Для чего используется алюминий: Применение аллюминия в промышленности

Содержание

Применение аллюминия в промышленности

В настоящее время алюминий и его сплавы применяют во многих областях промышленности и техники. Прежде всего алюминий и его сплавы используют авиационная и автомобильная отрасли промышленности. Широко применяется алюминий и в других отраслях промышленности: в машиностроении, электротехнической промышленности и приборостроении, промышленном и гражданском строительстве, химической промышленности, производстве предметов народного потребления.

В авиапромышленности алюминий стал главным металлом благодаря тому, что его использование позволило решить задачу уменьшения массы транспортных средств и резко увеличить эффективность их применения. Из алюминия и его сплавов изготовляют авиаконструкции, моторы, блоки, головки цилиндров, картеры, коробки передач, насосы и другие детали.


В электротехнической промышленности алюминий и его сплавы применяют для изготовления кабелей, шинопроводов, конденсаторов, выпрямителей переменного тока. В приборостроении он используется при производстве кино- и фотоаппаратуры, радиотелефонной аппаратуры, различных контрольно-измерительных приборов.

Алюминий начали широко применять при изготовлении аппаратуры для производства и хранения крепкой азотной кислоты, пероксида водорода, органических веществ и пищевых продуктов благодаря его высокой коррозионной стойкости и нетоксичности.

Алюминиевая фольга стала очень распространенным упаковочным материалом, так как она гораздо прочнее и дешевле оловянной. Также алюминий стал широко использоваться для изготовления тары для консервирования и храпения продуктов сельского хозяйства. Но хранение не ограничивается маленькими баночками, алюминий используется для строительства зернохранилищ и других быстровозводимых сооружений, востребованных в сельском хозяйстве.

Также широко алюминий применяется в военной промышленности при строительстве самолетов, танков, артиллерийских установок, ракет, зажигательных веществ, и дл многих других целей в военной технике.

Широкое применение алюминий высокой чистоты находит в таких новых областях техники как ядерная энергетика, полупроводниковая электроника, радиолокация.

Большое распространение алюминий получил как антикоррозийное покрытие, он прекрасно защищает металлические поверхности от действия различных химических веществ и атмосферной коррозии, по этому широко используется в сфере производства различного металлопроката.

Широко используется еще одно полезное свойство алюминия — его высокая отражающая способность. Поэтому из него изготовливаются различные отражающие поверхностеи нагревательных и осветительных рефлекторов и зеркал.

Алюминий используют в металлургической промышленности в качестве восстановителя при получении ряда металлов, таких как хром, кальций, марганец. Он также используется для раскисления стали и сварки стальных деталей.

Не обойтись без алюминия и его сплавов сплавы в промышленном и гражданском строительстве. Он используется для изготовления каркасов зданий, ферм, оконных рам, лестниц и др. В Канаде, например, расход алюминия для этих целей составляет около 30 % от общего потребления, в США- более 20 %.

Исходя из всех вышеперечисленных способов применения алюминия, можно сказать, что алюминий прочно занял первое место среди других цветных металлов по масштабам производства и значению в хозяйстве

Алюминий, что такое, основные свойства, где применяется – Алюминиевая Ассоциация

Алюминий чрезвычайно распространен в природе: по этому параметру он занимает четвертое место среди всех элементов и первое — среди металлов (8,8% от массы земной коры), но не встречается в чистом виде. Его в основном добывают из бокситов, хотя известно несколько сот минералов алюминия (алюмосиликаты, алуниты и т. п.), абсолютное большинство которых не подходит для получения металла.

Алюминий обладает замечательными свойствами, которые объясняют широчайший спектр его применения. По объемам использования в самых разных отраслях промышленности он уступает только железу. Ковкий и пластичный, алюминий легко принимает любые формы. Оксидная пленка делает его устойчивым к коррозии, а значит, срок службы изделий из алюминия может быть очень долгим. Кроме того, к списку достоинств необходимо добавить высокую электропроводимость, нетоксичность и легкость в переработке.

Всем этим объясняется огромное значение легкого металла в мировой экономике. Без него аэрокосмическая индустрия никогда не получила бы развития. Алюминий необходим для производства автомобилей, вагонов скоростных поездов, морских судов. Самые разные виды продуктов из алюминия используются в современном строительстве. Алюминий является основным материалом для высоковольтных линий электропередачи. Примерно половина посуды для приготовления пищи, продаваемой каждый год во всем мире, сделана именно из этого металла. Невозможно представить магазин без алюминиевых банок для напитков и аптеку без лекарств, упакованных в алюминиевую фольгу.

Значение алюминия для современной экономики сложно переоценить. Потребление алюминия в промышленности тесно связано с развитием наиболее высокотехнологичных производственных отраслей (автопром, авиация, аэрокосмические проекты, электроника и пр.).

Таким образом, потребление алюминия и алюминиевых сплавов косвенно характеризует уровень развития технологий и инновационность экономики в целом.

Сфера применения алюминия и его сплавов в промышленности и быту.

Ключевое место алюминия в производственном процессе.

   Алюминий – легкий, пластичный металл, один из наиболее распространённых химических элементов, содержащихся в земной коре. Алюминий очень удобен в использовании, поскольку имеет высокую устойчивость к коррозии, обладает электропроводимостью и устойчив к резким перепадам температур. Взаимодействуя с воздухом приобретает качественное преимущество – на поверхности металла образовывается твердая пленка, замедляющая естественное старение. Существуют несколько методов производства алюминия, но наладить этот процесс получилось лишь в ХХ веке.

Области применения алюминия.

   Алюминий податлив штамповке, имеет значительную коррозийную стойкость, обладает высокой теплопроводностью, не токсичен в соединениях, поэтому он стал популярным конструкционным материалом. Области применения алюминия чрезвычайно обширны. В частности, он стал первым материалом для изготовления конструкций в авиастроении, ракетостроении, пищевой промышленности и производстве посуды. Благодаря своим качественным характеристикам алюминий способен ускорить судна и их маневренность. Более того, изделия и конструкции получаются легче, чем из стали на 50%.

   Отдельно выделяют способности алюминия при проводимости тока. Таким образом, он, по праву может составить конкуренцию меди. Имея, практически такую же электропроводимость, он стал экономически выгодным заменителем. Активно применяется в микроэлектронике, при изготовлении компонентов микросхем. Единственным минусом, применения его в данной сфере, выступает образование диэлектрической пленки, способное создавать высокую температуру в местах спайки. Существует определенное условие использования алюминия, в качестве проводника.

Применение алюминия в промышленном производстве и в повседневном быту.

Перечислим основные сферы применения алюминия:

  1. Авиационное строительство: изготовление двигателей, корпусов, насосов, коробок передач, прочих деталей.
  2. Ракетостроение: в качестве горючего компонента ракетного топлива (гидриды алюминия, боранаты алюминия, триметилалюминии, триэтилалюминии, трипропилалюминии).
  3. Судостроительные производства: изготовление палубных надстроек и основных корпусов.
  4. Электроника: изготовление проводов, с высокой проводимостью тока и их напыления, кабелей, конденсаторов, выпрямителей, приборных корпусов.
  5. Оборонная промышленность: стрелковое оружие (автоматы, пистолеты), ракеты, танки, самолеты и боевые установки.
  6. Строительная промышленность: изготовление каркасов домов, лестниц, оконных рам, элементы отделки, используется в качестве газообразующего элемента.
  7. ЖД перевозки используют алюминиевые цистерны для транспортировки продуктов нефтяной промышленности. Производят: рамы для вагонов, детали для кузовов, рефрижераторные вагоны.
  8. Автомобильное конструирование: бампер, радиатор, отопительные детали.
  9. Применение в быту: посуда, фольга, корпус и детали бытовых приборов (спирали электронагревателя – фехрали).
  10. Криогенная техника: алюминий сохраняет свои свойства при низких температурах.
  11. Используют при производстве сероводорода (сульфид).
  12. Изготовление зеркал (благодаря высокому коэффициенту отражения) и стекловарение (фториды, фосфаты, оксиды алюминия).

   К тому же, алюминиевые соединения используются для восстановления редких металлов, в качестве компонента смеси алюмотермии и протектора, также для пиротехники. Несмотря на множество преимуществ, есть один недостаток – невысокая прочность. Для того, чтобы сделать его более прочным, в производстве применяется крепкое соединение алюминия – дюралюминий (компонуя с медью и магнием). Ранее алюминий часто использовался для изготовления ювелирных изделий, в некоторых странах он заменяет серебряные украшения.

Где используется алюминий?

«Крылатый металл» является одним из самых распространенных в быту и производстве. Алюминий используется при создании мостов, автомобилей, самолетов и лаже смартфонов.

О том, где еще может использоваться алюминий, рассказывает Life.ru.

В небе и в космосе

Впервые алюминий «полетел» в 1900 году — в виде каркаса и винтов огромного дирижабля LZ-1 Фердинанда Цеппелина.

Но мягкий чистый металл годился только для медлительных летательных аппаратов легче воздуха. По-настоящему «крылатый» алюминий  был уже прочнее в пять раз, поскольку содержал в своём составе марганец, медь, магний, цинк в разных процентных соотношениях — небо и космос покоряли разновидности дюралюминия, сплава, изобретённого ещё в начале ХХ века немецким инженером Альфредом Вильмом.

Материал был перспективным, но имел и немало ограничений — требовал так называемого старения, то есть набирал заложенную в него прочность не сразу, а лишь со временем. Да и сварке не поддавался… И тем не менее покорение космоса началось именно с дюраля, из которого в том числе выполнен и шар знаменитого первого искусственного спутника Земли.

Гораздо позже, в разгар космической эпохи, начали появляться сплавы и материалы на основе алюминия с куда более замечательными свойствами. К примеру, дружба алюминия с литием позволила сделать детали самолётов и ракет значительно легче, не снижая прочности, а сплавы с титаном и никелем обладают свойством «криогенного упрочнения»: в космическом холоде пластичность и прочность их только возрастают. Из тандема алюминия и скандия была выполнена обшивка космического челнока «Буран»: алюминиево-магниевые пластины стали гораздо прочнее на разрыв, сохранив при этом гибкость и вдвое повысив температуру плавления.

Более современные материалы — не сплавы, а композиты. Но и в них основой чаще всего является алюминий. Один из современных и перспективных авиакосмических материалов называется «бороалюминиевый композит», где волокна бора прокатываются сэндвичем со слоями алюминиевой фольги, образуя под высокими давлениями и температурами крайне прочный и лёгкий материал. К примеру, лопатки турбин продвинутых авиационных двигателей представляют собой бороалюминиевые несущие стержни, одетые в титановую «рубашку».

В автопроме и на транспорте

Сегодня у новых моделей Range Rover и Jaguar доля алюминия в конструкции кузова составляет 81%. Первые же эксперименты с алюминиевыми кузовами принято приписывать компании Audi, презентовавшей A8 из лёгких сплавов в 1994 году. Однако ещё в начале ХХ века этот лёгкий металл на деревянном каркасе был фирменным стилем кузовов знаменитых британских спорткаров Morgan. Настоящее «алюминиевое вторжение» в автопром началось в 1970-е, когда заводы массово принялись использовать этот металл для блоков цилиндров двигателей и картеров коробок передач вместо привычного чугуна; чуть позже распространение получили легкосплавные колёса вместо штампованных стальных.

В наши дни ключевой тренд автопрома — электричество. И лёгкие сплавы на основе алюминия приобретают особую актуальность в кузовостроении: «энергосберегающий» металл делает электромобиль легче, а значит, увеличивает пробег на одном заряде батарей. Алюминиевые кузова использует марка Tesla — законодатель мод на рынке автомобилей будущего, и этим, собственно, всё сказано!

Отечественных автомобилей с алюминиевыми кузовами пока нет. Но нержавеющий и лёгкий материал уже начинает проникать в российскую транспортную сферу. Характерный пример — ультрасовременные скоростные трамваи «Витязь-М», чьи салоны полностью выполнены из алюминиевых сплавов, практически вечных и не нуждающихся в постоянной подкраске. Стоит отметить, что на создание одного трамвайного интерьера требуется до 1,7 тонны алюминия, который поставляет Красноярский алюминиевый завод «Русала».

«Потолок, стены, стойки — всё алюминиевое. И это не просто обшивка листами, детали сложные, совмещающие в себе и отделочные, и несущие элементы, и туннели для вентиляции и проводки, — рассказывает Виталий Деньгаев, гендиректор компании «Красноярские машиностроительные компоненты», где были созданы алюминиевые салоны «Витязя». — Плюс помимо эстетики мы получаем ещё и высочайшую безопасность: в отличие от пластиков и синтетики алюминиевый салон не выделяет вредных веществ, если возникло возгорание!»

С 17 марта этого года 13 трамваев «Витязь-М» начали ходить по Москве и к 5 апреля уже перевезли первую сотню тысяч пассажиров! Этот быстрый и бесшумный городской транспорт с салонами на 260 человек, с Wi-Fi, климат-контролем, местами для инвалидов и детских колясок и прочими элементами комфорта, рассчитан на срок службы в 30 лет, что вдвое больше, чем у составов прошлых моделей. В ближайшие три года столица получит 300 «Витязей», 100 из которых встанут на рельсы уже в этом сезоне.

В принтерах будущего

Элементарными любительскими 3D-принтерами, печатающими из пластиковой нити, уже никого не удивишь. Сегодня начинается эра полноценной серийной 3D-печати деталей из металла. Алюминиевый порошок — едва ли не самый распространённый материал для технологии, называемой AF (от Additive Fabrication, «аддитивное производство»). Additive по-английски — «добавка», и в этом глубокий смысл названия технологии: деталь производится не из болванки, от которой в процессе обработки отрезается лишний материал, а наоборот — добавлением материала в рабочую зону инструмента.

Металлический порошок выходит из дозатора AF-машины и послойно спекается лазером в единую прочную массу монолитного алюминия. Детали, которые делаются цельными по методу AF, поражают воображение своей пространственной сложностью; выполнить их классическими методами даже на самых современных металлообрабатывающих станках — невозможно! За счёт ажурной конструкции детали, созданные на машинах аддитивной печати из порошков алюминиевых сплавов, имеют прочность, как у монолита, будучи при этом в несколько раз легче. Производятся они безотходно и быстро — такие металлические «кружева» незаменимы в биомедицине, авиации и космонавтике, в точной механике, при изготовлении пресс-форм и так далее.

Ещё недавно все технологии, связанные с Additive Fabrication, были иностранными. Но сейчас активно развиваются отечественные аналоги. Например, в Уральском федеральном университете (УрФУ) готовится к запуску экспериментальная установка по производству металлических порошков для AF-3D-печати. Установка работает на принципе распыления расплавленного алюминия струёй инертного газа, такой метод позволит получать металлические порошки с любыми заданными параметрами размерности зерна.

В строительстве и освещении

Алюминий может быть также фасадным и кровельным материалом, срок службы которого не ограничивается парой лет и который крайне удобен для дизайнеров и монтажников! Для строительства разработаны особые патентованные сплавы и композиты с самыми разными свойствами — Alclad, Kal-Alloy, Kalzip, Dwall Iridium. Из алюминия можно штамповать детали, в которых кровельная плоскость составляет единое целое с несущими элементами. Это необходимо, к примеру, для создания раздвижных крыш стадионов.

Покрытые специальной разновидностью фторполимера, родственной тефлону, алюминиевые детали крыш выдерживают огромные нагрузки от ветра и осадков. А при сооружении кровель огромных размеров, где общая длина листа от края до края может достигать нескольких десятков метров, используют особую технологию, разработать которую также позволила пластичность алюминия. Чтобы избежать ненадёжного соединения множества небольших листов, на стройплощадку подвозят алюминиевую ленту шириной в несколько метров, свёрнутую в огромный рулон, и прямо на стройплощадке пропускают через специальную машину, делающую ровную ленту профилированной, а значит жёсткой. По специальным направляющим с роликами алюминиевый профиль подают на крышу здания. Эту технологию разработала британская Corus Group, один из мировых лидеров в области производства кровельных алюминиевых листов (ныне в составе Tata Steel).

В нашей же стране алюминиевая архитектура по-настоящему разворачивается только сейчас, с отставанием от мировых темпов, но бодро их нагоняя, — из последних примеров внедрения можно назвать крышу стадиона «Зенит-Арена» в Санкт-Петербурге, объекты казанской Универсиады, сочинский аэропорт, строящийся сейчас в Нижнем Новгороде уникальный легкосплавный мост и другие объекты.

Здание построено, кровля возведена, теперь нужен свет! И тут алюминий снова в тренде. Это не только «крылатый» металл, но ещё и «металл света». Сейчас в мире горят миллиарды LED-ламп и число их ежесекундно растёт. В каждой лампе установлен алюминиевый радиатор, отводящий лишнее тепло от кристаллов светодиодов, не дающий им перегреться. Но куда более важную роль алюминий играет при изготовлении основы самих светодиодов — лейкосапфира. Так называется искусственный кристалл из особо чистого оксида алюминия. Сейчас тонны сырья для кристаллов в основном завозятся из-за границы, однако недавно в Набережных Челнах при поддержке Ростеха запущена первая в стране линия по производству особо чистого оксида алюминия для выращивания монокристаллов лейкосапфиров. В Алюминиевой ассоциации убеждены, что в течение 2–3 лет наши предприятия смогут полностью заместить импорт в Россию особо чистого оксида алюминия, что резко стимулирует отечественное светодиодное производство.

В нашей жизни — повсюду…

…Просто мы не всегда об этом знаем! Практически все качественные гаджеты сделаны на основе алюминиевых сплавов: рамки и крышки смартфонов, планшетов, ноутбуков, корпуса «пауэрбанков» и многое другое. Спортивный инвентарь, детские коляски, кулинарная посуда, батареи отопления, мебельная фурнитура — список сфер, где задействован лёгкий металл, безграничен. Но почему мы не всегда об этом знаем? Дело в том, что алюминий и его сплавы в «голом виде», как та, всем известная, но безнадёжно устаревшая алюминиевая ложка, в наши дни почти не встречается. Сегодня бал правит технология анодирования, которая позволяет покрывать детали из алюминия и его сплавов прочной износостойкой плёнкой оксида. Анодирование не пачкает рук и может получить практически любой цвет и текстуру.

Одно из перспективнейших бытовых алюминиевых направлений — велосипедные рамы. Алюминиевая рама очень лёгкая, поэтому и поднимать велосипед, и ездить на нём очень удобно. Рама не ржавеет при повреждениях краски, легирующие добавки делают металл очень прочным, а технологии под названиями «баттинг» и «гидроформинг» позволяют производить трубы с переменной толщиной и с любыми изгибами, облегчая и усиливая раму именно там, где это нужно.

Миллионы велосипедов — огромный рынок! Однако пока рамы всех продаваемых и собираемых в нашей стране двухколёсников — импортные… «Впрочем, в этой сфере наметилась небольшая революция: инженеры «Русала» разработали особый новый сплав, идеально подходящий для велорам, и ведут работу по развитию производства рам в нашей стране, — рассказывает заместитель редактора журнала «Металлоснабжение и сбыт» Леонид Хазанов. — Проект поддерживают «Русал», как единственный российский производитель алюминия, расположенный в Набережных Челнах завод алюминиевых профилей «Татпроф», готовый делать трубы для рам, и отечественная компания — сборщик велосипедов «Веломоторс». Если задуманные масштабы производства будут реализованы, наши рамы должны стать дешевле китайских и при этом куда выше по качеству».

Россия — мировой алюминиевый лидер, входящий в первую тройку производителей этого металла. СССР начал строить алюминиевые заводы в начале тридцатых годов ХХ века, к середине десятилетия полностью избавившись от импорта. Однако по-настоящему в «алюминиевую эру» мы вступаем, как ни странно, только сейчас. Основной владелец «Русала» Олег Дерипаска неоднократно заявлял, что уровень потребления алюминия в России гораздо ниже общемирового и сегодня наконец настало время сломить этот тренд и приложить максимум усилий и средств для создания перерабатывающих мощностей на территории страны и вытеснить импортную продукцию, к качеству которой зачастую возникает масса вопросов.

Долгие годы инженеры-проектировщики избегали использования алюминия, поскольку в устаревших нормативных документах алюминиевые сплавы и композиты просто не фигурировали — сегодня же нормативы, ГОСТы и СНИПы пересматриваются и обновляются в духе времени. И практически все сферы промышленности ждут открытия для себя новых областей использования этого металла.

Фото из открытых источников

Алюминий и авиастроение. Марки и алюминиево-литиевые сплавы в авиастроении

Алюминий — «крылатый металл». Такое название этот металл получил благодаря своей легкости, разнообразным свойствам и уникальным качествам.

В авиастроении алюминий применяют в основном в виде сплавов. Листы из алюминиевых сплавов используют для изготовления как внутреннего каркаса, так и внешней оболочки самолета. В самолетах применяют листовой алюминий толщиной от 3,3 до 0,25 мм.  Алюминиевые сплавы обладают удачным сочетанием свойств: небольшой плотностью (2500-2900 кг/м3), высокой прочностью (до 500-600 Мпа), коррозийнной стойкостью, технологичностью при литье, обработке давлением, сварке и обработке резанием. Благодаря высокой ударной прочности, алюминиевые сплавы являются важнейшим конструкционным материалом в самолетостроении. Самолеты на 2/3 состоят из алюминиевых сплавов.

При изготовлении авиационной техники успешно используются упрочняемые термической обработкой высокопрочные алюминиевые сплавы Al-Zn-Mg-Cu и сплавы средней и повышенной прочности Al-Mg-Cu. Они являются конструкционным материалом для обшивки и внутреннего силового набора элементов планера самолета (фюзеляж, крыло, киль и др.). Из свариваемых алюминиевых сплавов Al-Mg, Al-Mn, Al-Cu, Al-Mg-Li, Al-Mg-Si изготавливаются планеры, бортовые системы, шасси, лопасти воздушного винта, приборы и элементы внутренней отделки салона.

Для снижения массы летательного аппарата применяются алюминиево-литиевые сплавы основных систем легирования Al-Mg-Li (1420, 1421, 1424) и Al- Cu -Li (1460, 1464, 1469). Использование высокопрочных алюминиево-литиевых сплавов в сварных герметичных конструкциях несущих топливных баков фюзеляжа позволяет снизить их собственную массу на 12-15%.

Алюминиевые сплавы имеют бесспорное преимущество при создании изделий космической техники. Достоинством алюминиевых сплавов является их работоспособность при криогенных температурах в контакте жидким кислородом, водородом и гелием. У этих сплавов происходит так называемое криогенное упрочнение, т.е. прочность и пластичность растут с понижением температуры.

При строительстве и ремонте самолетов применяют следующие основные марки алюминия и алюминиевые сплавы:

  • Алюминий 1100
  • Алюминиевый сплав 2014
  • Алюминиевый сплав 2017
  • Алюминиевый сплав 2024
  • Алюминиевый сплав 2025
  • Алюминиевый сплав 2219
  • Алюминиевый сплав 3003
  • Алюминиевый сплав 5052
  • Алюминиевый сплав 6061
  • Алюминиевый сплав 7075
  • Литейные алюминиевые сплавы АЛ5, АЛ6, АЛ12, Ал19, АЛ2, АЛ8, АЛ12, АЛ13.

Таким образом, правильное применение материала способствуют повышению уровня технической эксплуатации и увеличению времени работы и надежности авиационной техники.


Также читайте статьи:

«Алюминий — это новая сталь»: ученые нашли способ сделать металл прочнее

Один из самых перспективных материалов для авиационной и автомобильной промышленности — алюминий. Ученые Национального исследовательского технологического университета «МИСиС» нашли простой и эффективный способ укрепления композитных материалов на его основе. Добавив в расплав алюминия никель и лантан, они смогли создать материал, сочетающий преимущества композиционных материалов и стандартных сплавов — гибкость, прочность, легкость. О разработке, которая открывает новые перспективы в авиа- и автомобилестроении, вышла статья в журнале Materials Letters.

Для производства более легких и быстрых летательных аппаратов и автомобилей требуются, соответственно, все более легкие материалы. Одним из наиболее перспективных материалов является алюминий, а точнее, алюмоматричные композиты — материалы на основе алюминия.

Команда ученых научной школы «Фазовые превращения и разработка сплавов на основе цветных металлов» НИТУ «МИСиС» создала новый прочный композит алюминий-никель-лантан для авиа- и автомобилестроения. В расплав алюминия добавлялись легирующие элементы, образующие с алюминием химические соединения, которые в процессе затвердевания сплава дают прочный армирующий каркас.

«Наша научная группа под руководством профессора Николая Белова уже многие годы занимается вопросами создания композитов на основе алюминия. Композит Al-Ni-La, — одна из таких работ по созданию естественного алюмоматричного композиционного материала, содержащего в структуре свыше 15% (по объему) армирующих частиц. Особенностью новой разработки является высокая армирующая способность формирующихся химических соединений, имеющих ультрадисперсное строение — диаметр армирующих элементов не превышает нескольких десятков нанометров. Ранее исследователи ограничивались изучением систем, в которых заведомо невозможно получение эффективного армирующего каркаса, либо получали композиционный материал трудоемкими методами порошковой металлургии (спеканием порошков), либо жидкофазными технологиями замешивания наночастиц в расплав» — рассказывает один из авторов разработки, научный сотрудник кафедры обработки металлов давлением НИТУ «МИСиС», к. т.н. Торгом Акопян.

Сегодня армирование алюминия происходит в основном при помощи нанопорошков, однако это крайне дорогой и трудоемкий процесс, и результат не всегда оправдывает потраченные ресурсы. Например, при повышении прочности всего на 5-20%, такой показатель, как пластичность, наоборот, может снизиться на десятки процентов или даже в несколько раз. Кроме того, сами частицы слишком крупные — от 100 нанометров до 1-2 микрометров, а их количество в объеме невелико.

Разработка ученых НИТУ «МИСиС» решает проблемы неравномерного армирования и низкой прочности «порошкового» композита — при плавлении размер армирующих частиц после кристаллизации материала на основе системы Al-Ni-La не превышает в поперечном сечении 30-70 нанометров. Благодаря естественной кристаллизации, частицы распределяются равномерно, создавая армирующий каркас, и композит получается более прочным и гибким, чем его «порошкового» аналоги.

«Предложенный нами композит уже обходит по многим показателям аналоги, в том числе и зарубежные. Однако мы не собираемся останавливаться на достигнутом, и в дальнейшем планируем продолжить работу над созданием более совершенных, сложных (3-, 4- и более фазных) и дешевых композитов, производственный цикл которых будет предусматривать использование алюминия технической чистоты и более дешевых легирующих компонентов», — добавляет Торгом Акопян.

По словам ученых, предложенный материал можно использовать, прежде всего, в области авиа- и машиностроения, для проектирования современной робототехники, в том числе беспилотных летательных аппаратов, где снижение массы дрона имеет критическое значение. Благодаря особенностям формирования структуры, предложенный материал может быть использован для изготовления сложных деталей методами 3D-печати. Кроме того, новые разработки могут иметь и стратегическое значение с точки зрения экономики. В настоящий момент основную долю прибыли в алюминиевой отрасли России занимает экспорт первичного алюминия. Создание новых высокотехнологичных разработок, обладающих повышенной добавленной стоимостью, позволит повысить прибыль за счет расширения внутреннего и внешнего рынков потребления алюминия.

Исследование проводится в рамках гранта РНФ № 18-79-00345 «Создание научных принципов конструирования новых наноструктурированных металломатричных композиционных материалов на основе алюминия, с высокой долей алюминидов Al(Ti, Ca, Ni, Ce(La), Zr)».

Применение алюминия — области применения металла

Алюминий

По масштабам применения алюминий и его сплавы занимают второе место после железа и его сплавов. Широкое применение алюминия в различных областях техники и быта связано с совокупностью его физических, механических и химических свойств: малой плотностью, коррозионной стойкостью в атмосферном воздухе, высокой тепло- и электропроводностью, пластичностью и сравнительно высокой прочностью. Алюминий легко обрабатывается различными способами — ковкой, штамповкой, прокаткой и др.

Чистый алюминий

Чистый алюминий применяют для изготовления проволоки (электропроводность алюминия составляет 65,5% от электропроводности меди, но алюминий более чем в три раза легче меди, поэтому алюминий часто заменяет медь в электротехнике) и фольги, используемой как упаковочный материал. Основная же часть выплавляемого алюминия расходуется на получение различных сплавов. Сплавы алюминия отличаются малой плотностью, повышенной (по сравнению с чистым алюминием) коррозионной стойкостью и высокими технологическими свойствами: высокой тепло- и электропроводностью, жаропрочностью, прочностью и пластичностью. На поверхности сплавов алюминия легко наносятся защитные и декоративные покрытия.

Применение сплавов алюминия

Разнообразие свойств алюминиевых сплавов обусловлено введением в алюминий различных добавок, образующих с ним твердые растворы или интерметаллические соединения. Основную массу алюминия применяют для получения легких сплавов — дуралюмина (94% Al, 4% Cu, по 0,5% Mg, Mn, Fe и Si), силумина (85-90% Al, 10-14% Si, 0,1% Na) и др. Этот сплав после закалки приобретает особую твёрдость и становится примерно в 7 раз прочнее чистого алюминия. В то же время он почти втрое легче железа. Его получают, сплавляя алюминий с небольшими добавками меди, магния, марганца, кремния и железа. Широко распространены силумины – литейные сплавы алюминия с кремнием. Производятся также высокопрочные, криогенные (устойчивые к морозам) и жаропрочные сплавы. На изделия из алюминиевых сплавов легко наносятся защитные и декоративные покрытия. Легкость и прочность алюминиевых сплавов особенно пригодились в авиационной технике. Например, из сплава алюминия, магния и кремния делают винты вертолетов. Сравнительно дешевая алюминиевая бронза (до 11% Al) обладает высокими механическими свойствами, она устойчива в морской воде и даже в разбавленной соляной кислоте. Из алюминиевой бронзы в СССР с 1926 по 1957 чеканились монеты достоинством 1, 2, 3 и 5 копеек. В металлургии алюминий используется не только как основа для сплавов, но и как одна из широко применяемых легирующих добавок в сплавах на основе меди, магния, железа, никеля и др.

Сплавы алюминия находят широкое применение в быту, в строительстве и архитектуре, в автомобилестроении, в судостроении, авиационной и космической технике. В частности, из алюминиевого сплава был изготовлен первый искусственный спутник Земли. Сплав алюминия и циркония — циркалой — широко применяют в ядерном реакторостроении. Алюминий применяют в производстве взрывчатых веществ. Алюмотол, литая смесь тринитротолуола с порошком алюминия, – одно из самых мощных промышленных взрывчатых веществ. Аммонал – взрывчатое вещество, состоящее из аммиачной селитры, тринитротолуола и порошка алюминия. Зажигательные составы содержат алюминий и окислитель – нитрат, перхлорат. Пиротехнические составы «Звездочки» также содержат порошкообразный алюминий. Смесь порошка алюминия с оксидами металлов (термит) применяют для получения некоторых металлов и сплавов, для сварки рельсов, в зажигательных боеприпасах.

Особо следует отметить окрашенные пленки из оксида алюминия на поверхности металлического алюминия, получаемые электрохимическим путем. Покрытый такими пленками металлический алюминий называют анодированным алюминием. Из анодированного алюминия, по внешнему виду напоминающему золото, изготовляют различную бижутерию.

При обращении с алюминием в быту нужно иметь в виду, что нагревать и хранить в алюминиевой посуде можно только нейтральные (по кислотности) жидкости (например, кипятить воду). Если, например, в алюминиевой посуде варить кислые щи, то алюминий переходит в пищу и она приобретает неприятный «металлический» привкус. Поскольку в быту оксидную пленку очень легко повредить, то использование алюминиевой посуды все-таки нежелательно.

В настоящее время четвертая часть всего алюминия идет на нужды строительства, столько же потребляет транспортное машиностроение, примерно 17% часть расходуется на упаковочные материалы и консервные банки, 10% – в электротехнике.

наиболее распространенных видов использования алюминия | Металл Супермаркеты

Алюминий является третьим по содержанию металлом в земной коре и третьим по распространенности элементом в целом.

Ни один другой металл не может сравниться с алюминием по разнообразию применения. Некоторые варианты использования алюминия могут быть не сразу очевидны; например, знаете ли вы, что алюминий используется при производстве стекла?

Алюминий невероятно популярен, потому что это:

  • Облегченный
  • Сильный
  • Устойчив к коррозии
  • прочный
  • Пластичный
  • Гибкий
  • Проводящий
  • Без запаха

Алюминий теоретически подлежит 100% вторичной переработке без потери своих природных свойств.На переработку алюминиевого лома также уходит 5% энергии, чем на то, что используется для производства нового алюминия.

Наиболее распространенные применения алюминия включают:

  • Транспорт
  • Строительство
  • Электрооборудование
  • Потребительские товары

Транспорт

Алюминий используется на транспорте из-за непревзойденного соотношения прочности и веса. Его меньший вес означает, что для перемещения транспортного средства требуется меньшее усилие, что приводит к большей топливной экономичности.Хотя алюминий не самый прочный металл, его легирование с другими металлами помогает повысить его прочность. Его коррозионная стойкость — дополнительный бонус, устраняющий необходимость в тяжелых и дорогих антикоррозионных покрытиях.

Хотя автомобильная промышленность по-прежнему в значительной степени полагается на сталь, стремление повысить топливную эффективность и сократить выбросы CO2 привело к гораздо более широкому использованию алюминия. По прогнозам экспертов, к 2025 году среднее содержание алюминия в автомобиле увеличится на 60%.

Поезд Синкансэн E6

В высокоскоростных железнодорожных системах, таких как Синкансэн в Японии и Маглев в Шанхае, также используется алюминий.Металл позволяет конструкторам снизить вес поездов, снизив сопротивление трению.

Алюминий также известен как «крылатый металл», потому что он идеален для самолетов; опять же, благодаря легкости, прочности и гибкости. Фактически, алюминий использовался в каркасах дирижаблей Zeppelin еще до того, как были изобретены самолеты. Сегодня в современных самолетах используются алюминиевые сплавы повсюду, от фюзеляжа до приборов кабины. Даже космические корабли, такие как космические челноки, содержат от 50% до 90% алюминиевых сплавов в своих частях.

Строительство

Здания из алюминия практически не требуют обслуживания из-за его устойчивости к коррозии. Алюминий также является теплоэффективным, благодаря чему в домах тепло зимой и прохладно летом. Добавьте к этому тот факт, что алюминий имеет приятную отделку и его можно изгибать, резать и сваривать до любой желаемой формы, это дает современным архитекторам неограниченную свободу создавать здания, которые невозможно построить из дерева, пластика или стали.

Лондонский центр водных видов спорта

Первым зданием, в котором широко использовался алюминий, было Эмпайр-стейт-билдинг в Нью-Йорке, построенное в 1931 году. Сегодня алюминий регулярно используется при строительстве многоэтажных домов и мостов. Благодаря меньшему весу алюминия работать с ним проще, быстрее и удобнее. Это также помогает снизить другие расходы. Здание, построенное из стали, потребует более глубокого фундамента из-за дополнительного веса, что приведет к увеличению затрат на строительство.

Известные современные здания из алюминия включают штаб-квартиру Банка Китая в Гонконге и Лондонский центр водных видов спорта Захи Хадид в Лондоне.

Электрооборудование

Несмотря на то, что он имеет всего 63% электропроводности меди, низкая плотность алюминия делает его лучшим вариантом для линий электропередач на большие расстояния. Если бы использовалась медь, опорные конструкции были бы тяжелее, многочисленнее и дороже. Алюминий также более пластичен, чем медь, что значительно упрощает его формирование в виде проволоки. Наконец, его коррозионная стойкость помогает защитить провода от элементов.

Помимо линий электропередач и кабелей, алюминий используется в двигателях, приборах и энергосистемах.Телевизионные антенны и спутниковые тарелки, даже некоторые светодиодные лампы сделаны из алюминия.

Товары народного потребления

Внешний вид алюминия является причиной его частого использования в потребительских товарах.

Смартфоны, планшеты, ноутбуки и телевизоры с плоским экраном производятся из все большего количества алюминия. Благодаря его внешнему виду современные технические устройства выглядят элегантно и утонченно, при этом они легкие и долговечные. Это идеальное сочетание формы и функции, которое имеет решающее значение для потребительских товаров.Все больше и больше алюминий заменяет пластмассовые и стальные компоненты, поскольку он прочнее и жестче, чем пластик, и легче, чем сталь. Он также позволяет быстро рассеивать тепло, предохраняя электронные устройства от перегрева.

Macbook от Apple

Apple использует преимущественно алюминиевые детали в своих iPhone и MacBook. Другие производители высококачественной электроники, такие как производитель аудиотехники Bang & Olufsen, также сильно отдают предпочтение алюминию.

Дизайнерам интерьеров нравится использовать алюминий, так как его легко формовать и он великолепно выглядит.Предметы мебели из алюминия включают столы, стулья, лампы, рамы для картин и декоративные панели.

Конечно, фольга на вашей кухне — алюминиевая, как и кастрюли и сковороды, которые часто делают из алюминия. Эти алюминиевые изделия хорошо проводят тепло, нетоксичны, устойчивы к ржавчине и легко чистятся.

Алюминиевые банки используются для упаковки продуктов питания и напитков. Coca-Cola и Pepsi используют алюминиевые банки с 1967 года.

Metal Supermarkets — крупнейший в мире поставщик мелкосерийного металла с более чем 85 обычными магазинами в США, Канаде и Великобритании.Мы эксперты по металлу и обеспечиваем качественное обслуживание клиентов и продукцию с 1985 года.

В Metal Supermarkets мы поставляем широкий ассортимент металлов для различных областей применения. В нашем ассортименте: нержавеющая сталь, легированная сталь, оцинкованная сталь, инструментальная сталь, алюминий, латунь, бронза и медь.

Наша горячекатаная и холоднокатаная сталь доступна в широком диапазоне форм, включая пруток, трубы, листы и пластины. Мы можем разрезать металл в точном соответствии с вашими требованиями.

Посетите одно из наших 80+ офисов в Северной Америке сегодня.

5 наиболее распространенных применений алюминия

В последние несколько недель мы отстаивали алюминий и доказали его полезность как в прошлом, так и в настоящем и (потенциально) в будущем. Обычный человек не особо задумывается о различии между различными металлами, встречающимися в наши дни, но как только вы станете более «металлически грамотными», мир действительно может выглядеть совсем по-другому! Таким образом, в этом блоге мы собираемся показать вам 5 наиболее распространенных применений алюминия; возможно, в местах, о которых вы даже не ожидали.

# 5 — Прецизионные трубки в автомобилях, холодильниках, кондиционерах, солнечных батареях и т. Д.
Как мы уже объясняли в другом месте в блоге ранее, использование чистого алюминия в коммерческом мире очень редко. Обычно цветной металл смешивают с другими металлами для создания сплава в зависимости от желаемого использования. Когда дело доходит до прецизионных трубок, приложения с высокой теплопередачей позволяют широко использовать их в автомобильной промышленности, на рынке переменного тока и солнечной энергии, а также для транспортировки жидкостей или газов.Было отмечено, что он очень похож на пластик в том, как с ним можно работать, не ломаясь, и в том, что он очень широко перерабатывается.
# 4 — Линии электропередач

Легкий вес и долговечность алюминия делают его идеальным кандидатом для передачи энергии на большие расстояния, но, поскольку он является довольно плохим проводником, его необходимо смешивать со свойствами меди (которая обычно слишком тяжелая и дорогая. для самостоятельной работы), а еще лучше бор. Способность противостоять коррозии и общее отсутствие необходимости дорогостоящей структуры поддержки является плюсом, и алюминиевые сплавы сами часто армированный сталью — настоящий матч, сделанный на металлическом небе!
№ 3 — Алюминиевый прокат

Одно из немногих явных применений алюминия в более распространенном повседневном использовании, с его более неформальным названием, оловянная фольга производится в процессе обработки металлов «прокаткой», при котором листовые слитки отливаются из расплавленной алюминиевой заготовки , затем перекатывают на листопрокатных станах и фольгопрокатных станах до желаемой толщины (или ее отсутствия) или путем непрерывной разливки и холодной прокатки.Непроницаемый для кислорода и воды, его можно использовать не только для приготовления пищи, но и для поддержания ее свежести, поэтому это действительно очень редкий день, когда вы не заметите где-нибудь кусочек оловянной фольги.
# 2 — Радиаторы для охлаждения ЦП и графических процессоров

Высокая термостойкость, устойчивость к коррозии и биологическому обрастанию алюминиевых сплавов, а также его теплопроводность сделали их основным материалом для большинства коммерческих радиаторов. Это пассивные теплообменники, которые охлаждают устройство (обычно микропроцессор или видеокарту) за счет отвода тепла от устройства в окружающую среду.Радиаторы бывают в виде медной фольги печатной платы или отдельного устройства и прикрепляются различными способами, включая теплопроводящую ленту или эпоксидную смолу.

# 1 — Строительство

Совершенно очевидно; Алюминий очень необходим в строительных работах! От световых люков до мостов и лестниц до перил, реализованных в виде стержней, дверей или проводов, низкие эксплуатационные расходы и способность красить, формовать и соединяться с другими материалами не оставляют оснований для того, чтобы не рассматривать это для выбранного вами проекта.Мы ежедневно видим алюминий, даже не задумываясь о нем, и, несомненно, использование алюминиевых уголков, труб и коробок в строительстве — лишь некоторые из его главных главных ролей.

Алюминий — часть вашей повседневной жизни

Бесконечные возможности с алюминием

Невозможно перечислить все области применения алюминия в нашей повседневной жизни. Здания, лодки, самолеты и автомобили, бытовая техника, упаковка, компьютеры, мобильные телефоны, контейнеры для еды и напитков — все они выигрывают от превосходных свойств алюминия с точки зрения дизайна, устойчивости, коррозионной стойкости и легкости.Но одно можно сказать наверняка: мы будем руководить, когда дело доходит до разработки все более совершенных производственных методов и инновационных решений.

Алюминий в строительстве

Здания обеспечивают 40% мирового спроса на энергию, поэтому существует большой потенциал для экономии энергии. Использование алюминия в качестве строительного материала — важное средство для создания зданий, которые не просто экономят энергию, но фактически производят энергию.

Алюминий на транспорте

Транспорт — еще один источник потребления энергии, а на самолеты, поезда, лодки и автомобили приходится около 20% мирового спроса на энергию.Ключевым фактором энергопотребления транспортного средства является его вес. По сравнению со сталью алюминий может снизить вес автомобиля на 40% без ущерба для прочности.

Алюминий в упаковке

Около 20% антропогенных выбросов парниковых газов приходится на производство продуктов питания. Добавьте к этой картине то, что, по оценкам, одна треть всех продуктов питания в Европе выбрасывается в отходы, и становится ясно, что эффективное консервирование продуктов питания и напитков, например с использованием алюминия, играет важную роль в создании более жизнеспособного мира.

Как видите, алюминий с его практически бесконечными областями применения действительно является материалом будущего.

Дизайнеры мебели выбирают алюминий

Обновлено: 20 октября 2020 г.

Наиболее распространенные области применения алюминия

Алюминий — третий по распространенности элемент.Когда дело доходит до разнообразия использования, ни один другой металл не может сравниться с ним. Его даже используют способами, о которых вы даже не догадывались, например, при производстве стекла.

Помимо того, что алюминий на 100% пригоден для вторичной переработки, алюминий невероятно популярен благодаря тому, что он:

  • Легкий
  • Прочный
  • Прочный
  • Устойчивый к коррозии
  • Без запаха
  • Ковкий
  • Пластичный
  • Без потери естественных свойств
Переработка алюминиевых ломов требует всего до 5% энергии, необходимой для производства нового алюминия.

Когда дело доходит до алюминия, наиболее распространенные области применения включают:

  • Транспорт
  • Строительство
  • Потребительские товары
  • Электрооборудование

Использование алюминия для транспортировки

Алюминий используется при транспортировке благодаря своей непревзойденной прочности. весовое соотношение.

Легкость алюминия требует меньшего усилия для перемещения автомобиля. Таким образом, повышается эффективность использования топлива.

Кроме того, он устойчив к коррозии, поэтому отпадает необходимость в дорогостоящих антикоррозионных покрытиях.

Эксперты уже прогнозируют, что средний объем алюминия, используемого в автомобиле, увеличится на 60% к 2025 году.

Использование алюминия в строительстве

Когда здание построено из алюминия, оно практически не требует обслуживания. Это связано с превосходной устойчивостью алюминия к коррозии.

С алюминием вы также получаете приятную отделку, которую можно изгибать, резать или сваривать в любую форму.

Кроме того, алюминий позволяет современным архитекторам создавать здания, которые невозможно создать из дерева, пластика или стали.

Использование алюминия в электрических целях

Алюминий может иметь 60% электропроводности меди. Однако его низкая плотность делает его идеальным решением для линий электропередач на большие расстояния.

Алюминий пластичнее меди. Это означает, что его намного легче превратить в проволоку.

Алюминий может использоваться для:

  • Линии электропередач и кабелей
  • Двигатели
  • Приборы
  • Телевизионные антенны
  • Спутниковые тарелки

Коррозионная стойкость алюминия помогает защитить провода от электрических повреждений.

Применение алюминия в потребительских товарах

Благодаря внешнему виду алюминия он так часто используется в потребительских товарах. Это придает современным техническим гаджетам элегантный и изысканный вид. Также делает их легкими и прочными.

В настоящее время алюминий заменяет пластмассовые и стальные компоненты. Это связано с тем, что он прочнее и жестче пластика, но при этом легче стали.

WRISCO — один из крупнейших поставщиков алюминия в США.Мы — эксперты по алюминию, которые более 100 лет обеспечивают качественное обслуживание клиентов.

Мы предлагаем широкий ассортимент продукции, в том числе:

Для получения непревзойденного качества алюминиевых продуктов и первоклассных услуг свяжитесь с нами по телефону (800) 627-2646.

Все, что вам нужно знать: алюминий

Как бы вы отреагировали, если бы кто-то сказал вам, что обменяет кусок золота на старую банку с газировкой, которая висела у вас в задней части холодильника?

Вы бы, наверное, хорошо посмеялись, правда? Что ж, вернемся на пару сотен лет назад в начало девятнадцатого века, и алюминий, содержащийся в вашей банке с газировкой, когда-то считался одним из самых драгоценных металлов в мире (да, даже больше, чем золото)!

Однако перенесемся в сегодняшний день, и это кажется довольно диковинным, учитывая, что алюминий практически везде, куда мы идем.В настоящее время алюминий считается наиболее широко используемым «цветным металлом» в мире, его производство и применение превосходит все другие металлы, за исключением чугуна и стали.

Тем не менее, поскольку это самый распространенный металл в земной коре, второй по популярности металл в мире и третий по распространенности элемент на нашей планете, знания об этом широко используемом металле довольно скудны.

Итак, что же такое алюминий? И почему это так важно?

Что такое алюминий?

Если вы не химик, имеющий доступ к контролируемой лабораторной среде, вероятность вашего взаимодействия с «чистым алюминием» мала или равна нулю.Это связано с тем, что химические свойства металлического алюминия настолько реактивны по отношению к кислороду, что при контакте он сразу же цепляется за атомы кислорода. Поговорим о серьезной химии 😉! В результате образуется вещество, известное как гидратированный оксид алюминия. 1


Гидратированный глинозем, более известный как боксит руда , добывается из земной коры и очищается для извлечения алюминия. После извлечения из боксита чистый алюминий часто оказывается слишком мягким и пластичным для коммерческого использования.

По этой причине алюминий почти всегда сочетается с другими легирующими металлами или элементами. К ним обычно относятся медь, магний, марганец, кремний, олово и / или цинк. За счет создания алюминиевого сплава улучшается общая прочность металла, а также многие другие различные физические свойства, необходимые для применения.


Итак, когда вы сталкиваетесь с повседневными предметами в своей жизни, такими как алюминиевые банки, фольга для готовки или упаковка для пищевых продуктов, просто помните, что вы на самом деле контактируете не с чистым алюминием, а с алюминиевыми сплавами, которые состоят только на 90-99%. алюминий. 7

Как производится алюминий?

К настоящему времени вы знаете, что алюминий не встречается в чистом виде. Вместо этого соединения алюминия существуют в скалистых глыбах руды, погребенных в земной коре. Эта руда, как упоминалось ранее, называется бокситом, и она является основным источником алюминия в мире.

Чтобы извлечь алюминий из боксита и начать делать из него полезные предметы (например, фольгу, которой вы покрываете восхитительные остатки еды вашей матери), задействованы два основных процесса: первый — это процесс Байера (1886 г.), а второй — Холл. Процесс Эру (1889 г.).

1. Процесс Байера: Поскольку боксит состоит из оксида алюминия, молекул воды и ряда примесей, сначала необходимо удалить воду и примеси. Сырой боксит добывают, а затем измельчают, смешивают, измельчают и превращают в суспензию. Затем эту суспензию обрабатывают теплом и давлением, чтобы очистить остатки боксита и оставить только оксид алюминия. 2

2. Процесс Холла-Эру: оксид алюминия (известный как оксид алюминия), оставшийся после этого, подвергается процессу плавки, который требует чрезвычайно большого количества энергии.Оксид алюминия помещают в расплавленную смесь и подвергают электролизу, чтобы атомы алюминия отделились от атомов кислорода. В свою очередь, получается металлический алюминий. Затем неочищенный алюминий отливают в алюминиевые заготовки / слитки для легирования и дальнейшей обработки. 3

Производство алюминия может показаться не таким уж сложным на первый взгляд, но это далеко не так. Вот почему процесс вторичной переработки стал таким важным. Добыча и производство алюминия, который используется в нашем обществе, — сложный, трудоемкий и энергоемкий процесс.К счастью, переработка делает алюминий легко регенерируемым, потребляя всего 5% энергии, которая требовалась для его первоначального извлечения.

Типы алюминия

Гипотетически, предположим, вы добыли себе немного настоящего хорошего сырого алюминия и обнаружили, что у вас осталась блестящая заготовка. Чем вы сейчас занимаетесь? Расплавьте эту присоску и сплавляйте ее, вот что!

Чистый алюминий чрезвычайно мягкий и часто недостаточно прочный для большинства коммерческих применений и проектов. Чтобы исправить это, чистый алюминий плавится и смешивается с другими элементами, такими как железо, кремний, медь, магний, марганец и цинк.За счет легирования этих других элементов улучшаются такие свойства алюминия, как прочность, плотность, удобоукладываемость, электропроводность и коррозионная стойкость.

В процессе легирования алюминия могут быть получены три различных типа сплавов в зависимости от их свойств и методов, используемых для их обработки: технически чистый, поддающийся термообработке и не поддающийся термообработке.

Каждый тип алюминиевого сплава может быть далее подразделен и охарактеризован его основным легирующим элементом.Это можно уменьшить, присвоив каждому типу сплава четырехзначный номер, чтобы помочь его классифицировать, где первая цифра идентифицирует общий класс (или серию).

1. Техническая чистота: сплавы , состоящие из алюминия чистотой 99% или выше. 4

  • 1xxx Серия: имеет отличную коррозионную стойкость, отличную обрабатываемость, а также высокую теплопроводность и электрическую проводимость. Эта серия обычно используется для линий передачи, которые соединяют национальные сети через U.С.

2. Термически обрабатываемые: сплавы , упрочненные в процессе экстремального нагрева и охлаждения. Сплавы нагревают до определенных точек, чтобы равномерно распределить элементы внутри, а затем закаливают (быстро охлаждают), чтобы заморозить их на месте.

  • 2xxx Серия: в качестве основного легирующего элемента используется медь. Эти сплавы обладают хорошим сочетанием высокой прочности и ударной вязкости. Часто используются для производства самолетов.
  • Серия
  • 6xxx: основные легирующие элементы — кремний и магний.Эти сплавы универсальны, поддаются термообработке, формуются, свариваются, прочные и устойчивые к коррозии. Часто используются для автомобильного производства.
  • Серия
  • 7xxx: цинк используется в качестве основного легирующего элемента с небольшими количествами магния, меди или хрома для повышения прочности. Эти сплавы поддаются термообработке и обладают очень высокой прочностью. Часто используются в сфере коммерческих авиаперевозок.

3. Нетермообрабатываемые сплавы: сплавы, упрочняемые с помощью процесса, известного как холодная обработка.Этот процесс происходит за счет «обработки» металла на этапах прокатки или ковки и создания дислокаций в атомной структуре металла для увеличения прочности. 5

  • 3xxx Серия: марганец является основным легирующим элементом, часто с добавлением небольшого количества магния. Эти сплавы обладают средней прочностью и хорошей обрабатываемостью. Часто используются для изготовления алюминиевых банок для напитков и кухонной утвари.
  • Серия
  • 4xxx: кремний — основной легирующий элемент.Эти сплавы имеют более низкие температуры плавления, не вызывая хрупкости. Часто используются для сварочной проволоки и строительных конструкций.
  • 5xxx Серия: магний является основным легирующим элементом. Эти сплавы обладают средней и высокой прочностью, хорошей свариваемостью и коррозионной стойкостью в водной среде. Часто используются в строительстве и на море.
Зачем нужен алюминий?

К настоящему времени вы должны иметь твердое представление о том, что такое алюминий и как он производится, но возникает большой вопрос: зачем мы его используем?

Алюминий в изобилии, недорог, легкий, пластичный, прочный, пластичный, проводящий, и этот список можно продолжить.Одна из важнейших характеристик, отличающих алюминий, — это его изменчивость.

Ни один другой металл не может сравниться с алюминием, когда дело доходит до разнообразия применений, которые он имеет при сплавлении с другими элементами. Кроме того, алюминий подлежит вторичной переработке на неопределенный срок и является одним из немногих материалов в мире, который оплачивает стоимость его собственного сбора.

Сочетание экологичности с универсальностью делает алюминий не только одним из самых важных металлов в мире, но и одним из наиболее часто используемых в бесчисленных отраслях промышленности.

От глубин космоса до дна океана алюминий присутствует повсюду и вносит свой вклад как в развитие нашего общества, так и в улучшение нашей жизни. 6



Если окажется, что это не , все , которые вы хотели знать, и многое другое, посетите страницу блога Boyd Metals для получения более интересной информации о металлургической промышленности и не забудьте проверить наши БЕСПЛАТНЫЕ цифровые акции Закажите все, что вам нужно для обработки, нажав на изображение ниже.


Наш индексированный PDF-файл с возможностью поиска позволяет легко найти нужную информацию.

Что внутри?

  • Технические характеристики стандартной продукции
  • Общие таблицы преобразования и руководства
  • Доступные услуги обработки по видам продукции

Источники изображений:
1 https://stockhead.com.au/resources/pure-alumina-has-sent-first-hpa-samples-to-potential-customers/
2 http: // muharraq27.blogspot.com/2010/12/aluminium-processing.html
3 https://www.researchgate.net/figure/Flow-sheet-of-the-aluminium-production-process_fig3_262148554
4 https://www.metalmensales.com/Aluminium-1100-Properties.html
5 https://recyclenation.com/2014/03/recycle-aluminium/
6 https: // www .lightmetalage.com / news / industry-news / recycling-remelt / hydro-start-new-recycling-line /
7 https: // www.indiamart.com/cmeri-durgapur-durgapur/

Три основных промышленных применения алюминия

Алюминий считается лучшим металлом, который выбирают профессионалы обрабатывающей промышленности. Отчасти это связано с его коррозионной стойкостью, высокой прочностью и низкой плотностью. Алюминий также нетоксичен, что делает его идеальным для любого применения, связанного с упаковкой пищевых продуктов. Хотя существует множество применений алюминия, вот 3 основных применения.

Потребительские товары

Благодаря нетоксичным свойствам алюминий отлично подходит для упаковки пищевых продуктов. Большое количество алюминия используется для упаковки продуктов питания, лекарств и напитков. Не влияет на вкус еды; удерживает, отталкивает воду и продлевает срок хранения продуктов. Кроме того, алюминий также используется для изготовления подносов, фольги, посуды, посуды, холодильников и тостеров.

Алюминий также используется во многих наших электронных устройствах. К ним относятся смартфоны, ноутбуки и телевизоры.Наша способность делать наши мобильные устройства легче, изящнее и долговечнее благодаря алюминию, который прочнее пластика и легче стали. Алюминий также является отличным проводником тепла, что помогает предохранять электронные устройства от перегрева.

Транспорт

На протяжении десятилетий транспортная промышленность добавляла все больше алюминия в каждый вид транспорта. Это из-за его прочности и легкости. Благодаря алюминию поезда могут повысить свою топливную эффективность и снизить выбросы углерода.В авиационной промышленности алюминий используется для изготовления деталей самолетов и навигационных приборов. Он также используется НАСА на своих космических аппаратах из-за легкости и прочности под давлением. На автомобильную промышленность также повлиял алюминий. Более легкие рамы означают лучшую топливную экономичность.

Электрооборудование

Низкая плотность алюминия

делает его одним из лучших вариантов для линий электропередач на большие расстояния. Потому что она легче и пластичнее меди; его гораздо проще склеивать из проволоки.Его коррозионно-стойкие свойства защищают провод от атмосферных воздействий. В результате алюминий заменил медную проводку в трансформаторах и почти во всех обновленных системах электропроводки. Он также используется в блоках предохранителей, спутниковых антеннах, звуковых системах и бытовой технике.

По мере развития технологий мы продолжим видеть диверсификацию алюминия. В Avion Alloys мы понимаем важность алюминия для обрабатывающей промышленности в США и во всем мире.Вот почему у нас есть склады по всей стране, чтобы удовлетворить спрос, поставляя алюминий и другие металлы высокого качества. Свяжитесь с нами сегодня, чтобы получить бесплатное ценовое предложение.

20 февраля 2019 г.,

Алюминий | Введение в химию

Цель обучения
  • Опишите свойства алюминия.

Ключевые моменты
    • Алюминий — мягкий, легкий и ковкий серебристый металл, не растворимый в воде.
    • Подавляющее большинство соединений содержат алюминий со степенью окисления 3+, но известны соединения со степенью окисления +1 и +2.
    • Алюминий имеет много известных изотопов, массовые числа которых находятся в диапазоне от 21 до 42.
    • Алюминий является наиболее широко используемым цветным металлом и в основном легирован, что улучшает его механические свойства.

Условия
  • алюминий Металлический химический элемент (обозначение Al) с атомным номером 13.
  • пассивирование: относится к материалу, который становится «пассивным», то есть меньше подвержен влиянию факторов окружающей среды, таких как воздух или вода.

Физические свойства алюминия

Алюминий это:

  • относительно мягкий
  • прочный
  • легкий
  • пластичный
  • податливый
  • внешний вид от серебристого до тускло-серого
  • не растворяется в воде при нормальных условиях
  • немагнитный
  • не воспламеняется легко
  • способный быть сверхпроводником

Химические свойства

Алюминий устойчив к коррозии из-за явления пассивации.Когда металл подвергается воздействию воздуха, образуется тонкий поверхностный слой оксида алюминия. Этот оксидный слой защищает находящийся под поверхностью алюминий от дальнейшего окисления. Как и многие другие металлы, алюминий также может окисляться водой с образованием водорода и тепла:

[латекс] 2Al \ quad + \ quad 3 {H} _ {2} O \ quad \ longrightarrow \ quad {Al} _ {2} {O} _ {3} +3 {H} _ {2} [/ латекс]

Хотя алюминий очень легко окисляется, можно удалить оксидный слой с образца без его немедленного риформинга.Самый простой и безопасный способ — подключить батарею к образцу и провести электролиз либо в инертной атмосфере (например, газообразный аргон), либо в условиях вакуума.

Подавляющее большинство соединений алюминия имеют металл в степени окисления 3+. Координационное число алюминия может варьироваться, но обычно Al 3+ является тетра- или гексакоординированным. Это означает, что у него будет 4 или 6 лигандов.

Галогениды алюминия: использование в качестве кислот Льюиса

Алюминий — очень реактивный металл, который легко вступает в реакцию с трехвалентными соединениями продукта.Его галогениды (AlF 3 , AlCl 3 , AlBr 3 и AlI 3 ) являются общими примерами. Трехвалентный алюминий является электронодефицитным и поэтому исключительно полезен в качестве кислоты Льюиса, особенно в органическом синтезе.

Гидриды алюминия и алюминийорганические соединения

Существует множество соединений эмпирической формулы AlR 3 и AlR 1,5 Cl 1,5 . Эти разновидности обычно имеют тетраэдрические центры Al. С большими органическими группами триорганоалюминий существует в виде трехкоординированных мономеров, таких как триизобутилалюминий.

Важным гидридом алюминия является алюмогидрид лития (LiAlH 4 ), который используется в качестве восстановителя в органической химии. Его можно производить из гидрида лития и трихлорида алюминия:

[латекс] 4LiH \ quad + \ quad Al {Cl} _ {3} \ quad \ longrightarrow \ quad LiAl {H} _ {4} \ quad + \ quad 3LiCl [/ латекс]

Алюминий общего назначения

Алюминий — наиболее широко используемый цветной металл. Алюминий почти всегда легирован, что заметно улучшает его механические свойства, особенно при отпуске.Например, обычная алюминиевая фольга и банки для напитков представляют собой сплавы с содержанием алюминия от 92% до 99%. Некоторые из многих применений металлического алюминия находятся в:

  • Транспортировка листов, труб, отливок и т. Д.
  • Упаковка (жестяная банка, фольга и др.)
  • Строительство (окна, двери, сайдинг, строительная проволока и т.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *