Dc ac ток: AC, DC — что это такое?

Содержание

Переменный ток (AC) против постоянного тока (DC): что нужно знать

Электричество делится на два типа тока: чередующиеся и прямые. Переменный ток чередует свою полярность много раз в секунду, а постоянный ток остается постоянным и неизменным.

Электричество, которое поступает из вашей стены, является переменным током, а электричество от батареи — постоянным током. Но это не просто устройства с батарейным питанием, которые используют постоянный ток: почти все электронные устройства преобразуют AC из вашей стены в постоянный ток с помощью устройства, называемого выпрямителем.

Постоянство постоянного тока имеет важное значение для запуска таких устройств, как компьютеры, которые требуют постоянного состояния для сравнения цифровых и нулей, которые заставляют систему работать.

Что такое электричество, во всяком случае?

Электричество — это поток электронов через проводящий материал, такой как металлическая проволока. Электроны сталкиваются друг с другом в длинной цепи, что приводит к общему движению электронов по проводам. Это движение электронов через проводник создает электричество, а также магнитное поле. Эта электрическая энергия питает все в вашей жизни с помощью вилки или переключателя «on».

Электричество имеет три основных компонента, которые говорят нам, насколько мощный ток. Этими тремя атрибутами являются напряжение, ток и сопротивление. Напряжение говорит нам, насколько мощный электрический поток, ток говорит нам, как быстро течет электричество, а сопротивление говорит нам, как трудно для электронов течь вдоль нашего проводника. Это обобщенное определение недостаточно точно для учебника, но оно достаточно полно для целей этой статьи.

Разница между AC и DC

Переменный ток (AC) и постоянный ток (DC) имеют напряжение, ток и сопротивление. Это то, как течет поток, который делает разницу.

Переменный ток быстро течет вперед и назад, изменяя полярность между 50 и 60 раз в секунду. Это сразу же сталкивается с интуитивным пониманием: если электроны вступают, а затем снова возвращаются, как они могут что-либо использовать?

Однако не накопление электронов создает энергию. Электроны не имеют назначения, которые им нужно достичь, прежде чем будет создана сила. Это движение самих электронов, которые создают электрическую энергию. Так же, как вода, протекающая через трубу, создает силу независимо от направления, электроны, текущие через провод, создают электричество.

DC, с другой стороны, не чередуется вообще. В идеальных условиях это постоянный ток без изменения напряжения с течением времени. В то время как DC, преобразованный из переменного тока с выпрямителем, часто является приближением к этой устойчивой линии, он определенно не переворачивается, как AC. Если мы визуализируем DC как поток воды, он создает постоянную скорость движения только в одном направлении.

Что такое AC и DC?

Благодаря различной природе AC и DC имеют разные применения.

Большинство электрических двигателей в мире работают от переменного тока. В этих двигателях быстрое переключение тока тока используется для быстрого переключения полярности магнита вперед и назад.

Это быстрое изменение полярности заставляет проволоку внутри магнитов вращаться, создавая вращающуюся силу, которая питает двигатель.

AC также используется для передачи энергии. Напряжение AC сравнительно легко изменяется, что делает его лучшим выбором для передачи на большие расстояния, чем постоянный ток. AC можно посылать при огромных напряжениях через провода, что приводит к очень небольшим потерям на пути к клиенту.

По прибытии напряжение резко снижается с примерно 765 000 вольт до более управляемых 110-220 вольт и отправляется в ваш дом. Прямой ток не может обеспечить таких резких трансформаций напряжения без значительных потерь мощности.

Прямой ток обычно используется для питания более мелких и более деликатных устройств. Вся бытовая электроника, от вашего планшета до ПК, работает от постоянного тока, как и все, что питается от батареи.

Эти устройства не только выигрывают от DC: они просто не могут функционировать на AC. Устройствам, работающим на 1s и 0s (например, компьютерах), требуется твердотельный уровень напряжения, чтобы отличать высокий сигнал, представляющий один, и низкий сигнал, который представляет собой нуль. При постоянном перевернутом токе AC электронные устройства не имеют устойчивого состояния для сравнения. Без стабильного тока эти устройства не смогут работать. Поскольку переменный ток постоянно меняется, он просто не может обеспечить стабильный уровень сравнения для электроники.

Мощность переменного и постоянного тока широко используется в устройствах разных типов: от холодильников до компьютеров. Некоторые устройства могут использовать оба устройства, используя AC для питания двигателя и постоянного тока для питания сенсорного экрана. Один не лучше, чем другой, но просто другой.

AC-DC или DC-DC? Какой преобразователь лучше и надежнее?

Создание напряжения постоянного тока от источника переменного тока означает, что вам придется выпрямить напряжение переменного тока, чтобы получить постоянное. Одно отличие по сравнению с DC-DC преобразователем состоит в том, что вы можете использовать линейный источник питания с переменным напряжением. Это означает, что вы можете воспользоваться трансформатором, чтобы уменьшить или увеличить напряжение переменного тока, а затем подать его на выпрямитель. Ближе всего к линейному источнику постоянного тока может быть двигатель постоянного тока, приводящий в действие генератор постоянного тока, что не очень эффективно.

Линейный источник переменного и постоянного тока все еще имеет место в лабораторных источниках и высококачественном звуке, но в большинстве современных преобразователей энергии используются импульсные регуляторы напряжения, а не линейные. В этом приложении вы будете выпрямлять входящее переменное напряжение для создания шины постоянного тока. Если у вас есть шина постоянного тока, вы можете использовать любую из архитектур преобразования постоянного тока в постоянный ток (DC-DC преобразование), чтобы получить конечное выходное напряжение или напряжения, которые вам нужны.

Проблема с выпрямлением напряжения

Несмотря на концептуальную простоту, выпрямление входящего переменного тока добавляет массу проблем вашему источнику питания. Большая часть выпрямителей выполняется на обычных диодах. Эти диоды будут создавать пульсации при переключении в процессе работы, что создает высшие гармоники в сети переменного тока.

У них также будет прямое падение напряжения (хотя оно небольшое), которое рассеивает энергию на тепло.

Вы можете использовать выпрямительный мост на базе транзисторов MOSFET для выпрямления входящего переменного напряжения, но значительно усложняет выпрямитель и повышает его стоимость по сравнению с диодным. Рассмотрим небольшой пример для термостата Nest, который питается от сети 24 В переменного тока, используемого для обычных термостатов. Это настоящая проблема, так как включение обогревателя или кондиционера основано на замыкании 24 В цепи переменного тока в термостате — так работает обычный термостат. Разъем потребляет очень маленький ток для зарядки своих батарей. Затем он может замыкать вход 24 В переменного тока, чтобы включить обогреватель, используя тот же транзисторный мост, пока он работает от батарей. Термостату Nest требуется каждый “маленький кусочек энергии”, который он может сохранить, отсюда необходимость устранения простого диодного моста.

У выпрямления переменного тока есть другие проблемы, такие как импульсный ток, который возникает в процессе выпрямления (рисунок ниже).

Он отличается от пускового тока, который есть у источников постоянного тока, когда вы впервые подаете на них питание. Импульсы тока возникают из-за того, что выпрямительные диоды могут работать только тогда, когда входное переменное напряжение больше, чем напряжение постоянного тока. Это означает, что имеется короткий всплеск тока только на пиках переменного напряжения, что приводит к снижению коэффициента мощности источника переменного тока. Коэффициент мощности является своего рода мерилом согласованности напряжения и тока, подаваемого линией переменного тока.

Для индуктивных нагрузок, таких как электродвигатели, переменный ток будет отставать от переменного напряжения. Для емкостной нагрузки наоборот — ток опережает напряжение. В обоих случаях напряжение и ток не совпадают по фазе, поэтому коэффициент мощности ниже идеального значения «1». При выпрямлении коэффициент мощности падает по другой причине. Хотя скачки тока могут быть в фазе с напряжением, это происходит только в течение короткого периода времени сигнала переменного тока.

Улучшение коэффициента мощности

Несмотря на то, что низкий коэффициент мощности не увеличит стоимость электроэнергии для вас (если ваше устройство не работает на промышленном предприятии), но это увеличит реактивную мощность в сети. Во многих странах разработаны стандарты, в соответствии с которыми для автономного источника переменного тока требуется коррекция коэффициента мощности (PFC). Допустимое значение коэффициента мощности (cos φ) гарантирует, что входной ток источника питания является синусоидой, которая совпадает по фазе с входным напряжением.

PFC добавляет еще один импульсный регулятор к вашему источнику переменного тока. Внешний интерфейс PFC обычно является повышающим преобразователем (рисунок ниже). Поскольку входное переменное напряжение повышается до более высокого напряжения, возможно, до 350 В постоянного тока, преобразователь может получать ток от линии переменного тока практически в любое время сигнала. Микросхема управления основана на широтно-импульсной модуляции (ШИМ) транзисторов повышающего преобразователя, чтобы ток, взятый из линии переменного тока, был прямо пропорционален напряжению. Он не может потреблять ток на переходах через ноль, поэтому коэффициент мощности не может быть идеальным. Тем не менее, можно получить выше 0,9, что решает основную проблему.

Помимо необходимости выпрямления в источнике переменного тока, существуют различия в способе выпрямления из-за различий в средних значениях напряжений переменного тока в различных странах мира. Во всем мире напряжение сети переменного тока может варьироваться от 100 В в Японии до 240 В в Европе. В старых линейных источниках питания пользователь мог переключить переключатель, чтобы изменить обмотку на входном трансформаторе. Это позволяло адаптироваться к различным напряжениям сети. При включении питания коммутатор может изменить первичную обмотку, следовательно, вы используете полный диодный мост с высоким напряжением и полумост с более низким напряжением (рисунок ниже). Это позволяет шине постоянного тока, которую вы запитываете, быть ближе к номинальному значению постоянного тока, даже если напряжение на входе переменного тока уменьшилось вдвое.

С ростом доступности транзисторов MOSFET из карбида кремния (SiC), многие внешние интерфейсы PFC используют каскадное выпрямление (рисунки ниже). Карбид кремния имеет незначительное время обратного восстановления, поэтому в выпрямлении нет задержек, связанных с открытием/закрытием P-N перехода. Два SiC транзистора стоят больше двух диодов, но выигрыш в эффективности может стоить того. Как только транзисторы MOSFET выпрямят переменный ток, сохраняя при этом коэффициент мощности, у вас будет высоковольтная шина постоянного тока, с которой вы можете использовать любую из архитектур DC-DC преобразователя для получения конечного выходного напряжения. Вы также можете использовать этап DC-DC для создания границы изоляции, если это необходимо.

Схема PFC с тотемным полюсом работает как повышающий преобразователь. При положительном потенциале, указанном на рисунках «плюс» и «минус» на источнике ЭДС, ток накапливается в катушке индуктивности, когда S2 замкнут (a), а затем поступает в нагрузку через S1 (b). SD2 может быть диодом, но SiC-транзистор повышает эффективность преобразователя

Когда полярность источника переменного ЭДС становится отрицательной в цепи PFC с тотемным полюсом, транзисторы направляют ток в индукторе в обратном направлении (а). Когда S1 открывается и S2 закрывается, он посылает ток в нагрузку (b). SD1 может быть диодом, но SiC-транзистор повышает эффективность.

Изобилие стандартов

Основное различие между источниками AC-DC и DC-DC заключается в том, что источники AC-DC должны соответствовать гораздо более строгим нормативным стандартам. Оба источника имеют стандарты FCC и CE для электромагнитных помех, но более высокое рабочее напряжение источников AC-DC требует изготавливать их соответствующими стандартам пожарной и электробезопасности. Поскольку большинство источников AC-DC изолированы от напряжения источника (имеют потенциальную развязку), для этого также требуются списки UL, CSA и CE.

Если вы делаете медицинское устройство, вам может потребоваться еще более строгий дизайн. В то время как изоляция в обычном источнике питания может быть только на проводах согласующего трансформатор, медицинские трансформаторы устанавливают обмотки на совершенно отдельные катушки (рисунок ниже). Таким образом, полностью исключается возможность пробоя между первичной и вторичной обмотками, результатом чего может стать короткое замыкание, которое может убить пациента.

Стандарты, применимые к вашему AC-DC преобразователю, зависят от приложения. Существуют различные стандарты для информационных, медицинских и телекоммуникационных продуктов. Существуют также различные правила для класса I, где вилка имеет заземляющий контакт, и класса II, часто называемого «двойной изоляцией», где источник питания не подключен к заземлению. Кроме того, существует ограниченный класс источника питания (LPS) с “ослабленными” безопасными характеристиками из-за ограниченного характера его доступности энергии. Свод правил настолько сложен, что многие разработчики обращаются к сторонней листинговой компании, такой как UL или TUV, или к десяткам испытательных лабораторий, которые знакомы со всеми мировыми стандартами для вашего конкретного применения продукта.

Электрические шумы и “иммунитет” к ним

Американский стандарт FCC и Европейский стандарт CE имеют описания допустимых электромагнитных помех от всех источников, как AC-DC, так и DC-DC. Но все сложнее и сложнее удовлетворить требования к расходным материалам AC-DC. Мало того, что у вас есть правила по количеству генерируемых электромагнитных помех (EMI), вы также должны проверить AC-DC преобразователь на предмет наведенного шума; то есть высших гармоник, которые он “отправляет” обратно в сеть. Поскольку AC-DC преобразователи часто работают с большими токами и напряжениями, они генерируют гораздо больше помех, чем DC-DC преобразователи, поэтому соблюдение правил защиты от электромагнитных помех будет более сложным.

В дополнение к требованиям по электромагнитным помехам, ваш преобразователь AC-DC будет соответствовать требованиям по невосприимчивости. Здесь вы должны смоделировать ситуацию с сетевыми помехами от источника питания и доказать, что ваш преобразователь имеет допустимые параметры качества выходного напряжения и тока. Как и DC-DC преобразователь, он также должен быть защищен от электромагнитных помех.

Все это соответствует требованиям EMI, пожарной безопасности, электробезопасности и экологически чистой энергии для AC-DC конвертора. В Power Integrations есть хороший сайт, на котором представлены некоторые требования к источникам переменного тока, например, «вампирское питание», которое потребляет AC-DC преобразователь, даже когда он выключен.

Несмотря на то, что некоторые инженеры избегают проблем с проектированием AC-DC источников питания, включая опасность разработки высоковольтных цепей, существует растущее поколение “аналоговых” инженеров, которые не боятся проблем и видят преимущества в создании безопасных, эффективных и экологически чистых продуктов, которые можно смело назвать ”инженерным искусством”.

Разница мощности постоянного и переменного тока | Tech

Есть два метода электрического тока. Это постоянный ток (DC) и переменный ток (AC).

Постоянный ток — это метод, при котором электричество всегда течет в определенном направлении, в отличие от течения реки. Он относится к потоку электричества, полученному от батарей, аккумуляторов, солнечных элементов и т. д.
С другой стороны, переменный ток (AC) представляет собой метод, при котором положительная и отрицательная стороны постоянно периодически переключаются, а направление потока соответственно изменяется электричество. Это поток электричества, получаемый от генератора или розетки. Электроэнергия, произведенная на электростанциях и отправленная в дома, также передается в виде переменного тока.
На приведенной ниже диаграмме показаны потоки электроэнергии постоянного и переменного тока.

При постоянном токе напряжение всегда постоянно, а электричество течет в определенном направлении. Напротив, в переменном токе напряжение периодически меняется с положительного на отрицательное и с отрицательного на положительное, и соответственно периодически меняется и направление тока.
При постоянном токе напряжение всегда постоянно, и электричество течет в определенном направлении. Напротив, в переменном токе напряжение периодически меняется с положительного на отрицательное и с отрицательного на положительное, и соответственно периодически меняется и направление тока.

Постоянный ток, при котором электричество всегда течет в постоянном направлении, имеет следующие достоинства и недостатки.

Преимущества

  • Отсутствие опережения или задержки в цепи
  • Реактивная мощность не генерируется
  • Может накапливать электричество

Недостаток

  • Прерывание тока затруднено
  • Сложно преобразовать напряжение
  • Сильный электролитический эффект

В переменном токе направление тока постоянно меняется. Поэтому, когда в цепь включают, например, конденсатор или катушку индуктивности, происходит задержка или опережение тока, протекающего к нагрузке, в зависимости от поведения напряжения.
Однако при постоянном токе напряжение и направление тока всегда постоянны, поэтому поведение конденсаторов и катушек также всегда постоянно. Следовательно, при постоянном токе в цепи нет ни опережения, ни задержки.
В переменном токе (AC) направление тока переключается, поэтому не вся электроэнергия проходит через нагрузку, а некоторая мощность вырабатывается, просто перемещаясь между нагрузкой и источником питания. Это называется реактивной мощностью.
При постоянном токе вся электроэнергия проходит через нагрузку, поскольку ток всегда течет в постоянном направлении. Это изображение выталкиваемого гребешка. Следовательно, реактивная мощность не вырабатывается, и мощность может использоваться эффективно.
Еще одним преимуществом постоянного тока является то, что его можно накапливать от батареек, аккумуляторов, конденсаторов и т.п.

С другой стороны, постоянный ток также имеет свои недостатки. Одна из них заключается в том, что ток трудно прервать. Поскольку к постоянному току всегда прикладывается постоянное напряжение, особенно при высоком напряжении, в момент прерывания могут возникнуть такие проблемы, как дуговые разряды (искры), или может возникнуть риск поражения электрическим током в окружающей среде.
В случае переменного тока, когда напряжение переключается с положительного на отрицательное или с отрицательного на положительное, напряжение мгновенно падает до нуля. Если вы стремитесь к тому времени, когда напряжение низкое, вы можете прерывать ток более безопасно, чем при постоянном токе.
Также при преобразовании постоянного напряжения необходимо один раз преобразовать его в переменное, а затем снова обратно в постоянное. По этой причине оборудование для преобразования постоянного напряжения больше и дороже, чем оборудование переменного тока.
Еще одним недостатком постоянного тока является сильная коррозия подземных труб и изоляторов, необходимых для передачи электроэнергии. Поскольку электричество всегда течет в одном и том же направлении в постоянном токе, коррозия оборудования для передачи энергии увеличивается из-за электростатической индукции и электрической коррозии.
Это постоянный ток, который выходит из хранящихся элементов, таких как аккумуляторы, аккумуляторы и конденсаторы. Поэтому изделия с питанием от батареек совместимы с постоянным током.
С другой стороны, источником питания в обычном доме является переменный ток, но то, что используется в электронных устройствах, таких как компьютеры и бытовая техника, такая как телевизоры, представляет собой постоянный ток. Для работы таких устройств переменный ток из розетки преобразуется в постоянный с помощью конденсаторов и других устройств.
Однако в центрах обработки данных, где в основном используется постоянный ток, поощряется использование источников питания постоянного тока, чтобы уменьшить потери при преобразовании переменного тока в постоянный.

AC с его циклическим положительным и отрицательным напряжением имеет следующие преимущества и недостатки.

Преимущества

  • Меньшие потери мощности из-за передачи высокого напряжения
  • Легко трансформируется
  • Легко отключается при подаче питания
  • Не нужно беспокоиться о положительном и отрицательном напряжении

Недостатки

  • Требуется более высокое напряжение, чем заданное
  • Воздействие катушек и конденсаторов
  • Не подходит для передачи на сверхдальние расстояния

Особенно при передаче электроэнергии на большие расстояния, например, от электростанции в город, для повышения эффективности передачи используется очень высокое напряжение 600 000 В (вольт). Это связано с тем, что потери мощности намного больше, когда мощность передается при низком напряжении.
Это связано с тем, что при подаче электричества на провод одинаковой длины (сопротивления) в течение одинакового времени выделяется тепло пропорционально квадрату силы тока. Поскольку тепло — это энергия, которая уходит, это потеря мощности.
Например, если вам требуется мощность 3000 Вт (ватт), при напряжении 100 В вам потребуется ток 30 А (ампер), а при напряжении 1000 В вам потребуется ток всего 3 А.
Другими словами, если напряжение увеличить в 10 раз, величина тока уменьшится до 1/10, а результирующие потери мощности могут быть уменьшены до 1/100, или квадрата 1/10. По этой причине для передачи на большие расстояния используются очень высокие напряжения.
Конечно, напряжение как таковое нельзя использовать в домах и офисах. Подаваемое напряжение составляет 100 000 В для крупных заводов, 6 600 В для зданий и 200 В или 100 В для домов и офисов.
Следовательно, напряжение электроэнергии, отправляемой электростанцией, должно быть снижено в соответствии с регионом или местоположением.
По сравнению с постоянным током, переменный ток можно легко преобразовать с помощью трансформаторов, что делает его более подходящим для электроснабжения в качестве инфраструктуры.

Еще одним преимуществом переменного тока является то, что его легко отключить во время подачи питания, поскольку время, когда напряжение падает до нуля, наступает периодически.
Также можно использовать без различения плюса и минуса, как бытовой блок питания (розетку), что упрощает подключение и эксплуатацию устройств.
С другой стороны, переменный ток требует более высокого напряжения, чем целевое напряжение, для требуемого количества тепла, потому что значение напряжения всегда меняется, и бывают моменты, когда напряжение достигает нуля.
Форма волны напряжения переменного тока синусоидальна, а максимальное напряжение в √2 раза превышает рабочее значение. Характеристики изоляции и технические характеристики оборудования должны быть выше действующего значения.
Еще одной характеристикой переменного тока является то, что на него сильно влияют катушки и конденсаторы. Катушки и конденсаторы генерируют напряжения, которые заставляют ток течь в направлении, противоположном направлению тока, в результате чего ток в цепи опережает или отстает.
Электроэнергия, вырабатываемая и подаваемая на электростанцию, представляет собой переменный ток. На электростанции одновременно излучаются три волны переменного тока, причем форма волны переменного тока смещена на 120 градусов. Этот вид электричества называется трехфазным переменным током.

Существует два типа переменного тока: однофазный переменный ток и трехфазный переменный ток. Трехфазный переменный ток используется, прежде всего, для передачи электроэнергии высокого напряжения. При подаче в бытовую розетку происходит его преобразование в одну фазу вместе с преобразованием напряжения.
AC используется в общих источниках питания (розетках) и используется как есть для двигателей, не требующих деликатного управления, таких как пылесосы и вентиляторы.
С другой стороны, двигатели для кондиционеров, стиральных машин, холодильников и т. д. не используют переменный ток как таковой, а используют инверторы для точного управления.

Связанные технические статьи

  • Способ генерирования постоянного тока (DC)
  • Что такое блок питания постоянного тока? (Базовые знания)
  • Для обеспечения стабильного питания переменного тока
  • Для новых инженеров-электронщиков, как безопасно использовать блок питания
  • Типы и характеристики батарей (базовые знания)

Рекомендуемые продукты

Matsusada Precision производит и продает широкий спектр оборудования для источников питания, включая источники питания постоянного и переменного тока, высоковольтные источники питания, четырехквадрантные усилители и электронные нагрузки.

Переменный ток (AC) и постоянный ток (DC)

  • Дом
  • Учебники
  • Переменный ток (AC) и постоянный ток (DC)

≡ Страниц

Авторы: Шон Хаймел

Избранное Любимый 51

Гром!

Откуда австралийская рок-группа AC/DC получила свое название? Да ведь переменный ток и постоянный ток, конечно же! И AC, и DC описывают типы тока, протекающего в цепи. В постоянный ток (DC), электрический заряд (ток) течет только в одном направлении. С другой стороны, электрический заряд переменного тока (AC) периодически меняет направление. Напряжение в цепях переменного тока также периодически меняется на противоположное, поскольку ток меняет направление.

Большая часть создаваемой вами цифровой электроники будет использовать постоянный ток. Однако важно понимать некоторые концепции переменного тока. Большинство домов подключены к сети переменного тока, поэтому, если вы планируете подключить свою музыкальную шкатулку Tardis к розетке, вам нужно будет преобразовать переменный ток в постоянный. Переменный ток также обладает некоторыми полезными свойствами, такими как способность преобразовывать уровни напряжения с помощью одного компонента (трансформатора), поэтому переменный ток был выбран в качестве основного средства передачи электроэнергии на большие расстояния.

Чему вы научитесь

  • История переменного и постоянного тока
  • Различные способы получения переменного и постоянного тока
  • Некоторые примеры приложений переменного и постоянного тока

Рекомендуемая литература

  • Что такое электричество
  • Что такое цепь?
  • Напряжение, ток, сопротивление и закон Ома
  • Электроэнергия

Переменный ток (AC)

Переменный ток описывает поток заряда, который периодически меняет направление. В результате уровень напряжения также меняется на противоположный вместе с током. Переменный ток используется для подачи электроэнергии в дома, офисные здания и т. д.

Генерация переменного тока

Переменный ток можно производить с помощью устройства, называемого генератором переменного тока. Это устройство представляет собой электрический генератор особого типа, предназначенный для выработки переменного тока.

Проволочная петля вращается внутри магнитного поля, которое индуцирует ток вдоль проволоки. Вращение проволоки может осуществляться любыми способами: ветряной турбиной, паровой турбиной, проточной водой и так далее. Поскольку провод вращается и периодически переходит в другую магнитную полярность, напряжение и ток на проводе чередуются. Вот короткая анимация, демонстрирующая этот принцип:

(Видео предоставлено Khurram Tanvir)

Генерацию переменного тока можно сравнить с нашей предыдущей аналогией с водой:

трубы туда-сюда (наш «переменный» ток). Обратите внимание, что сжатый участок трубы по-прежнему оказывает сопротивление потоку воды независимо от направления потока.

Формы сигналов

Переменный ток может принимать различные формы, пока напряжение и ток являются переменными. Если мы подключим осциллограф к цепи с переменным током и построим график зависимости напряжения от времени, то сможем увидеть ряд различных сигналов. Наиболее распространенным типом переменного тока является синусоида. Переменный ток в большинстве домов и офисов имеет колебательное напряжение, которое создает синусоидальную волну.

Другие распространенные формы переменного тока включают прямоугольную и треугольную волны:

Прямоугольные волны часто используются в цифровой и коммутационной электронике для проверки их работы.

Треугольные волны используются при синтезе звука и полезны для тестирования линейной электроники, такой как усилители.

Описание синусоиды

Нам часто требуется описать форму волны переменного тока в математических терминах. В этом примере мы будем использовать обычную синусоиду. Синусоида состоит из трех частей: амплитуда, частота и фаза.

Глядя только на напряжение, мы можем описать синусоиду как математическую функцию:

V(t) — это наше напряжение как функция времени, что означает, что наше напряжение меняется с течением времени. Уравнение справа от знака равенства описывает изменение напряжения во времени.

V P это амплитуда . Это описывает максимальное напряжение, которое может достигать наша синусоида в любом направлении, а это означает, что наше напряжение может быть +V P вольт, -V P вольт или где-то посередине.

Функция sin() указывает, что наше напряжение будет иметь форму периодической синусоиды, которая представляет собой плавное колебание около 0 В.

— это константа, которая преобразует частоту из циклов (в герцах) в угловую частоту (в радианах в секунду).

f описывает частоту синусоиды. Это дано в виде герц или единиц в секунду . Частота говорит, сколько раз конкретная форма волны (в данном случае один цикл нашей синусоиды — подъем и спад) возникает в течение одной секунды.

t — наша независимая переменная: время (измеряется в секундах). Поскольку время меняется, наша форма волны меняется.

φ описывает фазу синусоиды. Фаза — это мера того, насколько форма сигнала сдвинута во времени. Его часто задают в виде числа от 0 до 360 и измеряют в градусах. Из-за периодического характера синусоидальной волны, если форма волны смещается на 360°, она снова становится той же формой волны, как если бы она была сдвинута на 0°. Для простоты мы по-прежнему будем считать, что фаза равна 0° до конца этого урока.

Мы можем обратиться к нашему надежному поставщику за хорошим примером того, как работает сигнал переменного тока. В Соединенных Штатах электроэнергия, подаваемая в наши дома, представляет собой переменный ток с напряжением около 170 В от нуля до пика (амплитуда) и частотой 60 Гц (частота). Мы можем подставить эти числа в нашу формулу, чтобы получить уравнение (помните, что мы предполагаем, что наша фаза равна 0):

Мы можем использовать наш удобный графический калькулятор, чтобы построить это уравнение. Если нет графического калькулятора, мы можем использовать бесплатную онлайн-программу для построения графиков, такую ​​как Desmos (обратите внимание, что вам, возможно, придется использовать «y» вместо «v» в уравнении, чтобы увидеть график).

Обратите внимание, что, как мы и предсказывали, напряжение периодически повышается до 170 В и падает до -170 В. Кроме того, каждую секунду происходит 60 циклов синусоиды. Если бы мы измерили напряжение в наших розетках с помощью осциллографа, мы бы увидели это ( ПРЕДУПРЕЖДЕНИЕ: не пытайтесь измерить напряжение в розетке с помощью осциллографа! Это может привести к повреждению оборудования).

ПРИМЕЧАНИЕ: Возможно, вы слышали, что напряжение переменного тока в США составляет 120 В. Это также правильно. Как? Говоря о переменном токе (поскольку напряжение постоянно меняется), часто проще использовать среднее или среднее значение. Для этого мы используем метод под названием «Среднеквадратичное значение». (RMS). Часто полезно использовать среднеквадратичное значение для переменного тока, когда вы хотите рассчитать электрическую мощность. Несмотря на то, что в нашем примере напряжение варьировалось от -170 В до 170 В, среднеквадратичное значение составляет 120 В RMS.

Применение

Домашние и офисные розетки почти всегда подключены к сети переменного тока. Это связано с тем, что генерировать и транспортировать переменный ток на большие расстояния относительно легко. При высоких напряжениях (свыше 110 кВ) меньше потерь энергии при передаче электроэнергии. Более высокие напряжения означают более низкие токи, а более низкие токи означают меньшее выделение тепла в линии электропередачи из-за сопротивления. Переменный ток можно легко преобразовать в высокое напряжение и обратно с помощью трансформаторов.

Переменный ток также может питать электродвигатели. Двигатели и генераторы — это одно и то же устройство, но двигатели преобразуют электрическую энергию в механическую (если вал двигателя вращается, на клеммах возникает напряжение!). Это полезно для многих крупных бытовых приборов, таких как посудомоечные машины, холодильники и т. д., которые работают от сети переменного тока.

Постоянный ток (DC)

Постоянный ток немного легче понять, чем переменный ток. Вместо того, чтобы колебаться туда-сюда, постоянный ток обеспечивает постоянное напряжение или ток.

Генерация постоянного тока

Постоянный ток может быть получен несколькими способами:

  • Генератор переменного тока, оснащенный устройством, называемым «коммутатором», может производить постоянный ток
  • Использование устройства под названием «выпрямитель», которое преобразует переменный ток в постоянный
  • Батареи обеспечивают постоянный ток, который генерируется в результате химической реакции внутри батареи

Снова используя нашу аналогию с водой, DC подобен резервуару с водой со шлангом на конце.

Бак может выталкивать воду только в одном направлении: из шланга. Как и в случае с нашей батареей постоянного тока, когда резервуар опустеет, вода больше не будет течь по трубам.

Описание постоянного тока

Постоянный ток определяется как «однонаправленный» поток тока; ток течет только в одном направлении. Напряжение и ток могут меняться с течением времени, пока не меняется направление потока. Для упрощения предположим, что напряжение является константой. Например, мы предполагаем, что батарея AA обеспечивает 1,5 В, что может быть описано в математических терминах как:

Если изобразить это во времени, мы увидим постоянное напряжение:

Что это значит? Это означает, что мы можем рассчитывать на то, что большинство источников постоянного тока будут обеспечивать постоянное напряжение во времени. В действительности батарея будет медленно разряжаться, а это означает, что напряжение будет падать по мере использования батареи. Для большинства целей мы можем предположить, что напряжение является постоянным.

Applications

Почти все электронные проекты и детали для продажи на SparkFun работают на DC. Все, что работает от батареи, подключается к розетке с помощью адаптера переменного тока или использует кабель USB для питания, зависит от постоянного тока. Примеры электроники постоянного тока включают:

  • Мобильные телефоны
  • D&D Dice Gauntlet на базе LilyPad
  • Телевизоры с плоским экраном (переменный ток поступает в телевизор, который преобразуется в постоянный ток)
  • Фонари
  • Гибридные и электрические транспортные средства

Битва течений

Почти каждый дом и офис подключен к сети переменного тока. Однако это решение было принято не в одночасье. В конце 1880-х годов множество изобретений в Соединенных Штатах и ​​​​Европе привели к полномасштабной битве между распределением переменного и постоянного тока.

В 1886 году электрическая компания Ganz Works, расположенная в Будапеште, электрифицировала весь Рим с помощью переменного тока. Томас Эдисон, с другой стороны, построил 121 электростанцию ​​постоянного тока в Соединенных Штатах к 1887 году. Поворотный момент в битве наступил, когда Джордж Вестингауз, известный промышленник из Питтсбурга, купил патенты Николы Теслы на двигатели переменного тока и трансмиссию в следующем году. .

Переменный ток и постоянный ток

Томас Эдисон (Изображение предоставлено сайтом biography.com)

В конце 1800-х постоянный ток нельзя было легко преобразовать в высокое напряжение. В результате Эдисон предложил систему небольших местных электростанций, которые могли бы снабжать энергией отдельные районы или районы города. Питание распределялось по трем проводам от силовой установки: +110 вольт, 0 вольт и -110 вольт. Свет и двигатели можно было подключить между розеткой +110 В или 110 В и 0 В (нейтраль). 110В допускало некоторое падение напряжения между установкой и нагрузкой (дом, офис и т.д.).

Несмотря на то, что было учтено падение напряжения на линиях электропередач, электростанции должны были располагаться в пределах 1 мили от конечного пользователя. Это ограничение сделало распределение электроэнергии в сельской местности чрезвычайно трудным, если не невозможным.

Никола Тесла (Изображение предоставлено wikipedia.org) Джордж Вестингауз (Изображение предоставлено pbs.org)

Используя патенты Теслы, компания Westinghouse работала над усовершенствованием системы распределения переменного тока. Трансформаторы предоставили недорогой метод повышения напряжения переменного тока до нескольких тысяч вольт и снижения его до приемлемого уровня. При более высоких напряжениях та же мощность могла передаваться при гораздо более низком токе, что означало меньшие потери мощности из-за сопротивления в проводах. В результате крупные электростанции могут быть расположены за много миль и обслуживать большее количество людей и зданий.

Клеветническая кампания Эдисона

В течение следующих нескольких лет Эдисон провел кампанию, направленную на то, чтобы решительно воспрепятствовать использованию переменного тока в Соединенных Штатах, которая включала лоббирование законодательных собраний штатов и распространение дезинформации об переменного тока. Эдисон также приказал нескольким техникам публично казнить животных электрическим током, пытаясь показать, что переменный ток более опасен, чем постоянный. Пытаясь показать эти опасности, Гарольд П. Браун и Артур Кеннелли, сотрудники Эдисона, разработали первый электрический стул для штата Нью-Йорк, использующий переменный ток.

Возникновение переменного тока

В 1891 году во Франкфурте (Германия) проходила Международная электротехническая выставка, на которой была представлена ​​первая на выставке передача трехфазного переменного тока на большие расстояния, от которого питались лампы и двигатели. Присутствовали несколько представителей того, что впоследствии станет General Electric, и впоследствии они были впечатлены выставкой. В следующем году была создана General Electric, которая начала инвестировать в технологии переменного тока.

Электростанция Эдварда Дина Адамса на Ниагарском водопаде, 1896 (Изображение предоставлено teslasociety.com)

Компания Westinghouse выиграла контракт в 1893 году на строительство плотины гидроэлектростанции для использования энергии Ниагарского водопада и подачи переменного тока в Буффало, штат Нью-Йорк. Проект был завершен 16 ноября 1896 года, и промышленность Буффало начала получать электроэнергию переменного тока. Эта веха ознаменовала упадок постоянного тока в Соединенных Штатах. В то время как Европа примет стандарт переменного тока 220-240 вольт при 50 Гц, стандарт в Северной Америке станет 120 вольт при 60 Гц.

Высоковольтный постоянный ток (HVDC)

Швейцарский инженер Рене Тюри использовал серию двигателей-генераторов для создания высоковольтной системы постоянного тока в 1880-х годах, которую можно было использовать для передачи энергии постоянного тока на большие расстояния. Однако из-за высокой стоимости и обслуживания систем Thury HVDC никогда не применялись почти столетие.

С изобретением полупроводниковой электроники в 1970-х годах стало возможным экономичное преобразование переменного тока в постоянный. Для выработки электроэнергии постоянного тока высокого напряжения (некоторые из них достигают 800 кВ) можно использовать специальное оборудование. В некоторых частях Европы начали использовать линии HVDC для электрического соединения различных стран.

Линии постоянного тока высокого напряжения имеют меньшие потери, чем эквивалентные линии переменного тока на очень больших расстояниях. Кроме того, HVDC позволяет подключать различные системы переменного тока (например, 50 Гц и 60 Гц). Несмотря на свои преимущества, системы HVDC более дороги и менее надежны, чем обычные системы переменного тока.

В конце концов Эдисон, Тесла и Вестингауз могут осуществить свои желания. AC и DC могут сосуществовать, и каждый из них служит определенной цели.

Ресурсы и дальнейшее развитие

Теперь вы должны хорошо понимать различия между переменным и постоянным током. Переменный ток легче преобразовать между уровнями напряжения, что делает передачу высокого напряжения более осуществимой. Постоянный ток, с другой стороны, встречается почти во всей электронике. Вы должны знать, что они не очень хорошо сочетаются, и вам нужно будет преобразовать переменный ток в постоянный, если вы хотите подключить большую часть электроники к сетевой розетке.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *