Как перевести 380 вольт на 220 вольт
Почти все бытовые электроприборы рассчитаны на напряжение 220 В. Мы, не задумываясь, включаем их в розетку и наслаждаемся работой устройств. Но иногда требуется подключить асинхронный двигатель, рассчитанный на 380 В. Для его запуска можно использовать специальную схему, которая позволяет подключать электромотор к однофазной сети, но при этом придётся смириться с потерей мощности. Можно ли однофазную сеть превратить в трехфазную и как из 220 Вольт сделать 380?
Оказывается, такая возможность есть. Существует несколько способов получить 380 В из однофазной сети. Ниже мы покажем, как это сделать, но для начала разберёмся в том, чем отличается однофазная сеть от трёхфазной.
Теория
На промышленных электростанциях генераторы вырабатывают трёхфазный ток, и повышают его напряжение до десятков и даже сотен киловольт. По линиям электропередач электричество поставляется потребителям. Но перед этим ток поступает на силовой трансформатор, который понижает напряжение до 380 В. Из распределительной подстанции электроэнергия поступает в потребительскую сеть.
В трёхфазной сети ток подаётся таким образом, что все три сдвинуты относительно друг друга на 120 градусов. Напряжение между фазами составляет 380 В, а между фазой и нейтралью 220 В (см.рис. 1). Именно это напряжение подаётся в каждую квартиру.
Рис. 1. Структура трёхфазного тока
Так как нашей целью является получение 380 В именно из однофазной сети, то перейдём к способам преобразования 220 В на 380.
Способы получения 380 Вольт из 220
Рассмотрим основные способы преобразования 220 вольт в полноценный трёхфазный ток, напряжением 380 В:
- с помощью электронного преобразователя напряжения;
путём применения трансформатора;- использованием трёх фаз;
- используя трёхфазный двигатель в качестве генератора;
- пользуясь конденсаторной схемой.
Преобразователь напряжения
Самый простой и надёжный способ преобразовать 220 В в 380 – купить электронный преобразователь напряжения. (см. рис. 2). Этот прибор часто называют инвертором. Гаджет прост в управлении и генерирует качественный трёхфазный ток. Правда, мощность инверторов не слишком большая, но её, как правило, хватает для большинства трёхфазных бытовых приборов.
Рис. 2. Преобразователь напряжения
Преобразователь хорош ещё и тем, что у него есть встроенная функция защиты от перегрузок и КЗ. А это значит, что электромотор не перегреется и не выйдет из строя в результате КЗ.
Высокое качество тока достигается благодаря принципу работы устройства. Инвертор сначала выпрямляет переменный однофазный ток, а затем генерирует трёхфазное напряжение с заданной частотой и со стандартным сдвигом фаз. При этом количество фаз может быть и больше чем 3 (с соответствующим углом сдвига).
Используя трансформатор
С помощью повышающего трансформатора можно получить какое угодно напряжение, в том числе и 380 В. Однако, если вас интересует трёхфазное напряжение, то необходим специальный трёхфазный трансформатор. преобразующий однофазный ток в трёхфазный. Такие трансформаторы есть в продаже.
Обмотки трансформатора соединены звездой или треугольником. Напряжение однофазной сети подаётся на две первичные обмотки напрямую, а на третью – через конденсатор. При этом ёмкость конденсатора подбирается из расчёта 7 мкФ на каждые 100 Вт мощности.
Обратите внимание на то, что номинальное напряжение конденсатора не должно быть ниже 400 В. Такое устройство нельзя включать без нагрузки.
Хоть мы и получим таким способом необходимые 380 В, всё равно будет наблюдаться снижение мощности электромотора (если вы планируете подключать его к трансформатору). Соответственно КПД двигателя тоже упадёт.
Использование 3-х фаз
Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.
При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.
Использование электродвигателя
Вы наверно знаете, что ротор обычного трёхфазного двигателя после запуска продолжает вращаться после отключения одной фазы. Оказывается, что между выводом отключенной обмотки и задействованными выводами имеется ЭДС.
Сдвиг фаз между обмотками статора зависит только от их расположения. В трёхфазном двигателе эти катушки расположены под углом 120º, а значит они обеспечивают такой же угол сдвига фаз. Это обстоятельство наталкивает на мысль, что асинхронный трёхфазный двигатель можно использовать для получения 380 вольт от обычной однофазной сети. Простая схема подключения электромотора изображена на рисунке 3. Конденсатор на схеме нужен только для запуска двигателя. После запуска его можно отключить. Конденсатор берём типа МБГО, МБГП, МБГТ или К42-4, рабочее напряжение которого должно быть не менее 600 В. Можно применить конденсатор К42-19, с рабочим напряжением минимум 250 В.
Пример подключения фазосдвигающего конденсатора см. на рис. 3.
Рис. 3. Подключение пускового конденсатора
Параметры конденсатора подбираем в зависимости от мощности мотора. Заметим, что параметры фазосдвигающего конденсатора на качество генерируемого тока не влияют. Нагрузку подключаем к обмоткам статора, согласно схеме, показанной на рис. 4.
Рис. 4. Трёхфазный ток от электромотора
Скорость вращения ротора почти не зависит от напряжения однофазной сети, так что её можно считать постоянной. Это значит, что частота трёхфазного тока при номинальных нагрузках изменяться не будет.
Следует иметь в виду то, что мощность трёхфазного двигателя, работающего от однофазной сети, падает. Соответственно, номинальная мощность трёхфазной нагрузки будет, примерно, на треть ниже, от той, которая заявлена в паспорте электромотора.
Электродвигатель в качестве генератора
Ещё один способ, позволяющий из 220 В получить 380, это создание системы двигатель-генератор. В качестве двигателя можно взять любой электромотор, работающий от сети 220 В, а в качестве генератора – доработанный трёхфазный асинхронный двигатель (схему установки смотрите на рис. 5).
Сразу заметим, что эффективность такой установки под вопросом, но получить таким способом требуемое напряжение 380 В можно. В данной схеме требуется обеспечить такую частоту вращения ротора, чтобы генератор выдавал ток с частотой, равной 50 Гц. Для этого необходимо вращать вал с угловой скоростью 1500 об/мин.
Рис. 5. Трёхфазный двигатель в качестве генератора
В домашних условиях в качестве привода можно использовать однофазный мотор от стиральной машины или другой бытовой техники. Важно только обеспечить требуемую угловую скорость вращения ротора.
Поскольку вращение вала электродвигателей работающих, например, в стиральной машине составляет около 12 – 20 тыс. об./мин., то необходимо использовать шкивы, диаметры которых соотносятся как 1 к 10. То есть, чтобы обеспечить вращение ротора генератора со скоростью 1500 об/мин. можно взять шкив, который уже смонтирован на электромоторе от пралки, а на вал трёхфазного двигателя надеть шкив, диаметром в 10 раз больше.
Выводы
Получить 380 вольт от сети 220 В возможно несколькими способами. Самым эффективным является способ применения электронного инвертора:
- стабильные параметры тока;
- безопасная эксплуатация;
- обеспечение заявленной выходной мощности;
- компактность установки.
Все выше перечисленные способы преобразования 220 Вольт в 380 работают, поэтому имеют право на существование. Но надо быть готовым к потере мощности и к трудностям по достижению других параметров тока, включая его частотные характеристики.
Почти все бытовые электроприборы рассчитаны на напряжение 220 В. Мы, не задумываясь, включаем их в розетку и наслаждаемся работой устройств. Но иногда требуется подключить асинхронный двигатель, рассчитанный на 380 В. Для его запуска можно использовать специальную схему, которая позволяет подключать электромотор к однофазной сети, но при этом придётся смириться с потерей мощности. Можно ли однофазную сеть превратить в трехфазную и как из 220 Вольт сделать 380?
Оказывается, такая возможность есть. Существует несколько способов получить 380 В из однофазной сети. Ниже мы покажем, как это сделать, но для начала разберёмся в том, чем отличается однофазная сеть от трёхфазной.
Теория
На промышленных электростанциях генераторы вырабатывают трёхфазный ток, и повышают его напряжение до десятков и даже сотен киловольт. По линиям электропередач электричество поставляется потребителям. Но перед этим ток поступает на силовой трансформатор, который понижает напряжение до 380 В. Из распределительной подстанции электроэнергия поступает в потребительскую сеть.
В трёхфазной сети ток подаётся таким образом, что все три сдвинуты относительно друг друга на 120 градусов. Напряжение между фазами составляет 380 В, а между фазой и нейтралью 220 В (см.рис. 1). Именно это напряжение подаётся в каждую квартиру.
Рис. 1. Структура трёхфазного тока
Так как нашей целью является получение 380 В именно из однофазной сети, то перейдём к способам преобразования 220 В на 380.
Способы получения 380 Вольт из 220
Рассмотрим основные способы преобразования 220 вольт в полноценный трёхфазный ток, напряжением 380 В:
- с помощью электронного преобразователя напряжения;
- путём применения трансформатора;
- использованием трёх фаз;
- используя трёхфазный двигатель в качестве генератора;
- пользуясь конденсаторной схемой.
Преобразователь напряжения
Самый простой и надёжный способ преобразовать 220 В в 380 – купить электронный преобразователь напряжения. (см. рис. 2). Этот прибор часто называют инвертором. Гаджет прост в управлении и генерирует качественный трёхфазный ток. Правда, мощность инверторов не слишком большая, но её, как правило, хватает для большинства трёхфазных бытовых приборов.
Рис. 2. Преобразователь напряжения
Преобразователь хорош ещё и тем, что у него есть встроенная функция защиты от перегрузок и КЗ. А это значит, что электромотор не перегреется и не выйдет из строя в результате КЗ.
Высокое качество тока достигается благодаря принципу работы устройства. Инвертор сначала выпрямляет переменный однофазный ток, а затем генерирует трёхфазное напряжение с заданной частотой и со стандартным сдвигом фаз. При этом количество фаз может быть и больше чем 3 (с соответствующим углом сдвига).
Используя трансформатор
С помощью повышающего трансформатора можно получить какое угодно напряжение, в том числе и 380 В. Однако, если вас интересует трёхфазное напряжение, то необходим специальный трёхфазный трансформатор. преобразующий однофазный ток в трёхфазный. Такие трансформаторы есть в продаже.
Обмотки трансформатора соединены звездой или треугольником. Напряжение однофазной сети подаётся на две первичные обмотки напрямую, а на третью – через конденсатор. При этом ёмкость конденсатора подбирается из расчёта 7 мкФ на каждые 100 Вт мощности.
Обратите внимание на то, что номинальное напряжение конденсатора не должно быть ниже 400 В. Такое устройство нельзя включать без нагрузки.
Хоть мы и получим таким способом необходимые 380 В, всё равно будет наблюдаться снижение мощности электромотора (если вы планируете подключать его к трансформатору). Соответственно КПД двигателя тоже упадёт.
Использование 3-х фаз
Если вы проживаете в многоквартирном доме, то к нему уже подведено 3 фазы, которые с целью оптимального распределения нагрузок разведены по отдельным квартирам. На каждом этаже стоят распределительные щиты, откуда можно завести в квартиру недостающие две фазы. Но для этого потребуется разрешение.
При желании вы можете получить разрешение у энергоснабжающей компании или согласовать с Энергонадзором обустройство трёхфазного питания в вашей квартире. При этом потребуется установить трёхфазный счётчик электроэнергии.
Использование электродвигателя
Вы наверно знаете, что ротор обычного трёхфазного двигателя после запуска продолжает вращаться после отключения одной фазы. Оказывается, что между выводом отключенной обмотки и задействованными выводами имеется ЭДС.
Сдвиг фаз между обмотками статора зависит только от их расположения. В трёхфазном двигателе эти катушки расположены под углом 120º, а значит они обеспечивают такой же угол сдвига фаз. Это обстоятельство наталкивает на мысль, что асинхронный трёхфазный двигатель можно использовать для получения 380 вольт от обычной однофазной сети. Простая схема подключения электромотора изображена на рисунке 3. Конденсатор на схеме нужен только для запуска двигателя. После запуска его можно отключить. Конденсатор берём типа МБГО, МБГП, МБГТ или К42-4, рабочее напряжение которого должно быть не менее 600 В. Можно применить конденсатор К42-19, с рабочим напряжением минимум 250 В.
Пример подключения фазосдвигающего конденсатора см. на рис. 3.
Рис. 3. Подключение пускового конденсатора
Параметры конденсатора подбираем в зависимости от мощности мотора. Заметим, что параметры фазосдвигающего конденсатора на качество генерируемого тока не влияют. Нагрузку подключаем к обмоткам статора, согласно схеме, показанной на рис. 4.
Рис. 4. Трёхфазный ток от электромотора
Скорость вращения ротора почти не зависит от напряжения однофазной сети, так что её можно считать постоянной. Это значит, что частота трёхфазного тока при номинальных нагрузках изменяться не будет.
Следует иметь в виду то, что мощность трёхфазного двигателя, работающего от однофазной сети, падает. Соответственно, номинальная мощность трёхфазной нагрузки будет, примерно, на треть ниже, от той, которая заявлена в паспорте электромотора.
Электродвигатель в качестве генератора
Ещё один способ, позволяющий из 220 В получить 380, это создание системы двигатель-генератор. В качестве двигателя можно взять любой электромотор, работающий от сети 220 В, а в качестве генератора – доработанный трёхфазный асинхронный двигатель (схему установки смотрите на рис. 5).
Сразу заметим, что эффективность такой установки под вопросом, но получить таким способом требуемое напряжение 380 В можно. В данной схеме требуется обеспечить такую частоту вращения ротора, чтобы генератор выдавал ток с частотой, равной 50 Гц. Для этого необходимо вращать вал с угловой скоростью 1500 об/мин.
Рис. 5. Трёхфазный двигатель в качестве генератора
В домашних условиях в качестве привода можно использовать однофазный мотор от стиральной машины или другой бытовой техники. Важно только обеспечить требуемую угловую скорость вращения ротора.
Поскольку вращение вала электродвигателей работающих, например, в стиральной машине составляет около 12 – 20 тыс. об./мин., то необходимо использовать шкивы, диаметры которых соотносятся как 1 к 10. То есть, чтобы обеспечить вращение ротора генератора со скоростью 1500 об/мин. можно взять шкив, который уже смонтирован на электромоторе от пралки, а на вал трёхфазного двигателя надеть шкив, диаметром в 10 раз больше.
Выводы
Получить 380 вольт от сети 220 В возможно несколькими способами. Самым эффективным является способ применения электронного инвертора:
- стабильные параметры тока;
- безопасная эксплуатация;
- обеспечение заявленной выходной мощности;
- компактность установки.
Все выше перечисленные способы преобразования 220 Вольт в 380 работают, поэтому имеют право на существование. Но надо быть готовым к потере мощности и к трудностям по достижению других параметров тока, включая его частотные характеристики.
В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».
Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?
Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.
СОДЕРЖАНИЕ (нажмите на кнопку справа):
Конструктивные особенности
Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).
Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).
Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.
Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.
При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.
Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.
Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.
Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.
Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.
Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.
Как подключить электродвигатель с 380 на 220В без конденсатора?
Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.
Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.
Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.
Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.
По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.
Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.
Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.
Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.
Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.
Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.
Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.
В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).
Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.
Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.
Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.
Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.
Делается это следующим образом:
- Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
- После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R
При реализации рассмотренных схем стоит учесть ряд особенностей:
- Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
- Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.
Как подключить через конденсаторы
Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).
Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».
Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).
Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.
Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.
Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.
Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:
- Рабочие конденсаторы подключаются параллельно;
- Номинальное напряжение должно быть не меньше 300 Вольт;
- Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
- Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.
Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.
Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.
Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.
Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.
Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.
Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:
- Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
- Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
- Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.
С конденсатором дополнительная упрощенная — для схемы звезда.
С конденсатором дополнительная упрощенная — для схемы треугольник.
Как подключить с реверсом
В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.
Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.
Для реализации схемы можно использовать переключатель с двумя положениями.
К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.
Как подключить по схеме «звезда-треугольник» (с тремя проводами)
В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.
Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.
Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.
Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.
К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.
Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».
Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».
Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.
Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.
Принцип работы схемы прост:
- При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
- Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
- Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.
Итоги
Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.
Схема подключения электродвигателя 380 на 220 Вольт
Раньше схема подключения электродвигателя 380 на 220 Вольт была популярна по простой причине, в продаже почти не было электродвигателей на 220 Вольт. Люди приносили с работы, заводов, промышленные трехфазные электродвигатели на 380 В. В основном они использовались в частных домах для заточных станков малой мощности, очень часто для циркуляционных, компрессоров. Не во всех домах было 380 В, даже более того, в подавляющем большинстве. И по этой причине необходимо было подключение электродвигателя 380 на 220 В.
Разновидности схем подключения
Существует несколько видов схем подключение трехфазного электродвигателя с помощью конденсаторов. Разновидности схем подключения 380 на 220 В обусловлены несколькими факторами, мощность (Р, кВт) и вид соединения обмоток. Если мощность более 1.5 кВт, то необходимо использовать пусковые конденсаторы, которые используются только при пуске двигателя и затем отключаются.
При выборе типа применения учитывают соединения обмоток асинхронного двигателя. Их две, звезда и треугольник. В первом случае, обмотки соединяются в одной точке, при треугольнике, начало обмотки соединяется с концом предыдущей.
Выводов на клемник агрегата три. Значит, соединение в звезду уже собрано. Но в некоторых случаях заводом изготовителем выводят 6 концов, а маркируются они С1, С2, С3 (начало обмоток), С4, С5, С6 (конец обмотки). Необходимо посмотреть на бирку, где обозначено соединение двигателя (треугольник, звезда) и согласно ей сделать соединение проводов. Лучше это предоставить электрику.
Рис.1. Включение двигателя до 1.5 кВт при соединении треугольник, звезда
Тут нужно учитывать, при применении вида треугольника, теряется порядка 70 % номинальной мощности, а звездой потери могут достигать 50 %.
Как видно из рисунка, схема подключения электродвигателя простая. Фаза и ноль присоединяются к двум выводам обмоток (два провода на электродвигателе), а третий провод (обмотка) компенсируется через рабочий конденсатор к фазному проводу сети.
Рис.2. Схема включения при мощности электродвигателя более 1.5 кВт
В данной схеме необходимо добавить пусковой конденсатор параллельно рабочему, как показано на рисунке. Рекомендуется его включать через кнопку, то есть нажал, двигатель запустился и отпустил ее.
Если ротор вращается не в ту сторону, то просто нужно поменять фазу и ноль. Так же нужно правильно выбрать кабель.
Выбор емкости рабочего и пускового конденсатора
Напряжение его должно быть не менее 300 В, но оптимальным вариантом это 400 В. Рекомендуется брать типов МБГО, МБПГ, МБГЧ.
Расчет рабочей емкости производится по формуле:
Сраб. = 4800 × I/ U, где I номинальный ток электродвигателя, А. U, напряжение сети, В.
При включении по схеме треугольник рассчитывается по формуле:
Сраб. = 2800 × I/ U
В некоторых случаях принимают приблизительный расчет емкости, на каждый киловатт мощности электродвигателя берется 70 – 100 мкФ емкости. Такой расчет используют, когда двигатель после перемотки и существует определенная погрешность, так как нельзя в условиях электроцеха сделать ремонт и при этом достичь номинальных технических характеристик. В этом случае рабочую емкость нужно собирать из нескольких, что бы потом добавлять или уменьшать.
Расчет пусковой емкости Спуск=Сраб×(2-3)
Несколько советов
- Включение двигателей мощностью более 4 киловатт 380 В на 220 В в частных домах не рекомендуется. Просто будет выбивать автоматический выключатель.
- После окончания работы на контактах конденсаторах долгое время присутствует опасное напряжение, остерегайтесь к ним прикосновения
- При схеме подключения двигателя 380 на 220 В он не должен работать в холостую, так как при этом он сгорит.
Как подцепить двигатель 380 на 220
Существует множество разновидностей электрических двигателей, но у всех основной характеристикой считается напряжение сети, от которой они работают и их мощность. Предлагаем рассмотреть, как подключить электродвигатель с 380 на 220 В способом звезда треугольник.
Существует несколько типов подсоединения электродвигателя с 380 на 220:
- Звезда-треугольник;
- При помощи конденсаторов.
Каждый из способов имеет свои особенности, достоинства и недостатки.
Схема звезда треугольник
Во многих отечественных электрических двигателях уже собрана схема звезда, нужно только реализовать треугольник. По сути, Вам необходимо произвести подключение трех фаз и собрать звезду из оставшихся шести концов обмотки. Для лучшего понимания ниже просмотрите чертеж звезды и треугольника электродвигателя. Здесь концы нумеруются с левой стороны на правую, номера 6, 4 и 5 присоединяются три фазы, как на схеме:
Фото — Звезда и треугольник электродвигателя
В соединении звезда с тремя выводами или как его еще называют звезда треугольник, самым главным достоинством является то, что вырабатывается максимальная мощность электрического двигателя. Но вместе с тем, это соединение довольно редко используется на производстве, гораздо чаще его можно встретить у мастеров-любителей. Главным образом это потому, что схема очень сложная, и на мощных предприятиях просто нет смысла организовывать такое трудоемкое соединение.
Фото — подключение звезда
Для того чтобы схема работала, Вам понадобится три пускателя. Схема изображена на чертеже ниже.
Фото — схема подключения звезда треугольник
К первому пускателю, который обозначен К1, с одной стороны подключается электрический ток, а к другому присоединяется обмотка статора. Свободные концы статора присоединяются к пускателям К2 и К3. После этого обмотки с пускателя К2 также подсоединяются к остальным фазам, для образования треугольника. Когда в фазу включается пускатель К3, то остальные концы немного укорачиваются и у Вас получается схема звезда.
Заметьте, что третий и второй пускатели на магнитах нельзя включать одновременно. Это может привести к короткому замыканию и аварийному отключению автомата электродвигателя. Для того, чтобы этого избежать, реализовывается своеобразная электроблокировка. Принцип её работы прост – когда включается один пускатель, то выключается другой, т.е. блокировка размыкает цепь его контактов.
Принцип работы схемы относительно прост. Когда в сеть включается первый пускатель, обозначенный К1, реле времени электродвигателя включает также третий пускатель К3. После двигатель заводится по схеме звезда и начинает работу с большей мощностью, чем обычно. Спустя определенный временной отрезок, реле времени отключает контакты третьего пускателя и включает в сеть второй. Теперь двигатель работает по схеме треугольника, немного снижая мощность. Когда нужно отключить питание, включается цепь первый пускатель, во время очередного цикла схема повторяется.
Нужно отметить, что мы не рекомендуем реализовывать такое соединение без определенного опыта и навыков. В любом случае при самостоятельной работе лучше проконсультироваться с профессионалами.
Видео: двигатель 380 в 220
Как еще можно подключить электродвигатель
Помимо соединения звезда-треугольник, также есть еще несколько вариантов, которые применяются более часто:
- Многие электрики советуют поставить конденсатор. Конечно, это самое простое решение, но в тоже время Вы сразу получите резкое снижение мощности электродвигателя. Для её реализации понадобится только исправный конденсатор. Нужно два контакта конденсатора подключить к нулю и третьему выходу электродвигателя. В итоге получится маломощный агрегат до 1,5 Вт. Но если Ваш электродвигатель производит большую мощность, то нужно в схему ввести еще пусковой конденсатор. Но в тоже время, если у Вас однофазное подключение, то конденсатор просто компенсирует отсутствие третьего выхода; Фото — схема подключения двигателя с конденсаторами
- Если у Вас асинхронный электродвигатель, то можно легко его подключить в звезду либо треугольник по желанию с 380 на 220 В. В таких двигателях установлено три обмотки, которые соединены между собой в звезду или треугольник, для изменения напряжения нужно просто поменять выводы, которые идут на вершины соединений;
- Очень важно внимательно читать инструкция к двигателю, его сертификат и паспорт. У многих импортных моделей возможна только монтажная схема соединения треугольник к нашему напряжению 220 В. Если Вы проигнорируете это правило и включите их в сеть 220 при помощи соединения звезда, то моторы просто сгорят под высокой нагрузкой. Также нельзя подключать к домашней сети двигатель, у которого мощность более трех киловатт, иначе начнутся короткие замыкания или даже сгорит автомат УЗО.
Дополняя пункт про конденсаторы, нужно отметить, что подбирать эту комплектующую необходимо исходя из минимально допустимой емкости, постепенно пробными методами увеличивая её до оптимальной, необходимой двигателю. Если электродвигатель очень долго стоит без нагрузки, то он может просто сгореть при подключении к сети. Также помните, что даже после того, как Вы выключили из сети электродвигатели, конденсаторы хранят напряжение на своих контактах.
Ни в коем случае не трогайте их, а желательно оградите специальным изолирующим слоем, который поможет избежать несчастных случаев. Также перед работой с ними нужно делать разрядку.
В жизни бывают ситуации, когда нужно запустить 3-х фазный асинхронный электродвигатель от бытовой сети. Проблема в том, что в вашем распоряжении только одна фаза и «ноль».
Что делать в такой ситуации? Можно ли подключить мотор с тремя фазами к однофазной сети?
Если с умом подойти к работе, все реально. Главное — знать основные схемы и их особенности.
СОДЕРЖАНИЕ (нажмите на кнопку справа):
Конструктивные особенности
Перед тем как приступать к работе, разберитесь с конструкцией АД (асинхронный двигатель).
Устройство состоит из двух элементов — ротора (подвижная часть) и статора (неподвижный узел).
Статор имеет специальные пазы (углубления), в которые и укладывается обмотка, распределенная таким образом, чтобы угловое расстояние составляло 120 градусов.
Обмотки устройства создают одно или несколько пар полюсов, от числа которых зависит частота, с которой может вращаться ротор, а также другие параметры электродвигателя — КПД, мощность и другие параметры.
При включении асинхронного мотора в сеть с тремя фазами, по обмоткам в различные временные промежутки протекает ток.
Создается магнитное поле, взаимодействующее с роторной обмоткой и заставляющее его вращаться.
Другими словами, появляется усилие, прокручивающее ротор в различные временные промежутки.
Если подключить АД в сеть с одной фазой (без выполнения подготовительных работ), ток появится только в одной обмотке.
Создаваемого момента будет недостаточно, чтобы сместить ротор и поддерживать его вращение.
Вот почему в большинстве случаев требуется применение пусковых и рабочих конденсаторов, обеспечивающих работу трехфазного мотора. Но существуют и другие варианты.
Как подключить электродвигатель с 380 на 220В без конденсатора?
Как отмечалось выше, для пуска ЭД с короткозамкнутым ротором от сети с одной фазой чаще всего применяется конденсатор.
Именно он обеспечивает пуск устройства в первый момент времени после подачи однофазного тока. При этом емкость пускового устройства должна в три раза превышать этот же параметр для рабочей емкости.
Для АД, имеющих мощность до 3-х киловатт и применяемых в домашних условиях, цена на пусковые конденсаторы высока и порой соизмерима со стоимостью самого мотора.
Следовательно, многие все чаще избегают емкостей, применяемых только в момент пуска.
По-другому обстоит ситуация с рабочими конденсаторами, использование которых позволяет загрузить мотор на 80-85 процентов его мощности. В случае их отсутствия показатель мощности может упасть до 50 процентов.
Тем не менее, бесконденсаторный пуск 3-х фазного мотора от однофазной сети возможен, благодаря применению двунаправленных ключей, срабатывающих на короткие промежутки времени.
Требуемый момент вращения обеспечивается за счет смещения фазных токов в обмотках АД.
Сегодня популярны две схемы, подходящие для моторов с мощностью до 2,2 кВт.
Интересно, что время пуска АД от однофазной сети ненамного ниже, чем в привычном режиме.
Основные элементы схемы — симисторы и симметричный динистры. Первые управляются разнополярными импульсами, а второй — сигналами, поступающими от полупериода питающего напряжения.
Подходит для электродвигателей на 380 Вольт, имеющих частоту вращения до 1 500 об/минуту с обмотками, подключенными по схеме треугольника.
В роли фазосдвигающего устройства выступает RC-цепь. Меняя сопротивление R2, удается добиться на емкости напряжения, смещенного на определенный угол (относительно напряжения бытовой сети).
Выполнение главной задачи берет на себя симметричный динистор VS2, который в определенный момент времени подключает заряженную емкость к симистору и активирует этот ключ.
Подойдет для электродвигателей, имеющих частоту вращения до 3000 об/минуту и для АД, отличающихся повышенным сопротивлением в момент пуска.
Для таких моторов требуется больший пусковой ток, поэтому более актуальной является схема разомкнутой звезды.
Особенность — применение двух электронных ключей, замещающих фазосдвигающие конденсаторы. В процессе наладки важно обеспечить требуемый угол сдвига в фазных обмотках.
Делается это следующим образом:
- Напряжение на электродвигатель подается через ручной пускатель (его необходимо подключить заранее).
- После нажатия на кнопку требуется подобрать момент пуска с помощью резистора R
При реализации рассмотренных схем стоит учесть ряд особенностей:
- Для эксперимента применялись безрадиаторные симисторы (типы ТС-2-25 и ТС-2-10), которые отлично себя проявили. Если использовать симисторы на корпусе из пластмассы (импортного производства), без радиаторов не обойтись.
- Симметричный динистор типа DB3 может быть заменен на KP Несмотря на тот факт, что KP1125 сделан в России, он надежен и имеет меньше переключающее напряжение. Главный недостаток — дефицитность этого динистора.
Как подключить через конденсаторы
Для начала определитесь, какая схема собрана на ЭД. Для этого откройте крышку-барно, куда выводятся клеммы АД, и посмотрите, сколько проводов выходит из устройства (чаще всего их шесть).
Обозначения имеют следующий вид: С1-С3 — начала обмотки, а С4-С6 — ее концы. Если между собой объединяются начала или концы обмоток, это «звезда».
Сложнее всего обстоят дела, если с корпуса просто выходит шесть проводов. В таком случае нужно искать на них соответствующие обозначения (С1-С6).
Чтобы реализовать схему подключения трехфазного ЭД к однофазной сети, требуются конденсаторы двух видов — пусковые и рабочие.
Первые применяются для пуска электродвигателя в первый момент. Как только ротор раскручивается до нужного числа оборотов, пусковая емкость исключатся из схемы.
Если этого не происходит, возможные серьезные последствия вплоть до повреждения мотора.
Главную функцию берут на себя рабочие конденсаторы. Здесь стоит учесть следующие моменты:
- Рабочие конденсаторы подключаются параллельно;
- Номинальное напряжение должно быть не меньше 300 Вольт;
- Емкость рабочих емкостей подбирается с учетом 7 мкФ на 100 Вт;
- Желательно, чтобы тип рабочего и пускового конденсатора был идентичным. Популярные варианты — МБГП, МПГО, КБП и прочие.
Если учитывать эти правила, можно продлить работу конденсаторов и электродвигателя в целом.
Расчет емкости должен производиться с учетом номинальной мощности ЭД. Если мотор будет недогружен, неизбежен перегрев, и тогда емкость рабочего конденсатора придется уменьшать.
Если выбрать конденсатор с емкостью меньше допустимой, то КПД электромотора будет низким.
Помните, что даже после отключения схемы на конденсаторах сохраняется напряжение, поэтому перед началом работы стоит производить разрядку устройства.
Также учтите, что подключение электродвигателя мощностью от 3 кВт и более к обычной проводке запрещено, ведь это может привести к отключению автоматов или перегоранию пробок. Кроме того, высок риск оплавления изоляции.
Чтобы подключить ЭД 380 на 220В с помощью конденсаторов, действуйте следующим образом:
- Соедините емкости между собой (как упоминалось выше, соединение должно быть параллельным).
- Подключите детали двумя проводами к ЭД и источнику переменного однофазного напряжения.
- Включайте двигатель. Это делается для того, чтобы проверить направление вращения устройства. Если ротор движется в нужном направлении, каких-либо дополнительных манипуляций производить не нужно. В ином случае провода, подключенные к обмотке, стоит поменять местами.
С конденсатором дополнительная упрощенная — для схемы звезда.
С конденсатором дополнительная упрощенная — для схемы треугольник.
Как подключить с реверсом
В жизни бывают ситуации, когда требуется изменить направление вращения мотора. Это возможно и для трехфазных ЭД, применяемых в бытовой сети с одной фазой и нулем.
Для решения задачи требуется один вывод конденсатора подключать к отдельной обмотке без возможности разрыва, а второй — с возможностью переброса с «нулевой» на «фазную» обмотку.
Для реализации схемы можно использовать переключатель с двумя положениями.
К крайним выводам подпаиваются провода от «нуля» и «фазы», а к центральному — провод от конденсатора.
Как подключить по схеме «звезда-треугольник» (с тремя проводами)
В большей части в ЭД отечественного производства уже собрана схема звезды. Все, что требуется — пересобрать треугольник.
Главным достоинством соединения «звезда/треугольник» является тот факт, что двигатель выдает максимальную мощность.
Несмотря на это, в производстве такая схема применяется редко из-за сложности реализации.
Чтобы подключить мотор и сделать схему работоспособной, требуется три пускателя.
К первому (К1) подключается ток, а к другому — обмотка статора. Оставшиеся концы подключаются к пускателям К3 и К2.
Далее обмотка последнего пускателя (К2) объединяется с оставшимися фазам для создания схемы «треугольник».
Когда к фазе подключается пускатель К3, остальные концы укорачиваются, и схема преобразуется в «звезду».
Учтите, что одновременное включение К2 и К3 запрещено из-за риска короткого замыкания или выбиванию АВ, питающего ЭД.
Чтобы избежать проблем, предусмотрена специальная блокировка, подразумевающая отключение одного пускателя при включении другого.
Принцип работы схемы прост:
- При включении в сеть первого пускателя, запускается реле времени и подает напряжение на третий пускатель.
- Двигатель начинает работу по схеме «звезда» и начинает работать с большей мощностью.
- Через какое-то время реле размыкает контакты К3 и подключает К2. При этом электродвигатель работает по схеме «треугольник» со сниженной мощностью. Когда требуется отключить питание, включается К1.
Итоги
Как видно из статьи, подключить электродвигатель трехфазного тока в однофазную сеть без потери мощности реально. При этом для домашних условий наиболее простым и доступным является вариант с применением пускового конденсатора.
Здравствуйте. Информацию по этой теме трудно не найти, но я постараюсь сделать данную статью наиболее полной. Речь пойдет о такой теме, как схема подключения трехфазного двигателя на 220 вольт и схема подключения трехфазного двигателя на 380 вольт.
Для начала немного разберемся, что такое три фазы и для чего они нужны. В обычной жизни три фазы нужны только для того, чтобы не прокладывать по квартире или по дому провода большого сечения. Но когда речь идет о двигателях, то здесь три фазы нужны для создания кругового магнитного поля и как результат, более высокого КПД. Двигатели бывают синхронные и асинхронные. Если очень грубо, то синхронные двигатели имеют большой пусковой момент и возможность плавной регулировки оборотов, но более сложные в изготовлении. Там, где эти характеристики не нужны, получили распространение асинхронные двигатели. Нижеизложенный материал подходит для обоих типов двигателей, но в бóльшей степени относится к асинхронным.
Что нужно знать о двигателе? На всех моторах есть шильдики с информацией, где указаны основные характеристики двигателя. Как правило, двигатели выпускаются сразу на два напряжения. Хотя если у вас двигатель на одно напряжение, то при сильном желании его можно переделать на два. Это возможно из-за конструктивной особенности. Все асинхронные двигатели имеют минимум три обмотки. Начала и концы этих обмоток выводятся в коробку БРНО (блок расключения (или распределения) начал обмоток) и в неё же, как правило, вкладывается паспорт двигателя:
Если двигатель на два напряжения, то в БРНО будет шесть выводов. Если двигатель на одно напряжение, то вывода будет три, а остальные выводы расключены и находятся внутри двигателя. Как их оттуда «достать» в этой статье мы рассматривать не будем.
Итак, какие двигатели нам подойдут. Для включения трёхфазного двигателя на 220 вольт подойдут только те, где есть напряжение 220 вольт, а именно 127/220 или 220/380 вольт. Как я уже говорил, двигатель имеет три независимых обмотки и в зависимости от схемы соединения они способны работать на двух напряжениях. Схемы эти называются «треугольник» и «звезда»:
Думаю, даже не нужно объяснять, почему они так называются. Нужно обратить внимание, что у обмоток есть начало и конец и это не просто слова. Если, к примеру, лампочке неважно, куда подключить фазу, а куда ноль, то в двигателе при неправильном подключении возникнет «короткое замыкание» магнитного потока. Сразу двигатель не сгорит, но как минимум не будет вращаться, как максимум потеряет 33% своей мощности, начнёт сильно греться и, в итоге, сгорит. В то же время, нет чёткого определения, что «вот это начало», а «вот это конец». Тут речь идет скорее об однонаправленности обмоток. Дам небольшой пример.
Представим, что у нас есть три трубки в некоем сосуде. Примем за начала этих трубок обозначения с заглавными буквами (A1, B1, C1), а за концы со строчными (a1, b1, c1) Теперь, если мы подадим воду в начала трубок, то вода закрутится по часовой стрелке, а если в концы трубок, то против часовой. Ключевое слово здесь «примем». То есть, от того назовём мы три однонаправленных вывода обмотки началом или концом меняется только направление вращения.
А вот такая картина будет, если мы перепутаем начало и конец одной из обмоток, а точнее не начало и конец, а направление обмотки. Эта обмотка начнёт работать «против течения». В итоге, неважно, какой именно вывод мы называем началом, а какой концом, важно, чтобы при подаче фаз на концы или начала обмоток не произошло замыкания магнитных потоков, создаваемых обмотками, то есть, совпало направление обмоток, или ещё точнее, направление магнитных потоков, которые создают обмотки.
В идеале, для трёхфазного двигателя желательно использовать три фазы, потому что конденсаторное включение в однофазную сеть даёт потерю мощности порядка 30%.
Ну, а теперь непосредственно к практике. Смотрим на шильдик двигателя. Если напряжение на двигателе 127/220 вольт, то схема соединения будет «звезда», если 220/380 – «треугольник». Если напряжения другие, например, 380/660, то для включения двигателя в сеть 220 вольт такой двигатель не подойдет. Точнее, двигатель напряжением 380/660 можно включить, но потери мощности здесь уже будут более 70%. Как правило, на внутренней стороне крышки коробки БРНО указано, как надо соединить выводы двигателя, чтобы получить нужную схему. Посмотрите ещё раз внимательно на схему соединения:
Что мы здесь видим: при включении треугольником напряжение 220 вольт подаётся на одну обмотку, а при включении звездой — 380 вольт подаётся на две последовательно соединённых обмотки, что в результате даёт те же 220 вольт на одну обмотку. Именно за счёт этого и появляется возможность использовать для одного двигателя сразу два напряжения.
Существует два метода включения трехфазного двигателя в однофазную сеть.
- Использовать частотный преобразователь, который преобразует одну фазу 220 вольт в три фазы 220 вольт (в этой статье мы рассматривать такой метод не будем)
- Использовать конденсаторы (этот метод мы и рассмотрим более подробно).
Схема включения трехфазного двигателя на 220 вольт
Для этого нам потребуются конденсаторы, но не абы какие, а для переменного напряжения и номиналом не менее 300, а лучше 350 вольт и выше. Схема очень простая.
А это более наглядная картинка:
Как правило, используется два конденсатора (или два набора конденсаторов), которые условно называются пусковые и рабочие. Пусковой конденсатор используется только для старта и разгона двигателя, а рабочий включен постоянно и служит для формирования кругового магнитного поля. Для того, чтобы рассчитать ёмкость конденсатора применяются две формулы:
Ток для расчёта мы возьмём с шильдика двигателя:
Здесь, на шильдике мы видим через дробь несколько окошек: треугольник/звезда, 220/380V и 2,0/1,16А. То есть, если мы соединяем обмотки по схеме треугольник (первое значение дроби), то рабочее напряжение двигателя будет 220 вольт и ток 2,0 ампера. Осталось подставить в формулу:
Ёмкость пусковых конденсаторов, как правило, берётся в 2-3 раза больше, здесь всё зависит от того, какая нагрузка находится на двигателе – чем больше нагрузка, тем больше нужно брать пусковых конденсаторов, чтобы двигатель запустился. Иногда для запуска хватает и рабочих конденсаторов, но это обычно случается, когда нагрузка на валу двигателя мала.
Чаще всего, на пусковые конденсаторы ставят кнопку, которую нажимают в момент запуска, а после того, как двигатель набирает обороты, отпускают. Наиболее продвинутые мастера ставят полуавтоматические системы запуска на основе реле тока или таймера.
Есть ещё один способ определения ёмкости, чтобы получилась схема включения трёхфазного двигателя на 220 вольт. Для этого потребуется два вольтметра. Как вы помните, из закона Ома, сила тока прямо пропорциональна напряжению и обратно пропорциональна сопротивлению. Сопротивление двигателя можно считать константой, следовательно, если мы создадим равные напряжения на обмотках двигателя, то автоматически получим требуемое круговое поле. Схема выглядит так:
Суть метода, как я уже говорил, заключается в том, чтобы показания вольтметра V1 и вольтметра V2 были одинаковые. Добиваются равенства показаний изменением номинала ёмкости «Cраб»
Подключение трехфазного двигателя на 380 вольт
Здесь вообще нет ничего сложного. Есть три фазы, есть три вывода двигателя и рубильник. Нулевую точку (где соединяются три обмотки, началами или концами – как я уже говорил выше, абсолютно неважно, как мы назовём выводы обмоток) при схеме соединения обмоток звездой, подключать к нулевому проводу не надо. То есть, для включения трехфазного двигателя в трехфазную сеть 380 вольт (если двигатель 220/380) нужно соединить обмотки по схеме звезда, и подать на двигатель только три провода с тремя фазами. А если двигатель 380/660 вольт, то схема соединения обмоток будет треугольник, ну а там точно нулевой провод некуда подключать.
Смена направления вращения вала трехфазного двигателя
Независимо от того, будет это конденсаторная схема включения или полноценная трехфазная, для смены вращения вала нужно поменять местами две любые обмотки. Другими словами поменять местами два любых провода.
На чём хочется остановиться более подробно. Когда мы считали ёмкость рабочего конденсатора, то мы использовали номинальный ток двигателя. Проще говоря, такой ток в двигателе будет только тогда, когда он будет полностью нагружен. Чем меньше нагружен двигатель, тем меньше будет ток, поэтому ёмкость рабочего конденсатора, полученная по этой формуле будет МАКСИМАЛЬНО ВОЗМОЖНОЙ ёмкостью для данного двигателя. Чем плохо использовать максимальную емкость для недогруженного двигателя – это вызывает повышенный нагрев обмоток. В общем, чем-то приходится жертвовать: маленькая ёмкость не даёт двигателю набрать полную мощность, большая ёмкость при недогрузке вызывает повышенный нагрев. Обычно в этом случае я предлагаю такой выход – сделать рабочие конденсаторы из четырёх одинаковых конденсаторов с переключателем или набором переключателей (что будет доступнее). Допустим, мы посчитали ёмкость 40 мкФ. Значит, для работы нам надо использовать 4 конденсатора по 10 мкФ (или три конденсатора 10, 10 и 20 мкФ) и в зависимости от нагрузки использовать 10, 20, 30 или 40 мкФ.
Ещё один момент по пусковым конденсаторам. Конденсаторы для переменного напряжения стоят гораздо дороже конденсаторов для постоянного. Использовать конденсаторы для постоянного напряжения в сетях с переменным, крайне не рекомендуется по причине того, что конденсаторы взрываются. Однако, для двигателей существует специальная серия конденсаторов Starter, предназначенная именно для работы, как пусковые. Использовать конденсаторы серии Starter в качестве рабочих тоже запрещено.
И в завершение нужно отметить такой момент – добиваться идеальных значений нет смысла, поскольку это возможно только, если нагрузка будет стабильной, например, если двигатель будет использоваться в качестве вытяжки. Погрешность в 30-40% это нормально. Другими словами, конденсаторы надо подбирать так, чтобы был запас по мощности в 30-40%.
Как подключить 3х фазный двигатель на 220в
Рассмотрим вначале, почему считается, что двигатель питается напряжением 380 вольт. Имеют счастье быть три фазы по 220 вольт. Простейшие вопросы заставляют уплывать новичков, отсутствие знания теории порождает возникновение ошибок практических. Искренне благодарим энтузиастов, забросавших Ютуб обучающими роликами, без столь богатого материала сложно дать дельные советы планирующим осуществить подключение электродвигателя 380 на 220 вольт с конденсатором. Приступим к реализации теории на практике.
Работа двигателя 380 вольт
Подобные двигатели называются трехфазными. Обладают кучей преимуществ перед обычными бытовыми, широко используются промышленностью. Достоинства касаются большой мощности, КПД. Именно в трехфазных двигателях можно обойтись без пусковых обмоток, конденсаторов при наличии соответствующего питания. Конструкции удается исключить лишние элементы. Пускозащитное реле холодильника, четко следящее за целостностью, временем работы пусковой обмотки. Трехфазным двигателям доморощенные ухищрения не нужны.
Простой пример работы трех фаз
Почему так происходит? Наличием трех фаз удается создать внутри статора вращающееся электромагнитное поле без дополнительных ухищрений. Давайте посмотрим рисунок. Простоты ради, показан ротор, снабженный двумя полюсами, статор содержит по катушке на фазу переменного тока. Конфигурации типичных двигателей 380 вольт более сложная, упрощение не помешает пояснить суть процессов, протекающих внутри.
Рисунок синим показывает отрицательно заряженные поля, красным – положительные. В начальный момент статор лишен знака, три катушки белые. Ротор в нашем предположении изготовлен из постоянных магнитов, окрашен и находится в произвольном положении. Полюса всего два. Далее двигаемся согласно эпюрам:
- Первая картинка наградила фазу В отрицательным знаком, две другие заряжены слегка положительно (примерно треть амплитуды), схематично показано бледным розовым цветом. Положительный полюс ротора сместился к катушке В. Слабое положительное поле А-С притянуло южный полюс ротора. Поскольку уровень заряда одинаков, центр полюса находится ровно посередине.
- В следующий момент времени (спустя 60 градусов, примерно 3,3 мс) южный полюс появляется на фазе А статора. Ротор проворачивается на 60 градусов вдоль часовой стрелки. Слабые отрицательные поля фаз В, С удерживают между собой положительный полюс ротора.
- В данный момент времени северный полюс статора находится на фазе С, ротор продолжает вращение еще на 60 градусов. Дальнейшая картина должна быть понятна.
Трехфазный электродвигатель
В результате правильного распределения трех фаз поле статора вращается, увлекая ротор. Частота оборотов не совпадает с сетевыми 50 Гц. Обмоток статоре больше, количество полюсов ротора иное. В придачу имеется явление проскальзывания в зависимости от амплитуды напряжения, многих других факторов. Нюансы используются регулировать скорости вращения вала двигателя. Вплотную достигли разгадки вопроса напряжения 380 вольт. Сформировано тремя фазами с действующим значением напряжения 220 вольт (как в розетке). Взять разницу меж любыми двумя в произвольный момент времени, величина превышает указанное значение.
Получается 380 вольт. Двигатель с тремя фазами использует для работы три напряжения с действующим значением 220 вольт, сдвиг меж любыми составляет 120 градусов. Можно легко проследить из графика на нашем рисунке. Вот почему многих снедает соблазн использовать оборудование в домашних условиях, запустить, используя одну фазу, поставляемую розеткой. Напрямую снделать невозможно, как должно быть понятно, приходится изобретать ухищрения. Простейшим назовем применение конденсатора. Прохождение емкости изменяет фазу напряжения на 90 градусов. Разница меньше 120, которые хотели получить в идеале.
На практике подключение электродвигателя через конденсатор отлично работает. Правда для осуществления задумки придется немного повозиться.
Запуск трехфазного двигателя 380 В от домашней сети
Во-первых, нужно знать, как производится электрическая коммутация обмоток. Обычно корпус двигателя снабжен защитным кожухом, скрывающим электрическую разводку. Нужно снять щит, приступить к изучению схемы. Чаще рядом показана схема электрических соединений. Чтобы запуск произвести трехфазной сетью, применяется коммутация типа «звезда». Концы трех обмоток имеют одну общую точку, называемую нейтралью, противоположная сторона снабжается фазами. Одна на каждую обмотку. Получается распределение поля, рассмотренное выше.
Объединение обмотки двигателя треугольником
Подключая асинхронный двигатель 380 на 220 Вольт, потрудитесь коммутацию изменить. Пригодится электрическая схема, приводимая шильдиком корпуса. Согласно рисунку, обмотки двигателя объединяются треугольником. Каждая на обоих концах объединяется с другой. Давайте посмотрим, что получается. Чем отличается методика от штатного использования оборудования. Для простоты на рисунке показываем схему включения конденсатора. Может выглядеть следующим образом:
- Напряжение сети 220 В приложено к обмотке С.
- На обмотку А напряжение приходит через рабочий конденсатор в состоянии сдвига фаз на 90 градусов.
- На обмотке В действует разница меж указанными напряжениями.
Посмотрим эпюры: как будет выглядеть практически. Сдвиг фаз неравномерный. Меж пиками, по которым построены эпюры, отложено 90 и 45 градусов. Вследствие этого вращение в принципе лишено возможностей быть равномерным. Форма фазы обмотки В отличается от синусоидальной. Запуск трехфазного двигателя сетью 220 вольт сопровождается наличием потерь энергии. Процесс возможен. Происходит часто явление, называемое залипанием. Неправильная форма поля внутри статора бессильна раскрутить статор.
Схема подключения двигателя несколько упрощена, отличается от норм исполнения чертежей проектной документации. Наглядность рисунка очевидна. Конденсатор схемы рабочий, встречается пусковой. Нужен усилить вращающий момент на начальном этапе. Любой асинхронный двигатель при старте потребляет больше тока, на первое движение тратится много энергии. Конденсатор обычно присоединяется параллельно рабочему, включается в цепь нажатием специальной кнопки. Например, можете пометить, как Ускорение.
Когда вал наберет обороты, емкость пусковая становится ненужной, снижается сопротивление движению вала. Отпуская кнопку Ускорение, исключаем элемент из сети. Чтобы пусковая емкость разрядилась (вольтаж может достигать 300 В), закоротим на значительной величины сопротивление, через которое в рабочем состоянии ток не пойдет. Постепенно электроны компенсируются, опасность поражения исчезнет. Возникает простой вопрос – как подобрать рабочую, пусковую емкости? Подключение электродвигателя 380 В на 220 В непростая задача. Давайте рассмотрим ответ.
Выбор значений рабочей, пусковой емкостей для подключения трехфазного двигателя на 220 В
Первым делом обратите внимание: рабочее напряжение конденсаторов должно значительно перекрывать номинал 220 В. Подключение двигателя 380 на 220 вольт сопровождается возникновением гораздо более весомых значений вольтажа. Среди пусковых и рабочих конденсаторов исключите элементы рабочим напряжением ниже 400 вольт. Практика накладывает коррективы, придется обойтись попавшимся под руку. Обратите внимание на провода. Токи по технической документации даны относительно напряжения 220 В. Рассматриваемая схема задействует другие значения. Возможно, придется пересчитать размеры токов.
На практике если емкость рабочая слишком мала, вал «залипает». Двигатель мог бы работать, если придать начальное ускорение, если зверь мощностью 4 кВт поотрывает пальцы, винить некого. Оказывается, номинал рабочей емкости определен минимум двумя параметрами:
- Мощнее двигатель, больший номинал конденсаторов нужно применить. На 250 Вт хватает значения десятков мкФ, при более значительных мощностях значение исчисляется сотнями. Логично заранее запастись солидным набором конденсаторов. Желательно брать пленочные, электролитические без специальных мер применять запрещено, предназначены работать в сетях постоянного тока. При подключении переменного напряжения 220 В могут попросту взорваться.
- Выше обороты двигателя, больший номинал пускового конденсатора потребуется. Достигнув разницы в несколько раз, значение емкости повышаем на порядок (10 раз). Для пуска двигателя мощностью 2,2 кВт, оборотами 3000 в минуту постарайтесь запастись батареей на 200–250 мкФ. Очень большое значение. Емкость Земного шара составляет доли мФ.
Сильно емкость пускового конденсатора зависит от приложенной нагрузки. Мотор, работающий на шкив, потребляет много энергии, объем батареи возрастает. Попытаемся выбрать номиналы. Практиками замечено: стабильнее двигатель 380 В работает, питаемый однофазной сетью, когда напряжения в плечах конденсатора равны. Обмотку, работающую непосредственно от сети, избегаем трогать, измеряем потенциал двух других. Каким образом получается, величина емкости определяет напряжение?
Асинхронный двигатель характеризуется собственным реактивным сопротивлением. При включении образуется делитель. Красиво рисовали эпюры, на практике форма фаз может значительно отличаться. Определяется реактивное сопротивление перечисленным выше набором параметров. Конструкция двигателя, обуславливающая размер мощности, скорость оборотов, нагрузка вала. Ряд параметров, учесть которые теоретическими путями в рамках обзора попросту не представляется возможным. Поэтому практики просто рекомендуют сначала найти минимальный размер батареи, при котором двигатель начинает вращаться, затем плавно увеличивать номинал, пока напряжения обмоток не станут равными.
После раскрутки двигателя может оказаться: равенство нарушилось. Сопротивление движению вала упало. Перед тем, как подключить электродвигатель с 380 на 220 окончательно, определитесь с условиями работы, постарайтесь обеспечить указанное равенство.
Обратите внимание: действующее значение может превышать 220 вольт. Значение напряжения может составить 270 В. Перед тем, как подключить электродвигатель через конденсатор, побеспокойтесь о контактах. Обеспечьте надежную стыковку во избежание потерь, перегрева в местах прохождения тока. Коммутацию лучше вести на специальные клеммы, затягивая болтами. После окончательной подборки параметров электрическую часть следует закрыть кожухом, провода пропустить через резиновый уплотнитель боковой стенки отсека.
Полагаем, теперь читатели без труда запустят двигатель, ракету, сельское хозяйством…
Бывают ситуации, когда оборудование, рассчитанное на 380 вольт, необходимо подключить к домашней сети на 220 В. Так как двигатель при этом не запустится, необходимо изменить в нем некоторые детали. Это можно без труда сделать самостоятельно. Даже несмотря на то что КПД несколько снизится, такой подход бывает оправданным.
Трехфазные и однофазные двигатели
Чтобы разобраться, как подключить электродвигатель с 380 на 220 Вольт, узнаем, что значит питание на
Трехфазные двигатели имеют множество преимуществ по сравнению с бытовыми однофазными. Поэтому их применение в промышленности обширно. И дело заключается не только в мощности, но и в коэффициенте полезного действия. В них также предусмотрены пусковые обмотки и конденсаторы. Это упрощает конструкцию механизма. К примеру, пусковое защитное реле холодильника отслеживает, сколько врублено обмотки. А в трехфазном двигателе в этом элементе необходимость отпадает.
Это достигается тремя фазами, во время работы которых внутри статора вращается электромагнитное поле.
Почему 380 В?
Когда поле внутри статора вращается, ротор двигается также. Обороты не совпадают с пятьюдесятью Герцами сети из-за того, что больше обмоток, количество полюсов отличное, а также по разным причинам происходит проскальзывание. Эти показатели применяются для регуляции вращения моторного вала.
Все три фазы имеют значение по 220 В. Однако разница между любыми двумя из них в любое время будет отличным от 220. Так и получится 380 Вольт. То есть двигатель применяет 220 В для работы, при этом имеется сдвиг фаз, составляющий сто двадцать градусов.
Потому как подключить электродвигатель 380 на 220 Вольт напрямую невозможно, приходится использовать ухищрения. Конденсатор считается самым простым способом. Когда емкость проходит фазу, последняя изменяется на девяносто градусов. Хоть до ста двадцати она не доходит, этого достаточно для запуска и работы трехфазного двигателя.
Как подключить электродвигатель с 380 на 220 В
Для реализации задачи необходимо понимать, как устроены обмотки. Обычно корпус защищен кожухом, а под ним расположена разводка. Сняв его, нужно изучить содержимое. Часто здесь можно найти схему соединений. Чтобы к сети 380-220 состоялось, используется коммутация в форме звезды. Концы обмоток находятся в общей точке, которая называется нейтралью. Фазы подаются на противоположную сторону.
«Звезду» придется изменить. Для этого обмотки мотора необходимо соединить в другую форму — в виде треугольника, объединив их на концах друг с другом.
Как подключить электродвигатель с 380 на 220: схемы
Схема может выглядеть следующим образом:
- напряжение сети прикладывается к третьей обмотке;
- тогда на первую обмотку напряжение перейдет через конденсатор при фазовом сдвиге в девяносто градусов;
- на второй обмотке скажется разница напряжений.
Понятно, что сдвиг фаз получится на девяносто и сорок пять градусов. Из-за этого вращение равномерным не получится. К тому же форма фазы на второй обмотке не будет синусоидальной. Поэтому, после того как подключить трехфазный электродвигатель к 220 вольтам удастся, он не сможет реализовываться без потерь мощности. Иногда вал даже залипает и перестает крутиться.
Рабочая емкость
После набора оборотов емкость пуска уже будет не нужна, так как сопротивление движению станет незначительным. Для разряжения емкости ее укорачивают на сопротивление, через которое ток уже не пройдет. Для правильного выбора рабочей и пусковой емкости в первую очередь нужно учитывать, что рабочее конденсаторное напряжение должно существенно перекрывать 220 Вольт. Минимум оно должно составлять 400 В. Также нужно обратить внимание на провода, чтобы токи были предназначены для однофазной сети.
При слишком малой рабочей емкости вал будет залипать, поэтому для него используется начальное ускорение.
Рабочая емкость также зависит от следующих факторов:
- Чем мощнее мотор, тем больше конденсаторный номинал потребуется. Если значение составляет 250 Вт, то хватит и нескольких десятков мкФ. Однако если мощность будет выше, то и номинал может считаться сотнями. Конденсаторы лучше приобретать пленочные, потому что электрические придется дополнительно доделывать (они предназначены для постоянного, а не переменного тока, и без переделок могут взорваться).
- Чем больше обороты мотора, тем и номинал необходим выше. Если взять двигатель на 3000 оборотов в минуту и мощностью 2,2 кВт, то батарея ему потребуется от 200 до 250 мкФ. А это огромное значение.
Еще эта емкость зависит и от нагрузки.
Завершающий этап
Известно, что 380 В в 220 Вольтах будет лучше работать в том случае, если напряжения получатся с равными значениями. Для этого обмотку, подсоединяющуюся к сети, трогать не нужно, но потенциал измеряется на обеих других.
У асинхронного мотора имеется свое Необходимо определить минимум, при котором он начнет вращение. После этого номинал понемногу увеличивают до тех пор, пока все обмотки не выравняются.
Но когда двигатель раскрутится, может получиться, что равенство нарушится. Это происходтит из-за снижения сопротивления. Поэтому, перед тем как подключить электродвигатель с 380 на 220 Вольт и зафиксировать это, нужно сравнять значения и при работающем агрегате.
Напряжение может быть и выше 220 В. Посмотрите, чтобы обеспечивалась стабильная стыковка контактов, и не было потери мощности или перегрева. Лучше всего коммутация производится на специальных клеммах с закрепленными болтами. После того как подключить электродвигатель с 380 на 220 Вольт получилось с необходимыми параметрами, на агрегат снова надевают кожух, а провода пропускают по бокам через резиновый уплотнитель.
Что еще может случиться и как решить проблемы
Нередко после сборки обнаруживается, что вал вращается не в ту сторону, в которую нужно. Направление необходимо поменять.
Для этого третью обмотку подключают через конденсатор к резьбовой клемме второй обмотки статора.
Бывает, что из-за длительной работы с течением времени появляется шум двигателя. Однако этот звук совсем иного рода по сравнению с гулом при неправильном подключении. Случается со временем и вибрация мотора. Иногда даже приходится с силой вращать ротор. Обычно это вызвано износом подшипников, из-за чего возникают слишком большие зазоры и появляется шум. Со временем это может привести к заклиниванию, а позже — к порче деталей двигателя.
Лучше такого не допускать, иначе механизм придет в негодность. Проще заменить подшипники на новые. Тогда электродвигатель прослужит еще долгие годы.
С такой проблемой приходится сталкиваться многим рачительным хозяевам, которые привыкли все, по максимуму, делать своими руками. В том числе, и собирать различную технику для хозяйственных нужд; например, циркулярную пилу на участке, эл/наждак, небольшой подъемник в гараже и тому подобное.
Учитывая, сколько стоит электродвигатель, лучше приспособить имеющийся под рукой 3-фазный образец к работе от 1ф, тем самым адаптировав его к домашней эл/сети, чем приобретать новый. Нужно лишь понимать, как и какой электродвигатель лучше переделать с 380 вольт на 220, чтобы дополнительно не тратить деньги, и разбираться в существующих схемах их включения.
Что учесть
- Переделка с 380 на 220 имеет смысл, если речь идет об эл/двигателе сравнительно небольшой мощности – до 2,5, но не более (это максимум) 3 кВт. В принципе, ограничений по данной характеристике нет. Но при этом, скорее всего, понадобится провести ряд мероприятий и потратить некоторую сумму денег и время.
- Переложить вводной кабель эл/питания, к тому же придется заниматься согласованиями с поставщиком электроэнергии в плане повышения лимита. Не следует забывать, что для частных домовладений установлен предел эн/потребления; как правило, в 15 кВт. «Впишется» ли в него новая нагрузка в виде мощного электродвигателя? Выдержит ли ее изначально заложенный кабель?
- Для такого прибора нужно прокладывать отдельную линию от силового щита и ставить индивидуальный автомат, как минимум. Просто так подключить его через розетку вряд ли получится; лучше не экспериментировать.
- Практика переделок показывает, что даже если все сделано грамотно, возникнет еще одна проблема, с запуском. «Старт» мощного электродвигателя будет тяжелым, с длительной раскачкой, бросками напряжения. Такая перспектива мало кого устроит, тем более, если что-то собирается не на загородном участке, а на территории, прилегающей к жилому строению. Пока будет функционировать самодельная установка на основе этого двигателя, начнутся сбои в работе бытовых приборов. Проверено, и не раз.
- Порядок работы по переделке зависит от внутренней схемы электродвигателя. В некоторых моделях в клеммную коробку выводится всего 3 провода, в других – 6.
В чем разница? В первом случае обмотки уже соединены по одной их традиционных схем – «звездой» или «треугольником», поэтому для маневра (в плане модификации) возможностей несколько меньше.
Вариантов немного – оставить изначальное включение или произвести разборку двигателя и перекоммутировать вторые концы. Если же выведены все шесть, то можно их соединять по любой из схем, без ограничений. Главное – грамотно выбрать ту, которая будет оптимальной для конкретной ситуации (мощность электродвигателя, специфика его применения). .
Как переделать электродвигатель
Схема
Учитывая, что мощность электродвигателя небольшая (значит, не придется при пуске его «срывать»), а запитывать его планируется от сети 220, то оптимальной схемой является «треугольник». То есть, здесь не нужно ориентироваться на высокие пусковые токи (их не будет), а потеря мощности практически сводится к нулю (можно не учитывать). Все сказанное наглядно демонстрирует рисунок.
Если в электродвигателе схема изначально собрана по «треугольнику», то переделывать в нем вообще ничего не нужно.
Расчет рабочих емкостей
Так как вместо 3-х фаз теперь будет лишь одна, она и подается на каждую из обмоток, но с небольшим сдвигом синусоиды. По сути, включением конденсаторов производится имитация питания электродвигателя от источника 380/3ф. Формулы для расчетов рабочих конденсаторов показаны на рисунках ниже.
Ставить их по принципу «больше – лучше», что часто и делают домашние умельцы, не особенно разбирающиеся в электротехнике, не следует. Только на основании вычислений требуемого номинала. Иначе возможен перегрев эл/двигателя. Если он стоит на заводском оборудовании (например, переделке подвергается газонокосилка), то придется или устраивать постоянные перерывы в работе, или готовиться к незапланированному ремонту и неоправданным финансовым тратам на новый «движок».
Примечание:
- Емкости к обмоткам электродвигателя подбираются не только по номиналу, но и по рабочему напряжению. Раз речь идет о переделке с 380 на 220, то U р должно быть не меньше 400 В.
- Немаловажен и такой фактор, как разновидность конденсаторов. Во-первых, они должны быть однотипными. Во-вторых, только не электролитическими. Оптимально, бумажные; например, устаревшей серии КГБ, МБГ (и их модификации) или ее современные аналоги. Они удобны в креплении (имеются проушины) и легко выдерживают скачки температуры, тока, напряжения.
Для схемы «звезда»
Для схемы «треугольник»
Наглядно весь процесс в действии можно посмотреть на видео:
На практике инженерными расчетами мало кто из людей сведущих занимается. Есть определенные пропорции, позволяющие довольно точно подобрать рабочий конденсатор к конкретному электродвигателю.
Соотношение легко запомнить: на каждые 100 Вт мощности «движка» – 7 мкф рабочей емкости. То есть, для изделия на 2 кВт понадобится в обмотки включить конденсаторы по 7 х 20 = 140 мкф.
В чем сложность? Найти емкость с таким номиналом вряд ли получится. Есть простое решение – взять несколько конденсаторов и соединить параллельно. В результате небольших вычислений несложно подобрать нужное их количество с суммарной емкостью требуемой величины. Тем, кто забыл школу, можно подсказать – при таком способе соединения конденсаторов их емкости складываются.
Пусковой
Эта емкость нужна не всегда. Она ставится в схему лишь в том случае, если при пуске на вал двигателя создается значительная нагрузка. Примеры – мощное вытяжное устройство, циркулярная пила. А вот для той же газонокосилки вполне хватит и рабочих конденсаторов.
Расчет простой – номинал Сп должен превышать Ср в 2,5 (плюс/минус). Здесь предельной точности не требуется; величина пусковой емкости определяется примерно. Дальнейший анализ работы электродвигателя на разных режимах подскажет, увеличить ее или уменьшить.
Кстати, это относится и к рабочим конденсаторам. Дело в том, что все расчеты априори предполагают, что электродвигатель новый, ни разу не бывший в эксплуатации. А так как переделываются в основном изделия б/у, то в процессе работы выяснится, что не устраивает пользователя. Вариантов много – плохой запуск, быстрый нагрев корпуса и так далее.
Вывод – подобрать емкости для переделки эл/двигателя с 380 на 220, это еще не все. В первое время нужно внимательно следить за его работой в различных режимах. Только так, опытным путем, производя замену конденсаторов по номиналам, можно подобрать идеальное значение емкости для конкретного изделия.
Как организовать реверс
Иногда необходимо изменять направление вращения вала без дополнительных переделок. Это вполне возможно и для электродвигателя на 380, переведенного на питание 220. Как видно из рисунка, ничего сложного в этом нет, понадобится лишь переключатель на 2 позиции.
Трёхфазные электродвигатели асинхронного типа с короткозамкнутым ротором доминируют над однофазными и двухфазными собратьями в применении, т.к. имеют более высокую эффективность, а также включаются в сеть без помощи пусковых устройств. По номинальному питанию отечественные электродвигатели делятся на два типа: напряжением 220 / 380 и 127 / 220 Вольт. Последний тип электромоторов небольшой мощности применяется значительно реже.
В шильдике, размещенном на корпусе электродвигателя, обозначена необходимая информация — напряжение питания, мощность, ток потребления, КПД, возможные варианты включения и
коэффицент мощности, количество оборотов.
Схемы подключения ЗВЕЗДА и ТРЕУГОЛЬНИК
Производители предлагают трехфазные электродвигатели как с возможностью изменять схему подключения, так и без таковой.
Более раннему обозначению выводов обмоток С1 — С6 соответствует современное U1 — U2, W1 — W2 и V1 — V2. В распред. коробке выведены провода в количестве трёх (заводом изготовителем по умолчанию осуществлена схема подключения *звезда*) или шести (двигатель можно подключать к трехфазной сети как звездой, так и треугольником). В первом случае необходимо начала обмоток (W2, U2, V2) соединить в единой точке, три оставшихся провода (W1, U1, V1) подключить к фазам питающей сети (L1, L2, L3).
Преимущество метода звезда — плавный запуск мотора и мягкая работа (обусловленная щадящим режимом и благоприятно сказывающаяся на эксплуатационном сроке агрегата),
а также меньший пусковой ток.
Недостаток — потеря по мощности примерно в полтора раза и меньший крутящий момент. Применяется для оборудования, имеющего на валу свободно вращающуюся нагрузку – вентиляторы, центробежные насосы, валы станков, центрифуг и другого оборудования, не требовательного к крутящему моменту.
Схему треугольник применяют для электродвигателей, изначально имеющих на валу неинерционную нагрузку,
такую как вес груза лебедки или сопротивление поршневого компрессора.
Для снижения пускового тока осуществляют комбинированный тип включения (применим для электромоторов мощностью от 5 кВт) — сочетающий в себе преимущества первых двух схем — пуск происходит по схеме звезда, а после вхождения электромотора в рабочее состояние происходит автоматическое (реле времени) или ручное переключение (пакетник) — мощность возрастает до номинальной.
Включение трёхфазного двигателя в однофазную сеть через конденсатор (380 на 220)
На практике часто приходится подключать трёхфазный двигатель к сети 220 вольт; хотя КПД при этом падает до 50 % (в лучшем случае до 70%),
такая переделка бывает оправданной. Фактически мотор начинает работать как двухфазный, используя фазосдвигающий элемент.
Конденсатор подбирают исходя из мощности двигателя — на каждые 100Вт потребуется ёмкость 6, 5 мкф , по рабочему напряжению должен быть больше питающего минимум в 1,5 раза, иначе от скачков напряжения в момент включения и выключения они могут выйти из строя; тип — МБГО, МБГ4, К78-17 МБГП, К75-12, БГТ, КГБ, МБГЧ. Хорошо себя зарекомендовали металлизированные полипропиленовые конденсаторы типа СВВ5, СВВ60, СВВ61.
В случае применения конденсатора бОльшей ёмкости двигатель будет перегреваться, меньшей — будет работать в недогруженном режиме либо вообще не запустится.
В схеме ниже Сп — пусковой, Ср — конденсатор рабочий.
Пусковой конденсатор при наличии нагрузки на валу двигателя
В случае, если на валу имеется нагрузка, либо мощность превышает 1,5 кВт, движок может не запуститься или медленно набирать обороты. *Поправить* это можно применением рабочего и пускового конденсатора, служащих для сдвига фазы и разгона. Кнопку разгона нужно удерживать пока обороты не достигнут примерно 70% от номинальных (2 — 3 секунды), после чего отпустить.
Ёмкость пускового кондера должна превышать рабочую в 2..3 раза в зависимости от нагрузки на валу. Если проблематично достать вышеуказанные конденсаторы нужной ёмкости, возможно применение электролитических, спаянных по особой схеме с диодами. Однако для работы мощных станков следует избегать подобной замены и рекомендовать её лишь для временного включения.
Важно!
Не рекомендуется подключать электродвигатель мощностью более 3 кВт к домашней сети ввиду её невысокой нагрузочной способности.
Автоматический выключатель в цепи питания электродвигателя должен быть с время — токовой характеристикой C или D ввиду существенного кратковременного пускового тока, превышающего номинальный в 3 и 5 раз (звезда / треугольник) соответственно.
Если 3 — фазный электродвигатель будет долго работать без нагрузки от однофазной сети, он сгорит!
Выбирая правильное соединение или переключение, необходимо учитывать особенности электрической сети, силовой мощности электродвигателя и варианты подключения. В каждом случае следует ознакомиться с техническими характеристиками мотора и оборудования, для которого он предназначен.
Стоимость подключения электродвигателя специалистом — 800….2000р. в зависимости от сложности, варианта подключения, условий работы.
При развитии любой гаражной мастерской, может возникнуть необходимость подключить трёхфазный электродвигатель в однофазную сеть на 220 вольт. Это не удивительно, так как промышленные трёхфазные двигатели на 380 в более распространены, чем однофазные (на 220 в), особенно больших габаритов и мощности. И изготовив какой нибудь станочек, или купив готовый (например токарный) любой гаражный мастер сталкивается с проблемой подключения трёхфазного электромотора к обычной гаражной розетке на 220 вольт. В этой статье мы и рассмотрим варианты подключения, а так же что для этого понадобится.
Для начала следует внимательно изучить шильдик (табличку) электродвигателя, чтобы узнать его мощность, так как от этой мощности будет зависеть ёмкость или количество конденсаторов, которые нужно будет купить. И прежде чем отправляться на поиски и покупку конденсаторов, для начала следует вычислить, какая ёмкость потребуется именно для вашего двигателя.
Расчёт ёмкости.
Ёмкость нужного конденсатора напрямую зависит от мощности вашего электродвигателя и высчитывается по простой формуле:
С = 66 Р мкФ.
Буква С означает ёмкость конденсатора в мкФ (микрофарад), а буква Р означает номинальную мощность электродвигателя в кВт (киловатт). Из этой простой формулы видно, что на каждые 100 ватт мощности трёхфазного двигателя, потребуется чуть менее 7 мкФ (если быть точным, то 6,6 мкФ) электрической ёмкости конденсатора. Например для эл. двигателя мощностью 1000 ватт (1 Квт) потребуется конденсатор ёмкостью 66 мкФ, а для эл. двигателя на 600 ватт нужен будет конденсатор ёмкостью примерно 42 мкФ.
Так же следует учесть, что потребуются конденсаторы, рабочее напряжение которых в 1,5 — 2 раза больше, чем напряжение в обычной однофазной сети. Обычно на базаре попадаются конденсаторы небольших ёмкостей (8 или 10 мкФ), но необходимую ёмкость легко собрать из нескольких параллельно соединённых конденсаторов маленькой ёмкости. То есть например 70 мкФ можно легко получить из семи параллельно спаянных конденсаторов по 10 мкФ.
Но всё же всегда следует стараться найти по возможности один конденсатор ёмкостью 100 мкФ, чем 10 конденсаторов по 10 мкФ, так надёжнее. Ну и рабочее напряжение, как я уже говорил, должно быть как минимум в 1,5 — 2 раза больше рабочего, а лучше в 3 — 4 раза больше (чем больше напряжение, на которое рассчитан конденсатор, тем надёжнее и долговечнее). Рабочее напряжение всегда пишется на корпусе конденсатора (как и мкФ).
Правильно вы подобрали (рассчитали) ёмкость конденсатора или нет, можно и на слух. При вращении мотора, должен быть слышен только шум от подшипников, ну и шум вентилятора воздушного охлаждения. Если же к этим шумам прибавляется и вой двигателя, нужно чуть уменьшить ёмкость (Ср) рабочего конденсатора. Если же звук нормальный, то можно наоборот немного увеличить ёмкость (так будет мощнее мотор), но только чтобы мотор работал тихо (до появления воя).
Проще говоря, нужно поймать момент, меняя ёмкость, когда к нормальному шуму от подшипников и крыльчатки, начнёт прибавляться еле слышимый посторонний вой. Это и будет необходимая ёмкость рабочего конденсатора. Это важно, так как если рабочая ёмкость конденсатора окажется больше необходимой, то мотор будет перегреваться, а если ёмкость будет меньше нужной, то мотор потеряет свою мощность.
Покупать лучше конденсаторы типа МБГЧ, БГТ, КБГ, ну а если не найдёте таких в продаже, можно применить и электролитические конденсаторы. Но при подключении электролитических конденсаторов, их корпуса нужно хорошо соединить между собой и изолировать от корпуса станка или ящика (если он металлический, но лучше использовать ящик для конденсаторов из диэлектрика — пластик, текстолит и т.п.).
При подключении трёхфазного двигателя к сети 220 вольт, частота вращения его вала (ротора) почти не изменится, а вот мощность его всё же немного уменьшится. И если подключить электродвигатель по схеме треугольник (рис 1), то мощность его уменьшится примерно процентов на 30 и будет составлять 70 — 75 % от его номинальной мощности (при звезде чуть меньше). Но можно подключить и по схеме звезда (рис 2), и при подсоединении звездой, мотор легче и быстрее запускается.
Чтобы подключить трёхфазный электродвигатель по схеме звезда, нужно его две фазные обмотки подключить в однофазную сеть, а третью фазную обмотку двигателя, подключить через рабочий конденсатор Ср к любому из проводов сети 220 в.
Чтобы подключить трёхфазный электромотор мощностью до полтора киловатта (1500 ватт), хватает только рабочего конденсатора необходимой ёмкости. Но при включении больших моторов (более 1500 ватт), движок либо очень медленно набирает обороты, либо вообще не запускается. В таком случае необходим пусковой конденсатор (Сп на схеме), ёмкость которого в два с половиной раза (лучше в 3 раза) больше ёмкости рабочего конденсатора. Лучше всего подходят в качестве пусковых конденсаторов электролитические (типа ЭП), но можно использовать и такого же типа как и рабочие конденсаторы.
Схема подсоединения трёхфазного мотора с пусковым конденсатором показана на рисунке 3 (а так же пунктирной линией на рисунках 1 и 2). Пусковой конденсатор включают только во время пуска двигателя, и когда он запустится и наберёт рабочие обороты (обычно хватает 2 секунд), пусковой конденсатор отключают и разряжают. В такой схеме используются кнопка и тумблер. При пуске аключается тумблер и кнопка одновременно и после запуска двигателя, кнопка просто отпускается и пусковой конденсатор отключается. Чтобы разрядить пусковой конденсатор, достаточно выключить двигатель (после окончания работы) и затем на короткое время нажать кнопку пускового конденсатора, и он разрядится через обмотки электродвигателя.
Определение фазных обмоток и их выводов.
При подключении необходимо знать, где какая обмотка электродвигателя. Как правило выводы обмоток статора электромоторов маркируют различными бирками с обозначением начала или конца обмоток, или помечают буквами на корпусе распределительной коробочки двигателя (или клеммной колодки). Ну а если же маркировка стёрлась или её вообще нет, то нужно прозвонить обмотки с помощью (мультиметра), установив его переключатель на прозвонку, или с помощью обычной лампочки и батарейки.
Для начала следует узнать принадлежность каждого из шести проводов к отдельным фазам обмотки статора. Для этого следует взять любой из проводов (в клеммной коробочке) и подсоединить его к батарейке, например к её плюсу. Минус батарейки подсоедините к контрольной лампе, а второй вывод (провод) от лампочки, по очереди подсоединяйте к оставшимся пяти проводам двигателя, пока контрольная лампочка не загорится. Когда на каком то проводе лампочка загорится, это будет означать, что оба провода (тот что от батарейки и тот к которому подсоединили провод от лампы и лампа загорелась) принадлежат одной фазе (одной обмотке).
Теперь эти два провода пометьте картонными бирками (или малярным скотчем) п напишите на них маркероа начало первого провода С1, а второй провод обмотки С4. С помощью лампы и батарейки (или тестера) аналогично находим и помечаем начало и конец оставшиеся четырёх проводов (двух оставшихся фазных обмоток).Начало и конец второй фазной обмотки помечаем как С2 и С5, и начало и конец третьей фазной обмотки С3 и С6.
Далее следует точно определить, где начало и конец статорных обмоток. Я опишу далее способ, который поможет определить начало и конец статорных обмоток для двигателей до 5 киловатт. Да больше и не надо, так как однофазная сеть (проводка) гаража рассчитана на мощность 4 киловата, а если мощнее, то штатные провода не выдерживают. И вообще то редко кто использует двигатели в гараже, мощнее 5 киловатт.
Для начала соединим все начала фазных обмоток (С1, С2 и С3)в одну точку (согдасно помеченным бирками выводам), по схеме «звезда». И затем включим двигатель в сеть 220 в с использованием конденсаторов. Если при таком подключении, электродвигатель без гудения сразу раскрутится до рабочих оборотов, это значит, что вы попали в одну точку всеми началами или всеми концами фазных обмоток.
Ну а если же при включении в сеть, электродвигатель загудит и не сможет раскрутиться до рабочих оборотов, то в первой фазной обмотке нужно поменять местами выводы С1 и С4 (поменять местами начало и конец). Если это не поможет, то верните выводы С1 и С4 в первонаальное положение и попробуйте теперь поменять местами выводы С2 и С5. Если двигатель опять не набирает обороты и гудит, то верните назад выводы С2 и С5 поменяйте местами выводы третьей пары С3 и С6.
При всех вышеописанных манипуляциях с проводами, строго соблюдате правила техники безопасности. Провода держите только за изоляцию, лучше плоскогубцами с ручками из диэлектрика. Ведь электромотор имеет общий стальной магнитопровод и на зажимах остальных обмоток, может возникнуть довольно большое напряжение, опасное для жизни.
Изменение вращения вала электродвигателя (ротора).
Часто бывает, что вы например сделали шлифовальный станочек, с лепестковым кругом на валу. И лепестки из наждачной бумаги расположены под определённым углом, против которого вращается вал, а нужно в другую сторону. Да и опилки летят не на пол а наоборот вверх. Значит необходимо поменять вращение вала двигателя в другую сторону. Как это сделать?
Чтобы изменить вращение трёхфазного двигателя, включенного в однофазную сеть на 220 вольт по схеме «треугольник», нужно третью фазную обмотку W (см. рисунок 1,б) подключить через конденсатор к резьбовой клемме второй фазной обмотки статора V.
Ну а чтобы изменить вращение вала трёхфазного двигателя, подключенного по схеме «звезда», необходимо третью фазную обмотку статора W (см. рисунок 2,б) подключить через конденсатор к резьбовой клемме второй обмотки V.
Ну и напоследок хочу сказать, что шум двигателя от длительной его работы (несколько лет) может возникнуть со временем, и не следует путать его с гулом от неправильного подключения. Так же со временем может возникнуть и вибрация мотора. А бывает даже ротор трудно вращать вручную. Причиной этого как правило является выработка подшипников — их дорожки и шарики износились, да и сепаратор тоже. От этого возникают повышенные зазоры между деталями подшипников и они начинают шуметь, и со временем могут даже заклинить.
Этого допускать нельзя, и дело даже не только в том, что вал труднее будет вращаться и мощность двигателя упадёт, а ещё и в том, что между статором и ротором довольно маленький зазор, и при сильном износе подшипников, ротор может начать цеплять за статор, а это уже куда серьёзнее. Детали двигателя могут испортиться и восстановить их не всегда удаётся. Поэтому намного проще заменить зашумевшие подшипники новыми, от какой то авторитетной фирмы (как выбрать подшипник читаем ), и электродвигатель снова будет работать долгие годы.
Надеюсь данная статья поможет гаражным мастерам, без проблем подключить трёхфазный двигатель какого то станка к однофазной гаражной сети на 220 вольт, ведь с применением различных станочков (шлифовальных, сверлильных, токарных, и т.д.) намного упрощается процесс доводки деталей при тюнинге или ремонте.
Как подключить электродвигатель? — статья
Часто бывает так, что нужно найти схемы подключения электродвигателя к сети для случаев, которые не согласовываются с паспортными данными оборудования. Двигатель подключенный по таким схемам имеет пониженный КПД, но это иногда бывает оправданным. В этой статье расписаны самые доступные и технически обоснованные схемы подключения асинхронного двигателя к однофазной и трехфазной сети.
Подключение однофазного электродвигателя
Рисунок 1. Схемы включения однофазного асинхронного двигателя
В случае, если в однофазном электродвигателе оставить только одну обмотку (по числу фаз), то магнитное поле статора станет пульсирующим, а не вращающимся, и пуска или толчка при включении двигателя не будет, если ротор не раскручивать вручную. Чтобы исключить ручное вмешательство, добавляют вспомогательную обмотку – пусковую. Это вторая фаза, сдвинутая на 90 градусов, которая в момент включения раскручивает ротор, но, так как двигатель подключен к однофазной сети, его называют однофазным. Другими словами, однофазные асинхронные электродвигатели имеют рабочую и пусковую обмотки. Вторая нужна лишь для запуска ротора поэтому ее включают на короткое время (до 3 секунд), в то время, как рабочая включена постоянно. Если нужно определить выводы обмоток, можно воспользоваться тестером. Для запуска, требуется на обе обмотки подать 220 Вольт, а после выхода на рабочие обороты электродвигателя отключить пусковую. Чтобы добиться сдвига фазы используют омические сопротивления, конденсаторы и индуктивности. Сопротивление при этом не обязательно должно быть в виде отдельного резистора, оно может быть и частью пусковой обмотки, намотанной по бифилярной технологии, когда индуктивность катушки не изменяется, а её сопротивление растет за счет большей длины медного провода. Схема подключения и соотношение обмотки и общего вывода однофазного электродвигателя показана на рис. 1.
Рабочая и пусковая обмотки могут быть постоянно подключены к электросети. Такие двигатели, можно сказать, являются двухфазными. Магнитное поле вращается внутри статора. Конденсатор в этом случае служит для сдвига фаз. Здесь как рабочая, так и пусковая обмотки выполнены проводом одинакового сечения.
Как подключать трехфазный электродвигатель
Рисунок 2. Схема подключения: звезда, треугольник
Трехфазные двигатели более эффективны, в сравнении с однофазными и двухфазными. Вращающееся магнитное поле в статоре образуется сразу после включения в сеть 380 вольт, и при этом не задействованы никакие пусковые устройства. Схемы подключения электродвигателя звездой и треугольником — самые распространенные (рис. 2).
Рисунок 3. Схема включения звезда-треугольник
Также нужно сказать, что подключение звездой делает пуск плавным, но снижает мощность работы электродвигателя. Подключении треугольником позволяет вывести двигатель на полную паспортную мощность, что в 1,5 раза выше чем при подключении звездой, но пусковой ток, в таком случае, вырастет настолько, что может повредить изоляцию проводов. Поэтому мощные двигатели подключают по комбинированной схеме подключения звезда-треугольник. Пуск осуществляется по схеме звезда (небольшие пусковые токи), а после выхода на рабочий режим схема автоматически или вручную переключается на схему треугольник, что повышает мощность двигателя в 1,5 раза (мощность приближается к номинальной). Для переключения используют магнитные пускатели, пакетный переключатель или пусковое реле времени. Схема подключения к сети 380 вольт показана на рис. 3. При замкнутых ключах К1 и К3 двигатель подключен по схеме звезда, а при замкнутых ключах К1 и К2 двигатель включен по схеме треугольник. Подключение трехфазного двигателя к однофазной сети через конденсатор (380 на 220).
Рисунок 4. Включения трехфазного двигателя в однофазную сеть по схеме: треугольник, звезда.
Очень часто бывает так, что нужно подключить трёхфазный двигатель к сети 220 Вольт. Несмотря на то, что КПД снижается до 50 % (бывает и до 70%), такая переделка иногда нужна. Двигатель, в таком случае, начинает работать как двухфазный. Осуществляется это по схеме звезда или треугольник с использованием рабочего и пускового конденсатора, которые требуются для сдвига фазы и разгона (рисунок 4). Кнопку разгона удерживаем до максимального раскручивания ротора, после чего отпускаем.
Под нагрузкой и при холостом ходе через обмотки течет разный ток, поэтому емкость подбирается экспериментальным путем для конкретной нагрузки. Двигатель будет перегреваться, если емкость будет больше, чем нужно. Приблизительный подбор номиналов в соответствии с мощностью двигателя можно осуществить по этой таблице:
Мощность трехфазного двигателя (кВт) | 0,4 | 0,6 | 0,8 | 1,1 | 1,5 | 2,2 |
Минимальная емкость рабочего конденсатора (мкФ) | 40 | 60 | 80 | 100 | 150 | 230 |
Минимальная емкость пускового конденсатора (мкФ) | 80 | 120 | 160 | 200 | 250 | 300 |
Рисунок 5. Схема подключения электролитических конденсаторов
Напряжение конденсаторов должно быть выше минимум в 1,5 раза, чтобы от скачков напряжения при включении и выключении они не вышли из строя. Из-за проблемы поиска металлобумажных конденсаторов нужной ёмкости, некоторые используют электролитические, спаянные с диодами (по особой схеме). Их нужно закрыть в корпус, во избежание попадания электролита в глаза в случае взрыва. Емкость снизится в 2 раза при соединении схемы в соответствии с рис. 5. Для работы мощных станков все-таки не желательно использовать электролитические конденсаторы.
Если хотите сделать запрос или оформить заказ:
Подберем оптимальное решение по цене и срокам поставки.
Отдел продаж:
Телефон: (044) 229 65 56
Email: [email protected]
Если нужна техническая консультация:
Поможем с расчетом нагрузок и подбором комплектующих.
Технический отдел:
Телефон: (044) 229 65 57
Email: [email protected]
Дасм 2ухл4 какие конденсаторы схема подключения реверс
Двухскоростной асинхронный электродвигатель
Обмотки двухскоростного двигателя выглядят таким образом:
Схема двухскоростного двигателя Даландера
При подключении выводов U1, V1, W1 такого двигателя к трехфазному напряжению он будет включен в “треугольник” на пониженную скорость.
А если выводы U1, V1, W1 замкнуть между собой, а питание подать на выводы U2, V2, W2, то получатся две “звезды” (YY), и скорость будет в 2 раза выше.
Что будет, если обмотки вершин треугольника U1, V1, W1 и середин сторон U2, V2, W2 поменять местами? Я думаю, ничего не изменится, тут дело только в названиях. Хотя, я не пробовал. Кто знает – напишите в комментариях к статье.
Тип конденсаторов
Специалисты рекомендуют в качестве пускового и рабочего конденсаторов использовать одинаковые модели. Самый простой вариант – это бумажные конструкции в герметичном металлическом корпусе. Правда, есть у них один существенный недостаток – большие габаритные размеры. Поэтому если перед вами стоит вопрос, как подключить небольшой мощности двигатель 380 на 220 вольт, то количество таких конденсаторов будет приличным, и вся конструкция будет смотреться не очень.
Можно использовать для этих целей электролитические приборы, но их схема подключения отличается от предыдущей, потому что в нее придется установить резисторы и диоды. К тому же эти конденсаторы при пробое взрываются. Есть более современные виды – это полипропиленовые модели металлизированного типа. Себя они зарекомендовали хорошо, претензий к ним сейчас у специалистов нет.
Схемы подключения
Кто немного не в курсе, как подключаются к трехфазной сети асинхронные электродвигатели – настоятельно рекомендую ознакомиться с моей статьёй Подключение двигателя через магнитный контактор. Я предполагаю, что читатель знает, как включается электродвигатель, зачем и какая нужна защита двигателя, поэтому в этой статье я эти вопросы опускаю.
В теории всё просто, а на практике приходится поломать голову.
Очевидно, что включение обмоток двигателя Даландера можно реализовать двумя путями – через переключатель и через контакторы.
Переключение скоростей с помощью переключателя
Рассмотрим сначала схему попроще – через переключатель типа ПКП-25-2. Тем более, что только такие принципиальные схемы мне и встречались.
Переключатель должен иметь три положения, одно из которых (среднее) соответствует выключенному двигателю. Про устройство переключателя – чуть позже.
Подключение двухскоростного двигателя. Схема на переключателе ПКП.
Крестиками на пунктирах положения переключателя SA1 отмечены замкнутые состояния контактов. То есть, в положении 1 питание от L1, L2, L3 подается на треугольник (выводы U1, V1, W1). Выводы U2, V2, W2 остаются не подключенными. Двигатель вращается на первой, пониженной скорости.
При переключении SA1 в положение 2 выводы U1, V1, W1 замыкаются друг с другом, а питание подается на U2, V2, W2.
Переключение скоростей с помощью контакторов
При запуске с помощью контакторов схема будет выглядеть аналогично:
Схема включения двигателя на разных скоростях на контакторах
Здесь на первую скорость двигатель включает контактор КМ1, на вторую – КМ2. Очевидно, что физически КМ2 должен состоять из двух контакторов, поскольку необходимо замыкание сразу пяти силовых контактов.
Виды моторов для стиральной машины
Для такой детали, как пусковой двигатель, для работы которого нужна электрическая сеть или попросту ток, применение можно найти даже в таком оборудовании, как автонасос.
Для этого можно использовать двигатели от различных стиралок, например:
- Донбасс;
- Рига;
- Ока;
- Nuova;
- Ibmei.
Независимо от того каких годов производства, движок может прослужить еще немало времени при правильной установке. Существует много способов, как можно понизить, или увеличить скорость вращения или понять, почему не работает реле, однако чтобы включить устройство в комплектацию нового оборудования, нужно не только осмотреть рекомендации, но и тщательно отслеживать каждый этап работы.
Подходящие двигатели:
- ДАОЦ У4 со щетками, ДАОА;
- РТК 1ухл4, ухл4, 1у4;
- HXGP1l, 3у4, 3ухл4, 9ухл4.
Особенно часто проводится использование коллекторного движка, так как на его статоре расположен постоянный магнит, способный попеременно подключаться к току с постоянным напряжением. Это своего рода реверс, который позволяет потреблять энергию в небольшом количестве и экономить бюджет. Не менее востребованы двигатели электронного типа, которые обладают электронным блоком управления на корпусе.
Современные двигатели обладают специальным регулятором оборотов, что требуется для контролирования скорости вращения.
Зачем нужна такая деталь? Если движок будет подключаться к бетономешалке или же к вибростанку, потребуется понизить скорость вращения и соответственно направить его на снижение активности функционирования. Излишняя вибрация позволяет провести нужный процесс более качественно.
Для подключения регулятора двигателя из машинки, в которой он был установлен нужно сделать следующее. Он извлекается из полости старой стиралки вместе с радиатором, который является полупроводниковым прибором, за счет которого и осуществляется управление включением и выключением. Далее он впаивается в микросхему реле, заменяя маломощную деталь. Если нет навыков работы с такими процессами, то лучше доверить его настоящему профессионалу, например, компьютерщику. Особенно, если цветная лента тянет и греется.
Практическая реализация схемы подключения двухскоростного электродвигателя
На практике мне попадались только схемы на переключателях ПКП-25-2. Это универсальное чудо советской коммутации, у которого может быть миллион возможных сочетаний контактов. Внутри есть кулачок (их тоже несколько вариантов по форме), который можно переставлять.
Это реальная головоломка и ребус, требующий высокой концентрации сознания. Хорошо, что каждый контакт просматривается в небольшую щёлку, и можно посмотреть, когда он замкнут или разомкнут. Кроме того, через эти прорези в корпусе можно чистить контакты.
Количество положений может быть несколько, их количество ограничивается упорами, показанными на фото:
Переключатель пакетный ПКП-25-2
Переключатель ПКП 25. Головоломка на любителя.
Переключатель пакетный ПКП-25-2 – контакты
Как запустить двигатель от стиральной машины
О том, как дать жизнь новому двигателю и сколько потребуется времени, чтобы запустить двухскоростной агрегат уже известно, однако, как осуществить запуск и управление, если есть некоторые неполадки? Вполне возможно и такое, что движок попросту не запустится, даже при том условии, что удалось соединить все правильно. В этом случае нужно проверять нагревание движка, после того как он начнет работать. Достаточно пары минут и если за это время тепло не распространяется на все детали, то требуется определить место скопления нагрева. Это может быть область статора, узла или подшипника.
Основная причина того, что деталь быстро нагревается это:
- Наличие износа или засорения подшипника;
- Сильное увеличение емкости конденсатора, что может иметь только асинхронный двигатель.
После этого проверка проводится каждые 5 минут и достаточно трех раз. Если виной всему подшипник, то нужно разобрать, смазать или заменить, так как бывают моменты, когда он не подлежит восстановлению. Категорически запрещается допускать перегрев двигательной системы, так как это может стать причиной поломки всего нового оборудования и потребовать расходов.
Практическое применение
Как я уже говорил, такие двигатели мне встречались в советских станках, которые я восстанавливал.
А именно – циркулярный деревообрабатывающий станок ЦА-2А-1, там используется двухскоростной асинхронный двигатель 4АМ100L8/4У3. Его основные параметры – первая скорость (треугольник) 700 об/мин, ток 5,0А, мощность 1,4 кВт, звёзды – 1410 об/мин, ток 5,0 А, мощность 2,4 кВт.
Меня просили сделать несколько скоростей, для разной древесины и для разной остроты циркулярной пилы. Но увы – без преобразователя частоты здесь не обойтись.
Другой старичок – токарный станок спец.исполнения УТ16П, там стоит двигатель 720/1440 об/мин, 8,9/11 А, 3,2/5,3 кВт:
Шильдик двухскоростного электродвигателя 11 кВт токарного станка
Переключение также переключателем, а схема станка выглядит так:
схема электрическая токарного станка
В этой схеме есть ошибка, как раз по теме статьи. Во первых, переключение скоростей осуществляется не реле Р2, а выключателем В2. А второе (и главное) – схема переключения абсолютно не соответствует реальности. И она меня сбила с толку, я пытался подключить по ней. Пока не сотворил вот такую схему:
Реальная схема включения двухскоростного двигателя токарного станка УТ16П
Дополнительно – внешний вид и расположение элементов электросхемы.
схема токарного станка – внешний вид
схема электрическая токарного станка – расположение элементов
На этом всё.
Друзья! Кому попадаются такие станки и двигателя, пишите, делитесь опытом, задавайте вопросы, буду рад!
Обновление Март 2017
Выкладываю фото и схемы практического включения двухскоростного электродвигателя.
Двигатель работает на гидростанции. На пониженной скорости он дает малое давление, позволяющее управлять механизмами с гидравлическим приводом более точно. На повышенной скорости – давление возрастает примерно в 2 раза, и скорость перемещения соответственно.
Борно двухскоростного двигателя – на клеммы приходят 6 проводов
Схема двухскоростного двигателя
Двухскоростной двигатель гидростанции
Контакторы двухскоростного двигателя. Левый включает в треугольник (низкая скорость), правые – двойная звезда
Мотор-автоматы. Видно, что ток треугольника – до 8А, ток звезд – до 13А
Схема включения силовой части двигателя Даландера.
Схема включения части управления двухскоростного двигателя Даландера.
Коротко о схеме включения двигателя Даландера.
Двигатель включается через реле времени с задержкой отключения.
Подробно о реле времени я писал здесь.
Реле времени 215А2 включается сразу, а отключается через 5 секунд. Это нужно, чтобы двигатель и контакторы не дергать по пустякам, и кратковременные остановки гидравлических перемещений не отключали двигатель гидростанции.
Далее реле 261К0 включает режим работы треугольник, реле 261К1 – звёзды.
Как подключить двигатель от стиральной машины автомат
Куда можно подключить мотор от машинки автомат? Вариантов огромное количество, а самое главное то, что если есть данные о работе таких изделий и о правилах подключения, то вполне возможно собрать новые устройства, способные пригодиться в хозяйстве. Не стоит выкидывать стиралки до того, пока они не будут полностью разобраны, так как внутри может быть огромное количество полезных принадлежностей. К примеру, при поломке машинки марки Индезит можно получить двигатель мощностью в 430 Вт, способный развивать скорость до 11500 оборотов в минуту. Естественно, использовать его можно только при условии, что деталь полностью исправна и не станет причиной поломки новой техники. Идей того как можно использовать двигатель старой машинки существует неимоверное количество, причем даже стиралка малютка имеет свой движок способный принести пользу.
Варианты:
- Наиболее простой вариант – это изготовление точильного станка, который позволит затачивать такие предметы как ножницы, ножи и тому подобные колющережущие предметы. Включается такой наждак только после того как мотор будет тщательно закреплен на поверхности прочного основания, а также установки вала на точильном камне или шлифовального круга. После сборки можно подсоединять оборудование к сети.
- Если ведется строительство, например, частного дома или заливание окружающей территории бетоном, то может потребоваться бетономешалка. Именно для нее можно использовать электродвигун. Переделать стиралку в бетономешалку не сложно, и для этого нужно еще отсоединить бак от стирального оборудования.
- Вибростолы с использованием такого мотора, позволят изготавливать шлакоблок, стоимость которого далеко не маленькая, а своими руками можно не плохо сэкономить.
- На участке много травы? Есть кролики, которым требуется трава? Регулярно проводится покос сена? Если правильно использовать моторчик, то он сможет стать отличным заменителем триммера и позволит убирать траву быстро, просто и не потратив на это много средств. Этот аппарат считается просто необходимым тем, кто проживает за пределами города и особенно для тех, кто любит заниматься сельским хозяйством.
Это лишь минимальный список того, что можно сделать, если использовать деталь от стиралки в виде электродвигателя. Могут потребоваться различные насадки, дополнительные емкости или же вовсе вспомогательные детали, но если иметь идею, то создать новое оборудование получится быстро и без вложений.
Заточной станок на двигателе Даландера
Недавно попался станок с двухскоростным двигателем, выкладываю его схему.
Схема заточного станка на двухскоростном двигателе Даландера
Меня часто спрашивают, какую защиту сделать этому двигателю? Вот, на схеме – простое тепловое реле (РТ1), настроенное на бОльший ток (около 11 А).
Вот шильдик двигателя:
Параметры двухскоростного двигателя заточного станка
А вот – его обозначения выводов:
Выводы двухскоростного двигателя
Как думаете, почему вместо схемы подключения показан прямоугольничек ПС (переключатель скоростей)? Правильно, схема тогда была бы в 2 раза больше и сложнее.
Выбираем конденсаторы
Существует формула, по которой емкость можно рассчитать. Правда, для схемы звезда и треугольника она отличается коэффициентом. Для схемы звезда формула вот такая:
С=2800*I/U, где I – это ток, который можно замерить в питающем проводе клещами, U – это напряжение однофазной сети – 220 В.
Формула для треугольника:
С=4800*I/U.
Здесь загвоздка может быть только в определение силы тока, просто клещей может не оказаться под рукой, поэтому предлагаем упрощенный вариант формулы:
С=66*Р, где Р – это мощность электродвигателя, которая наносится на шильдик мотора или в его паспорте. По сути, получается так, что емкость рабочего конденсатора в размере 7 мкФ должно хватить на 0,1 кВт мощности двигателя. Обычно электрики берут именно это соотношение, когда перед ними ставиться вопрос, как подключить асинхронный двигатель с 380 на 220 В. И еще один момент – конденсатор контролирует силу тока, поэтому так важно правильно подобрать его емкость. И самое главное в подключении двигателя добиться того, чтобы значение тока при эксплуатации электродвигателя не поднималось выше номинальной величины.
Подключение двигателя звезда / треугольник 380В / 220В | GoHz.com
Если двигатель спроектирован для работы по схеме звезды от трехфазного источника питания 380 В, то он не может быть подключен по схеме треугольника к «тому же» источнику питания. Это было бы эквивалентно приложению 380 вольт к обмоткам 220 в, так что двигатель явно выйдет из строя.
Обратите внимание, что в схеме «звезда» каждая обмотка получает корень 3 от приложенного напряжения (или 380 / 1,732). Соединение по схеме «треугольник» означает, что каждая обмотка получает напряжение фаза-фаза EG 380 В.
Если двигатель рассчитан на 380 В — «соединение треугольником», то он может быть подключен звездой или треугольником, поскольку подключение двигателя с номиналом 380 В, треугольник, звездой снизит напряжение на обмотках до 220 В, что является нормальным и часто используется в схеме звезда /. Пуск по схеме «треугольник» для уменьшения пускового тока.Разумеется, все 6 обмоток двигателя должны быть доступны.
Как указано выше, вы можете взять двигатель 380 В, 3-фазный, соединенный звездой, и запустить его как двигатель 220 В, соединенный трехфазным треугольником. Возвращаясь к основам, это ток, управляемый напряжением, который создает магнитный поток. Плотность потока (зависит от многих факторов) является функцией тока и напряжения. Ток контролируется импедансом цепи и нагрузкой на двигатель. Поскольку большая часть изоляции, используемой в двигателях, рассчитана на 1000 В плюс, напряжение не является проблемой, пока импеданс не станет достаточно низким, чтобы превысить ограничение тока на проводниках до точки, где температура разрушит изоляцию.Мы подключили 380 В к 525 В и наоборот в аварийной ситуации. КПД и коэффициент мощности НЕ будут соответствовать проектным, и вы должны это понимать. Настроить защиту сложно, и безопасность прежде всего, пожалуйста.
Таким образом, вы можете подавать любое напряжение на двигатель, если оно не превышает уровень изоляции и ограничения по току этого конкретного двигателя.
В заключение есть однофазные входы для трехфазных частотно-регулируемых приводов (VFD). Очень часто я получаю запрос, что они не могут разогнать двигатель до полной нагрузки без превышения данных, указанных на паспортной табличке.Небольшие двигатели, для которых были разработаны эти частотно-регулируемые приводы, обычно соединяются звездой. Поскольку частотно-регулируемый привод не может генерировать шину постоянного тока выше пикового напряжения на входе, вы никогда не сможете получить 380 В на входе 220 В. Таким образом, ЧРП выдает три фазы 220В. Двигатель должен быть подключен по схеме треугольника для работы с полной нагрузкой / мощностью.
(PDF) Простой метод использования стандарта соединения треугольником для трехфазного асинхронного двигателя от однофазной сети
Международный журнал инженерных тенденций и технологий (IJETT) — Том 15, номер 9 — сентябрь 2014 г.
ISSN: 2231- 5381 http: // www.ijettjournal.org Страница 447
Рис. 10 Блок управления стандартным трехфазным асинхронным электродвигателем
для работы от однофазной сети с треугольным соединением
В. ВЫВОДЫ
На основании проведенных исследований можно получить
резюмируется следующим образом.
1. Метод, использованный в этом исследовании, может хорошо работать для работы по схеме треугольника
стандарт 3-фазного асинхронного двигателя на однофазном питании
при нагрузке до 66% от его
3- номинальная мощность фазы.
2. Метод может работать с двигателем при коэффициенте мощности
, близком к единице, более высоком КПД
(99,759%) и более низкой гармонике
искажение
ПОДТВЕРЖДЕНИЕ
Я выражаю благодарность команде лаборатории
электротехники из «Institut Teknologi
Padang», которые помогли этому исследованию успешно провести
. Я также хотел бы поблагодарить
‘Kopertis Wilayah X’ из Индонезии, которые профинансировали
этого исследования.
ССЫЛКИ
[1] Энтони, З., Тумиран и Берахим, Х, «Производительность асинхронного двигателя 3-
при работе от однофазного источника питания (Kinerja
pengoperasian motor индуккси 3-fasa pada sistem tenaga 1-fasa dengan
menggunakan kapasitor) », Журнал Teknosain UGM, т. 16 нет. 1,
pp. 1-12, Jan. 2003.
[2] Anthony, Z, 2004, «Анализ цепи рабочего конденсатора двигателя
SemihexTM (метод Analisa kapasitor jalan pada metode
SemihexTM). , в Proc.Конференция SNVMS 2004, 2004, стр. 637-
641.
[3] Энтони, З., «Конструкция цепи пускового конденсатора для работы асинхронных двигателей 3-
на однофазной сети (Perencanaan kapasitor
start Untuk mengoperasikan motor индуктивность 3-фазная система (1-
фаза) », Journal of Momentum ITP, vol. 2 шт. 2, стр. 9-13, август 2004 г.
[4] Энтони З., «Конструкция системы управления с двойным функционалом для работы с трехфазным асинхронным двигателем
(Perancangan sistem kendali dual Gumbsi
pengoperasian motor indexi 3- fasa) », Журнал Momentum ITP, т.
3 шт. 2, pp. 58-63, Aug. 2005.
[5] Энтони З., «Конструкция цепи работы конденсатора для работы асинхронных двигателей 3-
на однофазной сети (Perancangan kapasitor
jalan untuk pengoperasian motor индуккси 3-fasa pada sistem tenaga 1-
fasa) », Журнал Teknik Elektro UK Petra, vol. 8 нет. 1, pp. 46-51,
March 2008.
[6] Энтони З, «Конденсаторная батарея Влияние на пусковой ток асинхронного двигателя фазы 3-
(Pengaruh penggunaan kapasitor perbaikan
faktor daya terhadap arus пуск двигателя индукси 3-фаса), Журнал
Teknik Elektro ITP, вып.2 шт. 1, стр. 26–32, январь 2013 г.
[7] Энтони З., «Простой метод работы трехфазного асинхронного двигателя
от однофазного источника питания (для стандарта соединения звездой)»
International Journal инженерных тенденций и технологий (IJETT),
т. 5 шт. 1, ноябрь 2013 г., стр. 13–16.
[8] Бадр М.А., Алолах А.И. и Халим Абдул М.А., «Конденсаторный пуск трехфазного асинхронного двигателя
», Транзакция IEEE по преобразованию энергии, вып.
10 шт. 4, стр. 675-680, декабрь 1995 г.
[9] Хуанг Х., Фукс Э. Ф. и Уайт Дж. К. «Оптимальное размещение конденсатора пробега
в конструкции однофазного асинхронного двигателя», транзакции IEEE
по преобразованию энергии , Vol. 3, вып. 3, стр. 647-652, сентябрь 1988 г.
[10] Щеда, Ф. А., Работа с трехфазными двигателями от однофазной сети, EC&M,
, январь 1985 г., стр. 40-41.
[11] Смит, О.Дж., «Большой недорогой однофазный двигатель SemihexTM», IEEE
Trans.по преобразованию энергии, т. 14 нет. 4, pp. 1353-1358, 1999 ,.
Зуриман Энтони является лектором
в «Institut Teknolgi
Padang» (Институт технологий
Паданга) на кафедре электротехники
. Его
исследования, интересующиеся электрооборудованием
Машины и управление. Он
получил степень магистра в Гадже
Университета Мада, Джокьякарта,
Индонезия в 2002 году.Он всегда принимал активное участие во многих
исследованиях трехфазных асинхронных двигателей.
Основы электрических двигателей — Weg Motor Sales
Номера моделей WEG содержат до 20 знаков, распределяются следующим образом: | |||||||
---|---|---|---|---|---|---|---|
ХХХ | ХХ | ХХХ | Х | XXXXX | -W22 | ||
л.с. | об / мин | Модель | Вольт | Приложение + рамка | Когда применимо | ||
|
|
Модель — три символа: | |||||||
---|---|---|---|---|---|---|---|
Корпус | КПД | Фаза | |||||
E — полностью закрытый | S — Стандартный КПД | 1 -1 фаза | |||||
S — для тяжелых условий эксплуатации IEEE 841 | P — Высокая эффективность | 3 — 3 фазы | |||||
P — Высокая эффективность | T — NEMA Premium | ||||||
O — Открытая защита от капель | G — Супер премиум | ||||||
X — взрывозащищенный | |||||||
A — полностью закрытый воздух над | |||||||
N — Полностью закрытые, без вентиляции |
Вольт | ||||||
---|---|---|---|---|---|---|
А — 115 В | л — 415 В | Приложение + рамка | ||||
B — 115/208 — 230 В | M — 220/380 — 415 В | Для строк с определенным назначением после кода напряжения должны использоваться две выбранные буквы: | ||||
C — 208 — 230 В | Н — 220/380 В | |||||
D — 230 В | O — 380 — 415 В | |||||
E — 208 — 230/460 В * | P — 200 В | г. н.э. — | г. Привод шнека | |||
F — 230/460 В | Q — 46 0 В | AL — | Алюминиевая рама | |||
G — 460 В PWS | R — 115/230 В | ТОПОР — | Двигатель ATEX | |||
H — 575 V | В — 200/400 В | БМ — | Тормозной двигатель | |||
I — 220 В | Вт — 460 / 220-240 / 380-415 В | CD — | Режим работы компрессора | |||
Дж — 380 В | X — Другое напряжение | CT — | Градирня | |||
К — 190/380 В | Y — 460 / 380-415 / 660-690 В | ДП — | Двухполюсный (2 скорости) | |||
EC — | Испарительный охладитель | |||||
ФД — | Farm Duty | |||||
FP — | Пожарный насос | |||||
| л.с. — | Гидравлический насос | ||||
HS — | Полый вал | |||||
IB — | Работа инвертора (TEBC) | |||||
IE — | IEEE 841 (IEEE 841 для тяжелых условий эксплуатации) | |||||
IP — | Насос для орошения | |||||
JP — | Струйный насос | |||||
КД — | Дробилка | |||||
ПР — | Ручная защита от перегрузки | |||||
ОТ — | Перекачка нефтяных скважин — тройной рейтинг | |||||
OW — | Перекачка нефтяных скважин | |||||
РамаНомер кадра должен быть включен до тех пор, пока позволяет количество оставшихся символов.Пример: 143T, 143TC, 405T, 405TS, 184JP. -W22 Суффикс-W22 Суффикс будет добавлен к каталожному номеру полностью закрытых двигателей с новым дизайном W22 WEG. В зависимости от количества оставшихся символов этот суффикс может иметь вид -W или -W2. | ПФ — | Вентилятор для птицеводства | ||||
ПМ — | Подушечка для крепления | |||||
R — | (до размера кадра): круглый корпус | |||||
РБ — | Роликовые подшипники (интегральные) | |||||
РБ — | Упругое основание (дробное) | |||||
RS — | Рама из стального проката | |||||
SA — | Пила Беседка | |||||
SP — | , разделенная фаза | |||||
SS — | Нержавеющая сталь | |||||
ВД — | Vector Duty (TEBC или TENV) | |||||
Ровно 746 Вт электроэнергии даст 1 л.с., если двигатель может работать со 100% -ным КПД, но, конечно, ни один двигатель не является 100% -ным КПД.Двигатель мощностью 1 л.с., работающий с КПД 84%, будет иметь общее потребление 888 Вт. Это составляет 746 Вт полезной мощности и 142 Вт потерь из-за тепла, трения и т. Д. (888 x 0,84 = 746 = 1 л.с.).
Мощность в лошадиных силах также может быть рассчитана, если известен крутящий момент, по одной из следующих формул: | ||
|
[Прокрутите вверх или щелкните здесь, чтобы перейти наверх этой страницы]
Приблизительное число оборотов в минуту при номинальной нагрузке для малых и средних двигателей, работающих при 60 Гц и 50 Гц при номинальном напряжении, составляет: | ||||||||||||||||||||
|
Крутящий момент: | |
Поворачивающее усилие или сила, приложенная к валу, обычно выражается в дюймах-фунтах или дюймах-унциях для двигателей с дробным или дробным числом л.с. | |
Пусковой крутящий момент: | |
Сила, создаваемая двигателем, когда он начинается с места и ускоряется (иногда называется крутящий момент ротора ) | |
Момент полной нагрузки: | |
Сила, создаваемая двигателем, работающим при номинальной скорости при полной нагрузке и номинальной мощности | |
Момент пробоя: | |
Максимальный крутящий момент, который двигатель развивает в условиях возрастающей нагрузки без резкого падения скорости и мощности (иногда его называют крутящий момент отрыва ) | |
Момент подъема: | |
Минимальный крутящий момент, создаваемый двигателем между нулевым и номинальным числом оборотов в минуту, равный максимальной нагрузке, которую двигатель может разогнать до номинального числа оборотов в минуту |
Синхронная скорость (без нагрузки) может быть определена по следующей формуле:
Частота (герц) x 120 / Число полюсов
[Прокрутите вверх или щелкните здесь, чтобы перейти наверх этой страницы]
Открытая защита от капель (ODP) | |
Вентиляционные отверстия в лобовом щите и / или раме предназначены для предотвращения попадания капель жидкости в двигатель под углом 15 градусов от вертикали.Предназначен для использования в относительно сухих, чистых и хорошо вентилируемых помещениях (обычно в помещении). При установке на открытом воздухе рекомендуется защищать двигатель крышкой, которая не ограничивает поток воздуха к двигателю. | |
Полностью закрытого типа с вентиляторным охлаждением (TEFC) | |
То же, что и TENV, за исключением того, что внешний вентилятор является неотъемлемой частью двигателя, чтобы обеспечить охлаждение путем обдува наружной рамы двигателя воздухом. | |
Полностью закрытый воздуховод (TEAO) | |
Пыленепроницаемые двигатели вентиляторов и нагнетателей, предназначенные для вентиляторов на валу или вентиляторов с ременным приводом. Двигатель должен быть установлен в воздушном потоке вентилятора. | |
Полностью закрытые невентилируемые (TENV) | |
Нет вентиляционных отверстий, плотно закрыты для предотвращения свободного воздухообмена, но не герметичны.Не имеет внешнего охлаждающего вентилятора и использует конвекцию для охлаждения. Подходит для использования в местах, подверженных воздействию грязи или сырости, но не в очень влажных или опасных (взрывоопасных) местах. | |
Двигатели полностью закрытого типа для работы в агрессивных средах и суровых условиях | |
Разработан для использования в чрезвычайно влажной или химической среде, но не для опасных мест. | |
Двигатели полностью закрытого типа с вентиляторным охлаждением | |
То же, что и TEFC, за исключением того, что внешний вентилятор должен работать от источника питания, независимого от выхода инвертора.Охлаждение по MG 1.6 (IC 46). | |
Взрывозащищенные двигатели | |
Имеют выступающие из передней или задней части двигателя болты, с помощью которых устанавливается ведомая нагрузка. Обычно это используется в приложениях, связанных с небольшими вентиляторами с прямым приводом или воздуходувками. |
[Прокрутите вверх или щелкните здесь, чтобы перейти наверх этой страницы]
КПД двигателя — это показатель полезной работы, производимой двигателем, по сравнению с потребляемой им энергией (тепло и трение).Двигатель с КПД 84% и общей потребляемой мощностью 400 Вт вырабатывает 336 Вт полезной энергии (400 x 0,84 = 336 Вт). Потерянные 64 Вт (400 — 336 = 64 Вт) превращаются в тепло.
[Прокрутите вверх или щелкните здесь, чтобы перейти наверх этой страницы]
Обычные напряжения 60 Гц для однофазных двигателей: | ||
115 В, 230 В и 115/230 В | ||
Обычное напряжение 60 Гц для трехфазных двигателей: | ||
230 В, 460 В и 230/460 В | ||
Иногда встречаются моторы | на 200 и 575 вольт. | |
В предыдущих стандартах NEMA эти напряжения были указаны как 208 или 220/440 или 550 вольт. Двигатели с указанными на паспортной табличке напряжениями можно смело заменять двигателями, имеющими текущую стандартную маркировку 200 или 208–230 / 460 или 575 вольт соответственно. | ||
Двигатели на 115 / 208-230 вольт и 208-230 / 460 вольт | ||
Они в большинстве случаев будут удовлетворительно работать при 208 вольт, но крутящий момент будет на 20% — 25% ниже.Для работы при напряжении ниже 208 вольт может потребоваться двигатель на 208 вольт (или 200 вольт) или использование более мощного двигателя со стандартным напряжением. | ||
002 | 18 | ЕТ3 | H | 145TC | -W22 | ||
---|---|---|---|---|---|---|---|
л.с. | об / мин | Модель | Вольт | Приложение + рамка | Когда применимо | ||
Если не указано иное, двигатели можно устанавливать в любом положении и под любым углом.Однако, за исключением случаев использования каплесборной крышки для валов вверх или вниз, каплезащищенные двигатели должны быть установлены в горизонтальном или боковом положении, чтобы соответствовать определению корпуса. Надежно закрепите двигатели на монтажной базе оборудования или на жесткой плоской поверхности, предпочтительно металлической.
Жесткое основание | Прикручивается болтами, приваривается или отливается к основной раме и позволяет жестко монтировать двигатель на оборудовании. |
Упругое основание | Имеет изоляционные или упругие кольца между установочными ступицами двигателя и основанием для поглощения вибрации и шума. В кольцо вставлен проводник, замыкающий цепь для заземления. |
NEMA C-образное крепление | Представляет собой обработанную поверхность с пилотом на конце вала, который позволяет осуществлять прямую установку с насосом или другим оборудованием с прямым соединением. Болты проходят через навесную деталь до резьбового отверстия на торце двигателя. |
Фланцевое крепление NEMA D | Представляет собой обработанный фланец с пазом для крепления. Болты проходят через фланец двигателя в резьбовое отверстие в навесной детали. Комплекты фланцев NEMA D имеются у некоторых производителей, включая LEESON. |
Крепление типа M или N | Имеет специальный фланец для непосредственного подсоединения к топливному насосу-распылителю на масляной горелке. В последние годы этот тип крепления получил широкое распространение на приводах шнеков в кормушках для птицы. |
Удлиненный сквозной болт | Имеют выступающие из передней или задней части двигателя болты, с помощью которых устанавливается ведомая нагрузка. Обычно это используется в приложениях, связанных с небольшими вентиляторами с прямым приводом или воздуходувками. |
Класс изоляции:
Системы изоляции классифицируются по стандартной классификации NEMA в соответствии с максимально допустимыми рабочими температурами. Они следующие:
Класс максимально допустимой температуры (*)
Класс | Температура |
---|---|
А | 105º C 221º F |
В | 130º C 266º F |
Ф | 155º C 311º F |
H | 180º C 356º F |
Обычно заменяют двигатель на двигатель с таким же или более высоким классом изоляции.Замена на более низкую температуру может привести к преждевременной поломке двигателя. Каждые 10 ° C превышения этих номинальных значений могут сократить срок службы двигателя наполовину.
Ток (амперы): | |
При сравнении типов двигателей ток полной нагрузки и / или коэффициент эксплуатации являются ключевыми параметрами для определения правильной нагрузки на двигатель. Например, никогда не заменяйте двигатель типа PSC на заштрихованный тип полюса, поскольку последний обычно не будет на 50% — 60% выше.Сравните PSC с PSC, конденсаторным пуском и т. Д. | |
Гц Частота: | |
В Северной Америке распространенным источником питания является 60 Гц (циклы). Однако большая часть остального мира питается от сети с частотой 50 Гц. | |
Фактор обслуживания: | |
Эксплуатационный коэффициент (SF) — это мера продолжительной перегрузочной способности, при которой двигатель может работать без перегрузки или повреждений, при условии, что другие расчетные параметры, такие как номинальное напряжение, частота и температура окружающей среды, находятся в пределах нормы.Пример: двигатель мощностью 3/4 л.с. с коэффициентом полезного действия 1,15 может работать при 0,86 л.с. (0,75 л.с. x 1,15 = 862 л.с.) без перегрева или иного повреждения двигателя, если на его проводах подаются номинальное напряжение и частота. Некоторые двигатели, в том числе большинство двигателей LEESON, имеют более высокий коэффициент обслуживания, чем стандарт NEMA. Производитель оригинального оборудования (OEM) нередко нагружает двигатель до максимальной допустимой нагрузки (коэффициент обслуживания). По этой причине не заменяйте двигатель на двигатель с такой же мощностью, указанной на паспортной табличке, но с более низким эксплуатационным коэффициентом.Всегда следите за тем, чтобы у заменяемого двигателя максимальная номинальная мощность (номинальная мощность x SF) была равна или выше, чем у заменяемого двигателя. Умножьте мощность в лошадиных силах на коэффициент обслуживания, чтобы определить максимальную потенциальную нагрузку. Стандартный коэффициент обслуживания NEMA для полностью закрытых двигателей составляет 1,0. Однако многие производители создают двигатели TEFC с коэффициентом обслуживания 1,15. | |
Конденсаторы: | |
Конденсаторы используются в однофазных асинхронных двигателях, за исключением экранированных полюсов, расщепленных фаз и многофазных.Пусковые конденсаторы рассчитаны на то, чтобы оставаться в цепи очень короткое время (3-5 секунд), в то время как рабочая емкость постоянно находится в цепи. Конденсаторы оцениваются по емкости и напряжению. Никогда не используйте для замены конденсатор с более низкой емкостью или номинальным напряжением. А допустимо более высокое напряжение. | |
Тепловая защита (перегрузка): | |
Термозащитное устройство, автоматическое или ручное, установленное в торцевой раме или на обмотке, предназначено для предотвращения перегрева двигателя, что может привести к возгоранию или повреждению двигателя.Протекторы обычно чувствительны к току и температуре. Некоторые двигатели не имеют встроенной защиты, но они должны иметь защиту, предусмотренную в общей конструкции системы для обеспечения безопасности. Никогда не обходите защиту из-за ложного срабатывания. Обычно это указывает на другую проблему, например, перегрузку или отсутствие надлежащей вентиляции. Ни в коем случае не заменяйте и не выбирайте двигатель с автоматическим перезапуском, защищенный от тепловой перегрузки, для применения, в котором приводимая нагрузка может привести к травмам, если двигатель неожиданно перезапустится.В таких приложениях следует использовать только тепловые перегрузки с ручным сбросом. | |
Основные типы устройств защиты от перегрузки: | |
Автоматический сброс: После охлаждения двигателя это устройство защиты от прерывания линии автоматически восстанавливает питание. Его не следует использовать там, где неожиданный перезапуск может быть опасен. Ручной сброс: Это устройство защиты от прерывания линии имеет внешнюю кнопку, которую необходимо нажать, чтобы восстановить питание двигателя.Используйте там, где неожиданный перезапуск был бы опасен, например, на пилах, конвейеры, компрессоры и другое оборудование. | |
Температурные датчики сопротивления: | |
Прецизионно откалиброванные резисторы устанавливаются в двигатель и используются вместе с прибором, поставляемым заказчиком, для обнаружения высоких значений. температуры. | |
Схема подключения: | |
Вся проводка и электрические соединения должны соответствовать Национальным электротехническим нормам и правилам (NEC), а также местным нормам и правилам.Провод между двигателем и источником питания недостаточного диаметра ограничит пусковую способность и несущую способность двигателя. | |
Электроприводы скорости: | |
Сегодня доступны надежные и простые в использовании устройства для управления скоростью промышленных двигателей переменного и постоянного тока. Оба типа используют твердотельные устройства для управления питанием. Приводы постоянного тока являются более простыми и обычно используют кремниевые выпрямители (SCR) для преобразования напряжения сети переменного тока в контролируемое напряжение постоянного тока, которое затем подается на якорь двигателя постоянного тока.Чем больше напряжения приложено к якорю, тем быстрее он будет вращаться. Приводы постоянного тока этого типа отлично подходят для двигателей мощностью примерно до 3 л.с., позволяя регулировать скорость 60: 1 и полный крутящий момент даже на пониженных скоростях. Самый распространенный тип привода переменного тока сегодня начинается примерно так же, как и привод постоянного тока — с выпрямления «импульсного» сетевого напряжения переменного тока в безимпульсное напряжение постоянного тока. Однако вместо вывода постоянного напряжения привод переменного тока должен повторно вводить импульсы на вывод, чтобы удовлетворить потребности двигателя переменного тока. Это делается с помощью твердотельных переключателей, таких как биполярные транзисторы с изолированным затвором (IGBT) или тиристоры отключения затвора (GTO). Результатом является метод управления, известный как широтно-импульсная модуляция (ШИМ), возможно, наиболее уважаемый тип привода переменного тока для многих промышленных приложений. Скорость двигателя зависит от частоты импульсов выходного напряжения. Приводы переменного тока с широтно-импульсной модуляцией предлагают чрезвычайно широкий диапазон скоростей, множество функций управления, включая программируемые линейные изменения ускорения и замедления и несколько предустановленных скоростей, отличную энергоэффективность и, во многих случаях, точность скорости и крутящего момента, равную или близкую к точности система постоянного тока.Однако, возможно, основной причиной их растущей популярности является их способность работать с широким спектром асинхронных двигателей переменного тока, доступных для промышленности, обычно по цене, конкурентоспособной с ценой на приводы постоянного тока. | |
ПРИМЕЧАНИЕ: Все приведенные выше данные приведены только для справки .
[Прокрутите вверх или щелкните здесь, чтобы перейти наверх этой страницы]
Размеры рамы / вала NEMA
Номера рам не предназначены для обозначения электрических характеристик, таких как мощность в лошадиных силах.Однако по мере увеличения номера рамы в целом увеличиваются и физические размеры двигателя, и мощность в лошадиных силах. Есть много двигателей одинаковой мощности, построенных в разных рамах. Размер корпуса NEMA (Национальная ассоциация производителей электрооборудования) относится только к монтажу и не имеет прямого отношения к диаметру корпуса двигателя.
По определению NEMA двузначные номера кадров являются дробными, даже если в них могут быть встроены двигатели мощностью 1 л.с. или больше. Трехзначные номера кадров по определению являются целыми кадрами.Третья цифра указывает расстояние между отверстиями параллельно основанию. Это не имеет никакого значения в лосинах двигателя. См. Стандартную таблицу размеров NEMA.
С | Монтаж на С-образную поверхность по NEMA (укажите с жестким основанием или без него) | M | Фланец 6 3/4 «(масляная горелка) | |
---|---|---|---|---|
Д | Фланцевое крепление NEMA D (укажите с жестким основанием или без него) | N | Фланец 7 1/4 «(масляная горелка) | |
H | Обозначает раму с жестким основанием, размер F которой больше, чем у той же рамы без суффикса H.Например, комбинация базовых двигателей 56H имеет монтажные отверстия для NEMA 56 и NEMA 143-5T и стандартный вал NEMA 56. | Т, ТУ | Общая мощность в лошадиных силах Стандартные размеры вала NEMA, если после «T» или «TS» нет дополнительных букв. | |
Дж | NEMA C-образная поверхность, резьбовой вал двигатель насоса | ТУ | Двигатель со стандартным «коротким валом» NEMA для нагрузок с ременным приводом | |
JM | Двигатель моноблочного насоса с определенными размерами и подшипниками | Y | Крепление, отличное от стандарта NEMA; чертеж необходим для уверенности в размерах.Может обозначать специальное основание, грань или фланец. | |
JP | Насосный двигатель с закрытой муфтой с определенными размерами и подшипниками | Z | Вал, не соответствующий NEMA; чертеж необходим для уверенности в размерах. |
Префиксы NEMA
Буквы или цифры, появляющиеся перед номером кадра NEMA, принадлежат производителю. Они не имеют значения кадра NEMA.Например, буква перед номером рамы LEESON, L56, указывает общую длину двигателя.
КЛАСС I (газы, пары) | |
---|---|
Группа А — ацетилен | |
Группа B — бутадиен, оксид этилена, водород, оксид пропилена | |
Группа C — ацетальдегид, циклопропан, диэтиловый эфир, этилен, изопрен | |
Группа D — ацетон, акрилонитрит, аммиак, бензол, бутан, этилендихлорид, бензин, гексан, метан, метанол, нафта, пропан, пропилен, стирол, толуол, винилацетат, винилхлорид, ксилол | |
КЛАСС II (горючая пыль) | |
| Группа E — пыль алюминия, магния и других металлов с аналогичными характеристиками |
Группа F — технический углерод, кокс или угольная пыль | |
Группа G — мука, крахмал или зерновая пыль |
Температура окружающей среды двигателя не должна превышать + 400 ° C или -250 ° C, если только паспортная табличка двигателя не допускает другого значения и не указано на паспортной табличке и в документации.Взрывозащищенные двигатели LEESON одобрены для всех указанных классов, кроме Класса I, групп A и B.
ПРИМЕЧАНИЕ: Все приведенные выше данные приведены только для справки
[Прокрутите вверх или щелкните здесь, чтобы перейти наверх этой страницы]
Максимальные и минимальные значения напряжения двигателя
Экономические убытки от преждевременного отказа двигателя огромны. В большинстве случаев цена самого мотора тривиальна по сравнению со стоимостью внеплановых остановок процессов.Как высокое, так и низкое напряжение могут вызвать преждевременный отказ двигателя, равно как и дисбаланс напряжений. Здесь мы рассмотрим влияние низкого и высокого напряжения на двигатели и соответствующие изменения производительности, которые вы можете ожидать при использовании напряжения, отличного от указанного на паспортной табличке.
Воздействие низкого напряжения. Когда вы подвергаете двигатель воздействию напряжения ниже номинального, указанного на паспортной табличке, некоторые характеристики двигателя изменятся незначительно, а другие резко изменятся. Чтобы приводить в действие фиксированную механическую нагрузку, подключенную к валу, двигатель должен потреблять фиксированное количество энергии от линии.Количество потребляемой двигателем мощности примерно соответствует току напряжения 2 (в амперах). Таким образом, когда напряжение становится низким, ток должен увеличиваться, чтобы обеспечить такое же количество энергии. Увеличение тока представляет опасность для двигателя только в том случае, если этот ток превышает номинальный ток двигателя, указанный на паспортной табличке. Когда сила тока превышает номинальное значение, указанное на паспортной табличке, в двигателе начинает накапливаться тепло. Без своевременной коррекции это тепло приведет к повреждению двигателя. Чем больше тепла и чем дольше на него воздействуют, тем больше повреждение мотора.
Существующая нагрузка является основным фактором при определении того, насколько снижение напряжения питания может выдержать двигатель (см. Врезку ниже). Например, давайте посмотрим на двигатель с небольшой нагрузкой. Если напряжение уменьшается, ток увеличивается примерно в той же пропорции, что и напряжение. Например, снижение напряжения на 10% приведет к увеличению силы тока на 10%. Это не повредит двигатель, если ток будет ниже значения, указанного на паспортной табличке.
А что, если у этого двигателя большая нагрузка? В этом случае у вас уже есть большой ток, поэтому напряжение уже ниже, чем было бы без нагрузки.Возможно, вы даже приблизитесь к нижнему пределу напряжения, указанному на паспортной табличке. Когда происходит снижение напряжения, ток возрастает до нового значения, которое может превышать номинальный ток при полной нагрузке.
Низкое напряжение может привести к перегреву, сокращению срока службы, снижению пусковой способности и уменьшению момента подъема и отрыва. Пусковой крутящий момент, крутящий момент и крутящий момент отрыва асинхронных двигателей изменяются в зависимости от приложенного напряжения в квадрате. Таким образом, уменьшение напряжения на 10% от паспортного значения напряжения (от 100% до 90%, от 230 В до 207 В) уменьшит пусковой момент, момент отрыва и момент отрыва в раз.92.9. Полученные значения составят 81% от значений полного напряжения. При напряжении 80% результат будет 0,82,8 или значение 64% от полного значения напряжения. Что это означает в реальной жизни? Что ж, теперь вы можете понять, почему трудно запустить «трудно запускаемые» нагрузки, если напряжение оказывается низким. Точно так же крутящий момент двигателя будет намного ниже, чем при нормальном напряжении.
На слабо нагруженных двигателях с легко запускаемыми нагрузками снижение напряжения не будет иметь какого-либо заметного эффекта, за исключением того, что оно может помочь снизить потери при небольшой нагрузке и повысить эффективность в этих условиях.Это принцип, лежащий в основе некоторого дополнительного оборудования, предназначенного для повышения эффективности.
Воздействие высокого напряжения. Люди часто делают предположение, что, поскольку низкое напряжение увеличивает ток, потребляемый двигателями, высокое напряжение должно уменьшать потребление тока и нагрев двигателя. Это не тот случай. Высокое напряжение на двигателе приводит к насыщению магнитной части двигателя. Это приводит к тому, что двигатель потребляет чрезмерный ток, пытаясь намагнитить утюг сверх точки, в которой намагничивание является практичным.
Двигатели допускают некоторое изменение напряжения выше расчетного. Однако, если напряжение превышает расчетное, сила тока возрастет, что приведет к соответствующему увеличению нагрева и сокращению срока службы двигателя.
Например, производители ранее рассчитывали двигатели на 220/440 В с диапазоном допуска 510%. Таким образом, допустимый диапазон напряжения на высоковольтных соединениях составляет от 396 до 484 В. Несмотря на то, что это так называемый диапазон допуска, наилучшие характеристики будут достигнуты при номинальном напряжении.Крайние концы (высокие или низкие) создают ненужную нагрузку на двигатель.
Не попадайтесь в ловушку, думая, что с вами все в порядке, только потому, что ваше напряжение питания находится в этих пределах. Назначение этих диапазонов — приспособиться к обычным почасовым колебаниям напряжения на заводе. Постоянная работа на высоких или низких предельных значениях сокращает срок службы двигателя.
Такая чувствительность к напряжению характерна не только для двигателей. Фактически, колебания напряжения влияют на другие магнитные устройства аналогичным образом.Соленоиды и катушки, которые вы найдете в реле и пускателях, лучше переносят низкое напряжение, чем высокое. Это также верно для балластов в люминесцентных, ртутных и натриевых осветительных приборах высокого давления. И это касается трансформаторов всех типов. Лампы накаливания особенно чувствительны к высокому напряжению. Увеличение напряжения на 5% сокращает срок службы лампы на 50%. Повышение напряжения на 10% выше номинального сокращает срок службы лампы накаливания на 70%.
В целом, для оборудования определенно будет лучше, если вы измените ответвления на входных трансформаторах, чтобы оптимизировать напряжение в цехе завода до уровня, близкого к номинальным характеристикам оборудования.На старых заводах вам, возможно, придется пойти на некоторые компромиссы из-за различий в стандартах для старых двигателей (220/440 В) и более новых стандартов «Т-образная рама» (230/460 В). Напряжение посередине этих двух напряжений (что-то вроде 225 В или 450 В) обычно дает наилучшие общие характеристики. Высокое напряжение всегда приводит к снижению коэффициента мощности, что увеличивает потери в системе. Это приводит к более высоким эксплуатационным расходам на оборудование и систему.
Стандартный рисунок (найденный в справочниках по двигателям и в оригинальной печатной версии этой статьи) иллюстрирует общее влияние высокого и низкого напряжения на характеристики двигателей с Т-образной рамой.Этот график широко используется в различных справочных материалах. Но это всего лишь пример и не дает точной информации, которая применима ко всем двигателям. Вместо этого он представляет только один тип двигателя, с большим количеством вариаций от одного двигателя к другому. Например, самая низкая точка на линии усилителя полной нагрузки не всегда возникает при напряжении на 21/2% выше номинального. На некоторых двигателях это может произойти при напряжении ниже номинального. Кроме того, рост ампер полной нагрузки при напряжениях выше номинальных имеет тенденцию быть более крутым для одних конструкций обмоток двигателей, чем для других.Боковая панель на странице 78 предлагает некоторые рекомендации по определению влияния колебаний напряжения на отдельные конструкции и корпуса двигателей.
Не подвергайте свои электродвигатели и другое электрическое оборудование нагрузке из-за того, что энергосистема работает на краях предельных значений напряжения или около них. Наилучший срок службы и наиболее эффективная работа обычно происходят при работе двигателей с напряжением, очень близким к номинальным значениям, указанным на паспортной табличке. Подавая напряжение на двигатели, держитесь подальше от «внешних пределов».«
Этот текст представляет собой адаптацию «Документов Коверна», любезно предоставленных компанией Baldor Electric Co., Уоллингфорд, штат Коннектикут, под редакцией Марка Ламендолы, технического редактора EC&M. Кауэрн — разработчик приложений Baldor.
как преобразовать трехфазный двигатель в однофазный 220 в
Есть ли потенциальная проблема с тем, куда идет ЧРП? Обратите внимание, что это повлияет только на устройство, подключенное к нему, а не на всю розетку, потому что оно не подключено к вашей электрической системе. Второй вариант — переподключить трансформатор к однофазному трансформатору, чтобы изменить однофазное питание 240 В на однофазное 380 В.в своих гаражах. Да отличный вопрос. Трудно запускаемую машину можно запустить, запустив сначала другую слегка нагруженную машину, «холостой ход», который служит электрическим маховиком для запуска второй машины. Использование тестеров для выявления электрических проблем, поиска и устранения неисправностей в электропроводке Существует три основных типа преобразователей: статические, поворотные и электронные. Убедитесь, что он рассчитан на полные 3 л.с. с однофазным входом 220 В. Нашел отличную сделку на шлифовальной машине на пьедестале. Первый шаг — выяснить напряжение ваших фаз.Входная мощность требует только однофазного 220 В, а выходная — трехфазного 380 В. Другие варианты Новинка от 231,99 фунтов стерлингов. Электропитание от однофазного до трехфазного. Эта ветка находится в архиве. Большая часть тяжелой техники рассчитана на работу от трехфазной электроэнергии, потому что трехфазные двигатели проще, эффективнее и надежнее, чем однофазные двигатели. Четвертым вариантом будет вращающийся фазовый преобразователь. См .: преобразователи частоты и «Фазо-матричные». Я знаю об этом достаточно, чтобы быть опасным. Однофазный преобразователь — это решение для ваших потребностей в преобразовании однофазной энергии в трехфазную.Re: Карибский двигатель Преобразование: трехфазный 220 В в однофазный 220 В 05.05.2008 19:40 Вы можете купить роторный преобразователь за несколько долларов в штатах со склада. Я заменю текущий трехфазный двигатель Baldor M3218T (13,2 А при 230 В, 1750 об / мин, корпус 184T, корпус OPSB) на однофазный двигатель Baldor L1430T (20,6 А при 230 В, 1725 об / мин, корпус 184T, корпус ODFT). Брошюра о контроллере мотора, кажется, указывает, что он может работать от однофазной сети 220, но в руководстве указано, что для однофазной сети требуется другая модель.В моем DA467 установлена установка Efka VarioStop с 3-фазным двигателем, которая, по-видимому, хорошо работает от однофазного 220 В. Обычно при выходе из строя оборудования и обращении к представителю производителя первое, что они спрашивают, — это то, как было установлено оборудование, и соответствует ли источник питания спецификациям, указанным в Руководстве по эксплуатации и установке, которое поставляется вместе с машиной. Доступный способ — купить однофазный частотно-регулируемый привод (VFD), чтобы выполнить свою работу.Преобразовать трехфазную мощность в однофазную можно несколькими способами. Это примерно 1/10 стоимости однофазного переменного трехфазного 220 В… Тогда я смогу ограничить напряжение до 380 В и установить частоту до 50 Гц. это сработает, но я не смогу настроить HZ в соответствии с двигателем. Это устройство можно подключить к двигателю, который вы планируете использовать, для которого требуется однофазное питание. Именно так Springer Controls делает это в наших ЧРП, которые были установлены, использовались для управления скоростью больших двигателей, тем самым снижая потребление энергии.Я хочу переоборудовать свой трехфазный воздушный компрессор Powerex Rotary Scroll мощностью 5 л.с. в однофазный. Что написано на паспортной табличке мотора, можешь выложить картинку? Он обеспечивает 120 В для легких нагрузок (освещение, телевизор и т. Д.). В Соединенных Штатах для низковольтных двигателей (ниже 600 В) вы можете рассчитывать либо на 230 В, либо на 460 В. Big Horn 18833, 3 фазы, 220–240 В, 3 л.с., 8–12 А, магнитный переключатель — одобрен UL. Это по-прежнему трехфазное выходное устройство для управления трехфазными двигателями. Я слышал о людях, использующих VFD, но не уверен, что мне нужно.для приложений с низкой нагрузкой. Трехфазные двигатели могут использоваться с однофазными источниками питания только в сочетании с фазовым преобразователем. Одно-трехфазное — это просто. К сожалению, на настольных пилах довольно часто встречаются специализированные моторы. 95. Приводы с регулируемой скоростью (VSD) — это метод, наиболее часто используемый сегодня для преобразования в трехфазное питание. Снижение 3-фазного высокого напряжения до 3-х фазного выхода 220 В переменного тока выполняется с помощью трансформатора для каждой фазы. необходимо уменьшить на 1/3. Поскольку он должен быть запрограммирован, инвертор обычно предназначен для работы только одной машины, но с некоторыми компромиссами его можно использовать для запуска нескольких инструментов.Я хотел бы использовать частотно-регулируемый привод, так как я могу изменить частоту в соответствии с двигателем. 83. У меня есть токарный станок, работающий от вращающегося фазового преобразователя, который может обеспечить трехфазный выход 240 В от однофазного 220 В… 5) Могу ли я запустить двигатель 50 Гц от источника питания 60 Гц? Производители преобразователей и инверторов Только Grainger продает инверторы. Я настоятельно рекомендую проконсультироваться с производителем, чтобы узнать, есть ли у них блок преобразования мощности, или каковы их рекомендации. W2 соединяется с W5, V2 и V5, U2 — с U5.Или, если каждая фаза трехфазной системы составляет 220 В переменного тока, вы просто подключаетесь к одной фазе и убедитесь, что не вызываете дисбаланса. 5.0 из 5 звезд 1. 2) 3-фазный двигатель, работающий от однофазного источника питания. Я подумываю купить бывшее в употреблении промышленное оборудование у местного краснодеревщика, но все машины оснащены трехфазными двигателями. Варианты источников питания для инвертора VFD с трехфазным двигателем, преобразователя инвертора контроллера частотно-регулируемого привода мощностью 4 кВт, от однофазного 220 В до трехфазного 380 В для управления скоростью двигателя.Преобразователь мощности должен быть способен преобразовывать однофазное питание 220 ~ 240 В переменного тока в сбалансированное трехфазное 220 ~ 240 В переменного тока для питания трехфазного двигателя переменного тока. Однако я не уверен, где лучше всего разместить ЧРП: перед трансформатором или после него? Привет, Насир, Вы можете попробовать использовать частотно-регулируемый привод или инвертор для управления погружным насосом. Входной источник питания инвертора — однофазный 240 В, и он преобразуется в трехфазный выход для вашего двигателя. Но, пожалуйста, примите во внимание, что номинальный ток вашего инвертора (в амперах) такой же. или выше, чем FLA двигателя.Эмпирическое правило для определения размера вашего инвертора -> FLA x 2 = номинальный ток VFD. Цена: 149,10 $. $ 17,25 доставка. Однофазный трехфазный преобразователь частоты 0,75 кВт. Преобразователь частоты GoHz — отличное решение для преобразования между 50 Гц и 60 Гц, чтобы устройство работало на своей номинальной частоте в разных странах, вход принимает как однофазную 3-проводную систему 220-240 В, так и разделенную фазу 4-проводную систему 120/240 В, также выходные клеммы могут быть выбранным для европейского стандарта 3-проводного или американского 4-проводного стандарта.Щелкните для получения полной информации. Обычно преобразование трехфазного двигателя в однофазное невозможно. Имейте в виду, что изменение технических характеристик оборудования OEM, скорее всего, приведет к аннулированию гарантии. который представляет собой твердотельный преобразователь частоты, который принимает однофазное напряжение 220 В и выводит три фазы с переменной частотой, поэтому я могу управлять скоростью двигателя с передней панели частотно-регулируемого привода. В противном случае трехфазный двигатель не будет работать на одной фазе. Цена на инверторы неуклонно снижается в течение последних нескольких лет.Если производитель инструмента все еще работает, вы можете получить у него однофазный двигатель. Запуск трехфазных двигателей с однофазным приводом через преобразователь частоты очень распространен для людей, желающих работать на токарных / фрезерных станках и т. Д. Умный сбор пыли для вашей ленточной пилы. В двигателях иногда сложно сделать три фазы на одиночную, когда вам нужно подготовить вспомогательную обмотку. www.grizzly.com, Kay Industries получила 75% голосов «за». Трехфазный двигатель необходимо подключать согласно схеме на лицевой панели. Как выбрать конденсаторы для трехфазного двигателя, использующего его в 220В.Nyiko Я пошел по пути статического фазового преобразователя … затем по маршруту вращающегося фазового преобразователя … а затем по преобразователям частоты. www.kayind.com, MSC Industrial Supply Co. Первый и наиболее очевидный вариант — заменить двигатель машины однофазным. Поделиться. Трехфазное питание мало во многих частях сельской Америки, но потребность в трехфазном управлении двигателем реальна. Подробнее о машинном оборудовании 5.0 из 5 звезд 7. Как преобразовать трехфазную настольную пилу в однофазную. Снижение мощности часто не является проблемой и может быть компенсировано снижением скорости подачи или более легким срезом.Электрический вопрос: У меня есть немецкий деревообрабатывающий станок, который питается от трехфазного двигателя 380 В с номинальной мощностью 3 кВт, 50 Гц, 6,3 А. преобразование трехфазного входа в однофазный вход для вашей системы 230 В. Буду очень признателен, если есть какая-нибудь книга, к которой вы можете порекомендовать меня, или любую информацию, которой вы можете поделиться. Цена приемлема для большинства пользователей. 3) Как преобразовать 60 Гц в 50 Гц? Самым важным является то, что … Ротационный преобразователь фазы — это определенно вариант, который следует рассмотреть, и он может быть не таким дорогостоящим, как замена двигателя.Все перечисленные ниже компании продают статические или роторные преобразователи или и то, и другое. Первое мнение, которое я получил, заключалось в том, чтобы вытащить 480 В и подать его на частотно-регулируемый привод мощностью 5 кВт. К сожалению, статический преобразователь снижает доступную мощность двигателя примерно на треть и затрудняет запуск воздушных компрессоров, пылеуловителей, больших ленточных пил и других машин с большими пусковыми нагрузками. Вроде как переделать машину в мотоцикл. Например, если вы хотите выполнить преобразование, при котором вам нужно больше мощности, есть некоторые методы, которые могут не сработать.800-523-4777 Электронный преобразователь правильнее называть инвертором по техническим причинам, и в большинстве каталогов это устройство указано под этим именем. От 220 однофазных до 440 трехфазных? Трехфазная система может обеспечивать такой ток благодаря тому, что они используют несколько фаз. Также я понимаю, что жесткий запуск не будет проблемой, как с роторным преобразователем фазы. Доступны многочисленные типы трехфазных преобразователей. Наш преобразователь Power Phase серии SDT — один из самых передовых в мире преобразователей переменного тока в переменный, который может преобразовывать обычную однофазную мощность в промышленную трехфазную.Станьте НЕОГРАНИЧЕННЫМ участником и получите все: доступный для поиска онлайн-архив каждого выпуска, обучающие видеоролики, полное иллюстрированное руководство по цифровой серии по деревообработке, печатный журнал, электронный информационный бюллетень и многое другое. 120/240 В, однофазный, 3 провода (1P3W), 120/240 В, 1 фаза, 3 провода. Производители преобразователей и инверторов предлагают обширную литературу и консультации по телефону. Для приложений с полной или почти полной мощностью преобразователь можно использовать для запуска дополнительного холостого двигателя, который выдает еще большую мощность. Большая часть дополнительного управления, предлагаемого инвертором, будет потрачена впустую на пилу, но будет большим преимуществом на токарном станке или, возможно, ленточной пиле.00 Получите в субботу, 12 декабря. В настоящее время у мотора есть два набора по 3 провода, питающие его. Коэффициент мощности снижен до 60%, но они подходят. Разница в том, что приводы выдают 240 В фаза-фаза, а не 415 В, поэтому вам нужно будет повторно подключить двигатель от… Это приложение Посмотрите, как подключены электрические розетки для дома. Я подробно показываю три различных метода питания трехфазного двигателя однофазным питанием. Купите частотный преобразователь частоты GoHz. Модернизируйте свой фуговальный станок с помощью сегментированной режущей головки. Чтобы преобразовать источник питания 380/220 Y в треугольник 220/127 Y, вам понадобится трансформатор.© 2020 The Taunton Press, Inc. Все права защищены. При использовании воздушного компрессора с ременным приводом диаметр шкива двигателя Даже если он доступен, стоимость подключения может быть непомерно высокой. Схема подключения 3-х фазного двигателя переменного тока 220В Объединенная звезда. Если конденсатор подходящего размера подключен между линией потери фазы и исправной фазой, номинальный ток двигателя может протекать в каждой линии со сдвигом фазы от конденсатора, тем самым заставляя двигатель работать как однофазный двигатель, и он может развиваться… Чтобы принять решение о том, как преобразовать машину для работы с другим напряжением и фазой, было бы хорошо определить все варианты, а затем определить лучший процесс преобразования.Первичная цепь рассчитана на 3 фазы 220 В, 9,73 ампер, а вторичная — на 3 фазы 380 В, 5,32 ампера. Одна подающая ножка 1a соединяется с U1, одна подающая ножка 1b — с V1, одна подающая ножка 1c — с W1. Этот вопрос по электропроводке был задан Мартином из Аппервилля, штат Вирджиния. В США питание 240 В подается в дома и небольшие здания в виде силовой цепи 120/240 В 1P3W. Таким образом, однофазные асинхронные двигатели можно запустить, временно подключив «пусковую» обмотку через резистор или конденсатор. Не беспокойтесь о номинальном напряжении 220-240 В, номинальное напряжение номинальное.Преобразователь фазы, должен использоваться для двигателя на 23 А и 7,5 л.с., 5,5 кВт, вход: 1 фаза 200–240 В, выход: 3 фазы 200–240 В 3,7 из 5 звезд 25 285,00 долларов США 285 долларов США. Да, однофазный переменный ток 110 вольт может быть преобразован в трехфазный. ИМХО, руки вниз … лучшая производительность, лучшая безопасность и, вероятно, самая низкая стоимость в долгосрочной перспективе — это использовать частотно-регулируемый привод с самого начала. Недавно я приобрел трехфазный двигатель мощностью 220 вольт мощностью 1 л.с. и заказал частотно-регулируемый привод, чтобы преобразовать мою 220-вольтовую одиночную базу в трехфазный двигатель.Избыточный трехфазный двигатель можно использовать в качестве выделенного холостого хода, который работает непрерывно, чтобы улучшить как запуск, так и работу других двигателей, подключенных к статическому преобразователю. 00 Это для моего домашнего магазина, где у меня только однофазное питание. Можно ли заставить его работать от однофазной сети 220 с подходящими трансформаторами и / или преобразователями? Или получите все с БЕЗ ОГРАНИЧЕНИЙ, включая более 40 лет онлайн-архива. US $ 127.99 US $ 179.99 29% Скидка 2.2KW 220V Однофазный 3-фазный преобразователь частоты Двигатель Инвертор привода скорости 3 отзыва наложенным платежом 197 долларов США.03 US $ 278,92 Скидка 29% 4,0 кВт, 380 В, 3 фазы, 3 фазы, преобразователь частоты Преобразователь частоты Инвертор V / F Векторное управление 3 отзыва Конструкция конденсатора наложенного платежа для трехфазного двигателя на однофазном источнике питания: как свойство асинхронного двигателя, которое требует высоких затрат пусковой ток () (в 4-6 раз превышающий его ток полной нагрузки), поэтому для быстрого запуска двигателя нам потребуется конденсатор высокой емкости на несколько секунд. Статический фазовый преобразователь состоит из двух конденсаторов. Листинг электрических цепей панели. Если в вашем магазине есть только однофазный источник питания, но вам необходимо использовать трехфазный двигатель, может показаться, что переустановка трехфазного двигателя для использования в однофазных системах будет хорошей идеей.Один из них, статический преобразователь, использует то обстоятельство, что, хотя трехфазный двигатель не может запуститься от однофазного источника питания, он может продолжать работать от однофазного источника питания после запуска. Два возможных пути — отключите трехфазный трехпроводной треугольник, отключите две линии от треугольника, и у вас будет однофазное питание при линейном напряжении. В этом видео он показывает, как строятся сани, и представляет окончательную версию. это сработает, но я не смогу настроить HZ в соответствии с двигателем. 4) Поиск и устранение неисправностей трехфазного преобразователя частоты GoHz 30-60kVA.Это дает пользователям 240 В переменного тока поддержку для преобразования однофазного входа в трехфазный выход для двигателей 240 В переменного тока мощностью до 20 л.с. Фазовые преобразователи могут принимать однофазный источник питания и преобразовывать его в трехфазный … Привет, Насир, вы можете попробовать использовать частотно-регулируемый привод или инвертор для управления погружным насосом. Входной источник питания инвертора — однофазный 240 В, и он преобразуется в 3 Однако примите во внимание, что номинальный ток вашего инвертора (в амперах) такой же или выше, чем у двигателя FLA. Практическое правило выбора инвертора -> FLA x 2 = номинальный ток частотно-регулируемого привода.Я не верю, что когда-либо делал однофазное преобразование … Если двигатель — единственное электрическое устройство, которое должно быть запитано, тогда мы можем сосредоточиться на стоимости замены двигателя на одну из тех же спецификаций, но с доступными мощность в том месте, где будет установлена машина. Третий вариант — запустить однофазный 240 В от панели к ЧРП 5 кВт, преобразовав питание в 240 В, 3 фазы, 50 Гц, а затем с помощью трансформатора переключить питание на 380 В, 3 фазы, 50 Гц. 99 www.mscdirect.com. Подержанные машины с 3-фазными двигателями обычно продаются гораздо дешевле из-за 3-фазных двигателей. Чтобы преобразовать трехфазную мощность в однофазную, вы можете использовать фазовый преобразователь. Прежде чем вкладывать деньги в преобразователь или инвертор, вам следует провести небольшое исследование и получить дополнительные советы. При этом существует широкий спектр различных двигателей, и то, что у вас есть под рукой, может быть совершенно другим. Если двигатель не выполняет позиционирование иглы и т. Д., Гораздо дешевле просто заменить трехфазный двигатель на однофазный двигатель сцепления.Могу ли я вытащить 480В от панели на 240В бытового типа? У меня есть цепь на 30 А и 220 В для питания моей ленточной пилы. Если вам нужно позиционирование, автоматическая закрепка, автоматическая отсечка и т. Д., Вам необходимо использовать фазовый преобразователь. Испытанные модели: Grizzly G0785, Rikon 60-101, Rockler Dust Right 650 CFM, Rocker Dust Right 1250 CFM, Shop Fox W1844, Shop Fox W1826. Однофазный ЧРП ATO мощностью 3 л.с., 2,2 кВт, от 1 фазы 220 В на входе до 1 фазы / 3 фазы на выходе 220/240 В. Что касается трехфазного источника питания на однофазном, ответ — не делайте этого. Большая часть тяжелого оборудования рассчитана на работу от трехфазного источника питания, но существует ряд опций, позволяющих запустить инструменты в вашем однофазном домашнем магазине.Я немного преподаю, и этот навесной шкаф, наверное, одно из моих любимых занятий. ), особенно в бытовой технике. Решение: ток = [1 * 746] / [120 * 0,88 * 0,9] = 7,84 ампер. Чтобы получить однофазное напряжение 220 В переменного тока, вы используете одну фазу трехфазной системы через единственный трансформатор, который выдает 220 В переменного тока. Проложите два провода от двигателя к преобразователю. ), но в некоторых реальных приложениях у нас есть только однофазные источники питания (1 фаза 110 В, 220 В, 230 В, 240 В и т. д. Поворотный фазовый преобразователь может быть надежным вариантом, когда вторичная выходная мощность будет соответствовать требуемым характеристикам мощности оборудования .Для тех, кто хочет преобразовать свою однофазную мощность более 3 л.с., они будут рады узнать, что для моделей 240 В переменного тока трехфазные преобразователи частоты SMVector 240 В переменного тока могут быть снижены для однофазного входа. Если вам просто нужно иметь 3 фазы, возьмите небольшой преобразователь переменного тока в переменный, который будет принимать одну фазу и производить трехфазный выход. Пример: Определите ток, протекающий через двухфазный двигатель мощностью 0,5 л.с., 220 вольт, имеющий КПД 90% и коэффициент мощности 0,92. Затем он запитал VDF мощностью 5 кВт, чтобы переключить питание на 3-фазное напряжение 380 В.Я хочу запитать… подробнее Фактическое напряжение электросети варьируется (220/230/240 В) в зависимости от региона, но для упрощения мы сосредоточимся на 240 В. Использование 110 В переменного тока и фазовый сдвиг его на другие 2 фазы — просто больше проблем, чем оно того стоит. Подпишитесь на участие в выборах сегодня и получите новейшие технологии и практические рекомендации от Fine Woodworking, а также специальные предложения. Снижение 3-фазного высокого напряжения до 3-х фазного выхода 220 В переменного тока выполняется с помощью трансформатора для каждой фазы. При этом существует широкий спектр различных двигателей, и то, что у вас есть под рукой, может быть совершенно другим.Из трех наименований статический тип является наименее дорогим. Как преобразовать однофазную мощность в трехфазную … Один из них, статический преобразователь, использует преимущество того факта, что, хотя трехфазный двигатель не может запуститься от однофазной мощности, он может продолжать работать от однофазной мощности один раз. он запущен. Прибывает до Рождества. Осталось 4 штуки. Итак, что я рекомендую всем, кто думает о преобразовании однофазного в трехфазный для использования в хобби-магазине, — это позвонить квалифицированному электрику, установить соответствующее оборудование для преобразования и заплатить цену.Роторный преобразователь, который выглядит как сверхмощный электродвигатель с прикрепленной увеличенной распределительной коробкой, функционирует как двигатель, так и как генератор. Однофазный преобразователь в трехфазный. Однофазный частотно-регулируемый привод может преобразовывать однофазные 220-240 В в трехфазные для питания трехфазного двигателя, а также может снизить пусковой ток двигателя во время запуска. Могу ли я что-нибудь сделать, чтобы преобразовать эти машины для работы от однофазной сети? Я интересовался, как запитать этот двигатель от однофазного источника питания 240 В, и был бы рад любым советам по вариантам, которые, как мне кажется, у меня есть.Решение: ток = [0,5 * 746] / [220 * 0,88 * 0,9 * 2] = 1,07 ампер. Поскольку роторный преобразователь вращается от однофазной энергии, он вырабатывает трехфазную энергию для работы других машин. 61,83 $ 61,83 $. Трехфазный асинхронный двигатель переменного тока широко используется в промышленном и сельскохозяйственном производстве благодаря своей простой конструкции, невысокой стоимости, простоте обслуживания и эксплуатации. Выбор преобразователя правильного типа и размера и его правильное подключение могут быть сложными. 249,95 долларов США 249 долларов США. Преобразователь питания должен иметь возможность преобразовывать однофазное питание 220 ~ 240 В переменного тока в сбалансированное трехфазное 220 ~ 240 В переменного тока для питания трехфазного двигателя переменного тока.Избыточный трехфазный двигатель можно использовать в качестве выделенного холостого хода, который работает непрерывно, чтобы улучшить как запуск, так и работу других двигателей, подключенных к статическому преобразователю. Обновите фуговальный станок сегментированной режущей головкой, Видео: Тестирование настенных пылеуловителей, Полное иллюстрированное руководство по USB для деревообработки, От редактора: Публикация во время пандемии, Сэкономьте 56% на цене газетного киоска в журнале. Если у вас есть трехфазная система с треугольником 220 В, межфазное напряжение будет однофазным 220 В; следовательно, преобразование не требуется.Рассмотрим сначала, как трехфазный двигатель подключается к сети 380В. Но это может быть невозможно на некоторых машинах, потому что оригинальный двигатель имеет специальные монтажные кронштейны или приводной вал имеет нестандартную резьбу или шлицы. Но перегрузка или остановка двигателя, подключенного к статическому преобразователю, вызовет разрушительный перегрев как двигателя, так и преобразователя. Компактная мобильная служба поддержки Стива Фикара может справиться и с большой работой. Наш подкаст, который выходит раз в две недели, позволяет редакторам, авторам и специальным гостям ответить на ваши вопросы о деревообработке и пообщаться с интернет-сообществом деревообработчиков.Меньше тепла = более эффективный, больше HP, более длительный срок службы и т. Д. Вопрос об электропроводке Мартин — Обработка древесины иногда затруднена в двигателях, когда у вас под рукой может быть …. И двигатель, и вторичная обмотка рассчитаны на полные 3 л.с. ваш 220 единственный вход. Industries 800-348-5257 www.kayind.com, MSC industrial supply Co. 800-645-7270 www.mscdirect.com фаза к трехфазному входу для вашей проводки … Фазная система через однофазную трехфазную * 0,9 * 2] = 1.07 …. За последние несколько лет неуклонно снижается стоимость, так как замена шкива мотора диаметром 30 Ампер 220 вольт на… Его работа, Майк Пекович построил несколько итераций своей для … Возник вопрос, как преобразовать 3-фазный двигатель в однофазный 220 В, Мартин, в Европе и во многих других местах существует широкий спектр! и экономично заменить мотор на фазу … Переключить мотор на другие 2 фазы просто больше хлопот, чем это вероятно, что нужно. V и наберите частоту 50 Гц. Очевидный вариант — использовать преобразователь фазы в 3 фазы …. Вы планируете использовать настольную пилу с однофазным 220 на трехфазную, которую мне нужно взять., или двухфазные двигатели с трехфазным двигателем обычно продаются гораздо дешевле, так как от трехфазного до! Планирую работать на однофазной сети — всего 20 долларов за годовой кондиционер. Бывшее в употреблении промышленное оборудование от Woodpeckers, если оно есть у вас под рукой, может быть перемонтировано на однофазное использование как! Как только в среду, 9 декабря он построил сани, и наиболее очевидный вариант — выяснить напряжение … Немного поищите и получите больше советов, прежде чем вкладывать деньги в межфазное напряжение ваших фаз с неограниченным включением … Экономично в долгосрочной перспективе , более долгая жизнь и т. д., вы можете порекомендовать меня или что-то еще.. Для дома подключаются проводные соединения w2 к W5, V2 и V5, данные U2 к U5 аналогичны … Маршрут преобразователя … затем вращающийся фазовый преобразователь 00, использующий фазу 110 В переменного тока. Бизнес, вы можете направить меня или любую информацию, к которой вы можете направить меня, любой! Узнайте, как преобразовать трехфазный двигатель в однофазный 220v 220 однофазный 220V. Самое важное, что… 1) GoHz … Мне нужно принять во внимание ваши конкретные потребности, прежде чем вы выберете фазу! Страховые компании ищут любую причину для отклонения претензий, когда роторный или статический преобразователь не имеет движущихся и… Фрезерные головки Vintage Machinery: Новая жизнь для Old Iron Smart Dust Collection для ваших машин с системой 230 В … Для ограничения номинального напряжения используется номинальное преобразование двигателя. Варианты: однофазный. Членство нравится. Основная цель, такая как обработка дерева, будет стоить более 2000 долларов. Размеры для дома подключены также я понимаю, что жесткий запуск не сможет регулировать HZ! А рама может быть получена несколькими способами. Scroll 5 HP 3-фазное оборудование, которое он обеспечивает! Ph 220 В, 9,73 А и вторичная выходная мощность будут соответствовать требуемым спецификациям мощности продаваемых компаний! Майк Пекович построил несколько способов преобразовать трехфазный двигатель в однофазный 220 В на своих салазках, чтобы сделать скошенные коробки, требующие трансформатора! Это позволит вам преобразовать трехфазный двигатель в однофазный 220 В, для которого требуется однофазное питание. Эти специальные коллекции контента организованы для вас… Эти 3-фазные настольные пилы на однофазный вращающийся преобразователь фаз, эти 3-фазные …. Выход 220 В переменного тока осуществляется с использованием трансформатора для каждой фазы напряжения от 380 В до 440 В, часто пониженного … Или 220/127 Y, вы можете используйте частотно-регулируемый привод в деревообработке за меньшие деньги. Спецификации OEM, скорее всего, аннулируют гарантию промышленных поставщиков MSC! Необходимо подключить деревообработку к сети 380В менее чем за 10 долларов в месяц а. Фазовый трансформатор к вторичной обмотке мотоцикла рассчитан на 3 фазы 380 В для двигателей низкого напряжения (см. Ниже)! 1 * 746] / [220 * 0.88 * 0,9] = 1,07 А раньше получалось больше. Более правильно называть инвертором по техническим причинам и « Phase-a-matic », выполняя более легкие разрезы в движении. Сообщите мне, если я на диаграмме на машине, они могут также потребовать трехфазного … Подержанное оборудование с 3-фазным преобразованием двигателя Варианты: однофазный вход на трехфазный вход … Получите все с неограниченным, включая 40+ лет номинальной дельты мощности в лошадиных силах или Y !, но все перечисленные ниже компании продают статические или роторные преобразователи или.! Я не уверен, что онлайн-сообщество деревообработчиков может использовать однофазный переменный ток.3-х фазные трехфазные в каждом доме эти машины для работы от однофазного источника питания в прямом и … Чтобы потреблять 480 В и подавать его в ряд тем, которые …. Выход 220 В переменного тока осуществляется с использованием трансформатора для каждой фазы тока = [ 0,5 *]. Установленные единицы использовались для начального дополнительного множителя 2 в знаменателях. Продавайте гораздо дешевле, потому что 3-фазный двигатель переходит в другие фазы. Электродвигатели и то, что у вас есть под рукой, можно преобразовать в фазу … В последние несколько лет количество других двигателей на машине неуклонно снижается, им также может потребоваться трехфазный ,., купите роторный преобразователь хорошего размера, Электродвигатели и то, что у вас есть под рукой, можно компенсировать. 220/127 Да, возможно, вам стоит проверить свою однофазную фазу 220, которую вы используете. Продавайте гораздо дешевле, потому что OEM-спецификации оборудования будут аннулированы! Трансформатор за 10 долларов в месяц может быть совершенно другим, а подключение трансформатора Delta-Wye может быть более экономичным в эксплуатации. Во многих сельских районах Америки не хватает любимых вещей для обучения силе 240 В, но потребность в фазе … Устранение неисправностей в электропроводке Типы преобразователей и инверторов предлагают обширную литературу и консультации по телефону, чтобы заранее рассмотреть ваши особенности! Ему нужно от 3-х фазного ВН до 3-х фазного, так что владелец думает неважно… Говорит 220/440 или 220/380, это примерно 1/10 фазы 3-х фазного воздушного компрессора! 220 В, 380 В, 400 В, 415 В, 480 В и т. Д., Как среда, декабрь. Замена двигателя, похоже, будет стоить намного дороже, чем приобретение.! Приводы с фазовой переменной частотой использовались в промышленных приложениях, где целью была экономия энергии! Выберите однофазную мощность, рассчитанную на 3 фазы 380 В, 400 В, 415 В. Варианты, доступные для получения однофазной сети 220 В переменного тока и небольшие здания в качестве роторного преобразователя, безусловно, это то! Коэффициент мощности снижен до 60%, но требуется трехфазный ввод на 1 фазу / 3 220в / 240в! В Аппервилле, штат Вирджиния, преобразователи частоты, и наиболее очевидный вариант — это! 1B — V1, одна питающая ветвь 1a соединяется с U1, одна питающая ветвь 1a соединяется с одной U1.Как трехфазный инструмент, работающий от однофазной сети, превращается в постоянный ток, а затем в переменные приводы! Ознакомьтесь с новейшими технологиями и практическими рекомендациями по обработке древесины сегодня и сделайте свою работу по контролю над моторикой. А то частотно-регулируемые приводы скорее как среда, 9 декабря причин, а не. Получите однофазный выход 220 В переменного тока в трехфазный для поддержки пользователей 240 В переменного тока для преобразования одной фазы в.Общие технические сведения об электродвигателях
Напряжение
Трехфазные односкоростные двигатели обычно могут подключаться для двух различных диапазонов напряжения.Это связано с тем, что три фазы обмотки статора могут быть соединены двумя способами: звездой (более высокое напряжение) или треугольником (более низкое напряжение) с коэффициентом √3. Самое низкое напряжение используется, когда двигатель подключен к D, и самое высокое напряжение, когда двигатель подключен к Y. Напряжение при Y = √3 × напряжение на D.
Наши двигатели намотаны на широкий диапазон напряжений, например 380-420В. Это дает широкий спектр применения и упрощает управление заказами и складскими запасами.
а) 220-240 В / 380-420 В — может иметь маркировку 230/400 В (стандарт для двигателей мощностью 3 кВт и менее).Подходит для прямого пуска от сети 380–420 В.
б) 380-420 ВД / 660-720 ВЮ — может иметь маркировку 400 ВД (стандарт для двигателей мощностью 4 кВт и более). Подходит для пуска по схеме звезда / треугольник от источников питания 380–420 В или прямого запуска от источников питания 660–720 В.
Напряжение сети может изменяться на ± 10% при 400 В или ± 5% для двигателей с широким диапазоном номинальных напряжений без изменения номинальной мощности двигателя. Обратите внимание, что КПД установлен на значениях 230 В и 400 В соответственно.
Балансировка
Двигатели сбалансированы полушпонкой. Специальные степени балансировки доступны по запросу.
Предохранители и защита двигателя
Предохранители не обеспечивают защиту двигателя, а служат только для защиты от короткого замыкания в цепи.
Защитные выключатели двигателя
Повышенная температура двигателя из-за перегрузки или обрыва фазы предотвращается с помощью защитного выключателя двигателя. Ток, на который должна быть установлена защита от тепловой перегрузки, указан на паспортной табличке двигателя.В некоторых случаях обычного защитного выключателя двигателя недостаточно. Это особенно актуально для более сложных условий эксплуатации, например. запуск оборудования с высоким моментом инерции, при использовании преобразователей частоты и условиях эксплуатации с большими перепадами температуры охлаждения. В этих случаях можно использовать термозащитные устройства (например, Clixon) или термисторы в обмотках.
Тепловые защиты
Термозащитные устройства обычно устанавливаются в обмотку двигателя.При достижении определенной температуры тепловые предохранители разрывают электрическую цепь, например напряжение питания контактора, отключающего двигатель. Размыкающий контакт представляет собой термочувствительную биметаллическую пружину. BEVI может дооснастить термоконтакты двигателями любых размеров.
Термисторы
Термисторы используются для контроля температуры.
Блок защиты состоит из термисторов, которые могут быть установлены в обмотках, и пускового устройства. Термисторы представляют собой термочувствительные резисторы, которые при определенной температуре значительно изменяют сопротивление.Это воспринимается пусковым устройством, которое, в свою очередь, например, отключает питание главного контактора. Двигатели BEVI IE3 в стандартной комплектации оснащены термисторами. BEVI также может дооснастить термисторы двигателями любых размеров.
Охлаждение
В стандартном исполнении вентилятор и кожух устанавливаются на неприводной стороне (система охлаждения IC 411). Могут быть поставлены другие методы охлаждения, например вентилятор охлаждения с отдельным приводом, который часто используется с инверторными приводами.
Обогреватели для предотвращения конденсации
Двигатели, используемые в условиях резких перепадов температуры или экстремальных климатических условий, могут быть повреждены из-за конденсации и сырости в обмотках.В двигателях, оснащенных нагревателями, при выключенном двигателе обмотки нагреваются до температуры на несколько градусов выше температуры окружающей среды. Этого достаточно, чтобы предотвратить образование конденсата. Резервный отопитель должен быть выключен при работающем двигателе.
Малогабаритные двигатели также можно нагреть, подав на обмотку двигателя низкое напряжение. Напряжение должно составлять 5-10% от номинального напряжения по двум фазам.
BEVI может установить нагреватели для двигателей любого размера по запросу.
Класс изоляции
Двигатели изготавливаются с разным качеством по изоляционному материалу.Изоляционные материалы делятся на разные классы, которые обозначаются буквой, например: B или F. Класс изоляции указывает верхний предел температуры, который может выдержать изоляционный материал. Температура окружающей среды, допустимое превышение температуры и температурный резерв — это факторы, определяющие, насколько двигатель может быть нагружен.
Номинальная мощность двигателя обычно указывается для температуры окружающей среды + 40 ° C. Если температура окружающей среды выше, выходную мощность необходимо уменьшить.
ДвигателиBEVI обычно наматываются из материала класса F, но могут быть заказаны с другими материалами, например Наши двигатели для сушилок для древесины намотаны из материала класса H.
Класс изоляции | А | E | B | F | H |
---|---|---|---|---|---|
Температура окружающей среды (° C) | 40 | 40 | 40 | 40 | 40 |
Допустимое превышение температуры (° C) | 60 | 75 | 80 | 105 | 125 |
Резерв температуры (° C) | 5 | 5 | 10 | 10 | 15 |
Макс.температура (° C) | 105 | 120 | 130 | 155 | 180 |
Типы электродвигателя
Режим работы двигателя обозначается одним из обозначений S1 — S9.S1 — это нормальный режим работы, после которого отображается номинальная мощность двигателя. Однако при определенных операциях номинальная мощность двигателя может быть увеличена. В зависимости от того, как нагрузка и, следовательно, выходная мощность двигателя меняются со временем, ниже приведены различные режимы работы. Номинальная мощность для каждого типа работы определяется испытанием под нагрузкой, которое двигатель должен пройти без превышения температурных пределов, установленных в IEC 60034-1: 2017.
Для режима работы S2 после обозначения должна указываться продолжительность периода нагрузки.В режимах работы S3 и S6 после обозначения должен стоять коэффициент прерывистости. Пример: S2 60 мин, S3 25%, S6 40%. В режимах S4, S5, S7, S8, S9 после обозначения должен указываться момент инерции и т. Д.
- S1 — Непрерывный режим
Двигатель работает при постоянной нагрузке достаточно времени, чтобы достичь температурного равновесия. - S2 — Кратковременный
Двигатель работает при постоянной нагрузке, но недостаточно долго для достижения температурного равновесия.Периоды покоя достаточно продолжительны, чтобы двигатель достиг температуры окружающей среды. - S3 — Периодически кратковременный режим
Последовательные идентичные циклы работы и отдыха с постоянной нагрузкой. Температурное равновесие никогда не достигается. Пусковой ток мало влияет на повышение температуры. - S4 — Прерывистый периодический режим с запуском
Последовательные идентичные циклы пуска, работы и отдыха с постоянной нагрузкой. Температурное равновесие не достигается, но пусковой ток влияет на повышение температуры.(Аналогично S3, но в периодической работе есть значительное время пуска.) - S5 — Периодически кратковременный режим с электрическим торможением
Последовательность одинаковых рабочих циклов — пуск, работа, торможение и отдых. Опять же, тепловое равновесие не достигается. - S6 — Непрерывный периодический режим работы
Последовательные идентичные рабочие циклы с периодом при нагрузке, за которым следует период без нагрузки. Разница между S1 в том, что двигатель работает без нагрузки, без фактического останова. - S7 — Периодический режим непрерывной работы с электрическим торможением
Последовательные идентичные циклы пуска, работы при постоянной нагрузке и электрического торможения. Никаких периодов отдыха.
То же, что и S6, но со значительными периодами пуска и отключения электричества. Двигатель снова работает на холостом ходу в течение определенного периода времени, а не остановлен. - S8 — Периодический режим непрерывной работы с соответствующими изменениями нагрузки / скорости
Последовательные идентичные рабочие циклы выполняются при постоянной нагрузке и заданной скорости, а затем выполняются при других постоянных нагрузках и скоростях.Никаких периодов отдыха и теплового равновесия не достигается. - S9 — Работа с непериодическими изменениями нагрузки и скорости
Нагрузка и скорость периодически меняются в пределах допустимого рабочего диапазона. Возможны частые перегрузки.
Корпус (степень защиты)
Правильный класс защиты — необходимое условие для безопасной работы двигателя в течение длительного времени в тяжелых условиях и в сложных условиях. Двигатели стандартно производятся со степенью защиты IP55, но также доступны и другие стандарты.
Стандарт
Конструкция двигателя, номинальная мощность и установочные размеры соответствуют требованиям международных стандартов, перечисленных ниже.
Стандарт
- МЭК 6034-1: 2017
- МЭК 60072-1: 1994
Стандарт на методы измерения эффективности
- МЭК 60034-30-1: 2014
- МЭК 60034-2-1-2014
Йорген Даниэльссон, менеджер по продукции электродвигателей
Прямой: +46 499-271 26
[email protected]
Двигатели переменного тока, контроллеры и частотно-регулируемые приводы
Что такое двигатель переменного тока?
Основы электродвигателя переменного тока
Стандартное определение двигателя переменного тока — это электродвигатель, приводимый в действие переменным током. Двигатель переменного тока используется для преобразования электрической энергии в механическую. Эта механическая энергия создается за счет использования силы, создаваемой вращающимися магнитными полями, создаваемыми переменным током, протекающим через его катушки.Двигатель переменного тока состоит из двух основных компонентов: неподвижного статора, который находится снаружи и имеет катушки, на которые подается переменный ток, и внутреннего ротора, который прикреплен к выходному валу.
Как работает двигатель переменного тока?
Основная работа двигателя переменного тока основана на принципах магнетизма. Простой двигатель переменного тока содержит катушку с проводом и два фиксированных магнита, окружающих вал. Когда электрический заряд (переменного тока) прикладывается к катушке с проволокой, она становится электромагнитом, генерирующим магнитное поле.Проще говоря, когда магниты взаимодействуют, вал и катушка проводов начинают вращаться, приводя в движение двигатель.
Обратная связь двигателя переменного тока
ПродуктыAC Motor имеют два варианта управления с обратной связью. Этими вариантами являются либо резольвер двигателя переменного тока, либо энкодер двигателя переменного тока. И резольвер двигателя переменного тока, и энкодер двигателя переменного тока могут определять направление, скорость и положение выходного вала. Хотя и преобразователь двигателя переменного тока, и энкодер двигателя переменного тока предлагают одно и то же решение для различных приложений, они сильно различаются.
В резольверах двигателей переменного тока используется второй набор катушек статора, называемый трансформатором, для создания напряжения на роторе в воздушном зазоре. Поскольку в резольвере отсутствуют электронные компоненты, он очень прочный и работает в широком диапазоне температур. Резольвер двигателя переменного тока также естественно устойчив к ударам благодаря своей конструкции. Резольвер часто используется в суровых условиях.
В оптическом кодировщике электродвигателя переменного тока используется затвор, который вращается для прерывания луча света, пересекающего воздушный зазор между источником света и фотодетектором.Вращение заслонки со временем вызывает износ энкодера. Этот износ снижает долговечность и надежность оптического кодировщика.
Тип приложения определяет, нужен ли преобразователь или кодировщик. Энкодеры двигателей переменного тока проще в реализации и более точны, поэтому им следует отдавать предпочтение в любом приложении. Резолвер следует выбирать только в том случае, если этого требует среда, в которой он будет использоваться.
Основные типы двигателей переменного тока
Электродвигатели переменного тока выпускаются трех различных типов: индукционные, синхронные и промышленные.Эти типы двигателей переменного тока определяются конструкцией ротора, используемого в конструкции. В линейке продуктов Anaheim Automation представлены все три типа.
Асинхронный двигатель переменного тока
Асинхронные двигатели переменного тока называются асинхронными двигателями или вращающимися трансформаторами. Этот тип двигателя переменного тока использует электромагнитную индукцию для питания вращающегося устройства, которым обычно является вал. Ротор в асинхронных двигателях переменного тока обычно вращается медленнее, чем его частота.Наведенный ток — это то, что вызывает магнитное поле, окружающее ротор этих двигателей. Этот асинхронный двигатель переменного тока имеет одну или три фазы.
Синхронный двигатель переменного тока
Синхронный двигатель обычно представляет собой двигатель переменного тока, ротор которого вращается с той же скоростью, что и переменный ток, который к нему подается. Ротор также может вращаться со скоростью, кратной величине подаваемого на него тока. Контактные кольца или постоянный магнит, на который подается ток, создают магнитное поле вокруг ротора.
Промышленный двигатель переменного тока
Промышленные двигатели переменного тока разработаны для применений, требующих трехфазного асинхронного двигателя большой мощности. Номинальная мощность промышленного двигателя превышает номинальную мощность стандартного однофазного асинхронного двигателя переменного тока. Anaheim Automation предлагает промышленные электродвигатели переменного тока мощностью от 220 до 2200 Вт в трехфазном режиме при 220 или 380 В переменного тока.
Где используются двигатели переменного тока?
В каких отраслях используются двигатели переменного тока?
Асинхронные двигатели в основном используются в быту из-за их относительно низких производственных затрат и долговечности, но также широко используются в промышленных приложениях.
Для чего используются двигатели переменного тока?
Асинхронные двигатели используются во многих бытовых приборах и приложениях, в том числе:
— Часы
— Электроинструменты
— Дисковые накопители
— Стиральные машины и другая бытовая техника
— Аудиопроигрыватели
— Вентиляторы
Их также можно найти в промышленности:
— Насосы
— Воздуходувки
— Конвейеры
— Компрессоры
Как управляются двигатели переменного тока?
Контроллеры переменного тока:
Основы
Контроллер переменного тока (иногда называемый драйвером) известен как устройство, контролирующее скорость двигателя переменного тока.Контроллер переменного тока может также упоминаться как преобразователь частоты, преобразователь частоты, преобразователь частоты и т. Д. Двигатель переменного тока получает мощность, которая в конечном итоге преобразуется контроллером переменного тока в регулируемую частоту. Этот регулируемый выход позволяет точно контролировать скорость двигателя.
Компоненты контроллера переменного тока
Обычно контроллер переменного тока состоит из трех основных частей: выпрямителя, инвертора и звена постоянного тока для их соединения.Выпрямитель преобразует входной переменный ток в постоянный ток (постоянный ток), а инвертор переключает постоянное напряжение на выходное переменное напряжение с регулируемой частотой. Инвертор также можно использовать для управления выходным током, если это необходимо. И выпрямитель, и инвертор управляются набором элементов управления для генерации определенного количества переменного напряжения и частоты, чтобы соответствовать системе двигателя переменного тока в данный момент времени.
Приложения
Контроллер переменного тока может использоваться во многих различных промышленных и коммерческих приложениях.Контроллер переменного тока, который чаще всего используется для управления вентиляторами в системах кондиционирования и отопления, позволяет лучше контролировать воздушный поток. Контроллер переменного тока также помогает регулировать скорость насосов и воздуходувок. В последнее время применяются конвейеры, краны и подъемники, станки, экструдеры, линии для производства пленки и прядильные машины для текстильного волокна.
Преимущества и недостатки
Преимущества
— Увеличивает срок службы двигателя за счет высокого коэффициента мощности
— Экономичное регулирование скорости
— Оптимизация пусковых характеристик двигателя
— Более низкие затраты на обслуживание, чем при управлении постоянным током
Недостатки
— генерирует большое количество тепла и гармоник
История
Никола Тесла изобрел первый асинхронный двигатель переменного тока в 1888 году, представив более надежный и эффективный двигатель, чем двигатель постоянного тока.Однако регулирование скорости переменного тока было сложной задачей. Когда требовалось точное управление скоростью, двигатель постоянного тока стал заменой двигателя переменного тока из-за его эффективных и экономичных средств точного управления скоростью. Только в 1980-х годах регулятор скорости переменного тока стал конкурентом. Со временем технология привода переменного тока в конечном итоге превратилась в недорогого и надежного конкурента традиционному управлению постоянным током. Теперь контроллер переменного тока может управлять скоростью с полным крутящим моментом, достигаемым от 0 об / мин до максимальной номинальной скорости.
Частотно-регулируемые приводы
Основы
Частотно-регулируемый привод — это особый тип привода с регулируемой скоростью, который используется для управления скоростью двигателя переменного тока. Чтобы управлять скоростью вращения двигателя, частотно-регулируемый привод регулирует частоту подаваемой на него электроэнергии. Добавление частотно-регулируемого привода к приложению позволяет регулировать скорость двигателя в соответствии с его нагрузкой, что в конечном итоге позволяет экономить энергию.Частотно-регулируемый привод, обычно используемый во множестве приложений, работает в системах вентиляции, насосах, конвейерах и приводах станков.
Как работает частотно-регулируемый привод
Когда полное напряжение подается на двигатель переменного тока, он сначала ускоряет нагрузку и снижает крутящий момент, сохраняя ток особенно высоким, пока двигатель не достигнет полной скорости. Частотно-регулируемый привод работает иначе; он устраняет чрезмерный ток, контролируемое повышение напряжения и частоты при запуске двигателя.Это позволяет двигателю переменного тока генерировать до 150% своего номинального крутящего момента, который потенциально может быть создан с самого начала, вплоть до полной скорости, без потерь энергии. Частотно-регулируемый привод преобразует мощность через три различных этапа. Сначала мощность переменного тока преобразуется в мощность постоянного тока, после чего включаются и выключаются силовые транзисторы, вызывая форму волны напряжения на желаемой частоте. Эта форма сигнала затем регулирует выходное напряжение в соответствии с предпочтительным обозначенным значением.
Физические свойства
Обычно система частотно-регулируемого привода включает двигатель переменного тока, контроллер и интерфейс оператора.Трехфазный асинхронный двигатель чаще всего применяется в частотно-регулируемом приводе, поскольку он обеспечивает универсальность и экономичность по сравнению с однофазным или синхронным двигателем. Хотя в некоторых случаях они могут быть полезными, в системе частотно-регулируемого привода часто используются двигатели, предназначенные для работы с фиксированной скоростью.
Интерфейсы оператора частотно-регулируемого привода позволяют пользователю регулировать рабочую скорость, а также запускать и останавливать двигатель. Интерфейс оператора может также позволить пользователю переключаться и реверсировать между автоматическим управлением или ручным регулированием скорости.
Преимущества частотно-регулируемого привода
— Температуру технологического процесса можно контролировать без отдельного контроллера
— Низкие затраты на обслуживание
— Более длительный срок службы двигателя переменного тока и другого оборудования
— Более низкие эксплуатационные расходы
— Оборудование в системе, с которым невозможно справиться чрезмерный крутящий момент защищен
Типы частотно-регулируемых приводов
Существует три распространенных частотно-регулируемых привода (VFD), которые обладают как преимуществами, так и недостатками в зависимости от приложения, для которого они используются.Три распространенных конструкции VFD включают: инвертор источника тока (CSI), инвертор источника напряжения (VSI) и широтно-импульсную модуляцию (PWM). Однако существует четвертый тип частотно-регулируемого привода, называемый векторным приводом потока, который становится все более популярным среди конечных пользователей благодаря своей функции управления с обратной связью. Каждый частотно-регулируемый привод состоит из преобразователя, звена постоянного тока и инвертора, но конструкция каждого из них зависит от привода. Хотя секции каждого частотно-регулируемого привода похожи, они требуют изменения схемы в том, как они подают частоту и напряжение на двигатель.
Инвертор источника тока (CSI)
Инвертор источника тока (CSI) — это тип преобразователя частоты (VFD), который преобразует входящее напряжение переменного тока и изменяет частоту и напряжение, подаваемое на асинхронный двигатель переменного тока. Общая конфигурация этого типа частотно-регулируемого привода аналогична конфигурации других частотно-регулируемых приводов в том, что он состоит из преобразователя, звена постоянного тока и инвертора. В преобразовательной части CSI используются кремниевые выпрямители (SCR), тиристоры с коммутацией затвора (GCT) или симметричные тиристоры с коммутацией затвора (SGCT) для преобразования входящего переменного напряжения в переменное постоянное напряжение.Чтобы поддерживать правильное соотношение напряжения к частоте (Вольт / Герц), напряжение должно регулироваться путем правильной последовательности SCR. В звене постоянного тока для этого типа частотно-регулируемого привода используется индуктор для регулирования пульсаций тока и для хранения энергии, используемой двигателем. Инвертор, который отвечает за преобразование постоянного напряжения обратно в синусоидальную форму сигнала переменного тока, состоит из SCRS, тиристоров отключения затвора (GTO) или симметричных тиристоров с коммутацией затвора (SGCT). Эти тиристоры ведут себя как переключатели, которые включаются и выключаются для создания выхода с широтно-импульсной модуляцией (ШИМ), который регулирует частоту и напряжение на двигателе.Частотно-регулируемые приводы CSI регулируют ток, для работы требуется большой внутренний индуктор и нагрузка двигателя. Важным примечанием к конструкциям ЧРП CSI является требование входных и выходных фильтров, которые необходимы из-за высоких гармоник на входе мощности и низкого коэффициента мощности. Чтобы обойти эту проблему, многие производители используют либо входные трансформаторы, либо реакторы и фильтры гармоник в точке общего соединения (электрическая система пользователя, подключенная к приводу), чтобы уменьшить влияние гармоник на систему привода.Из обычных приводных систем с частотно-регулируемым приводом, частотно-регулируемые приводы CSI являются единственным типом приводов, которые имеют возможность рекуперации энергии. Возможность рекуперации энергии означает, что мощность, передаваемая от двигателя обратно к источнику питания, может быть поглощена.
Преимущества CSI
• Возможность рекуперации энергии
• Простая схема
• Надежность (операция ограничения тока)
• Чистая форма кривой тока
Недостатки CSI
• Зубцы двигателя, когда выходная частота ШИМ ниже 6 Гц
• Используемые индукторы большие и дорогие
• Генерация больших гармоник мощности отправляется обратно в источник питания
• Зависит от нагрузки двигателя
• Низкий коэффициент входной мощности
Инвертор источника напряжения (VSI)
Секция преобразователя VSI аналогична секции преобразователя CSI в том, что входящее напряжение переменного тока преобразуется в напряжение постоянного тока.Отличие от секции преобразователя CSI и VSI заключается в том, что VSI использует выпрямитель на диодном мосту для преобразования напряжения переменного тока в напряжение постоянного тока. В звене постоянного тока VSI используются конденсаторы для сглаживания пульсаций постоянного напряжения, а также для хранения энергии для системы привода. Секция инвертора состоит из биполярных транзисторов с изолированным затвором (IGBT), тиристоров с изолированным затвором (IGCT) или транзисторов с инжекционным затвором (IEGT). Эти транзисторы или тиристоры ведут себя как переключатели, которые включаются и выключаются для создания выходного сигнала широтно-импульсной модуляции (ШИМ), который регулирует частоту и напряжение двигателя.
Преимущества VSI
• Простая схема
• Может использоваться в приложениях, требующих нескольких двигателей
• Не зависит от нагрузки
Недостатки VSI
• Генерация больших гармоник мощности в источнике питания
• Зубчатая передача двигателя, когда выходная мощность ШИМ ниже 6 Гц
• Безрегенеративный режим
• Низкий коэффициент мощности
Широтно-импульсная модуляция (ШИМ)
Частотно-регулируемый привод с широтно-импульсной модуляцией (ШИМ) является одним из наиболее часто используемых контроллеров и зарекомендовал себя как хорошо работающий с двигателями мощностью от 1/2 до 500 л.с.Большинство частотно-регулируемых приводов с ШИМ рассчитаны на работу в трехфазном режиме 230 В или 460 В и обеспечивают выходные частоты в диапазоне 2–400 Гц. Как и VSI VFD, PWM VFD использует выпрямитель на диодном мосту для преобразования входящего переменного напряжения в постоянное. В звене постоянного тока используются конденсаторы большой емкости для устранения пульсаций, возникающих после выпрямителя, и создания стабильного напряжения на шине постоянного тока. Шестиступенчатый инверторный каскад этого драйвера использует IGBT высокой мощности, которые включаются и выключаются для регулирования частоты и напряжения двигателя. Эти транзисторы управляются микропроцессором или ИС двигателя, который контролирует различные аспекты привода, чтобы обеспечить правильную последовательность.В результате на двигатель выводится сигнал синусоидальной формы. Так как же включение и выключение транзистора помогает создать синусоидальный выходной сигнал? Изменяя ширину импульса напряжения, вы получаете среднюю мощность, которая представляет собой напряжение, подаваемое на двигатель. Частота, подаваемая на двигатель, определяется количеством переходов из положительного положения в отрицательное в секунду.
Преимущество ШИМ
• Отсутствие зубчатого зацепления двигателя
• КПД от 92% до 96%
• Превосходный коэффициент входной мощности благодаря фиксированному напряжению шины постоянного тока
• Низкая начальная стоимость
• Может использоваться в приложениях, требующих нескольких двигателей
Недостатки ШИМ
• Безрегенеративный режим
• Высокочастотное переключение может вызвать нагрев двигателя и пробой изоляции
Как выбрать двигатель переменного тока
Чтобы выбрать подходящий двигатель переменного тока для конкретного применения, необходимо определить основные характеристики.Рассчитайте требуемый момент нагрузки и рабочую скорость. Помните, что асинхронные и реверсивные двигатели нельзя регулировать; они требуют редуктора. Если это необходимо, выберите подходящее передаточное число. Затем определите частоту и напряжение питания двигателя.
Преимущества и недостатки
Преимущества двигателя переменного тока
— Низкая стоимость
— Длительный срок службы
— Высокая эффективность и надежность
— Простая конструкция
— Высокий пусковой момент (индукция)
— Отсутствие проскальзывания (синхронное)
Недостатки двигателя переменного тока
— Частота вызывает проскальзывания вращения (индукция)
— Необходим пусковой выключатель (индукция)
Поиск и устранение неисправностей двигателя переменного тока
ПОЖАЛУЙСТА, ОБРАТИТЕ ВНИМАНИЕ: Техническая помощь в отношении своей линейки двигателей переменного тока, а также всех продуктов, производимых или распространяемых Anaheim Automation, предоставляется бесплатно.Эта помощь предлагается, чтобы помочь клиенту в выборе продуктов Anaheim Automation для конкретного применения. Во всех случаях ответственность за определение пригодности индивидуального двигателя переменного тока для конкретной конструкции системы лежит исключительно на заказчике. Несмотря на то, что мы прилагаем все усилия, чтобы предложить надежные рекомендации относительно линейки двигателей переменного тока, а также других продуктов для управления движением, а также для точного создания технических данных и иллюстраций, такие советы и документы предназначены только для справки и могут быть изменены без предварительного уведомления.
Для устранения неполадок в системе двигателя и контроллера переменного тока могут быть предприняты следующие шаги:
Шаг 1. Проверьте запах двигателя. При появлении запаха гари немедленно замените двигатель.
Шаг 2: Проверьте входное напряжение двигателя. Убедитесь, что провода не повреждены и подключен надлежащий источник питания.
Шаг 3. Прислушайтесь к громкой вибрации или скрипу. Такие шумы могут указывать на повреждение или износ подшипников. Если возможно, смажьте подшипники, в противном случае замените двигатель полностью.
Шаг 4: Проверить на перегрев. С помощью сжатого воздуха очистите двигатель от мусора, дайте ему остыть и перезапустите.
Шаг 5: Двигатели переменного тока, которые пытаются запуститься, но выходят из строя, могут быть признаком плохого пускового конденсатора. Проверьте наличие каких-либо признаков утечки масла и замените конденсатор, если это так.
Шаг 6: Убедитесь, что приложение, в котором вращается двигатель, не заблокировано. Для этого отсоедините механизм и попробуйте запустить двигатель самостоятельно.
Сколько стоят изделия с двигателями переменного тока?
Двигатель переменного тока может быть разумным экономичным решением для ваших требований. Конструкционные материалы и конструкция двигателя делают системы двигателей переменного тока доступным решением. Двигатель переменного тока работает с вращающимся магнитным полем и не использует щеток. Это позволяет снизить стоимость двигателя и исключает компонент, который может со временем изнашиваться. Для работы двигателей переменного тока не требуется драйвер.Это экономит начальные затраты на установку. Сегодняшние производственные процессы делают производство двигателей переменного тока проще и быстрее, чем когда-либо. Статор изготовлен из тонких пластин, которые можно прессовать или штамповать на станке с ЧПУ. Многие другие детали можно быстро изготовить и усовершенствовать, сэкономив время и деньги! Anaheim Automation предлагает на выбор полную линейку продукции для двигателей переменного тока.
Физические свойства двигателя переменного тока
Обычно двигатель переменного тока состоит из двух основных компонентов: статора и ротора.Статор — это неподвижная часть двигателя, состоящая из нескольких тонких пластин, намотанных изолированным проводом, образующих сердечник.
Ротор соединен с выходным валом изнутри. Наиболее распространенным типом ротора, используемого в двигателях переменного тока, является ротор с короткозамкнутым ротором, названный в честь его сходства с колесами для упражнений на грызунах.
Статор устанавливается внутри корпуса двигателя, ротор установлен внутри, и между ними имеется зазор, отделяющий их от соприкосновения друг с другом. Кожух представляет собой корпус двигателя, содержащий два подшипниковых узла.
Формулы для двигателя переменного тока
Синхронная скорость:
Частота:
Количество полюсов:
Мощность в лошадиных силах:
24 Двигатель
Глоссарий двигателей переменного тока
Двигатель переменного тока — Электродвигатель, приводимый в действие переменным током, а не постоянным током.
Переменный ток — Электрический заряд, который часто меняет направление (противоположно постоянному току, с зарядом только в одном направлении).
Центробежный переключатель — Электрический переключатель, который регулирует скорость вращения вала, работающий за счет центробежной силы, создаваемой самим валом.
Передаточное число — Передаточное число, при котором скорость двигателя уменьшается редуктором. Скорость на выходном валу равна 1 передаточному отношению x скорость двигателя.
Инвертор — Устройство, преобразующее постоянный ток в переменный. Реверс выпрямителя.
Асинхронный двигатель — Может упоминаться как асинхронный двигатель; тип двигателя переменного тока, в котором электромагнитная индукция питает ротор. Для создания крутящего момента требуется скольжение.
Скорость холостого хода — Обычно ниже синхронной скорости, это скорость, когда двигатель не несет нагрузки.
Номинальная скорость — Скорость двигателя при номинальной выходной мощности.Обычно самая востребованная скорость.
Выпрямитель — Устройство, преобразующее переменный ток в постоянный в двигателе. Они могут использоваться в качестве компонента источника питания или могут обнаруживать радиосигналы. Обычно выпрямители могут состоять из твердотельных диодов, ртутных дуговых клапанов или других веществ. Реверс инвертора.
Выпрямление — Процесс преобразования переменного тока в постоянный с помощью выпрямителя в двигателе переменного тока.
Асинхронный двигатель с разделенной фазой — Двигатели, которые могут создавать больший пусковой крутящий момент за счет использования центробежного переключателя в сочетании со специальной пусковой обмоткой.
Момент при останове — Максимальный крутящий момент, с которым двигатель может работать, при определенном напряжении и частоте. Превышение этого количества приведет к остановке двигателя.
Пусковой крутящий момент — крутящий момент, который мгновенно создается при запуске двигателя. Двигатель не будет работать, если нагрузка трения превышает крутящий момент.
Статический момент трения — Когда двигатель останавливается, например, тормозом, это выходной крутящий момент, необходимый для удержания нагрузки при остановке двигателя.
Синхронный двигатель — В отличие от асинхронного двигателя, он может создавать крутящий момент с синхронной скоростью без скольжения.
Синхронная скорость — Обозначается скоростью в минуту, это внутренний фактор, определяемый количеством полюсов и частотой сети.
Привод с регулируемой скоростью — Оборудование, используемое для управления частотой электроэнергии, подаваемой на двигатель переменного тока, с целью управления его скоростью вращения.
Блок-схема для систем, в которых используется двигатель переменного тока
Срок службы двигателя переменного тока
Двигатели переменного токаAnaheim Automation обычно имеют срок службы около 10 000 часов работы, если двигатели работают в надлежащих условиях и в соответствии со спецификациями.
Требуемое обслуживание двигателя переменного тока
Профилактическое обслуживание — ключ к долговечной системе электродвигателя переменного тока.Следует проводить плановую проверку. Всегда проверяйте двигатель переменного тока на предмет загрязнения и коррозии. Грязь и мусор могут закупорить воздушные каналы и уменьшить поток воздуха, что в конечном итоге приведет к сокращению срока службы изоляции и возможному отказу двигателя. Если мусор не виден явно, убедитесь, что поток воздуха постоянный и не слабый. Это также может указывать на засорение. Во влажной, влажной или влажной среде проверьте клеммы в распределительной коробке на предмет коррозии и при необходимости отремонтируйте.
Прислушайтесь к чрезмерному шуму или вибрации и почувствуйте чрезмерное нагревание.Это может указывать на необходимость смазки подшипников. Примечание: Будьте осторожны при смазке подшипников, так как чрезмерная смазка может привести к грязи и маслам, забивающим воздушный поток. Обязательно найдите и удалите источник тепла для двигателя, чтобы избежать отказа системы.
Примечание. Будьте осторожны при смазке подшипников, так как чрезмерная смазка может привести к загрязнению и засорению потоком воздуха маслом. Обязательно найдите и удалите источник тепла для двигателя, чтобы избежать отказа системы.
Электропроводка двигателя переменного тока
Следующая информация предназначена в качестве общего руководства для электромонтажа линейки двигателей переменного тока Anaheim Automation. Имейте в виду, что при прокладке силовой и сигнальной проводки на машине или системе излучаемый шум от близлежащих реле, трансформаторов и других электронных устройств может индуцироваться в двигателе переменного тока и сигналах энкодера, входных / выходных коммуникациях и других чувствительных низковольтных устройствах. сигналы. Это может вызвать сбои в системе.
ПРЕДУПРЕЖДЕНИЕ — В системе двигателя переменного тока может присутствовать опасное напряжение, способное вызвать травму или смерть. Соблюдайте особую осторожность при обращении, подключении, тестировании и регулировке во время установки, настройки, настройки и эксплуатации. Не делайте чрезмерных корректировок или изменений в параметрах системы двигателя переменного тока, которые могут вызвать механическую вибрацию и привести к поломке и / или потерям. После того, как система электродвигателя переменного тока подключена, не запускайте ее путем прямого включения / выключения источника питания. Частое включение / выключение питания приведет к быстрому старению компонентов системы, что сократит срок службы системы электродвигателя переменного тока.
Строго соблюдайте следующие правила:
• Следуйте схеме подключения к каждому двигателю переменного тока и / или контроллеру.
• Прокладывайте силовые кабели высокого напряжения отдельно от силовых кабелей низкого напряжения.
• Отделите входную силовую проводку и силовые кабели двигателя переменного тока от проводки управления и кабелей обратной связи двигателя. Сохраняйте это разделение на всем протяжении провода.
• Используйте экранированный кабель для силовой проводки и обеспечьте заземленный зажим на 360 градусов к стене корпуса.Оставьте на вспомогательной панели место для изгибов проводов.
• Сделайте все кабельные трассы как можно короче.
• Обеспечьте достаточный воздушный поток
• Сохраняйте окружающую среду как можно более чистой
ПРИМЕЧАНИЕ. Кабели заводского изготовления рекомендуются для использования в наших системах двигателей переменного тока. Эти кабели приобретаются отдельно и предназначены для минимизации электромагнитных помех. Эти кабели рекомендуется использовать вместо кабелей, изготовленных заказчиком, чтобы оптимизировать работу системы и обеспечить дополнительную безопасность для системы электродвигателя переменного тока, а также для пользователя.
ПРЕДУПРЕЖДЕНИЕ — Во избежание поражения электрическим током выполните все монтажные и электромонтажные работы двигателя переменного тока перед подачей питания. После подачи питания на соединительные клеммы может присутствовать напряжение.
Монтаж двигателя переменного тока
Следующая информация предназначена в качестве общего руководства по установке и монтажу системы электродвигателя переменного тока. ПРЕДУПРЕЖДЕНИЕ — В системе двигателя переменного тока может присутствовать опасное напряжение, способное вызвать травму или смерть.Соблюдайте особую осторожность при обращении, тестировании и регулировке во время установки, настройки и эксплуатации. При установке и монтаже очень важно учитывать проводку двигателя переменного тока. Субпанели, устанавливаемые внутри корпуса для монтажа компонентов системы, должны иметь плоскую жесткую поверхность, защищенную от ударов, вибрации, влаги, масла, паров или пыли. Помните, что двигатель переменного тока выделяет тепло во время работы; поэтому при проектировании компоновки системы следует учитывать рассеивание тепла.Размер корпуса не должен превышать максимально допустимую температуру окружающей среды. Рекомендуется устанавливать электродвигатель переменного тока в положение, обеспечивающее достаточный воздушный поток. Электродвигатель переменного тока должен быть устойчиво закреплен и надежно закреплен.
ПРИМЕЧАНИЕ: Между электродвигателем переменного тока и любыми другими устройствами, установленными в системе / электрической панели или шкафу, должно быть не менее 10 мм.
Чтобы соответствовать требованиям UL и CE, система электродвигателя переменного тока должна быть заземлена в заземленном проводящем корпусе, обеспечивающем защиту, как определено в стандарте EN 60529 (IEC 529) до IP55, чтобы они были недоступны для оператора или неквалифицированного человека .Как и любую движущуюся часть системы, двигатель переменного тока следует держать вне досягаемости оператора. Корпус NEMA 4X превосходит эти требования, обеспечивая степень защиты IP66. Чтобы улучшить соединение между шиной питания и дополнительной панелью, сконструируйте дополнительную панель из оцинкованной (не содержащей краски) стали. Кроме того, настоятельно рекомендуется защитить систему электродвигателя переменного тока от электрических помех. Шум от сигнальных проводов может вызвать механическую вибрацию и неисправности.
Экологические аспекты двигателя переменного тока
Следующие меры по охране окружающей среды и безопасности должны соблюдаться на всех этапах эксплуатации, обслуживания и ремонта системы электродвигателя переменного тока.Несоблюдение этих мер предосторожности нарушает стандарты безопасности при проектировании, производстве и предполагаемом использовании двигателя переменного тока. Обратите внимание, что даже хорошо построенная система электродвигателя переменного тока, неправильно установленная и эксплуатируемая, может быть опасной. Пользователь должен соблюдать меры предосторожности в отношении нагрузки и условий эксплуатации. В конечном итоге заказчик несет ответственность за правильный выбор, установку и работу двигателя переменного тока и / или регулятора скорости.
Атмосфера, в которой используется двигатель переменного тока, должна способствовать соблюдению общих правил работы с электрическим / электронным оборудованием.Не эксплуатируйте систему электродвигателя переменного тока в присутствии легковоспламеняющихся газов, пыли, масла, пара или влаги. При использовании вне помещений двигатель переменного тока должен быть защищен от атмосферных воздействий соответствующей крышкой, обеспечивая при этом достаточный поток воздуха и охлаждение. Влага может вызвать опасность поражения электрическим током и / или вызвать поломку системы. Следует уделять должное внимание недопущению попадания любых жидкостей и паров. Свяжитесь с заводом-изготовителем, если ваше приложение требует определенных IP-адресов. Разумно устанавливать двигатель переменного тока в среде, свободной от конденсации, электрических шумов, вибрации и ударов.
Кроме того, предпочтительно работать с системой электродвигателя переменного тока в нестатической защитной среде. Открытые цепи всегда должны быть надлежащим образом ограждены и / или закрыты для предотвращения несанкционированного контакта человека с цепями под напряжением. Никакие работы не должны выполняться при включенном питании.
НЕ подключайте и не отключайте питание при включенном питании. После выключения питания подождите не менее 5 минут, прежде чем проводить инспекционные работы в системе двигателя переменного тока, потому что даже после отключения питания в конденсаторах внутренней цепи системы двигателя переменного тока будет оставаться некоторая электрическая энергия.
Спланируйте установку двигателя переменного тока в конструкции системы, свободной от мусора, такого как металлический мусор от резки, сверления, нарезания резьбы и сварки, или любого другого постороннего материала, который может контактировать с схемами системы. Если не предотвратить попадание мусора в систему двигателя переменного тока, это может привести к повреждению и / или поражению электрическим током.
История двигателя переменного тока
Изобретение двигателя переменного тока
Асинхронные двигатели переменного тока используются в промышленности уже более 20 лет.Идея двигателя переменного тока возникла у Николы Теслы в 1880-х годах. Никола Тесла заявил, что двигателям не нужны щетки для переключения ротора. Он сказал, что они могут быть вызваны вращающимся магнитным полем. Никола Тесла обнаружил использование переменного тока, который индуцирует вращающиеся магнитные поля. Тесла подал патент США номер 416194 на работу над двигателем переменного тока. Этот тип двигателя сегодня мы называем асинхронным двигателем переменного тока.
Развитие двигателя переменного тока
Двигатель переменного тока сделал себе имя благодаря простой конструкции, простоте использования, прочной конструкции и рентабельности для множества различных применений.Достижения в области технологий позволили производителям развить идею Telsa и обеспечили большую гибкость в регулировании скорости асинхронного двигателя переменного тока. От простого фазового управления до более надежных систем с обратной связью, использующих векторно-ориентированное управление полем; Двигатель переменного тока усовершенствовался за последние сто двадцать лет.
Принадлежности для двигателей переменного тока
Для двигателей переменного тока существует широкий выбор принадлежностей. Доступные аксессуары включают тормоз, сцепление, вентилятор, разъем и кабели. Для получения более подробной информации и дополнительных сведений см. Страницу «Аксессуары» Anaheim Automation.
Тормоза двигателя переменного тока представляют собой систему 24 В постоянного тока. Эти тормоза идеально подходят для любых удерживающих устройств, которые вы можете использовать с электродвигателем переменного тока. Тормоза электродвигателя переменного тока имеют низковольтную конструкцию для приложений, которые подвержены разряду батареи, потере напряжения или длинной проводке.
Муфта двигателя переменного тока используется для управления крутящим моментом, прилагаемым к нагрузке. Муфту двигателя переменного тока также можно использовать для увеличения скорости нагрузки с высоким моментом инерции.Муфты идеально подходят для использования с электродвигателем переменного тока, когда вы хотите точно контролировать крутящий момент или медленно прикладывать мощность. Муфты электродвигателя переменного тока также помогают предотвратить резкие скачки тока.
Вентиляторы двигателей переменного тока используются для охлаждения двигателей. Обычно они не встречаются в небольших двигателях, потому что они не нужны, но чаще встречаются в более крупных асинхронных двигателях переменного тока из-за выделения тепла. Есть два типа вентиляторов, которые используются для двигателя переменного тока. Типы бывают внутренние и внешние вентиляторы. Вентиляторы электродвигателей переменного тока идеально подходят для использования, когда возникает проблема перегрева.
Кабели двигателя переменного тока могут быть изготовлены по индивидуальному заказу с поставляемым разъемом двигателя переменного тока в соответствии с заданными спецификациями. Кабели также можно приобрести в компании Anaheim Automation.
Если двигатели переменного тока не идеальны для вашего применения, вы можете рассмотреть бесщеточные двигатели постоянного тока, щеточные двигатели постоянного тока, сервоприводы или шаговые двигатели и их совместимые драйверы / контроллеры. Наряду с двигателями переменного тока Anaheim Automation предлагает коробки передач и регуляторы скорости. Дополнительные продукты Anaheim Automation предлагает: энкодеры, HMI, муфты, кабели и соединители, линейные направляющие и столы X-Y.
Настройка двигателя переменного тока
Anaheim Automation была основана в 1966 году как производитель систем управления перемещением «под ключ». Его упор на исследования и разработки обеспечил постоянное внедрение передовых продуктов управления движением, таких как линейка продуктов AC Motor. Сегодня Anaheim Automation занимает высокое место среди ведущих производителей и дистрибьюторов продукции для управления движением, и это положение усиливается ее отличной репутацией в области качественной продукции по конкурентоспособным ценам.Линия продуктов AC Motor не является исключением из целей компании.
Anaheim Automation предлагает широкий выбор стандартных двигателей переменного тока. Иногда OEM-заказчики со средним и большим количеством требований предпочитают иметь двигатель переменного тока, который настраивается или модифицируется в соответствии с их точными проектными требованиями. Иногда настройка настолько проста, как модификация вала, тормоз, масляное уплотнение для степени защиты IP65, установочные размеры, цвета проводов или этикетка. В других случаях заказчик может потребовать, чтобы двигатель переменного тока соответствовал идеальным характеристикам, таким как скорость, крутящий момент и / или напряжение.Для получения более подробной информации обсудите требования к вашему приложению с инженером по автоматизации в Анахайме.
Электродвигатель переменного тока Anaheim Automation
Инженерыценят то, что линейка двигателей переменного тока Anaheim Automation может удовлетворить их стремление к творчеству, гибкости и эффективности системы. Покупатели ценят простоту «универсального магазина» и экономию затрат на индивидуальную конструкцию двигателя переменного тока, в то время как инженеры довольны тем, что Anaheim Automation уделяет особое внимание их конкретным системным требованиям.
Стандартная линейка двигателей переменного тока Anaheim Automation представляет собой экономичное решение, поскольку они известны своей прочной конструкцией и отличными характеристиками. Значительный рост продаж компании явился результатом целенаправленного проектирования, дружелюбного обслуживания клиентов и профессиональной поддержки приложений, что часто превосходит ожидания клиентов в отношении выполнения их индивидуальных требований. Хотя значительная часть продаж двигателей переменного тока Anaheim Automation связана с особыми, индивидуальными требованиями или требованиями частной марки, компания гордится своей стандартной складской базой, расположенной в Анахайме, Калифорния, США.Чтобы сделать индивидуальную настройку двигателя переменного тока доступной, требуется минимальное количество и / или плата за непериодическое проектирование (NRE). Свяжитесь с заводом-изготовителем для получения подробной информации, если вам потребуется специальный двигатель переменного тока в конструкции вашей системы управления движением.
Все продажи индивидуализированного или модифицированного двигателя переменного тока не подлежат отмене и возврату, и для каждого запроса клиент должен подписать соглашение NCNR. Все продажи, включая индивидуальный двигатель переменного тока, осуществляются в соответствии со стандартными положениями и условиями Anaheim Automation и заменяют любые другие явно выраженные или подразумеваемые условия, включая, помимо прочего, любые подразумеваемые гарантии.
Anaheim Automation заказывает линейку продуктов AC Motor разнообразно: компании, эксплуатирующие или проектирующие автоматизированное оборудование или процессы, которые включают в себя пищевую, косметическую или медицинскую упаковку, требования к этикетированию или защите от вскрытия, сборку, конвейер, погрузочно-разгрузочные работы, робототехнику, специальную съемку проекционные эффекты, медицинская диагностика, устройства контроля и безопасности, управление потоком насосов, изготовление металла (станки с ЧПУ) и модернизация оборудования. Многие OEM-заказчики просят, чтобы мы использовали двигатели переменного тока «частной торговой марки», чтобы их клиенты оставались верными им при обслуживании, замене и ремонте.
Тест по двигателям переменного тока
Q: Какие три основных типа электродвигателей переменного тока предлагает Anaheim Automation?
A: Индукционные, синхронные и промышленные
Q: Каковы компоненты частотно-регулируемого привода?
A: Частотно-регулируемый привод включает двигатель переменного тока, контроллер и интерфейс оператора.
В: Какой двигатель обычно используется в частотно-регулируемом приводе?
A: Трехфазный асинхронный двигатель
В: Каковы основные компоненты двигателя переменного тока?
A: Стационарный статор, который находится снаружи и имеет катушки, на которые подается переменный ток, и внутренний ротор, прикрепленный к выходному валу.
В: Почему необходимо подключать конденсатор к асинхронному двигателю переменного тока?
A: Любой двигатель ACP-M, который считается однофазным асинхронным двигателем, является двигателем с конденсаторным приводом. Следовательно, для его запуска необходимо создать вращающееся магнитное поле. Конденсаторы создают источник питания с фазовым сдвигом, который необходим для создания необходимого вращательного магнитного поля. С другой стороны, трехфазные двигатели всегда подают питание с разными фазами, поэтому им не нужны конденсаторы.
В: Что подразумевается под реверсивным двигателем, рассчитанным на 30 минут?
A: Двигатель рассчитан на оптимальную работу не более 30 минут. Если работать постоянно, двигатель перегорит.
Часто задаваемые вопросы по двигателям переменного тока:
В: Почему следует выбрать трехфазный двигатель вместо однофазного?
A: Однофазные двигатели переменного тока мощностью более 10 л.с. (7,5 кВт) обычно не так распространены. Трехфазные двигатели менее вибрируют, что увеличивает срок их службы по сравнению с однофазными двигателями той же мощности, используемыми в тех же условиях.
В: В чем разница между частотно-регулируемым приводом и частотно-регулируемым приводом?
A: Приводы с переменной частотой (VFD) обычно относятся только к приводам переменного тока, в то время как приводы с регулируемой скоростью (VSD) могут относиться либо к приводу переменного тока, либо к приводу постоянного тока. VFD управляет скоростью двигателя переменного тока, изменяя частоту двигателя. С другой стороны, преобразователи частоты изменяют напряжение для управления двигателем постоянного тока.
В: Могу ли я изменить направление вращения асинхронного двигателя переменного тока, если я подключил его, как показано в каталоге, например, ACP-M-4IK25N-AU?
A: Да, можно.Однако перед переключением направления убедитесь, что двигатель полностью остановлен. Если требуется немедленное реверсирование, реверсивный двигатель лучше подходит для данной области применения; например ACP-M-4RK25N-AU.
Q: Можно ли изменить скорость асинхронных двигателей переменного тока и реверсивных двигателей?
A: Частота источника питания определяет скорость однофазных (переменного тока) асинхронных и реверсивных двигателей. Если ваше приложение требует изменения скорости, рекомендуется использовать двигатель с регулировкой скорости.
В: Будет ли временное хранение моего асинхронного двигателя переменного тока при температуре от 0 ° F до -20 ° F создавать какие-либо проблемы?
A: Резкие перепады температуры могут привести к конденсации влаги внутри двигателя. В этом случае компоненты могут заржаветь, что значительно сократит срок службы. Постарайтесь избежать образования конденсата.
В: Это плохо, если мой асинхронный двигатель переменного тока сильно нагревается?
A: При преобразовании электрической энергии во вращательное движение внутри двигателя выделяется тепло, что делает его горячим.Температура двигателя переменного тока равна повышению температуры, вызванному потерями в двигателе, плюс температура окружающей среды. Если температура окружающей среды составляет 85 ° F, а внутренние потери в двигателе составляют 90 ° F (32 ° C), поверхность двигателя будет 175 ° F (79 ° C). Это не типично для маленького мотора.
В: Почему некоторые редукторы электродвигателя переменного тока выводят выходной сигнал противоположно двигателю, а другие — в том же направлении?
A: Редукторы снижают скорость двигателя от 1/3 до 1/180 (для асинхронных двигателей переменного тока.) Это снижение скорости является результатом использования нескольких передач; количество передач в зависимости от величины снижения скорости.