Где используют алюминий: Где используется алюминий?

Содержание

Где используется алюминий?

Алюминий – это легкий металл, который широко применяется в различных отраслях промышленности. Он отличается хорошей теплопроводностью и также проводит электричество. На его поверхности образуются оксидные пленки, имеющие высокую прочность и долговечность, поэтому материал невосприимчив к коррозии и не ржавеет, даже при длительном контакте с влагой.

Материал широко используется в:

  • авиационной и космической отрасли;
  • автомобилестроении;
  • морском и речном транспорте;
  • строительстве;
  • производстве различных предметов бытового назначения.

Производители выбирают этот материал за оптимальное сочетание безопасности, надежности и его стоимости.

Применение в космосе и авиации

Из алюминия изготавливаются те элементы, которые будут подвергаться высоким нагрузкам. Так в самолетах он используется в обшивке, силовых и подкрепляющих наборах. Сплавы этого материала применялись в космических аппаратах, в том числе луноходе.

Использование в автомобильном и речном транспорте

Самые быстроходные корабли, получившие название «Метеор» и «Ракета», изготавливаются из алюминия. Корпус таких судов на подводных крыльях выдерживает высокую нагрузку и не теряет своих свойств из-за постоянного контакта с водой, в том числе соленой.

В автомобилестроении этот материал применяется не менее широко. Из него изготавливается прочные детали и различные электромеханические устройства, устанавливаемые в транспорте. Также сейчас этот алюминий широко используется в строительстве суперэкспрессов и других поездов.

Применение в строительстве

Алюминиевый круг используется в современном строительстве. Из него создаются:

  • балки с низким весом и высокой прочностью;
  • колонны;
  • перекрытия;
  • различные декоративные перила и ограждения;
  • части систем вентиляции.

В рамках экспериментов со строительными материалами, алюминий пробуют класть на крышу. Такая кровля может выдерживать не только обычную воду, но и смеси серы, соединения азота и других веществ, разрушающих обычное кровельное железо.

Производство бытовых предметов

Из качественного алюминия изготавливают различные предметы, используемые людьми каждый день, включая посуду, ложки и вилки, стаканы и многое другое. Очень много этого материала уходит на производство фольги различной толщины. Этот продукт нашел широкое применения в пищевой промышленности и даже строительстве, в частности при производстве ячеистых материалов.

Алюминий — это… Что такое Алюминий?


Сплавы и производство алюминия, общая характеристика Al


Физические и химические свойства алюминия, получение и нахождение в природе Al, применение алюминия

Содержание

Раздел 1. Название и история открытия алюминия.

Раздел 2. Общая характеристика алюминия

, физические и химические свойства.

Раздел 3. Получение отливок из алюминиевых сплавов.

Раздел 4. Применение алюминия.

Алюминий — это элемент главной подгруппы третьей группы, третьего периода периодической системы химических элементов Д. И. Менделеева, с атомным номером 13. Обозначается символом Al. Относится к группе лёгких металлов. Наиболее распространённый металл и третий по распространённости химический элемент в земной коре (после кислорода и кремния).

Простое вещество алюминий (CAS-номер: 7429-90-5) — лёгкий, парамагнитный металл серебристо-белого цвета, легко поддающийся формовке, литью, механической обработке. Алюминий обладает высокой тепло- и электропроводностью, стойкостью к коррозии за счёт быстрого образования прочных оксидных плёнок, защищающих поверхность от дальнейшего взаимодействия.

Достижения промышленности в любом развитом обществе неизменно связаны с достижениями технологии конструкционных материалов и сплавов. Качество обработки и производительность изготовления предметов торговли являются важнейшими показателями уровня развития государства.

Материалы, применяемые в современных конструкциях, помимо высоких прочностных характеристик должны обладать комплексом таких свойств, как повышенная коррозионная стойкость, жаропрочность, теплопроводность и электропроводимость, тугоплавкость, а так же способность сохранять эти свойства в условиях длительной работы под нагрузками.

Научные разработки и производственные процессы в области литейного производства цветных металлов в нашей стране соответствуют передовым достижениям научно-технического прогресса. Их результатом, в частности, явилось создание современных цехов кокильного литья и литья под давлением на Волжском автомобильном заводе и ряде других предприятий. На Заволжском моторном заводе успешно работают крупные машины литья под давлением и усилием запирания пресс-формы 35 МН, на которых получают блоки цилиндров из алюминиевых сплавов для автомашины «Волга».

На Алтайском моторном заводе освоена автоматизированная линия по получению отливок литьем под давлением. В Союзе Советских Социалистических Республик (CCCP) впервые в мире разработан и освоен процесс непрерывного литья слитков из алюминиевых сплавов в электромагнитный кристаллизатор. Этот способ существенно повышает качество слитков и позволяет снизить количество отходов в виде стружки при их обточке.

Название и история открытия алюминия

Латинское aluminium происходит от латинского же alumen, означающего квасцы (сульфат алюминия и калия (K) KAl(SO4)2·12h3O), которые издавна использовались при выделке кож и как вяжущее средство. Al, химический элемент III группы периодической системы, атомный номер 13, атомная масса 26, 98154. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному — оксид алюминия) сделал еще в 1754г. немецкий химик А. Маркграф. Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом. Получить металлический алюминий смог только в 1825г. датский физик Х. К. Эрстед. Он обработал амальгамой калия (сплавом калия (K) с ртутью (Hg)) хлорид алюминия AlCl3, который можно было получить из глинозема, и после отгонки ртути (Hg) выделил серый порошок алюминия.

Только через четверть века этот способ удалось немного модернизировать. Французский химик А. Э. Сент-Клэр Девиль в 1854 году предложил использовать для получения алюминия металлический натрий (Na), и получил первые слитки нового металла. Стоимость алюминия была тогда очень высока, и из него изготавливали ювелирные украшения.

Промышленный способ производства алюминия путем электролиза расплава сложных смесей, включающих оксид, фторид алюминия и другие вещества, независимо друг от друга разработали в 1886 году П. Эру (Франция) и Ч. Холл (США). Производство алюминия связано с высоким затратой электричества, поэтому в больших масштабах оно было реализовано только в 20-ом веке. В Союзе Советских Социалистических Республик (CCCP) первый промышленный алюминий был получен 14 мая 1932 года на Волховском алюминиевом комбинате, построенном рядом с Волховской гидроэлектростанцией.

Алюминий чистотой свыше 99, 99% впервые был получен электролизом в 1920г. В 1925 г. в работе Эдвардса опубликованы некоторые сведения о физических и механических свойствах такого алюминия. В 1938г. Тейлор, Уиллер, Смит и Эдвардс опубликовали статью, в которой приведены некоторые свойства алюминия чистотой 99, 996%, полученного во Франции также электролизом. Первое издание монографии о свойствах алюминия вышло в свет в 1967г.

В последующие годы благодаря сравнительной простоте получения и привлекательным свойствам опубликовано много работ о свойствах алюминия. Чистый алюминий нашёл широкое применение в основном в электронике — от электролитических конденсаторов до вершины электронной инженерии — микропроцессоров; в криоэлектронике, криомагнетике.

Более новыми способами получения чистого алюминия являются метод зонной очистки, кристаллизация из амальгам (сплавов алюминия с ртутью) и выделение из щёлочных растворов. Степень чистоты алюминия контролируется величиной электросопротивления при низких температурах.

Общая характеристика алюминия

Природный алюминий состоит из одного нуклида 27Al. Конфигурация внешнего электронного слоя 3s2p1. Практически во всех соединениях степень окисления алюминия +3 (валентность III). Радиус нейтрального атома алюминия 0, 143 нм, радиус иона Al3+ 0, 057 нм. Энергии последовательной ионизации нейтрального атома алюминия равны, соответственно, 5, 984, 18, 828, 28, 44 и 120 эВ. По шкале Полинга электроотрицательность алюминия 1, 5.

Алюминий — мягкий, легкий, серебристо-белый металл, кристаллическая решетка которого кубическая гранецентрированная, параметр а = 0, 40403 нм. Температура плавления чистого металла 660°C, температура кипения около 2450°C, плотность 2, 6989 г/см3. Температурный коэффициент линейного расширения алюминия около 2, 5·10–5 К–1.

Химический алюминий — довольно активный металл. На воздухе его поверхность мгновенно покрывается плотной пленкой оксида Al2О3, которая препятствует дальнейшему доступу кислорода (O) к металлу и приводит к прекращению реакции, что обусловливает высокие антикоррозионные свойства алюминия. Защитная поверхностная пленка на алюминии образуется также, если его поместить в концентрированную азотную кислоту.

С остальными кислотами алюминий активно реагирует:

6НСl + 2Al = 2AlCl3 + 3h3,

3Н2SO4 + 2Al = Al2(SO4)3 + 3h3.

Интересно, что реакция между порошками алюминия и йода (I) начинается при комнатной температуре, если в исходную смесь добавить несколько капель воды, которая в данном случае играет роль катализатора:

2Al + 3I2 = 2AlI3.

Взаимодействие алюминия с серой (S) при нагревании приводит к образованию сульфида алюминия:

2Al + 3S = Al2S3,

который легко разлагается водой:

Al2S3 + 6Н2О = 2Al(ОН)3 + 3Н2S.

С водородом (H) алюминий непосредственно не взаимодействует, однако косвенными путями, например, с использованием алюминийорганических соединений, можно синтезировать твердый полимерный гидрид алюминия (AlН3)х — сильнейший восстановитель.

В виде порошка алюминий можно сжечь на воздухе, причем образуется белый тугоплавкий порошок оксида алюминия Al2О3.

Высокая прочность связи в Al2О3 обусловливает большую теплоту его образования из простых веществ и способность алюминия восстанавливать многие металлы из их оксидов, например:

3Fe3O4 + 8Al = 4Al2O3 + 9Fe и даже

3СаО + 2Al = Al2О3 + 3Са.

Такой способ получения металлов называют алюминотермией.

Нахождение в природе

По распространенности в земной коре алюминий занимает первое место среди металлов и третье место среди всех элементов (после кислорода (O) и кремния (Si)), на его долю приходится около 8, 8% массы земной коры. Алюминий входит в огромное число минералов, главным образом, алюмосиликатов, и горных пород. Соединения алюминия содержат граниты, базальты, глины, полевые шпаты и др. Но вот парадокс: при огромном числе

минералов и пород, содержащих алюминий, месторождения бокситов — главного сырья при промышленном получении алюминия, довольно редки. В Российской Федерации месторождения бокситов имеются в Сибири и на Урале. Промышленное значение имеют также алуниты и нефелины. В качестве микроэлемента алюминий присутствует в тканях растений и животных. Существуют организмы – концентраторы, накапливающие алюминий в своих органах, — некоторые плауны, моллюски.

Промышленное получение: при индексе пром производства бокситы сначала подвергают химической переработке, удаляя из них примеси оксидов кремния (Si), железа (Fe) и других элементов. В результате такой переработки получают чистый оксид алюминия Al2O3 — основное сырье при производстве металла электролизом. Однако из-за того, что температура плавления Al2O3 очень высока (более 2000°C), использовать его расплав для электролиза не удается.

Выход ученые и инженеры нашли в следующем. В электролизной ванне сначала расплавляют криолит Na3AlF6 (температура расплава немного ниже 1000°C). Криолит можно получить, например, при переработке нефелинов Кольского полуострова. Далее в этот расплав добавляют немного Al2О3 (до 10% по массе) и некоторые другие вещества, улучающие условия проведения последующего процесса. При электролизе этого расплава происходит разложение оксида алюминия, криолит остается в расплаве, а на катоде образуется расплавленный алюминий:

2Al2О3 = 4Al + 3О2.

Алюминиевые сплавы

Большинство металлических элементов сплавляются с алюминием, но только некоторые из них играют роль основных легирующих компонентов в промышленных алюминиевых сплавах. Тем не менее, значительное число элементов используют в качестве добавок для улучшения свойств сплавов. Наиболее широко применяются:

Бериллий добавляется для уменьшения окисления при повышенных температурах. Небольшие добавки бериллия (0, 01 — 0, 05%) применяют в алюминиевых литейных сплавах для улучшения текучести в производстве деталей двигателей внутреннего сгорания (поршней и головок цилиндров).

Бор вводят для повышения электропроводимости и как рафинирующую добавку. Бор вводится в алюминиевые сплавы, используемые в атомной энергетике (кроме деталей реакторов), т.к. он поглощает нейтроны, препятствуя распространению радиации. Бор вводится в среднем в количестве 0, 095 — 0, 1%.

Висмут. Металлы с низкой температурой плавления, такие как висмут, свинец, олово, кадмий вводят в алюминиевые сплавы для улучшения обрабатываемости резанием. Эти элементы образуют мягкие легкоплавкие фазы, которые способствуют ломкости стружки и смазыванию резца.

Галлий добавляется в количестве 0, 01 — 0, 1% в сплавы, из которых далее изготавливаются расходуемые аноды.

Железо. В малых количествах (»0, 04%) вводится при производстве проводов для увеличения прочности и улучшает характеристики ползучести. Так же железо уменьшает прилипание к стенкам форм при литье в кокиль.

Индий. Добавка 0, 05 — 0, 2% упрочняют сплавы алюминия при старении, особенно при низком содержании купрума. Индиевые добавки используются в алюминиево-кадмиевых подшипниковых сплавах.

Примерно 0, 3% кадмия вводят для повышения прочности и улучшения коррозионных свойств сплавов.

Кальций придаёт пластичность. При содержании кальция 5% сплав обладает эффектом сверхпластичности.

Кремний является наиболее используемой добавкой в литейных сплавах. В количестве 0, 5 – 4% уменьшает склонность к трещинообразованию. Сочетание кремния с магнием делают возможным термоуплотнение сплава.

Магний. Добавка магния значительно повышает прочность без снижения пластичности, повышает свариваемость и увеличивает коррозионную стойкость сплава.

Медь упрочняет сплавы, максимальное упрочнение достигается при содержании купрума 4 — 6%. Сплавы с купрумом используются в производстве поршней двигателей внутреннего сгорания, высококачественных литых деталей летательных аппаратов.

Олово улучшает обработку резанием.

Титан. Основная задача титана в сплавах — измельчение зерна в отливках и слитках, что очень повышает прочность и равномерность свойств во всём объёме.

Хотя алюминий считается одним из наименее благородных промышленных металлов, он достаточно устойчив во многих окислительных средах. Причиной такого поведения является наличие непрерывной окисной плёнки на поверхности алюминия, которая немедленно образуется вновь на зачищенных участках при воздействии кислорода, воды и других окислителей.

В большинстве случаев плавку ведут на воздухе. Если взаимодействие с воздухом ограничивается образованием на поверхности нерастворимых в расплаве соединений и возникающая пленка этих соединений существенно замедляет дальнейшее взаимодействие, то обычно не принимают каких-либо мер для подавления такого взаимодействия. Плавку в этом случае ведут при прямом контакте расплава с атмосферой. Так поступают при приготовлении большинства алюминиевых, цинковых, оловянно – свинцовых сплавов.

Пространство, в котором протекает процесс плавки сплавов, ограничивается огнеупорной футеровкой, способной выдерживать температуры 1500 – 1800 ˚С. Во всех процессах плавки участвует газовая фаза, которая формируется в процессе сгорания топлива, взаимодействуя с окружающей средой и футеровкой плавильного агрегата и т.п.

Большинство алюминиевых сплавов имеют высокую коррозионную стойкость в естественной атмосфере, морской воде, растворах многих солей и химикатов и в большинстве пищевых продуктов. Конструкции из алюминиевых сплавов часто используют в морской воде. Морские бакены, спасательные шлюпки, суда, баржи строятся из сплавов алюминия с 1930 г. В настоящее время длина корпусов кораблей из сплавов алюминия достигает 61 м. Существует опыт алюминиевых подземных трубопроводов, сплавы алюминия обладают высокой стойкостью к почвенной коррозии. В 1951 году на Аляске был построен трубопровод длиной 2, 9 км. После 30 лет работы не было обнаружено ни одной течи или серьёзного повреждения из-за коррозии.

Алюминий в большом объёме используется в строительстве в виде облицовочных панелей, дверей, оконных рам, электрических кабелей. Алюминиевые сплавы не подвержены сильной коррозии в течение длительного времени при контакте с бетоном, строительным раствором, штукатуркой, особенно если конструкции не подвергаются частому намоканию. При частом намокании, если поверхность алюминиевых предметов торговли не была дополнительно обработана, он может темнеть, вплоть до почернения в промышленных городах с большим содержанием окислителей в воздухе. Для избежания этого выпускаются специальные сплавы для получения блестящих поверхностей путём блестящего анодирования — нанесения на поверхность металла оксидной плёнки. При этом поверхности можно придавать множество цветов и оттенков. Например, сплавы алюминия с кремнием позволяют получить гамму оттенков, от серого до чёрного. Золотой цвет имеют сплавы алюминия с хромом.

Промышленный алюминий выпускается в виде двух видов сплавов — литейных, детали из которых изготавливаются литьём, и деформационные — сплавы, выпускаемые в виде деформируемых полуфабрикатов — листов, фольги, плит, профилей, проволоки. Отливки из алюминиевых сплавов получают всеми возможными способами литья. Наиболее распространено литьё под давлением, в кокиль и в песчано-глинистые формы. При изготовлении небольших политических партий применяется литьё в гипсовые комбинированные формы и литьё по выплавляемым моделям. Из литейных сплавов изготавливают литые роторы электромоторов, литые детали летательных аппаратов и др. Деформируемые сплавы используются в автомобильном производстве для внутренней отделки, бамперов, панелей кузовов и деталей интерьера; в строительстве как отделочный материал; в летательных аппаратах и др.

В промышленности используются также и алюминиевые порошки. Применяются в металлургической промышленности: в алюминотермии, в качестве легирующих добавок, для изготовления полуфабрикатов путём прессования и спекания. Этим методом получают очень прочные детали (шестерни, втулки и др.). Также порошки используются в химии для получения соединений алюминия и в качестве катализатора (например, при производстве этилена и ацетона). Учитывая высокую реакционную способность алюминия, особенно в виде порошка, его используют во взрывчатых веществах и твёрдом топливе для ракет, используя его свойство быстро воспламеняться.

Учитывая высокую стойкость алюминия к окислению, порошок используются в качестве пигмента в покрытиях для окраски оборудования, крыш, бумаги в полиграфии, блестящих поверхностей панелей автомобилей. Также слоем алюминия покрывают стальные и чугунные предмета торговли во избежание их коррозии.

По масштабам применения алюминий и его сплавы занимают второе место после железа (Fe) и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физических, механических и химических свойств: малой плотностью, коррозионной стойкостью в атмосферном воздухе, высокой тепло- и электропроводностью, пластичностью и сравнительно высокой прочностью. Алюминий легко обрабатывается различными способами — ковкой, штамповкой, прокаткой и др. Чистый алюминий применяют для изготовления проволоки (электропроводность алюминия составляет 65, 5% от электропроводности купрума, но алюминий более чем в три раза легче купрума, поэтому алюминий часто заменяет медь в электротехнике) и фольги, используемой как упаковочный материал. Основная же часть выплавляемого алюминия расходуется на получение различных сплавов. На поверхности сплавов алюминия легко наносятся защитные и декоративные покрытия.

Разнообразие свойств алюминиевых сплавов обусловлено введением в алюминий различных добавок, образующих с ним твердые растворы или интерметаллические соединения. Основную массу алюминия используют для получения легких сплавов — дуралюмина (94% — алюминий, 4% медь (Cu), по 0, 5% магний (Mg), марганец (Mn), железо (Fe) и кремний (Si)), силумина (85-90% — алюминий, 10-14% кремний (Si), 0, 1% натрий (Na)) и др. В металлургии алюминий используется не только как основа для сплавов, но и как одна из широко применяемых легирующих добавок в сплавах на основе купрума (Cu), магния (Mg), железа (Fe), >никеля (Ni) и др.

Сплавы алюминия находят широкое применение в быту, в строительстве и архитектуре, в автомобилестроении, в судостроении, авиационной и космической технике. В частности, из алюминиевого сплава был изготовлен первый искусственный спутник Земли. Сплав алюминия и циркония (Zr) – широко применяют в ядерном реакторостроении. Алюминий применяют в производстве взрывчатых веществ.

При обращении с алюминием в быту нужно иметь в виду, что нагревать и хранить в алюминиевой посуде можно только нейтральные (по кислотности) жидкости (например, кипятить воду). Если, например, в алюминиевой посуде варить кислые щи, то алюминий переходит в пищу, и она приобретает неприятный «металлический» привкус. Поскольку в быту оксидную пленку очень легко повредить, то использование алюминиевой посуды все-таки нежелательно.

Металл серебристо-белого цвета, лёгкий

плотность — 2,7 г/смі

температура плавления у технического алюминия — 658 °C, у алюминия высокой чистоты — 660 °C

удельная теплота плавления — 390 кДж/кг

температура кипения — 2500 °C

удельная теплота испарения — 10,53 МДж/кг

временное сопротивление литого алюминия — 10-12 кг/ммІ, деформируемого — 18-25 кг/ммІ, сплавов — 38-42 кг/ммІ

Твёрдость по Бринеллю — 24…32 кгс/ммІ

высокая пластичность: у технического — 35 %, у чистого — 50 %, прокатывается в тонкий лист и даже фольгу

Модуль Юнга — 70 ГПа

Алюминий обладает высокой электропроводностью (0,0265 мкОм·м) и теплопроводностью (203,5 Вт/(м·К)), 65 % от электропроводности купрума, обладает высокой светоотражательной способностью.

Слабый парамагнетик.

Температурный коэффициент линейного расширения 24,58·10−6 К−1 (20…200 °C).

Температурный коэффициент электрического сопротивления 2,7·10−8K−1.

Алюминий образует сплавы почти со всеми металлами. Наиболее известны сплавы с купрумом и магнием (дюралюминий) и кремнием (силумин).

Природный алюминий состоит практически полностью из единственного стабильного изотопа 27Al со следами 26Al, радиоактивного изотопа с периодом полураспада 720 тыс. лет, образующегося в атмосфере при бомбардировке ядер аргона протонами космических лучей.

По распространённости в земной коре Земли занимает 1-е среди металлов и 3-е место среди элементов, уступая только кислороду и кремнию. Процент содержания алюминия в земной коре по данным различных исследователей составляет от 7,45 до 8,14 % от массы земной коры.

В природе алюминий в связи с высокой химической активностью встречается почти исключительно в виде соединений. Некоторые из них:

Бокситы — Al2O3 · h3O (с примесями SiO2, Fe2O3, CaCO3)

Алуниты — (Na,K)2SO4·Al2(SO4)3·4Al(OH)3

Глинозёмы (смеси каолинов с песком SiO2, известняком CaCO3, магнезитом MgCO3)

Корунд (сапфир, рубин, наждак) — Al2O3

Каолинит — Al2O3·2SiO2 · 2h3O

Берилл (изумруд, аквамарин) — 3ВеО · Al2О3 · 6SiO2

Хризоберилл (александрит) — BeAl2O4.

Тем не менее, в некоторых специфических восстановительных условиях возможно образование самородного алюминия.

В природных водах алюминий содержится в виде малотоксичных химических соединений, например, фторида алюминия. Вид катиона или аниона зависит, в первую очередь, от кислотности водной среды. Концентрации алюминия в поверхностных водных объектах Российской Федерации колеблются от 0,001 до 10 мг/л, в морской воде 0,01 мг/л.

Алюминий (Aluminum) — это

Получение отливок из алюминиевых сплавов

Основная задача, стоящая перед литейным производством в нашей стране, заключается в существенном общем повышении качества отливок, которое должно найти выражение в уменьшении толщины стенок, снижении припусков на механическую обработку и на литниково – питающие системы при сохранении должных эксплуатационных свойств предметов торговли. Конечным итогом этой работ должно быть обеспечение возросших потребностей машиностроения необходимым количеством литых заготовок без существенного роста общего денежной эмиссии отливок по массе.

Литье в песчаные формы

Из перечисленных выше способов литья в разовые формы наиболее широкое применение при изготовлении отливок из алюминиевых сплавов получило литье в сырые песчаные формы. Это обусловлено невысокой плотностью сплавов, небольшим силовым воздействием металла на форму и низкими температурами литья (680—800С).

Для изготовления песчаных форм используют формовочные и стержневые смеси, приготовленные из кварцевых и глинистых песков (ГОСТ 2138—74), формовочных глин (ГОСТ 3226—76), связующих и вспомогательных материалов.

Тип литниковой системы выбирают с учетом габаритов отливки, сложности ее конфигурации и расположения в форме. Заливку форм для отливок сложной конфигурации небольшой высоты осуществляют, как правило, с помощью нижних литниковых систем. При большой высоте отливок и тонких стенках предпочтительно применение вертикально-щелевых или комбинированных литниковых систем. Формы для отливок малых размеров допустимо заливать через верхние литниковые системы. При этом высота падения струп металла в полость формы не должна превышать 80 мм.

Для уменьшения скорости движения расплава при входе в полость литейной формы и лучшего отделения взвешенных в нем оксидных плен и шлаковых включений в литниковые системы вводят дополнительные гидравлические сопротивления — устанавливают сетки (металлические или из стеклоткани) или ведут заливку через зернистые фильтры.

Литники (питатели), как правило, подводят к тонким сечениям (стенкам) отливок рассредоточено по периметру с учетом удобств, их последующего отделения при обработке. Подвод металла в массивные узлы недопустим, так как вызывает образование в них усадочных раковин, повышенной шероховатости и усадочных «провалов» на поверхности отливок. В сечении литниковые каналы чаще всего имеют прямоугольную форму с размером широкой стороны 15—20 мм, а узкой 5—7 мм.

Сплавы с узким интервалом кристаллизации (АЛ2, АЛ4, АЛ), АЛ34, АК9, АЛ25, АЛЗО) предрасположены к образованию концентрированных усадочных раковин в тепловых узлах отливок. Для выведения этих раковин за пределы отливок широко используют установку массивных прибылей. Для тонкостенных (4—5 мм) и мелких отливок масса прибыли в 2—3 раза превышает массу отливок, для толстостенных—до 1, 5 раз. Высоту прибыли выбирают в зависимости от высоты отливки. При высоте менее 150 мм высоту прибыли H-приб. принимают равной высоте отливки Нотл. Для более высоких отливок отношение Нприб/Нотл принимают равным 0, 3 0, 5.

Наибольшее применение при литье алюминиевых сплавов находят верхние открытые прибыли круглого или овального сечения; боковые прибыли в большинстве случаев делают закрытыми. Для повышения эффективности работы прибылей их утепляют, заполняют горячим металлом, доливают. Утепление обычно осуществляют наклейкой на поверхность формы листового асбеста с последующей подсушкой газовым пламенем. Сплавы с широким интервалом кристаллизации (АЛ1, АЛ7, АЛ8, АЛ19, АЛЗЗ) склонны к образованию рассеянной усадочной пористости. Пропитка усадочных пор при помощи прибылей малоэффективна. Поэтому при изготовлении отливок из перечисленных сплавов не рекомендуется применять установку массивных прибылей. Для получения высококачественных отливок осуществляют направленную кристаллизацию, широко используя для этой цели установку холодильников из чугуна и алюминиевых сплавов. Оптимальные условия для направленной кристаллизации создает вертикально-щелевая литниковая система. Для предотвращения газовыделения при кристаллизации и предупреждения образования газо-усадочной пористости в толстостенных отливках широко используют кристаллизацию под давлением 0, 4—0, 5 МПа. Для этого литейные формы перед заливкой помещают в автоклавы, заливают их металлом и кристаллизуют отливки под давлением воздуха. Для изготовления крупногабаритных (высотой до 2—3 м) тонкостенных отливок используют метод литья с последовательно направленным затвердеванием. Сущность метода состоит в последовательной кристаллизации отливки снизу вверх. Для этого литейную форму устанавливают на стол гидравлического подъемника и внутрь ее опускают нагретые до 500—700°С металлические трубки диаметром 12—20 мм, выполняющие функцию стояков. Трубки неподвижно закрепляют в литниковой чаше и закрывают отверстия в них стопорами. После заполнения литниковой чаши расплавом стопоры поднимают, и сплав по трубкам поступает в литниковые колодцы, соединенные с полостью литейной формы щелевыми литниками (питателями). После того как уровень расплава в колодцах поднимается на 20—30 мм выше нижнего конца трубок, включают механизм опускания гидравлического стола. Скорость опускания принимают такой, чтобы заполнение формы осуществлялось под затопленный уровень и горячий металл непрерывно поступал в верхние части формы. Это обеспечивает направленное затвердевание и позволяет получать сложные отливки без усадочных дефектов.

Заливку песчаных форм металлом ведут из ковшей, футерованных огнеупорным материалом. Перед заполнением металлом ковши со свежей футеровкой сушат и прокаливают при 780—800°С для удаления влаги. Температуру расплава перед заливкой поддерживаю на уровне 720—780 °С. Формы для тонкостенных отливок заполняют расплавами, нагретыми до 730—750 °С, а для толстостенных до 700—720 °С.

Литье в гипсовые формы

Литье в гипсовые формы применяют в тех случаях, когда к отливкам предъявляются повышенные требования по точности, чистоте поверхности и воспроизведению мельчайших деталей рельефа. По сравнению с песчаными, гипсовые формы обладают более высокой прочностью, точностью размеров, лучше противостоят воздействию высоких температур, позволяют получать отливки сложной конфигурации с толщиной стенок 1, 5 мм по 5—6-му классу точности. Формы изготавливают по восковым или металлическим (латунь, сталь) хромированным моделям. Модельные плиты выполняют из алюминиевых сплавов. Для облегчения удаления моделей из форм поверхность их покрывают тонким слоем керосиново-стеариновой смазки.

Мелкие и средние формы для сложных тонкостенных отливок изготавливают из смеси, состоящей из 80% гипса, 20% кварцевого песка или асбеста и 60—70% воды (от массы сухой смеси). Состав смеси для средних и крупных форм: 30 % гипса, 60 % песка, 10% асбеста, 40—50 % воды. Для замедления схватывания в смесь вводят 1—2 % гашеной извести. Необходимая прочность форм достигается за счет гидратации безводного или полуводного гипса. Для снижения прочности и увеличения газопроницаемости сырые гипсовые формы подвергают гидротермической обработке — выдерживают в автоклаве в течение 6—10 ч под давлением водяного пара 0, 13—0, 14 МПа, а затем в течение суток на воздухе. После этого формы подвергают ступенчатой сушке при 350-500 °С.

Особенностью гипсовых форм является их низкая теплопроводность. Это обстоятельство затрудняет получение плотных отливок из алюминиевых сплавов с широким интервалом кристаллизации. Поэтому основной задачей при разработке литниково-прибыльной системы для гипсовых форм является предотвращение образования усадочных раковин, рыхлот, оксидных плен, горячих трещин и недоливов тонких стенок. Это достигается применением расширяющихся литниковых систем, обеспечивающих низкую скорость движения расплавов в полости формы, направленным затвердеванием тепловых узлов в сторону прибылей с помощью холодильников, увеличением податливости форм за счет повышения содержания кварцевого песка в смеси. Заливку тонкостенных отливок ведут в нагретые до 100—200°С формы методом вакуумного всасывания, что позволяет заполнять полости толщиной до 0, 2 мм. Толстостенные (более 10 мм) отливки получают заливкой форм в автоклавах. Кристаллизация металла в этом случае ведется под давлением 0, 4—0, 5 МПа.

Литье в оболочковые формы

Литье в оболочковые формы целесообразно применять при серийном и крупносерийном производстве отливок ограниченных размеров с повышенной чистотой поверхности, большей размерной точностью и меньшим объемом механической обработки, чем при литье в песчаные формы.

Оболочковые формы изготавливают по горячей (250—300 °С) металлической (сталь, чугун) оснастке бункерным способом. Модельную оснастку выполняют по 4—5-му классам точности с формовочными уклонами от 0, 5 до 1, 5 %. Оболочки делают двухслойными: первый слой из смеси с 6—10 % термореактивной смолы, второй из смеси с 2 % смолы. Для лучшего съема оболочки модельную плиту перед засыпкой формовочной смеси покрывают тонким слоем разделительной эмульсии (5 % силиконовой жидкости № 5; 3 % хозяйственного мыла; 92 % воды).

Для изготовления оболочковых форм применяют мелкозернистые кварцевые пески, содержащие не менее 96 % кремнезема. Соединение полуформ осуществляют склеиванием на специальных штыревых прессах. Состав клея: 40 % смолы МФ17; 60 % маршалита и 1, 5 % хлористого алюминия (катализатор твердения). Заливку собранных форм производят в контейнерах. При литье в оболочковые формы применяют такие же литниковые системы и температурные режимы, как и при литье в песчаные формы.

Малая скорость кристаллизации металла в оболочковых формах и меньшие возможности для создания направленной кристаллизации обусловливают получение отливок с более низкими свойствами, чем при литье в сырые песчаные формы.

Литье по выплавляемым моделям

Литье по выплавляемым моделям применяют для изготовления отливок повышенной точности (3—5-ый класс) и чистоты поверхности (4—6-й класс шероховатости), для которых этот способ является единственно возможным или оптимальным.

Модели в большинстве случаев изготавливают из пастообразных парафиностеариновых (1: 1) составов запрессовкой в металлические пресс-формы (литые и сборные) на стационарных или карусельных установках. При изготовлении сложных отливок размерами более 200 мм во избежание деформации моделей в состав модельной массы вводят вещества, повышающие температуру их размягчения (оплавления).

В качестве огнеупорного покрытия при изготовлении керамических форм используют суспензию из гидролизованного этилсиликата (30—-40 %) и пылевидного кварца (70—60 %). Обсыпку модельных блоков ведут прокаленным песком 1КО16А или 1К025А. Каждый слой покрытия сушат на воздухе в течение 10—12 ч или в атмосфере, содержащей пары аммиака. Необходимая прочность керамической формы достигается при толщине оболочки 4—6 мм (4—6 слоев

виды, свойства и области применения

Сегодня алюминий используется практически во всех отраслях промышленности, начиная с производства пищевой посуды и заканчивая созданием фюзеляжей космических кораблей. Для тех или иных производственных процессов подходят только определенные марки алюминия, которые обладают определенными физико-химическими свойствами.

Главные свойства металла – высокая теплопроводность, ковкость и пластичность, устойчивость к образованию коррозии, небольшой вес и низкое омическое сопротивление. Они находятся в прямой зависимости от процентного содержания примесей, входящих в его состав, а также от технологии получения или обогащения. В соответствии с этим выделяют основные марки алюминия.

Виды алюминия

Все марки металла описаны и внесены в единую систему признанных национальных и международных стандартов: Европейских EN, Американских ASTM и международных ISO. В нашей стране марки алюминия определены ГОСТом 11069 и 4784. Во всех документах алюминий и его сплавы рассматриваются отдельно. При этом сам металл подразделяется именно на марки, а сплавы не имеют конкретно определенных знаков.

В соответствии с национальными и международными стандартами, следует выделить два вида микроструктуры нелегированного алюминия:

  • высокой чистоты с процентным содержанием более 99,95%;
  • технической чистоты, содержащей около 1% примесей и добавок.

В качестве примесей чаще всего рассматривают соединения железа и кремния. В международном стандарте ISO для алюминия и его сплавов выделена отдельная серия.

Марки алюминия

Технический вид материала делится на определенные марки, которые закреплены за соответствующими стандартами, например АД0 по ГОСТ 4784-97. При этом в классификацию входит и металл высокой частоты, чтобы не создавать путаницу. Данная спецификация содержит следующие марки:

  1. Первичный (А5, А95, А7Е).
  2. Технический (АД1, АД000, АДС).
  3. Деформируемый (АМг2, Д1).
  4. Литейный (ВАЛ10М, АК12пч).
  5. Для раскисления стали (АВ86, АВ97Ф).

Кроме того, выделяют и категории лигатуры – соединения алюминия, которые используются для создания сплавов из золота, серебра, платины и других драгоценных металлов.

Первичный алюминий

Первичный алюминий (марка А5) – типичный пример данной группы. Его получают путем обогащения глинозема. В природе металл в чистом виде не встречается ввиду его высокой химической активности. Соединяясь с другими элементами, он образует бокситы, нефелины и алуниты. Впоследствии из этих руд получают глинозем, а из него с помощью сложных химико-физических процессов — чистый алюминий.

ГОСТ 11069 устанавливает требования к маркам первичного алюминия, которые следует отметить путем нанесения вертикальных и горизонтальных полос несмываемой краской различных цветов. Данный материал нашел широкое применение в передовых отраслях промышленности, главным образом там, где от сырья требуются высокие технические характеристики.

Технический алюминий

Техническим алюминием называют материал с процентным содержанием инородных примесей менее 1%. Очень часто его также называют нелегированным. Технические марки алюминия по ГОСТу 4784-97 характеризуются очень низкой прочностью, но высокой антикоррозионной стойкостью. Благодаря отсутствию в составе легирующих частиц на поверхности металла быстро образуется защитная оксидная пленка, которая отличается устойчивостью.

Марки технического алюминия отличаются и хорошей тепло- и электропроводностью. В их молекулярной решетке практически отсутствуют примеси, которые рассеивают поток электронов. Благодаря этим свойствам материал активно используется в приборостроении, при производстве нагревательного и теплообменного оборудования, предметов освещения.

Деформируемый алюминий

К деформируемому алюминию относят материал, который подвергают горячей и холодной обработке давлением: прокатке, прессованию, волочению и другим видам. В результате пластических деформаций из него получают полуфабрикаты различного продольного сечения: алюминиевый пруток, лист, ленту, плиту, профили и другие.

Основные марки деформируемого материала, используемого на отечественном производстве, приведены в нормативных документах: ГОСТ 4784, OCT1 92014-90, OCT1 90048 и OCT1 90026. Характерной особенностью деформируемого сырья является твердая структура раствора с большим содержанием эвтектики – жидкой фазы, которая находится в равновесии с двумя или более твердыми состояниями вещества.

Область применения деформируемого алюминия, как и та, где применяется алюминиевый пруток, достаточно обширна. Он используется как в областях, требующих высоких технических характеристик от материалов — в корабле- и самолетостроении, так и на строительных площадках в качестве сплава для сварки.

Литейный алюминий

Литейные марки алюминия используются для производства фасонных изделий. Их главной особенностью является сочетание высокой удельной прочности и низкой плотности, что позволяет отливать изделия сложных форм без образования трещин.

Согласно своему назначению, литейные марки условно делятся на группы:
  1. Высокогерметичные материалы (АЛ2, АЛ9, АЛ4М).
  2. Материалы с высокой прочностью и жароустойчивостью (АЛ 19, АЛ5, АЛ33).
  3. Вещества с высокой антикоррозионной устойчивостью.

Очень часто эксплуатационные характеристики изделий из литейного алюминия повышают различными видами термической обработки.

Алюминий для раскисления

На качество изготавливаемых изделий оказывает влияние и то, какие имеет алюминий физические свойства. И применение низкосортных сортов материала не ограничивается созданием полуфабрикатов. Очень часто он используется для раскисления стали – удаления из расплавленного железа кислорода, который растворен в нем и повышает тем самым механические свойства металла. Для проведения данного процесса чаще всего применяются марки АВ86 и АВ97Ф.

Как добывают руду алюминия и где ее используют?

На чтение 9 мин. Просмотров 764 Опубликовано Обновлено

Алюминий — это металл, покрытый матово-серебристой оксидной плёнкой, свойства которого определяют его популярность: мягкость, лёгкость, пластичность, высокая прочность, устойчивость к коррозии, электропроводность и отсутствие токсичности. В современных высоких технологиях применению алюминия отведено ведущее место как конструкционному, многофункциональному материалу.

Руда алюминия

Наибольшую ценность для промышленности в качестве источника алюминия представляет природное сырьё — алюминиевая руда, составляющая горной породы в виде бокситов, алунитов и нефелина.

Промышленные масштабы «крылатого» металла начались лишь в 20 веке. Сегодня, это один из востребованных материалов в различных отраслях от электроники до космической и авиационной промышленности.

Впервые алюминиевая руда в виде серебристого металла  была получена в 1825 году в объеме всего лишь нескольких миллиграмм, и до появления массового производства этот металл был дороже золота.

Например, одна из королевских корон Швеции имела в своем составе алюминий, а Д. И. Менделеев в 1889 году получил от британцев дорогой подарок – весы из золота и алюминия.

Какое сырье необходимо для получения алюминиевой руды? Как производят один из самых необходимых в современности материалов?

Бокситовая руда – основа мирового производства алюминия

Бокситовая руда

Непосредственно сам серебристый металл получают из глинозема.

Это сырье представляет собой оксид алюминия (Аl2О3), получаемый с руд:

  • Бокситов;
  • Алунитов;
  • Нефелиновых сиенитов.

Самый распространенный источник получения исходного материала это бокситы, их и считают основной алюминиевой рудой.

Несмотря на уже более чем 130 летнюю историю открытия, понять происхождение алюминиевой руды до сих пор не удалось. Возможно, что попросту в каждом регионе сырье образовалось под воздействием определенных условий. И это создает затруднения, чтобы вывести одну универсальную теорию об образовании бокситов.

Основных гипотез происхождения алюминиевого сырья три:

  1. Они образовались вследствие растворения некоторых типов известняков, как остаточный продукт.
  2. Боксит получился в результате выветривания древних пород с дальнейшим их переносом и отложением.
  3. Руда является результатом химических процессов разложения железных, алюминиевых и титановых солей, и выпала как осадок.

Однако, алунитовые и нефелиновые руды образовывались в отличных условиях от бокситов. Первые формировались в условиях активной гидротермальной и вулканической деятельности. Вторые — при высоких температурах магмы.

Как результат, алуниты, в основном, имеют рассыпчатую пористую структуру. В их составе имеется до 40% различных оксидных соединений алюминия. Но, кроме собственно самой алюмниеносной руды в залежах, как правило, имеются добавки, что влияет на рентабельность их добычи. Считается выгодным разрабатывать месторождение при 50-ти процентном соотношении алунитов к добавкам.

Нефелины обычно представлены кристаллическими образцами, которые кроме алюминиевого оксида содержат добавки в виде различных примесей. Зависимо от состава, такой тип руды классифицируют по типам. Самые богатые имеют в своем составе до 90% нефелинов, второсортные 40-50%, если минералы беднее этих показателей, то не считается нужным вести их разработку.

Имея представления, о происхождении полезных ископаемых, геологическая разведка может довольно точно определить места нахождения залежей алюминиевых руд. Также условия формирования, влияющие на состав и структуру минералов, определяют способы добычи. Если месторождение считается рентабельным, налаживают его разработку.

Свойства алюминиевой руды

Свойства алюминиевой руды

Боксит представляет собой сложное соединение оксидов алюминия, железа и кремния (в виде различных кварцев), титана, а также с небольшой примесью натрия, циркония, хрома, фосфора и прочих.

Самым важным свойством в производстве алюминия является «вскрываемость» бокситов. То есть насколько просто будет отделить от него ненужные кремниевые добавки, чтобы получить исходное сырье для выплавки металла.

Сырьевым источником могут служить природные залежи бокситов, нефелинов, алунитов, глин, и каолинов. Наиболее насыщены соединениями алюминия бокситы. Глины и каолины представляют самые распространённые породы со значительным содержанием в них глинозёма. Залежи этих минералов находятся на поверхности земли.

Алюминиевая руда в природе существует только в виде бинарного соединения металла с кислородом. Добывают это соединение из природных горных руд в виде бокситов, состоящих из окислов нескольких химических элементов: алюминия, калия, натрия, магния, железа, титана, кремния, фосфора.

Основа получения алюминия – глинозем. Чтобы он образовался, руду перемалывают в мелкий порошок, и прогревают паром, отделяя большую часть кремния. И уже эта масса будет сырьем для выплавки.

Чтобы получить 1 тонну алюминия, потребуется около 4-5 тонн бокситов, с которых после обработки образуется около 2 тонн глинозема, а уже потом можно получить металл.

Технология разработки алюминиевых залежей. Способы добычи алюминиевой руды

Добыча алюминиевой руды

При незначительной глубине залегания алюминиеносных пород их добыча ведется открытым способом. Но, сам процесс срезания пластов руды будет зависеть от ее вида, и структуры.

  • Кристаллические минералы (чаще бокситы, или нефелины), снимают фрезерным способом. Для этого используются карьерные комбайны. Зависимо от модели такая машина может вести срез пласта толщиной до 600 мм. Толща породы разрабатывается постепенно, образуя после прохода одного слоя полки.

Это делается для безопасного положения кабины оператора и ходовых механизмов, которые в случае непредвиденного обвала будут находиться на безопасном расстоянии.

  • Рыхлые алюминиевоносные породы исключают использование фрезерной разработки. Так как их вязкость забивает режущую часть машины. Чаще всего такие типы пород могут срезать при помощи карьерных экскаваторов, которые тут же грузят руду на самосвалы, для дальнейшей транспортировки.

Транспортирование сырья — это отдельная часть всего процесса. Обычно обогатительные комбинаты по возможности стараются возводить неподалеку от разработок. Это позволяет использовать ленточные транспортеры для подачи руды на обогащение. Но, чаще изъятое сырье перевозят самосвалами.
Следующий этап, обогащение и подготовка породы для получения глинозема.

  • Руду при помощи ленточного транспортера перемещают в цех подготовки сырья, где может использоваться насколько дробильных аппаратов, измельчающих минералы поочередно до фракции приблизительно в 110 мм.
  • Второй участок подготовительного цеха осуществляет подачу подготовленной руды, и дополнительных добавок на дальнейшую переработку.
  • Следующий этап подготовки, это спекание породы в печах.

Также на этом этапе, возможна обработка сырья выщелачиванием   крепкими щелочами. Результатом становится жидкий алюминатный раствор (гидрометаллургическая обработка).

  • Алюминатный раствор проходит стадию декомпозиции. На данном этапе получают алюминатную пульпу, которую в свою очередь отправляют на сепарацию, и выпаривание жидкой составляющей.
  • После чего данную массу очищают от ненужных щелочей, и направляют на прокалку в печах. В результате такой цепочки образуется сухой глинозем необходимый для получения алюминия путем гидролизной обработки.

Сложный технологический процесс требует большого количества топлива, и известняка, а также электроэнергии. Это является основным фактором расположения алюминиевых комбинатов – возле хорошей транспортной развязки, и нахождения рядом залежей необходимых ресурсов.

Однако существует и шахтный способ извлечения, когда порода из пластов вырубается по принципу добычи каменного угля. После чего руду отправляют на подобные производства по обогащению, и извлечению алюминия.

Одна из самых глубоких «алюминиевых» штолен находится на Урале в России, ее глубина достигает 1550 метров!

Страны лидеры по добыче алюминиевых руд

Страны лидеры по добыче алюминиевых руд

Jсновные месторождения алюминия сосредоточены в регионах с тропическим климатом, а большая часть 73% залежей приходятся на всего 5 стран: Гвинею, Бразилию, Ямайку, Австралию и Индию. Из них самые богатые запасы имеет Гвинея более 5 млрд. тонн (28%от мировой доли).

Если разделить запасы и объемы по добыче, то можно получить следующую картину:

  • 1-е место – Африка (Гвинея).
  • 2-е место – Америка.
  • 3-е место – Азия.
  • 4-е место – Австралия.
  • 5-е – Европа.

Пятерка лидеров стран по добыче алюминиевой руды представлена в таблице

СтранаОбъемы добычи млн. тонн
Китай86,5
Австралия81,7
Бразилия30,7
Гвинея19,7
Индия14,9

 

Также к основным добытчикам алюминиевых руд относятся: Ямайка (9,7 млн. т.), Россия (6,6), Казахстан (4,2), Гайана (1,6).

Разработка месторождений алюминиевых руд в России

Разработка месторождений алюминиевых руд в России

В нашей стране есть несколько богатых залежей алюминиевых руд, сосредоточенных на Урале, и в Ленинградской области. Но, основным способом добычи бокситов у нас, является более трудоемкий закрытый шахтный метод, которым извлекают около 80% от общей массы руд в России.

Лидеры по разработке месторождений – акционерное общество «Севуралбокситруда», АО Бакситогорский глинозем, Южно-Уральские бокситовые рудники. Однако их запасы исчерпываются. Вследствие чего России приходится импортировать около 3 млн. тонн глинозема в год.

МесторождениеЗапасы
Красная Шапочка (Урал)На 19 лет добычи
Горностайское и Горностайско-КраснооктябрьскоеНа 18 лет добычи
Блиново-Каменское10 лет
Кургазское10 лет
Радынский карьер7 лет

 

В общей сложности на территории страны разведано 44 месторождения различных алюминиевых руд (бокситов, нефелинов), которых по оценкам, должно хватить на 240 лет, при такой интенсивности добычи как сегодня.

Импорт глинозема обусловлен низким качеством руды в залежах, например, на месторождении Красная Шапочка добывают боксит с 50% глиноземным составом, тогда как в Италии извлекают породу с 64% оксида алюминия, а в Китае 61%.

Применение алюминиевой руды

Применение алюминиевой руды

В основном до 60% рудного сырья используется для получения алюминия. Однако богатый состав позволяет извлекать из него, и другие химические элементы: титан, хром, ванадий и прочие цветные металлы, необходимые в первую очередь в качестве легирующих добавок для улучшения качеств стали.

Как вспоминалось выше технологическая цепочка получения алюминия обязательно проходит через стадию образования глинозема, который также используют в качестве флюсов в черной металлургии.

Богатый состав элементов в алюминиевой руде используется и для производства минеральной краски. Также способом плавки производится глиноземный цемент – быстро застывающая прочная масса.

Еще один материал, получаемый из бокситов – электрокорунд. Его получают путем плавления руды в электропечах. Это очень твердое вещество, уступающее только алмазу, что делает его востребованным в качестве абразива.

Также в процессе получения чистого металла образуются отходы – красный шлам. Из него извлекают элемент – скандий, который применяется в производстве алюминиево-скандиевых сплавов, востребованных в автомобильной промышленности, ракетостроении, выпуске электроприводов, и спортивного оборудования.

Альтернатива алюминиевым рудам

Развитие современного производства требует все больших объемов алюминия. Однако не всегда рентабельно разрабатывать месторождения, или импортировать глинозем из-за границы. Поэтому все чаще используется выплавка металла с использованием вторичного сырья.

Например, такие страны как США, Япония, Германия, Франция, Великобритания в основном производят вторичный алюминий, по объемам составляющий до 80% от общемировой выплавки.

Вторичный металл обходится намного дешевле, в сравнении с первичным, для получения которого тратится 20000 кВт энергии/1 тонну.

На сегодня алюминий, получаемый с различных руд, один из востребованных материалов позволяющих получать прочные и легкие изделия, не поддающиеся коррозии. Альтернатив металлу пока не найдено, и в ближайшие десятиле.

Источники:

https://promdevelop.ru/alyuminievaya-ruda-ot-dobychi-do-polucheniya-metalla-strany-lidery-po-dobyche-alyuminiya/

https://kamni.guru/ukrasheniya/metally/osnovnye-svoystva-alyuminievoy-rudy-dlya-primeneniya-v-promyshlennosti.html

алюминий — это… Что такое алюминий?

АЛЮМИ́НИЙ -я; м. [от лат. alumen (aluminis) — квасцы]. Химический элемент (Al), серебристо-белый лёгкий ковкий металл с высокой электропроводностью (применяемый в авиации, электротехнике, строительстве, быту и т.п.). Сульфат алюминия. Сплавы алюминия.

АЛЮМИ́НИЙ (лат. Aluminium), Al (читается «алюминий»), химический элемент с атомным номером 13, атомная масса 26,98154. Природный алюминий состоит из одного нуклида 27Al. Расположен в третьем периоде в группе IIIA периодической системы элементов Менделеева. Конфигурация внешнего электронного слоя 3s2p1. Практически во всех соединениях степень окисления алюминия +3 (валентность III).
Радиус нейтрального атома алюминия 0,143 нм, радиус иона Al3+ 0,057 нм. Энергии последовательной ионизации нейтрального атома алюминия равны, соответственно, 5,984, 18,828, 28,44 и 120 эВ. По шкале Полинга электроотрицательность алюминия 1,5.
Простое вещество алюминий — мягкий легкий серебристо-белый металл.
История открытия
Латинское aluminium происходит от латинского же alumen, означающего квасцы (см. КВАСЦЫ) (сульфат алюминия и калия KAl(SO4)2·12H2O), которые издавна использовались при выделке кож и как вяжущее средство. Из-за высокой химической активности открытие и выделение чистого алюминия растянулось почти на 100 лет. Вывод о том, что из квасцов может быть получена «земля» (тугоплавкое вещество, по-современному — оксид алюминия (см. АЛЮМИНИЯ ОКСИД)) сделал еще в 1754 немецкий химик А. Маргграф (см. МАРГГРАФ Андреас Сигизмунд). Позднее оказалось, что такая же «земля» может быть выделена из глины, и ее стали называть глиноземом. Получить металлический алюминий смог только в 1825 датский физик Х. К. Эрстед (см. ЭРСТЕД Ханс Кристиан). Он обработал амальгамой калия (сплавом калия со ртутью) хлорид алюминия AlCl3, который можно было получить из глинозема, и после отгонки ртути выделил серый порошок алюминия.
Только через четверть века этот способ удалось немного модернизировать. Французский химик А. Э. Сент-Клер Девиль (см. СЕНТ-КЛЕР ДЕВИЛЬ Анри Этьен) в 1854 предложил использовать для получения алюминия металлический натрий (см. НАТРИЙ), и получил первые слитки нового металла. Стоимость алюминия была тогда очень высока, и из него изготовляли ювелирные украшения.
Промышленный способ производства алюминия путем электролиза расплава сложных смесей, включающих оксид, фторид алюминия и другие вещества, независимо друг от друга разработали в 1886 году П. Эру (см. ЭРУ Поль Луи Туссен) (Франция) и Ч. Холл (США). Производство алюминия связано с высоким расходом электроэнергии, поэтому в больших масштабах оно было реализовано только в 20 веке. В Советском Союзе первый промышленный алюминий был получен 14 мая 1932 года на Волховском алюминиевом комбинате, построенном рядом с Волховской гидроэлектростанцией.
Нахождение в природе
По распространенности в земной коре алюминий занимает первое место среди металлов и третье место среди всех элементов (после кислорода и кремния), на его долю приходится около 8,8% массы земной коры. Алюминий входит в состав огромного числа минералов, главным образом, алюмосиликатов (см. АЛЮМОСИЛИКАТЫ), и горных пород. Соединения алюминия содержат граниты (см. ГРАНИТ), базальты (см. БАЗАЛЬТ), глины (см. ГЛИНА), полевые шпаты (см. ПОЛЕВЫЕ ШПАТЫ) и др. Но вот парадокс: при огромном числе минералов и пород, содержащих алюминий, месторождения бокситов (см. БОКСИТЫ) — главного сырья при промышленном получении алюминия, довольно редки. В России месторождения бокситов имеются в Сибири и на Урале. Промышленное значение имеют также алуниты (см. АЛУНИТ) и нефелины (см. НЕФЕЛИН).
В качестве микроэлемента алюминий присутствует в тканях растений и животных. Существуют организмы-концентраторы, накапливающие алюминий в своих органах, — некоторые плауны, моллюски.
Промышленное получение
При промышленном производстве бокситы сначала подвергают химической переработке, удаляя из них примеси оксидов кремния и железа и других элементов. В результате такой переработки получают чистый оксид алюминия Al2O3 — основное сырье при производстве металла электролизом. Однако из-за того, что температура плавления Al2O3 очень высока (более 2000 °C), использовать его расплав для электролиза не удается.
Выход ученые и инженеры нашли в следующем. В электролизной ванне сначала расплавляют криолит (см. КРИОЛИТ) Na3AlF6 (температура расплава немного ниже 1000 °C). Криолит можно получить, например, при переработке нефелинов Кольского полуострова. Далее в этот расплав добавляют немного Al2О3 (до 10 % по массе) и некоторые другие вещества, улучающие условия проведения последующего процесса. При электролизе этого расплава происходит разложение оксида алюминия, криолит остается в расплаве, а на катоде образуется расплавленный алюминий:
2Al2О3 = 4Al + 3О2.
Так как анодом при электролизе служит графит, то выделяющийся на аноде кислород реагирует с графитом и образуется углекислый газ СО2.
При электролизе получают металл с содержанием алюминия около 99,7%. В технике применяют и значительно более чистый алюминий, в котором содержание этого элемента достигает 99,999% и более.
Физические и химические свойства
Алюминий — типичный металл, кристаллическая решетка кубическая гранецентрированная, параметр а = 0,40403 нм. Температура плавления чистого металла 660 °C, температура кипения около 2450 °C, плотность 2,6989 г/см3. Температурный коэффициент линейного расширения алюминия около 2,5·10-5 К-1. Стандартный электродный потенциал Al3+/Al –1,663В.
Химически алюминий — довольно активный металл. На воздухе его поверхность мгновенно покрывается плотной пленкой оксида Al2О3, которая препятствует дальнейшему доступу кислорода к металлу и приводит к прекращению реакции, что обусловливает высокие антикоррозионные свойства алюминия. Защитная поверхностная пленка на алюминии образуется также, если его поместить в концентрированную азотную кислоту.
С остальными кислотами алюминий активно реагирует:
6НСl + 2Al = 2AlCl3 + 3H2,
2SO4 + 2Al = Al2(SO4)3 + 3H2.
Алюминий реагирует с растворами щелочей. Сначала растворяется защитная оксидная пленка:
Al2О3 + 2NaOH + 3H2O = 2Na[Al(OH)4].
Затем протекают реакции:
2Al + 6H2O = 2Al(OH)3 + 3H2,
NaOH + Al(OH)3 = Na[Al(OH)4],
или суммарно:
2Al + 6H2O + 2NaOH = Na[Al(OH)4] + 3Н2,
и в результате образуются алюминаты (см. АЛЮМИНАТЫ): Na[Al(OH)4] — алюминат натрия (тетрагидроксоалюминат натрия), К[Al(OH)4] — алюминат калия (терагидроксоалюминат калия) или др. Так как для атома алюминия в этих соединениях характерно координационное число (см. КООРДИНАЦИОННОЕ ЧИСЛО) 6, а не 4, то действительные формулы указанных тетрагидроксосоединений следующие: Na[Al(OH)42О)2] и К[Al(OH)42О)2].
При нагревании алюминий реагирует с галогенами:
2Al + 3Cl2 = 2AlCl3,
2Al + 3 Br2 = 2AlBr3.
Интересно, что реакция между порошками алюминия и иода (см. ИОД) начинается при комнатной температуре, если в исходную смесь добавить несколько капель воды, которая в данном случае играет роль катализатора:
2Al + 3I2 = 2AlI3.
Взаимодействие алюминия с серой при нагревании приводит к образованию сульфида алюминия:
2Al + 3S = Al2S3,
который легко разлагается водой:
Al2S3 + 6Н2О = 2Al(ОН)3 + 3Н2S.
С водородом алюминий непосредственно не взаимодействует, однако косвенными путями, например, с использованием алюминийорганических соединений (см. АЛЮМИНИЙОРГАНИЧЕСКИЕ СОЕДИНЕНИЯ), можно синтезировать твердый полимерный гидрид алюминия (AlН3)х — сильнейший восстановитель.
В виде порошка алюминий можно сжечь на воздухе, причем образуется белый тугоплавкий порошок оксида алюминия Al2О3.
Высокая прочность связи в Al2О3 обусловливает большую теплоту его образования из простых веществ и способность алюминия восстанавливать многие металлы из их оксидов, например:
3Fe3O4 + 8Al = 4Al2O3 + 9Fe и даже
3СаО + 2Al = Al2О3 + 3Са.
Такой способ получения металлов называют алюминотермией (см. АЛЮМИНОТЕРМИЯ).
Амфотерному оксиду Al2О3 соответствует амфотерный гидроксид — аморфное полимерное соединение, не имеющее постоянного состава. Состав гидроксида алюминия может быть передан формулой xAl2O3·yH2O, при изучении химии в школе формулу гидроксида алюминия чаще всего указывают как Аl(OH)3.
В лаборатории гидроксид алюминия можно получить в виде студенистого осадка обменными реакциями:
Al2(SO4)3 + 6NaOH = 2Al(OH)3 + 3Na2SO4,
или за счет добавления соды к раствору соли алюминия:
2AlCl3 + 3Na2CO3 + 3H2O = 2Al(OH)3Ї + 6NaCl + 3CO2­,
а также добавлением раствора аммиака к раствору соли алюминия:
AlCl3 + 3NH3·H2O = Al(OH)3Ї + 3H2O + 3NH4Cl.
Применение
По масштабам применения алюминий и его сплавы занимают второе место после железа и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физических, механических и химических свойств: малой плотностью, коррозионной стойкостью в атмосферном воздухе, высокой тепло- и электропроводностью, пластичностью и сравнительно высокой прочностью. Алюминий легко обрабатывается различными способами — ковкой, штамповкой, прокаткой и др. Чистый алюминий применяют для изготовления проволоки (электропроводность алюминия составляет 65,5% от электропроводности меди, но алюминий более чем в три раза легче меди, поэтому алюминий часто заменяет медь в электротехнике) и фольги, используемой как упаковочный материал. Основная же часть выплавляемого алюминия расходуется на получение различных сплавов. Сплавы алюминия отличаются малой плотностью, повышенной (по сравнению с чистым алюминием) коррозионной стойкостью и высокими технологическими свойствами: высокой тепло- и электропроводностью, жаропрочностью, прочностью и пластичностью. На поверхности сплавов алюминия легко наносятся защитные и декоративные покрытия.
Разнообразие свойств алюминиевых сплавов обусловлено введением в алюминий различных добавок, образующих с ним твердые растворы или интерметаллические соединения. Основную массу алюминия используют для получения легких сплавов — дуралюмина (см. ДУРАЛЮМИН) (94% Al, 4% Cu, по 0,5% Mg, Mn, Fe и Si), силумина (85—90% Al, 10—14% Si, 0,1% Na) и др. В металлургии алюминий используется не только как основа для сплавов, но и как одна из широко применяемых легирующих добавок в сплавах на основе меди, магния, железа, никеля и др.
Сплавы алюминия находят широкое применение в быту, в строительстве и архитектуре, в автомобилестроении, в судостроении, авиационной и космической технике. В частности, из алюминиевого сплава был изготовлен первый искусственный спутник Земли. Сплав алюминия и циркония — циркалой — широко применяют в ядерном реакторостроении. Алюминий применяют в производстве взрывчатых веществ.
Особо следует отметить окрашенные пленки из оксида алюминия на поверхности металлического алюминия, получаемые электрохимическим путем. Покрытый такими пленками металлический алюминий называют анодированным алюминием. Из анодированного алюминия, по внешнему виду напоминающему золото, изготовляют различную бижутерию.
При обращении с алюминием в быту нужно иметь в виду, что нагревать и хранить в алюминиевой посуде можно только нейтральные (по кислотности) жидкости (например, кипятить воду). Если, например, в алюминиевой посуде варить кислые щи, то алюминий переходит в пищу и она приобретает неприятный «металлический» привкус. Поскольку в быту оксидную пленку очень легко повредить, то использование алюминиевой посуды все-таки нежелательно.
Алюминий в организме
В организм человека алюминий ежедневно поступает с пищей (около 2—3 мг), но его биологическая роль не установлена. В среднем в организме человека (70 кг) в костях, мышцах содержится около 60 мг алюминия.

алюминия | Использование, свойства и соединения

Алюминий (Al) , также пишется алюминий , химический элемент, легкий серебристо-белый металл основной группы 13 (IIIa, или группа бора) периодической таблицы. Алюминий — самый распространенный металлический элемент в земной коре и наиболее широко используемый цветной металл. Из-за своей химической активности алюминий никогда не встречается в природе в металлической форме, но его соединения в большей или меньшей степени присутствуют почти во всех породах, растительности и животных.Алюминий сосредоточен во внешних 16 км (10 милях) земной коры, из которых он составляет около 8 процентов по весу; по количеству его превосходят только кислород и кремний. Название «алюминий» происходит от латинского слова alumen , которое используется для описания калийных квасцов или сульфата алюминия-калия, KAl (SO 4 ) 2 ∙ 12H 2 O.

alumen Aluminium. Encyclopdia Britannica, Inc.

Британская викторина

118 Названия и символы периодической таблицы викторины

Co

Свойства элемента
атомный номер 13
атомный вес 26.981539
точка плавления 660 ° C (1220 ° F)
точка кипения 2467 ° C (4473 ° F)
удельный вес 2,70 (при 20 ° C [68 ° F])
валентность 3
электронная конфигурация 1 с 2 2 с 2 2 p 6 3 с 2 3 p 1

Возникновение и история

Алюминий встречается в магматических породах главным образом в виде алюмосиликатов в полевых шпатах, полевых шпатах и ​​слюдах; в почве, полученной из них в виде глины; и при дальнейшем выветривании — боксит и богатый железом латерит.Боксит, смесь гидратированных оксидов алюминия, является основной алюминиевой рудой. Кристаллический оксид алюминия (наждак, корунд), который встречается в некоторых магматических породах, добывается как природный абразив или в его более мелких разновидностях, таких как рубины и сапфиры. Алюминий присутствует в других драгоценных камнях, таких как топаз, гранат и хризоберилл. Из многих других минералов алюминия алунит и криолит имеют некоторое коммерческое значение.

До 5000 г. до н. Э. Люди в Месопотамии изготавливали прекрасную керамику из глины, которая в основном состояла из соединения алюминия, а почти 4000 лет назад египтяне и вавилоняне использовали соединения алюминия в различных химических веществах и лекарствах.Плиний относится к алюминию, ныне известному как квасцы, соединению алюминия, широко используемому в древнем и средневековом мире для фиксации красителей в текстильных изделиях. Во второй половине 18-го века химики, такие как Антуан Лавуазье, признали глинозем в качестве потенциального источника металла.

Сырой алюминий был выделен (1825 г.) датским физиком Гансом Кристианом Орстедом путем восстановления хлорида алюминия амальгамой калия. Британский химик сэр Хамфри Дэви (1809 г.) приготовил железо-алюминиевый сплав путем электролиза плавленого оксида алюминия (оксида алюминия) и уже назвал этот элемент алюминием; позже слово было изменено на алюминий в Англии и некоторых других европейских странах.Немецкий химик Фридрих Велер, используя металлический калий в качестве восстановителя, произвел алюминиевый порошок (1827 г.) и небольшие шарики металла (1845 г.), по которым он смог определить некоторые его свойства.

Получите эксклюзивный доступ к контенту нашего 1768 First Edition с подпиской. Подпишитесь сегодня

Новый металл был представлен публике (1855 г.) на Парижской выставке примерно в то время, когда он стал доступен (в небольших количествах за большие деньги) за счет восстановления расплавленного хлорида алюминия натрием посредством процесса Девиля.Когда электроэнергия стала относительно обильной и дешевой, почти одновременно Чарльз Мартин Холл в Соединенных Штатах и ​​Поль-Луи-Туссен Эру во Франции открыли (1886 г.) современный метод промышленного производства алюминия: электролиз очищенного глинозема (Al 2 O ). 3 ), растворенный в расплавленном криолите (Na 3 AlF 6 ). В 60-е годы в мировом производстве цветных металлов алюминий вышел на первое место, опередив медь. Для получения более подробной информации о добыче, рафинировании и производстве алюминия, см. обработка алюминия.

Применение и свойства

Алюминий добавляется в небольших количествах к некоторым металлам для улучшения их свойств для конкретных целей, например, в алюминиевых бронзах и большинстве сплавов на основе магния; или, для сплавов на основе алюминия, к алюминию добавляются умеренные количества других металлов и кремния. Металл и его сплавы широко используются в авиастроении, строительных материалах, товарах длительного пользования (холодильники, кондиционеры, кухонная утварь), электрических проводниках, химическом и пищевом оборудовании.

Чистый алюминий (99,996%) довольно мягкий и непрочный; технический алюминий (чистота от 99 до 99,6%) с небольшим содержанием кремния и железа тверд и прочен. Пластичный и очень ковкий алюминий можно растянуть в проволоку или свернуть в тонкую фольгу. Металл примерно на треть меньше плотности железа или меди. Хотя алюминий химически активен, он, тем не менее, очень устойчив к коррозии, потому что на воздухе на его поверхности образуется твердая, прочная оксидная пленка.

Алюминий — отличный проводник тепла и электричества.Его теплопроводность примерно вдвое меньше, чем у меди; его электропроводность — около двух третей. Он кристаллизуется в гранецентрированной кубической структуре. Весь природный алюминий представляет собой стабильный изотоп алюминия-27. Металлический алюминий, его оксид и гидроксид нетоксичны.

Алюминий медленно разрушается большинством разбавленных кислот и быстро растворяется в концентрированной соляной кислоте. Однако концентрированную азотную кислоту можно перевозить в алюминиевых цистернах, поскольку она делает металл пассивным.Даже очень чистый алюминий активно разрушается щелочами, такими как гидроксид натрия и калия, с образованием водорода и алюминат-иона. Из-за его большого сродства к кислороду тонкодисперсный алюминий при воспламенении будет гореть в оксиде углерода или диоксиде углерода с образованием оксида и карбида алюминия, но при температурах до красного каления алюминий инертен к сере.

С помощью эмиссионной спектроскопии алюминий может быть обнаружен в концентрациях от одной части на миллион.Алюминий может быть количественно проанализирован как оксид (формула Al 2 O 3 ) или как производное органического соединения азота 8-гидроксихинолина. Производное имеет молекулярную формулу Al (C 9 H 6 ON) 3 .

Соединения

Обычно алюминий трехвалентен. Однако при повышенных температурах было получено несколько газообразных одновалентных и двухвалентных соединений (AlCl, Al 2 O, AlO). В алюминии конфигурация трех внешних электронов такова, что в некоторых соединениях (например.например, кристаллический фторид алюминия [AlF 3 ] и хлорид алюминия [AlCl 3 ]), как известно, возникает чистый ион, Al 3+ , образованный в результате потери этих электронов. Однако энергия, необходимая для образования иона Al 3+ , очень высока, и в большинстве случаев для атома алюминия энергетически более выгодно образовывать ковалентные соединения посредством гибридизации sp 2 , как бор. Ион Al 3+ может быть стабилизирован путем гидратации, а октаэдрический ион [Al (H 2 O) 6 ] 3+ находится как в водном растворе, так и в нескольких солях.

Ряд соединений алюминия имеет важное промышленное применение. Оксид алюминия, который встречается в природе в виде корунда, также готовится в больших количествах в промышленных масштабах для использования в производстве металлического алюминия и изготовления изоляторов, свечей зажигания и различных других продуктов. При нагревании оксид алюминия приобретает пористую структуру, которая позволяет ему адсорбировать водяной пар. Эта форма оксида алюминия, известная как активированный оксид алюминия, используется для сушки газов и некоторых жидкостей.Он также служит носителем для катализаторов различных химических реакций.

Анодный оксид алюминия (AAO), обычно получаемый путем электрохимического окисления алюминия, представляет собой наноструктурированный материал на основе алюминия с очень уникальной структурой. AAO содержит цилиндрические поры, которые могут использоваться в различных целях. Это термически и механически стабильный состав, при этом он оптически прозрачен и является электрическим изолятором. Размер пор и толщину AAO можно легко адаптировать к определенным приложениям, включая использование в качестве шаблона для синтеза материалов в нанотрубки и наностержни.

Другим важным соединением является сульфат алюминия, бесцветная соль, получаемая при действии серной кислоты на гидратированный оксид алюминия. Коммерческая форма представляет собой гидратированное кристаллическое твердое вещество с химической формулой Al 2 (SO 4 ) 3 . Он широко используется в производстве бумаги как связующее для красителей и как поверхностный наполнитель. Сульфат алюминия соединяется с сульфатами одновалентных металлов с образованием гидратированных двойных сульфатов, называемых квасцами. Квасцы, двойные соли формулы MAl (SO 4 ) 2 · 12H 2 O (где M — однозарядный катион, такой как K + ), также содержат ион Al 3+ ; M может быть катионом натрия, калия, рубидия, цезия, аммония или таллия, а алюминий может быть заменен множеством других ионов M 3+ — e.например, галлий, индий, титан, ванадий, хром, марганец, железо или кобальт. Наиболее важной из таких солей является сульфат алюминия-калия, также известный как квасцы калия или квасцы поташа. Эти квасцы находят множество применений, особенно в производстве лекарств, текстиля и красок.

При реакции газообразного хлора с расплавленным металлическим алюминием образуется хлорид алюминия; последний является наиболее часто используемым катализатором в реакциях Фриделя-Крафтса, т. е. синтетических органических реакциях, участвующих в получении широкого ряда соединений, включая ароматические кетоны и антрохинон и его производные.Гидратированный хлорид алюминия, широко известный как хлоргидрат алюминия, AlCl 3 ∙ H 2 O, используется в качестве местного антиперспиранта или дезодоранта для тела, сужая поры. Это одна из нескольких солей алюминия, используемых в косметической промышленности.

Гидроксид алюминия, Al (OH) 3 , используется для водонепроницаемости тканей и для производства ряда других соединений алюминия, включая соли, называемые алюминатами, которые содержат группу AlO 2 .С водородом алюминий образует гидрид алюминия, AlH 3 , твердое полимерное вещество, из которого получают тетрогидроалюминаты (важные восстановители). Литийалюминийгидрид (LiAlH 4 ), образуемый реакцией хлорида алюминия с гидридом лития, широко используется в органической химии, например, для восстановления альдегидов и кетонов до первичных и вторичных спиртов соответственно.

Эта статья была последней отредактирована и обновлена ​​Эриком Грегерсеном, старшим редактором.

Узнайте больше в этих связанных статьях Britannica:

  • элемент группы бора

    представляют собой бор (B), алюминий (Al), галлий (Ga), индий (In), таллий (Tl) и нихоний (Nh).Они характеризуются как группа наличием трех электронов во внешних частях их атомной структуры. Бор самый легкий…

  • материаловедение: алюминий

    Поскольку плотность алюминия составляет примерно одну треть от плотности стали, его замена стали в автомобилях может показаться разумным подходом к снижению веса и, таким образом, к увеличению экономии топлива и сокращению вредных выбросов.Однако такие замены не могут быть произведены без учета…

  • химическая промышленность: рафинирование алюминия

    Фтористая промышленность тесно связана с производством алюминия. Глинозем (оксид алюминия, Al 2 O 3 ) может быть восстановлен до металлического алюминия путем электролиза при сплавлении с флюсом, состоящим из фторалюмината натрия (Na 3 AlF 6 ), обычно называемого криолитом.После запуска процесса криолит составляет…

.

Где продать алюминиевые банки рядом со мной? Начни зарабатывать деньги прямо сейчас!

Хотите зарабатывать дополнительные деньги каждый месяц, не вкладывая слишком много времени и усилий? Вы часто пьете напитки в алюминиевых емкостях? Есть ли у вас доступ к местам, где вы можете найти использованные банки, например, в парках или стадионах?

Что ж, вы, вероятно, сможете неплохо заработать, собирая и продавая банки.

Вы, должно быть, задаетесь вопросом: «Есть ли рядом со мной центры по переработке алюминиевых банок?». Вероятность получить доступ хотя бы к одной свалке в вашем районе довольно высока.К тому же, если вы продумаете стратегию своего нового хобби по зарабатыванию денег, вам не понадобится больше одной-двух поездок в месяц.

Продолжайте читать и узнайте все, что вам нужно знать, чтобы стать гуру по переработке консервных банок. Вы потенциально можете зарабатывать от 500 до 1000 долларов в месяц, если серьезно относитесь к этой задаче.

Цены на алюминиевые банки в центрах переработки

Прежде чем кто-либо начнет собирать тару для напитков, он должен найти информацию о ценах на переработку алюминиевых банок в своем районе.

Если вы не живете в штате, где выставляются счета за бутылку, средняя цена за алюминиевую банку составляет от 1,5 до 2 центов. Продажа фунта банок принесет вам от 35 до 45 центов. Еще раз хотим подчеркнуть, что точная цена может варьироваться в зависимости от центра, в котором вы продаете товары. Также иногда на цену влияет и вес.

Например, за одну свалку можно заплатить 45 центов за фунт алюминиевых контейнеров, независимо от того, сколько фунтов вы принесете.Другие предприятия по переработке вторсырья могут предложить эту цену только в том случае, если вы получите им не менее 50 фунтов контейнеров.

Сколько вы получите за банки с бутылками?

Ответ на вопрос «Сколько стоит алюминиевая банка?» Намного лучше, если вы живете в штате с бутылочными счетами.

«Счета за бутылки» — это другое слово «закон о хранении контейнеров». Это правило существует в 10 штатах и ​​требует минимального депозита на контейнерах для напитков. Эти правила существуют для того, чтобы гарантировать более высокую скорость повторного использования и переработки.

При минимальных выплатах по алюминиевым контейнерам возможность заработка резко возрастает. Эта минимальная выплата варьируется от 5 до 10 центов за банку в зависимости от законов штата. Бутылочные счета есть в следующих штатах: Калифорния, Коннектикут, Гавайи, Айова, Мэн, Массачусетс, Мичиган, Нью-Йорк, Орегон и Вермонт.

В качестве примера допустим, что минимальная выплата за банку в вашем штате составляет 5 центов. Если вам удастся собрать 1000 алюминиевых контейнеров каждую неделю, вы будете зарабатывать дополнительно 50 долларов каждую неделю.Это дополнительные 200 долларов в месяц. Если ваше государство платит 10 центов за банку, ваш дополнительный денежный доход будет удвоен.

Этой суммы должно хватить, чтобы вы задали себе вопрос: «Есть ли поблизости от меня переработка алюминиевых банок?».

Усилия и время против. Прибыль

Важно понимать, сколько времени и усилий вы тратите на переработку банок, а не прибыль. Для некоторых людей эта деятельность может быть невыгодной, если они могут заработать больше денег, занимаясь чем-то другим.

Все зависит от ваших возможностей, желания и организаторских способностей. Итак, , вот несколько советов, которые помогут вам максимизировать прибыль, которую вы получите от переработки алюминиевых банок .

  • Продавайте их оптом — Добраться до места, где покупают банки, стоит денег и времени. Вместо того, чтобы ходить туда каждую неделю, попробуйте собирать контейнеры для напитков в течение месяца. Продажа контейнеров оптом обеспечивает более крупные платежи и избавляет вас от многократных поездок на свалку.Собранные предметы можно хранить в гараже в полиэтиленовых пакетах или больших мусорных баках.
  • Раздавите банки — Чистые и раздавленные банки позволяют снизить стоимость и занимают меньше места. Для этого вы можете приобрести консервную дробилку, так как это позволит максимально увеличить свободное место для хранения. Центры переработки часто платят меньше, если в ваших банках есть жидкость, потому что это влияет на общий вес.
  • Найдите лучшие цены — Не все цены на переработку алюминиевых банок одинаковы.Даже кажущаяся незначительной разница в цене в конечном итоге может означать больше денег. Изучите и найдите лучшие цены в вашем районе, прежде чем решать, где продавать.
  • Знайте вес — Один фунт включает около 30 алюминиевых контейнеров для напитков. Зная это, вы сможете рассчитать возможную прибыль при следующей поездке на свалку. Поэтому рекомендуется отслеживать, сколько банок вы собрали, чтобы иметь реалистичные денежные ожидания.
  • Имейте план — Переработка алюминиевых банок может легко превратиться в пустую трату времени, если у вас нет хорошего плана.Вам нужно задать себе несколько вопросов.

Сколько денег вы хотите зарабатывать в месяц? Есть ли рядом со мной места, где можно перерабатывать алюминиевые банки? Цена хорошая? Могу ли я достичь своих ежемесячных целей? Сколько банок мне нужно в месяц? Можно ли собрать такое количество предметов?

Вам следует начинать свое приключение по утилизации отходов только после того, как вы ответите на все эти вопросы и установите все необходимые факты.

Где забрать алюминиевые банки?

Изготовление банок за наличные выгодно только в том случае, если вы можете собрать их достаточное количество.Допустим, средняя цена за фунт составляет 45 центов, а фунт включает примерно 30 банок. Чтобы заработать 5 долларов, вам понадобится более 300 банок. Конечно, это не сделает вас богатым человеком и не решит многие ваши финансовые проблемы.

Имея хороший план, вы можете утилизировать банки за деньги и на самом деле заработать на этом хорошие деньги. Единственное, что вам нужно, это умная стратегия, где найти как можно больше предметов. Вот несколько мест, за которыми стоит следить и быстро набирать нужное количество банок в месяц .

  • Местные парки — Подростки и большие компании друзей часто проводят время в местных парках, наслаждаясь консервированными безалкогольными или алкогольными напитками. Они либо выбрасывают мусор поблизости, либо просто оставляют его на траве. Регулярно гуляйте в местных парках и собирайте по пути пустые банки;
  • Местные улицы — Люди часто оставляют контейнеры с напитками на обочинах местных улиц, когда допивают. Некоторые могут оставить их и рядом с мусорными баками.В любом случае, вы можете найти многих из них, просто бродя по местным улицам;
  • Спортивные объекты и стадионы — Когда тысячи посетителей покидают спортивные объекты и стадионы, вы обязательно найдете за ними много банок. Если у вас есть доступ к спортивным объектам и стадионам, максимально используйте его, собирая сразу сотни предметов;
  • Мероприятия, проводимые вами или вашими друзьями — Каждый раз, когда вы проводите какое-либо мероприятие, покупайте консервированные напитки и затем просите посетителей бросать их в специальные мусорные баки или пластиковые пакеты.Вы также можете попросить своих друзей и семью собрать любые банки, которые у них есть, и передать их вам;
  • Ваш офис — Ваш офис также может быть отличным местом для сбора алюминиевых предметов. Сделайте еще один шаг и поместите специальный пластиковый пакет рядом с табличкой с просьбой к вашим коллегам бросить свои контейнеры внутрь;
  • Концерты и фестивали — Так же, как спортивные мероприятия, концерты и фестивали привлекают тысячи посетителей. Так что это отличное место для одновременного сбора сотен использованных алюминиевых банок.

Как только вы соберете достаточно контейнеров для хорошей прибыли, вы можете начать думать, где продавать алюминиевые банки рядом со мной.

Где продавать алюминиевые банки рядом со мной?

Вы знаете средние цены и знаете, как извлечь максимальную пользу из сбора контейнеров для напитков. А теперь пора спросить: «Кто рядом со мной покупает алюминиевые банки?».

Что ж, ответ на этот вопрос не универсален и зависит от того, где вы находитесь в США. Одна из идей — использовать приложение iScrap, которое позволяет легко находить свалки в вашем районе.Это приложение простое в использовании и позволяет просматривать предприятия по переработке вторсырья в вашем регионе. Это, вероятно, самый простой способ найти все варианты рядом с вами.

Быстрое исследование темы вместе с названием вашего штата и / или города также должно помочь. Например, Recycle USA Inc. популярна среди жителей Бирмингема, штат Алабама. Если вы живете недалеко от Темпе, штат Аризона, вы можете воспользоваться услугами I-Buy-Scrap. У Нью-Йорка также есть несколько вариантов, и некоторые из них — это TNT Scrap Metal, Sims Metal Management и Fortune Plastic & Metals Inc.

Сводка

Проведение рядом со мной исследований по переработке алюминиевых банок и средних цен на продажу банок — это первый шаг к заработку дополнительных денег. Существует бесчисленное количество историй успеха людей, которым удалось увеличить свой ежемесячный доход на дополнительные 500 или даже 1000 долларов за счет переработки консервных банок.

Если вам посчастливилось жить в одном из 10 штатов с бутылочными счетами, то вам невероятно повезло. Средние цены на алюминиевые контейнеры в этих штатах намного выше, а прибыль легко максимизировать.В противном случае вам придется немного потрудиться, чтобы получить желаемую сумму денег, продавая банки на свалки.

При наличии хорошей стратегии и достаточного количества информации вы легко сможете достичь своих целей. Вам не нужно работать больше, если вы умеете работать умнее. Найдите места, где вы можете собрать много банок одновременно, выделите место для хранения в своем доме и продавайте их оптом. Это лучший способ максимизировать вашу прибыль.

Конечно, не забудьте подписаться на на нашу рассылку, чтобы узнать о других творческих способах сбережения и заработка.


Подписаться

I-Buy-Scrap / Приложение iScrap / переработка / Sims Metal Management / TNT Scrap Metal

.

Что такое алюминий? (с иллюстрациями)

Алюминий — металлический химический элемент в большом количестве, который широко используется во всем мире для изготовления широкого спектра продуктов. Многие потребители взаимодействуют с той или иной формой этого вещества ежедневно, особенно если они активны на кухне. Элемент имеет атомный номер 13 и обозначен символом Al в периодической таблице элементов. Он относится к бедным металлам, разделяя свойство чрезвычайной ковкости с такими металлами, как олово и свинец.Международный стандарт написания: алюминий .

Выстелите противень алюминиевой фольгой, чтобы упростить уборку.

История этого элемента на самом деле довольно старая. На протяжении веков использовались различные формы; оксиды алюминия, например, появляются в керамике и глазури Древнего Египта.Римляне также использовали его в виде вещества, которое они называли квасцами. В 1800-х годах Ганс Христиан Эрстед выделил нечистую форму элемента, а за ним последовал Фридрих Велер, которому удалось выделить чистую форму в 1827 году.

Алюминиевая банка.

Сначала ученые полагали, что этот металл был чрезвычайно редким и трудным для извлечения, и в какой-то момент металл ценился очень высоко. Несколько скульптур 1800-х годов иллюстрируют это широко распространенное мнение. Однако в 1886 году американский студент по имени К.М. Холл и француз по имени Поль Эру разработали процесс плавки руд для извлечения из них ценного алюминия.В настоящее время метод Холла-Эру широко используется во всем мире для выделения этого элемента из таких руд, как бокситы.

Алюминиевая лестница.

Алюминий не только не редкость, но и является третьим по распространенности элементом в земной коре и самым распространенным металлическим элементом на Земле.В чистом виде он серебристо-белый и чрезвычайно легкий. Элемент легко смешивается, образуя легкие, но очень прочные сплавы, и он очень хорошо проводит как тепло, так и электричество. Кроме того, он немагнитен, что может быть очень полезным свойством в некоторых приложениях. Бесчисленное множество применений металла и его соединений включают автомобильное производство, строительство, краски, упаковку, кухонные принадлежности, антациды, антиперспиранты и вяжущие средства.

Алюминий имеет атомный номер 13 и обозначается символом Al в периодической таблице элементов.

Хотя алюминий сам по себе не токсичен, у этого элемента есть несколько рискованных аспектов. Люди, работающие с большими объемами этого вещества, могут заболеть, особенно если они вдохнут элемент. Дети оказываются восприимчивыми к этому элементу, особенно если их почки плохо функционируют. Похоже, что он также может вызывать нервно-мышечные и скелетные проблемы, хотя точный порог опасности неизвестен. Исследования алюминиевых продуктов показали, что они безопасны для большинства потребителей, хотя некоторые люди могут испытывать контактный дерматит при работе с такими продуктами, как кастрюли, антиперспиранты и антациды.

Алюминий все чаще используется в автомобилестроении. .

фактов вкратце | Алюминиевая ассоциация

Алюминий может поглощать в два раза больше энергии удара, чем сталь.

фунта за фунт, алюминий поглощает в два раза больше энергии удара, чем сталь, и также хорошо работает при авариях. Алюминиевые поручни складываются как гармошка, которая рассеивает и направляет энергию от пассажиров автомобиля. Алюминий также обеспечивает преимущества в тормозном пути, управляемости и производительности.

Алюминий можно объединять со специальными пленками для создания гибкой упаковки.

Все чаще алюминиевую фольгу объединяют с гибкими пленками для создания легких и гибких упаковок. Эта технология позволяет упаковке расширяться до формы своего содержимого, а затем сжиматься по мере потребления продукта.

Алюминиевые банки содержат в 3 раза больше переработанного стекла или пластика.

Алюминиевые банки содержат в среднем 73 процента переработанного содержимого — это более чем в 3 раза больше, чем в стеклянной или пластиковой бутылке.Банки также перерабатываются гораздо чаще, чем контейнеры для напитков конкурирующих типов.

Алюминиевая фольга обеспечивает полный барьер для света, кислорода, влаги и бактерий.

Алюминиевая фольга обеспечивает полный барьер для света, кислорода, влаги и бактерий. По этой причине фольга широко используется в пищевой и фармацевтической упаковке. Алюминиевая фольга также используется для изготовления асептической упаковки. Этот вид упаковки позволяет хранить скоропортящиеся товары без охлаждения.

Алюминий в автомобилях сокращает выбросы CO2 на 44 миллиона тонн.

Независимые исследования подтвердили, что алюминий в автомобилях оставляет на 20 процентов меньше выбросов CO2 в течение жизненного цикла, чем сталь. А по сравнению со стальными автомобилями, парк автомобилей из алюминия позволяет сократить выбросы CO2, эквивалентные 44 миллионам тонн.

Алюминиевый провод и кабелепровод не искры.

В отличие от стальных кабелепроводов, жесткий алюминий не образует искр, устойчив к коррозии и не ржавеет.Эти свойства алюминия жизненно важны для электрических применений в угольных шахтах, элеваторах и нефтеперерабатывающих заводах (где искрение может привести к катастрофическим последствиям).

Строители надежно применяют алюминиевую проводку более 40 лет.

Национальный электрический кодекс разрешает использование алюминиевого провода с 1901 года, всего через четыре года после того, как в 1897 году был опубликован первый признанный национальный электрический кодекс.Алюминиевые проводники AA-8000 надежно устанавливаются в полевых условиях более 40 лет.

Крыши из алюминия с покрытием отражают до 95 процентов солнечного света.

Алюминий превосходит сталь и железо по способности отражать инфракрасные (тепловые) лучи солнца. Правильно покрытые алюминиевые крыши могут отражать до 95 процентов падающей на них солнечной энергии, что значительно повышает энергоэффективность. Алюминий — ключевой компонент экологичных зданий, имеющих сертификат LEED.

Следующий космический аппарат НАСА будет построен из алюминия.

Orion MPCV (многоцелевой экипаж) будет служить космическим аппаратом следующего поколения НАСА. Lockheed Martin выбрала алюминий-литий для изготовления основных конструкций космического корабля.

Сегодня почти 75 процентов всего когда-либо производимого алюминия используется.

Бесконечно перерабатываемый и очень прочный, почти 75 процентов всего когда-либо производимого алюминия используется до сих пор.Алюминий на 100% пригоден для вторичной переработки и сохраняет свои свойства на неопределенный срок. Алюминий — один из немногих материалов в потоке утилизации, который более чем окупает стоимость его собственного сбора.

Переработка алюминия позволяет экономить более 90 процентов энергии, необходимой для производства нового алюминия.

Переработка алюминия позволяет сэкономить более 90 процентов энергии, необходимой для создания сопоставимого количества металла из сырья.Выбрасывание алюминиевой канистры тратит столько же энергии, как и выливание половины объема бензина. Почти 75 процентов всего производимого алюминия все еще используется.

Ford F-150 2015 будет иметь полностью алюминиевый кузов, вес которого составит 700 фунтов.

Ford выпускает полностью алюминиевый F-150 в 2015 году. Грузовик сбросит 700 фунтов (примерно 15 процентов веса автомобиля) за счет использования высокопрочного алюминия военного класса.Это снижение веса позволит Ford удовлетворить новые требования к экономии топлива и подготовит почву для повышения эффективности всего парка.

В алюминиевой промышленности напрямую занято более 162 000 человек.

Более 162 000 рабочих напрямую заняты в алюминиевой промышленности. В общей сложности более 692000 рабочих мест в США поддерживаются производством, обработкой и использованием алюминия.

Алюминиевая промышленность приносит около 71 миллиарда долларов в год прямого экономического воздействия.

Алюминиевая промышленность США приносит почти 71 миллиард долларов в год прямого экономического воздействия. Если учесть всех поставщиков и связанные с ними бизнес-функции, отрасль приносит 174 миллиарда долларов экономического воздействия — почти 1 процент ВВП.

С 1995 года углеродный след алюминиевой промышленности снизился почти на 40%.

Добровольные экологические усилия означают, что алюминий, производимый в Северной Америке, сегодня более экологичен, чем когда-либо прежде.Энергия, необходимая для производства нового алюминия, снизилась более чем на четверть с 1995 года, а углеродный след отрасли снизился почти на 40 процентов.

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *