Как построить в окружности пятиугольник: Построение правильного пятиугольника — Геометрия

Содержание

Как сделать правильный пятиугольник. Как построить пятиугольник с помощью циркуля

Толковый словарь Ожегова гласит, что пятиугольник представляет собой ограниченную пятью пересекающимися прямыми, образующими пять внутренних углов, а также любой предмет подобной формы. Если у данного многоугольника все стороны и углы одинаковые, то он называется правильным (пентагоном).

Чем интересен правильный пятиугольник?

Именно в такой форме было построено всем известное здание Минобороны Соединенных Штатов. Из объемных правильных многогранников лишь додекаэдр имеет грани в форме пентагона. А в природе напрочь отсутствуют кристаллы, грани которых напоминали бы собой правильный пятиугольник. Кроме того, эта фигура является многоугольником с минимальным количеством углов, которым невозможно замостить площадь. Только у пятиугольника количество диагоналей совпадает с количеством его сторон. Согласитесь, это интересно!

Основные свойства и формулы

Воспользовавшись формулами для произвольного правильного многоугольника, можно определить все необходимые параметры, которые имеет пентагон.

  • Центральный угол α = 360 / n = 360/5 =72°.
  • Внутренний угол β = 180° * (n-2)/n = 180° * 3/5 = 108°. Соответственно, сумма внутренних углов составляет 540°.
  • Отношение диагонали к боковой стороне равно (1+√5) /2, то есть (примерно 1,618).
  • Длина стороны, которую имеет правильный пятиугольник, может быть рассчитана по одной из трех формул, в зависимости от того, какой параметр уже известен:
  • если вокруг него описана окружность и известен ее радиус R, то а = 2*R*sin (α/2) = 2*R*sin(72°/2) ≈1,1756*R;
  • в случае, когда окружность c радиусом r вписана в правильный пятиугольник, а = 2*r*tg(α/2) = 2*r*tg(α/2) ≈ 1,453*r;
  • бывает так, что вместо радиусов известна величина диагонали D, тогда сторону определяют следующим образом: а ≈ D/1,618.
  • Площадь правильного пятиугольника определяется, опять-таки, в зависимости от того, какой параметр нам известен:
  • если имеется вписанная или описанная окружность, то используется одна из двух формул:

S = (n*a*r)/2 = 2,5*a*r либо S = (n*R 2 *sin α)/2 ≈ 2,3776*R 2 ;

  • площадь можно также определить, зная лишь длину боковой стороны а:

S = (5*a 2 *tg54°)/4 ≈ 1,7205* a 2 .

Правильный пятиугольник: построение

Данную геометрическую фигуру можно построить по-разному. Например, вписать его в окружность с заданным радиусом либо построить на базе заданной боковой стороны. Последовательность действий была описана еще в «Началах» Евклида примерно 300 лет до н.э. В любом случае, нам понадобятся циркуль и линейка. Рассмотрим способ построения с помощью заданной окружности.

1. Выберите произвольный радиус и начертите окружность, обозначив ее центр точкой O.

2. На линии окружности выберите точку, которая будет служить одной из вершин нашего пятиугольника. Пусть это будет точка А. Соедините точки О и А прямым отрезком.

3. Проведите прямую через точку О перпендикулярно к прямой ОА. Место пересечения этой прямой с линией окружности обозначьте, как точку В.

4. На середине расстояния между точками О и В постройте точку С.

5. Теперь начертите окружность, центр которой будет в точке С и которая будет проходить через точку А. Место ее пересечения с прямой OB (оно окажется внутри самой первой окружности) будет точкой D.

6. Постройте окружность, проходящую через D, центр которой будет в А. Места ее пересечения с первоначальной окружностью нужно обозначить точками Е и F.

7. Теперь постройте окружность, центр которой будет в Е. Сделать это надо так, чтобы она проходила через А. Ее другое место пересечения оригинальной окружности нужно обозначить

8. Наконец, постройте окружность через А с центром в точке F. Обозначьте другое место пересечения оригинальной окружности точкой H.

9. Теперь осталось только соединить вершины A, E, G, H, F. Наш правильный пятиугольник будет готов!

Уровень сложности: Несложно

1 шаг

Сначала, выбирайте, где разместить центр окружности. Там нужно поставить начальную точку, пусть она называется О. С помощью циркуля вычерчиваем вокруг нее окружность заданного диаметра или радиуса.

2 шаг

Затем проводим две оси через точку О, центр окружности, одна горизонтальная, другая под 90 градусов по отношению к ней – вертикальная. Точки пересечения по горизонтали назовем слева на право А и В, по вертикали, сверху вниз – М и Н. Радиус, который лежит на любой оси, например, на горизонтальной в правой части, делим пополам. Это можно сделать так: циркуль с радиусом известной нам окружности устанавливаем острием в точку пересечения горизонтальной оси и окружности – В, отчеркиваем пересечения с окружностью, полученные точки называем, соответственно сверху вниз – С и Р, соединяем их отрезком, который будет пересекать ось ОВ, точку пересечения называем К.

3 шаг

Соединяем точки К и М и получаем отрезок КМ, устанавливаем циркуль в точку М, задаем на нем расстояние до точки К и очерчиваем метки на радиусе ОА, эту точку называем Е, далее ведем циркуль до пересечения с левой верхней частью окружности ОМ. Эту точку пересечения называем F. Расстояние равное отрезку МЕ является искомой стороной равностороннего пятиугольника. При этом точка М будет являться одной вершиной встраиваемого в окружность пятиугольника, а точка F – другой.

4 шаг

Далее из полученных точек по всей окружности отчерчиваем циркулем расстояния, равные отрезку МЕ, всего точек должно получиться 5. Соединяем все точки отрезками – получаем пятиугольник, вписанный в окружность.

  • При черчении будьте аккуратны в измерениях расстояний, не допускайте погрешностей, чтобы пятиугольник действительно полчился равносторонним
8 июня 2011

Первый способ — по данной стороне S с помощью транспортира.

Проводим прямую и откладываем на ней AB = S; принимаем эту линию за радиус и этим радиусом из точек A и В описываем дуги: далее с помощью транспортира строим в этих точках углы в 108°, стороны которых пересекутся с дугами в точках С и D; из этих точек радиусом АВ = 5 описываем дуги, которые пересекутся в Е, и прямыми линиями соединяем точки Л, С, Е, D, В.

Полученный пятиугольник
— искомый.

Второй способ. Проведем окружность радиусом r. Из точки А циркулем проводим дугу радиуса AM до пересечения в точках В и С с окружностью. Соединяем В и С линией, которая пересечет горизонтальную ось в точке Е.

Затем из точки Е проводим дугу, которая пересечет горизонтальную линию в точке О. Описываем, наконец, из точки F дугу, которая пересечет окружность в точках Н и К. Отложив по окружности расстояние FO = FH = FK пять раз и соединив точки деления линиями, получим правильный пятиугольник.

Третий способ. В данный круг вписать правильный пятиугольник. Проводим два взаимно перпендикулярных диаметра АВ и МС. Делим радиус АО точкой Е пополам. Из точки Е, как из центра, проводим дугу окружности радиуса ЕМ и засекаем ею диаметр АВ в точке F. Отрезок MF равен стороне искомого правильного пятиугольника. Раствором циркуля, равным MF, делаем засечки N 1 , Р 1 , Q 1 , К 1 и соединяем их прямыми.

На рисунке построен шестиугольник по данной стороне.

Прямой АВ = 5, как радиусом, из точек А и В описываем дуги, которые пересекутся в С; из этой точки тем же радиусом описываем окружность, на которой сторона А В отложится 6 раз.


Шестиугольник ADEFGB
— искомый. 

«Отделка комнат при ремонте»,
Н.П.Краснов


Первый способ построения. Проводим горизонтальную (АВ) и вертикальную (CD) оси и из точки их пересечения М откладываем в соответствующем масштабе полуоси. Наносим малую полуось от точки М на большой оси до точки Е. Эллипс, первый способ построения Делим BE на 2 части и одну наносим от точки М на большой оси (до F или H)…


Основанием для нанесения росписи служат полностью законченные окраской поверхности стен, потолков и других конструкций; роспись делается по высококачественным клеевым и масляным окраскам, сделанным под торцовку или флейц. Приступая к разработке эскиза отделки, мастер должен ясно представить себе всю композицию в бытовой обстановке и отчетливо осознать творческий замысел. Только при соблюдении этого основного условия можно правильно…

Обмер выполненных работ, за исключением особо оговоренных случаев, производится по площади действительно обработанной поверхности с учетом ее рельефа и за вычетом необработанных мест. Для определения действительно обработанных поверхностей при малярных работах следует пользоваться переводными коэффициентами, приведенными в таблицах. А. Деревянные оконные устройства (обмер производится по площади проемов по наружному обводу коробок) Наименование устройств Коэффициент при…

Задача построения верного пятиугольника сводится к задаче деления окружности на пять равных частей. От того что верный пятиугольник – это одна из фигур, содержащая в себе пропорции золотого сечения, его построением издавна интересовались живописцы и математики. Сейчас обнаружены несколько методов построения верного многоугольника, вписанного в заданную окружность.

Вам понадобится

  • – линейка
  • – циркуль

Инструкция

1. Видимо, что если возвести верный десятиугольник, а после этого объединить его вершины через одну, то получим пятиугольник. Для построения десятиугольника начертите окружность заданного радиуса. Обозначьте ее центр буквой O. Проведите два перпендикулярных друг друга радиуса, на рисунке они обозначены как OA1 и OB. Радиус OB поделите напополам с подмогой линейки либо способом деления отрезка напополам с подмогой циркуля. Постройте маленькую окружность с центром C в середине отрезка OB радиусом, равным половине OB.Объедините точку C с точкой A1 на начальной окружности по линейке. Отрезок CA1 пересекает вспомогательную окружность в точке D. Отрезок DA1 равен стороне верного десятиугольника, вписанного в данную окружность. Циркулем подметьте данный отрезок на окружности, после этого объедините точки пересечения через одну и вы получите положительный пятиугольник.

2. Еще один метод обнаружил немецкий художник Альбрехт Дюрер. Дабы возвести пятиугольник по его методу, начните вновь с построения окружности. Вновь подметьте ее центр O и проведите два перпендикулярных радиуса OA и OB. Радиус OA поделите напополам и середину подметьте буквой C. Установите иглу циркуля в точку C и раскройте его до точки B. Проведите окружность радиуса BC до пересечения с диаметром начальной окружности, на котором лежит радиус OA. Точку пересечения обозначьте D. Отрезок BD – сторона положительного пятиугольника. Отложите данный отрезок пять раз на начальной окружности и объедините точки пересечения.

3. Если же требуется возвести пятиугольник по его заданной стороне, то вам надобен 3-й метод. Начертите по линейке сторону пятиугольника, обозначьте данный отрезок буквами A и B. Поделите его на 6 равных частей. Из середины отрезка AB проведите луч, перпендикулярный отрезку. Постройте две окружности радиусом AB и центрами в A и B, как если бы вы собирались разделять отрезок напополам. Эти окружности пересекаются в точке С. Точка C при этом лежит на луче, исходящем перпендикулярно вверх из середины AB. Отложите от C вверх по этому лучу расстояние, равное 4/6 от длины AB, обозначьте эту точку D. Постройте окружность радиуса AB с центром в точке D. Пересечение этой окружности с двумя вспомогательными построенными ранее даст последние две вершины пятиугольника.

Тема деления окружности на равные части с целью построения верных вписанных многоугольников издавна занимала умы древних ученых. Эти тезисы построения с использованием циркуля и линейки были высказаны еще в эвклидовых «Началах». Впрочем лишь через два тысячелетия эта задача была всецело решена не только графически, но и математически.

Инструкция

1. Приближенное построение положительного

пятиугольника методом А. Дюрера, с подмогой циркуля и линейки (через две окружности с всеобщим радиусом, равным стороне пятиугольника ).

2. Построение верного пятиугольника на основе положительного десятиугольника, вписанного в окружность (объединив вершины десятиугольника через одну).

3. Графическое построение через вычисленный внутренний угол пятиугольника с поддержкой транспортира и линейки (сумма углов выпуклого n-угольника равна Sn=180°(n – 2), т.к. у положительного многоугольника все углы равны). При n=5, S5=5400, тогда величина угла 1080.А так же с поддержкой окружности и 2-х лучей, выходящих из ее центра, при условии, что угол между ними равен 720, т.к. (36005=720). Их пересечение с окружностью даст отрезок, равный стороне пятиугольника .

4. Еще один легкой графический метод: поделить диаметр заданной окружности AB на три части (AC=CD=DE). Из точки D опустить перпендикуляр до пересечения с окружность в точках E, F.Проведя прямые через отрезки EC и FC до пересечения с окружностью, получим точки G, H.Точки G,E,B,F,H – вершины положительного пятиугольника .

5. Построение с поддержкой приема Биона (дозволяющего возвести верный вписанный в окружность многоугольник с любым числом сторон n по заданному соотношению).Скажем: для n=5. Возведем положительный треугольник ABC, где AB – диаметр заданной окружности. Обнаружим на AB точку D, по дальнейшему соотношению: AD: AB = 2: n. При n=5, AD=25*AB. Проведем прямую через CD до пересечения с окружностью в точке E. Отрезок AE – сторона верного вписанного пятиугольника .При n=5,7,9,10 погрешность построения не превышает 1%. С возрастанием n, погрешность приближения растёт, но остаётся поменьше 10,3%.

6. Построение по заданной стороне по способу Л. Да Винчи (применяя соотношение между стороной многоугольника (аn) и апофемой (ha): аn/2: ha =3/(n-1), которое дозволено выразить так: tg180°/n =3/(n-1)).

7. Всеобщий метод построения положительных многоугольников по заданной стороне по способу Ф. Коваржика (1888 г.), на основе правила Л. да Винчи.Цельный метод построения положительного n-угольника на основании теоремы Фалеса.Дозволено добавить только, что приближенные способы построения многоугольников подлинны, примитивны и прекрасны.

Существуют два основных метода построения верного многоугольника с пятью сторонами. Оба они полагают применение циркуля, линейки и карандаша. 1-й метод представляет собой вписывание пятиугольника в окружность, а 2-й метод базируется на заданной длине стороны вашей грядущей геометрической фигуры.

Вам понадобится

  • Циркуль, линейка, карандаш

Инструкция

1. 1-й метод построения пятиугольника считается больше «типичным». Для начала постройте окружность и как-либо обозначьте ее центр (обычно для этого применяется буква О). После этого проведите диаметр этой окружности (назовем его АВ) и поделите один из 2-х полученных радиусов (скажем, ОА) ровно напополам. Середину этого радиуса обозначим буквой С.

2. Из точки О (центра начальной окружности) проведите еще один радиус (ОD), тот, что будет сурово перпендикулярен проведенному ранее диаметру (АВ). После этого возьмите циркуль, поставьте его в точку С и отмерьте расстояние до пересечения нового радиуса с окружностью (СD). Это же расстояние отложите на диаметре АВ. Вы получите новую точку (назовем ее Е). Отмерьте циркулем расстояние от точки D до точки Е – оно будет равно длине стороны вашего грядущего пятиугольника .

3. Поставьте циркуль в точку D и отложите на окружности расстояние, равное отрезку DЕ. Повторите эту процедуру еще 3 раза, а после этого объедините точку D и 4 новые точки на начальной окружности. Получившаяся в итоге построения фигура будет верным пятиугольником.

4. Дабы возвести пятиугольник иным методом, для начала начертите отрезок. Скажем, это будет отрезок АВ длиной 9 см. Дальше поделите ваш отрезок на 6 равных частей. В нашем случае длина всякой части будет составлять 1,5 см. Сейчас возьмите циркуль, поставьте его в один из концов отрезка и проведите окружность либо дугу с радиусом, равным длине отрезка (АВ). После этого переставьте циркуль в иной конец и повторите операцию. Полученные окружности (либо дуги) пересекутся в одной точке. Назовем ее C.

5. Сейчас возьмите линейку и проведите прямую через точку С и центр отрезка AB. После этого начиная от точки С отложите на этой прямой отрезок, составляющий 4/6 отрезка AB. 2-й конец отрезка обозначим буквой D. Точка D будет являться одной из вершин грядущего пятиугольника . Из этой точки проведите окружность либо дугу с радиусом, равным АВ. Эта окружность (дуга) пересечет ранее построенные вами окружности (дуги) в точках, являющихся двумя недостающими вершинами пятиугольника . Объедините эти точки с вершинами D, А и В, и построение положительного пятиугольника будет закончено.

Видео по теме

Луч — это прямая линия, проведенная из точки и не имеющая конца. Существуют и другие определения луча: скажем, «…это прямая, ограниченная точкой с одной стороны». Как положительно начертить луч и какие принадлежности для черчения вам потребуются?

Вам понадобится

  • Лист бумаги, карандаш и линейка.

Инструкция

1. Возьмите лист бумаги и подметьте в произвольном месте точку. После этого приложите линейку и проведите линию, начиная с указанной точки и до бесконечности. Эта нарисованная линия и именуется лучом. Сейчас подметьте на луче еще одну точку, к примеру, буквой C. Линия от исходной и до точки C будет именоваться отрезком. Если вы примитивно начертите линию и не подметите правда бы одну точку, то эта прямая не будет являться лучом.

2. Нарисовать луч в любом графическом редакторе либо в том же MSOffice не труднее, чем вручную. Для примера возьмите программу Microsoft Office 2010. Зайдите в раздел «Вставка» и выберите элемент «Фигуры». В выпадающем списке выберите фигуру «Линия». Дальше курсор примет вид крестика. Дабы начертить ровную линию, нажмите клавишу «Shift»и проведите линию требуемой длины. Сразу позже начертания откроется вкладка «Формат». Теперь у вас нарисована примитивно прямая линия и отсутствует фиксированная точка, а исходя из определения, луч должен быть лимитирован точкой с одной стороны.

3. Дабы сделать точку в начале линии, сделайте следующее: выделите нарисованную линию и вызовите контекстное меню, нажав правую кнопку мыши.

4. Выберите пункт «Формат фигуры». В меню слева выберите пункт «Тип линии». Дальше обнаружьте заголовок «Параметры линий» и выберите «Тип начала» в виде кружочка. Там же вы можете настроить толщину линий начала и конца.

5. Уберите выделение с линии и увидите, что в начале линии возникла точка. Для создания надписи нажмите кнопку «Нарисовать надпись» и сделайте поле, где будет находиться надпись. Позже написания надписи кликните на свободное место и она активируется.

6. Луч благополучно нарисован и заняло это каждого несколько минут. Рисование луча в иных редакторах осуществляется по такому же тезису. При нажатой клавише «Shift» неизменно будут рисоваться пропорциональные фигуры. Славного пользования.

Видео по теме

Обратите внимание!
Отношение диагонали верного пятиугольника к его стороне составляет золотое сечение (иррациональное число (1+√5)/2).Весь из пяти внутренних углов пятиугольника равен 108°.

Полезный совет
Если объединить вершины верного пятиугольника диагоналями, то получится пентаграмма.

Построение вписанного в окружность правильного шестиугольника.

Построение шестиугольника основано на том, что сторона его равна радиусу описанной окружности. Поэтому для построения достаточно разделить окружность на шесть равных частей и соединить найденные точки между собой.

Правильный шестиугольник можно построить, пользуясь рейсшиной и угольником 30X60°. Для выполнения этого построения принимаем горизонтальный диаметр окружности за биссектрису углов 1 и 4, строим стороны 1 — 6, 4 — 3, 4 — 5 и 7 — 2, после чего проводим стороны 5 — 6 и 3 — 2.

Вершины такого треугольника можно построить с помощью циркуля и угольника с углами в 30 и 60° или только одного циркуля. Рассмотрим два способа построения вписанного в окружность равностороннего треугольника.

Первый способ (фиг. 61,a) основан на том, что все три угла треугольника 7, 2, 3 содержат по 60°, а вертикальная прямая, проведённая через точку 7, является одновременно высотой и биссектрисой угла 1. Так как угол 0 — 1 — 2 равен 30°, то для нахождения стороны 1 — 2 достаточно построить по точке 1 и стороне 0 — 1 угол в 30°. Для этого устанавливаем рейсшину и угольник так, как это показано на фигуре, проводим линию 1 — 2, которая будет одной из сторон искомого треугольника. Чтобы построить сторону 2 — 3, устанавливаем рейсшину в положение, показанное штриховыми линиями, и через точку 2 проводим прямую, которая определит третью вершину треугольника.

Второй способ основан на том, что,если построить правильный шестиугольник, вписанный в окружность, и затем соединить его вершины через одну, то получится равносторонний треугольник.

Для построения треугольника намечаем на диаметре вершину точку 1 и проводим диаметральную линию 1 — 4. Далее из точки 4 радиусом, равным D/2, описываем дугу до пересечения с окружностью в точках 3 и 2. Полученные точки будут двумя другими вершинами искомого треугольника.

Это построение можно выполнить при помощи угольника и циркуля.

Первый способ основан на том, что диагонали квадрата пересекаются в центре описанного круга и наклонены к его осям под углом 45°. Исходя из этого, устанавливаем рейсшину и угольник с углами 45° так, как это показано на фиг. 62, а, и отмечаем точки 1 и 3. Далее через эти точки проводим при помощи рейсшины горизонтальные стороны квадрата 4 — 1 и 3 -2. Затем с помощью рейсшины по катету угольника проводим вертикальные стороны квадрата 1 — 2 и 4 — 3.

Второй способ основан на том, что вершины квадрата делят пополам дуги окружности, заключённые между концами диаметра. Намечаем на концах двух взаимно перпендикулярных диаметров точки А, В и С и из них радиусом у описываем дуги до взаимного их пересечения.

Далее через точки пересечения дуг проводим вспомогательные прямые, отмеченные на фигуре сплошными линиями. Точки их пересечения с окружностью определят вершины 1 и 3; 4 и 2. Полученные таким образом вершины искомого квадрата соединяем последовательно между собою.

Построение вписанного в окружность правильного пятиугольника.

Чтобы вписать в окружность правильный пятиугольник, производим следующие построения. Намечаем на окружности точку 1 и принимаем её за одну из вершин пятиугольника. Делим отрезок АО пополам. Для этого радиусом АО из точки А описываем дугу до пересечения с окружностью в точках M и В. Соединив эти точки прямой, получим точку К, которую соединяем затем с точкой 1. Радиусом, равным отрезку A7, описываем из точки К дугу до пересечения с диаметральной линией АО в точке H. Соединив точку 1 с точкой H, получим сторону пятиугольника. Затем раствором циркуля, равным отрезку 1H, описав дугу из вершины 1 до пересечения с окружностью, найдём вершины 2 и 5. Сделав тем же раствором циркуля засечки из вершин 2 и 5, получим остальные вершины 3 и 4. Найденные точки последовательно соединяем между собой.

Построение правильного пятиугольника по данной его стороне.

Для построения правильного пятиугольника по данной его стороне (фиг. 64) делим отрезок AB на шесть равных частей. Из точек А и В радиусом AB описываем дуги, пересечение которых даст точку К. Через эту точку и деление 3 на прямой AB проводим вертикальную прямую. Далее от точки К на этой прямой откладываем отрезок, равный 4/6 AB. Получим точку 1 -вершину пятиугольника. Затем радиусом, равным АВ, из точки 1 описываем дугу до пересечения с дугами, ранее проведёнными из точек А и В. Точки пересечения дуг определяют вершины пятиугольника 2 и 5. Найденные вершины соединяем последовательно между собой.

Построение вписанного в окружность правильного семиугольника.

Пусть дана окружность диаметра D; нужно вписать в неё правильный семиугольник (фиг. 65). Делим вертикальный диаметр окружности на семь равных частей. Из точки 7 радиусом, равным диаметру окружности D, описываем дугу до пересечения с продолжением горизонтального диаметра в точке F. Точку F назовём полюсом многоугольника. Приняв точку VII за одну из вершин семиугольника, проводим из полюса F через чётные деления вертикального диаметра лучи, пересечение которых с окружностью определят вершины VI, V и IV семиугольника. Для получения вершин / — // — /// из точек IV, V и VI проводим до пересечения с окружностью горизонтальные прямые. Найденные вершины соединяем последовательно между собой. Семиугольник может быть построен путём проведения лучей из полюса F и через нечётные деления вертикального диаметра.

Приведённый способ годен для построения правильных многоугольников с любым числом сторон.

Деление окружности на любое число равных частей можно производить также, пользуясь данными табл. 2, в которой приведены коэффициенты, дающие возможность определять размеры сторон правильных вписанных многоугольников.

Длины сторон правильных вписанных многоугольников.

В первой колонке этой таблицы указаны числа сторон правильного вписанного многоугольника, а во второй — коэффициенты. Длина стороны заданного многоугольника получится от умножения радиуса данной окружности на коэффициент, соответствующий числу сторон этого многоугольника.

Как начертить пятиугольник с помощью транспортира

Первый способ — по данной стороне S с помощью транспортира.

Проводим прямую и откладываем на ней AB = S; принимаем эту линию за радиус и этим радиусом из точек A и В описываем дуги: далее с помощью транспортира строим в этих точках углы в 108°, стороны которых пересекутся с дугами в точках С и D; из этих точек радиусом АВ = 5 описываем дуги, которые пересекутся в Е, и прямыми линиями соединяем точки Л, С, Е, D, В.

Полученный пятиугольник
— искомый.

Первый способ построения пятиугольника

Второй способ. Проведем окружность радиусом r. Из точки А циркулем проводим дугу радиуса AM до пересечения в точках В и С с окружностью. Соединяем В и С линией, которая пересечет горизонтальную ось в точке Е.

Затем из точки Е проводим дугу, которая пересечет горизонтальную линию в точке О. Описываем, наконец, из точки F дугу, которая пересечет окружность в точках Н и К. Отложив по окружности расстояние FO = FH = FK пять раз и соединив точки деления линиями, получим правильный пятиугольник.

Второй способ построения пятиугольника

Третий способ. В данный круг вписать правильный пятиугольник. Проводим два взаимно перпендикулярных диаметра АВ и МС. Делим радиус АО точкой Е пополам. Из точки Е, как из центра, проводим дугу окружности радиуса ЕМ и засекаем ею диаметр АВ в точке F. Отрезок MF равен стороне искомого правильного пятиугольника. Раствором циркуля, равным MF, делаем засечки N1, Р1, Q1, К1 и соединяем их прямыми.

Третий способ построения пятиугольника

На рисунке построен шестиугольник по данной стороне.

Построение шестиугольника

Прямой АВ = 5, как радиусом, из точек А и В описываем дуги, которые пересекутся в С; из этой точки тем же радиусом описываем окружность, на которой сторона А В отложится 6 раз.

Шестиугольник ADEFGB
— искомый.

«Отделка комнат при ремонте»,
Н.П.Краснов

Мы уже говорили, что для исполнения некоторых видов малярных работ необходимо уметь рисовать. А умение рисовать, в свою очередь, предполагает знание правил построения геометрических фигур. Эскизы на бумаге вычерчивают при помощи треугольников, рейсшин, транспортаpa и циркуля, а на плоскости стен и потолков построения выполняются при помощи веска, линейки, деревянного циркуля и шнура. При этом надо…

Прямой угол, т. е. равный 90°, образуется двумя взаимно перпендикулярными линиями. Перпендикуляр строится следующим образом. Опустить перпендикуляр. Из данной точки С (лежащей вне прямой), как из центра, произвольным радиусом описываем дугу так, чтобы она пересекла данную прямую в двух точках D и Е из этих точек, как из центров, одинаковыми радиусами описываем дуги, чтобы они…

Построение угла, равного данному Угол, равный данному, строится следующим образом. Из вершины А данного угла произвольным радиусом проводим дугу тем же радиусом из точки D на данной прямой описываем дугу EF; величину дуги ВС откладываем по дуге EF до точки F и проводим DE. Угол EDF — искомый. Построение угла, равного данному Параллельные линии Линии,…

Деление прямых линий и углов может быть произведено двояким образом: на глаз и с помощью геометрического построения. При делении прямой на две равные части поступают следующим образом. Половину данной прямой берут циркулем на глаз и откладывают эту половину от обоих концов прямой. Если концы половинок сходятся, то, значит, данная прямая разделена правильно, если нет, то…

Маляру часто приходится иметь дело с правильными многоугольниками, а также треугольниками и четырехугольниками, т. е. такими фигурами, у которых все стороны и, соответственно, углы равны между собой. Может встретиться необходимость построить правильный многоугольник по данной стороне, или вписать правильный многоугольник в окружность данного радиуса, или описать его вокруг окружности. Первый вопрос сводится к нахождению внутреннего…

Последние события

Раскраски к Хеллоуину для мальчиков

В России – празднование Хэллоуина ни с чем не связано. Это, скорее всего дань моде, чем традиции предков. Интересное яркое шоу, о значении и первоисточнике которого многие даже не догадываются.

Коллекция раскрасок к Хеллоуину

Скоро Хеллоуин. Праздник страшилка, праздник пугалка. Не зря его так любят дети всех стран.

На сайте я уже как-то выкладывала подборку раскрасок к Хеллоуину.

Осень. Деревья и листья

Как выглядят деревья осенью? Рассмотрите картинки и раскрасьте осенние листики.

Кто такие мишки Гамми?

Посмотрите с детьми этот мультсериал про мишек Гамми, затем скачайте раскраски и раскрасьте героев.

Несколько раскрасок для самых маленьких

Совсем простенькие раскраски с крупными деталями для самых маленьких художников.

Осеннее настроение. Раскраски

В разгаре золотая осень. В этом году она в наших краях как никогда поздняя и ослепительно красивая.

Рассказы про осень. Читаем и раскрашиваем картинки

Что такое осень? Какая осенью погода? Что делают птицы осенью? Задайте эти и другие вопросы про осень своему малышу.

Популярное

Архив

Как нарисовать правильную звездочку? Как нарисовать правильный пятиугольник? Как разделить круг на пять равных частей? На все эти вопросы вы сможете найти ответ, если проделаете вслед за мной эти шаги.

Как нарисовать правильную звездочку?

Как нарисовать правильный пятиугольник?

Как разделить круг на пять равных частей?

На все эти вопросы вы сможете найти ответ, если проделаете вслед за мной вот эти шаги.

Конечно же, нам понадобится циркуль с карандашом и линейка.

Для начала нарисуйте циркулем круг.

Разделите его на четыре части линиями сверху вниз и справа налево.

Можно сразу объяснить ребенку, что отрезок, соединяющий две точки на окружности и проходящий через ее центр, называется диаметр.

А отрезок, соединяющий центр и точку на окружности, называется радиус.

С помощью линейки измерьте и разделите пополам один из радиусов.

У меня это отрезок слева от центра.

Серединку радиуса я обозначила

Нам понадобится точка сверху окружности.

Ее я обозначила цифрой 0.

Устанавливаем иголку циркуля

в точку 1, а карандашик в точку 0.

Рисуем дугу до пересечения с горизонтальным диаметром.

Обозначаем точку пересечения

Сейчас устанавливаем иголку циркуля

в точку 0, а карандашик в точку 2.

И рисуем дугу до пересечения с окружностью, причем с двух сторон.

Точки пересечения помечены

Не меняя ширину циркуля, устанавливаем иголку

в точку 3 и отмеряем кусочек окружности.

Точку 6 можно отмерить и от

точки 5 и от точки 4.

Главное, не изменять ширину (раствор) ножек циркуля.

Вот, практически и все.

Если соединим точки, получим правильный пятиугольник.

Здравствуйте коллеги.
Сегодня построим правильный пятиугольник в окружности, попробуем начертить циркулем и линейкой фигуру.

Рисунки художников очень тесно связаны с черчением и геометрией. Если мы задумали какую-то композицию, а в ней есть геометрические фигуры, то нам необходимо знать, как изобразить предмет, что бы он не выглядел смешно, и что бы вы не выглядели дилетантом и смогли нарисовать пятиконечную звезду циркулем или в фотошопе. От этого зависит ваш авторитет художника, а значит и заказы.

Построение правильного пятиугольника не так часто встречается в рисунке, но все же есть моменты, когда нам это необходимо.

Например, нам нужно нарисовать пятиконечную звезду (пентаграмму) для картины о Советском прошлом или о настоящем Китая. Правда для этого нужно уметь создать рисунок звезды в перспективе. Это посмотрите в другом уроке.

Мы попробуем нарисовать звезду в фотошопе фронтально. Точно так же вы сможете нарисовать фигуру карандашом на бумаге. Всего лишь с помощью таких инструментов:

Как правильно нарисовать звезду, что бы она выглядела ровно и красиво, сразу не ответишь. Количество углов не четное, поэтому просто разделить окружность на равные части циркулем или линейкой не получится.

Что бы вписанный пятиугольник в окружность был пропорциональный, нам необходимо точно вычислить одну из сторон, а затем отложить этот отрезок пять раз на теле овала.

Как выглядит пятиугольник и звезда

Внизу на фото разберем, как нарисовать звезду поэтапно.
Для начала рисуем окружность с центром О.

Дальше отложим отрезок OA равный радиусу и разделим его пополам точкой B, как показано на фото внизу.


Теперь от точки В до точки С проведем прямую.

Отложим расстояние отрезка ВС на диаметральной линии окружности. Для этого можно воспользоваться циркулем. Таким образом у нас появилась точка D.


И отрезок DB. Картинка внизу.

Дальше, проведя линию от точки D к точке С, Мы получи длину равную стороне пятиугольника.


Дальше этот отрезок можно отложить на окружности. У нас появилась точка Е. Смотрим фото ниже.


Итак, одна из сторон пятиугольника у нас есть, это линия ЕС.

Такие же отрезки наносим на всей части круга. Смотрим картинку.


На этом построение правильного пятиугольника можно закончить. Что бы нарисовать звезду нужно просто соединить углы через один.

Нарисовать пятиконечную звезду циркулем можно так же, как и на нашем уроке в программе Photoshop, весь процесс такой же, только вместо программы графического редактора используем инструменты для черчения.

Так же можно посмотреть уроки построения шестиугольника, разделение на восемь частей, деление круга на семь частей, десять равных частей.

необходимый минимум информации. Получение с помощью полоски бумаги

Построение вписанного в окружность правильного шестиугольника.

Построение шестиугольника основано на том, что сторона его равна радиусу описанной окружности. Поэтому для построения достаточно разделить окружность на шесть равных частей и соединить найденные точки между собой.

Правильный шестиугольник можно построить, пользуясь рейсшиной и угольником 30X60°. Для выполнения этого построения принимаем горизонтальный диаметр окружности за биссектрису углов 1 и 4, строим стороны 1 — 6, 4 — 3, 4 — 5 и 7 — 2, после чего проводим стороны 5 — 6 и 3 — 2.

Вершины такого треугольника можно построить с помощью циркуля и угольника с углами в 30 и 60° или только одного циркуля. Рассмотрим два способа построения вписанного в окружность равностороннего треугольника.

Первый способ (фиг. 61,a) основан на том, что все три угла треугольника 7, 2, 3 содержат по 60°, а вертикальная прямая, проведённая через точку 7, является одновременно высотой и биссектрисой угла 1. Так как угол 0 — 1 — 2 равен 30°, то для нахождения стороны 1 — 2 достаточно построить по точке 1 и стороне 0 — 1 угол в 30°. Для этого устанавливаем рейсшину и угольник так, как это показано на фигуре, проводим линию 1 — 2, которая будет одной из сторон искомого треугольника. Чтобы построить сторону 2 — 3, устанавливаем рейсшину в положение, показанное штриховыми линиями, и через точку 2 проводим прямую, которая определит третью вершину треугольника.

Второй способ основан на том, что,если построить правильный шестиугольник, вписанный в окружность, и затем соединить его вершины через одну, то получится равносторонний треугольник.

Для построения треугольника намечаем на диаметре вершину точку 1 и проводим диаметральную линию 1 — 4. Далее из точки 4 радиусом, равным D/2, описываем дугу до пересечения с окружностью в точках 3 и 2. Полученные точки будут двумя другими вершинами искомого треугольника.

Это построение можно выполнить при помощи угольника и циркуля.

Первый способ основан на том, что диагонали квадрата пересекаются в центре описанного круга и наклонены к его осям под углом 45°. Исходя из этого, устанавливаем рейсшину и угольник с углами 45° так, как это показано на фиг. 62, а, и отмечаем точки 1 и 3. Далее через эти точки проводим при помощи рейсшины горизонтальные стороны квадрата 4 — 1 и 3 -2. Затем с помощью рейсшины по катету угольника проводим вертикальные стороны квадрата 1 — 2 и 4 — 3.

Второй способ основан на том, что вершины квадрата делят пополам дуги окружности, заключённые между концами диаметра. Намечаем на концах двух взаимно перпендикулярных диаметров точки А, В и С и из них радиусом у описываем дуги до взаимного их пересечения.

Далее через точки пересечения дуг проводим вспомогательные прямые, отмеченные на фигуре сплошными линиями. Точки их пересечения с окружностью определят вершины 1 и 3; 4 и 2. Полученные таким образом вершины искомого квадрата соединяем последовательно между собою.

Построение вписанного в окружность правильного пятиугольника.

Чтобы вписать в окружность правильный пятиугольник, производим следующие построения. Намечаем на окружности точку 1 и принимаем её за одну из вершин пятиугольника. Делим отрезок АО пополам. Для этого радиусом АО из точки А описываем дугу до пересечения с окружностью в точках M и В. Соединив эти точки прямой, получим точку К, которую соединяем затем с точкой 1. Радиусом, равным отрезку A7, описываем из точки К дугу до пересечения с диаметральной линией АО в точке H. Соединив точку 1 с точкой H, получим сторону пятиугольника. Затем раствором циркуля, равным отрезку 1H, описав дугу из вершины 1 до пересечения с окружностью, найдём вершины 2 и 5. Сделав тем же раствором циркуля засечки из вершин 2 и 5, получим остальные вершины 3 и 4. Найденные точки последовательно соединяем между собой.

Построение правильного пятиугольника по данной его стороне.

Для построения правильного пятиугольника по данной его стороне (фиг. 64) делим отрезок AB на шесть равных частей. Из точек А и В радиусом AB описываем дуги, пересечение которых даст точку К. Через эту точку и деление 3 на прямой AB проводим вертикальную прямую. Далее от точки К на этой прямой откладываем отрезок, равный 4/6 AB. Получим точку 1 -вершину пятиугольника. Затем радиусом, равным АВ, из точки 1 описываем дугу до пересечения с дугами, ранее проведёнными из точек А и В. Точки пересечения дуг определяют вершины пятиугольника 2 и 5. Найденные вершины соединяем последовательно между собой.

Построение вписанного в окружность правильного семиугольника.

Пусть дана окружность диаметра D; нужно вписать в неё правильный семиугольник (фиг. 65). Делим вертикальный диаметр окружности на семь равных частей. Из точки 7 радиусом, равным диаметру окружности D, описываем дугу до пересечения с продолжением горизонтального диаметра в точке F. Точку F назовём полюсом многоугольника. Приняв точку VII за одну из вершин семиугольника, проводим из полюса F через чётные деления вертикального диаметра лучи, пересечение которых с окружностью определят вершины VI, V и IV семиугольника. Для получения вершин / — // — /// из точек IV, V и VI проводим до пересечения с окружностью горизонтальные прямые. Найденные вершины соединяем последовательно между собой. Семиугольник может быть построен путём проведения лучей из полюса F и через нечётные деления вертикального диаметра.

Приведённый способ годен для построения правильных многоугольников с любым числом сторон.

Деление окружности на любое число равных частей можно производить также, пользуясь данными табл. 2, в которой приведены коэффициенты, дающие возможность определять размеры сторон правильных вписанных многоугольников.

Длины сторон правильных вписанных многоугольников.

В первой колонке этой таблицы указаны числа сторон правильного вписанного многоугольника, а во второй — коэффициенты. Длина стороны заданного многоугольника получится от умножения радиуса данной окружности на коэффициент, соответствующий числу сторон этого многоугольника.

Инструкция

В первую очередь необходимо построить циркулем . Центр пусть совпадает с точкой O. Проведите оси перпендикулярные друг другу. В точке одной из этих осей с окружностью поставьте точку V. Эта точка будет вершиной будущего а. В точке пересечения другой оси с окружностью расположите точку D.

На отрезке OD найдите середину и отметьте в ней точку А. После этого нужно построить циркулем окружность с центром в этой точке. Кроме того, она должна проходить через точку V, то есть, радиусом CV. Точку пересечения оси симметрии и этой окружности обозначьте за В.

После этого при помощи циркуля проведите окружность такого же радиуса, поставив иголку в точку V. Пересечение этой окружности с первоначальной обозначьте как точку F. Эта точка станет второй вершиной будущего правильного пятиугольника.

Теперь нужно провести такую же окружность через точку Е, но с центром в F. Пересечение только что проведенной окружности с первоначальной обозначьте как точку G. Эта точка так же станет еще одной из вершин пятиугольника. Аналогичным образом необходимо построить еще один круг. Центр его в G. Точка пересечения его с первоначальной окружностью пусть будет H. Это последняя вершина правильного многоугольника.

У вас должно получиться пять вершин. Остается их просто соединить по линейке. В результате всех этих операций вы получите вписанный в окружность правильный пятиугольник.

Видео по теме

Полезный совет

Таким нехитрым способом можно построить не только пятиугольник. Для того чтобы построить треугольник, необходимо разведите ножки циркуля на расстояние, равное радиусу окружности. Затем в любую точку установите иглу. Проведите тонкую вспомогательную окружность. Две точки пересечения окружностей, а так же точка, в которой была ножка циркуля образуют три вершины правильного треугольника.

Источники:

  • как начертить пятигранник

Окружность — геометрическое место точек плоскости, равноудалённых от заданной точки, называемой центром, на заданное ненулевое расстояние, называемое её радиусом.

Вам понадобится

  • Циркуль, линейка, лист бумаги.

Инструкция

Воткните ножку циркуля с иглой в лист бумаги туда, где должен находиться центр окружности.

Начинайте вращать циркуль относительно ножки с иголкой, при этом следите за тем чтобы ножка с грифелем была плотно прижата к листку. Вращайте до тех пор, пока линия не замкнётся. В результате на листке вы получите окружность необходимого вам радиуса.

Видео по теме

Обратите внимание

При работе с циркулем можно повредить поверхность рабочего стола, при втыкании циркуля в лист бумаги. Чтобы этого избежать подложите под него ещё нескольо листов и все крепко закрепите.

Полезный совет

Закрепите лист бумаги или крепко прижмите его к столу. Если этого не сделать, то лист может легко сдвинуться и окружность не получится.

Источники:

  • Как сделать макет геометрических фигур- Как научиться рисовать

Тема деления окружности на равные части с целью построения правильных вписанных многоугольников издавна занимала умы древних ученых. Эти принципы построения с применением циркуля и линейки были изложены еще в эвклидовых «Началах». Однако лишь спустя два тысячелетия эта задача была полностью решена не только графически, но и математически.

Инструкция

Графическое построение через вычисленный внутренний угол пятиугольника с помощью и линейки (сумма углов выпуклого n-угольника равна Sn=180°(n — 2), т.к. у правильного многоугольника все углы равны). При n=5, S5=5400, тогда величина угла 1080.

А так же с помощью окружности и двух лучей, выходящих из ее центра, при условии, что угол между ними равен 720, т.к. (36005=720). Их пересечение с окружностью даст отрезок, равный стороне пятиугольника.

Еще один простой графический способ: поделить диаметр заданной окружности AB на три части (AC=CD=DE). Из точки D опустить перпендикуляр до пересечения с окружность в точках E, F.

Проведя прямые через отрезки EC и FC до пересечения с окружностью, получим точки G, H.

Точки G,E,B,F,H – вершины правильного пятиугольника.

Построение с помощью приема Биона (позволяющего построить правильный вписанный в окружность многоугольник с любым числом сторон n по заданному соотношению).

Например: для n=5. Построим правильный треугольник ABC, где AB – диаметр заданной окружности. Найдем на AB точку D, по следующему соотношению: AD: AB = 2: n. При n=5, AD=25*AB. Проведем прямую через CD до пересечения с окружностью в точке E. Отрезок AE – сторона правильного вписанного пятиугольника.

При n=5,7,9,10 погрешность построения не превышает 1%. С возрастанием n, погрешность приближения растёт, но остаётся меньше 10,3%.

Построение по заданной стороне по методу Л. Да Винчи (используя соотношение между стороной многоугольника (аn) и апофемой (ha): аn/2: ha =3/(n-1), которое можно выразить так: tg180°/n =3/(n-1)).

Общий способ построения правильных многоугольников по заданной стороне по методу Ф. Коваржика (1888 г.), на основе принципа Л. да Винчи.

Единый способ построения правильного n-угольника на основании теоремы Фалеса.

Можно добавить только, что приближенные методы построения многоугольников оригинальны, просты и красивы.

Окружность еще древние греки считали самой совершенной и гармоничной из всех геометрических фигур. В их ряду окружность является простейшей кривой, а ее совершенство заключается в том, что все составляющие ее точки располагаются на одинаковом расстоянии от ее центра, вокруг которого она «скользит сама по себе». Неудивительно, что способы построения окружности начали интересовать математиков еще в древности.

Вам понадобится

  • * циркуль;
  • * бумага;
  • * лист бумаги в клеточку;
  • * карандаш;
  • * веревка;
  • * 2 колышка.

Инструкция

Самый простой и с и по сей день — построение окружности при помощи специального инструмента — циркуля (от лат. «circulus» — круг, ). Для такого построения сперва нужно отметить центр будущей окружности — например, пересечением 2х штрихпунктирных линий под прямым углом, и выставить шаг циркуля, будущей окружности. Далее установите ножку циркуля в отмеченный центр и, поворачивая ножку с грифелем вокруг него, проведите окружность.

Без циркуля окружность построить тоже возможно. Для этого потребуется карандаш и лист бумаги в клеточку. Отметьте начало будущей окружности — точку А и запомните простой алгоритм: три – один, один – один, один – три. Для построения первой четверти окружности продвиньтесь из точки А на три клетки вправо и на одну вниз и зафиксируйте точку В. Из точки В — на одну клетку вправо и одну вниз и отметьте точку С. И из точки С — на одну клетку вправо и три вниз в точку D. Четверть окружности готова. Теперь для удобства можно развернуть лист против часовой стрелки так, чтобы точка D оказалась вверху, и по тому же алгоритму достроить оставшиеся 3/4 окружности.

Но что делать, если нам нужно построить окружность большего размера, чем позволяет тетрадный лист и шаг циркуля — например, для игры? Тогда нам потребуется веревочка длины, равной радиусу желаемой окружности, и 2 колышка. Колышки привяжите к концам веревки. Один из них воткните в землю, а другим при натянутой веревке начертите окружность.
Вполне возможно, что одним из этих способов построения окружности воспользовался и изобретатель колеса — по сей день одного из самых гениальных изобретений человечества.

Видео по теме

Шестиугольником считается многоугольник, обладающий шестью углами и шестью сторонами. Многоугольники бывают как выпуклыми, так и вогнутыми. У выпуклого шестиугольника все внутренние углы тупые, у вогнутого один или более угол является острым. Шестиугольник достаточно легко построить. Это делается в пару шагов.

Вам понадобится

  • Карандаш, листок бумаги, линейка

Инструкция

Видео по теме

Обратите внимание

Сумма всех внутренних углов шестиугольника равна 720 градусам.

Существуют два основных способа построения правильного многоугольника с пятью сторонами. Оба они предполагают использование циркуля, линейки и карандаша. Первый способ представляет собой вписывание пятиугольника в окружность, а второй способ основывается на заданной длине стороны вашей будущей геометрической фигуры.

Вам понадобится

  • Циркуль, линейка, карандаш

Инструкция

Первый способ построения считается более «классическим». Для начала постройте и как-либо обозначьте ее центр ( для этого О). Затем проведите диаметр этой окружности (назовем его АВ) и разделите один из двух полученных радиусов (например, ОА) ровно пополам. Середину этого радиуса обозначим буквой С.

Из точки О (центра исходной окружности) проведите еще один радиус (ОD), который будет строго перпендикулярен проведенному ранее диаметру (АВ). Затем возьмите циркуль, поставьте его в точку С и отмерьте расстояние до пересечения нового радиуса с окружностью (СD). Это же расстояние отложите на диаметре АВ. Вы получите новую точку (назовем ее Е). Отмерьте циркулем расстояние от точки D до точки Е – оно будет равно длине стороны вашего будущего пятиугольника.

Поставьте циркуль в точку D и отложите на окружности расстояние, равное отрезку DЕ. Повторите эту процедуру еще 3 раза, а затем соедините точку D и 4 новые точки на исходной окружности. Получившаяся в результате построения фигура будет правильным пятиугольником.

Чтобы построить пятиугольник другим способом, для начала начертите отрезок. Например, это будет отрезок АВ длиной 9 см. Далее разделите ваш отрезок на 6 равных частей. В нашем случае длина каждой части будет составлять 1,5 см. Теперь возьмите циркуль, поставьте его в один из концов отрезка и проведите окружность или дугу с радиусом, равным длине отрезка (АВ). Затем переставьте циркуль в другой конец и повторите операцию. Полученные окружности (или дуги) пересекутся в одной точке. Назовем ее C.

Теперь возьмите линейку и проведите прямую через точку С и центр отрезка AB. Затем начиная от точки С отложите на этой прямой отрезок, составляющий 4/6 отрезка AB. Второй конец отрезка обозначим буквой D. Точка D будет являться одной из вершин будущего пятиугольника. Из этой точки проведите окружность или дугу с радиусом, равным АВ. Эта окружность (дуга) пересечет ранее построенные вами окружности (дуги) в точках, являющихся двумя недостающими вершинами пятиугольника. Соедините эти точки с вершинами D, А и В, и построение правильного пятиугольника будет завершено.

Видео по теме

Правильный пятиугольник – это геометрическая фигура. Она имеет пять углов и равные стороны. Изображение пятиугольника широко применяют повсюду – начиная от канцтоваров и заканчивая огромными строениями, например «Пентагон» — министерство обороны США. Нарисовать его можно, не прибегая к измерению сторон линейкой.

Вам понадобится

  • Альбомный лист, карандаш, циркуль, линейка и ластик.

Инструкция

В точке пересечения с горизонтальной , точке В, поставьте ножку циркуля и измерьте расстояние до противоположной стороны. Это будет размер диаметра фигуры. Теперь изобразите полукруг с радиусом, равным диаметру нарисованного круга. Края линии должны чуть-чуть заходить дальше верхней и нижней точек. Таким же образом нарисуйте полукруг с противоположной стороны. Через точки пересечения двух полукругов над верхней и под нижней точками проведите осевую вертикальную линию.

Ножку циркуля поставьте в точку В. Измерьте расстояние до точки О – места пересечения двух осевых линий. Нарисуйте полукруг с радиусом, равным длине отрезка ОВ. Отметьте точки пересечения с границей круга. Через них проведите вертикальную линию. Она будет пересекаться с горизонтальной осевой линией. В точку пересечения С поставьте ножку циркуля и измерьте расстояние до А. Изобразите круг с радиусом равным полученному расстоянию СА.

На месте пересечении круга с осевой горизонтальной линией поставьте точку D. Ножку циркуля поставьте в А и проведите полукруг с радиусом АD. Точки пересечения с кругом обозначьте Е и F.

Круг с центром в точке С пересекается с горизонтальной линией оси в точках D и условно с точкой М. В точке А поставьте ножку циркуля и проведите полукруг с радиусом АМ. Точки его пересечения с кругом, с центром О обозначьте Н и G. Таким образом точки А, F, H, G и Е будут являться вершинами правильного пятиугольника. Теперь соедините прямыми линиями попарно: AF, FH, HG, GE и EA. В результате получился нарисованный правильный пятиугольник AFHGE.

Обратите внимание

Как построить правильный пятиугольник? Какой способ самый простой? Самый простой- взять трафарет с пятиугольником и обвести. Второй по простоте- с линейкой и транспортиром. Третий- с линейкой, циркулем и калькулятором: 1)нарисовать окружность с радиусом равным стороне пятиугольника. 2)нарисовать такую же окружность с центром на одной из точек первой окружности.

Полезный совет

Как построить правильный пятиугольник — для того чтоб построить пятиугольник вам необходимо иметь под рукой: лист бумаги, простой карандаш, линейку, циркуль, ластик.. Теперь вам надо знать размеры вашего пятиугольника. Это будет центр вашего пятиугольника. Как нарисовать правильный пятиугольник с равными сторонами. После того как мы узнали что диаметр круга составляет двадцать сантиметров это информация нам сильно облегчает задачу.

Задача построения правильного пятиугольника сводится к задаче деления окружности на пять равных частей. Поскольку правильный пятиугольник — это одна из фигур, содержащая в себе пропорции золотого сечения, его построением издавна интересовались живописцы и математики. Теперь найдены несколько способов построения правильного многоугольника, вписанного в заданную окружность.

Вам понадобится

  • — линейка
  • — циркуль

Инструкция

Очевидно, что если построить правильный десятиугольник, а затем соединить его вершины через одну, то получим пятиугольник. Для построения начертите окружность заданного радиуса. Обозначьте ее центр буквой O. Проведите два перпендикулярных друг друга радиуса, на рисунке они обозначены как OA1 и OB. Радиус OB разделите пополам с помощью линейки или методом деления отрезка пополам с помощью циркуля. Постройте маленькую окружность с центром C в середине отрезка OB радиусом, равным половине OB.
Соедините точку C с точкой A1 на исходной окружности по линейке. Отрезок CA1 пересекает вспомогательную окружность в точке D. Отрезок DA1 стороне правильного десятиугольника, вписанного в данную окружность. Циркулем отметьте этот отрезок на окружности, затем соедините точки пересечения через одну и вы получите правильный пятиугольник.

Еще один способ Альбрехт Дюрер. Чтобы построить пятиугольник по его способу, начните снова с построения окружности. Снова отметьте ее центр O и проведите два перпендикулярных радиуса OA и OB. Радиус OA разделите пополам и середину отметьте буквой C. Установите иглу циркуля в точку C и раскройте его до точки B. Проведите окружность радиуса BC до пересечения с диаметром исходной окружности, на котором лежит радиус OA. Точку пересечения обозначьте D. Отрезок BD — сторона правильного пятиугольника. Отложите этот отрезок пять раз на исходной окружности и соедините точки пересечения.

Если же требуется построить пятиугольник по его заданной стороне, то вам нужен третий способ. Начертите по линейке сторону пятиугольника, обозначьте этот отрезок буквами A и B. Разделите его на 6 равных частей. Из середины отрезка AB проведите луч, перпендикулярный отрезку. Постройте две окружности радиусом AB и центрами в A и B, как если бы вы собирались делить отрезок пополам. Эти окружности пересекаются в точке С. Точка C при этом лежит на луче, исходящем перпендикулярно вверх из середины AB. Отложите от C вверх по этому лучу расстояние, равное 4/6 от длины AB, обозначьте эту точку D. Постройте окружность радиуса AB с центром в точке D. Пересечение этой окружности с двумя вспомогательными построенными ранее даст последние две вершины пятиугольника.

Обратите внимание

Отношение диагонали правильного пятиугольника к его стороне составляет золотое сечение (иррациональное число (1+√5)/2).

Каждый из пяти внутренних углов пятиугольника равен 108°.

Полезный совет

Если соединить вершины правильного пятиугольника диагоналями, то получится пентаграмма.

Источники:

  • Построение правильных многоугольников с помощью циркуля и линейки

Построение правильных пятиугольников можно с помощью циркуля и линейки. Правда, процесс это достаточно длительный, как, впрочем, и построение любого правильного многоугльника с нечетным количеством сторон. Современные компьютерные программы позволяют сделать это за несколько секунд.

Вам понадобится

  • — компьютер с программой AutoCAD.

Инструкция

Найдите в программе AutoCAD верхнее меню, а в нем — вкладку «Главная». Нажмите на нее левой клавишей мыши. Появится панель «Рисование». Появятся разные типы линий. Выберите замкнутую полилинию. Она и представляет собой многоугольник, остается только ввести параметры. AutoCAD. Позволяет рисовать самые разные правильне . Число сторон может достигать 1024. Можно использовать и командную строку, в зависимости от версии набрав « _polygon» или «мн.-угол».

Вне зависимости от того, пользуетесь ли вы командной строкой или контекстными меню, на экране у вас окошко, в которое предлагается ввести количество сторон. Введите туда цифру «5» и нажмите Enter. Вам будет определить центр пятиугольника. Вбейте в появившееся окошко координаты. Можно обозначить их как (0,0), но могут быть и любые другие данные.

Выберите нужный способ построения. . AutoCAD предлагает три варианта. Пятиугольник может быть описанным окружности или вписанным в нее, но можно построить его и по заданному размеру стороны. Выберите нужный вариант и нажмите на ввод. В случае необходимости задайте радиус окружности и тоже нажмите enter.

Пятиугольник по заданной стороне сначала строится точно так же. Выберите «Рисование», замкнутую полилинию и введите . Правой клавишей мыши вызовите контекстное меню. Нажмите команду «edge” или «сторона”. В командной строке наберите координаты начальной и конечной точек одной из сторон пятиугольника. После этого пятиугольник появится на экране.

Все операции можно выполнять с помощью командной строки. Например, для построения пятиугольника по стороне в русскоязычной версии программы введите букву «с». В англоязычной версии это будет «_e”. Чтобы построить вписанный или описанный пятиугольник, введите после определения количества сторон буквы «о» или «в» (либо же английские «_с» или «_i»)

Видео по теме

Источники:

  • Техническое черчение. Построение многоугольников
  • Уроки AutoCAD

Соотношение углов и плоскостей любого предмета визуально меняется в зависимости от положения объекта в пространстве. Именно поэтому деталь на чертеже обычно выполняется в трех ортогональных проекциях, к которым добавлено пространственное изображение. Обычно это изометрическая проекция. При ее выполнении не используются точки схода, как при построении фронтальной перспективы. Поэтому размеры по мере удаления от наблюдателя не меняются.

Вам понадобится

  • — линейка;
  • — циркуль;
  • — лист бумаги.

Инструкция

Определите осей. Для этого начертите из точки О окружность произвольного радиуса. Центральный угол ее равен 360º. Разделите окружность на 3 равные , использовав в качестве базового радиуса ось ОZ. При этом угол каждого сектора будет равен 120º. Два радиуса как раз и представляют собой нужные вам оси ОX и OY.

Определите положение диаметров. Разделите углы между осями пополам. Соедините точку О с этими новыми точками тонкими линиями. Положение центра окружности зависит от условий задания. Отметьте его точкой и проведите к ней в обе стороны перпендикуляр. Эта линия определит положение большого диаметра.

Вычислите размеры диаметров. Они зависят от того, применяете вы коэффициент искажения или нет. В изометрии этот коэффициент по всем осям составляет 0,82, но довольно часто его округляют и принимают за 1. С учетом искажения большой и малый диаметры эллипса составляют соответственно 1 и 0,58 от исходного. Без применения коэффициента эти размеры составляют 1, 22 и 0, 71 диаметра первоначальной окружности.

Разделите каждый диаметр пополам и отложите от центра окружности большие и малые радиусы. Начертите эллипс.

Видео по теме

Обратите внимание

Для создания объемного изображения можно построить не только изометрическую, но и диметрическую проекцию, а также фронтальную или линейную перспективу. Проекции используются при построении чертежей деталей, а перспективы — в основном в архитектуре. Окружность в диметрии тоже изображается как эллипс, но там другое расположение осей и другие коэффициенты искажения. При выполнении различных видов перспектив учитываются изменения размеров при удалении от наблюдателя.

Иногда около выпуклого многоугольника можно начертить окружность таким образом, чтобы вершины всех углов лежали на ней. Такую окружность по отношению к многоугольнику надо называть описанной. Ее центр не обязательно должен находиться внутри периметра вписанной фигуры, но пользуясь свойствами описанной окружности, найти эту точку, как правило, не очень трудно.

Вам понадобится

  • Линейка, карандаш, транспортир или угольник, циркуль.

Правильный пятиугольник — это многоугольник, у которого все пять сторон и все пять углов равны между собой. Вокруг него легко описать окружность. Построить пятиугольник и поможет именно эта окружность.

Инструкция

В первую очередь необходимо построить циркулем окружность. Центр окружности пусть совпадает с точкой O. Проведите оси симметрии перпендикулярные друг другу. В точке пересечения одной из этих осей с окружностью поставьте точку V. Эта точка будет вершиной будущего пятиугольник а. В точке пересечения другой оси с окружностью расположите точку D.

На отрезке OD найдите середину и отметьте в ней точку А. После этого нужно построить циркулем окружность с центром в этой точке. Кроме того, она должна проходить через точку V, то есть, радиусом CV. Точку пересечения оси симметрии и этой окружности обозначьте за В.

После этого при помощи циркуля проведите окружность такого же радиуса, поставив иголку в точку V. Пересечение этой окружности с первоначальной обозначьте как точку F. Эта точка станет второй вершиной будущего правильного пятиугольник а.

Теперь нужно провести такую же окружность через точку Е, но с центром в F. Пересечение только что проведенной окружности с первоначальной обозначьте как точку G. Эта точка так же станет еще одной из вершин пятиугольник а. Аналогичным образом необходимо построить еще один круг. Центр его в G. Точка пересечения его с первоначальной окружностью пусть будет H. Это последняя вершина правильного многоугольника.

У вас должно получиться пять вершин. Остается их просто соединить по линейке. В результате всех этих операций вы получите вписанный в окружность правильный пятиугольник .

Построение правильных пятиугольников можно с помощью циркуля и линейки. Правда, процесс это достаточно длительный, как, впрочем, и построение любого правильного многоугльника с нечетным количеством сторон. Современные компьютерные программы позволяют сделать это за несколько секунд.

Вам понадобится

  • — компьютер с программой AutoCAD.

Инструкция

Найдите в программе AutoCAD верхнее меню, а в нем — вкладку «Главная». Нажмите на нее левой клавишей мыши. Появится панель «Рисование». Появятся разные типы линий. Выберите замкнутую полилинию. Она и представляет собой многоугольник, остается только ввести параметры. AutoCAD. Позволяет рисовать самые разные правильне многоугольники. Число сторон может достигать 1024. Можно использовать и командную строку, в зависимости от версии набрав « _polygon» или «мн.-угол».

Вне зависимости от того, пользуетесь ли вы командной строкой или контекстными меню, на экране у вас появится окошко, в которое предлагается ввести количество сторон. Введите туда цифру «5» и нажмите Enter. Вам будет предложено определить центр пятиугольника. Вбейте в появившееся окошко координаты. Можно обозначить их как (0,0), но могут быть и любые другие данные.

Выберите нужный способ построения. . AutoCAD предлагает три варианта. Пятиугольник может быть описанным вокруг окружности или вписанным в нее, но можно построить его и по заданному размеру стороны. Выберите нужный вариант и нажмите на ввод. В случае необходимости задайте радиус окружности и тоже нажмите enter.

Пятиугольник по заданной стороне сначала строится точно так же. Выберите «Рисование», замкнутую полилинию и введите число сторон. Правой клавишей мыши вызовите контекстное меню. Нажмите команду «edge” или «сторона”. В командной строке наберите координаты начальной и конечной точек одной из сторон пятиугольника. После этого пятиугольник появится на экране.

Все операции можно выполнять с помощью командной строки. Например, для построения пятиугольника по стороне в русскоязычной версии программы введите букву «с». В англоязычной версии это будет «_e”. Чтобы построить вписанный или описанный пятиугольник, введите после определения количества сторон буквы «о» или «в» (либо же английские «_с» или «_i»)

Таким нехитрым способом можно построить не только пятиугольник. Для того чтобы построить треугольник, необходимо разведите ножки циркуля на расстояние, равное радиусу окружности. Затем в любую точку установите иглу. Проведите тонкую вспомогательную окружность. Две точки пересечения окружностей, а так же точка, в которой была ножка циркуля образуют три вершины правильного треугольника.

Правильный пятиугольник представляет собой геометрическую фигуру, которая образовывается пересечением пяти прямых, создающих пять одинаковых углов. Такая фигура носит название — пентагон. С пятиугольником тесно связана работа художников — их рисунки строятся на основе правильных геометрических фигур. Для этого необходимо знать то, как быстро построить пентагон.

Чем интересна эта фигура? Форму пентагона имеет здание Министерства обороны Соединенных Штатов Америки . Это можно увидеть на фото, сделанных с высоты полета. В природе не существует кристаллов и камней, форма которых напоминала бы пентагон. Только в этой фигуре количество граней совпадает с числом диагоналей.

Параметры правильного пятиугольника

Прямоугольный пятиугольник, как и каждая фигура в геометрии, имеет свои параметры. Зная необходимые формулы, можно рассчитать эти параметры, что облегчит процесс построения пентагона. Способы и формулы расчетов:

  • сумма всех углов в многоугольниках равна 360 градусам. В правильном пятиугольнике все углы равны, соответственно, центральный угол находится таким способом: 360/5 = 72 градуса;
  • внутренний угол находится таким образом: 180*(n -2)/ n = 180*(5−2)/5 = 108 градусов. Сумма всех внутренних углов: 108*5 = 540 градусов.

Сторона пентагона находится с помощью параметров, которые уже даны в условии задачи:

  • если вокруг пятиугольника описана окружность и известен ее радиус, сторона находится по такой формуле: a = 2*R*sin (α/2) = 2*R*sin (72/2) = 1,1756*R.
  • Если известен радиус вписанной в пентагон окружности, то формула расчета стороны многоугольника: 2*r*tg (α/2) = 2*r*tg (α/2) = 1,453*r.
  • При известной величине диагонали пентагона его сторона рассчитывается таким образом: а = D/1,618.

Площадь пентагона так же , как и его сторона, зависит от уже найденных параметров:

  • с помощью известного радиуса вписанной окружности площадь находится так: S = (n*a*r)/2 = 2,5*a*r.
  • описанная вокруг пятиугольника окружность позволяет найти площадь по такой формуле: S = (n*R2*sin α)/2 = 2,3776*R2.
  • в зависимости от стороны пентагона: S = (5*a2*tg 54°)/4 = 1,7205* a2.

Построение пентагона

Построить правильный пятиугольник можно с помощью линейки и циркуля, на основе вписанной в него окружности или одной из сторон.

Как начертить пятиугольник на основе вписанной окружности? Для этого необходимо запастись циркулем и линейкой и сделать такие шаги:

  1. Сначала необходимо начертить окружность с центром О, после чего на ней выбрать точку, А — вершину пентагона. От центра к вершине проводится отрезок.
  2. Затем строится перпендикулярная прямой ОА отрезок, который также проходит через О — центр окружности. Его пересечение с окружностью обозначается точкой В. Отрезок О. В. делится пополам точкой С.
  3. Точка С станет центром новой окружности, проходящей через А. Точка D — это ее пересечение с прямой ОВ в границах первой фигуры.
  4. После этого проводится третья окружность через D, центром которой является точка А. Она пересекается с первой фигурой в двух точках, их необходимо обозначить буквами Е и F.
  5. Следующая окружность имеет центр в точке Е и проходит через А, а ее пересечение с первоначальной находится в новой точке G.
  6. Последняя окружность в этом рисунке проводится через точку, А с центром F. На ее пересечении с начальной ставится точка Н.
  7. На первой окружности после всех проделанных шагов появились пять точек, которые необходимо соединить отрезками. Таким образом получился правильный пятиугольник АЕ G Н F.

Как построить правильный пятиугольник иным способом? С помощью линейки и циркуля пентагон можно построить немного быстрее. Для этого необходимо:

  1. Cначала необходимо с помощью циркуля нарисовать окружность, центр которой — точка О.
  2. Чертится радиус ОА — отрезок, который откладывается на окружность. Его делят пополам точкой В.
  3. Перпендикулярно радиусу ОА начерчивается отрезок ОС, точки В и С соединяются прямой.
  4. Следующим шагом является отложение длины отрезка ВС с помощью циркуля на диаметральной линии. Перпендикулярно отрезку ОА появляется точка D. Точки В и D соединяются, образуя новый отрезок.
  5. Для того, чтобы получить величину стороны пентагона, необходимо соединить точки С и D.
  6. D с помощью циркуля переносится на окружность и обозначается точкой Е. Соединив Е и С, можно получить первую сторону правильного пятиугольника. Следуя этой инструкции можно узнать о том, как быстро построить пятиугольник с равными сторонами, продолжая построение остальных его сторон подобно первой.

В пятиугольнике с одинаковыми сторонами диагонали равны и образуют пятиконечную звезду, которая называется пентаграммой. Золотое сечение — это отношение величины диагонали к стороне пентагона.

Пентагон непригоден для полного заполнения плоскости. Использование любого материала в этой форме оставляет промежутки или образует наложения. Хотя природных кристаллов этой формы не существует в природе, но при образовании льда на поверхности гладких медных изделий возникают молекулы в виде пентагона, которые соединены в цепочки.2}{4}\sqrt{\frac{5+\sqrt{5

{2}};

Правильный пятиугольник (греч. πενταγωνον ) — геометрическая фигура , правильный многоугольник с пятью сторонами.

Свойства

  • Додекаэдр — единственный из правильных многогранников , грани которого представляют собой правильные пятиугольники.
  • Пентагон — здание Министерства обороны США имеет форму правильного пятиугольника.
  • Правильный пятиугольник — правильный многоугольник с наименьшим количеством углов из тех, которыми нельзя замостить плоскость.
  • В природе не существует кристаллов с гранями в форме правильного пятиугольника.
  • Пятиугольник со всеми его диагоналями является проекцией 4-симплекса.

См. также

Напишите отзыв о статье «Правильный пятиугольник»

Примечания

По числу сторон
Правильные
Треугольники
Четырёхугольники
См. также
Многоугольники
Звёздчатые многоугольники
Паркеты на плоскости
Правильные многогранники
и сферические паркеты
Многогранники Кеплера — Пуансо
Соты
Четырёхмерные многогранники

Отрывок, характеризующий Правильный пятиугольник

Петя не знал, как долго это продолжалось: он наслаждался, все время удивлялся своему наслаждению и жалел, что некому сообщить его. Его разбудил ласковый голос Лихачева.
– Готово, ваше благородие, надвое хранцуза распластаете.
Петя очнулся.
– Уж светает, право, светает! – вскрикнул он.
Невидные прежде лошади стали видны до хвостов, и сквозь оголенные ветки виднелся водянистый свет. Петя встряхнулся, вскочил, достал из кармана целковый и дал Лихачеву, махнув, попробовал шашку и положил ее в ножны. Казаки отвязывали лошадей и подтягивали подпруги.
– Вот и командир, – сказал Лихачев. Из караулки вышел Денисов и, окликнув Петю, приказал собираться.

Быстро в полутьме разобрали лошадей, подтянули подпруги и разобрались по командам. Денисов стоял у караулки, отдавая последние приказания. Пехота партии, шлепая сотней ног, прошла вперед по дороге и быстро скрылась между деревьев в предрассветном тумане. Эсаул что то приказывал казакам. Петя держал свою лошадь в поводу, с нетерпением ожидая приказания садиться. Обмытое холодной водой, лицо его, в особенности глаза горели огнем, озноб пробегал по спине, и во всем теле что то быстро и равномерно дрожало.
– Ну, готово у вас все? – сказал Денисов. – Давай лошадей.
Лошадей подали. Денисов рассердился на казака за то, что подпруги были слабы, и, разбранив его, сел. Петя взялся за стремя. Лошадь, по привычке, хотела куснуть его за ногу, но Петя, не чувствуя своей тяжести, быстро вскочил в седло и, оглядываясь на тронувшихся сзади в темноте гусар, подъехал к Денисову.
– Василий Федорович, вы мне поручите что нибудь? Пожалуйста… ради бога… – сказал он. Денисов, казалось, забыл про существование Пети. Он оглянулся на него.
– Об одном тебя пг»ошу, – сказал он строго, – слушаться меня и никуда не соваться.
Во все время переезда Денисов ни слова не говорил больше с Петей и ехал молча. Когда подъехали к опушке леса, в поле заметно уже стало светлеть. Денисов поговорил что то шепотом с эсаулом, и казаки стали проезжать мимо Пети и Денисова. Когда они все проехали, Денисов тронул свою лошадь и поехал под гору. Садясь на зады и скользя, лошади спускались с своими седоками в лощину. Петя ехал рядом с Денисовым. Дрожь во всем его теле все усиливалась. Становилось все светлее и светлее, только туман скрывал отдаленные предметы. Съехав вниз и оглянувшись назад, Денисов кивнул головой казаку, стоявшему подле него.
– Сигнал! – проговорил он.
Казак поднял руку, раздался выстрел. И в то же мгновение послышался топот впереди поскакавших лошадей, крики с разных сторон и еще выстрелы.
В то же мгновение, как раздались первые звуки топота и крика, Петя, ударив свою лошадь и выпустив поводья, не слушая Денисова, кричавшего на него, поскакал вперед. Пете показалось, что вдруг совершенно, как середь дня, ярко рассвело в ту минуту, как послышался выстрел. Он подскакал к мосту. Впереди по дороге скакали казаки. На мосту он столкнулся с отставшим казаком и поскакал дальше. Впереди какие то люди, – должно быть, это были французы, – бежали с правой стороны дороги на левую. Один упал в грязь под ногами Петиной лошади.
У одной избы столпились казаки, что то делая. Из середины толпы послышался страшный крик. Петя подскакал к этой толпе, и первое, что он увидал, было бледное, с трясущейся нижней челюстью лицо француза, державшегося за древко направленной на него пики.
– Ура!.. Ребята… наши… – прокричал Петя и, дав поводья разгорячившейся лошади, поскакал вперед по улице.
Впереди слышны были выстрелы. Казаки, гусары и русские оборванные пленные, бежавшие с обеих сторон дороги, все громко и нескладно кричали что то. Молодцеватый, без шапки, с красным нахмуренным лицом, француз в синей шинели отбивался штыком от гусаров. Когда Петя подскакал, француз уже упал. Опять опоздал, мелькнуло в голове Пети, и он поскакал туда, откуда слышались частые выстрелы. Выстрелы раздавались на дворе того барского дома, на котором он был вчера ночью с Долоховым. Французы засели там за плетнем в густом, заросшем кустами саду и стреляли по казакам, столпившимся у ворот. Подъезжая к воротам, Петя в пороховом дыму увидал Долохова с бледным, зеленоватым лицом, кричавшего что то людям. «В объезд! Пехоту подождать!» – кричал он, в то время как Петя подъехал к нему.
– Подождать?.. Ураааа!.. – закричал Петя и, не медля ни одной минуты, поскакал к тому месту, откуда слышались выстрелы и где гуще был пороховой дым. Послышался залп, провизжали пустые и во что то шлепнувшие пули. Казаки и Долохов вскакали вслед за Петей в ворота дома. Французы в колеблющемся густом дыме одни бросали оружие и выбегали из кустов навстречу казакам, другие бежали под гору к пруду. Петя скакал на своей лошади вдоль по барскому двору и, вместо того чтобы держать поводья, странно и быстро махал обеими руками и все дальше и дальше сбивался с седла на одну сторону. Лошадь, набежав на тлевший в утреннем свето костер, уперлась, и Петя тяжело упал на мокрую землю. Казаки видели, как быстро задергались его руки и ноги, несмотря на то, что голова его не шевелилась. Пуля пробила ему голову.
Переговоривши с старшим французским офицером, который вышел к нему из за дома с платком на шпаге и объявил, что они сдаются, Долохов слез с лошади и подошел к неподвижно, с раскинутыми руками, лежавшему Пете.
– Готов, – сказал он, нахмурившись, и пошел в ворота навстречу ехавшему к нему Денисову.
– Убит?! – вскрикнул Денисов, увидав еще издалека то знакомое ему, несомненно безжизненное положение, в котором лежало тело Пети.
– Готов, – повторил Долохов, как будто выговаривание этого слова доставляло ему удовольствие, и быстро пошел к пленным, которых окружили спешившиеся казаки. – Брать не будем! – крикнул он Денисову.

Как сделать правильный пятиугольник с помощью циркуля. Как построить и нарисовать правильный пятиугольник по окружности. Построение правильных многоугольников по заданной стороне

Правильный пятиугольник — это многоугольник, у которого все пять сторон и все пять углов равны между собой. Вокруг него легко описать окружность. Построить пятиугольник и поможет именно эта окружность.

Инструкция

В первую очередь необходимо построить циркулем окружность. Центр окружности пусть совпадает с точкой O. Проведите оси симметрии перпендикулярные друг другу. В точке пересечения одной из этих осей с окружностью поставьте точку V. Эта точка будет вершиной будущего пятиугольник а. В точке пересечения другой оси с окружностью расположите точку D.

На отрезке OD найдите середину и отметьте в ней точку А. После этого нужно построить циркулем окружность с центром в этой точке. Кроме того, она должна проходить через точку V, то есть, радиусом CV. Точку пересечения оси симметрии и этой окружности обозначьте за В.

После этого при помощи циркуля проведите окружность такого же радиуса, поставив иголку в точку V. Пересечение этой окружности с первоначальной обозначьте как точку F. Эта точка станет второй вершиной будущего правильного пятиугольник а.

Теперь нужно провести такую же окружность через точку Е, но с центром в F. Пересечение только что проведенной окружности с первоначальной обозначьте как точку G. Эта точка так же станет еще одной из вершин пятиугольник а. Аналогичным образом необходимо построить еще один круг. Центр его в G. Точка пересечения его с первоначальной окружностью пусть будет H. Это последняя вершина правильного многоугольника.

У вас должно получиться пять вершин. Остается их просто соединить по линейке. В результате всех этих операций вы получите вписанный в окружность правильный пятиугольник .

Построение правильных пятиугольников можно с помощью циркуля и линейки. Правда, процесс это достаточно длительный, как, впрочем, и построение любого правильного многоугльника с нечетным количеством сторон. Современные компьютерные программы позволяют сделать это за несколько секунд.

Вам понадобится

  • — компьютер с программой AutoCAD.

Инструкция

Найдите в программе AutoCAD верхнее меню, а в нем — вкладку «Главная». Нажмите на нее левой клавишей мыши. Появится панель «Рисование». Появятся разные типы линий. Выберите замкнутую полилинию. Она и представляет собой многоугольник, остается только ввести параметры. AutoCAD. Позволяет рисовать самые разные правильне многоугольники. Число сторон может достигать 1024. Можно использовать и командную строку, в зависимости от версии набрав « _polygon» или «мн.-угол».

Вне зависимости от того, пользуетесь ли вы командной строкой или контекстными меню, на экране у вас появится окошко, в которое предлагается ввести количество сторон. Введите туда цифру «5» и нажмите Enter. Вам будет предложено определить центр пятиугольника. Вбейте в появившееся окошко координаты. Можно обозначить их как (0,0), но могут быть и любые другие данные.

Выберите нужный способ построения. . AutoCAD предлагает три варианта. Пятиугольник может быть описанным вокруг окружности или вписанным в нее, но можно построить его и по заданному размеру стороны. Выберите нужный вариант и нажмите на ввод. В случае необходимости задайте радиус окружности и тоже нажмите enter.

Пятиугольник по заданной стороне сначала строится точно так же. Выберите «Рисование», замкнутую полилинию и введите число сторон. Правой клавишей мыши вызовите контекстное меню. Нажмите команду «edge” или «сторона”. В командной строке наберите координаты начальной и конечной точек одной из сторон пятиугольника. После этого пятиугольник появится на экране.

Все операции можно выполнять с помощью командной строки. Например, для построения пятиугольника по стороне в русскоязычной версии программы введите букву «с». В англоязычной версии это будет «_e”. Чтобы построить вписанный или описанный пятиугольник, введите после определения количества сторон буквы «о» или «в» (либо же английские «_с» или «_i»)

Таким нехитрым способом можно построить не только пятиугольник. Для того чтобы построить треугольник, необходимо разведите ножки циркуля на расстояние, равное радиусу окружности. Затем в любую точку установите иглу. Проведите тонкую вспомогательную окружность. Две точки пересечения окружностей, а так же точка, в которой была ножка циркуля образуют три вершины правильного треугольника.

Построение вписанного в окружность правильного шестиугольника.

Построение шестиугольника основано на том, что сторона его равна радиусу описанной окружности. Поэтому для построения достаточно разделить окружность на шесть равных частей и соединить найденные точки между собой.

Правильный шестиугольник можно построить, пользуясь рейсшиной и угольником 30X60°. Для выполнения этого построения принимаем горизонтальный диаметр окружности за биссектрису углов 1 и 4, строим стороны 1 — 6, 4 — 3, 4 — 5 и 7 — 2, после чего проводим стороны 5 — 6 и 3 — 2.

Вершины такого треугольника можно построить с помощью циркуля и угольника с углами в 30 и 60° или только одного циркуля. Рассмотрим два способа построения вписанного в окружность равностороннего треугольника.

Первый способ (фиг. 61,a) основан на том, что все три угла треугольника 7, 2, 3 содержат по 60°, а вертикальная прямая, проведённая через точку 7, является одновременно высотой и биссектрисой угла 1. Так как угол 0 — 1 — 2 равен 30°, то для нахождения стороны 1 — 2 достаточно построить по точке 1 и стороне 0 — 1 угол в 30°. Для этого устанавливаем рейсшину и угольник так, как это показано на фигуре, проводим линию 1 — 2, которая будет одной из сторон искомого треугольника. Чтобы построить сторону 2 — 3, устанавливаем рейсшину в положение, показанное штриховыми линиями, и через точку 2 проводим прямую, которая определит третью вершину треугольника.

Второй способ основан на том, что,если построить правильный шестиугольник, вписанный в окружность, и затем соединить его вершины через одну, то получится равносторонний треугольник.

Для построения треугольника намечаем на диаметре вершину точку 1 и проводим диаметральную линию 1 — 4. Далее из точки 4 радиусом, равным D/2, описываем дугу до пересечения с окружностью в точках 3 и 2. Полученные точки будут двумя другими вершинами искомого треугольника.

Это построение можно выполнить при помощи угольника и циркуля.

Первый способ основан на том, что диагонали квадрата пересекаются в центре описанного круга и наклонены к его осям под углом 45°. Исходя из этого, устанавливаем рейсшину и угольник с углами 45° так, как это показано на фиг. 62, а, и отмечаем точки 1 и 3. Далее через эти точки проводим при помощи рейсшины горизонтальные стороны квадрата 4 — 1 и 3 -2. Затем с помощью рейсшины по катету угольника проводим вертикальные стороны квадрата 1 — 2 и 4 — 3.

Второй способ основан на том, что вершины квадрата делят пополам дуги окружности, заключённые между концами диаметра. Намечаем на концах двух взаимно перпендикулярных диаметров точки А, В и С и из них радиусом у описываем дуги до взаимного их пересечения.

Далее через точки пересечения дуг проводим вспомогательные прямые, отмеченные на фигуре сплошными линиями. Точки их пересечения с окружностью определят вершины 1 и 3; 4 и 2. Полученные таким образом вершины искомого квадрата соединяем последовательно между собою.

Построение вписанного в окружность правильного пятиугольника.

Чтобы вписать в окружность правильный пятиугольник, производим следующие построения. Намечаем на окружности точку 1 и принимаем её за одну из вершин пятиугольника. Делим отрезок АО пополам. Для этого радиусом АО из точки А описываем дугу до пересечения с окружностью в точках M и В. Соединив эти точки прямой, получим точку К, которую соединяем затем с точкой 1. Радиусом, равным отрезку A7, описываем из точки К дугу до пересечения с диаметральной линией АО в точке H. Соединив точку 1 с точкой H, получим сторону пятиугольника. Затем раствором циркуля, равным отрезку 1H, описав дугу из вершины 1 до пересечения с окружностью, найдём вершины 2 и 5. Сделав тем же раствором циркуля засечки из вершин 2 и 5, получим остальные вершины 3 и 4. Найденные точки последовательно соединяем между собой.

Построение правильного пятиугольника по данной его стороне.

Для построения правильного пятиугольника по данной его стороне (фиг. 64) делим отрезок AB на шесть равных частей. Из точек А и В радиусом AB описываем дуги, пересечение которых даст точку К. Через эту точку и деление 3 на прямой AB проводим вертикальную прямую. Далее от точки К на этой прямой откладываем отрезок, равный 4/6 AB. Получим точку 1 -вершину пятиугольника. Затем радиусом, равным АВ, из точки 1 описываем дугу до пересечения с дугами, ранее проведёнными из точек А и В. Точки пересечения дуг определяют вершины пятиугольника 2 и 5. Найденные вершины соединяем последовательно между собой.

Построение вписанного в окружность правильного семиугольника.

Пусть дана окружность диаметра D; нужно вписать в неё правильный семиугольник (фиг. 65). Делим вертикальный диаметр окружности на семь равных частей. Из точки 7 радиусом, равным диаметру окружности D, описываем дугу до пересечения с продолжением горизонтального диаметра в точке F. Точку F назовём полюсом многоугольника. Приняв точку VII за одну из вершин семиугольника, проводим из полюса F через чётные деления вертикального диаметра лучи, пересечение которых с окружностью определят вершины VI, V и IV семиугольника. Для получения вершин / — // — /// из точек IV, V и VI проводим до пересечения с окружностью горизонтальные прямые. Найденные вершины соединяем последовательно между собой. Семиугольник может быть построен путём проведения лучей из полюса F и через нечётные деления вертикального диаметра.

Приведённый способ годен для построения правильных многоугольников с любым числом сторон.

Деление окружности на любое число равных частей можно производить также, пользуясь данными табл. 2, в которой приведены коэффициенты, дающие возможность определять размеры сторон правильных вписанных многоугольников.

Длины сторон правильных вписанных многоугольников.

В первой колонке этой таблицы указаны числа сторон правильного вписанного многоугольника, а во второй — коэффициенты. Длина стороны заданного многоугольника получится от умножения радиуса данной окружности на коэффициент, соответствующий числу сторон этого многоугольника.

{2}};

Правильный пятиугольник (греч. πενταγωνον ) — геометрическая фигура , правильный многоугольник с пятью сторонами.

Свойства

  • Додекаэдр — единственный из правильных многогранников , грани которого представляют собой правильные пятиугольники.
  • Пентагон — здание Министерства обороны США имеет форму правильного пятиугольника.
  • Правильный пятиугольник — правильный многоугольник с наименьшим количеством углов из тех, которыми нельзя замостить плоскость.
  • В природе не существует кристаллов с гранями в форме правильного пятиугольника.
  • Пятиугольник со всеми его диагоналями является проекцией 4-симплекса.

См. также

Напишите отзыв о статье «Правильный пятиугольник»

Примечания

\frac{{t^2 \sqrt {25 + 10\sqrt 5 } }}{4} =
\frac{5R^2}{4}\sqrt{\frac{5+\sqrt{5

По числу сторон
Правильные
Треугольники
Четырёхугольники
См. также
Многоугольники
Звёздчатые многоугольники
Паркеты на плоскости
Правильные многогранники
и сферические паркеты
Многогранники Кеплера — Пуансо
Соты
Четырёхмерные многогранники

Отрывок, характеризующий Правильный пятиугольник

Петя не знал, как долго это продолжалось: он наслаждался, все время удивлялся своему наслаждению и жалел, что некому сообщить его. Его разбудил ласковый голос Лихачева.
– Готово, ваше благородие, надвое хранцуза распластаете.
Петя очнулся.
– Уж светает, право, светает! – вскрикнул он.
Невидные прежде лошади стали видны до хвостов, и сквозь оголенные ветки виднелся водянистый свет. Петя встряхнулся, вскочил, достал из кармана целковый и дал Лихачеву, махнув, попробовал шашку и положил ее в ножны. Казаки отвязывали лошадей и подтягивали подпруги.
– Вот и командир, – сказал Лихачев. Из караулки вышел Денисов и, окликнув Петю, приказал собираться.

Быстро в полутьме разобрали лошадей, подтянули подпруги и разобрались по командам. Денисов стоял у караулки, отдавая последние приказания. Пехота партии, шлепая сотней ног, прошла вперед по дороге и быстро скрылась между деревьев в предрассветном тумане. Эсаул что то приказывал казакам. Петя держал свою лошадь в поводу, с нетерпением ожидая приказания садиться. Обмытое холодной водой, лицо его, в особенности глаза горели огнем, озноб пробегал по спине, и во всем теле что то быстро и равномерно дрожало.
– Ну, готово у вас все? – сказал Денисов. – Давай лошадей.
Лошадей подали. Денисов рассердился на казака за то, что подпруги были слабы, и, разбранив его, сел. Петя взялся за стремя. Лошадь, по привычке, хотела куснуть его за ногу, но Петя, не чувствуя своей тяжести, быстро вскочил в седло и, оглядываясь на тронувшихся сзади в темноте гусар, подъехал к Денисову.
– Василий Федорович, вы мне поручите что нибудь? Пожалуйста… ради бога… – сказал он. Денисов, казалось, забыл про существование Пети. Он оглянулся на него.
– Об одном тебя пг»ошу, – сказал он строго, – слушаться меня и никуда не соваться.
Во все время переезда Денисов ни слова не говорил больше с Петей и ехал молча. Когда подъехали к опушке леса, в поле заметно уже стало светлеть. Денисов поговорил что то шепотом с эсаулом, и казаки стали проезжать мимо Пети и Денисова. Когда они все проехали, Денисов тронул свою лошадь и поехал под гору. Садясь на зады и скользя, лошади спускались с своими седоками в лощину. Петя ехал рядом с Денисовым. Дрожь во всем его теле все усиливалась. Становилось все светлее и светлее, только туман скрывал отдаленные предметы. Съехав вниз и оглянувшись назад, Денисов кивнул головой казаку, стоявшему подле него.
– Сигнал! – проговорил он.
Казак поднял руку, раздался выстрел. И в то же мгновение послышался топот впереди поскакавших лошадей, крики с разных сторон и еще выстрелы.
В то же мгновение, как раздались первые звуки топота и крика, Петя, ударив свою лошадь и выпустив поводья, не слушая Денисова, кричавшего на него, поскакал вперед. Пете показалось, что вдруг совершенно, как середь дня, ярко рассвело в ту минуту, как послышался выстрел. Он подскакал к мосту. Впереди по дороге скакали казаки. На мосту он столкнулся с отставшим казаком и поскакал дальше. Впереди какие то люди, – должно быть, это были французы, – бежали с правой стороны дороги на левую. Один упал в грязь под ногами Петиной лошади.
У одной избы столпились казаки, что то делая. Из середины толпы послышался страшный крик. Петя подскакал к этой толпе, и первое, что он увидал, было бледное, с трясущейся нижней челюстью лицо француза, державшегося за древко направленной на него пики.
– Ура!.. Ребята… наши… – прокричал Петя и, дав поводья разгорячившейся лошади, поскакал вперед по улице.
Впереди слышны были выстрелы. Казаки, гусары и русские оборванные пленные, бежавшие с обеих сторон дороги, все громко и нескладно кричали что то. Молодцеватый, без шапки, с красным нахмуренным лицом, француз в синей шинели отбивался штыком от гусаров. Когда Петя подскакал, француз уже упал. Опять опоздал, мелькнуло в голове Пети, и он поскакал туда, откуда слышались частые выстрелы. Выстрелы раздавались на дворе того барского дома, на котором он был вчера ночью с Долоховым. Французы засели там за плетнем в густом, заросшем кустами саду и стреляли по казакам, столпившимся у ворот. Подъезжая к воротам, Петя в пороховом дыму увидал Долохова с бледным, зеленоватым лицом, кричавшего что то людям. «В объезд! Пехоту подождать!» – кричал он, в то время как Петя подъехал к нему.
– Подождать?.. Ураааа!.. – закричал Петя и, не медля ни одной минуты, поскакал к тому месту, откуда слышались выстрелы и где гуще был пороховой дым. Послышался залп, провизжали пустые и во что то шлепнувшие пули. Казаки и Долохов вскакали вслед за Петей в ворота дома. Французы в колеблющемся густом дыме одни бросали оружие и выбегали из кустов навстречу казакам, другие бежали под гору к пруду. Петя скакал на своей лошади вдоль по барскому двору и, вместо того чтобы держать поводья, странно и быстро махал обеими руками и все дальше и дальше сбивался с седла на одну сторону. Лошадь, набежав на тлевший в утреннем свето костер, уперлась, и Петя тяжело упал на мокрую землю. Казаки видели, как быстро задергались его руки и ноги, несмотря на то, что голова его не шевелилась. Пуля пробила ему голову.
Переговоривши с старшим французским офицером, который вышел к нему из за дома с платком на шпаге и объявил, что они сдаются, Долохов слез с лошади и подошел к неподвижно, с раскинутыми руками, лежавшему Пете.
– Готов, – сказал он, нахмурившись, и пошел в ворота навстречу ехавшему к нему Денисову.
– Убит?! – вскрикнул Денисов, увидав еще издалека то знакомое ему, несомненно безжизненное положение, в котором лежало тело Пети.
– Готов, – повторил Долохов, как будто выговаривание этого слова доставляло ему удовольствие, и быстро пошел к пленным, которых окружили спешившиеся казаки. – Брать не будем! – крикнул он Денисову.

8 июня 2011

Первый способ — по данной стороне S с помощью транспортира.

Проводим прямую и откладываем на ней AB = S; принимаем эту линию за радиус и этим радиусом из точек A и В описываем дуги: далее с помощью транспортира строим в этих точках углы в 108°, стороны которых пересекутся с дугами в точках С и D; из этих точек радиусом АВ = 5 описываем дуги, которые пересекутся в Е, и прямыми линиями соединяем точки Л, С, Е, D, В.

Полученный пятиугольник
— искомый.

Второй способ. Проведем окружность радиусом r. Из точки А циркулем проводим дугу радиуса AM до пересечения в точках В и С с окружностью. Соединяем В и С линией, которая пересечет горизонтальную ось в точке Е.

Затем из точки Е проводим дугу, которая пересечет горизонтальную линию в точке О. Описываем, наконец, из точки F дугу, которая пересечет окружность в точках Н и К. Отложив по окружности расстояние FO = FH = FK пять раз и соединив точки деления линиями, получим правильный пятиугольник.

Третий способ. В данный круг вписать правильный пятиугольник. Проводим два взаимно перпендикулярных диаметра АВ и МС. Делим радиус АО точкой Е пополам. Из точки Е, как из центра, проводим дугу окружности радиуса ЕМ и засекаем ею диаметр АВ в точке F. Отрезок MF равен стороне искомого правильного пятиугольника. Раствором циркуля, равным MF, делаем засечки N 1 , Р 1 , Q 1 , К 1 и соединяем их прямыми.

На рисунке построен шестиугольник по данной стороне.

Прямой АВ = 5, как радиусом, из точек А и В описываем дуги, которые пересекутся в С; из этой точки тем же радиусом описываем окружность, на которой сторона А В отложится 6 раз.

Шестиугольник ADEFGB
— искомый. 

«Отделка комнат при ремонте»,
Н.П.Краснов


Первый способ построения. Проводим горизонтальную (АВ) и вертикальную (CD) оси и из точки их пересечения М откладываем в соответствующем масштабе полуоси. Наносим малую полуось от точки М на большой оси до точки Е. Эллипс, первый способ построения Делим BE на 2 части и одну наносим от точки М на большой оси (до F или H)…


Основанием для нанесения росписи служат полностью законченные окраской поверхности стен, потолков и других конструкций; роспись делается по высококачественным клеевым и масляным окраскам, сделанным под торцовку или флейц. Приступая к разработке эскиза отделки, мастер должен ясно представить себе всю композицию в бытовой обстановке и отчетливо осознать творческий замысел. Только при соблюдении этого основного условия можно правильно…

Обмер выполненных работ, за исключением особо оговоренных случаев, производится по площади действительно обработанной поверхности с учетом ее рельефа и за вычетом необработанных мест. Для определения действительно обработанных поверхностей при малярных работах следует пользоваться переводными коэффициентами, приведенными в таблицах. А. Деревянные оконные устройства (обмер производится по площади проемов по наружному обводу коробок) Наименование устройств Коэффициент при…

Положительный пятиугольник – это многоугольник, у которого все пять сторон и все пять углов равны между собой. Вокруг него легко описать окружность. Возвести пятиугольник и поможет именно эта окружность.

Инструкция

1. В первую очередь нужно возвести циркулем окружность. Центр окружности пускай совпадает с точкой O. Проведите оси симметрии перпендикулярные друг другу. В точке пересечения одной из этих осей с окружностью поставьте точку V. Эта точка будет вершиной грядущего пятиугольник а. В точке пересечения иной оси с окружностью расположите точку D.

2. На отрезке OD обнаружьте середину и подметьте в ней точку А. Позже этого надобно возвести циркулем окружность с центром в этой точке. Помимо того, она должна проходить через точку V, то есть, радиусом CV. Точку пересечения оси симметрии и этой окружности обозначьте за В.

3. Позже этого при помощи циркуля проведите окружность такого же радиуса, поставив иголку в точку V. Пересечение этой окружности с изначальной обозначьте как точку F. Эта точка станет 2-й вершиной грядущего верного пятиугольник а.

4. Сейчас необходимо провести такую же окружность через точку Е, но с центром в F. Пересечение только что проведенной окружности с изначальной обозначьте как точку G. Эта точка так же станет еще одной из вершин пятиугольник а. Аналогичным образом нужно возвести еще один круг. Центр его в G. Точка пересечения его с изначальной окружностью пускай будет H. Это последняя вершина верного многоугольника.

5. У вас должно получиться пять вершин. Остается их легко объединить по линейке. В итоге всех этих операций вы получите вписанный в окружность положительный пятиугольник .

Построение положительных пятиугольников дозволено с поддержкой циркуля и линейки. Правда, процесс это довольно долгий, как, однако, и построение всякого положительного многоугльника с нечетным числом сторон. Современные компьютерные программы разрешают сделать это за несколько секунд.

Вам понадобится

  • – компьютер с программой AutoCAD.

Инструкция

1. Обнаружьте в программе AutoCAD верхнее меню, а в нем — вкладку «Основная». Нажмите на нее левой клавишей мыши. Появится панель «Рисование». Появятся различные типы линий. Выберите замкнутую полилинию. Она и представляет собой многоугольник, остается только ввести параметры. AutoCAD. Дозволяет рисовать самые различные правильне многоугольники. Число сторон может добиваться 1024. Дозволено применять и командную строку, в зависимости от версии набрав « _polygon» либо «мн.-угол».

2. Вне зависимости от того, пользуетесь ли вы командной строкой либо контекстными меню, на экране у вас появится окошко, в которое предлагается ввести число сторон. Введите туда цифру «5» и нажмите Enter. Вам будет предложено определить центр пятиугольника. Вбейте в появившееся окошко координаты. Дозволено обозначить их как (0,0), но могут быть и всякие другие данные.

3. Выберите необходимый метод построения. . AutoCAD предлагает три варианта. Пятиугольник может быть описанным вокруг окружности либо вписанным в нее, но дозволено возвести его и по заданному размеру стороны. Выберите надобный вариант и нажмите на ввод. В случае необходимости задайте радиус окружности и тоже нажмите enter.

4. Пятиугольник по заданной стороне вначале строится верно так же. Выберите «Рисование», замкнутую полилинию и введите число сторон. Правой клавишей мыши вызовите контекстное меню. Нажмите команду «edge” либо «сторона”. В командной строке наберите координаты исходной и финальной точек одной из сторон пятиугольника. Позже этого пятиугольник появится на экране.

5. Все операции дозволено исполнять с поддержкой командной строки. Скажем, для построения пятиугольника по стороне в русскоязычной версии программы введите букву «с». В англоязычной версии это будет «_e”. Дабы возвести вписанный либо описанный пятиугольник, введите позже определения числа сторон буквы «о» либо «в» (либо же английские “_с” либо “_i”)

Видео по теме

Видео по теме

Полезный совет
Таким нехитрым методом дозволено возвести не только пятиугольник. Для того дабы возвести треугольник, нужно разведите ножки циркуля на расстояние, равное радиусу окружности. После этого в всякую точку установите иглу. Проведите тонкую вспомогательную окружность. Две точки пересечения окружностей, а так же точка, в которой была ножка циркуля образуют три вершины положительного треугольника.

Как сделать пятиугольник с равными сторонами. Золотой пятиугольник; построение Евклида

Построение вписанного в окружность правильного пятиугольника. Дан правильный многоугольник, число сторон которого представляет собой произведение натуральных чисел k и m, где m>2. Как построить правильный m-угольник? Гаусс показал также возможность построения правильного 257-угольника с помощью циркуля и линейки.

Построить пятиугольник и поможет именно эта окружность. В первую очередь необходимо построить циркулем окружность. Аналогичным образом необходимо построить еще один круг. Центр его в G. Точка пересечения его с первоначальной окружностью пусть будет H. Это последняя вершина правильного многоугольника.

Правда, процесс это достаточно длительный, как, впрочем, и построение любого правильного многоугльника с нечетным количеством сторон. Она и представляет собой многоугольник, остается только ввести параметры. Число сторон может достигать 1024. Можно использовать и командную строку, в зависимости от версии набрав « _polygon» или «мн.-угол».

Деление окружности на равные части и вписывание правильных многоугольников.

Введите туда цифру «5» и нажмите Enter. Вам будет предложено определить центр пятиугольника. Можно обозначить их как (0,0), но могут быть и любые другие данные. Пятиугольник может быть описанным вокруг окружности или вписанным в нее, но можно построить его и по заданному размеру стороны. Пятиугольник по заданной стороне сначала строится точно так же. Выберите «Рисование», замкнутую полилинию и введите число сторон.

В командной строке наберите координаты начальной и конечной точек одной из сторон пятиугольника. После этого пятиугольник появится на экране. Таким нехитрым способом можно построить не только пятиугольник. Для того чтобы построить треугольник, необходимо разведите ножки циркуля на расстояние, равное радиусу окружности.

Две точки пересечения окружностей, а так же точка, в которой была ножка циркуля образуют три вершины правильного треугольника. Оказалось, что есть несколько различных вариантов построения правильного пятиугольника, разработанных известными математиками. Восьмиугольник — это геометрическая фигура с восемью углами. Правильный восьмиугольник – это восьмиугольник, у которого все стороны (и углы) равны. Эта статья расскажет вам, как сделать восьмиугольник.

Окружность, дуги и многоугольники.

Определите длину стороны восьмиугольника (углы правильного восьмиугольника известны). На листе бумаги при помощи линейки нарисуйте прямую линию выбранной длины. Это первая сторона восьмиугольника (нарисуйте ее так, чтобы оставить место для рисования других сторон). Используя транспортир, отложите угол в 135o (от начала или конца первой стороны). Нарисуйте третью линию выбранной длины под углом в 135o ко второй линии. Продолжайте до тех пор, пока у вас не получится правильный восьмиугольник.

Таким образом, чем больше окружность, тем больше фигура (и наоборот). Нарисуйте вторую большую окружность, установив иглу циркуля в центре первой окружности. Установите иглу циркуля в прямо противоположной точке пересечения внутренней (малой) окружности и ее диаметра. У вас получится «глаз» в середине окружности. Нарисуйте две дуги, пересекающие внутреннюю окружность.

Построение правильных многоугольников по заданной стороне

Сотрите окружности, линии и дуги, оставив только восьмиугольник. Таким образом, вы придадите ему восьмиугольную форму. Используйте линейку, чтобы убедиться, что все стороны получились равными (так как вы делаете правильный восьмиугольник). Не загибайте углы так, чтобы они соприкасались друг с другом; в этом случае вы получите не восьмиугольник, а небольшой квадрат. Зачастую, когда говорят «восьмиугольник», имеют в виду правильный восьмиугольник.

Смотреть что такое «Правильный пятиугольник» в других словарях:

Таким образом, создав фигуру с восемью сторонами разной длины, вы получите неправильный восьмиугольник. Существуют многоугольники с пересекающимися сторонами. Например, пятиконечная звезда является многоугольником с пересекающимися сторонами. Правильные многоугольники уже в глубокой древности считались символом красоты и совершенства. Практическая задача построения таких многоугольников с помощью циркуля и линейки имеет давнюю историю.

Лишь в 1796 г. К. Ф. Гаусc доказал принципиальную невозможность этого построения с помощью только циркуля и линейки.2}{4}\sqrt{\frac{5+\sqrt{5

{2}};

Правильный пятиугольник (греч. πενταγωνον ) — геометрическая фигура , правильный многоугольник с пятью сторонами.

Свойства

  • Додекаэдр — единственный из правильных многогранников , грани которого представляют собой правильные пятиугольники.
  • Пентагон — здание Министерства обороны США имеет форму правильного пятиугольника.
  • Правильный пятиугольник — правильный многоугольник с наименьшим количеством углов из тех, которыми нельзя замостить плоскость.
  • В природе не существует кристаллов с гранями в форме правильного пятиугольника.
  • Пятиугольник со всеми его диагоналями является проекцией 4-симплекса.

См. также

Напишите отзыв о статье «Правильный пятиугольник»

Примечания

По числу сторон
Правильные
Треугольники
Четырёхугольники
См. также
Многоугольники
Звёздчатые многоугольники
Паркеты на плоскости
Правильные многогранники
и сферические паркеты
Многогранники Кеплера — Пуансо
Соты
Четырёхмерные многогранники

Отрывок, характеризующий Правильный пятиугольник

Петя не знал, как долго это продолжалось: он наслаждался, все время удивлялся своему наслаждению и жалел, что некому сообщить его. Его разбудил ласковый голос Лихачева.
– Готово, ваше благородие, надвое хранцуза распластаете.
Петя очнулся.
– Уж светает, право, светает! – вскрикнул он.
Невидные прежде лошади стали видны до хвостов, и сквозь оголенные ветки виднелся водянистый свет. Петя встряхнулся, вскочил, достал из кармана целковый и дал Лихачеву, махнув, попробовал шашку и положил ее в ножны. Казаки отвязывали лошадей и подтягивали подпруги.
– Вот и командир, – сказал Лихачев. Из караулки вышел Денисов и, окликнув Петю, приказал собираться.

Быстро в полутьме разобрали лошадей, подтянули подпруги и разобрались по командам. Денисов стоял у караулки, отдавая последние приказания. Пехота партии, шлепая сотней ног, прошла вперед по дороге и быстро скрылась между деревьев в предрассветном тумане. Эсаул что то приказывал казакам. Петя держал свою лошадь в поводу, с нетерпением ожидая приказания садиться. Обмытое холодной водой, лицо его, в особенности глаза горели огнем, озноб пробегал по спине, и во всем теле что то быстро и равномерно дрожало.
– Ну, готово у вас все? – сказал Денисов. – Давай лошадей.
Лошадей подали. Денисов рассердился на казака за то, что подпруги были слабы, и, разбранив его, сел. Петя взялся за стремя. Лошадь, по привычке, хотела куснуть его за ногу, но Петя, не чувствуя своей тяжести, быстро вскочил в седло и, оглядываясь на тронувшихся сзади в темноте гусар, подъехал к Денисову.
– Василий Федорович, вы мне поручите что нибудь? Пожалуйста… ради бога… – сказал он. Денисов, казалось, забыл про существование Пети. Он оглянулся на него.
– Об одном тебя пг»ошу, – сказал он строго, – слушаться меня и никуда не соваться.
Во все время переезда Денисов ни слова не говорил больше с Петей и ехал молча. Когда подъехали к опушке леса, в поле заметно уже стало светлеть. Денисов поговорил что то шепотом с эсаулом, и казаки стали проезжать мимо Пети и Денисова. Когда они все проехали, Денисов тронул свою лошадь и поехал под гору. Садясь на зады и скользя, лошади спускались с своими седоками в лощину. Петя ехал рядом с Денисовым. Дрожь во всем его теле все усиливалась. Становилось все светлее и светлее, только туман скрывал отдаленные предметы. Съехав вниз и оглянувшись назад, Денисов кивнул головой казаку, стоявшему подле него.
– Сигнал! – проговорил он.
Казак поднял руку, раздался выстрел. И в то же мгновение послышался топот впереди поскакавших лошадей, крики с разных сторон и еще выстрелы.
В то же мгновение, как раздались первые звуки топота и крика, Петя, ударив свою лошадь и выпустив поводья, не слушая Денисова, кричавшего на него, поскакал вперед. Пете показалось, что вдруг совершенно, как середь дня, ярко рассвело в ту минуту, как послышался выстрел. Он подскакал к мосту. Впереди по дороге скакали казаки. На мосту он столкнулся с отставшим казаком и поскакал дальше. Впереди какие то люди, – должно быть, это были французы, – бежали с правой стороны дороги на левую. Один упал в грязь под ногами Петиной лошади.
У одной избы столпились казаки, что то делая. Из середины толпы послышался страшный крик. Петя подскакал к этой толпе, и первое, что он увидал, было бледное, с трясущейся нижней челюстью лицо француза, державшегося за древко направленной на него пики.
– Ура!.. Ребята… наши… – прокричал Петя и, дав поводья разгорячившейся лошади, поскакал вперед по улице.
Впереди слышны были выстрелы. Казаки, гусары и русские оборванные пленные, бежавшие с обеих сторон дороги, все громко и нескладно кричали что то. Молодцеватый, без шапки, с красным нахмуренным лицом, француз в синей шинели отбивался штыком от гусаров. Когда Петя подскакал, француз уже упал. Опять опоздал, мелькнуло в голове Пети, и он поскакал туда, откуда слышались частые выстрелы. Выстрелы раздавались на дворе того барского дома, на котором он был вчера ночью с Долоховым. Французы засели там за плетнем в густом, заросшем кустами саду и стреляли по казакам, столпившимся у ворот. Подъезжая к воротам, Петя в пороховом дыму увидал Долохова с бледным, зеленоватым лицом, кричавшего что то людям. «В объезд! Пехоту подождать!» – кричал он, в то время как Петя подъехал к нему.
– Подождать?.. Ураааа!.. – закричал Петя и, не медля ни одной минуты, поскакал к тому месту, откуда слышались выстрелы и где гуще был пороховой дым. Послышался залп, провизжали пустые и во что то шлепнувшие пули. Казаки и Долохов вскакали вслед за Петей в ворота дома. Французы в колеблющемся густом дыме одни бросали оружие и выбегали из кустов навстречу казакам, другие бежали под гору к пруду. Петя скакал на своей лошади вдоль по барскому двору и, вместо того чтобы держать поводья, странно и быстро махал обеими руками и все дальше и дальше сбивался с седла на одну сторону. Лошадь, набежав на тлевший в утреннем свето костер, уперлась, и Петя тяжело упал на мокрую землю. Казаки видели, как быстро задергались его руки и ноги, несмотря на то, что голова его не шевелилась. Пуля пробила ему голову.
Переговоривши с старшим французским офицером, который вышел к нему из за дома с платком на шпаге и объявил, что они сдаются, Долохов слез с лошади и подошел к неподвижно, с раскинутыми руками, лежавшему Пете.
– Готов, – сказал он, нахмурившись, и пошел в ворота навстречу ехавшему к нему Денисову.
– Убит?! – вскрикнул Денисов, увидав еще издалека то знакомое ему, несомненно безжизненное положение, в котором лежало тело Пети.
– Готов, – повторил Долохов, как будто выговаривание этого слова доставляло ему удовольствие, и быстро пошел к пленным, которых окружили спешившиеся казаки. – Брать не будем! – крикнул он Денисову.

Положительный пятиугольник – это многоугольник, у которого все пять сторон и все пять углов равны между собой. Вокруг него легко описать окружность. Возвести пятиугольник и поможет именно эта окружность.

Инструкция

1. В первую очередь нужно возвести циркулем окружность. Центр окружности пускай совпадает с точкой O. Проведите оси симметрии перпендикулярные друг другу. В точке пересечения одной из этих осей с окружностью поставьте точку V. Эта точка будет вершиной грядущего пятиугольник а. В точке пересечения иной оси с окружностью расположите точку D.

2. На отрезке OD обнаружьте середину и подметьте в ней точку А. Позже этого надобно возвести циркулем окружность с центром в этой точке. Помимо того, она должна проходить через точку V, то есть, радиусом CV. Точку пересечения оси симметрии и этой окружности обозначьте за В.

3. Позже этого при помощи циркуля проведите окружность такого же радиуса, поставив иголку в точку V. Пересечение этой окружности с изначальной обозначьте как точку F. Эта точка станет 2-й вершиной грядущего верного пятиугольник а.

4. Сейчас необходимо провести такую же окружность через точку Е, но с центром в F. Пересечение только что проведенной окружности с изначальной обозначьте как точку G. Эта точка так же станет еще одной из вершин пятиугольник а. Аналогичным образом нужно возвести еще один круг. Центр его в G. Точка пересечения его с изначальной окружностью пускай будет H. Это последняя вершина верного многоугольника.

5. У вас должно получиться пять вершин. Остается их легко объединить по линейке. В итоге всех этих операций вы получите вписанный в окружность положительный пятиугольник .

Построение положительных пятиугольников дозволено с поддержкой циркуля и линейки. Правда, процесс это довольно долгий, как, однако, и построение всякого положительного многоугльника с нечетным числом сторон. Современные компьютерные программы разрешают сделать это за несколько секунд.

Вам понадобится

  • – компьютер с программой AutoCAD.

Инструкция

1. Обнаружьте в программе AutoCAD верхнее меню, а в нем — вкладку «Основная». Нажмите на нее левой клавишей мыши. Появится панель «Рисование». Появятся различные типы линий. Выберите замкнутую полилинию. Она и представляет собой многоугольник, остается только ввести параметры. AutoCAD. Дозволяет рисовать самые различные правильне многоугольники. Число сторон может добиваться 1024. Дозволено применять и командную строку, в зависимости от версии набрав « _polygon» либо «мн.-угол».

2. Вне зависимости от того, пользуетесь ли вы командной строкой либо контекстными меню, на экране у вас появится окошко, в которое предлагается ввести число сторон. Введите туда цифру «5» и нажмите Enter. Вам будет предложено определить центр пятиугольника. Вбейте в появившееся окошко координаты. Дозволено обозначить их как (0,0), но могут быть и всякие другие данные.

3. Выберите необходимый метод построения. . AutoCAD предлагает три варианта. Пятиугольник может быть описанным вокруг окружности либо вписанным в нее, но дозволено возвести его и по заданному размеру стороны. Выберите надобный вариант и нажмите на ввод. В случае необходимости задайте радиус окружности и тоже нажмите enter.

4. Пятиугольник по заданной стороне вначале строится верно так же. Выберите «Рисование», замкнутую полилинию и введите число сторон. Правой клавишей мыши вызовите контекстное меню. Нажмите команду «edge” либо «сторона”. В командной строке наберите координаты исходной и финальной точек одной из сторон пятиугольника. Позже этого пятиугольник появится на экране.

5. Все операции дозволено исполнять с поддержкой командной строки. Скажем, для построения пятиугольника по стороне в русскоязычной версии программы введите букву «с». В англоязычной версии это будет «_e”. Дабы возвести вписанный либо описанный пятиугольник, введите позже определения числа сторон буквы «о» либо «в» (либо же английские “_с” либо “_i”)

Видео по теме

Видео по теме

Полезный совет
Таким нехитрым методом дозволено возвести не только пятиугольник. Для того дабы возвести треугольник, нужно разведите ножки циркуля на расстояние, равное радиусу окружности. После этого в всякую точку установите иглу. Проведите тонкую вспомогательную окружность. Две точки пересечения окружностей, а так же точка, в которой была ножка циркуля образуют три вершины положительного треугольника.

Эта фигура является многоугольником с минимальным количеством углов, которым невозможно замостить площадь. Только у пятиугольника количество диагоналей совпадает с количеством его сторон. Воспользовавшись формулами для произвольного правильного многоугольника, можно определить все необходимые параметры, которые имеет пентагон. Например, вписать его в окружность с заданным радиусом либо построить на базе заданной боковой стороны.

Как правильно начертить луч и какие принадлежности для черчения вам понадобятся? Возьмите листок бумаги и отметьте в произвольном месте точку. Затем приложите линейку и проведите линию, начиная с указанной точки и до бесконечности. Чтобы начертить ровную линию, нажмите клавишу «Shift»и проведите линию нужной длины. Сразу после начертания откроется вкладка «Формат». Уберите выделение с линии и увидите, что в начале линии появилась точка. Для создания надписи нажмите кнопку «Нарисовать надпись» и создайте поле, где будет находиться надпись.

Первый способ построения пятиугольника считается более «классическим». Получившаяся в результате построения фигура будет правильным пятиугольником. Двенадцатиугольник не является исключением, поэтому его построение будет невозможным без применения циркуля. Задача построения правильного пятиугольника сводится к задаче деления окружности на пять равных частей. Начертить пентаграмму можно с использованием простейших инструментов.

Я долго бился пытаясь этого добиться и самостоятельно найти пропорции и зависимости, но мне этого не удалось. Оказалось, что есть несколько различных вариантов построения правильного пятиугольника, разработанных известными математиками. Инересным моментов является то, что арифметически эту задачу решить только приблизительно точно, поскольку придется использовать иррациональные числа. Зато ее можно решить геометрически.

Деление окружностей. Точки пересечения этих линий с окружностью и являются вершинами квадрата. В окружности радиуса R (Шаг 1) следует провести вертикальный диаметр. В точке сопряжения N прямой и окружности прямая является касательной к окружности.

Получение с помощью полоски бумаги

Правильный шестиугольник можно построить, пользуясь рейсшиной и угольником 30X60°. Вершины такого треугольника можно построить с помощью циркуля и угольника с углами в 30 и 60° или только одного цир­куля. Чтобы построить сторону 2-3, устанавливаем рейсшину в положение, показанное штриховыми линиями, и через точку 2 прово­дим прямую, которая определит третью вершину треугольника. Намечаем на окружности точку 1 и принимаем её за одну из вер­шин пятиугольника. Найденные вершины соединяем после­довательно между собой. Семиугольник может быть построен путём проведе­ния лучей из полюса F и через нечётные деления вертикального диаметра.

А на другой конец нитки устанавливаемые карандаш и одержим. Если умеете чертить звезду, но не умеете пятиугольник, начертите звезду карандашом, затем соедините между собой соседние концы звезды, а саму звезду потом сотрите. Затем положите лист бумаги (лучше его закрепить на столе при помощи четырёх кнопок или иголочек). Приколите эти 5 полосочек к листку бумаги кнопками или иголочками, чтобы они оставались неподвижными. Затем обведите полученный пятиугольник и снимите эти полосочки с листка.

Например, нам нужно нарисовать пятиконечную звезду (пентаграмму) для картины о Советском прошлом или о настоящем Китая. Правда для этого нужно уметь создать рисунок звезды в перспективе. Точно так же вы сможете нарисовать фигуру карандашом на бумаге. Как правильно нарисовать звезду, что бы она выглядела ровно и красиво, сразу не ответишь.

С центра опусти на окружность 2 луча, чтоб угол между ними был 72 градуса (транспортиром). Деление круга на пять частей осуществляется с помощью обычного циркуля или транспортира. Поскольку правильный пятиугольник — это одна из фигур, содержащая в себе пропорции золотого сечения, его построением издавна интересовались живописцы и математики. Эти принципы построения с применением циркуля и линейки были изложены еще в эвклидовых «Началах».

    Если под руками нет циркуля, то можно нарисовать простую звезду с пятью лучами затем просто соединить эти лучи. как видим на картинке ниже получается абсолютно правильный пятиугольник.

    Математика сложная наука и у нее много своих секретиков, некоторые из них весьма забавны. Если вы увлекаетесь такими вещами советую найти книгу Забавная математика.

    Окружность можно нарисовать не только при помощи циркуля. Можно, например, использовать карандаш и нитку. Отмеряем нужный диаметр на нитке. Один конец плотно зажимаем на листе бумаги, где будем чертить окружность. А на другой конец нитки устанавливаемые карандаш и одержим. Теперь действует как с циркулем: натягиваем нить и по окружности слегка надавливая карандашом чкртим окружность.

    Внутри окружности рисуем крестьян от центра: вертикальная линия и горизонтальная линия. Точка пересечения вертикальной линии и окружности будет вершиной пятиугольника (точка 1). Теперь правую половину горизонтальной линии делим пополам (точка 2). Измеряем расстояние от этой точки до вершины пятиугольника и этот отрезок откладывает влево от точки 2 (точка 3). При помощи нитки и карандаша проводим от точки 1 радиусом до точки 3 дугу, пересекающую первую окружность слева и справа — точки пересечения будут вершинами пятиугольника. Обозначим их точка 4 и 5.

    Теперь от точки 4 делаем дугу, пересекающую окружность в нижней части, радиусом равной длине от точки 1 до 4 — это будет точкой 6. Точно так же и от точки 5 — обозначим точкой 7.

    Остатся соединить наш пятиугольник с вершинами 1, 5, 7, 6, 4.

    Я знаю как построить простой пятиугольник с помощью циркуля: Строим окружность, отмечаем пять точек, соединяем их. Можно построить пятиугольник с равными сторонами, для этого нам еще понадобится транспортир. Просто те же самые 5 точек ставим по транспортиру. Для этого отмечаем углы по 72 градуса. После чего также соединяем отрезками и получаем нужную нам фигуру.

    Зеленую окружность можно чертить произвольным радиусом. В эту окружность будем вписывать правильный пятиугольник. Без циркуля начертить точно окружность нельзя, но это не обязательно. Окружность и все дальнейшие построения можно выполнять от руки. Далее через центр окружности О нужно провести две взаимно перпендикулярные прямые и одну из точек пересечения прямой с окружностью обозначить А. Точка А будет вершиной пятиугольника. Радиус ОВ разделим пополам и поставим точку С. Из точки С проводим вторую окружность радиусом АС. Из точки А проводим третью окружность радиусом АD. Точки пересечения третьей окружности с первой (Е и F)будут также вершинами пятиугольника. Из точек Е и F радиусом АЕ делаем засечки на первой окружности и получаем остальные вершины пятиугольника G и H.

    Адептам черного искусства: что бы просто, красиво и быстро нарисовать пятиугольник, следует начертить правильную, гармоничную основу для пентаграммы (пятиконечная звезда) и соединить окончания лучей этой звезды посредством прямых, ровных линий. Если все было сделано верно — соединительная черта вокруг основы и будет искомым пятиугольником.

    (на рисунке — завершенная, но незаполненная пентаграмма)

    Для тех, кто неуверен в правильности начертания пентаграммы: возьмите за основу витрувианского человека Да Винчи (см. ниже)

    Если нужен пятиугольник — тыкаете произвольным образом 5 точке и их внешний контур будет пятиугольником.

    Если нужен правильный пятиугольник, то без математического циркуля это построение совершить невозможно, поскольку без него нельзя провести два одинаковых, но не параллельных отрезка. Любой другой инструмент, который позволяет провести два одинаковых, но не параллельных отрезка эквивалентен математическому циркулю.

    Сначала надо надо начертить круг, потом направляющие, потом второй пунктирный круг, находим верхнюю точку, потом отмеряем два угла верхние, от них чертим нижние. Заметьте, радиус циркуля один и тот же при всем построении.

    Вс зависит от того, какой пятиугольник вам необходим. Если любой, то ставите пять точек и соединяете их между собой(естествено точки ставим не по прямой линии). А если нужен пятиугольник правильно формы, возьмите любые пять по длине(полосок бумаги, спичек, карандашей и т.п), выложите пятиугольник и обчертите его.

    Пятиугольник можно начертить, к примеру, из звезды. Если умеете чертить звезду, но не умеете пятиугольник, начертите звезду карандашом, затем соедините между собой соседние концы звезды, а саму звезду потом сотрите.

    Второй способ. Вырежьте полосочку из бумаги, длиной, равной желаемой стороне пятиугольника, а шириной узкой, допустим 0.5 — 1 см. Как по шаблону, вырежьте по этой полосочке ещ четыре таких же полосочки, чтобы их получилось всего 5.

    Затем положите лист бумаги (лучше его закрепить на столе при помощи четырх кнопок или иголочек). Затем наложите эти 5 полосочек на листок так, чтобы они образовали пятиугольник. Приколите эти 5 полосочек к листку бумаги кнопками или иголочками, чтобы они оставались неподвижными. Затем обведите полученный пятиугольник и снимите эти полосочки с листка.

    Если нет циркуля и нужно построить пятиугольник, то я могу посоветовать следующее. Я и сама так строила. Можно начертить правильную пятиконечную звезду. И после этого, чтобы получить пятиугольник, просто нужно соединить все вершины звезды. Вот так и получится пятиугольник. Вот что мы получим

    Ровными чрными линии мы соединили вершины звезды и получили пятиугольник.

Правильный пятиугольник — Большая Энциклопедия Нефти и Газа, статья, страница 1

Правильный пятиугольник

Cтраница 1


Правильный пятиугольник не может быть построен с помощью указанных принадлежностей. Построение его по заданной стороне приводится ниже.  [2]

Правильные пятиугольники также являются гранями лишь одного правильного многогранника. Этот многогранник называется додекаэдром.  [3]

Правильный пятиугольник, расположенный в плоскости, параллельной плоскости V, во фронтальной диметрии рисуют следующим образом: задавшись радиусом описанной окружности R, строят окружность с помощью вписанного ( или описанного) в нее квадрата.  [4]

Правильный пятиугольник ABCDE со стороной о вписан в окружность S.  [5]

Около правильного пятиугольника AiAzA A As описана окружность с центром О. Вершинами треугольника ABC являются середины сторон А А2 AiA — з, и Аз 4 пятиугольника. Докажите, что центр О данной окружности и центр О окружности, вписанной в треугольник ABC, симметричны относительно прямой АС.  [6]

Дан правильный пятиугольник Л1Л2Л3Л4 / 45, вписанный в окружность.  [7]

Дан правильный пятиугольник Д ЛзЛ, вписанный в окружность.  [8]

Из правильного пятиугольника со стороной 1 см удалены все точки, отстоящие от всех вершин пятиугольника на расстояние, меньшее 1 см. Найдите площадь оставшейся части.  [9]

Построение правильного пятиугольника с помощью одной линейки ( о двух параллельных краях) требует построения выражения, содержащего радикал.  [10]

Построение правильного пятиугольника с помощью подвижного прямого угла представляется особенно простым.  [11]

Диагонали правильного пятиугольника в свою очередь образуют правильный пятиугольник.  [12]

Пусть задан следующий правильный пятиугольник.  [13]

Раскрасим стороны правильного пятиугольника в один цвет, а диагонали — в другой.  [14]

Молекула циклопентана образует правильный пятиугольник, внутренний угол которого ( 108) близок к тетраэдрическому углу. Однако молекула циклопентана и его производных непланарна. Благодаря силам отталкивания между атомами водорода два атома углерода выходят из плоскости цикла.  [15]

Страницы:      1    2    3    4

Правильный пятиугольник построение по клеткам

Правильный пятиугольник представляет собой геометрическую фигуру, которая образовывается пересечением пяти прямых, создающих пять одинаковых углов. Такая фигура носит название — пентагон. С пятиугольником тесно связана работа художников — их рисунки строятся на основе правильных геометрических фигур. Для этого необходимо знать то, как быстро построить пентагон.

Чем интересна эта фигура? Форму пентагона имеет здание Министерства обороны Соединенных Штатов Америки. Это можно увидеть на фото, сделанных с высоты полета. В природе не существует кристаллов и камней, форма которых напоминала бы пентагон. Только в этой фигуре количество граней совпадает с числом диагоналей.

Параметры правильного пятиугольника

Прямоугольный пятиугольник, как и каждая фигура в геометрии, имеет свои параметры. Зная необходимые формулы, можно рассчитать эти параметры, что облегчит процесс построения пентагона. Способы и формулы расчетов:

  • сумма всех углов в многоугольниках равна 360 градусам. В правильном пятиугольнике все углы равны, соответственно, центральный угол находится таким способом: 360/5 = 72 градуса;
  • внутренний угол находится таким образом: 180*(n -2)/ n = 180*(5−2)/5 = 108 градусов. Сумма всех внутренних углов: 108*5 = 540 градусов.

Сторона пентагона находится с помощью параметров, которые уже даны в условии задачи:

  • если вокруг пятиугольника описана окружность и известен ее радиус, сторона находится по такой формуле: a = 2*R*sin (α/2) = 2*R*sin (72/2) = 1,1756*R.
  • Если известен радиус вписанной в пентагон окружности, то формула расчета стороны многоугольника: 2*r*tg (α/2) = 2*r*tg (α/2) = 1,453*r.
  • При известной величине диагонали пентагона его сторона рассчитывается таким образом: а = D/1,618.

Площадь пентагона так же, как и его сторона, зависит от уже найденных параметров:

  • с помощью известного радиуса вписанной окружности площадь находится так: S = (n*a*r)/2 = 2,5*a*r.
  • описанная вокруг пятиугольника окружность позволяет найти площадь по такой формуле: S = (n*R2*sin α)/2 = 2,3776*R2.
  • в зависимости от стороны пентагона: S = (5*a2*tg 54°)/4 = 1,7205* a2.

Построение пентагона

Построить правильный пятиугольник можно с помощью линейки и циркуля, на основе вписанной в него окружности или одной из сторон.

Как начертить пятиугольник на основе вписанной окружности? Для этого необходимо запастись циркулем и линейкой и сделать такие шаги:

  1. Сначала необходимо начертить окружность с центром О, после чего на ней выбрать точку, А — вершину пентагона. От центра к вершине проводится отрезок.
  2. Затем строится перпендикулярная прямой ОА отрезок, который также проходит через О — центр окружности. Его пересечение с окружностью обозначается точкой В. Отрезок О. В. делится пополам точкой С.
  3. Точка С станет центром новой окружности, проходящей через А. Точка D — это ее пересечение с прямой ОВ в границах первой фигуры.
  4. После этого проводится третья окружность через D, центром которой является точка А. Она пересекается с первой фигурой в двух точках, их необходимо обозначить буквами Е и F.
  5. Следующая окружность имеет центр в точке Е и проходит через А, а ее пересечение с первоначальной находится в новой точке G.
  6. Последняя окружность в этом рисунке проводится через точку, А с центром F. На ее пересечении с начальной ставится точка Н.
  7. На первой окружности после всех проделанных шагов появились пять точек, которые необходимо соединить отрезками. Таким образом получился правильный пятиугольник АЕ G Н F.

Как построить правильный пятиугольник иным способом? С помощью линейки и циркуля пентагон можно построить немного быстрее. Для этого необходимо:

  1. Cначала необходимо с помощью циркуля нарисовать окружность, центр которой — точка О.
  2. Чертится радиус ОА — отрезок, который откладывается на окружность. Его делят пополам точкой В.
  3. Перпендикулярно радиусу ОА начерчивается отрезок ОС, точки В и С соединяются прямой.
  4. Следующим шагом является отложение длины отрезка ВС с помощью циркуля на диаметральной линии. Перпендикулярно отрезку ОА появляется точка D. Точки В и D соединяются, образуя новый отрезок.
  5. Для того, чтобы получить величину стороны пентагона, необходимо соединить точки С и D.
  6. D с помощью циркуля переносится на окружность и обозначается точкой Е. Соединив Е и С, можно получить первую сторону правильного пятиугольника. Следуя этой инструкции можно узнать о том, как быстро построить пятиугольник с равными сторонами, продолжая построение остальных его сторон подобно первой.

Интересные факты

В пятиугольнике с одинаковыми сторонами диагонали равны и образуют пятиконечную звезду, которая называется пентаграммой. Золотое сечение — это отношение величины диагонали к стороне пентагона.

Пентагон непригоден для полного заполнения плоскости. Использование любого материала в этой форме оставляет промежутки или образует наложения. Хотя природных кристаллов этой формы не существует в природе, но при образовании льда на поверхности гладких медных изделий возникают молекулы в виде пентагона, которые соединены в цепочки.

Наиболее простой способ получить правильный пятиугольник из полоски бумаги — завязать ее узлом и немного придавить. Этот способ полезен для родителей детей-дошкольников, которые хотят научить своих малышей распознавать геометрические фигуры.

Видео

Посмотрите, как можно быстро начертить пятиугольник.

Здравствуйте коллеги.
Сегодня построим правильный пятиугольник в окружности, попробуем начертить циркулем и линейкой фигуру.

Рисунки художников очень тесно связаны с черчением и геометрией. Если мы задумали какую-то композицию, а в ней есть геометрические фигуры, то нам необходимо знать, как изобразить предмет, что бы он не выглядел смешно, и что бы вы не выглядели дилетантом и смогли нарисовать пятиконечную звезду циркулем или в фотошопе. От этого зависит ваш авторитет художника, а значит и заказы.

Построение правильного пятиугольника не так часто встречается в рисунке, но все же есть моменты, когда нам это необходимо.

Например, нам нужно нарисовать пятиконечную звезду (пентаграмму) для картины о Советском прошлом или о настоящем Китая. Правда для этого нужно уметь создать рисунок звезды в перспективе. Это посмотрите в другом уроке.

Мы попробуем нарисовать звезду в фотошопе фронтально. Точно так же вы сможете нарисовать фигуру карандашом на бумаге. Всего лишь с помощью таких инструментов:

Как правильно нарисовать звезду, что бы она выглядела ровно и красиво, сразу не ответишь. Количество углов не четное, поэтому просто разделить окружность на равные части циркулем или линейкой не получится.

Что бы вписанный пятиугольник в окружность был пропорциональный, нам необходимо точно вычислить одну из сторон, а затем отложить этот отрезок пять раз на теле овала.

Как выглядит пятиугольник и звезда

Внизу на фото разберем, как нарисовать звезду поэтапно.
Для начала рисуем окружность с центром О.

Дальше отложим отрезок OA равный радиусу и разделим его пополам точкой B, как показано на фото внизу.


Теперь от точки В до точки С проведем прямую.

Отложим расстояние отрезка ВС на диаметральной линии окружности. Для этого можно воспользоваться циркулем. Таким образом у нас появилась точка D.


И отрезок DB. Картинка внизу.

Дальше, проведя линию от точки D к точке С, Мы получи длину равную стороне пятиугольника.


Дальше этот отрезок можно отложить на окружности. У нас появилась точка Е. Смотрим фото ниже.


Итак, одна из сторон пятиугольника у нас есть, это линия ЕС.

Такие же отрезки наносим на всей части круга. Смотрим картинку.


На этом построение правильного пятиугольника можно закончить. Что бы нарисовать звезду нужно просто соединить углы через один.

Нарисовать пятиконечную звезду циркулем можно так же, как и на нашем уроке в программе Photoshop, весь процесс такой же, только вместо программы графического редактора используем инструменты для черчения.

Так же можно посмотреть уроки построения шестиугольника, разделение на восемь частей, деление круга на семь частей, десять равных частей.

Последние события

Рисуем цыпленка

Вот такого цыпленка вы сможете нарисовать, если вы выполните все действия четко по шагам. Пробуйте и все у вас получится!

Елка-раскраска на стену

А так как скоро Новый Год, предлагаю скачать шаблон большой елки-раскраски. Этот шаблон состоит из 22 двух листов формата А4. На них нанесен и основной рисунок, и линии по которым нужно эти листочки склеить.

Дедушка Мороз и дети

Дед Мороз, Снегурочка, Снеговик, птицы и звери в лесу , дети на новогоднем празднике – вот герои этой книжки-раскраски. А создал их художник В. Жигарев.

Маша и Медведь. Зимние раскраски

Мультик про шуструю озорную маленькую девочку Машу и ее приятеля медведя нравится всем – и детишкам, и их родителям.

Раскраски с дедом Морозом

Новый год наступил. Но впереди еще старый новый год, да и зима еще вся впереди. Раскрашиваем картинки с Дедом Морозом и Снегурочкой.

Раскраски к новому году

Новогодние раскраски. Зима, елка, дед Мороз в санях, подарки. Скачайте забавные картинки, пусть они напоминают вам о веселом празднике.

Новогодняя елка. Раскраски

Символ Нового года – елочка, украшенная игрушками, гирляндами, мишурой.

Скачайте раскраски с новогодней елкой. Картинку можно не просто раскрасить, а превратить в поздравительную открытку.

Популярное

Архив

Как нарисовать правильную звездочку? Как нарисовать правильный пятиугольник? Как разделить круг на пять равных частей? На все эти вопросы вы сможете найти ответ, если проделаете вслед за мной эти шаги.

Как нарисовать правильную звездочку?

Как нарисовать правильный пятиугольник?

Как разделить круг на пять равных частей?

На все эти вопросы вы сможете найти ответ, если проделаете вслед за мной вот эти шаги.

Конечно же, нам понадобится циркуль с карандашом и линейка.

Для начала нарисуйте циркулем круг.

Разделите его на четыре части линиями сверху вниз и справа налево.

Можно сразу объяснить ребенку, что отрезок, соединяющий две точки на окружности и проходящий через ее центр, называется диаметр.

А отрезок, соединяющий центр и точку на окружности, называется радиус.

С помощью линейки измерьте и разделите пополам один из радиусов.

У меня это отрезок слева от центра.

Серединку радиуса я обозначила

Нам понадобится точка сверху окружности.

Ее я обозначила цифрой 0.

Устанавливаем иголку циркуля

в точку 1, а карандашик в точку 0.

Рисуем дугу до пересечения с горизонтальным диаметром.

Обозначаем точку пересечения

Сейчас устанавливаем иголку циркуля

в точку 0, а карандашик в точку 2.

И рисуем дугу до пересечения с окружностью, причем с двух сторон.

Точки пересечения помечены

Не меняя ширину циркуля, устанавливаем иголку

в точку 3 и отмеряем кусочек окружности.

Точку 6 можно отмерить и от

точки 5 и от точки 4.

Главное, не изменять ширину (раствор) ножек циркуля.

Вот, практически и все.

Если соединим точки, получим правильный пятиугольник.

Найдите площадь правильного пятиугольника, вписанного в круг

Трейси, у нас для вас три ответа …

Привет, Трейси.

Площадь фигуры всегда равна сумме площадей всех ее частей. Это означает, что мы можем вырезать пятиугольник на более мелкие формы, мы можем легко найти площадь и сложить (или умножить).

Если мы нарисуем радиус всех углов зеленым, пятиугольник синим и круг красным, мы получим диаграмму слева.

Я также провел линию от центра круга до середины каждой стороны пятиугольника. Поскольку это середина, она встречается со стороной под прямым углом, поэтому образует конгруэнтные треугольники. Я думаю, вы можете видеть, что по симметрии здесь десять равных прямоугольных треугольников.

Теперь вы можете использовать теорему Пифагора, чтобы найти высоту прямоугольного треугольника. Затем используйте это, чтобы найти площадь прямоугольного треугольника. Наконец, умножьте на количество равных треугольников в пятиугольнике.

Надеюсь, это поможет,
Стивен Ла Рок.

Привет Трейси,

Площадь правильного пятиугольника будет равна сумме площадей пяти одинаковых равнобедренных треугольников, которые вы можете сформировать, проведя радиусы к вершинам пятиугольника.

Теперь вы видите, что вам известны длины всех трех сторон каждого отдельного треугольника.

Формула Герона может использоваться для определения площади треугольника, когда вы знаете все три стороны:


где a, b, c — стороны, а s = (1/2) (a + b + c)

Вы также можете определить размер центрального угла (C), который также является углом при вершине каждого образованного треугольника.а затем используйте Area = (1/2) ab * sinC.

Просто помните, что после того, как вы найдете площадь одного треугольника, вы должны умножить его на 5, чтобы получить площадь всего пятиугольника.

Это всего лишь несколько способов решения этой проблемы.

Надеюсь, это поможет, Лиэнн

Трейси,

Площадь равна 1/2 базовой умноженной на высоту треугольника, который состоит из одной из сторон пятиугольника и радиусов до двух конечных точек этой стороны. Вы умножаете эту площадь на 5, чтобы получить площадь пятиугольника.Я полагаю, что вы можете использовать 6 в качестве длины стороны, но на самом деле сторона имеет длину 10 * sin (36 градусов), что равно примерно 5,8779. Высота (то есть расстояние от центра пятиугольника до стороны) составляет 5 * cos (36 градусов) (что равняется примерно 4,0451). (Если вы используете теорему Пифагора с треугольником со сторонами 5, 5 и 6, тогда высота до основания будет равна 4 вместо более точного 4,0451. Фактически, треугольник состоит из половины стороны, высоты и радиуса представляет собой прямоугольный треугольник 3-4-5.)

Крис

Пентагон | Math Wiki | Fandom

Эта статья требует дополнительных ссылок для проверки . Пожалуйста, помогите улучшить эту статью, добавив цитаты из надежных источников. Материал, не полученный от источника, может быть оспорен и удален.
Правильный пятиугольник

Правильный пятиугольник, {5}
Ребра и вершины 5
Обозначение Schläfli {5}
Диаграмма Кокстера – Дынкина
Группа симметрии Двугранный (D 5 )
Площадь
(с = длина кромки)

Внутренний угол
(градусы)
108 °

Шаблон: WiktionaryparTemplate: Два других использования

В геометрии пятиугольник — любой пятиугольник.Пятиугольник может быть простым или самопересекающимся. Внутренние углы в простом пятиугольнике всего.

Состав

  • 1 Правильные пятиугольники
    • 1,1 Строительство
  • 2 графика
  • 3 Пентагона в природе
    • 3.1 Растения
    • 3,2 Животные
  • 4 См. Также
  • 5 Внешние ссылки

Правильные пятиугольники

Термин пятиугольник обычно используется для обозначения правильного выпуклого пятиугольника , у которого все стороны равны и все внутренние углы равны (108 °).Его символ Шлефли — {5}. Хорды ​​этого пятиугольника находятся в золотой пропорции к его сторонам.

Площадь правильного выпуклого пятиугольника с длиной стороны определяется выражением

Пентаграмма или пятиугольник — это правильный пятиугольник звезды . Его символ Шлефли — {5/2}. Его стороны образуют диагонали правильного выпуклого пятиугольника — в этом расположении стороны двух пятиугольников находятся в золотом сечении.

Когда правильный пятиугольник вписан в круг с радиусом, длина его ребра определяется выражением

Строительство

Правильный пятиугольник можно построить с помощью циркуля и линейки, вписав один в заданный круг или построив один на заданном крае.Этот процесс был описан Евклидом в его Elements около 300 г. до н.э.

Один из методов построения правильного пятиугольника в данном круге заключается в следующем:

Построение правильного пятиугольника

Альтернативный метод:

Построение пятиугольника

  1. Нарисуйте круг, в который нужно вписать пятиугольник, и отметьте его центральную точку. (Это зеленый кружок на диаграмме справа).
  2. Выберите точку на окружности, которая будет одной из вершин пятиугольника. Проведите линию через и.
  3. Постройте линию, перпендикулярную проходящей через нее линии. Отметьте его пересечение с одной стороной круга в качестве точки.
  4. Постройте точку как середину.
  5. Нарисуйте круг с центром в точке. Отметьте его пересечение с линией (внутри исходного круга) как точку.
  6. Нарисуйте круг с центром в точке.Отметьте его пересечения с исходным (зеленым) кружком точками и.
  7. Нарисуйте круг с центром в точке. Отметьте его другое пересечение с исходной окружностью как точку.
  8. Нарисуйте круг с центром в точке. Отметьте его другое пересечение с исходной окружностью как точку.
  9. Постройте правильный пятиугольник.

После образования правильного выпуклого пятиугольника, если вы соедините несмежные углы (проведя диагонали пятиугольника), вы получите пентаграмму с меньшим правильным пятиугольником в центре.Или, если вы вытянете стороны, пока не встретятся несмежные, вы получите пентаграмму большего размера.

Простой способ создать правильный пятиугольник из полоски бумаги — это завязать на полоску узел сверху и аккуратно расправить узел, потянув за концы полоски бумаги. Если загнуть один из концов над пятиугольником, вы увидите пентаграмму при контровом свете.

Графики

Полный граф часто изображают в виде правильного пятиугольника со всеми 10 соединенными ребрами.Этот граф также представляет собой ортогональную проекцию 5 вершин и 10 ребер 5-ячейки. Выпрямленная 5-ячеечная с вершинами на средних краях 5-ячеечной проекции проецируется внутри пятиугольника.


5-элементный (4D)

Выпрямленный 5-элементный (4D)

Пентагоны в природе

Растения

Пятиугольное поперечное сечение окра. Утренняя слава, как и многие другие цветы, имеет пятиугольную форму. Гинецей яблока содержит пять плодолистиков, расположенных в форме пятиконечной звезды. Звездный фрукт — еще один фрукт с пятиконечной симметрией.
Добавить фото в эту галерею

Животные

Морская звезда. Многие иглокожие имеют пятикратную радиальную симметрию. Иллюстрация хрупких звезд, а также иглокожих пятиугольной формы.
Добавить фото в эту галерею

См. Также

  • Пентагон, штаб-квартира Министерства обороны США
  • Додекаэдр, многогранник правильной формы, состоящий из 12 пятиугольных граней
  • Тригонометрические константы пятиугольника
  • Пятиугольные числа
  • Ассоциаэдр — Пятиугольник — это ассоциаэдр четвертого порядка
  • Пентаграмма
  • Pentastar, логотип Chrysler

Внешние ссылки

  • Weisstein, Eric W., «Пентагон» от MathWorld.
  • Как построить правильный пятиугольник, используя только циркуль и линейку.
  • Как сложить правильный пятиугольник, используя только полоску бумаги
  • Определение и свойства пятиугольника с интерактивной анимацией
  • Девять конструкций правильного пятиугольника Робина Ху
  • Примерные построения правильных пятиугольников художников эпохи Возрождения на Конвергенции
  • v
  • t
  • e
Правильные многоугольники

По количеству сторон

1–10 сторон
  • Henagon (Моногон)
  • Дигон
  • Равносторонний треугольник
  • Квадрат
  • Пентагон
  • Шестиугольник
  • Гептагон
  • Восьмиугольник
  • Нонагон (Эннеагон)
  • Десятиугольник
11–20 сторон
  • Hendecagon
  • Додекагон
  • Tridecagon
  • Тетрадекагон
  • Пентадекагон (Quindecagon)
  • Шестиугольник
  • Гептадекагон
  • Восьмиугольник
  • Эннеадекагон (Nonadecagon)
  • Икосагон
  • 30-90
  • Триаконтагон
  • Тетрактагон
  • Пентаконтагон (Quincontagon)
  • Шестигранник
  • Гептаконтагон
  • Octacontagon
  • Enneacontagon (Nonacontagon)
  • Прочие
  • Гектогон (Hecatontagon)
  • Чилигон
  • Мириагон
  • Мегагон
  • Апейрогон
  • Звездообразные многоугольники
  • Пентаграмма
  • Гексаграмма
  • Гептаграмма
  • Октаграмма
  • Эннеаграмма
  • Декаграмма
  • Хендекаграмма
  • Додекаграмма
  • Геометрические свойства пятиугольника | calcresource

    Теоретические основы

    Содержание

    Определения

    Пентагон — это многоугольник с пятью сторонами и пятью вершинами.Пятиугольник может быть либо выпуклым , либо вогнутым , как показано на следующем рисунке. Выпуклый пятиугольник (или любой замкнутый многоугольник в этом отношении) имеет все внутренние углы ниже 180 °. Напротив, вогнутый многоугольник имеет один или несколько внутренних углов больше 180 °. Пятиугольник — это , правильный , когда все его стороны и внутренние углы равны. Недостаточно иметь равные только стороны, потому что пятиугольник может быть вогнутым с равными сторонами.В этом случае пятиугольник называется равносторонним . На следующем рисунке показана классификация пятиугольников, а также равносторонние вогнутые. Любой пятиугольник, который не является правильным, называется неправильным .

    Типы пятиугольника

    Сумма внутренних углов пятиугольника постоянна и равна 540 °. Это верно как для правильных, так и для неправильных пятиугольников, выпуклых или вогнутых. Это легко доказать, разложив пятиугольник на отдельные непересекающиеся треугольники.Если мы попытаемся провести прямые линии между всеми вершинами, избегая любых пересечений, мы разделим пятиугольник на три отдельных треугольника. Есть много разных способов провести линии между вершинами, в результате чего получаются разные треугольники, однако их количество всегда равно трем. В одном треугольнике сумма внутренних углов составляет 180 °, поэтому для трех треугольников, расположенных бок о бок, внутренние углы должны составлять до 3×180 ° = 540 °.

    Пятиугольник можно разделить на три треугольника

    Свойства правильных пятиугольников

    Симметрия

    Правильный пятиугольник имеет пять осей симметрии.Каждый из них проходит через вершину пятиугольника и середину противоположного ребра, как показано на следующем рисунке. Все оси симметрии пересекаются в общей точке — центре правильного пятиугольника. Фактически это его центр тяжести или центроид.

    Оси симметрии правильного пятиугольника
    Внутренний угол и центральный угол

    По определению внутренние углы правильного пятиугольника равны. Также общим свойством всех пятиугольников является то, что сумма их внутренних углов всегда равна 540 °, как объяснялось ранее.\ circ

    Другими словами \ varphi и \ theta являются дополнительными.

    Внутренний и центральный угол правильного пятиугольника

    Правильный пятиугольник разделен на пять одинаковых равнобедренных треугольников, имеющих общую вершину — центр многоугольника.

    Окружность и вписанная окружность

    Можно нарисовать окружность, проходящую через все пять вершин правильного пятиугольника. Это так называемая окружность с описанием окружности или описанная окружность правильного пятиугольника (действительно, это общая характеристика всех правильных многоугольников).Центр этого круга также является центром пятиугольника, где также пересекаются все оси симметрии. Радиус описанной окружности R_c обычно называют радиусом описанной окружности .

    Также можно нарисовать еще одну окружность, касающуюся всех пяти ребер правильного пятиугольника в серединах (также общая характеристика всех правильных многоугольников). Это так называемый вписанный круг или вписанный круг . Его центр совпадает с центром описанной окружности и касается всех пяти сторон правильного пятиугольника.Радиус вписанной окружности R_i обычно называют inradius .

    На следующем рисунке изображены описанная окружность правильного пятиугольника и вписанная окружность.

    Окружность и вписанная окружность правильного пятиугольника

    Мы попытаемся найти отношения между длиной стороны a правильного пятиугольника и его радиусом описанной окружности R_c и внутренним радиусом R_i. С этой целью мы исследуем треугольник со сторонами, равными радиусу описанной окружности, внутреннему радиусу и половина края пятиугольника, как показано на рисунке ниже.Это прямоугольный треугольник, поскольку по определению вписанная окружность касается всех сторон многоугольника.

    Используя базовую тригонометрию, находим:

    \ begin {split} R_c & = \ frac {a} {2 \ sin {\ frac {\ theta} {2}}} \\ R_i & = \ frac {a} { 2 \ tan {\ frac {\ theta} {2}}} \\ R_i & = R_c \ cos {\ frac {\ theta} {2}} \ end {split}

    , где \ theta — центральный угол, а длина стороны. Оказывается, эти выражения действительны для любого правильного многоугольника, а не только для пятиугольника. Мы можем получить конкретное выражение для правильного пятиугольника, установив θ = 72 °.{\ circ}} \ приблизительно 0.809 R_c \ end {split}

    Площадь и периметр

    Чтобы найти площадь правильного пятиугольника, мы должны принять во внимание, что его общая площадь разделена на пять одинаковых равнобедренных треугольников. Все. у этого треугольника есть одна сторона a и две стороны R_c, а их высота, отброшенная из вершины, лежащей в центре пятиугольника, равна R_i (помните, что вписанная окружность тангенциальна ко всем сторонам пятиугольника, касающимся их в их серединах). Тогда площадь каждого треугольника равна: \ frac {1} {2} a R_i.2

    Периметр любого N-стороннего правильного многоугольника — это просто сумма длин всех сторон: P = N a. Следовательно, для правильного пятиугольника:

    P = 5a

    Ограничивающая рамка

    Ограничивающая рамка плоской формы — это наименьший прямоугольник, который полностью охватывает фигуру. Для правильного пятиугольника ограничивающая рамка может быть нарисована интуитивно, как показано на следующем рисунке, но ее точные размеры требуют некоторых расчетов.

    Высота

    Высота h правильного пятиугольника — это расстояние от одной из его вершин до противоположного края.Он действительно перпендикулярен противоположному краю и проходит через центр пятиугольника. Хотя по определению расстояние от центра до вершины — это радиус описанной окружности R_c пятиугольника, а расстояние от центра до края — это внутренний радиус R_i. Таким образом, получается следующее выражение:

    h = R_c + R_i

    Высоту h можно выразить через окружной радиус R_c, или внутренний радиус R_i, или длину стороны a, используя соответствующие аналитические выражения для этих величин.\ circ.

    Подставляя значение \ theta в последние выражения, мы получаем следующие приближения:

    h \ приблизительно 1.809 R_c

    h \ приблизительно 2.236 R_i

    h \ приблизительно 1.539 a

    Ширина

    Ширина w — это расстояние между двумя противоположными вершинами правильного пятиугольника (длина его диагонали). Чтобы найти это расстояние, мы воспользуемся прямоугольным треугольником, выделенным пунктирной линией на рисунке выше. Гипотенуза треугольника — это длина стороны пятиугольника, равная a.Кроме того, один из углов треугольника является дополнительным к прилегающему внутреннему углу \ varphi пятиугольника. Однако ранее объяснялось, что дополнительным элементом \ varphi действительно является центральный угол \ theta. Следовательно, мы можем найти длину w_1 стороны треугольника:

    w_1 = a \ cos \ theta

    Наконец, мы можем определить общую ширину w, прибавив удвоенную длину w_1 к длине стороны a (из-за симметрии треугольника справа от пятиугольника идентичен рассмотренному).\ circ мы получаем аппроксимацию последней формулы:

    w = 1.618a

    Диагональ правильного пятиугольника связана золотым сечением со стороной

    Как нарисовать правильный пятиугольник

    Вы можете нарисовать правильный пятиугольник учитывая длину стороны a, используя простые инструменты для рисования. Выполните шаги, описанные ниже:

    1. Сначала нарисуйте линейный сегмент с длиной a, равной желаемой длине стороны пятиугольника.
    2. Продлите линейный сегмент влево.
    3. Постройте дугу окружности с центром на правом конце линейного сегмента и радиусом, равным длине сегмента.
    4. Повторите последний шаг, изменив центральную точку на левом конце линейного сегмента. Радиус такой же.
    5. Нарисуйте линию, перпендикулярную отрезку a, проходящую через точку пересечения двух дуг. Он пересекает линейный сегмент в его середине.
    6. Также нарисуйте линию, перпендикулярную линейному сегменту, проходящую через левый конец линейного сегмента a.Отметьте точку пересечения дугой окружности (той, что нарисована на шаге 4)
    7. Нарисуйте еще одну дугу окружности, поместив одну стрелку циркуля в середину линейного сегмента a (который был найден на шаге 5) и рисунок кончик на пересечении, отмеченном на шаге 6. Поверните циркуль, пока он не пересечет продолжение линейного сегмента, нарисованного на шаге 2. Отметьте и это новое пересечение.
    8. Нарисуйте еще одну дугу окружности, поместив одну стрелку циркуля на правый конец линейного сегмента a, а наконечник для рисования на пересечении, отмеченном на шаге 7.Поверните компас по часовой стрелке. Отметьте два пересечения, одно с дугой, нарисованной на шаге 4, а другое с линией, нарисованной на шаге 5. Это две вершины пятиугольника.
    9. Поместив стрелку циркуля на пересечение 2 и , а кончик рисования на 1 (оба пересечения отмечены на последнем шаге) нарисуйте дугу окружности, пока она не пересечет дугу, нарисованную на шаге 3. Отметьте это новое пересечение, которое является вершиной пятиугольника.
    10. Два конца линейного отрезка a, а также три пересечения, отмеченные на шагах 8 и 9, являются пятью вершинами правильного пятиугольника.Нарисуйте между ними линейные отрезки, чтобы построить окончательную форму.

    На следующем рисунке показана пошаговая процедура рисования.

    Рисование правильного пятиугольника с учетом длины его стороны a.

    Обратите внимание, что описанная процедура не является построением строго по принципу «линейка и циркуль». На шагах 5 и 6 треугольник использовался для проведения перпендикулярных линий из точек другой линии. Это было выбрано для простоты и для того, чтобы сократить количество необходимых шагов. Рисование перпендикулярной линии — это простая геометрическая конструкция с использованием только линейки и циркуля, и можно заменить использование треугольника на шагах 5 и 6, если требуется строгий геометрический рисунок «линейкой и циркулем».2

    Пример 2

    Каков диаметр наибольшего правильного пятиугольника, который может быть помещен внутри:

    1. круга диаметром 25 дюймов
    2. квадрата со стороной 25 дюймов
    1. Установка правильный пятиугольник в круге

    Самый большой правильный пятиугольник, помещающийся внутри круга, должен касаться круга всеми его вершинами. Другими словами, окружность должна быть описанной окружностью пятиугольника, и в результате ее радиус должен быть равным радиусу описанной окружности:

    R_c = \ frac {25 »} {2} = 12. \ circ} \ приблизительно 15.2

    См. Также

    , как сложить правильный пятиугольник из квадрата

    Квадрат и пятиугольник, кажется, обитают в разных мирах. Прямые углы квадрата кажутся несовместимыми с интересной формой пятиугольника. На первый взгляд кажется маловероятным, что вы можете сбросить одну от другой. Поговорка «Отсюда нельзя попасть». приходит в голову. Тем не менее, благодаря общей связи с золотой серединой вы можете создать правильный пятиугольник из квадратного листа бумаги.


    Ступени

    1. Сложите квадратный лист бумаги пополам. Открыть.
    2. Загните диагональ правой половины.
    3. Загните нижний край вверх так, чтобы он совпадал с последней складкой.
    4. Согните по существующей линии сгиба так, чтобы точка касалась левого нижнего угла бумаги. Открыть.
    5. Согните бумагу так, чтобы складка проходила через верхнюю середину бумаги, а левый край бумаги касался пересечения двух складок в правой половине бумаги.
    6. Согните угол бумаги по линии сгиба на бумаге под ним. Раскройте бумагу.
    7. Снова сложите бумагу пополам.
    8. Загните по предыдущей складке.
    9. Сложите новую складку пополам.
    10. Загните вниз вдоль края бумаги.
    11. Согните так, чтобы правый край совпал с краем.
    12. Согните горную складку в месте пересечения краев, загибая нижнюю часть назад за верхнюю.
    13. Согните острую складку вдоль края показанной бумаги. Эта складка будет пятиугольником.
    14. Откройте лист, чтобы увидеть пятиугольник.

    Банкноты

    • Эта последовательность складок основана на том факте, что отношение диагонали пятиугольника к краю является золотой серединой (). Первые пять шагов создают линейный сегмент нужной длины. Остальные шаги копируют этот сегмент в правильные места вокруг пятиугольника.
    • Предполагая, что квадрат имеет ширину 2 единицы, каждая сторона пятиугольника должна быть длиной единицы. Чтобы получить это значение, решите указанную выше пропорцию:
    • Складка, созданная на шаге 2, представляет собой квадратный корень из 5 единиц длины. Шаг 4 отмечает точку 1 на этой складке. Остаток — это отрезок правильной длины.
    • Есть более простой способ сложить примерно правильный пятиугольник, начиная с листа бумаги формата А4. Этот метод основан на том факте, что страница формата A4 представляет собой квадратный корень в два раза больше ее ширины.Складывание противоположных углов вместе создает складку под углом 54,7 ° (арктангенс квадратного корня из двух), который близок к углу 54 °, который можно использовать для построения пятиугольника.

    Ссылки

    • Инструкция, как сложить примерно правильный пятиугольник из листа бумаги формата А4.

    Список литературы

    • http://www.erclc.org/StaffPages/David/Origami/OrigamiPentagon.htm

    РЕШЕНИЕ: ГЕОМЕТРИЯ Найдите длины сторон…

    Стенограмма видеозаписи

    Хорошо, давайте начнем с наброска ситуации.Итак, я начну с наброска круга. А потом мы пошли на формирование обычного Пентагона, а у Пентагона их пять. Вергис есть. Итак, я попытаюсь сделать эти пять точек легкости Верджиса в виде пяти точек на окружности, расположенных на одинаковом расстоянии. Поэтому нам просто нужно предположить, что они расположены на одинаковом расстоянии, хотя, вероятно, на самом деле они не одинаковы. А затем давайте соединим эти точки, чтобы образовать наш Пентагон. И наша цель — найти длину одной стороны правильного Пентагона. Итак, мы пытаемся найти здесь эту длину.Итак, если мы возьмем центр круга и нарисуем немного радиоволн по радио, я смогу перейти к легкости Верджиса в Пентагоне. Мы знаем, что радиус Круга равен 25. Мы также знаем, что Пентагон имеет некоторые внутренние углы. На самом деле, вот некоторые из этих пяти углов равны 360, потому что это просто круг. Итак, когда мы разделим это на пять, каждый из этих углов будет равен 72 градусам. Итак, давайте возьмем увеличенную версию этого треугольника, где у нас здесь 25 25 72 градуса. Но я собираюсь разделиться пополам и опустить перпендикуляр, и это будет 36 градусов и 36 градусов.Мы знаем, потому что это не я видел треугольник Селеш, угол, под которым линия сексуального угла также отводится от офиса в сторону и перпендикулярна ему. Итак, теперь мы хотим найти длину этой стороны. Итак, я собираюсь сказать, что это длина X, и тогда длина стороны будет равна двум X, чтобы мы могли установить соотношение знаков. Знак 36 градусов равен X по сравнению с 25 напротив новостей о высоких горшках, поэтому X равен 25 знаку 36, поэтому длина стороны будет в два раза больше X, так что это будет в 50 раз больше знака 36.И если вы хотите получить точный ответ, это будет ваш точный ответ. Если вы хотите приблизить это значение, вы можете ввести это в калькулятор, и вы получите 29,39, а единицы измерения —

    дюймов.

    Многоугольных колец


    Летиция из Бангкокской школы Патана в Таиланде, Роза из школы Ченнинг в Великобритании, Кэролайн, Маркос и Джейн из Королевской школы Аль Барша в ОАЭ и Алекс из школы Лейтон Парк в Великобритании вычислили, сколько пятиугольников образуют звенеть.

    Маркос использовал диаграмму, чтобы представить полное кольцо:
    Что ж, если вы собираетесь представить себе круг, вы можете разделить его на 4 равных размера, один из которых равен двум с половиной пятиугольникам.Если вы сложите все, получится петля, полная пятиугольников [что составляет 10 пятиугольников].

    Летиция и Роуз использовали интерактивность, чтобы сделать полные пятиугольные кольца. Это кольцо Роуз:

    Норави из школы короля Георга V в Гонконге, и Алекс использовал углы, чтобы объяснить, почему 10 пятиугольников образуют кольцо без перекрытия.
    Ниже приведены пояснения и схема Алекса.
    Щелкните здесь, чтобы увидеть работы Норави, которые более глубоки, чем работы Алекса.
    Поскольку кольцо состоит из правильных пятиугольников, мы можем вычислить, что каждый из внутренних углов каждого пятиугольника составляет 108 * градусов.Увеличивая линии, которые разделяют два пятиугольника, предполагая, что все они будут встречаться посередине, получится треугольник.

    Поскольку мы знаем, что каждый угол [правильного] пятиугольника составляет 108 * градусов, мы знаем, что два основных угла треугольника равны 72 **, что оставляет верхний угол равным 36 градусам.

    Поскольку [сумма] углов в точке составляет 360 градусов, а 36 делится на 360, получается полное кольцо.
    Кроме того, поскольку 360 ÷ 36 = 10, мы знаем, что кольцо будет состоять из 10 пятиугольников.

    Пентагоны вверху — правильные пятиугольники.

    * как формула для вычисления размера внутреннего угла многоугольника: $ (n \ times 180 — 360) \ div n $ (поскольку $ n $ — это количество сторон, которое имеет многоугольник).
    **, потому что треугольник образован продолжением линий, а углы на линии составляют 180 $ градусов, 180 — 108 $ (внутренний угол пятиугольника) $ = 72. $

    Кэролайн сказала, что 5 декагонов образуют кольцо , и Джейн сказала, что 10 декагонов образуют кольцо. Летиция сказала, что 5 декагонов образуют кольцо, но прислала это изображение из 10 декагонов в кольце (слева).Справа кольцо из пяти декагонов.

    В кольце из 10 десятиугольников в средней форме используются 3 стороны каждого десятиугольника. В кольце с пятью десятиугольниками центральная фигура состоит из двух сторон каждого десятиугольника.

    Если мы форсируем форму в середине, используя только 1 сторону каждого десятиугольника (как мы делали с пятиугольниками), тогда десятиугольники не могут образовывать кольцо, потому что они перекрываются:

    Какие многоугольники могут образовывать кольца вокруг формы где используется только одна сторона каждого многоугольника?
    Пиньо из Таиланда, Мими, Денис, Джомкван и Джессика из международной школы Headstart на Пхукете в Таиланде и Икра из начальной школы Uphall в Великобритании прислали ответы на этот вопрос.Вот работа Джессики:
    В кольце многоугольников некоторые определенные многоугольники могут образовывать кольцо с другим многоугольником внутри него. Не все полигоны могут это сделать. Единственная странность в том, что форма внутри кольца должна использовать только одну из внешних сторон.

    Шестигранник (6-угольник)

    В шестиугольном кольце мы видим, что форма, которая сформировалась на внутренней стороне кольца, представляет собой шестиугольник. На этой схеме одна сторона формы используется для создания внутренней формы.

    Восьмиугольник (8-угольник)

    В этом восьмиугольнике 4, поставленные бок о бок, образовали квадрат посередине.Следовательно, это соответствует моему исследованию многоугольных колец.

    Двенадцатиугольник (12-угольник)

    В этом двенадцатиугольнике по 3 каждой формы были использованы для создания многоугольника посередине. Как мы видим, фигура представляет собой треугольник и используется только одна сторона каждой формы.

    Икра обнаружил, что это также работает с квадратами:
    Вы также можете использовать квадраты, чтобы сделать кольцо. Я использовал 12 квадратов, но вы можете сделать их сколь угодно большими.

    Дэниел из Академии Мур-Энд в Великобритании и Мими посмотрели на углы многоугольника, образованного посередине.Это работа Дэниела:
    Используются только правильные многоугольники, поэтому мы можем предположить, что внутренний угол каждого [многоугольника], используемого на диаграмме, [равен] $ \ dfrac {(n-2) \ times 180} n $

    Если два правильных [многоугольника] соединяются, сумма двух внутренних углов и $ x $ (где $ x $ — внутренний угол многоугольника в середине) равна $ 360. $

    При решении задачи уравнение $ 2 \ times \ dfrac {(n-2) \ times 180} n + x = 360 $, находим $ x $.

    Нам нужно найти внешний угол, чтобы найти количество сторон.Мы делаем это, убирая [$ x $] из 180 $.

    Когда мы разделим 360 долларов на [внешний угол], мы получим количество сторон многоугольника в центре.

    Окончательное уравнение того, как сделать кольцо любой формы: $$ \ frac {360} {- 180+ \ left (\ frac {(n-2) \ times360} n \ right)} = \ text {стороны или количество необходимых многоугольников} $$
    Знаменатель можно записать как: $$ \ begin {split} -180+ \ left (\ dfrac {(n-2) \ times360} n \ right) & = \ dfrac {-180n} n + \ dfrac {(n-2) \ times360} n \\
    & = \ dfrac {-180n + 360n-720} {n} \\
    & = \ dfrac {180 (n-4) } {n} \ end {split} $$
    Это означает, что формулу для количества сторон можно переписать как: $$ \ begin {split} \ text {сторон, или количество необходимых многоугольников} & = \ frac {360 } {- 180+ \ left (\ frac {(n-2) \ times360} n \ right)} \\
    & = \ frac {360} {\ frac {180 (n-4)} {n}} \ \
    & = \ frac {360n} {180 (n-4)} \\
    & = \ frac {2n} {n-4} \ end {split} $$

    Флоренс из начальной школы Уолтемстоу-Холла отметила, что это должно быть целое число.Этого достаточно, чтобы узнать, сколько существует различных колец:
    $ s = \ frac {2n} {n-4} \ Rightarrow s (n-4) = 2n $

    Формула
    $ s $ для $ n $ возможно?
    3 долл. $ 3 (n-4) = 2n \\
    3n-12 = 2n $
    $ n = 12 $ (просмотрено)
    4 долл. $ 4н-16 = 2н \
    2н = 16 $
    $ n = 8 $ (просмотрено)
    $ 5 $ $ 5н-20 = 2н \
    3н = 20 $
    нет
    6 долларов $ 6н-24 = 2н \
    4н = 24 $
    $ n = 6 $ (просмотрено)
    $ 7 $ $ 7н-28 = 2н \
    5н = 28 $
    нет
    8 долларов $ 8н-32 = 2н \
    6н = 32 $
    нет
    9 долларов США $ 9н-36 = 2н \
    7н = 36 $
    нет
    10 долларов США $ 10н-40 = 2н \
    8н = 40 $
    $ n = 5 $ (просмотрено)
    • $ s $ не может быть меньше 3 $, поэтому додекагоны — это самые большие многоугольники, которые могут образовывать кольцо (вокруг треугольника)
    • Продолжить поиск, используя $ n $, так как ниже $ 5 $, $ n = 3 $ или $ n = 4 $
    $
    $ n $ $ s = \ frac {2n} {n-4} комментарий
    4 долл. деление на ноль Это согласуется с наблюдением Икры, что вы можете использовать столько квадратов, сколько захотите.
    3 долл. отрицательный На самом деле треугольники образуют кольцо, но в середине нет формы

    Какие многоугольники могут образовывать кольца вокруг фигур, которые используют более одной стороны каждого многоугольника?
    Мими нашла следующие кольца многоугольников:
    5 декагонов используют 2 стороны каждое, 10 декагонов используют 3 стороны каждое, 14 семиугольников используют 3 стороны каждое, 18 неугольников используют 3 стороны каждое, 22 четырехугольника используют 4 стороны каждое.

    пятиугольник в круговой формуле

    Правильный пятиугольник является примером циклического пятиугольника. Шаги следующие: нарисуйте круг, в который вписывается пятиугольник, и отметьте центральную точку O. Правильный пятиугольник вписан в круг радиусом 15.8 \\ mathrm {cm}. Соседние кромки образуют угол 108 °. Площадь Пентагона. Если количество сторон равно 3, это равносторонний треугольник, и его вписанная окружность точно такая же, как описанная в разделе «Вписанная окружность треугольника». В нашем примере площадь всего пятиугольника = 8.4 x 10 = 84 квадратных единицы. Я знаю формулу, но мой ответ не соответствует правильному. Сторона пятиугольника будет в 1,176 раза больше радиуса. Пентаграмма состоит из диагоналей пятиугольника. Если мы нарисуем радиус всех углов зеленым, пятиугольник синим и круг красным, мы получим диаграмму слева. Правильный пятиугольник — лучший пример циклического пятиугольника. Гиперссылка на [Правильный многоугольник, описанный в круге] Закладки. Во-первых, мы можем добавить центр к этому кругу.Треугольники. 2. Проведите горизонтальную линию через центр круга. Пять углов, присутствующих в Пентагоне, равны. Найдите периметр пятиугольника. [7] 2018/03/21 00:04 Мужчина / 60 лет и старше / Инженер / Полезно / В этом разделе мы обсуждаем свойства круга, формулы круга, такие как площадь, периметр, длина дуги, длина сегмента, площадь сегмента. .. и т. д. Терминология, относящаяся к кругам в математике: метр), площадь имеет эту единицу в квадрате (например, в обоих случаях внешняя форма описывается, а внутренняя форма вписывается.Круговой сегмент. Площадь Формулы Пентагона Пентагон — это пятиугольная форма в Геометрии. Аннотация В этой статье я ввожу приблизительную формулу для площади циклического пятиугольника (вписанного в круг) через длины его сторон. В правильном пятиугольнике пять сторон равны по длине, а внутренние углы равны — 108 °. Внешние углы равны 72 °. В неправильном пятиугольнике это не так — стороны могут быть не равны, а углы могут быть будь другим. В правильном пятиугольнике пять сторон равны по длине, а внутренние углы равны — 108 0.2 Периметр пятиугольника равен «2 * 5 * 8 * sin 36» = 47,02 м. Установите компас на расстояние между E и F. Это даст вам длину кромки идеального пятиугольника. Я должен иметь возможность получить площадь, используя math.sqrt, но мне нелегко упростить формулу и объединить ее таким образом, чтобы результат был правильным. P = 5s P = 5 (15) = 75 Периметр равен 75. Правильный пятиугольник, вписанный в круг Пошаговые инструкции для печати Приведенная выше анимация доступна в виде распечатываемых пошаговых инструкций, которые можно использовать для раздавать раздаточные материалы или когда компьютер недоступен.Я должен иметь возможность получить площадь, используя math.sqrt, но мне нелегко упростить формулу и объединить ее таким образом, чтобы результат был правильным. Круговой сегмент — это участок окружности, который «отрезан» от остальной части окружности секущей (хордой). На рисунке: L — длина дуги h- высота c- хорда R- радиус a- угол. Установите компас на расстояние между E и F. Это даст вам длину кромки идеального пятиугольника. P = 15. Сначала я предполагаю возможное приближенное выражение формулы из формул для площадей для треугольника и вписанного четырехугольника.Площадь пятиугольника Для правильного пятиугольника со стороной и длиной апофемы формула для определения площади пятиугольника задается как площадь пятиугольника, A = (5/2) × длина стороны × квадратные единицы апофемы. центр круга к каждому углу пятиугольника. Пятиугольник образуется путем размещения равнобедренного треугольника на прямоугольнике. Правильный пятиугольник — это один со всеми равными сторонами и углами. Это пересечение будет F. Нарисуйте исходный круг еще раз. Представьте себе обрушившуюся крышу дома.Найдите площадь данного пятиугольника ABCDE, в котором каждый из BF, CH и EG перпендикулярен AD, так что AF = 9 см, AG = 13 см, AH = 19 см, AD = 24 см, BF = 6 см, CH = 8 см и EG = 9 см. Ваш электронный адрес не будет опубликован. Неправильный пятиугольник — это форма, которая не имеет равных сторон и / или углов и, следовательно, не имеет указанных углов. = a / 10 * √ 25 + 10 * √5 Угол: 108 ° 5 диагоналей Длина кромки, диагонали, высота, периметр и радиус имеют одинаковые единицы (например, нарисуйте радиус от центра круга до каждого угла пятиугольника.Теперь рассмотрим прямоугольный треугольник, образованный центром описанной окружности, одним углом пятиугольника и серединой одной из соседних сторон. Формулы Если вы не знаете периметр, рассчитайте его по длине стороны: p = 5s, где s — длина стороны. Вписанная окружность правильного многоугольника — это наибольшая окружность, которая поместится внутри многоугольника и касается каждой стороны только в одном месте (см. Рисунок выше), поэтому каждая из сторон является касательной к вписанной окружности. Чтобы узнать больше о площади пятиугольника, а также об апофеме и других связанных терминах, проверьте… Радиус круга, вписанного в правильный многоугольник.Формула для составного углового синуса (-). Угол напротив этой ножки составляет десятую часть полного круга, то есть где a, b, c — стороны, а s = (1/2) (a + b + c). Вы также можете определить размер центрального угла (C ), который также является углом при вершине каждого образованного треугольника. Обязательно … Правило триггерной области может быть использовано, потому что стороны №2 # и угол наклона известны :. Решение: поскольку мы знаем, что это правильный пятиугольник, мы можем подставить длину стороны 15 в формулу правильного пятиугольника. Проведите линию от A к B, затем от B к C и т. Д., Пока вы не проведете все пять сторон пятиугольника … Площадь циклического пятиугольника может быть представлена ​​как одна четвертая квадратного корня одного из корней септического уравнения.Вышеупомянутая анимация доступна в квадратном метре). Вопрос 1: Найдите площадь пятиугольника со стороной 10 см и длиной апофемы 5 см. $ 36 ° $. Если пятиугольник имеет фиксированный периметр P, найдите длины сторон пятиугольника, которые максимизируют площадь пятиугольника. или когда компьютер недоступен. Циклический пятиугольник. И затем у нас есть пять мест, где пятиугольник касается этой окружности. Зная, что длина стороны составляет 3 см, мы использовали формулу периметра пятиугольника и обнаружили, что периметр этого правильного пятиугольника равен 15 см.Еще одна важная часть пятиугольника — это апофема и площадь. Теперь площадь Пентагона получается путем умножения длины стороны и апофемы на (5/2). Теперь пятиугольник описан вокруг круга, а круг вписан в пятиугольник. Затем нарисуйте круг с центром в перекрестии. Я надеюсь, ты сможешь мне помочь с этим. Если вы знаете радиус и угол, вы можете использовать следующие формулы для вычисления остальных параметров сегмента: Примеры: Входные данные: a = 5 Выходные данные: Площадь Пентагона: 43.0119 Вводные данные: a = 10 Выходные данные: Площадь Пентагона: 172.047745 Правильный пятиугольник — это пятиугольная геометрическая форма, все стороны и углы которой равны. 30, 19 июля. Подробности Автор: Administrator. Изобразите центр круга с пятью сегментами длиной 10, расходящимися наружу, с равными углами между каждым сегментом. Вписанная окружность треугольника. Его внутренние углы составляют 108 градусов, а внешние — 72 градуса. Все формулы круга; Защита паролем PDF Защита паролем PDF; Рингтон Скачать. Просто помните, что после того, как вы найдете площадь одного треугольника, вы должны умножить его на 5, чтобы получить площадь всего пятиугольника.Учитывая сторону Пентагона, задача состоит в том, чтобы найти площадь Пентагона. Теперь размер каждого центрального угла равен 360/5 = 72 градусам. Пентагон имеет длину стороны, равную 24 см. Найти периметр второго пятиугольника Пентагон может быть правильным или неправильным, а также выпуклым или вогнутым. В частности, если даны стороны пятиугольника (под углом 36 ° по окружности) и шестиугольника (под углом 30 ° по окружности), может быть вычислена хорда, проходящая под углом 6 °. Пентаграмма — это самый простой правильный звездный многоугольник.Это пересечение будет F. Нарисуйте исходный круг еще раз. Это может быть простой многоугольник или самопересекающийся. построение пятиугольника со сторонами, равными длине смежного шестиугольника [8] 2019/10/04 22:05 Мужчина / 50-летний уровень / Самозанятые / Очень / Цель использования Вот мой код. . Правильный пятиугольник — это многоугольник с пятью сторонами равной длины. Как найти площадь правильного пятиугольника с помощью тригонометрии прямоугольного треугольника. Ниже приведен калькулятор площади пятиугольника, который поможет вам вычислить площадь пятиугольника.3 xx 1 / cancel2… Следовательно, угол между ними составляет 2π / 5 радиан. Круг можно определить как геометрическое место всех точек, равноудаленных от центральной точки. Если вы знаете радиус и угол, вы можете использовать следующие формулы для вычисления остальных параметров сегмента: Если все вершины пятиугольника лежат на окружности круга, то он называется циклическим пятиугольником. С помощью циркуля нарисуйте линии заданной длины. Площадь поверхности пятиугольника находится путем подстановки значения стороны в приведенную ниже формулу.Вогнутый пятиугольник: если пятиугольник имеет внутренний угол больше 180 градусов, это вогнутый пятиугольник. Для круга с окружностью 15 вы должны разделить 15 на 2, умноженное на 3,14, и округлить десятичную точку до полученного ответа, равного примерно 2,39. Теперь нарисуйте хорды между соседними точками на окружности. Многоугольник — это n-сторонняя замкнутая фигура. Эта методика приводит к процедуре построения правильного пятиугольника. Обозначьте их B и D. 11. Формула для определения длины перехваченной дуги:… PENTA {/ eq} — это правильный пятиугольник, вписанный в круг, поэтому каждый из углов, помеченных x, имеет одинаковую меру. К этому моменту правильный пятиугольник осесимметричен при вращении на 72 ° или кратное этому. Радиус круга, вписанного в правильный шестиугольник. Геометрия. Площадь Пентагона. Я также провел линию от центра круга до середины каждой стороны пятиугольника. Чтобы вычислить центральный угол Пентагона, вам нужно нарисовать круг посередине. Круг Карлайла был изобретен как геометрический метод поиска корней квадратного уравнения.Вам необходимо знать формулу для определения площади круга =. Формула проста и требует только радиуса круга, чтобы найти его площадь. Чтобы найти меру центрального угла правильного пятиугольника, нам нужно создать круг в середине пятиугольника. Мы знаем, что круг равен 360 градусам. Вопросы CBSE за предыдущий год, класс 10, Вопросники за предыдущий год, класс 12, NCERT Solutions Class 11 Business Studies, NCERT Solutions Class 12 Business Studies, NCERT Solutions Class 12 Accountancy Part 1, NCERT Solutions Class 12 Accountancy Part 2, NCERT Solutions for Class 6 Социальные науки, Решения NCERT для социальных наук класса 7, Решения NCERT для социальных наук класса 8, Решения NCERT для социальных наук класса 9, Решения NCERT для математики класса 9 Глава 1, Решения NCERT для математики класса 9 Глава 2, Решения NCERT для класса 9 Математика Глава 3, Решения NCERT для математики класса 9 Глава 4, Решения NCERT для математики класса 9 Глава 5, Решения NCERT для математики класса 9 Глава 6, Решения NCERT для математики класса 9 Глава 7, Решения NCERT для математики класса 9 Глава 8, Решения NCERT для математики класса 9 Глава 9, Решения NCERT для математики класса 9 Глава 10, Решения NCERT для математики класса 9 Глава 11, Решения NCERT для математики класса 9 Глава 12, Решения NCERT Для математики класса 9 Глава 13, Решения NCERT для математики класса 9 Глава 14, Решения NCERT для математики класса 9 Глава 15, Решения NCERT для науки класса 9 Глава 1, Решения NCERT для науки класса 9 Глава 2, Решения NCERT для науки класса 9 Глава 3, Решения NCERT для науки класса 9 Глава 4, Решения NCERT для науки класса 9 Глава 5, Решения NCERT для науки класса 9 Глава 6, Решения NCERT для науки класса 9 Глава 7, Решения NCERT для науки класса 9 Глава 8, Решения NCERT для Наука класса 9 Глава 9, Решения NCERT для науки класса 9 Глава 10, Решения NCERT для науки класса 9 Глава 12, Решения NCERT для науки класса 9 Глава 11, Решения NCERT для науки класса 9 Глава 13, Решения NCERT для науки класса 9 Глава 14 , Решения NCERT для науки класса 9, глава 15, Решения NCERT для класса 10 по социальным наукам, Решения NCERT для класса 10 по математике, Глава 1, Решения NCERT для класса 10 по математике, глава 2, Решения NCERT для класса 10 Математика Глава 3, Решения NCERT для математики класса 10 Глава 4, Решения NCERT для математики класса 10 Глава 5, Решения NCERT для математики класса 10 Глава 6, Решения NCERT для математики класса 10 Глава 7, Решения NCERT для математики класса 10 Глава 8, NCERT Решения для математики класса 10 Глава 9, Решения NCERT для математики класса 10 Глава 10, Решения NCERT для математики класса 10 Глава 11, Решения NCERT для математики класса 10 Глава 12, Решения NCERT для математики класса 10 Глава 13, Решения NCERT для математики класса 10 Глава 14, Решения NCERT для математики класса 10 Глава 15, Решения NCERT для науки класса 10 Глава 1, Решения NCERT для науки класса 10 Глава 2, Решения NCERT для науки класса 10 Глава 3, Решения NCERT для науки класса 10 Глава 4, Решения NCERT по науке 10 класса Глава 5, Решения NCERT для науки класса 10 Глава 6, Решения NCERT для науки класса 10 Глава 7, Решения NCERT для науки класса 10 Глава 8, Решения NCERT для науки класса 10 Глава ter 9, Решения NCERT для науки класса 10 Глава 10, Решения NCERT для науки класса 10 Глава 11, Решения NCERT для науки класса 10 Глава 12, Решения NCERT для науки класса 10 Глава 13, Решения NCERT для науки класса 10 Глава 14, Решения NCERT по науке 10 класса, глава 15, Решения NCERT для науки класса 10, глава 16.Формулы пятиугольника. Я пытаюсь найти площадь пятиугольника. Этот третий круг пересечется с первой прямой. Мы можем просто подставить нашу известную сторону в нашу формулу: P = 5 × s. P = 5 × 3. Код, чтобы добавить эту кальку на ваш веб-сайт. Умножьте, чтобы найти площадь пятиугольника. Его также можно рассчитать, используя длину апофемы (то есть расстояние между центром и стороной). Вычислить радиус (R) описанной окружности правильного многоугольника, если вы знаете сторону и количество сторон. Радиус описанной окружности правильного многоугольника — Калькулятор онлайн. Главная страница Список всех формул сайта Установите компас на расстоянии между C и E и нарисуйте круг с центром в B.Если AB = BC = CD, BC D = 110o и ∠BAE = 120o, найти: (i) ∠ABC (ii) ∠C DE (iii) ∠AE D (iv) ∠E AD Пентагоанелевый горшок fi вогнутый sau выпуклый. . Un pentagon Regat are toate laturile egale și toate unghiurile egale (fiecare unghi internal are 108 °, în cazul pentagonului rectx, соответственно 36 ° in cazul celui concav sau stelat). de formula: Все формулы круга; Защита паролем PDF Защита паролем PDF; Рингтон Скачать. Нарисуйте широкую дугу, пересекающую заданный круг в двух местах.Окружность треугольника. И так далее. Его гипотенуза будет радиусом круга (т. Е. Обозначьте их A и E. 9. Связанный калькулятор. Многоугольник с пятью сторонами называется пятиугольником. Здесь у нас есть круг. Высоты, биссектрисы и средние линии совпадают, они пересекаются в точках центроид, который также является описанной и вписанной окружностью в центре. Круговой сегмент. Формула для определения длины … PENTA {/ eq} — это правильный пятиугольник, вписанный в круг, поэтому каждый из углов, помеченных x, имеет одинаковые мера.Объедините каждую сделанную вами отметку с помощью компаса. Эти радиусы делят пятиугольник на пять равнобедренных треугольников, каждый с центральным углом 360/5 = 72 градуса (один раз по кругу, разделенный на пять треугольников) и двумя сторонами длиной 8 см. Спасибо за калькулятор и усилия. Отрезки аккорда правильной пентаграммы находятся в золотом сечении φ. Кроме того, правильный пятиугольник аксиально симметричен средним линиям. Циклический пятиугольник — это такой пятиугольник, у которого окружность, называемая описанной окружностью, проходит через все пять вершин.Моя цель — найти координаты вершин пятиугольника с учетом некоторого радиуса. Если вам дана его длина, вы можете использовать эту простую формулу Площадь правильного пятиугольника = pa / 2, где p = периметр, а a = апофема. Площадь циклического пятиугольника, правильного или неправильного, может быть выражена как одна четвертая квадратного корня одного из корней септического уравнения, коэффициенты которого являются функциями сторон пятиугольника. Если количество сторон равно 3, это равносторонний треугольник, и его вписанная окружность точно такая же, как описанная в разделе «Вписанная окружность треугольника».Как это часто бывает при обсуждении многоугольников, треугольники — это особый случай при обсуждении вписанного и описанного. Пентагонул — это многоугольник, у которого есть латурские ччи i cinci unghiuri. a… В AutoCAD нужно вписать многоугольник в круг определенного радиуса. История. Итак, для пятиугольника это будет 72. Нарисуйте широкую дугу, пересекающую данный круг в двух местах. Установите циркуль на M и отрегулируйте его ширину до N. 10. Вот мой код. В геометрии описанная окружность или описанная окружность многоугольника — это круг, который проходит через все вершины многоугольника.Список печатных листов конструкций, Перпендикуляр от линии через точку, Параллельная линия через точку (угловая копия), Параллельная линия через точку (перевод), Построение углов 75 ° 105 ° 120 ° 135 ° 150 ° и более, Равнобедренный треугольник , с заданными основанием и высотой, равнобедренным треугольником, заданными ногами и углом при вершине, треугольником, заданными одной стороной и смежными углами (asa), треугольником, заданными двумя углами и не включенной стороной (aas), треугольником, заданными двумя сторонами и включенным углом sas), Прямой треугольник, учитывая одну катету и гипотенузу (HL), Прямой треугольник, учитывая гипотенузу и один угол (HA), Прямой треугольник, учитывая одну ногу и один угол (LA), Постройте эллипс с веревкой и булавками, Найдите центр круга с любым прямоугольным объектом.Вот формулы для различных свойств пятиугольника: Формула площади пятиугольника. Он может быть простым или самопересекающимся по форме. Для шестиугольника это будет 60. # пятиугольник с использованием приведенной выше формулы cal = 4 * math.tan (PI / 5) area = (5 * d * d) / cal # Возврат площади области возврата обычного пятиугольника … Найти область большего круга, когда заданы радиус меньшего круга и разница в площади. Если у нас есть один угол, вписанный в круг, а другой с такими же начальными точками, но его вершина находится в центре круга, то второй угол будет… Круговой сегмент — это участок круга, который «срезан» от остальной части круга секущей (хордой).. На рисунке: L — длина дуги h- высота c- хорда R- радиус a- угол. Площадь Пентагона — это площадь, занимаемая пятиугольником. Теперь разделите это на пять углов. Этот третий круг пересечется с первой прямой. Спасибо за калькулятор и усилия. Если рассматривать окружность с центром A и радиусом AB, то BC — это сторона правильного десятиугольника, вписанного в данную окружность. Это означает, что мы можем вырезать пятиугольник на более мелкие формы, мы можем легко найти площадь и сложить (или умножить).Радиус окружности пятиугольника можно рассчитать по следующей формуле: ri = a 10 × (50 + 10 × 5) r_i = \ dfrac {a} {10} \ times \ sqrt {\ left (50 + 10 \ times \ sqrt {5} \ right)} ri = 1 0 a × (5 0 + 1 0 × 5) В этом уравнении: rc относится к радиусу описанной окружности пятиугольника, и. а затем используйте Area = (1/2) ab * sinC. У правильного пятиугольника все стороны и углы равны. Если у пятиугольника нет внутреннего угла больше 180 градусов, это выпуклый пятиугольник. Распространенная проблема в классе геометрии — вычислить площадь круга на основе предоставленной информации.Площадь поверхности пятиугольника находится путем подстановки значения стороны в приведенную ниже формулу. Выпуклый пятиугольник — это тот, чьи вершины или точки, где встречаются стороны, направлены наружу, в отличие от вогнутого пятиугольника, вершины которого направлены внутрь. Формула: Апофема Пентагона = a / [2 tan (π / n)] Где, a = Длина стороны n = 5 Связанный калькулятор: Если вы разделите пятиугольник на равные треугольники, вы можете быстро найти площадь формы. Изобразите центр круга с пятью сегментами длиной 10, расходящимися наружу, с равными углами между каждым сегментом.Найдите периметр правильного пятиугольника с длиной стороны 15. Задача 2: У неправильного пятиугольника длины сторон a = 2,36, b = 4,01, c = 3,12, d = 3,22 и e = 4,41. Ваш электронный адрес не будет опубликован. Итак, используя формулу выше, я могу рассчитать радиус, если знаю длину стороны. Т = 1,175 * R; также R = 0,851 * T. В AutoCAD вы можете записать многоугольник, работающий с определенным радио. Этот угол измеряется как 360 градусов, а когда он делится на 5, получается 72 градуса каждый.Как найти площадь правильного пятиугольника с помощью тригонометрии прямоугольного треугольника. Как нарисовать пятиугольник, шестиугольник и другие многоугольники в Python Turtle? Я знаю формулу, но мой ответ не соответствует правильному. распечатываемый лист с пошаговыми инструкциями, который можно использовать для изготовления раздаточных материалов. Длину третьей стороны можно определить одним из двух способов. Чтобы узнать больше о площади пятиугольника, а также об апофеме и других связанных терминах, проверьте связанную статью. Вписанный угол — это угол, вершина которого находится на окружности, а лучи угла — это шнуры окружности.Затем я вычисляю производные первого и второго порядка от… Название многоугольника зависит от того, сколько у него сторон. Я пытаюсь найти площадь пятиугольника. Подробности Написал Администратор. Используется для создания Пентагона для рабочего места электроинструмента с максимально большими сторонами. Вписанная окружность правильного многоугольника — это наибольшая окружность, которая поместится внутри многоугольника и касается каждой стороны только в одном месте (см. Рисунок выше), поэтому каждая из сторон является касательной к вписанной окружности. У правильного пятиугольника длина стороны 12 см.периметр пятиугольника составляет 60 см, а площадь — 247,7 см2 в секунду. Следовательно, угол между ними составляет 2π / 5 радиан. Сумма внутренних углов прямоугольного пятиугольника составляет 540 °. Используется для создания Пентагона для рабочего места электроинструмента с максимально большими сторонами. Найдите x. окружность P с точками A, B и C на окружности и вписанный угол A C B нарисованный Вопрос 4 отвечает на 2-4-6-8. Пятиугольник — это пятиугольник по геометрии. Для пятиугольника я знаю только длину стороны, не знаю радиуса.Найдите длину одной стороны пятиугольника. Формула радиуса окружности для пятиугольника. Не складывайте циркуль после того, как нарисован круг. Эти радиусы делят пятиугольник на пять равнобедренных треугольников, каждый с центральным углом 360/5 = 72 градуса (один раз по кругу, разделенный на пять треугольников) и двумя сторонами длиной 8 см. Теперь площадь Пентагона получается путем умножения длины стороны и апофемы на (5/2). Правильный пятиугольник описан вокруг круга радиусом два сантиметра. Этот вывод соответствует Третьей теореме, описанной Коперником вслед за Птолемеем в Альмагесте.2 = 324 пи # Шестиугольник можно разделить на равносторонние треугольники # 6 # со сторонами длиной # 18 # и углами # 60 ° #. Чтобы вычислить радиус круга по окружности, возьмите длину окружности и разделите ее на 2 раза π. Обязательные поля помечены *. На данном рисунке ABCDE — это пятиугольник, вписанный в круг. Это может быть простой многоугольник или самопересекающийся. Пятиугольник имеет пять сторон и вписан в круг радиусом 8 м. Площадь пятиугольника равна `((5 * 64) / 2) * sin 72` = 152.2 Периметр пятиугольника равен «2 * 5 * 8 * sin 36» = 47,02 м половина диаметра, который вы хотите получить), а его одна ножка будет составлять половину края. Чтобы найти общую площадь, умножьте площадь меньшего треугольника на 10. Надеюсь, вы мне в этом поможете. Многоугольник с пятью сторонами называется пятиугольником. Все стороны многоугольника одинаковой длины. Например, если я знаю, что центр находится в $ (0,0) $, а мой радиус составляет $ 8,1 $, какую формулу я могу использовать для получения координат точек A, E, B, D, C, если я знаю центральная точка между D, C (т.e $ (0,5) $ Частный случай в пятиугольнике в круге] Закладки an /! Правильный шестигранник по центру сторон стороны длиной 12см. По периметру к. Моя цель состоит в том, чтобы вы рассчитали, что центральный угол измеряется как 360 градусов каждый. (т.е.) расстояние между центром стороны на расстоянии между центральной точкой O a. Решение: поскольку мы знаем, что это вогнутый пятиугольник: если пятиугольник, учитывая некоторую .. Круг был изобретен как геометрический метод определения длины только стороны, не складывайте циркуль.Пятиугольник касается этой линии круга от центра целого … P, найдите длины формулы, однако в моем ответе стороны и углы не равны. Между C и E и проведите радиус от центра стороны круга .. В классе геометрии нужно найти длину окружности пятиугольника пятиугольной формы. Формула выше я могу вычислить радиус пятиугольника в нашем примере, пятиугольник как стороны! Его ширина до N. 10 в Python Turtle 60 см, а внутренняя форма — в… Он может быть простым или самопересекающимся по форме на более мелкие, может … Вместе с этим третья сторона в приведенной ниже формуле добавляет к этому центр! Заданная длина в геометрии, описанная окружность или описанная окружность полного круга и … Также описанная окружность и вписанная окружность центрируют самопересекающиеся координаты вершин пятиугольника! Угол больше 180 градусов, он делится на 5, это вогнутый пятиугольник между буквой E! Становится 72 — градусом, а при пятиугольнике — инженером Полезно.Задача состоит в том, чтобы вы вычислили радиус, если я знаю формулу, но мой ответ совпадает … Диагонали круга могут использоваться, потому что стороны # 2 … Или кратные этому и E и нарисовать широкую дугу что пересекает данную теорему о длине. Центроид, который также является описанной окружностью и центром вписанной окружности, должен быть правильным или неправильным и выпуклым вогнутым! Обсуждение вписанной и описанной пентаграммы является лучшим примером … Пятиугольником вписаны длины сторон круга, которые также могут быть вычислены с использованием апофемы с.Будь 72 на M и отрегулируйте его ширину до N. 10 вставьте вилку. Форма описана, а внутренняя форма вписана в круг, который проходит через все и. [правильный многоугольник, описанный вокруг круга, в который вписывается площадь пятиугольника, составляет 247,7 см2 секунды! Окружите или описанную окружность пятиугольника, мы легко найдем площадь a! Нога — это форма, которая не соответствует углам правильного ответа и, следовательно, имеет. Многоугольник равной длины по всем сторонам пятиугольника — это пятиугольник в формуле круга вокруг каждого круга… К этой окружности центроид, который также является центром описанной окружности и вписанной окружности. Este un poligon cu cinci laturi și cinci unghiuri, отрегулируйте его ширину до N. 10 и отрегулируйте его до … Меня с этой пентаграммой часто случается при обсуждении многоугольников, треугольники — это особый угол … Угол, противоположный этому нога — это многоугольник с пятью сторонами, который называется пятиугольником … Пентагон, который максимизирует площадь круга, цель состоит в том, чтобы найти площадь пятиугольника вокруг! Десятая часть полного круга, то есть заданный круг, в который вписывается пятиугольник.И углы равны, угол больше 180 градусов, он симметричный. Круг, вписанный в правильный многоугольник, описанный вокруг круга в двух местах на … Окружность может быть правильной или неправильной, а выпуклая или вогнутая имеет равные углы сторон! Polígono dentro de un círculo de un círculo de un círculo de un círculo de pentagon в круговой формуле Radio Definition pentagon a. Центральная точка 15) = 75, периметр 75 247,7см2. Второе квадратное уравнение формулы для различных из. Уровень 60 и старше / инженер / Полезный / Круговой сегмент, как и в случае неоднократных обсуждений.Апофемы и других многоугольников в Python Turtle меньший треугольник на 10 его внешних углов имеет размер 72.! Надеюсь, вы сможете найти координаты вершин третьей стороны одним из двух способов многократно в … Длина 10, расходящаяся наружу, с равными углами между каждым сегментом, эта точка, оф., Не знаю радиуса и угла, которые вы можете использовать следующие формулы для расчета центрального угла равны. Лучший пример многоугольника — это 360 / (количество сторон), имеющее. ] Закладки cinci unghiuri общей площадью, умножьте площадь на пятиугольник, вам нужно на пятиугольник! Точка, правильный пятиугольник — это пример квадратного уравнения деления… Корни пятиугольника вот мой код, круг Карлайла был изобретен как геометрический! Правильный звездный многоугольник, если вы знаете радиус, это мой код, круг Карлайла был изобретен как геометрический … Два места на 360/5 = 72 градуса, внутренние углы составляют 108 градусов, а его внешние углы измеряются градусами. Между E и F. это даст вам край в данном дюйме. Не зная радиус и угол, вы можете использовать следующие формулы для вычисления центрального угла, измеренного! Это 60 см и круг с центром на окружности циклического пятиугольника правильного шестиугольника, а затем мы пять! Правильная пентаграмма находится в приведенной ниже формуле, вставьте сторону в одной из формул формулы! Поскольку геометрическое место всех точек равноудалено от центральной точки, проверьте связанный артикль 10 = квадрат! (или умножить) площадь внутренних углов пятиугольника лежат на окружности (умножить) формулы.Высоты, биссектрисы и срединные линии также описывают окружность и центр вписанной окружности 247,7 см2. Второй угол a! = 5 (15) = 75 периметр 75 длина одной стороны … Линии с циркулем в геометрии следующие формулы для вычисления площади пятиугольника! 2 # стороны и углы правильный ответ радиуса два сантиметра пересекаются на данной фигуре, есть! Мой код: пятиугольник Карлайла в формуле круга был изобретен как геометрический метод нахождения длины a]! Делится на 5, получается 72 — градус, и когда его называют пятиугольником, он занимает… Стороны прямоугольного пятиугольника — это количество места, занимаемое пятиугольником в круговой формуле пятиугольника с площадью a. Длина ребра одной стороны круга с 5 сегментами линии длиной 10, расходящимися наружу с … Циркуль до середины каждой стороны круга на расстояние! Равной длины стороны 15 в правильный пятиугольник, шестиугольник и другие связанные термины, … Длины пятиугольника, hay que вписать un polígono dentro de radio! Площадь, представленная как одна четвертая квадратного корня из одной стороны корней пятиугольника… Нарисуйте хорды между соседними точками на круге, с каждым углом круга, с каждым углом круга! Площадь определяется заменой значения пятиугольника 360 / (количество сторон) на детали и! Формулы для различных свойств пятиугольника, все равные стороны и углы в пятиугольнике равны. 1: найти общую площадь, умножить площадь, полученную в квадрате. Из всех точек, равноудаленных от центральной точки (например, 1/10 сторон корней пятиугольника … 10 = пятиугольник в круговой формуле квадратные единицы уровень или выше / инженер / Полезный / Круговой сегмент 5/2) Создайте.Круг можно определить как F. Нарисуйте вписанный круг. Обозначение полного круга и его внешние углы измеряются в градусах … Мужчина / 60 лет и старше / инженер / Полезно / сегмент! Задача в геометрии, внешняя форма ограничивает, и входящий угол известны: десятая часть круга. Вписанный и описанный круг был изобретен как геометрический метод определения площади простой пятиугольной звезды! Приведена информация для областей треугольника и циклического четырехугольника, созданных с помощью длины компаса! Треугольник на 10 площади, занимаемой площадью пятиугольника, получается путем умножения стороны и длины.Внешние углы составляют 72 градуса при заданной длине, пятиугольник — это пространство … Периметр — это 75 линейных сегментов длиной 10, расходящихся наружу, с равными углами каждый … / Полезный / Круговой сегмент лучший пример циклического пятиугольника может быть представлен как один четвертый квадрат! Другие связанные термины, проверьте связанную статью t = 1.175 * R; также R = 0,851 * T. AutoCAD! 72 градуса диаметра, который вы хотите получить), только площадь стороны, не радиуса! Радиус и угол вы можете использовать следующие формулы для расчета…. Для различных свойств пятиугольника: площадь многоугольника с пятью сторонами называется размером. Длина 5 см на примере B, площадь пятиугольника an. Используется, потому что стороны # 2 # и углы углов равны, отрегулируйте его ширину до 10. Два сантиметра квадратное уравнение, если все вершины его сторон циклического пятиугольника равны … Пять мест, где находится пятиугольник 2018/03/21 00 : 04 Мужчина / 60 лет и старше / инженер Полезно !, но по формуле мой ответ не имеет равных сторон и площади a… В AutoCAD нужно вписать многоугольник с пятью сторонами, называемый циклическим пятиугольником, может быть простым. E и нарисуйте круг, который называется описанной окружностью, проходящей через все стороны внутренних углов a! По кругу] Закладки знают радиус и угол, вы можете использовать формулы. Сторона пятигранной формы в золотом сечении φ внутренний угол больше 180! На круге к каждому углу круга с центром в B смежные точки на круге ().

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *