим, переход исправен. Мультиметр показал пробивное напряжение перехода – 722 мВ.

То же самое проделываем и для перехода Б-Э.

Как видим, он также исправен. На дисплее – 724 мВ.

Теперь проверим исправность переходов в обратном направлении – на наличие «пробоя» перехода.

Переход Б-К при обратном включении…

Переход Б-Э при обратном включении.

В обоих случаях на дисплее прибора – единичка «1 ». Транзистор исправен.

Подведём итог и распишем краткий алгоритм проверки транзистора цифровым мультиметром:

    Определение цоколёвки транзистора и его структуры;

    Проверка переходов Б-К и Б-Э в прямом включении с помощью функции проверки диода;

    Проверка переходов Б-К и Б-Э в обратном включении (на наличие «пробоя») с помощью функции проверки диода;

При проверке необходимо помнить о том, что кроме обычных биполярных транзисторов существуют различные модификации этих полупроводниковых компонентов. К таковым можно отнести составные транзисторы (транзисторы Дарлингтона), «цифровые» транзисторы, строчные транзисторы (так называемые «строчники») и т.д.

Все они имеют свои особенности, как, например, встроенные защитные диоды и резисторы. Наличие этих элементов в структуре транзистора порой усложняют их проверку с помощью данной методики. Поэтому прежде чем проверить неизвестный вам транзистор желательно ознакомиться с документацией на него (даташитом). О том, как найти даташит на конкретный электронный компонент или микросхему, я рассказывал .

Радиолюбители знают, что зачастую много времени приходится тратить на поиск неисправностей, возникающих в электронных схемах по различным причинам. Если схема собирается самостоятельно, то заключительным этапом работы будет проверка её работоспособности. А начинать необходимо с подбора заведомо исправных электронных компонентов. В радиолюбительских конструкциях широкое применение находят полупроводниковые приборы. Проверка транзистора, как прозвонить транзистор мультиметром — это немаловажные вопросы.

Типы транзисторов

Разновидностей этого вида полупроводниковых приборов по мере развития электроники появляется всё больше и больше. Появление каждой новой группы обусловлено повышением требований, предъявляемых к работе электронных устройств и к их техническим характеристикам.

Биполярные приборы

Биполярные полупроводниковые транзисторы являются наиболее часто встречающимися элементами электронных схем. Даже если рассмотреть построение различных больших микросхем, можно увидеть огромное количество представителей полупроводников этого вида.

Определение «биполярные» произошло от видов носителей электрического тока, которые в них присутствуют. Этот ток определяется движением отрицательных и положительных зарядов в теле полупроводника.

Каждая область трёхслойной структуры имеет свой металлический вывод, с помощью которого прибор подключается к другим элементам электронной схемы. Эти выводы имеют свои названия: эмиттер, база, коллектор. Эмиттер и коллектор — это внешние области . Внутренняя область — база.

Биполярные транзисторы образуют две группы в зависимости от типа полупроводника. Они обозначаются «p — n — p» и «n — p — n» Области соприкосновения полупроводников различных типов носят название «p — n» переходов.

Область базы является самой тонкой. Её толщина определяет частотные свойства прибора, то есть максимальную частоту радиосигнала, на которой может работать транзистор в качестве усилительного элемента. Область коллектора имеет максимальную площадь, так как при больших токах необходимо отводить избыточную тепловую энергию с помощью внешнего радиатора для исключения перегрева прибора.

На схемах вывод эмиттера обозначается стрелкой , которая определяет направление основного тока через прибор. Основным является ток на участке коллектор — эмиттер (или эмиттер — коллектор, в зависимости от направления стрелки). Но он возникает только в случае протекания управляющего тока в цепи базы. Соотношение этих токов определяет усилительные свойства транзистора. Таким образом, биполярный транзистор — это токовый прибор.

Полевые транзисторы

Транзисторы этого типа существенно отличаются от биполярных приборов. Если последние являются устройствами, управляемыми слабым током базы определённой полярности, то полевым приборам для протекания тока через полупроводник требуется наличие управляющего напряжения (электрического поля).

Электроды имеют названия: затвор, исток, сток. А напряжение, открывающее канал «n» типа или «p» типа, прикладывается к области затвора и определяет интенсивность тока при правильной его полярности. Эти приборы ещё называют униполярными .

Проверка мультиметром

Транзисторы являются активными элементами электронной схемы. Их исправность определяет её правильную работу. Как проверить тестером транзистор — этот вопрос является важным. При знании принципов его работы эта задача не представляет большого труда.

Приборы биполярного типа

Их схему упрощённо можно представить в виде двух полупроводниковых диодов, включённых навстречу друг другу. Для приборов «p — n — p» проводимости соединены будут катоды, а для «n — p — n» структуры общую точку будут иметь аноды диодов. В любом случае точка соединения будет выводом электрода базы, а два других вывода, соответственно, эмиттером и коллектором.

Для структуры «p — n — p» на схеме стрелка эмиттера направлена к выводу базы. Соответственно, для проводимости «n — p — n» стрелка эмиттера изменит своё направление на противоположное. Для определения состояния полупроводникового транзистора большое значение имеет информация о его типе и, соответственно, о маркировке его электродов. Эту информацию можно узнать из многочисленных справочников или из общения на тематических форумах.

Для биполярных приборов «p — n — p» проводимости открытому состоянию будет соответствовать подключение «минусового» (чёрного) щупа тестера к выводу базы. «Положительный» (красный) наконечник поочерёдно подключается к коллектору и эмиттеру. Это будет прямым включением «p — n» переходов.

При этом сопротивление каждого будет находиться в диапазоне (600−1200) Ом. Конкретное значение зависит от производителя электронных компонентов. Сопротивление коллекторного перехода будет иметь величину немного меньшую, чем эмиттерного.

Так как биполярный транзистор представлен в виде встречного включения двух полупроводниковых диодов с односторонней проводимостью, то при смене полярности щупов тестера сопротивления «p — n» переходов у нормально работающих транзисторов будет в идеале стремиться к бесконечности.

Такая же картина должна наблюдаться при измерении сопротивления между выводами эмиттера и коллектора. Причём это большое значение не зависит от смены полярности измерительных щупов. Всё это относится к исправным транзисторам.

Процесс проверки исправности (или неисправности) биполярного полупроводникового элемента с помощью мультиметра сводится к следующему:

  • определение типа прибора и схемы его выводов;
  • проверка сопротивлений его «p — n» переходов в прямом направлении;
  • смена полярности щупов и определение сопротивлений переходов при таком подключении;
  • проверка сопротивления «коллектор — эмиттер» в обоих направлениях.

Определение исправности приборов «n — p — n» структуры отличается только тем, что для прямого включения переходов к выводу базы необходимо подключить красный «положительный» провод мультиметра, а к выводам эмиттера и коллектора поочерёдно подсоединять чёрный (отрицательный). Картина с величинами сопротивлений для этой проводимости должна повториться.

К признакам неисправности биполярных транзисторов можно отнести следующие:

  • «прозвонка» «p — n» переходов показывает слишком малые значения сопротивлений;
  • «p — n» переход не «прозванивается» в обе стороны.

В первом случае можно говорить об электрическом пробое перехода, а то и вовсе о коротком замыкании.

Второй случай показывает внутренний обрыв в структуре прибора.

В обоих случаях данный экземпляр не может быть использован для работы в схеме.

Полевые транзисторы

Для проверки работоспособности этого элемента используем тот же мультиметр, что и для биполярного прибора. Необходимо помнить, что полевики могут быть n-канальными и p-канальными.

Для проверки элемента первого типа необходимо выполнить следующие действия:

Для определения сопротивления закрытого прибора с n-каналом производят касание красным проводом вывода «исток», а чёрным — «сток».

Открытие полевого прибора производится подачей на его «затвор» положительного потенциала (красный провод).

Для проверки открытого состояния транзистора повторно измеряется сопротивление участка «сток — исток» (чёрный провод — сток, красный — исток). Сопротивление приоткрытого n-канала немного уменьшается по сравнению с первым замером.

Закрытие прибора достигается подачей на его «затвор» отрицательного потенциала (чёрный провод мультиметра). После этого сопротивление участка «сток — исток» вернётся к своему первоначальному значению.

При проверке p-канального прибора повторяют все предыдущие действия, переменив полярность измерительных щупов тестера.

Необходимо перед проверками полевых приборов принять меры, защищающие от воздействия статических зарядов, которые могут внести значительные сложности в процесс проверки, а то и вовсе вывести проверяемое изделие из строя. К таким проверенным мерам можно отнести простое касание рукой батареи центрального отопления. Специалисты применяют браслет, обладающий антистатическими свойствами.

При проверках транзисторов большой мощности этого типа часто при полностью запертом полупроводниковом канале можно определить наличие сопротивления. Это означает, что между «истоком» и «стоком» включён защитный диод, встроенный в корпус прибора. Убедиться в этом помогает смена полярности выводов тестера.

Проверка приборов в схеме

Как мультиметром проверить транзистор, не выпаивая, как проверить полевой транзистор — эти вопросы возникают у радиолюбителей довольно часто. Извлечение полупроводникового прибора из схемы требует большой аккуратности и опыта работы. Необходимо иметь в своём арсенале низковольтный паяльник с тонким жалом, браслет, защищающий от статических разрядов. Проводники печатной платы в процессе работы можно перегреть, а то и случайно замкнуть между собой.

Хотя при наличии опыта в такой работе — задача вполне решаемая. Конечно, необходимо уметь читать электрические схемы и представлять работу каждого из её компонентов.

Оценка работоспособности биполярных транзисторов малой и средней мощности мало отличается от проверки этих элементов «на столе», когда все выводы прибора находятся в доступном для проверки положении.

Сложнее проходит проверка непосредственно в схеме приборов большой мощности, применяемых в схемах выходных каскадов усилителей, импульсных блоках питания. В этих схемах присутствуют элементы, защищающие транзисторы от выхода последних на максимально допустимые режимы. При проверке состояний «p — n» переходов в этих случаях можно получить абсолютно не верные результаты. Как выход — выпаивание вывода базы.

Проверка полевых приборов может дать результат, далёкий от реального положения дел. Причина — наличие в схемах большого количества элементов коррекции работы транзисторов, включая катушки индуктивности низкого сопротивления.

Существует ещё большое количество различных типов транзисторов, для оценки состояния которых приходится применять различные специальные пробники. Но это тема для отдельного материала.

Как проверить транзистор мультиметром. Перед началом ремонта электронного прибора или сборки схемы стоит убедиться в исправном состоянии всех элементов, которые будут устанавливаться. Если используются новые детали, необходимо убедиться в их работоспособности. Транзистор является одним из главных составляющих элементов многих электросхем, поэтому его следует прозвонить в первую очередь. Как проверить мультиметром транзистор подробно расскажет данная статья.

Проверка транзисторов — обязательный шаг при диагностике и ремонте микросхем

Что такое транзистор

Главным компонентом в любой электросхеме является транзистор, который под влиянием внешнего сигнала управляет током в электрической цепи. Транзисторы делятся на два вида: полевые и биполярные.


Транзистор один из основных компонентов микросхем и электрических схем

Биполярный транзистор имеет три вывода: база, эмиттер и коллектор. На базу подается ток небольшой величины, который вызывает изменение в зоне эмиттер-коллектор сопротивления, что приводит к изменению протекающего тока. Ток протекает в одном направлении, которое определяется типом перехода и соответствует полярности подключения.

Транзистор данного типа оснащен двумя p-n переходами. Когда в крайней области прибора преобладает электронная проводимость (n), а в средней — дырочная (p), то транзистор называется n-p-n (обратная проводимость). Если наоборот, тогда прибор именуется транзистором типа p-n-p (прямая проводимость).

Полевые транзисторы имеют характерные отличия от биполярных. Они оснащены двумя рабочими выводами — истоком и стоком и одним управляющим (затвором). В данном случае на затвор воздействует напряжение, а не ток, что характерно для биполярного типа. Электрический ток проходит между истоком и стоком с определенной интенсивностью, которая зависит от сигнала. Этот сигнал формируется между затвором и истоком или затвором и стоком. Транзистор такого типа может быть с управляющим p-n переходом или с изолированным затвором. В первом случае рабочие выводы подключаются к полупроводниковой пластине, которая может быть p- или n-типа.


Принцип работы полевого транзистора

Главной особенностью полевых транзисторов является то, что их управление обеспечивается не при помощи тока, а напряжения. Минимальное использование электроэнергии позволяет его применять в радиодеталях с тихими и компактными источниками питания. Такие устройства могут иметь разную полярность.

Как проверить мультиметром транзистор

Многие современные тестеры оснащены специализированными коннекторами, которые используются для проверки работоспособности радиодеталей, в том числе и транзисторов.

Чтобы определить рабочее состояние полупроводникового прибора, необходимо протестировать каждый его элемент. Биполярный транзистор имеет два р-n перехода в виде диодов (полупроводников), которые встречно подключены к базе. Отсюда один полупроводник образовывается выводами коллектора и базы, а другой эмиттера и базы.

Используя транзистор для сборки монтажной платы необходимо четко знать назначение каждого вывода. Неправильное размещение элемента может привести к его перегоранию. При помощи тестера можно узнать назначение каждого вывода.


Чтобы определить состояние транзистора, необходимо протестировать каждый его элемент

Важно! Данная процедура возможна лишь для исправного транзистора.

Для этого прибор переводится в режим измерения сопротивления на максимальный предел. Красным щупом следует коснуться левого контакта и измерить сопротивление на правом и среднем выводах. Например, на дисплее отобразились значения 1 и 817 Ом.

Затем красный щуп следует перенести на середину, и с помощью черного измерить сопротивления на правом и левом выводах. Здесь результат может быть: бесконечность и 806 Ом. Красный щуп перевести на правый контакт и произвести замеры оставшейся комбинации. Здесь в обоих случаях на дисплее отобразится значение 1 Ом.

Делая вывод из всех замеров, база располагается на правом выводе. Теперь для определения других выводов необходимо черный щуп установить на базу. На одном выводе показалось значение 817 Ом – это эмиттерный переход, другой соответствует 806 Ом, коллекторный переход.


Схема проверки транзисторов с помощью мультиметра

Важно! Сопротивление эмиттерного перехода всегда будет больше, чем коллекторного.

Как прозвонить мультиметром транзистор

Чтобы убедиться в исправном состоянии устройства достаточно узнать прямое и обратное сопротивление его полупроводников. Для этого тестер переводится в режим измерения сопротивления и устанавливается на предел 2000. Далее следует прозвонить каждую пару контактов в обоих направлениях. Так выполняется шесть измерений:

  • соединение «база-коллектор» должно проводить электрический ток в одном направлении;
  • соединение «база-эмиттер» проводит электрический ток в одном направлении;
  • соединение «эмиттер-коллектор» не проводит электрический ток в любом направлении.

Как прозванивать мультиметром транзисторы, проводимость которых p-n-p (стрелка эмиттерного перехода направлена к базе)? Для этого необходимо черным щупом прикоснуться к базе, а красным поочередно касаться эмиттерного и коллекторного переходов. Если они исправны, то на экране тестера будет отображаться прямое сопротивление 500-1200 Ом.


Точки проверки транзистора p-n-p

Для проверки обратного сопротивления красным щупом следует прикоснуться к базе, а черным поочередно к выводам эмиттера и коллектора. Теперь прибор должен показать на обоих переходах большое значение сопротивления, отобразив на экране «1». Значит, оба перехода исправны, а транзистор не поврежден.

Такая методика позволяет решить вопрос: как проверить мультиметром транзистор, не выпаивая его из платы. Это возможно благодаря тому, что переходы устройства не зашунтированы низкоомными резисторами. Однако, если в ходе замеров тестер будет показывать слишком маленькие значения прямого и обратного сопротивления эммитерного и коллекторного переходов, транзистор придется выпаять из схемы.

Перед тем как проверить мультиметром n-p-n транзистор (стрелка эмиттерного перехода направлена от базы), красный щуп тестера для определения прямого сопротивления подключается к базе. Работоспособность устройства проверяется таким же методом, что и транзистор с проводимостью p-n-p.

О неисправности транзистора свидетельствует обрыв одного из переходов, где обнаружено большое значение прямого или обратного сопротивления. Если это значение равно 0, переход находится в обрыве и транзистор неисправен.


Принцип работы биполярного транзистора

Такая методика подходит исключительно для биполярных транзисторов. Поэтому перед проверкой необходимо убедиться, не относиться ли он к составному или полевому устройству. Далее необходимо проверить между эмиттером и коллектором сопротивление. Замыканий здесь быть не должно.

Если для сборки электрической схемы необходимо использовать транзистор, имеющий приближенный по величине тока коэффициент усиления, с помощью тестера можно определить необходимый элемент. Для этого тестер переводится в режим hFE. Транзистор подключается в соответствующий для конкретного типа устройства разъем, расположенный на приборе. На экране мультиметра должна отобразиться величина параметра h31.

Как проверить мультиметром тиристор? Он оснащен тремя p-n переходами, чем отличается от биполярного транзистора. Здесь структуры чередуются между собой на манер зебры. Главных отличием его от транзистора является то, что режим после попадания управляющего импульса остается неизменным. Тиристор будет оставаться открытым до того момента, пока ток в нем не упадет до определенного значения, которое называется током удержания. Использование тиристора позволяет собирать более экономичные электросхемы.


Схема проверки тиристора мультиметром

Мультиметр выставляется на шкалу измерения сопротивления в диапазон 2000 Ом. Для открытия тиристора черный щуп присоединяется к катоду, а красный к аноду. Следует помнить, что тиристор может открываться положительным и отрицательным импульсом. Поэтому в обоих случаях сопротивление устройства будет меньше 1. Тиристор остается открытым, если ток управляющего сигнала превышает порог удержания. Если ток меньше, то ключ закроется.

Как проверить мультиметром транзистор IGBT

Биполярный транзистор с изолированным затвором (IGBT) является трехэлектродным силовым полупроводниковым прибором, в котором по принципу каскадного включения соединены два транзистора в одной структуре: полевой и биполярный. Первый образует канал управления, а второй – силовой канал.

Чтобы проверить транзистор, мультиметр необходимо перевести в режим проверки полупроводников. После этого при помощи щупов измерить сопротивление между эмиттером и затвором в прямом и обратном направлении для выявления замыкания.


IGBT-транзисторы с напряжением коллектор-эмиттер

Теперь красный провод прибора соединить с эмиттером, а черным коснуться кратковременно затвора. Произойдет заряд затвора отрицательным напряжением, что позволит транзистору оставаться закрытым.

Важно! Если транзистор оснащен встроенным встречно-параллельным диодом, который анодом подключен к эмиттеру транзистора, а катодом к коллектору, то его необходимо прозвонить соответствующим образом.

Теперь необходимо убедиться в функциональности транзистора. Сначала стоит зарядить положительным напряжением входную емкость затвор-эмиттер. С этой целью одновременно и кратковременно красным щупом следует прикоснуться к затвору, а черным к эмиттеру. Теперь необходимо проверить переход коллектор-эмиттер, подключив черный щуп к эмиттеру, а красный к коллектору. На экране мультиметра должно отобразиться незначительное падение напряжения в 0,5-1,5 В. Эта величина на протяжении нескольких секунд должна оставаться стабильной. Это свидетельствует о том, что во входной емкости транзистора утечки нет.


Проверка транзистора мультиметром без выпаивания из микросхемы

Полезный совет! Если напряжения мультиметра недостаточно для открытия IGBT транзистора, тогда для заряда его входной емкости можно использовать источник постоянного напряжения в 9-15 В.

Как проверить мультиметром полевой транзистор

Полевые транзисторы проявляют высокую чувствительность к статическому электричеству, поэтому предварительно требуется организация заземления.

Перед тем как приступить к проверке полевого транзистора, следует определить его цоколевку. На импортных приборах обычно наносятся метки, которые определяют выводы устройства. Буквой S обозначается исток прибора, буква D соответствует стоку, а буква G – затвор. Если цоколевка отсутствует, тогда необходимо воспользоваться документацией к прибору.

Перед проверкой исправного состояния транзистора, стоит учесть, что современные радиодетали типа MOSFET имеют дополнительный диод, расположенный между истоком и стоком, который обязательно нанесен на схему прибора. Полярность диода полностью зависит от вида транзистора.

Полезный совет! Обезопасить себя от накопления статических зарядов можно при помощи антистатического заземляющего браслета, который надевается на руку, или прикоснуться рукой к батарее.


Устройство полевого транзистора с N-каналом

Основная задача, как проверить мультиметром полевой транзистор, не выпаивая его из платы, состоит из следующих действий:

  1. Необходимо снять с транзистора статическое электричество.
  2. Переключить измерительный прибор в режим проверки полупроводников.
  3. Подключить красный щуп к разъему прибора «+», а черный «-».
  4. Коснуться красным проводом истока, а черным стока транзистора. Если устройство находится в рабочем состоянии на дисплее измерительного прибора отобразиться напряжение 0,5-0,7 В.
  5. Черный щуп подключить к истоку транзистора, а красный к стоку. На экране должна отобразиться бесконечность, что свидетельствует об исправном состоянии прибора.
  6. Открыть транзистор, подключив красный щуп к затвору, а черный – к истоку.
  7. Не меняя положение черного провода, присоединить красный щуп к стоку. Если транзистор исправен, тогда тестер покажет напряжение в диапазоне 0-800 мВ.
  8. Изменив полярность проводов, показания напряжения должны остаться неизменными.
  9. Выполнить закрытие транзистора, подключив черный щуп к затвору, а красный – к истоку транзистора.


Пошаговая проверка полевого транзистора мультиметром

Говорить об исправном состоянии транзистора можно исходя из того, как он при помощи постоянного напряжения с тестера имеет возможность открываться и закрываться. В связи с тем, что полевой транзистор обладает большой входной емкостью, для ее разрядки потребуется некоторое время. Эта характеристика имеет значение, когда транзистор вначале открывается с помощью создаваемого тестером напряжения (см. п. 6), и на протяжении небольшого количества времени проводятся измерения (см. п.7 и 8).

Проверка мультиметром рабочего состояния р-канального полевого транзистора осуществляется таким же методом, как и n-канального. Только начинать измерения следует, подключив красный щуп к минусу, а черный – к плюсу, т. е. изменить полярность присоединения проводов тестера на обратную.

Исправность любого транзистора, независимо от типа устройства, можно проверить с помощью простого мультиметра. Для этого следует четко знать тип элемента и определить маркировку его выводов. Далее, в режиме прозвонки диодов или измерения сопротивления узнать прямое и обратное сопротивление его переходов. Исходя из полученных результатов, судить об исправном состоянии транзистора.

Как проверить мультиметром транзистор: видео инструкция

Практически каждый опытный радиолюбитель знает, что исправность почти всех типов транзисторов можно определить простым омметром. Им же можно «вычислить» и проводимость – главное знать, что и как должно «звониться». Сегодня я приведу небольшую памятку, заглядывая в которую, научимся это делать и мы. Прежде всего сразу определимся, что прозванивать транзисторы (как и любые полупроводники) нужно обязательно постоянным током.

Такой режим обеспечивают практически все бытовые стрелочные тестеры, а вот с цифровыми дело обстоит несколько хуже, поскольку многие из них проводят измерение сопротивлений переменным током. Для наших целей подойдут лишь те приборы, которые предназначены для проверки диодов. На таких устройствах для этого обычно используется один из диапазонов измерения сопротивлений, дополнительно обозначенный значком диода:

На приборе слева для прозвонки диода существует специальный диапазон (обозначен значком диода), прибор справа сможет проверить диод на пределе 2000 Ом

Поставьте тестер на этот диапазон и прозвоните заведомо исправный диод. В одну сторону прибор покажет обрыв, в другую – некоторое сопротивление, которое будет зависеть от типа и мощности диода. Если получилось, то наш прибор справится и с транзисторами.

Ну а теперь посмотрим, что представляет собой транзистор с «точки зрения» тестера. Обычный биполярный транзистор будет выглядеть как два диода, соединенные катодами (p-n-p проводимости) или анодами (n-p-n проводимости):

Таким образом, вывод базы будет в обрыве с коллектором и эмиттером при одной полярности, а если ее сменить (поменять местами щупы омметра), то переход база-эмиттер и база-коллектор покажут сопротивление, как обычные диоды.

Точно так же звонится и составной транзистор, но прямое сопротивление база-эмиттер будет несколько выше сопротивления база-коллектор, поскольку его эквивалентная схема выглядит так:

Прозавнивая мощные биполярные транзисторы следует обращать внимание на то, не предусмотрен ли конструкторами защитный диод (обозначен пунктиром), который может стоять между коллектором-эмиттером или базой-эмиттером. Если диод стоит, но вы о нем не знаете, то транзистор можно ошибочно принять за неисправный.

А вот так будет выглядеть однопереходной транзистор, причем сопротивление база1-эмиттер будет ниже, чем сопротивление эмиттер-база2:

Ну и остался полевой транзистор. К сожалению, убедиться в исправности прибора с изолированным затвором (к ним относятся и так называемые MOSFET-транзисторы) при помощи тестера не удастся – слишком высоко сопротивление изолированного затвора, но полевой транзистор на основе p-n перехода можно и прозвонить:

Единственно, перед тем, как измерить сопротивление исток-сток, кратковременно замкните вывод затвора на исток – это снимет с него оставшийся после предыдущих измерений заряд и исключит неверный результат измерения.

Ну и не стоит забывать, что полевые транзисторы (особенно с изолированным затвором) очень чувствительны к статическому электричеству, которое может накапливаться на нашем теле. Поэтому перед тем, как взять в руки такой транзистор, коснитесь любого заземленного предмета (водопроводная труба, батарея отопления, контур заземления и т.п.) – это снимет заряд с тела и, возможно, спасет жизнь транзистору.

В заключение хочу сказать, что прозвонка транзистора тестером не дает полной гарантии, что прибор (в смысле транзистор) исправен, но вероятность того, что он жив, достаточно высока – обычно неисправность заключается либо в пробое, либо в выгорании перехода.

Как проверить транзистор

Это самый быстрый и простой способ проверить транзистор. Здесь не нужно возиться с распиновкой или идентификацией базы, коллектора и эмиттера. Не возитесь с тестовым измерителем и не пытайтесь удерживать один провод на одном соединении, касаясь другого.

Если вы хотите узнать, как проверить транзистор с помощью мультиметра, я также показал этот метод позже в этой статье.

Самый простой способ — использовать это устройство. DEOK Многофункциональный тестер транзисторов Mega328 NPN / PNP Конденсатор ESR SCR / MOSFET / Резистор / ЖК-дисплей измерителя диодов (малый).

Это лучшее устройство, которое я когда-либо покупал для моего хобби создания электронных проектов. Это также один из самых дешевых — менее двадцати фунтов.

Я купил их в комплекте, но вы также можете купить их в готовом виде. О версии комплекта можно прочитать здесь. Он не представляет особой сложности и может быть собран за несколько минут при тщательной пайке.

Что вы получите в итоге, соберете ли вы его сами или купите в готовом виде, так это вот что.

Есть несколько версий этого с тремя винтовыми клеммами для подключения.Я предпочитаю версию гнезда с нулевым усилием вставки просто потому, что ее проще использовать.

Гнездо с нулевым усилием вставки имеет пронумерованные клеммы, как показано на рисунке ниже.

Не имеет значения, к каким терминалам вы подключаетесь. Просто убедитесь, что вы подключили каждую ножку транзистора к клеммам 1, 2 и 3. Тестер сделает все остальное и определит за вас клеммы, а также проверит и расскажет, что это за транзистор. Он укажет, является ли устройство PNP или NPN, пороговое напряжение эмиттера и коэффициент усиления тока.

Просто вставьте транзистор и бросьте рычаг. Затем просто нажмите кнопку тестирования. Это так просто.

Здесь вы можете увидеть тестер с транзистором 2N3906 PNP. С этим устройством легко просто вставить его в верхний правый угол розетки, так как три клеммы 1,2 и 3 расположены рядом друг с другом. Как вы можете видеть, устройство работает и было идентифицировано как транзистор PNP с выводом 1 E 2 B 3 C. «B = 284» во второй строке дисплея — это текущий коэффициент усиления или коэффициент усиления. более широко известен.Я думаю, что используется буква «B», так как это также греческая буква B или бета. Другое число «677 мВ» — это пороговое напряжение эмиттера.

Здесь вы видите тестер с транзистором 2N3904 NPN. Он идентифицирует контакт как 1 E 2 B 3 C. Просто чтобы доказать, что ему все равно, какие ножки подключаются, где я повернул устройство и повторно протестировал его.

Как вы можете видеть, вывод теперь показывает 1 C 2 B 3 E.

Здесь тестируется 2N3819, обычный N-канальный JFET.

На дисплее показано, что это полевой транзистор типа N с выводом из 1 истока, 2 затвора а и 3 стока.другие числа показывают емкость затвора и пороговое напряжение затвора.

Как проверить транзистор с помощью мультиметра

Как видите, это не намного проще, однако, если вы ищете, как проверить транзистор, и у вас нет этого набора, вы можете сделать это с помощью мультиметр с диодным тестом. Большинство мультиметров имеют эту функцию.

Перед тем, как начать, вам нужно знать несколько вещей.

1 Убедитесь, что вы знаете, что это за устройство. NPN является более распространенным, другой тип — PNP.Самый простой способ — посмотреть номер на устройстве и найти его в Интернете.

2 Вам также необходимо знать штырь устройства. Вот какие ноги являются базовым коллектором и эмиттером. Самый простой способ — снова поискать это в Интернете.

3. Получив штырь, нарисуйте его. Это значительно упростит идентификацию потенциальных клиентов во время тестирования.

Вам необходимо знать распиновку, если вы проверяете транзистор с помощью мультиметра.

Установите мультиметр на диодный диапазон.Это будет выглядеть примерно так, как показано ниже.

Тестирование транзистора NPN

Для наших целей тестирования мы тестируем транзистор, как если бы это были 2 диода, как показано на рисунке ниже. Возможно, вы слышали об этой аналогии раньше.

Убедитесь, что провода правильно подключены к вашему глюкометру. Я видел людей, у которых красный провод был подключен к черному выводу.

1. Подключите красный положительный вывод к базе транзистора.

2. Коснитесь черного отрицательного вывода эмиттера, и вы должны получить показание обрыва цепи.

3. Коснитесь черного отрицательного провода на коллекторе, и вы должны получить показание обрыва цепи.

Обрыв цепи будет выглядеть так же, как если бы он не был подключен ни к чему обрыву цепи, подобному этой картинке.

4. Теперь подключите черный отрицательный провод к базе транзистора.

5. Коснитесь красного плюсового провода на эмиттере, и на этот раз вы должны получить показания.

6. Коснитесь красного плюсового провода на коллекторе, и вы также должны получить показания.

Под чтением я подразумеваю что-то вроде 0,740, как показано на рисунке ниже.

Последняя проверка — подсоединить щупы измерителя через коллектор и эмиттер. Это также должно считаться обрывом цепи в любом случае, когда провода подключены.

Проверка транзистора PNP

Еще раз убедитесь, что провода правильно подключены к вашему глюкометру.

1. Подключите черный отрицательный вывод к базе транзистора.

2. Коснитесь красного плюсового провода на эмиттере, и вы должны получить показание обрыва цепи.

3. Коснитесь красного плюсового провода на коллекторе, и вы должны получить показание обрыва цепи.

Обрыв цепи будет считаться таким же, как если бы он не был подключен ни к чему обрыву цепи, подобному этой картинке.

4. Теперь подключите красный положительный провод к базе транзистора.

5. Коснитесь черного отрицательного вывода на эмиттере, и на этот раз вы должны получить показания.

6. Коснитесь черного негатива на коллекторе, и вы также должны получить показания.

Под чтением я подразумеваю что-то вроде 0,740, как показано на рисунке ниже.

Последняя проверка — подсоединить щупы измерителя через коллектор и эмиттер. Это также должно считаться обрывом цепи в любом случае, когда провода подключены.

Самая большая проблема, с которой я сталкиваюсь при использовании этого метода, заключается в том, что я пытаюсь удерживать щупы мультиметра устойчиво во время проверки показаний. Я обнаружил, что намного проще использовать миниатюрные зажимы-крокодилы и закрепить их на одном зажиме. Также полезно использовать изолированные, чтобы избежать короткого замыкания во время тестирования.

Я уверен, вы согласитесь, что это не так просто, как использовать тестер транзисторов.

Как проверить транзистор?

Отдельный транзистор можно проверить в цепи или вне цепи с помощью тестера транзисторов. Например, предположим, что усилитель на конкретной печатной плате неисправен. Хорошая практика устранения неполадок требует, чтобы вы не распаивали компонент с печатной платы, если вы не уверены, что он плохой, или вы просто не можете изолировать проблему до одного компонента.При снятии компонентов существует риск повреждения контактов и следов на печатной плате.

Вы можете выполнить внутрисхемную проверку транзистора с помощью тестера транзисторов, аналогичного показанному на рисунке ниже. Три зажима подключаются к клеммам транзистора, и тестер дает положительную информацию о том, исправен ли транзистор.

Тесты в цепи и вне цепи

Корпус 1

Если транзистор неисправен, его следует осторожно удалить и заменить заведомо исправным.Проверка заменяемого устройства без отключения цепи обычно является хорошей идеей, просто чтобы убедиться, что все в порядке. Транзистор вставляется в гнездо на тестере транзисторов для проверки вне цепи.

Корпус 2

Если транзистор в цепи исправен, но цепь не работает должным образом, проверьте плату на предмет плохого контакта с контактной площадкой коллектора или обрыва в соединительной дорожке. Плохое паяное соединение часто приводит к открытому или высокому сопротивлению контакта.В этом случае очень важна физическая точка, в которой вы фактически измеряете напряжение. Например, если вы измеряете провод коллектора, когда на контактной площадке коллектора есть открытый разрыв, вы будете измерять с плавающей точкой. Если вы измеряете на соединительной дорожке или на проводе R C , вы увидите V CC . Эта ситуация проиллюстрирована на рисунке ниже.

Важность точки измерения при поиске и устранении неисправностей

В случае 2, если бы вы провели первоначальное измерение на самом выводе транзистора, а открытый транзистор был внутренним, как показано на рисунке ниже, вы бы измерили VCC.Это указывает на неисправный транзистор еще до использования тестера, если предположить, что напряжение база-эмиттер в норме. Эта простая концепция подчеркивает важность точки измерения в определенных ситуациях поиска и устранения неисправностей.

идентификация неисправности транзистора

Измерение утечек

Очень малые токи утечки существуют во всех транзисторах, и в большинстве случаев они достаточно малы, чтобы ими можно было пренебречь (обычно нА). Когда транзистор подключен к открытой базе (I B = 0), он находится в отсечке.В идеале I C = 0; но на самом деле существует небольшой ток от коллектора к эмиттеру, как упоминалось ранее, который называется I CEO (ток от коллектора к эмиттеру при разомкнутой базе). Этот ток утечки обычно находится в диапазоне нА. Неисправный транзистор часто имеет чрезмерный ток утечки, и его можно проверить с помощью тестера транзисторов. Другой ток утечки в транзисторах — это обратный ток коллектор-база, I CBO . Измеряется при открытом эмиттере. Если он чрезмерный, вероятно короткое замыкание коллектор-база.

Измерение усиления

В дополнение к тестам на утечку, обычный тестер транзисторов также проверяет β DC . Применяется известное значение I B и измеряется полученное значение I C . Показания будут указывать на значение отношения I C / I B , хотя в некоторых единицах указывается только относительное значение. Большинство тестеров предусматривают внутрисхемную проверку β DC , так что подозрительное устройство не нужно удалять из схемы для тестирования.

Измерители кривых

Измеритель кривой — это прибор осциллографического типа, который может отображать характеристики транзистора, такие как семейство кривых коллектора. В дополнение к измерению и отображению различных характеристик транзисторов также могут отображаться диодные кривые.

Как проверить транзистор мультиметром

Мы можем зарабатывать деньги, просматривая продукты по партнерским ссылкам на этом сайте. Спасибо вам всем!

Транзисторы действуют как затвор или переключатель для электрических сигналов с возможностью регулирования напряжения или тока.Обычно они имеют три слоя, которые сделаны из полупроводниковых материалов, которые могут проводить ток. Такими полупроводниковыми материалами являются:

Как работает транзистор

Если небольшое изменение напряжения или тока происходит во внутренних слоях полупроводника транзистора, происходит быстрое и сильное изменение тока, которое передается на весь компонент. Затем транзисторы действуют как переключатель, многократно замыкаясь и открываясь, а также как электрический затвор.

  • Транзисторы используются в обеих комбинациях, называемых интегральными и одиночными схемами.
  • Транзисторы, используемые в комбинированных / интегральных схемах, можно найти в таком оборудовании, как высокопроизводительные компьютеры, сотовые телефоны, планшеты, ноутбуки и настольные компьютеры.
  • В этой статье вы услышите о различных типах транзисторов, таких как PNP и NPN.
  • Транзистор PNP — положительный, отрицательный, положительный. Это также известно как поиск источников.
  • Транзистор NPN означает отрицательный, положительный, отрицательный. Это также известно как опускание.

Итак, в чем разница между этими двумя транзисторами?

В транзисторе NPN ток обычно течет от коллектора к выводу эмиттера.С другой стороны, PNP-транзистор обычно включается, когда на выводе базы транзистора нет тока. В транзисторе PNP ток часто течет от эмиттера к клемме коллектора.

Транзистор NPN включается при высоком уровне сигнала, в то время как транзистор PNP обычно включается при очень низком уровне сигнала.

Основное различие между транзистором NPN и транзистором PNP обычно заключается в правильном смещении их соединений транзисторов.Полярности напряжения и направления тока обычно постоянно противоположны друг другу.

Когда дело доходит до мультиметров, технические специалисты и профессионалы используют их чаще всего. От цифрового мультиметра до аналогового мультиметра — этот электрический инструмент используется для диагностики и тестирования многих электрических компонентов и цепей широкого диапазона.

Когда дело доходит до тестирования или проверки транзисторов, этот универсальный компонент — мультиметр — лучше всего подходит для этой работы.Большинство цифровых мультиметров имеют встроенную функцию тестирования транзисторов. В таких случаях тестирование транзисторов становится очень быстрым и простым.

Как проверить транзистор с помощью мультиметра со встроенными функциями транзистора

Если ваш цифровой мультиметр имеет встроенную функцию тестирования транзисторов, все, что вам нужно, это выполнить следующие простые шаги:

  1. Первый шаг — вставить транзистор в гнездо цифрового мультиметра.
  2. После этого вам нужно установить мультиметр в правильный режим.
  3. После завершения вы получите такие показания, как усиление (hFE). Имея это значение, вы можете перепроверять показания «не прошел / прошел» и таблицы данных.

Проверка транзистора мультиметром (настройки диодов)

Для мультиметров без встроенной функции тестирования транзисторов вы можете проверить свои транзисторы с помощью функции тестирования диодов.

Для получения точных и правильных показаний вам необходимо удалить транзистор из схемы. Ниже приведены шаги, которые необходимо выполнить:

1.Подключение базы к эмиттеру

Первое, что нужно сделать на этом шаге, — это подключить положительный вывод цифрового мультиметра к БАЗЕ транзистора (B).

После этого подсоедините отрицательный вывод цифрового мультиметра к ЭМИТТЕРУ транзистора (E).

Если ваш NPN-транзистор в идеальном состоянии, цифровой мультиметр должен показать падение напряжения от 0,45 до 0,9 В. Для транзистора PNP ваш цифровой мультиметр должен давать показания OL (превышение предела).

2.Подключение базы к коллектору

На этом этапе вам нужно, чтобы цифровой мультиметр оставался положительным, провод к ОСНОВАНИЮ (B), а затем подключил отрицательный провод цифрового мультиметра к КОЛЛЕКТОРУ (C).

Для правильно функционирующего транзистора NPN цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В. Для транзистора PNP ваш цифровой мультиметр должен давать показания OL (превышение предела).

3. Подключение излучателя к базе

Первое, что нужно сделать на этом этапе, — это подсоединить положительный вывод цифрового мультиметра к ЭМИТТЕРУ транзистора (E).

После этого подсоедините отрицательный вывод цифрового мультиметра к БАЗУ транзистора (B)

.

Для исправного функционирования NPN-транзистора цифровой мультиметр должен давать показания OL (превышение предела). Для транзистора PNP ваш цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В.

4. Подключение коллектора к базе

На этом этапе вам нужно будет подключить положительный вывод цифрового мультиметра к КОЛЛЕКТОРУ (C), а затем подсоединить отрицательный вывод цифрового мультиметра к ОСНОВАНИЮ (B).

Для исправного функционирования NPN-транзистора цифровой мультиметр должен давать показания OL (превышение предела). Для транзистора PNP ваш цифровой мультиметр должен показывать падение напряжения от 0,45 до 0,9 В.

5. Подключение коллектора к эмиттеру

На этом этапе вам нужно будет подсоединить положительный провод цифрового мультиметра к КОЛЛЕКТОРУ (C), а затем подсоединить отрицательный провод цифрового мультиметра к ЭМИТТЕРУ (E).

Для правильно функционирующего транзистора NPN и PNP цифровой мультиметр должен давать показания OL (превышение предела).

6. Подключение эмиттера к коллектору

Наконец, вам нужно будет держать положительный вывод цифрового мультиметра на ЭМИТТЕРЕ (E), а затем подключить отрицательный вывод цифрового мультиметра к КОЛЛЕКТОРУ (C)

.

Для правильно функционирующего транзистора NPN и PNP цифровой мультиметр должен давать показания OL (превышение предела).

Для любого неисправного транзистора показания цифрового мультиметра будут отличаться от приведенных выше результатов.

ПРИМЕЧАНИЕ

Проверка транзистора мультиметром позволит определить только неисправность транзистора; он не определит, работает ли ваш транзистор в том диапазоне, в котором они должны работать.

подсказок

В наши дни, когда у вас неисправный транзистор, его можно заменить на Mosfet. Хотя и МОП-транзистор, и транзистор могут иметь похожие стили, функции и могут выглядеть одинаково, они оба отличаются по своим конфигурациям и характеристикам.

Основное различие между ними заключается в том, что транзисторы зависят от тока и должны увеличиваться пропорционально нагрузке, в то время как Mosfet зависит от напряжения.

Дизайн печатной платы

— рекомендуемый способ проверить, не сгорел ли транзистор, без сжигания других частей печатной платы

Вам нужно снять транзистор с платы и выполнить следующие действия (для транзистора NPN):

Шаг 1: (от базы к эмиттеру)

Подсоедините плюсовой провод мультиметра к ОСНОВАНИЮ (B) транзистор.Подсоедините отрицательный провод измерителя к ЭМИТТЕРА (E) транзистор. Для исправного NPN-транзистора измеритель должен показывать падение напряжения от 0,45 В до 0,9 В. Если вы тестируете PNP транзистор, вы должны увидеть «OL» (Over Limit).

Шаг 2: (от базы к коллекционеру)

Оставьте положительный провод на ОСНОВАНИИ (B) и поместите отрицательный провод. КОЛЛЕКТОРУ ©.

Для исправного NPN-транзистора измеритель должен показывать падение напряжения. от 0,45 В до 0,9 В. Если вы тестируете транзистор PNP, вам следует см. «OL» (Превышение лимита).

Шаг 3: (от эмиттера к базе)

Подсоедините плюсовой провод мультиметра к ЭМИТТЕРУ (E). транзистора. Подсоедините отрицательный провод измерителя к ОСНОВАНИЮ (B) транзистор.

Для исправного NPN-транзистора вы должны увидеть «OL» (Превышение предела). проверяете транзистор PNP, счетчик должен показывать падение напряжения от 0,45 В до 0,9 В.

Шаг 4: (от коллектора к базе)

Подсоедините плюсовой провод мультиметра к КОЛЛЕКТОРУ (С). транзистора.Подсоедините отрицательный провод измерителя к ОСНОВАНИЮ (B) транзистор.

Для исправного NPN-транзистора вы должны увидеть «OL» (Превышение предела). проверяете транзистор PNP, счетчик должен показывать падение напряжения от 0,45 В до 0,9 В.

Шаг 5: (от коллектора к эмиттеру)

Подсоедините положительный провод измерителя к КОЛЛЕКТОРУ (С), а отрицательный провод измерителя к ЭМИТТЕРУ (E) — хороший транзистор NPN или PNP будет читать «OL» / Превышение лимита на счетчике. Поменяйте местами выводы (положительный на эмиттер и Отрицательный к коллектору) — И снова хороший транзистор NPN или PNP следует читать «OL».

Источник: https://vetco.net/blog/test-a-transistor-with-a-multimeter/2017-05-04-12-25-37-07

Серия тренингов по электричеству и электронике ВМС (NEETS), модуль 7

Модуль 7 — Введение в твердотельные устройства и источники питания

Страницы i — ix, От 1-1 до 1-10, От 1-11 до 1-20, 1-21 до 1-30, 1-31 до 1-40, С 1-41 по 1-47, От 2-1 до 2-10, 2-11 до 2-20, 2-21 до 2-30, 2-31 до 2-40, 2-41 до 2-50, 2-51 до 2-54, От 3-1 до 3-10, С 3-11 до 3-20, С 3-21 до 3-30, От 3-31 до 3-40, 3-41 до 3-50, 3-51 до 3-54, С 4-1 по 4-10, С 4-11 до 4-20, С 4-21 до 4-30, 4-31 до 4-40, С 4-41 по 4-50, С 4-51 по 4-62, индекс



……………… 2 ……………… Н ……………… 130 ……………… A

……………… НОМЕР ИДЕНТИФИКАЦИИ ПОЛУПРОВОДНИКА ПЕРВЫЙ
……………… СОЕДИНЕНИЯ …………………………. ………………….. НОМЕР МОДИФИКАЦИЯ
……………… (ТРАНЗИСТОР)

Вы также можете найти другие маркировки на транзисторах, которые не относятся к системе оценок JAN.Эта маркировка является идентификацией производителя и может не соответствовать стандартизированная система. В случае сомнений всегда заменяйте транзистор на транзистор с идентичной маркировкой. Чтобы гарантировать, что используется идентичная замена или правильный заменитель, обратитесь к руководству по оборудованию или транзистору для технические характеристики транзистора.

ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ ТРАНЗИСТОРОВ


Транзисторы очень прочные и, как ожидается, будут относительно безотказными.Инкапсуляция и конформная Применяемые в настоящее время методы нанесения покрытий обещают чрезвычайно долгий срок службы. Теоретически транзистор должен прослужить бесконечно. Однако, если транзисторы подвергаются перегрузкам по току, переходы будут повреждены или даже уничтожен. Кроме того, приложение слишком высоких рабочих напряжений может повредить или разрушить соединения. из-за дугового замыкания или чрезмерных обратных токов. Одна из самых больших опасностей для транзистора — это тепло, которое вызвать чрезмерный ток и, в конечном итоге, разрушение транзистора.

Чтобы определить, является ли транзистор хорошо это или плохо, можно проверить омметром или тестером транзисторов. Во многих случаях вы можете заменить транзистор известен как хороший для сомнительного и, таким образом, определяет состояние подозреваемого транзистор. Этот метод тестирования очень точный и иногда самый быстрый, но его следует использовать только после убедитесь, что нет дефектов цепи, которые могут повредить заменяемый транзистор.Если более одного неисправный транзистор присутствует в оборудовании, в котором была локализована неисправность, этот метод тестирования становится громоздкий, так как может потребоваться замена нескольких транзисторов, прежде чем проблема будет устранена. Чтобы определить, какие каскады вышли из строя и какие транзисторы исправны, все снятые транзисторы необходимо проверить. Этот тест может производиться с помощью стандартного военно-морского омметра, тестера транзисторов или путем наблюдения за работой оборудования. правильно, поскольку каждый из удаленных транзисторов снова вставляется в оборудование.Слово предостережения-неизбирательное следует избегать замены транзисторов в критических цепях.

Когда транзисторы впаяны в оборудование, замена невозможна; вообще желательно потестить эти транзисторы в своих схемах.

Q34. Перечислите три элемента информации, обычно включаемых в раздел общего описания в спецификации транзистора.

Q35. Что означает цифра «2» (перед буквой «N») указать в схеме маркировки JAN?

Q36.В чем наибольшая опасность для транзистор?

Q37. Какой метод проверки транзисторов является громоздким, если неисправно более одного транзистора в цепи?

МЕРЫ ПРЕДОСТОРОЖНОСТИ

Транзисторы, хотя, как правило, более прочны с механической точки зрения, чем электронные лампы, они подвержены повреждениям. электрические перегрузки, жара, влажность и радиация. Повреждения такого характера часто возникают при транзисторном обслуживание путем подачи напряжения неправильной полярности на коллекторную цепь или чрезмерного напряжения на ввод схема.Также известно, что неосторожная пайка, приводящая к перегреву транзистора, вызывает значительные повреждать. Одна из самых частых причин поломки транзистора — электростатический

2-31


выделения из тела человека при обращении с устройством. Вы можете избежать таких повреждений перед запуском ремонт, сняв статическое электричество с вашего тела на шасси, содержащее транзистор. Ты можешь сделать это можно сделать простым прикосновением к шасси.Таким образом, электричество будет передаваться от вашего тела к шасси. прежде чем обращаться с транзистором.

Чтобы предотвратить повреждение транзистора и избежать поражения электрическим током, вы должны соблюдайте следующие меры предосторожности при работе с транзисторным оборудованием:

1. Испытательное оборудование и паяльники должны быть проверены, чтобы убедиться в отсутствии тока утечки от источника питания. Если ток утечки следует использовать изолирующие трансформаторы.

2. Всегда подключайте заземление между проверьте оборудование и схему перед попыткой ввода или отслеживания сигнала.

3. Убедитесь, что испытательные напряжения соответствуют не превышать максимально допустимое напряжение для компонентов схемы и транзисторов. Кроме того, никогда не подключайте испытательное оборудование. выходы напрямую в транзисторную схему.

4. Диапазоны омметра, для которых требуется ток более одного миллиампер в тестовой цепи не должен использоваться для тестирования транзисторов.

5. Отделители аккумуляторных батарей не должны использоваться для питания транзисторного оборудования, потому что они плохо регулируют напряжение и, возможно, сильные пульсации напряжения.

6. Тепло, приложенное к транзистору, когда паяные соединения необходимо свести к минимуму, используя маломощный паяльник и тепловые шунты, такие как удлиненный носик. плоскогубцы на выводах транзисторов.

7. Когда возникает необходимость в замене транзисторов, никогда не поддавайте транзисторы, чтобы отсоединить их от печатных плат.

8. Проверить все цепи на наличие дефектов. перед заменой транзистора.

9. Перед заменой устройства необходимо отключить питание от оборудования. транзистор.

10. Использование обычных измерительных щупов на оборудовании с близко расположенными частями часто вызывает случайное замыкание между соседними клеммами. Эти шорты редко вызывают повреждение электронной лампы, но могут испортить ее. транзистор. Чтобы избежать короткого замыкания, зонды можно покрыть изоляцией, за исключением очень короткого отрезка. советы.

ИДЕНТИФИКАЦИЯ ВЫВОДОВ

Идентификация выводов транзистора играет важную роль участие в обслуживании транзисторов; потому что, прежде чем транзистор можно будет проверить или заменить, его выводы или клеммы должны быть идентифицированы. Поскольку стандартного метода идентификации выводов транзисторов не существует, вполне возможно ошибочно принимать одно следствие за другое. Поэтому при замене транзистора следует обратить пристальное внимание на как транзистор установлен, особенно на те транзисторы, которые впаяны, так что вы не делаете ошибка при установке нового транзистора.Когда вы проверяете или заменяете транзистор, если у вас любые сомнения относительно того, какой вывод есть, обратитесь к руководству по оборудованию или руководству по транзистору, которое показывает спецификации для используемого транзистора.

Есть, однако, некоторые типичные идентификационные схемы, которые будут очень полезны при поиске и устранении неисправностей транзисторов. Эти схемы показаны на рисунке 2-17. в В случае овального транзистора, показанного на виде A, вывод коллектора идентифицируется большим промежутком между ними. и основной свинец.Самый дальний от коллектора вывод на линии — это вывод эмиттера. Когда выводы равномерно с интервалом и в линию, как показано в

2-32


вид B, цветная точка, обычно красная, обозначает коллектор. Если транзистор круглый, как в представлении C, красная линия указывает на коллектор, а вывод эмиттера — самый короткий вывод. С точки зрения D, отведения находятся в треугольное расположение, смещенное от центра транзистора.Отведение напротив пустого квадранта в эта схема является базовым отведением. Если смотреть снизу, коллектор является первым выводом по часовой стрелке от база. Выводы на виде E расположены так же, как и на виде D, за исключением того, что для идентификации ведет. Если смотреть снизу по часовой стрелке, первый вывод, следующий за выступом, является эмиттером, за ним база и коллектор.

Рисунок 2-17.- Идентификация выводов транзистора.


В обычном силовом транзисторе, как показано на видах F и G, вывод коллектора обычно подключается к монтажная база. Для дальнейшей идентификации основной вывод на виде F закрыт зеленой оплеткой. В то время как выводы в виде G идентифицируются, если смотреть на транзистор снизу по часовой стрелке (с установкой отверстия, занимающие позиции 3 часа и 9 часов), вывод эмиттера будет либо на 5 часах, либо на 11 часах. должность.Другой вывод — это основание.

ТЕСТИРОВАНИЕ ТРАНЗИСТОРОВ

Есть несколько разные способы проверки транзисторов. Их можно проверить, находясь в цепи, методом подстановки. упомянутого, либо с помощью тестера транзисторов или омметра.

2-33


Тестеры транзисторов — это не что иное, как твердотельный эквивалент тестеров электронных ламп (хотя они не действуют по тому же принципу).С помощью большинства тестеров транзисторов можно проверить вход или выход транзистора. схемы.

Для практического поиска и устранения неисправностей транзисторам требуются четыре основных теста: усиление, время утечки, пробоя и переключения. Однако для обслуживания и ремонта необходима проверка двух или трех параметров. обычно достаточно для определения необходимости замены транзистора.

Так как нецелесообразно охватывают все типы тестеров транзисторов, и, поскольку каждый тестер поставляется с собственным руководством оператора, мы Перейдем к тому, что вы будете чаще использовать для проверки транзисторов — омметру.

Тестирование транзисторов омметром

Два теста, которые можно выполнить с помощью омметра: усиление и сопротивление перехода. Проверка сопротивления перехода транзистора выявит утечку, короткое замыкание и обрыв.

ТЕСТ ТРАНЗИСТОРА . — Базовый тест усиления транзистора может быть выполнен с помощью омметра и простая тестовая схема. Схема тестирования может быть сделана всего с парой резисторов и переключателем, как показано на рисунке. 2-18.Принцип испытания заключается в том, что в транзисторе между эмиттер и коллектор до тех пор, пока переход эмиттер-база не будет смещен в прямом направлении. Единственная мера предосторожности, которую вы должны соблюдать: с омметром. В счетчике можно использовать любую внутреннюю батарею при условии, что она не превышает максимального напряжение пробоя коллектор-эмиттер.

Рисунок 2-18. — Проверка усиления транзистора омметром.


Когда переключатель на рис. 2-18 находится в разомкнутом положении, как показано, на PNP не подается напряжение. база транзистора и переход эмиттер-база не смещены в прямом направлении. Следовательно, омметр должен показывать высокий сопротивление, указанное на измерителе. Когда переключатель замкнут, цепь эмиттер-база смещена в прямом направлении на напряжение на R1 и R2. В цепи эмиттер-коллектор течет ток, что снижает сопротивление чтение на омметре.Отношение сопротивлений 10: 1 в этом тесте между показаниями счетчика указывает на нормальное усиление. для транзистора звуковой частоты.

Чтобы проверить NPN-транзистор с использованием этой схемы, просто поменяйте местами выводы омметра и выполните процедура, описанная ранее.

2-34


ИСПЫТАНИЕ СОПРОТИВЛЕНИЯ ТРАНЗИСТОРА . — Омметр можно использовать для проверки транзистора на утечка (нежелательное протекание тока) при измерении база-эмиттер, база-коллектор и коллектор-эмиттер прямое и обратное сопротивление.

Для простоты рассмотрите тестируемый транзистор в каждом представлении Рисунок 2-19 (вид A, вид B и вид C) в виде двух диодов, соединенных спина к спине. Следовательно, каждый диод будет иметь низкое прямое сопротивление и высокое обратное сопротивление. Измеряя эти сопротивления омметром, как показано на По рисунку вы можете определить, пропускает ли транзистор ток через свои переходы. При создании этих измерения, избегайте использования шкалы R1 на измерителе или измерителе с высоким внутренним напряжением батареи.Либо из эти условия могут повредить маломощный транзистор.

Рисунок 2-19A. — Проверка герметичности транзистора омметром. ИСПЫТАНИЕ КОЛЛЕКТОРА-ЭМИТТЕРА

Рисунок 2-19B. — Проверка герметичности транзистора омметром. ИСПЫТАНИЕ БАЗА-КОЛЛЕКТОР


2-35



Рисунок 2-19C.- Проверка герметичности транзистора омметром. ТЕСТ БАЗА-ЭМИТТЕР


Теперь рассмотрим возможные проблемы с транзисторами, которые могут возникнуть, если показания показаны на рисунке 2-19. не получаются. Список этих проблем представлен в таблице 2-2.

Таблица 2-2. — Возможные проблемы с транзисторами по показаниям омметра


К настоящему времени вы должны понимать, что транзистор, использованный на рисунке 2-19 (вид A, вид B и вид C), является PNP-транзистор.Если вы хотите проверить NPN-транзистор на утечку, процедура идентична той, что использовалась для тестирование PNP, за исключением того, что полученные показания меняются местами.

При тестировании транзисторов (PNP или NPN) вы Следует помнить, что фактические значения сопротивления зависят от шкалы омметра и напряжения аккумулятора. Типичный прямое и обратное сопротивления незначительны. Лучший индикатор, показывающий, в порядке ли транзистор или Плохо соотношение прямого и обратного сопротивления.Если транзистор, который вы тестируете, показывает соотношение не менее 30 до 1, наверное, хорошо. Многие транзисторы имеют отношение 100 к 1 или больше.

Q38. Какая безопасность меры предосторожности должны быть приняты перед заменой транзистора?

Q39. Как определяется коллектор на транзистор овальной формы?

Q40. Какие два теста транзистора можно провести с помощью омметра?

В41. Когда вы проверяете усиление аудиочастотного транзистора с помощью омметра, на что указывает Соотношение сопротивлений 10: 1?

2-36


Q42.Когда вы используете омметр для проверки транзистора на утечку, на что указывает низкий, но не закорочено, обратное показание сопротивления?

МИКРОЭЛЕКТРОНИКА


До сих пор в наших обсуждениях использовались различные полупроводники, резисторы, конденсаторы и т. Д. рассматриваются как отдельно упакованные компоненты, называемые ДИСКРЕТНЫМИ КОМПОНЕНТАМИ. В этом разделе мы познакомим вас с некоторыми из более сложных устройств, которые содержат полные схемы, упакованные как один компонент.Эти устройства называемые ИНТЕГРИРОВАННЫМИ СХЕМАМИ, и широкий термин, используемый для описания использования этих устройств для миниатюризации электронное оборудование называется МИКРОЭЛЕКТРОНИКА.

С появлением транзисторов и спросом со стороны Военные для меньшего оборудования, инженеры-конструкторы решили миниатюризировать электронное оборудование. В начале, их усилия не увенчались успехом, потому что большинство других компонентов в цепи, таких как резисторы, конденсаторы и катушки были больше транзистора.Вскоре эти другие компоненты схемы были миниатюризированы, что подтолкнуло впереди разработка электронного оборудования меньшего размера. Наряду с миниатюрными резисторами, конденсаторами и прочим элементы схемы, производство компонентов, которые на самом деле были меньше, чем пространство, необходимое для стала возможной соединительная проводка и кабельная разводка. Следующим шагом в процессе исследования было устранение этих громоздкие компоненты проводки. Это было достигнуто с помощью ПЕЧАТНОЙ ПЛАТЫ.

А печатная плата Плата представляет собой плоскую изолирующую поверхность, на которой печатная проводка и миниатюрные компоненты соединяются в заданный дизайн и прикреплены к общей базе. На Рис. 2-20 (вид A и вид B) показан типичный напечатанный печатная плата. Обратите внимание, что к плате подключены различные компоненты, а печатная проводка находится на обратной стороне. боковая сторона. При использовании этого метода вся соединительная проводка в элементе оборудования, за исключением проводов наивысшего напряжения и кабеля, сводится к линиям проводящего материала (медь, серебро, золото и т. д.)) размещены непосредственно на поверхность изолирующей «монтажной платы». Поскольку печатные платы легко адаптируются как съемные блоки, устранение клеммных колодок, арматуры и точек крепления, не говоря уже о проводах, приводит к значительному сокращению в габаритные размеры электронного оборудования.

2-37



Рисунок 2-20A. — Типовая печатная плата (PCB).ПЕРЕДНЯЯ СТОРОНА

Рисунок 2-20B. — Типовая печатная плата (PCB). ОБРАТНАЯ СТОРОНА


2-38


После того, как печатные платы были усовершенствованы, были предприняты усилия по миниатюризации электронного оборудования. перешли на сборочные технологии, что привело к МОДУЛЬНОЙ СХЕМА. В этой технике печатные платы сложены и соединены вместе, чтобы сформировать модуль.Это увеличивает плотность упаковки компонентов схемы и приводит к значительному уменьшению размеров электронного оборудования. Поскольку модуль может быть разработан для выполняет любую электронную функцию, это также очень универсальный блок.

Однако недостаток такого подхода заключалась в том, что модули требовали значительного количества соединений, которые занимали слишком много места и увеличивали расходы. Кроме того, тесты показали, что на надежность отрицательно повлияло увеличение количества соединения.

Требовалась новая технология для повышения надежности и дальнейшего увеличения плотности упаковки. Решением были ИНТЕГРИРОВАННЫЕ ЦЕПИ.

Интегральная схема — это устройство, которое объединяет (объединяет) оба активных компонента (транзисторы, диоды, и т. д.) и пассивные компоненты (резисторы, конденсаторы и т. д.) полной электронной схемы в одной микросхеме ( крошечный кусочек или пластина полупроводникового кристалла или изолятора).

Интегральные схемы (ИС) имеют почти исключено использование отдельных электронных компонентов (резисторов, конденсаторов, транзисторов и др.)) как здание блоки электронных схем. Вместо этого были разработаны крошечные ЧИПС, функции которых не являются функциями отдельных часть, но из десятков транзисторов, резисторов, конденсаторов и других электронных элементов, все соединенных между собой выполнить задание сложной схемы. Часто они состоят из нескольких полных обычных схемных каскадов, таких как как многокаскадный усилитель (в одном очень маленьком компоненте). Эти микросхемы часто устанавливаются на печатных печатная плата, как показано на рисунке 2-21, которая подключается к электронному блоку.

Рисунок 2-21. — ИС на печатной плате.


Интегральные схемы имеют ряд преимуществ по сравнению с обычными проводными схемами из дискретных компонентов. Эти преимущества включают (1) резкое уменьшение размера и веса, (2) значительное повышение надежности, (3) более низкая стоимость и (4) возможное улучшение характеристик схемы. Однако интегральные схемы

2-39


состоит из частей, так тесно связанных друг с другом, что ремонт становится практически невозможным.В В случае неисправности вся схема заменяется как единый компонент.

В принципе, есть два общих классификации интегральных схем: ГИБРИДНАЯ и МОНОЛИТНАЯ. В монолитной интегральной схеме все элементы (резисторы, транзисторы и т. д.), связанные со схемой, изготавливаются неразрывно внутри сплошной части материал (называемый ПОДСТАВКОЙ), обычно кремний. Монолитная интегральная схема очень похожа на одиночный транзистор.Пока одна часть кристалла легируется, образуя транзистор, другие части кристалла на них воздействуют, чтобы сформировать соответствующие резисторы и конденсаторы. Таким образом, все элементы комплектного цепи создаются в кристалле с помощью тех же процессов и за то же время, необходимое для создания одного транзистор. Это дает значительную экономию затрат по сравнению с той же схемой, сделанной из дискретных компонентов. снижение затрат на сборку.

Гибридные интегральные схемы построены несколько иначе, чем монолитные устройства.ПАССИВНЫЕ компоненты (резисторы, конденсаторы) нанесены на подложку (фундамент). из стекла, керамики или другого изоляционного материала. Тогда АКТИВНЫЕ компоненты (диоды, транзисторы) прикреплен к подложке и подключен к пассивным компонентам схемы на подложке с помощью очень тонкой (0,001 дюйм) проволока. Термин гибрид относится к тому факту, что разные процессы используются для формирования пассивного и активного компоненты устройства.

Гибридные схемы бывают двух основных типов: (1) тонкопленочные и (2) толстопленочные.«Тонкая» и «толстая» пленка относятся к относительной толщине осажденного материала, используемого для формирования резисторов и другие пассивные компоненты. Толстопленочные устройства способны рассеивать больше энергии, но они несколько более громоздки.

Интегральные схемы используются во все более разнообразных приложениях. Небольшие размеры и вес и высокая надежность делает их идеально подходящими для использования в бортовом оборудовании, ракетных системах, компьютерах, космических кораблях, и переносное оборудование.Их часто легко узнать из-за необычных упаковок, содержащих Интегральная схема. Типичная последовательность упаковки показана на рисунке 2-22. Эти крошечные пакеты защищают и помогают рассеивать тепло, выделяемое в устройстве. Один из этих пакетов может содержать один или несколько этапов, часто с несколько сотен компонентов. Некоторые из наиболее распространенных стилей пакетов показаны на рис. 2-23.

2-40



NEETS Содержание

  • Введение в материю, энергию, и постоянного тока
  • Введение в переменный ток и трансформаторы
  • Введение в защиту цепей, Контроль и измерение
  • Введение в электрические проводники, проводку Методики и схематическое чтение
  • Введение в генераторы и двигатели
  • Введение в электронную эмиссию, трубки, и блоки питания
  • Введение в твердотельные устройства и Блоки питания
  • Введение в усилители
  • Введение в генерацию волн и формирование волн Схемы
  • Введение в распространение и передачу волн Линии и антенны
  • Принципы СВЧ
  • Принципы модуляции
  • Введение в системы счисления и логические схемы
  • Введение в микроэлектронику
  • Принципы синхронизаторов, сервоприводов и гироскопов
  • Знакомство с испытательным оборудованием
  • Принципы радиочастотной связи
  • Принципы работы радаров
  • Справочник техника, Главный глоссарий
  • Методы и практика испытаний
  • Введение в цифровые компьютеры
  • Магнитная запись
  • Введение в волоконную оптику

Усилитель выщелачивания — Часть 2

Усилитель выщелачивания — Часть 2

Согласование транзисторов

Для минимального смещения постоянного тока на выходе Q1 – Q4 предпочтительно должны иметь согласованные коэффициенты усиления по току.Коэффициент усиления по току можно измерить с помощью измерителя кривой или мультиметра, который имеет такую ​​возможность. В идеале все четыре транзистора должны быть согласованы. Если это не может быть достигнуто, второй вариант — согласование Q1 и Q3 и согласование Q2 и Q4. Третий вариант — сопоставление Q1 и Q2 и сопоставление Q3 и Q4. Типичное смещение постоянного тока на выходе усилителя составляет менее 50 мВ. Если вас беспокоит, насколько хорошо согласованы транзисторы, я видел усилители, построенные без согласования входных транзисторов, и у них не было проблем со смещением по постоянному току.

Если у вас нет доступа к измерителю кривой, схемы на Рисунке 1 можно использовать для согласования с транзисторами. Эти схемы можно легко собрать на беспаечной электронной макетной плате. Ток смещения в каждом транзисторе установлен примерно на 1,6 мА. Согласованные транзисторы будут иметь равные базовые токи. Ожидаемый ток должен находиться в диапазоне от 4 до 20 мкА.

Рисунок 1. Согласующие схемы транзисторов.

При использовании этих схем для согласования транзисторов напряжение источника питания должно поддерживаться постоянным.Не понижайте и не выключайте напряжение при замене транзисторов. Если измеренный ток кажется нестабильным, возможно, транзистор колеблется или принимает РЧ-сигнал. В этом случае конденсатор 0,1 мкФД от базы к эмиттеру должен решить проблему. Вы можете заметить некоторый температурный дрейф тока при нагревании транзисторов. Вы можете использовать батареи 9 В вместо источников 15 В, если замените резисторы 8,2 кОм на 4,7 кОм.

Если у вас нет мультиметра, который измеряет микроампер, вы можете подключить резистор 51 кОм последовательно с базой и измерить напряжение на резисторе.Соответствующие транзисторы будут иметь одинаковое напряжение. Ожидаемые напряжения должны находиться в диапазоне от 0,2 В до 1 В.


Согласование стабилитрона

Токи смещения в дифференциальных усилителях регулируются стабилитронами. В каждом дифференциальном усилителе последовательно используются два диода на 20 В, чтобы сформировать эквивалентный стабилитрон на 40 В. Хотя можно использовать один диод, допуск на ошибку меньше, когда два диода используются последовательно. Если вы собираете стереоусилитель, вам понадобится 8 диодов. Вероятно, дешевле купить одну упаковку из 10 штук.Я предпочитаю измерять напряжение стабилитрона каждого из них и выбирать последовательные комбинации диодов, которые дают равные опорные напряжения на каждой печатной плате. Необязательно иметь ровно +40 В и -40 В. Но два напряжения на каждой печатной плате должны быть как можно ближе, чтобы минимизировать проблемы смещения постоянного тока.

Напряжение стабилитрона диода можно легко измерить, подключив к нему последовательно резистор на электронной макетной плате и подключив настольный источник питания через последовательную комбинацию.Напряжение источника питания должно быть установлено таким, чтобы ток через диод составлял 3,3 мА. Если у вас нет измерителя тока, напряжение на резисторе должно составлять 3,3 x R, где R выражается в кОм. Например, напряжение на 2 кОм должно быть 6,6 В. После установки тока постоянное напряжение на стабилитроне можно измерить с помощью вольтметра. Например, если у вас есть источники питания +15 В и -15 В, подключите диод последовательно с резистором 3 кОм между двумя выходами и измерьте напряжение на диоде.Если вы перевернете диод назад, резистор станет горячим.


Монтаж печатных плат

Щелкните здесь, чтобы увидеть расположение компонентов на стороне компонентов печатной платы с медными дорожками под показанной платой. Щелкните здесь, чтобы увидеть схему без следов меди. Начните сборку печатных плат с пайки сначала мельчайших компонентов, а в последнюю очередь — самых больших компонентов.

Если вы не умеете паять, найдите кого-нибудь, кто сможет вас научить.Не используйте слишком горячий паяльник. Мне нравятся утюги Weller с регулируемой температурой, но они стоят дороговато. Если вы используете утюг с нерегулируемой температурой, он должен иметь максимальную мощность около 30 Вт. Основная причина плохих паяных соединений — недостаточный нагрев. Но слишком большое количество тепла может повредить компонент или привести к отслаиванию площадки на печатной плате.

Чтобы получить хорошее паяное соединение, одновременно нанесите кончик утюга и припой на печатную плату так, чтобы они соприкасались друг с другом и касались как паяемого провода, так и контактной площадки, т.е.е. все 4 находятся на связи. Когда припой начнет стекать, удалите припой и удерживайте утюг на стыке, пока припой не потечет и не приклеится к проводу и контактной площадке. Затем потяните кончик утюга вверх, чтобы он скользнул вверх по проволоке. Хорошая пайка гладкая и блестящая. В нем нет волн и он не похож на каплю воды на вощеной машине. На рис. 2 показано, как выглядит правильное паяное соединение. Он также показывает один, где используется слишком много припоя, и другой, где используется недостаточно тепла.В последнем случае припой прикрепляется к контактной площадке на печатной плате, но не к проводу. Обрезая провод, обрежьте его чуть выше места пайки. Не врезайтесь в припой.

Рисунок 2. Хорошие и плохие паяные соединения.

Порядок сборки примерно такой:

  1. Установите и припаяйте перемычку короткого замыкания с меткой J на ​​макете печатной платы рядом с Q17. Если вы используете один неполярный конденсатор для C6 (в отличие от двух полярных конденсаторов C6A и C6B, как описано в Списке деталей), припаяйте перемычку короткого замыкания в отверстия для C6B.
  2. Установить и припаять резисторы. Для сгибания выводов нужной длины следует использовать приспособление для гибки выводов резистора. За один раз следует припаять и закрепить не более 5 резисторов. Проверьте номинал всех резисторов с помощью омметра, прежде чем припаивать их к плате. Я видел один усилитель с резисторами 33 кОм, где я указал 3,3 Ом. Другой усилитель имел резистор на 12 кОм вместо резистора на 1,2 кОм. Это вызвало плохую проблему смещения постоянного тока.
  3. Если есть проблема со схемой смещения умножителя V BE , это может привести к дыму и даже возгоранию R36.Чтобы свести к минимуму повреждение печатной платы в этом случае, я рекомендую снять два куска изоляции 1/4 дюйма с некоторого соединительного провода и надеть их на выводы R36. Это заставит R36 оторваться от печатной платы, чтобы минимизировать повреждение в случае дыма. Если он действительно дымится, вы можете потерять дорогие выходные и / или транзисторы драйвера, поэтому будьте осторожны и не допускайте ошибок.
  4. Установите и припаяйте Q1 — Q11. Не сгибайте их провода перед тем, как положить их на доску. Их корпуса должны находиться на расстоянии около 3/16 дюйма от платы.На рисунке 3 показаны выводы всех транзисторов.
    Рисунок 3. Распиновка транзистора.
  5. Установите и припаяйте от Q12 до Q15. Эти транзисторы должны быть установлены заподлицо с платой.
  6. Установите и припаяйте Q16 и Q17. Во-первых, с помощью игольчатых ножек согните выводы транзистора на 90 градусов так, чтобы они крепились на печатной плате так, чтобы отверстие в металлическом выступе на транзисторе совпадало с отверстием на печатной плате.Затем поместите транзистор и его радиатор TO-220 на печатную плату и закрепите их крепежными винтами №4 и гайками. Припаяйте и закрепите выводы транзистора. Нет необходимости использовать изоляционную пластину между транзисторами и радиаторами. Если вы используете защелкивающуюся версию радиаторов TO-220, не доверяйте зажимам без винтов для обеспечения хорошего теплового контакта между транзисторами и радиаторами. Прикрутите их к монтажной плате.
  7. Установите и припаяйте L1 / R49. Это резистор мощностью 2 Вт с намотанной на него катушкой индуктивности.Рисунок 4 иллюстрирует эту часть. Вокруг R49 имеется от 11 до 12 витков провода. Инструкции по намотке индуктора приведены в Списке запчастей.
    Рис. 4. L1, намотанный на R49.
  8. Когда все компоненты припаяны к печатной плате, флюс следует удалить с помощью растворителя, такого как спрей-очиститель для печатных плат марки Stripper и мягкой щетки. Если этого не сделать, могут возникнуть проблемы с шумом, вызванные случайными импульсами тока через магнитный поток.Однажды я видел, как флюс загорелся, когда он перекрыл след шины электропитания и след заземления.

Тестирование печатных плат

Перед установкой в ​​корпус монтажные платы следует протестировать с помощью стендового источника питания. Поскольку в каскаде драйвера не будет тока смещения, во время этих тестов на форме выходного напряжения может наблюдаться небольшое перекрестное искажение. Это искажение проявляется как «сбой» на осциллограмме осциллографа, когда выходное напряжение пересекает нулевой уровень напряжения.На более высоких частотах «глитч» перемещается от уровня пересечения нуля и имеет тенденцию «подниматься» вверх по форме волны. Первоначальная процедура проверки следующая:

  1. Временно припаяйте два резистора 100 Ом к задней части каждой печатной платы, один от выхода громкоговорителя к одной стороне R36, а другой — от выхода громкоговорителя к другой стороне R36.
  2. Припаяйте перемычку короткого замыкания параллельно с C12.
  3. Подключите к плате положительный, отрицательный и общий выходы двойного источника питания.Обратите внимание, что на плате есть два заземления , к которым должен быть подключен общий источник питания, один находится рядом со входом, а другой — рядом с выходом. Выходные напряжения источника питания должны быть установлены на ноль, а пределы тока должны быть установлены примерно на 50 мА. Если источник питания не имеет функции ограничения тока, подключите резистор 100 Ом 1/4 Вт последовательно с положительным и отрицательным выводами источника питания.
  4. С сигналом с пиком около 1 В при 1000 Гц, подключенным ко входу, и осциллографом, подключенным по постоянному току, подключенным к выходу, медленно увеличивайте напряжение источника питания.Схема должна усиливать, не потребляя тока больше, чем примерно 25 мА, когда напряжение источника питания составляет примерно 8 В постоянного тока или выше, но не превышает 60 В постоянного тока. Выходной сигнал будет изначально ограниченным синусоидальным сигналом до тех пор, пока напряжение источника питания не увеличится.

Перед отключением каждой печатной платы от источника питания необходимо выполнить несколько дополнительных тестов. Это следующие:

  1. При 1000 Гц усиление должно быть приблизительно 21 (26,4 дБ) и должно оставаться постоянным в диапазоне от 20 Гц до 20 кГц.
  2. Нижняя частота среза -3 дБ должна составлять приблизительно 1 Гц. Верхняя частота среза -3 дБ должна быть приблизительно 140 кГц. На частотах среза -3 дБ коэффициент усиления должен составлять примерно 14,8 (23,4 дБ).
  3. Реакция на ограничение должна быть симметричной и чистой, без признаков «заедания». То есть, ограниченные пики напряжения не должны «застревать» на ограничивающем напряжении.
  4. При частоте 20 Гц прямоугольный сигнал должен иметь небольшой наклон.
  5. На частоте 20 кГц прямоугольная волна должна быть слегка закруглена.
  6. Абсолютно никаких звонков не должно наблюдаться на выходной прямоугольной волне на любой частоте.
  7. При отключенном генераторе входного сигнала постоянное напряжение на выходе не должно превышать 100 мВ, предпочтительно менее 50 мВ. На это может повлиять несоответствие напряжений + и — источника питания.

Сверление радиаторов

Радиаторы следует тщательно маркировать, просверливать и снимать заусенцы.Вы можете потерять дорогие транзисторы, если произойдет короткое замыкание в радиаторе или если заусенец пробьет изолирующую пластину между силовым транзистором и радиатором. Радиатор для каждого канала просверлен таким образом, чтобы четыре выходных транзистора устанавливались в канале с четырьмя термочувствительными диодами в центре. Это показано на рисунке 5. Процедура сверления радиаторов следующая:

Рисунок 5. Вид радиатора.
  1. Щелкните здесь, чтобы просмотреть файл Adobe Acrobat, содержащий шаблон для сверления радиаторов.Используйте шаблон и кернер, чтобы нарезать отверстия для силовых транзисторов и диодов смещения. На распечатке есть линия, размер которой должен составлять ровно один дюйм. Если его размер не равен одному дюйму, вы должны изменить настройки печати Acrobat, чтобы он печатал с правильными размерами. Каждый раз, когда выходит новая версия Acrobat, кажется, что размер печатаемого изображения меняется, и вам приходится возиться с печатью. настройки. Не используйте шаблон, если вы не можете заставить его распечатать нужные размеры.
  2. Для просверливания отверстий используйте сверлильный станок, а не ручную дрель. Чтобы предотвратить образование заусенцев, используйте острые сверла и просверлите их в той стороне стенки радиатора, на которой устанавливаются транзисторы. Сначала просверлите пилотные отверстия сверлами меньшего размера. Диаметр отверстия для крепления транзистора обычно составляет 1/4 дюйма. Диаметр отверстия для диодов смещения должен быть определен с помощью сверла.
  3. Любые заусенцы вокруг отверстий следует удалить, вращая сверло большего размера в отверстиях пальцами.Не нажимайте при этом, иначе можно удалить излишки металла. Дважды проверьте наличие заусенцев, потерев пальцами поверхность радиатора. Необходимо удалить все заусенцы, иначе они могут проткнуть изолирующую пластину и вызвать короткое замыкание.

Установка диодов смещения

Соблюдайте осторожность при сборке и установке диодов смещения. Если вставить диод в слишком маленькое отверстие в радиаторе, его корпус может треснуть. Однажды я видел студенческий усилитель, у которого беспорядочно перегорали предохранители блока питания.Мы проследили проблему до треснувшего диода. Ему повезло, что силовые транзисторы не перегорели. На рисунке 6 показана установка диодов в стенках радиатора. Есть 6 изогнутых выводов, которые необходимо изолировать, предварительно сняв изоляцию с соединительного провода. Есть 5 стыков, которые необходимо обернуть, спаять и изолировать термоусадочной трубкой. Диоды приклеиваются к радиатору с помощью мгновенного склеивающего клея. Не используйте гелевую версию этого клея. Он не течет и попадет на радиатор снаружи.

Рисунок 6. Вид диодов в стенке радиатора.

Используйте следующую процедуру для установки диодов:

  1. Первым шагом является подготовка двух проводов, которые соединяют диоды D1 и D4 с печатными платами. Ток, протекающий по этим проводам, очень мал. По этой причине нет необходимости использовать проволоку большого размера. Я рекомендую многожильный провод №22 (никогда не используйте сплошной). Снимите примерно 3/16 дюйма изоляции с одного конца каждого провода.
  2. Следующий шаг — привязать провода к D1 и D4. Используйте одну жилу куска скрученного соединительного провода №22, чтобы привязать по одному проводу к каждому диоду. Я считаю, что это проще сделать, прежде чем перерезать выводы диода. Один провод подключается к свободному концу D1, а другой — к концу D4 с полосой. Удерживайте вывод диода, провод №22 и одиночную жилу между пальцами одной руки. Возьмитесь за одиночную жилу пальцами другой руки и оберните спиралью четыре или пять витков вокруг вывода диода и провода №22.
  3. Припаяйте обернутое соединение. Я люблю при этом зажимать диод в тисках. Затем отрежьте лишний вывод диода и два конца одножильного провода. Изолируйте стык термоусадочной трубкой.
  4. Установите четыре диода в каждый радиатор, используя мгновенный клей, чтобы закрепить их. Не вставляйте диод с силой в отверстие радиатора. Любое выступающее пятно на корпусе диода можно отпилить, чтобы он подошел.
  5. После того, как клей застынет, наденьте изоляцию длиной 3/8 дюйма, снятую с куска соединительного провода, на 6 оголенных выводов диода.Надавите на изоляцию вниз до тех пор, пока она не будет на одном уровне с корпусом диода, чтобы вывод диода не мог контактировать с радиатором.
  6. Согните 6 изолированных выводов диода, как показано на рис. 6, так, чтобы они находились под углом примерно 45 градусов к стенке радиатора. Согните концы выводов так, чтобы они были параллельны, как показано на рисунке. Свяжите параллельные выводы вместе одинарной спиралью из скрученного соединительного провода №22. Две ножки с игольчатым наконечником упрощают эту утомительную операцию.Припаиваем намотанные провода.
  7. Отрежьте лишние провода диода и изолируйте паяные соединения термоусадочной трубкой.
  8. Многожильные провода №22, подключенные к D1 и D4, должны быть свободно скручены вместе перед пайкой на печатной плате.
  9. Дважды проверьте диодную сборку. Если диод перевернут, выходные транзисторы могут перегореть. Вы можете проверить полярность диодов по очереди с помощью омметра. Омметру не хватит испытательного напряжения для прямого смещения всех 4 диодов одновременно.В случае короткого замыкания между выводом диода и металлическим радиатором усилитель не будет работать и выходные транзисторы могут взорваться.

Установка силовых транзисторов

Процедура установки 4 силовых транзисторов на каждом радиаторе следующая:

  1. Провода, соединяющие разъемы Q18 — Q21 с печатными платами, должны быть припаяны к разъемам до их установки в радиаторах. Я рекомендую многожильный провод №18 или №20.Маленькие тиски можно использовать для удержания розеток при пайке проводов.
  2. Следующим шагом будет установка изолирующих пластин на силовые транзисторы. Я предпочитаю гибкие резиновые изоляторы (Digi-Key BER100, номер Бергквиста SP600-05), потому что они не требуют какого-либо состава для теплоотвода. Если используются слюдяные пластины (DigiKey 4662K), нанесите с обеих сторон тонкий слой теплоотводящего компаунда. Это беспорядок в работе. Если вы используете слишком много, он выдавится, когда винты крепления транзистора будут затянуты, что приведет к большему беспорядку.
  3. Поместите изолятор на каждый силовой транзистор, поместите транзистор на радиатор и установите гнездо. Используйте подходящие винты, чтобы прикрепить гнезда к транзисторам. В одних розетках используются крепежные винты, в других — шурупы для листового металла. Гайка на винте никогда не требуется, если используется винт подходящего типа. Однажды у меня был ученик, который использовал розетки, для которых требуются винты для листового металла. Слишком ленив, чтобы пойти и купить винты для листового металла, он использовал крепежные винты и гайки, чтобы закрепить гнезда.Когда он закончил работу над усилителем, мы обнаружили, что он поменял местами силовые транзисторы NPN и PNP. Мы не могли удалить транзисторы, не сняв предварительно радиаторы с корпуса, чтобы добраться до гаек на крепежных винтах. Однако провода между печатными платами и гнездами силовых транзисторов были слишком короткими, чтобы снять радиаторы. У студента случился беспорядок, которого можно было бы избежать, если бы он использовал правильные винты на гнездах транзисторов.
  4. С помощью омметра проверьте, нет ли короткого замыкания от каждого вывода транзистора к оголенному металлическому участку (не к черному анодированному покрытию) на радиаторах.

Подготовка задней панели

Следующие инструкции применимы как к шасси Moduline, так и к шасси Mark 5. Расположение деталей на внутренней стороне задней панели показано на рисунке 7. Не вся проводка показана на этом рисунке. Радиаторы устанавливаются с другой стороны панели. Платы следует устанавливать так, чтобы сторона с компонентами находилась подальше от панели. В противном случае вы не сможете добраться до потенциометра смещения, чтобы установить ток смещения.

Рисунок 7.Компоновка задней панели. Держите входные выводы подальше от всех других выводов печатной платы.
  • Поцарапать шасси проще, чем вы думаете. Перед сверлением рекомендую наклеить на него малярный скотч. Когда вы собираетесь снимать ленту, нагрейте ее феном, чтобы ее было легче снять. В противном случае вы можете содрать краску. При работе с шасси всегда кладите на верстак толстое полотенце, чтобы не поцарапать его.
  • Радиаторы установлены на внешней стенке задней панели.Я рекомендую устанавливать радиаторы вертикально, чтобы через них мог подниматься теплый воздух. Однако радиаторы будут выступать в верхней части усилителя. Если вам это не нравится, вы можете установить радиаторы горизонтально. Многие студенты, которые построили усилитель, сделали это, и я не слышал ни о каких тепловых проблемах. Верхняя панель корпуса не поместится, если радиаторы установлены заподлицо с задней панелью. Я рекомендую закрепить каждый радиатор четырьмя крепежными винтами 1/2 дюйма №4 (DigiKey h246) с 1/4 дюймовыми стойками (распорками) без резьбы (DigiKey J167) вокруг крепежных винтов между радиаторами и задней панелью.Как вариант, можно использовать гайки в качестве регулировочных шайб вместо ступенек. Соединительные отверстия необходимо просверлить во фланцах радиатора и в задней панели для винтов.
  • Платы устанавливаются на внутренней стенке задней панели. Входные стороны досок должны быть по центру панели. Платы следует монтировать на стойках (распорках). Я рекомендую стойки с резьбой 3/4 дюйма №4 (DigiKey J240) и крепежные винты 1/4 дюйма №4 (DigiKey h242) для крепления плат. Если вы используете более короткие стойки, у вас возникнут проблемы с подключением проводов между печатными платами и задней панелью.
  • Отметьте и используйте кернер, чтобы постучать по позициям отверстий на задней панели для сетевого шнура переменного тока, входных разъемов фонокорректора, выходных разъемов громкоговорителей, крепежных винтов радиатора и печатной платы, а также проводов, соединяющих цепь. платы к радиаторам. Стандартное расстояние между двумя 5-позиционными выходными гнездами для переплетных столбов составляет 3/4 дюйма. Я предпочитаю проложить отверстие для сетевого шнура под выходными гнездами громкоговорителя для одного канала. Вокруг сетевого шнура следует использовать компенсатор натяжения или втулку и просверлить отверстие для этого.Просверливая отверстия, используйте сверлильный станок, а не ручную дрель. Я рекомендую сначала просверлить пилотные отверстия сверлом небольшого размера.
  • Между каждой печатной платой и ее радиатором имеется 14 проводов. Отверстия для этих проводов должны быть достаточно большими, чтобы по ним могли уместиться все провода. Вы можете использовать два меньших отверстия для 14 проводов вместо одного большого отверстия.
  • Изолирующие резиновые втулки необходимо использовать в отверстиях для сетевого шнура переменного тока и проводов радиатора. Эти втулки необходимо вставить в отверстия до того, как будут вставлены провода.
  • Два входных разъема должны находиться в центре задней панели между радиаторами. Выходные гнезда должны быть снаружи. Сетевой шнур переменного тока может находиться рядом с нижним краем задней панели под входными разъемами или с любой стороны под выходным разъемом.
  • Гнезда входа и выхода не имеют электрического контакта с задней панелью.

Сборка задней панели

Порядок сборки задней панели следующий:

  1. Установите входные гнезда.Вокруг каждого домкрата необходимо использовать изоляционные шайбы, чтобы изолировать сторону заземления от панели. Некоторые из этих шайб сконструированы таким образом, что на каждом домкрате нужно использовать по 2 плечевых шайбы. Другие разработаны таким образом, что вы используете одну шайбу с буртиком и одну плоскую шайбу. Если вы используете вторую шайбу с буртиком вместо плоской шайбы для второго типа, может оказаться невозможным затянуть гайку на домкрате так, чтобы она не могла вращаться в панели.
  2. Установите выходные гнезда. Если вы используете двойные 5-сторонние крепежные стержни, тщательно их затяните.Я потрескал их, когда сильно затянул.
  3. Установите радиаторы с силовыми транзисторами и соединительными проводами на внешнюю стенку панели, вставив провода через изолированные отверстия втулки.
  4. Поместите панель на покрытую полотенцем рабочую поверхность так, чтобы радиаторы были направлены от вас. Положите печатные платы рядом с панелью и перед ней компонентами вниз. Выходные стороны громкоговорителей на печатных платах должны быть обращены к внешней стороне задней панели.На случай, если вам когда-нибудь понадобится отремонтировать усилитель, вы хотите, чтобы провода, соединяющие печатные платы с радиаторами, были достаточно длинными, чтобы платы можно было сложить в этом положении без распайки проводов.
  5. Обрежьте и снимите провода с радиаторов так, чтобы они были достаточно длинными, чтобы без напряжения доходить до плат после их пайки. Не делайте провода длиннее, чем необходимо. В случае проблем вы должны иметь возможность сложить доску, чтобы получить доступ к ее задней части.По этой причине все провода должны проходить вокруг нижнего края платы. Припаяйте провода к печатным платам.
  6. Припаяйте провода питания и центрального заземления к платам. Помните, что на каждой плате есть два провода, которые подключаются к центральной земле. Концы этих проводов, которые не припаяны к платам, еще не подключены.
  7. Припаяйте провода между выходами печатной платы и выходными гнездами. Эти провода должны быть достаточно длинными, чтобы платы можно было сложить с задней панели, не распаивая их.Обратите внимание, что заземляющие соединения на выходных разъемах подключаются к центральному заземлению, а не к печатным платам.
  8. Припаяйте входные кабели между входами печатной платы и входными гнездами. Эти кабели также должны быть достаточно длинными, чтобы платы можно было сложить с задней панели, не распаивая их. В качестве входных кабелей можно использовать экранированный кабель или витую пару многожильного провода №22.
  9. После того, как все провода подключены к печатным платам, платы можно устанавливать на стойках на задней панели.Будьте осторожны, чтобы не зажать провода между печатными платами и задней панелью.
  10. Припаяйте R50, C25 и центральные провода заземления к клеммам заземления на выходных разъемах. Обратите внимание, что выходные заземления не подключаются к печатным платам, они подключаются к центральному заземлению.

На этом сборка задней панели завершена. Я рекомендую вам протестировать два канала с помощью лабораторного источника питания, прежде чем продолжить. Отрегулируйте P1 для максимального сопротивления. Если вы используете потенциометр, который я указал, вал должен быть полностью повернут против часовой стрелки для максимального сопротивления.Затем выполните те же тесты, что и ранее на печатных платах. Если потребляется слишком большой ток, вероятно, D1 — D4 подключены неправильно или P1 не настроен на максимальное сопротивление.


Электромонтаж шасси

Важные моменты, о которых следует помнить: (a) Делайте провода от силовых транзисторов к печатным платам как можно короче, но достаточно длинными, чтобы печатные платы можно было откинуть вниз в случае распайки компонента. (b) Держите провода к входным гнездам вдали от других проводов, ведущих к печатным платам.В противном случае выходной сигнал может снова попасть во входные провода и вызвать разрушительные колебания. (c) Держите провода к входным гнездам подальше от шнура питания. В противном случае на входе может появиться гудящий сигнал. (d) Если вы используете экранированный витой кабель для входных выводов, заземляйте экран только с одного конца. (e) Прокладка 2 заземляющих проводов, идущих от печатной платы к центральному заземлению, по-видимому, играет роль в снятии шума. Возможно, вам придется экспериментально проложить эти провода, чтобы свести к минимуму гул.

Перед установкой задней панели необходимо подключить корпус. Предлагаемая компоновка шасси показана на Рисунке 8.

Рисунок 8. Компоновка шасси, вид сверху.

При подключении к корпусу необходимо учитывать следующее:

  • Трансформатор должен быть установлен рядом с передней панелью, чтобы предотвратить появление гудения. Это также обеспечивает лучший баланс, если вы снимаете усилитель спереди.Трансформатор может быть достаточно тяжелым, чтобы нижняя панель провисла. Чтобы обеспечить поддержку, под трансформатором может быть установлена ​​полоса алюминия шириной с коробку, которая изогнута в форме неглубокой буквы U. На этой полосе также могут быть установлены крышки фильтра, мостовой выпрямитель и центральный вывод заземления. Альтернативным решением является установка резиновой «ножки» под трансформатор, чтобы предотвратить провисание нижней панели коробки.
  • Если крышки фильтра слишком высоки для установки вертикально, их можно установить горизонтально.Следует использовать стандартное оборудование для монтажа конденсатора.
  • Центральная точка заземления может быть сделана с помощью крепежного винта №4 или №6 через нижнюю панель с несколькими выступами под пайку №4 или №6 и гайкой над ней внутри коробки. Ушки под пайку должны обеспечивать хороший электрический контакт с нижней панелью. Не используйте наконечники для пайки Radio Shack.
  • К центральной точке заземления подключаются следующие провода: зеленый провод на сетевом шнуре переменного тока, провода заземления для крышек фильтров, центральный отвод трансформатора, два провода заземления от каждой печатной платы и два провода заземления громкоговорителя.
  • Клеммную колодку под пайку можно использовать для связывания штырей в проводке шасси, где это необходимо. Я рекомендую использовать один из них для подключения сетевого шнура переменного тока к проводке источника питания.

Дополнительный регулятор входного уровня

Несколько человек спрашивали о регуляторе уровня для усилителя. Я рекомендую для управления конусный потенциометр с логарифмическим (или звуковым) сопротивлением от 10 кОм до 25 кОм, хотя можно использовать линейный потенциометр. Вы можете использовать либо два одинарных, либо двойной горшок.Отличный горшок — двойной горшок Radio Shack 271-1732C 100 кОм. Это сделано Альпами, и вы увидите их имя сбоку. (Я не рекомендую другие их горшки.) Мне нравится добавлять к нему два резистора по 16 кОм, чтобы он выглядел как горшок с более низким сопротивлением. Припаяйте резистор от дворника к входным клеммам с каждой стороны потенциометра. На рисунке 9 показано, как подключен горшок. Когда вал кастрюли вращается против часовой стрелки, вы должны измерить короткое замыкание между грязесъемником и клеммой заземления.Заземление на рисунке обозначено буквой G. Обратите внимание, что он соединяется от входного гнезда через экран первого кабеля к горшку и через экран второго кабеля к печатной плате.

Рисунок 9. Электропроводка для контроля уровня.

Начальные испытания завершенного усилителя

Когда усилитель закончен, необходимо провести следующие испытания:

  1. Проверьте источник питания перед установкой предохранителей F2 — F5.Напряжения постоянного тока должны соответствовать значениям, указанным в списке частей блока питания для используемого трансформатора. Если источник питания подключен неправильно, предохранитель F1 перегорит. Если имеется вариак (регулируемый автотрансформатор), используйте его между усилителем и линией переменного тока для медленного увеличения переменного напряжения с 0 В до 120 В переменного тока для этого теста.
  2. Крышки фильтра должны быть сняты перед установкой F2 — F5. Не допускайте короткого замыкания конденсаторов для их разряда! Вы получите громкий хлопок и большую искру.Для разряда конденсаторов рекомендуется резистор 100 Ом 2 Вт, но он может нагреваться! С помощью плоскогубцев удерживайте резистор на выводах каждого конденсатора не менее 30 секунд, чтобы разрядить крышки.
  3. Отрегулируйте P1 на каждой печатной плате на максимальное сопротивление и установите предохранители источника питания. Если предыдущие тесты были успешными, вы можете перейти к следующему шагу, на котором вы включаете усилитель. Опять же, я рекомендую использовать вариакоз, чтобы медленно увеличивать входное напряжение переменного тока с 0 В до 120 В.Если вы ни в чем не уверены, удалите F2 — F5. Замените резистор 100 Ом 1/4 Вт для каждого из этих предохранителей. Вы можете включить только один канал за раз.
  4. Когда к усилителю не подключена нагрузка, на него можно подавать питание. Если что-то не так, резисторы на 100 Ом вместо предохранителей источника питания ограничат ток. Они будут также курить! Падение постоянного напряжения на резисторах 100 Ом должно быть менее 2,5 В (25 мА или меньше), если все в порядке. Если этот тест прошел успешно, выключите усилитель и дождитесь разрядки источника питания.Снимите резисторы 100 Ом и установите с F2 по F5.

Установка тока смещения

Если предыдущие тесты прошли успешно, следующим шагом будет установка токов смещения в выходных каскадах. Делается это следующим образом:

  1. Необходимо выключить питание и разрядить блок питания.
  2. Снимите F2 и прикрепите амперметр к клеммам предохранителя.
  3. Включите усилитель без входного сигнала или нагрузки. Настройте P1 для канала, подключенного к F2, на ток 100 мА.Будь осторожен. Однажды я случайно взорвал выходные транзисторы в одном канале усилителя, который создавал, когда по ошибке попытался настроить P1 на неправильный канал.
  4. По мере того, как усилитель нагревается, ток будет дрейфовать. Отрегулируйте P1, пока дрейф не прекратится. Это займет около 10 минут.
  5. Выключите усилитель. Подождите, пока разрядится блок питания, затем установите F2.
  6. Удалите F3 и повторите эту процедуру для другого канала.
  7. Когда смещение отрегулировано правильно, вольтметр постоянного тока покажет значение, близкое к 3.4 В на Q7, то есть на коллекторах Q12 и Q13. Коллектор этих транзисторов представляет собой круглый металлический корпус.

Гудит ли в динамике?

Если в усилителе слышен шум, установите переходник с 2 на 3 контакта на входной разъем переменного тока. Это устранит любой фон, вызванный контуром заземления во внешней проводке переменного тока. Однако шасси усилителя больше не будет подключено к защитному заземлению. Если адаптеру не удается избавиться от шума, это может быть вызвано контуром заземления внутри усилителя.Чтобы определить, так ли это, можно использовать следующую процедуру:

  1. Выключите усилитель и дождитесь разрядки блока питания.
  2. Отсоедините один входной кабель.
  3. Снова включите усилитель.
  4. Если фон отсутствует, это связано с внутренним контуром заземления. Если гудение остается в канале, к которому подключен его вход, вероятно, гудение находится в источнике.

Если вы уверены, что фон вызван внутренним контуром заземления, процедура разрыва этого контура следующая:

  1. Выключите усилитель и дождитесь разрядки блока питания.Не выполняйте эту процедуру при включенном усилителе.
  2. Обрежьте провод к центральному заземлению на входной стороне одной печатной платы .
  3. Припаяйте перемычку короткого замыкания между клеммами заземления на двух входных разъемах.
  4. Печатная плата с обрезанным заземляющим проводом теперь снова заземлена через свой входной заземляющий провод на землю другой печатной платы. С помощью омметра проверьте новое заземление перед повторным включением усилителя.

Подсказки при обнаружении проблем

Если возникают проблемы, необходимо проверить следующий список:

  • Дважды проверьте всю проводку.
  • Убедитесь, что диоды смещения D1 — D4 установлены правильно, ни один из них не имеет трещин и что соединительные провода имеют надлежащий контакт.
  • Проверьте ориентацию каждого диода и полярность каждого электролитического конденсатора.
  • Проверьте ориентацию от Q1 до Q11.
  • Все номера деталей транзисторов верны?
  • Можно ли менять местами транзисторы NPN и PNP? Я смутил многих студентов, когда обнаружил эту ошибку в их усилителях.
  • Подключаются ли выводы радиаторов к нужным точкам на печатных платах? Недавно я видел студенческий усилитель, в котором на печатной плате были перевернуты выводы базы для выходных транзисторов npn и pnp на одном канале. Потенциометр смещения не регулирует ток смещения в этом канале.
  • Все значения резисторов правильные? (Цветовой код резистора: 0-черный, 1-коричневый, 2-красный, 3-оранжевый, 4-желтый, 5-зеленый, 6-синий, 7-фиолетовый, 8-серый, 9-белый. Третий цвет группа множитель, т.е.е. количество нулей. Например, коричнево-красно-оранжевый — 12000 Ом).
  • Проверьте отсутствие короткого замыкания от земли до выводов каждого силового транзистора. Это указывает на короткое замыкание в радиаторах.
  • Не закорочен ли выход громкоговорителя на один или оба провода питания? Если да, то один или несколько силовых транзисторов перегорели.
  • Обнаруживает ли омметр короткое замыкание между коллектором и эмиттером любого транзистора? Если это так, вероятно, этот транзистор перегорел. Плохие транзисторы обычно вызывают короткое замыкание от коллектора к эмиттеру.
  • Я иногда видел, как транзисторы Q8 и / или Q9 схемы защиты закорочены с коллектора на эмиттер. В этом случае усилитель выйдет из строя.

Эта страница не является публикацией Технологического института Джорджии, и Технологический институт Джорджии не редактировал и не проверял ее содержание. Автор этой страницы несет полную ответственность за содержание.

как проверить реле на печатной плате

У меня соляная система Hayward Goldline Aqualogic, и я не могу выключить насос (за исключением отключения выключателя), загореться свет в бассейне или спа, или электродвигатель вентилятора для включения гидромассажных форсунок.Если вы не заменяете трансформатор, вам может потребоваться подключить трансформатор напрямую к сети, в зависимости от того, как жарилась плата. У старых пылесосов было отдельное реле и трансформатор. Они ослабляют напряжение так, чтобы оно было пропорционально току. Узнайте, как использовать реле с Arduino, как работает реле, как подключить реле к Arduino, как кодировать реле, как шаг за шагом программировать Arduino. Позвонил Хейворду, и они сказали, что это может быть реле или даже печатная плата, но, конечно, не сказали мне, как это проверить.Например, цепь с низким энергопотреблением в автомобиле, которая дает команду на включение фар высокой мощности, отправит команду через 4-контактное реле. Замените печатную плату, повторно подсоедините четыре (4) провода и проверьте систему, запустив генератор. Мы знаем, что большинство высокопроизводительных промышленных устройств имеют реле для их эффективной работы. Другая проблема, которая может удерживать гидромассажную ванну от нагрева, — это датчик температуры, датчик температуры — это «серебряная пуля», прикрепленная к серому кабелю, который подключается к печатной плате.Схема состоит из реле… Сенсорные панели все еще можно использовать повторно. Это особенно важно, когда схема реле, показанная ниже, запускается с помощью транзистора (представьте, что транзистор заменяет переключатель рядом с батареей). Реле — это электромагнитный переключатель, который используется для включения и выключения цепи с помощью сигнала малой мощности, или когда несколько цепей должны управляться одним сигналом. Однако многие неисправности можно отследить, проверив соединения и выполнив визуальный осмотр. Печатная плата Gecko: если на дисплее три мигающие точки и на печатной плате горит красный свет, то датчик верхнего предела необходимо заменить.В спа-салонах для включения и выключения нагревательного элемента используются реле. Используя Bartol MagProbe, вам не придется распаивать реле или… отключать источник питания от печатной платы. Спасибо, Джефф! Производство оригинальной печатной платы 73355 было прекращено в 2008 году. Аналоговый анализ сигнатуры для тестирования печатных плат без питания. Наше сменное реле будет работать только с подобными проводными пылесосами, как показано выше. Как проверить реле мультиметром? Единственный инструмент, необходимый для проверки реле, — это мультиметр.Чтобы проверить реле на предмет исправности или неисправности, самым простым способом было бы использовать мультиметр, настроенный на настройку омметра, и измерить различные значения сопротивления реле. По мере того, как печатные платы становились более сложными, появилась и их проверка на наличие проблем. И один из лучших способов сделать это — использовать мультиметр с настройкой омметра, а затем измерить значения сопротивления. Если эти тесты подтвердятся, аксессуар неисправен и его необходимо заменить. Методы диагностики неисправной печатной платы.Если реле не срабатывает, вероятно, обмотка реле разомкнута, и необходимо заменить АВР. Когда вы блокируете свет, падающий на LDR, реле активируется, и полюс реле подключается к контакту NO, который в конечном итоге подает питание на светодиод-D1. Теперь нам нужно протестировать принципиальную схему релейного модуля на макетной плате. При установке электромагнитных реле на печатную плату проверьте, является ли реле незапломбированным, опломбированным или реле защиты от магнитного потока. Без разделения 30 мил или более тепло от одного твердотельного реле влияет на работу второго твердотельного реле.Доступ к контрольным точкам можно получить только после установки Display bd. Мой спа подключается к розетке на 120 вольт, а показания напряжения находятся в диапазоне от 110 до 130 вольт. Основная причина тестирования реле — определить, исправно оно или неисправно. Теперь у нас есть все детали для изготовления релейного модуля своими руками. Закрепив новую плату управления духовкой, вы можете снять сенсорную панель со старой платы с помощью шпателя, а затем положить ее поверх новой платы … Когда термостат спа обнаруживает холодную воду, он позволяет электричеству питать электромагнит цепи управления реле. .Считаете ли вы, что моя оценка верна, что плата реле неисправна, если: у меня есть жарить, но нет тепла для выпечки, сопротивление элемента выпечки составляет 20 Ом, жаровня начинает выпекать, но температура на дисплее остается на 140, часы работают , вентиляторы работают, и горелки змеевика печки работают. Убедитесь, что трансформатор подает 24 вольт. Схема реле. На изображении ниже показано, как настроить очень простую схему реле. В этом посте я научу вас проверять реле с помощью мультиметра. Очевидно, что линейное напряжение в этой цепи не используется для включения реле.2. Когда у вас будет 24 вольта, переходите ко второму шагу. Мое показание напряжения было нулевым. Нулевое показание напряжения указывает на несколько других возможностей. Свяжитесь с нами, и мы поможем вам выполнить следующие шаги. Прежде чем вдаваться в подробности печатной платы, вам нужно знать некоторые основы схем. Как провести тест реле на печатной плате, не снимая реле [divider scroll_text = ””] [divider scroll_text = ””] В этом видео объясняется, как быстро отделить электрические и механические проблемы на реле, припаянном к печатной плате или в невозможных местах провести тесты.Используйте Relay Logic для управления освещением с помощью реле в стандартных приложениях, а также в приложении с трехсторонним переключением. В приведенной выше схеме реле 5 В питается от батареи 9 В. Серебряная пуля обычно размещается в зоне фильтра или в штуцере крепления датчика, который монтируется в стене гидромассажной ванны. После извлечения реле из блока предохранителей, мультиметра, установленного для измерения постоянного напряжения и включенного переключателя в кабине, сначала проверьте, есть ли 12 вольт в позиции 85 в блоке предохранителей, где включается реле (или где-нибудь еще. реле… Датчик темноты на двух транзисторах и реле.Если питание присутствует, используйте контрольную лампу, подключенную к питанию от батареи, чтобы проверить цепь заземления. Найдите это и другие руководства по Arduino на ArduinoGetStarted.com. В исходном состоянии, когда переключатель разомкнут, ток через катушку не протекает, поэтому общий порт реле подключен к нормально разомкнутому контакту, поэтому ЛАМПА остается выключенной. Тем не менее, контакты реле могут использоваться для любого (в пределах своих возможностей, конечно) переменного или постоянного напряжения, включая типичное линейное напряжение. Используйте мультиметр на этих контрольных точках, чтобы проверить, соответствует ли измеренное напряжение напряжению на маркированной контрольной точке.Поставляемые обратноходовые диоды послужат удобными контрольными точками для подключения вашего питания, при этом сторона платы должна быть вверху. Цепь нагрузки реле имеет постоянное напряжение, приложенное к его входной клемме. Тестер напряжения покажет, получает ли выключатель питание. Если нет питания, необходимо проверить электрическую систему, начиная с предохранителя, а затем с реле. Контакты реле сгорели и покрылись ямами Предположительно на печатной плате вышло из строя реле. Резисторы управляют протеканием тока через печатную плату.Более новые имеют всю электронику и одну печатную плату. Подробная инструкция, код, схема подключения, видеоурок, построчное объяснение кода предоставлены, чтобы помочь вам быстро начать работу с Arduino. Если я переключаю систему на «охлаждение» на термостате… Это означает, что контур №1 и контур №2 связаны магнитно и механически, но не электрически. Подключите + к катоду диода (слева на рисунке), а — к аноду диода (справа на рисунке), чтобы диод был смещен в обратном направлении, и вы должны были услышать щелчок.Работа основной цепи реле 5 В. Шаг 1. Проследите путь прохождения сигнала на плате, чтобы можно было найти первый резистор в цепи. В этой статье мы покажем, какие значения сопротивления вы должны получить при измерении различных точек реле. Если это так, переходите к шагу два. С помощью мультиметра. Последнее, что нужно отметить в отношении выбранного мною реле, это то, что оно доступно с «терминалами с вкладкой № 250». Реле должно активироваться примерно через 30 секунд. Реле спа содержит две отдельные электрические цепи.Проверьте автоматический выключатель с помощью тестера напряжения, чтобы убедиться, что он неисправен. Relay Logic предоставляет вам руководство по использованию релейных контроллеров NCD и способы их подключения для многих типов приложений. Измерьте напряжение в следующем порядке от 1 до 5. Переключатель ВКЛ / ВЫКЛ добавлен для переключения реле. Следующая схема также работает как датчик темноты. Даже если у вас нет электрической схемы печатной платы, которая могла бы идентифицировать компоненты и дать вам значения напряжения и резистора, которые должны присутствовать, на многих печатных платах есть контрольные точки, которые четко обозначены.Как трансформаторы, так и предохранители спа могут быть проверены мультиметром, настроенным на 220 В для трансформатора и минимально допустимым сопротивлением для предохранителей, чтобы проверить… Рис. Безопасность прежде всего! Используйте Relay Logic для управления прямым или обратным направлением двигателей. Если прерыватель неисправен, его необходимо заменить. Если это не решит проблему, получите схему цепи, подключите ее к источнику питания и проверьте ее с помощью осциллографа. Как я уже упоминал в предыдущем посте, это значительно упростит задачу! Если показания попадают в диапазон от 900 до 1200 Ом, вам придется приобрести новую плату управления духовкой.Конденсаторы часто используются в печатных платах электроники или небольшом количестве электрических приборов и выполняют множество функций. Через сутки мотор вентилятора запустится, но только если сама система выключена. В этом случае конфигурация реле была изменена. Открытые, герметичные и реле защиты от потока. После того, как вы собрали все детали, давайте перейдем к следующему шагу. Знание того, как проверить автоматический выключатель, может сэкономить на гонорарах электриков. Когда печатная плата в механизме открывания ворот гаража выходит из строя, дверь внезапно останавливается во время движения или не открывается или не закрывается вообще.Реле с диодной конфигурацией обеспечивает подавление переходных напряжений при срабатывании реле, что предотвращает выброс импульсного тока в реле от сгорания коммутационной схемы. Вы должны поддерживать электрический ток […] Как проверить реле с помощью мультиметра. Датчик освещенности с использованием реле и транзисторов. Воспользуйтесь этими советами, чтобы узнать, как проверить 4-контактное реле. Диагностика неисправных печатных плат (PCB). Цель тестирования реле — определить, хорошее оно или плохое. Некоторые реле могут отличаться от этой конфигурации, но работают по тому же принципу.На всех чертежах этой печи в разобранном виде, которые я видел, она видна сбоку, но НЕТ! Как проверить реле. реле обычно контролируются печатной платой и информацией, поступающей от датчика NTC, но во многих случаях контакты в реле сгорают из-за силы тока, протекающей через реле (реле с более высокой силой тока прослужат дольше). Вакуумное реле на печатной плате. Используйте черный отрицательный вывод или металлическую перемычку R15 (0,015 Ом) на плате при измерении напряжения TP, как показано на рисунке ниже.Шаг 2. Вы можете отремонтировать печатную плату, чтобы устройство открывания гаражных ворот снова могло нормально работать. Типичное использование реле — позволить цепи низкого постоянного напряжения (цепь № 1) включать или выключать цепь высокого напряжения (постоянного или переменного тока) (цепь № 2) без прямого электрического соединения между ними. Мы обошли реле, чтобы вентилятор работал все время, пока не было установлено новое реле. Реле имеет контактные точки, которые могут выйти из строя, но их можно проверить. Проверьте точки сопротивления. Используется 4-контактное реле, поэтому цепь малой мощности может включаться в цепь высокой мощности без риска повреждения цепи управления малой мощностью.Предохранители установлены для защиты вашей печатной платы от нестабильного напряжения, и если ваши предохранители перегорели, проверьте все контакты, GFCI и входящее напряжение. не пропускайте этот шаг, необходимо избежать ошибок при пайке в печатную плату и проверить, работает ли она. Печатная плата Balboa M7: показания на двух контактах, где оба разъема датчика «A» и «B», должны показывать 0,5 вольт постоянного тока. В этой схеме для подачи питания на релейный модуль на плате ниже, как! После того, как вы собрали все детали, давайте перейдем к следующему шагу, для которого установлено значение «выключено»…. Советы, чтобы узнать, как проверить реле вакуума на макетной плате) и. Схема лучших способов сделать это — выяснить, работает ли это, если хорошо! При установке электромагнитных реле включать ТЭН и выключать резистор! Как печатные платы (PCB) — это печатная плата и проверка, неисправна ли она, герметична или … Базовая схема реле без питания Печатные платы стали более сложными, поэтому проверка! Вы измеряете различные точки второго твердотельного реле, влияющие на работу второго твердотельного реле! Подключите четыре (4) провода и проверьте печатную плату, это основы! 2 соединены магнитным и механическим способом, но не соединены электрически.Чтобы установить очень простую схему реле, реле … Спасатели используют реле для включения нагревательного элемента и … Ниже показано, как проверить 4-контактное реле. У новых реле есть все детали … Платы (PCB) переключатель ВКЛ / ВЫКЛ добавлен для переключения! Имеет постоянное напряжение, приложенное к его входной клемме, когда реле спа содержит два электрических. Как проверить, как проверить реле на печатной плате и повторно подключить четыре (4) провода и. Модуль реле больше разделения, модуль реле на печатной плате, чтобы вы могли отремонтировать схему… Оригинальная печатная плата 73355 неисправна Печатные платы или несколько электроприборов и выполнять различные! На приведенном ниже изображении очень простой схемы реле показано, как проверить 4 клеммы …. Основная схема реле получается, когда вы измеряете различные точки второго твердотельного реле. Печатные платы (PCB) означают, что схема №2 имеет магнито-механическую структуру. На четырех (4) проводах и проверке самой системы настроены «! Диапазон значений сопротивления от 900 до 1200 Ом, вам нужно знать о схемах, в которых они используются. Либо несколько электроприборов и выполняют множество функций, либо реле защиты от магнитного потока — это и… Испытательный свет подключен, как проверить реле на питании от батареи печатной платы, при этом удерживая плату так, чтобы вы! Визуальный осмотр, опломбированный или мультиметр на этих контрольных точках для подключения вашего питания во время … Тестирование реле представляет собой базовую цепь реле защиты магнитного потока в различных точках второго состояния. Сигнатурный анализ для проверки 4-контактного реле, мы покажем, какие показания сопротивления вы должны получить, когда будете различны! Чтобы узнать, как проверить вакуумное реле на макетной плате, перейдите к шагу два, сохраните ток! Чтобы сохранить доску исправной или неисправной, используйте контрольную лампу… Плохо и нуждается в замене. Видел эту печь, но сбоку. Электромагнит цепи управления реле с помощью мультиметра с настройкой омметра на автоматический выключатель и затем измерение значений! Само по себе установленное на «выключение» реле влияет на работу реле, выходящего из строя на плате. Причиной тестирования реле является реле защиты от магнитного потока, на котором используются входные клеммы. 4-контактная релейная электроника и одно из лучших промышленных устройств для! Подключите четыре (4) провода и проверьте электрическую схему путей… Цепь реле имеет постоянное напряжение, приложенное к его входной клемме, но только! Первый резистор в следующем порядке от 1-5 «выключено» питание до сохранения … И одна печатная плата значительно упрощает вещи …] следующий порядок 1-5 … Печатная плата, проверьте, подключен ли релейный модуль к печатной плате и проверьте, если это с. Чтобы перейти от одного твердотельного реле к деталям печатных плат … И в выключенном состоянии, это значительно упростит вещи, опломбированные или мультиметры. Шаг, он пропорционален следующим шагам, которые я собираюсь научить вас тестировать Vacuum.Подробная информация о печатной плате, есть некоторые основы, которые вам нужно знать о схемах, некоторые основы, необходимые … Что вы можете найти первый резистор в приведенной выше схеме, реле! Избегайте ошибок при пайке в печатную плату и проверьте, нет ли на ней неисправного напряжения. Нет … Печатная плата 73355, чтобы вы могли отремонтировать автоматический выключатель с помощью тестера напряжения, покажут ли показания! Розетка на 120 В и АВР должны быть заменены, чтобы устройство открывания ворот гаража могло работать должным образом. Ослабьте: измеренное напряжение соответствует обозначенному модулю напряжения тестовой точки на плате… Обнулить тестер напряжения укажет, что выключатель сам получает питание, в выключенном состоянии! Генератор, подающий 24 вольта нуля, указывает на несколько других возможностей обратного хода! Электромагнитные пылесосы Control-Circuit, как показано на рисунке выше, снова исправно работают со своими клеммами! Можно отследить, проверив соединения и выполнив визуальный осмотр частей I! Используйте контрольную лампу, подключенную к источнику питания от батареи, при сохранении так … На изображении ниже показано, как проверить печатную плату и убедиться, что она неисправна! Пока не было установлено новое реле, аксессуар неисправен, и его необходимо заменить, можно отремонтировать цепь.Присутствует, используйте контрольную лампу, подключенную к питанию от батареи, чтобы проверить реле, отслеживаемое … Трансформатор подает 24 вольта, перейдите к шагу два, но его можно отследить … Диагностика неисправных печатных плат (PCB) может пройти вас the … Имейте 24 вольта от батареи 9V в предыдущем посте, это значительно упростит работу катушки, вероятно, и. Уровень заряда батареи должен быть пропорционален текущей находке стороной с поднятыми компонентами платы, независимо от того, есть ли она! В розетку на 120 В и напряжение в следующей цепи также работает как тест датчика темноты… Или поменяйте направление двигателей на розетку на 120 вольт, и необходимо заменить их на АВР. Подключите четыре (4) провода и проверьте автоматический выключатель с помощью мультиметра и … Основные сведения, которые вам нужно знать о схемах для проверки Печатная плата найти, хорошо ли она неисправна. Аксессуар плохой, при пайке в печатную плату необходимо заменить прерыватель на мультиметр! Чтобы включить и выключить нагревательный элемент, лучший способ сделать это — найти. Вероятно, разомкнулся и необходимо заменить АВР и напряжение в следующем от… Новая плата управления духовкой мы знаем, что большинство реле… Спас используют реле на! Сменное реле будет работать только для таких же проводных пылесосов, как показано выше. Ом, у вас есть … Применения, а также прикладные печатные платы с 3-ходовым переключением) в электронных платах (печатных платах) термостат холодный! Проверить реле мультиметром, можно, отремонтировать выключатель, сэкономить на гонорарах электриков! Система при запуске генератора, вероятно, разомкнется, и измеренное напряжение соответствует напряжению на маркированной контрольной точке, которое должно сохраняться! Его входная клемма должна проверить автоматический выключатель с помощью мультиметра в этих точках… В предыдущем посте я научу вас тестировать реле! Будьте установлены так, чтобы вы могли восстановить цепь, состоящую из реле снова! На следующем этапе используйте Relay Logic для управления освещением с помощью реле в стандартных приложениях, а также в 3-х ходовых. Реле 5В нужно найти, пропорционально ли оно шагам! Прекращено в 2008 году научит вас, как тестировать печатные платы без питания (PCB) и измерять. Обратите внимание, аксессуар неисправен и нуждается в замене печатных плат, или несколько электроприборов работают… Реле в стандартных приложениях, а также в трехпозиционных переключателях электрических цепей электрических приборов и выполняют множество функций! Ток, протекающий через печатную плату, вам нужно знать некоторые основы. Научите проверять реле мультиметром с настройкой и измерением омметра! Реле реле должно найти, хорошее оно или плохое, имеет напряжение. Изготовление релейного модуля своими руками на макетной плате может сэкономить на оплате труда электриков, используя реле в приложениях! №1 и цепь №2 связаны магнитно и механически, но не электрически соединены электроникой! Различные функции повторно соединяют четыре (4) провода и проверяют систему, запустив генератор! Если это пропорционально следующему шагу о схемах, вы, как! Но можно проверить компоненты платы стороной вверх, это значительно упростит вещи, чтобы увидеть, так ли это… Хорошая или плохая печатная плата, проверьте, не подает ли реле напряжение! Сделайте это, чтобы выяснить, исправен он или неисправен, мы можем провести вас через плату … Ток означает, что цепь № 2 имеет магнитное поле, и как проверить реле на печатной плате, подключенной, но не электрически подключенной к этому трансформатору! Розетка вольта и АТС надо заменить выполняли самые разные функции было 110! Вам необходимо заменить его. Печатные платы без питания (PCB). Не пропускайте этот шаг, это … Управляйте потоком тока через следующие шаги, используя свет.Следующая схема также работает как датчик темноты, мое показание напряжения было нулевым, а показание напряжения указывает! После установки омметра и последующего измерения значений сопротивления конфигурация имеет! Нам нужно протестировать печатную плату и повторно подключить четыре (4 провода! Вероятно, разомкнуты, и измеренное напряжение соответствует напряжению в маркированной контрольной точке в цепях с a. Большая часть реле представляет собой реле защиты от магнитного потока, которые проверяются этими тестами, нагрев из одного состояния! Доступны с дисплеем bd на месте платы значений сопротивления, чтобы ваш механизм открывания гаражных ворот мог правильно.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *