Dc ac что это: AC, DC — что это такое?

Содержание

Блоки питания AC/DC — все мировые производители.

Модель

Тип конвертации

Вых.

Вхд.

Кат.

Примечания

8710

AC/AC

10.5VA

230 VAC

Штепсельный

Линейный

8810

AC/AC

20 VA

230 VAC

Штепсельный

Линейный

2725

AC/DC

7,5W

90-264 VAC

Штепсельный

Импульсный, одобр. CEC

8713

AC/DC

7,5W

230 VAC

Штепсельный

Линейно регулируемый, регулируемый

8711

AC/DC

10 W

230 VAC

Штепсельный

Нерегулируемый

9525

AC/DC

10W

90-264 VAC

Штепсельный

Импульсный

2124

AC/DC

16 W

90 — 264 VAC

Настольный

Импульсный — 2p IEC 320

2125

AC/DC

16 W

90 — 264 VAC

Настольный

Импульсный – фикс. шнур

2126

AC/DC

16 W

90 — 264 VAC

Штепсельный

Штепсель, расш. AC шт.

9920

AC/DC

40W

90-264 VAC

Настольный

Импульсный

9921

AC/DC

40W

90-264 VAC

Настольный

Импульсный, 2-pins IEC 320

9922

AC/DC

40W

90-264 VAC

Настольный

Импульсный, фикс. осн. шнур

9926

AC/DC

40 W

90 — 264 VAC

Штепсельный

Импульсный, расш. AC шт.

2720

AC/DC

40W

90-264 VAC

Настольный

Импульсный, одобр.CEC

2721

AC/DC

40 W

90 — 264 VAC

Штепсельный

Штепсель, расш. AC шт.

9819

AC/DC

40. 8 W

90 — 264 VAC

Штепсельный

Импульсный, медицинский

2020

AC/DC

60W

90-264 VAC

Настольный

Импульсный

2021

AC/DC

60W

90-264 VAC

Настольный

Импульсный, 2P IEC 320

2022

AC/DC

60W

90-264 VAC

Настольный

Импульсный, фикс. шнур

2023

AC/DC

96 W

90 — 264 VAC

Настольный

Импульсный, PFC

2026

AC/DC

96 W

90 — 264 VAC

Настольный

Импульсный, PFC

9726

AC/DC

96 W

90 — 264 VAC

Настольный

Импульсный

9522

AC/DC

135 W

230 VAC

Настольный

Импульсный

8714CV

Свинц. -кисл.

0,65 A

230 VAC

Зарядн. устр.

Штепсель, Пост. напряжение

2240

Свинц.-кисл.

1,3A

90-264 VAC

Зарядн. устр.

Настольный

2241

Свинц.-кисл.

1,3 A

90-264 VAC

Зарядн. устр.

Штепсель

2541

Свинц.-кисл.

2,2 A

90-264 VAC

Зарядн. устр.

Настольный, 3-шаговый контроль зарядки с текущим показателем

2542

Свинц.-кисл.

2,2 A

90-264 VAC

Зарядн. устр.

Штепсель, расш. AC шт., 3-шаговый контроль зарядки с текущим показателем

9940

Свинц.-кисл.

2,3 A

90-264 VAC

Зарядн. устр.

Настольный, 3-шаговый контроль зарядки

9941

Свинц.-кисл.

2,3 A

90-264 VAC

Зарядн. устр.

Штепсель, расш. AC шт., 3-шаговый контроль зарядки

9641

Свинц.-кисл.

2,7A

110/230 VAC

Зарядн. устр.

Штепсель, 3-шаговый контроль зарядки

2040

Свинц.-кисл.

4A

90-264 VAC

Зарядн. устр.

Настольный, 3-шаговый контроль зарядки

2140

Свинц.-кисл.

4A

90-264 VAC

Зарядн. устр.

Настольный, 3-шаговый контроль зарядки, водонипрониц.

9840

Свинц.-кисл.

5A

230 VAC

Зарядн. устр.

Теплоотвод, 3-шаговый контроль зарядки

9740

Свинц.-кисл.

10A

110/230 VAC

Зарядн. устр.

Теплоотвод, 3-шаговый контроль зарядки

2641

Свинц.-кисл.

4 A

90 — 264 VAC

Зарядн. устр.

2 канал., 12V 2x2A

8714CC

NiMH

3,3W

230 VAC

Зарядн. устр.

Штепсель, пост. напряжение

2115

NiMH

16W

90-264 VAC

Зарядн. устр.

Настольный, — delta V + программируемый

2116

NiMH

1,3A

90-264 VAC

Зарядн. устр.

Штепсель, — delta V + программируемый

2215

NiMH

35W

90-264 VAC

Зарядн. устр.

Настольный, — delta V считыв.

2216

NiMH

35W

90-264 VAC

Зарядн. устр.

Штепсель, — delta V считыв.

2015

NiMH

45W

230 VAC

Зарядн. устр.

Программируемый — delta V считыв.

2415

NiMH

65W

90-264 VAC

Зарядн. устр.

Настольный, -delta V + программируемый

2740LI

Литиев.

1A

90-264 VAC

Зарядн. устр.

Штепсель, 3-шаговый контроль зарядки с текущим показателем

2240 LI

Литиев.

1,3A

90-264 VAC

Зарядн. устр.

Настольный, 3-шаговый контроль зарядки с текущим показателем

2241LI

Литиев.

1,3A

90-264 VAC

Зарядн. устр.

Штепсель, расш. AC шт., 3-шаговый контроль зарядки с текущим показателем

2541LI

Литиев.

2,7A

90-264 VAC

Зарядн. устр.

Настольный, 3-шаговый контроль зарядки с текущим показателем

2542LI

Литиев.

2,7A

90-264 VAC

Зарядн. устр.

Штепсель, расш. AC шт., 3-шаговый контроль зарядки

9940LI

Литиев.

2,3A

90-264 VAC

Зарядн. устр.

Настольный, 3-шаговый с таймер.

9941LI

Литиев.

2,3A

90-264 VAC

Зарядн. устр.

Штепсель, расш. AC шт., 3-шаговый с таймер.

9641 LI

Литиев.

2,7A

230 VAC

Зарядн. устр.

Штепсель, 3-шаговый с таймер.

2040LI

Литиев.

4A

90-264 VAC

Зарядн. устр.

Настольный, 3-шаговый с таймер.

Инвертор DC AC: назначение, схема и принцип работы | Журнал PClegko

Инвертор DC/AC преобразует постоянный ток в переменный. При этом может изменяться величина электрического напряжения. Устройство представляет собой отдельный прибор или является частью системы источников бесперебойного питания для различной аппаратуры. Может иметь контроллер заряда.

Для чего нужен инвертор DC/AC

Преобразователи AC/DC используются постольку, поскольку маломощные генераторы постоянного тока не могут эффективно питать современные приборы.

Развитие технологий требует применения усовершенствованных способов защиты данных и аппаратуры при внезапном отключении электричества.

К примеру, если ПК сталкивается с отключением сети, инвертор DC/AC и резервный аккумулятор образуют источник бесперебойного питания. Это позволяет безопасным образом закончить работу устройства.

DC – это постоянный ток, AC – переменный. Инвертор также служит промежуточным элементом в цепи преобразователей энергии. В этом случае прибор работает на высокой частоте в десятки и сотни килогерц.

Как работает инвертор DC AC

Переменное напряжение в инверторе образуется за счет частых подключений источника постоянного напряжения к противоположным клеммам нагрузки. Направление движения тока в результате чередуется.

Принцип работы станет понятнее, если представить, что к резистору попеременно то минусом, то плюсом подключается батарейка. Чередование должно осуществляться с высокой скоростью.

Существуют импульсные преобразователи следующих типов:

  • Механические. Преобразование постоянного тока в переменный происходит за счет частого переключения контактов.
  • Полупроводниковые. Отличаются более высокой эффективностью.
  • Цифровые. Используются на телекоммуникационной аппаратуре.

Инвертор генерирует осциллирующие (колебательные) импульсы. Форма выходного напряжения устройства DC/AC бывает:

Используется в высокоточных и сложных приборах, восприимчивых к качеству напряжения. Синусоида получается благодаря широтно-импульсной модуляции. Инверторы с такой формой напряжения являются очень дорогими.

  • Квазисинусоидной, или ступенчатой.

Это более дешевый вид импульсного преобразователя напряжения. Подходит для установки на нагревательные и осветительные приборы бытового назначения.

  • Импульсной, или прямоугольной.

Из-за особенностей такой синусоиды, смена полярностей происходит резко. Для обычного пользователя это означает, что использование дешевого преобразователя напряжения может привести к нежелательной поломке таких чувствительных устройств как холодильник или стиральная машина. Опасности также подвержена дорогостоящая видеоаппаратура, аудиотехника.

Что стоит учитывать, определяя эффективность преобразователя питания:

  • КПД;
  • допустимый Power Factor (PF), или коэффициент мощности;
  • качество напряжения на выходе;
  • допустимый пик-коэффициент, или Crest Factor;
  • перегрузочную способность устройства.

В каких режимах может работать инвертор DC/AC:

  • Перегрузка. В этом случае преобразователь способен до 30 минут отдавать такую мощность, которая до полутора раз превышает номинальную.
  • Длительная работа. Функционирование осуществляется при номинальной мощности инвертора.
  • Режим пусковой. Устройство отдает повышенную мощность на несколько миллисекунд. Это запускает электродвигатели.

Инвертор DC/AC не рассчитан на постоянное функционирование в режиме пиковой мощности на протяжении длительного промежутка времени.

Инвертирующая схема

Классификация DC/AC по исполнению схемы:

  • Трансформаторные инверторы.

Предназначены для питания устройств мощностью до 500 Вольт-Ампер (В·А). Имеют относительно простую схему. Нулевой вывод трансформатора дает 2 напряжения с противоположной фазой и одинаковым значением.

  • Мостовые инверторы напряжения.

Схемы без трансформатора используются в устройствах, работающих с мощностью выше 500 ВА, или на высоковольтных установках.

  • Комбинированные.

Включают в себя мостовую схему с трансформаторами. Эта особенность комбинированных инверторов позволяет выпускать преобразователи, обладающие обширным диапазоном мощностей. Они могут колебаться от единиц и до десятков кВА.

Приведем схемы указанных преобразователей напряжения:

Инвертор DC AC — разновидности

Какие существуют классы AC/DC преобразователей в зависимости от принципа их действия:

Называются также «ведомыми». Преобразуют электроэнергию, отдавая ее в сеть переменного тока. Этот принцип действия представляет собой полную противоположность выпрямителя (так зовется прибор, преобразующий переменный ток AC в DC).

Занимаются преобразованием электротока с регулируемой или неизменной частотой. Работают на нагрузку, не имеющую связи с сетью переменного тока.

Какими бывают автономные преобразователи напряжения AC/DC:

Форма выходного напряжения таких инверторов зависит от порядка коммутации силовых ключей. На входе имеет конденсатор с большой емкостью. Форма тока на выходе задается характером нагрузки. В большинстве источников бесперебойного питания AC/DC используются инверторы АИН.

В этом случае характером нагрузки определяется именно форма выходного электрического напряжения, а не тока. На советских аэродромах использовался стационарный преобразователь АПЧС-63У1.

Резонансные инверторы чаще всего применяются для получения высокочастотного напряжения (от 0,5 до 10 кГц). Обычно работают на нагрузке в 1 фазу. Часто эксплуатируются в области электротермии, на установках индукционного нагрева.

В зависимости от конструкции:

  • Однофазный инвертор DC/AC. Может иметь на выходе так называемый «чистый синус» или сигнал упрощенной формы.
  • Двухфазный. Часто используются на сварочных аппаратах.
  • Трехфазные инверторы чаще всего нужны для подачи соответствующего тока на электродвигатели. Высокомощные устройства этого типа устанавливаются в тяговых преобразователях.
  • Многофазные.

Чем отличается инвертор DC AC от конвертора

Инвертор напряжения преобразует переменный ток (AC) в постоянный (DC), и наоборот. Устанавливается на промышленной технике, активно используется при работе с бытовыми приборами. Предназначен для подачи на устройства бесперебойного изолированного питания.

Инвертор DC AC используется также в сварочных аппаратах. Применение преобразователя позволяет уменьшить размеры и вес подобных приборов. Это способствует облегчению транспортировки и повышает удобство при эксплуатации данных устройств.

Существуют также приборы другого класса, предназначенные для понижения или повышения электрического напряжения переменного тока. Они называются «конвертеры» AC/AC.

Существуют и конвертеры DC/DC. Они преобразуют постоянное напряжение. Виды тока при этом не меняются. Будучи частью одной системы, они делают это таким образом, чтобы каждый отдельный аккумулятор получал именно то напряжение, которое ему нужно.

Где приобрести

Купить инвертор DC AC и оптроны можно в интернет-магазине «ТМ Электроникс». В каталоге представлен широкий выбор преобразователей.

Можно запросить звонок на сайте. Вам перезвонит менеджер и поможет сориентироваться в выборе продукции. Чтобы оформить заказ на сайте компании самостоятельно, добавьте товар в корзину и заполните форму.

Преимущества сотрудничества с «ТМ Электроникс»:

  • Быстрая доставка.

Товар распространяется по всей России. Доставим заказанный инвертор и любые сопутствующие электронные компоненты к терминалу транспортной компании или по указанному при оформлении покупки адресу. Курьер обязательно сообщит о своем приезде, если вы укажете свои контактные данные.

  • Богатый выбор продукции.

В наличии полупроводники, оптоэлектроника, трансформаторы, переключатели, кабели, компьютерные аксессуары и другие электронные комплектующие.

  • Гарантии качества.

Вся продукция сертифицирована. Полное соответствие существующим в сфере радиоэлектроники ГОСТам.

  • Качественный и надежный сервис, соответствующий европейским стандартам обслуживания.
  • Мы заказываем устройства и электронные компоненты к ним напрямую у производителя.

Это позволяет не завышать стоимость продукции и продавать технику по максимально выгодной для покупателя цене.

  • Техническая поддержка на русском языке.

Это обеспечивает покупателю удобство использования нашего сервиса на всех этапах сотрудничества.

  • Обширный опыт.

Поиск электронных компонентов под индивидуальные нужды каждого клиента. Осуществляется инженерная поддержка. Занимаемся подбором элементной базы.

  • Удобная оплата без комиссии. Купить инвертор можно онлайн, через электронный кошелек или по банковской карте.

Многолетний опыт позволяет нам предлагать покупателю только самый качественный товар. В TME продаются электронные компоненты от лучших зарубежных поставщиков.

Для посылок стандартных размеров предоставляем услугу бесплатной доставки. Условия пересылки крупногабаритных грузов рассчитываются отдельно. Возможен самовывоз из пунктов выдачи.

Читайте больше полезных и интересных статей в интернет-журнале PClegko.

Источник:

Инвертор DC AC: назначение, схема и принцип работы

Что такое dc напряжение. Обозначение постоянного и переменного тока. Источники электрической энергии

На сегодняшнее время в продаже существует адаптивный ксенон с лампами и блоками розжига AC и DC. Это один и тот же ксенон, но имеющий некоторые различия, о которых вы, как покупатель и пользователь, обязательно должны знать. Этот материал посвящен ксенону AC и DC, особенностям, отличиям и многому другому, что полезно будет знать.

Вступительная часть о ксеноне AC и DC

На первый взгляд отличить блоки розжига AC и DC невозможно. Главное их различие в том, что AC – это блоки розжига, которые имеют переменный ток, а DC – постоянный. Различие таких двух ксенонов можно заметить при их работе, а точнее во время розжига и поддержания тлеющего разряда. Мерцание ламп выдает блоки розжига DC.

Для того, чтобы конкретно понять различия между ксеноном AC и DC необходимо знать их конструкцию. Разительно отличаются такие комплекты именно по принципу работы, что является наиболее важным для данного устройства в светотехнике для автомобилей. Как уже отмечалось, их принцип работы виден в момент розжига ксеноновой лампы и поддержании горения. Для того, чтобы образовать электрическую дугу между электродами в колбе лампы необходима мощная подача импульса, то есть тока до 25000 В.

После того, как запустилось горение источника, для поддержания функционирования лампы необходима беспрерывная подача тока с напряжением 80-85 В, и следит за этим контроллер, который вмонтирован в балласт игнитора. Это стандартный принцип работы блоков розжига ксеноновых ламп. В AC блоках присутствует игнитор (инвертер) и стабильно работающий стабилизатор, в отличие от комплектов DC.

Комплекты блоков розжига DC: принцип розжига лампы

Адаптивные блоки розжига и ксеноновые лампы с постоянным током DC имеют значительно меньшую стоимость, легкий вес и небольшие габариты. Они обеспечивают единичный и нецикличный разряд, что и приводит, зачастую, к дрожанию электрической дуги и мерцанию света ксенонового источника. Чтобы правильно активизировать работу ксеноновой лампы необходим повторный импульс, что занимает дополнительные несколько секунд на ожидание повторной подачи тока. Отметим, что система DС по качеству намного лучше, чем галоген, но все же уступает комплектам AC c переменным током.

Комплекты блоков розжига AC: принцип розжига лампы

Ксеноновые блоки розжига и лампы с переменным током AC работают намного стабильнее и лучше, поскольку оснащены специальным стабилизатором, выравнивающим напряжение. АС блоки создают импульсы необходимой частоты и мощности, что и позволяет обеспечить бесперебойность и стабильность выдачи света лампами. Для того, чтобы создать амплитуду колебания в блоках и лампах АС используются специальные игниторы (иногда могут называться инверторами), которые обеспечивают преобразование низковольтного тока в высоковольтный импульс и наоборот.

Таким образом из напряжения бортовой сети транспортного средства 12 В (иногда 24 В) обеспечивается генерация тока в 25000 В, что в считанные секунды гарантирует розжиг ксенонового излучателя. Стоит отметить, что у блоков АС есть двусторонняя связь с ксеноновыми лампами, таким образом, если свет начинает тухнуть, то блок обеспечивает подачу высоковольтного импульса, чтобы не привести к деактивации излучателя. Таким образом, комплекты адаптивного ксенона АС более стабильно работают, не наблюдается мерцаний ламп и скачков напряжения.

Параметры Блоки AC Блоки DC
Ток
Переменный Постоянный
Стартовый импульс Один мощный импульс в 25000 В, что обеспечивает моментальный розжиг ксеноновой лампы. Лампа моментально разжигается, не наблюдается мерцаний и снижения яркости света. Иногда стартовый импульс полностью не активизирует электрическую дугу, а поэтому приходится ждать повторной реакции, что занимает намного больше времени и свет лампы мерцает.
Вес Имеют больший вес, чем блоки с постоянным током, благодаря конструктивным особенностям. Характеризуются максимальной легкостью, а поэтому не создают давление на блок фары.
Габариты Бывают разные габариты, в зависимости от поколения. Блоки обладают практически одинаковыми габаритами.
Конструкция Имеют игнитор (инвертер) и стабилизатор. Отсутствует инвертер и стабилизатор напряжения.
Форм-фактор Бывают стандартного размера и слим, для использования в авто с маленьким подкапотным пространством. Практически все блоки розжига имеют стандартные размеры, но меньшего формата, чем обыкновенные блоки АС.
Звуковой сигнал Обладают специальным звуковым сигналом, который со временем затухает и оповещает водителя о пригодности ксенона для использования и начала движения авто. Блоки розжига постоянного тока не обеспечивают подачу звукового сигнала для водителя, а поэтому приходится ждать дольше, чтобы начать движение.
Лампы Используется исключительно с лампами переменного тока АС. Если подключить блок с лампами DC, то свечение не активизируется, поскольку блок не создает специальную полярность, которая нужна для функционирования ламп с постоянным током. Необходимо использовать исключительно с лампами DC. Если же подключить блок к лампам с переменным током АС, то увеличивается износ и ламп, и разжигающего изделия. К тому же свет ламп АС будет «дрожать», за счет отсутствия стабильности в дуговом разряде.
Длительность эксплуатации Использовав лампы и блоки АС комплект прослужит в среднем 2500-3000 часов. Пользуясь лампами и блоками DC свет фар будет годен в течении 1500-2000 часов.
Процент дефективности В среднем 2% брака.
В среднем 5% брака.
Надежность Блоки обладают высокой надежностью и стабильностью работы, не допускают короткого замыкания и гарантируют бесперебойность свечения ксеноновой лампы. Надежность, по сравнению с блоками розжига АС немного снижена, не говоря о стабильности функционирования и бесперебойности свечения ксенонового излучателя.
Устойчивость к температурным перепадам Блоки обладают высокой устойчивостью к перепадам температуры, корпус надежно и герметично запаян, а элементы, которые максимально подвержены выходу из строя при попадании влаги — спрятаны. Стоит отметить, что блоки DC и AC по устойчивости к температуре идентичны. К тому же, благодаря качественному герметику блоки постоянного напряжения не подвержены попаданию влаги.
Стоимость За счет того, что блоки розжига АC оснащаются дополнительными компонентами, они стоят на порядок дороже, чем устройства постоянного тока. Стоят намного дешевле, чем блоки розжига с переменным током, поскольку отсутствуют важные компоненты, например, стабилизатор напряжения.

Будьте бдительны!

Зачастую случается так, что приобретая блоки розжига у недобросовестных продавцов, например на базарах, или же магазинах «в подвалах» покупатели наталкиваются на мошенничество. Многие хитрят и монтируют муляж инвертера в блоки розжига DC и выдают их за AC, естественно по стоимости на порядок выше. Именно поэтому, приобретайте адаптивные комплекты ксенона только у проверенных продавцов, которые гарантируют высокое качество продукции и обязательно предоставляют гарантию на любые приобретенные комплекты.

Когда необходимо получить шов максимально высокого качества, используется аргонная сварка. Она может выполняться при помощи инверторов TIG класса DC и AC-DC. Широта функционала — основное отличие между этими двумя аппаратами. Так, агрегат TIG DC представляет собой устройство, которое обычно используется для ручной сварки в быту и на предприятиях.

Чтобы начать сварку, потребуются покрытые электроды и подключение агрегата к сети в 220 вольт. В устройстве TIG DC применяется технология создания постоянного тока для сварки. При использовании моделей AC-DC работать можно не в одном, а в двух режимах. То есть в зависимости от существующих задач допускается варить под действием переменного или постоянного тока. Несмотря на такие функциональные различия ремонт сварочного оборудования TIG DC и AC-DC выполняется, как правило, без особых сложностей, но с различными временными затратами.

Нюансы использования инверторов

Для работы с алюминием, а также его сплавами нужен переменный ток. Это значит, что для подобной работы вместо TIG DC потребуется AC-DC. Универсальный агрегат для аргонной сварки считается одним из наиболее сложных среди агрегатов TIG. Переменный контур предусмотрен схемой инверторов AC-DC, что позволяет при смене характера работ легко переходить на сварку алюминия, его сплавов.

На практике доказано, что использование мастерами агрегатов TIG DC, то есть постоянного тока для сваривания алюминия, приводит к низкому качеству швов по причине формирования оксидной тугоплавкой пленки на поверхности сплава. Благодаря особым процессам в дуге под влиянием переменного тока (то есть, когда работает агрегат TIG AC-DC), приводят к разрушению оксидной пленки и увеличению качества шва. Однако для достижения высокого результата сварщик должен действовать более четко и быстро, поскольку скорость создания шва достаточно велика. Качество стыка получается настолько хорошим, что не требуется дополнительной обработки швов. Как правило, ремонт сварочных аппаратов TIG DC и AC-DC выполняется в специализированных мастерских, а частота его проведения во многом зависит от эксплуатационной нагрузки.

Зона-Сварки в Санкт-Петербурге!

Скоро наша компания «Зона-Сварки» откроет сервисный центр в Санкт-Петербурге!

Сегодня, если вы посмотрите вокруг, практически все, что вы видите, питается от электричества в той или иной форме.
Переменный ток и постоянный ток являются двумя основными формами зарядов, питающих наш электрический и электронный мир.

Что такое AC? Переменный ток может быть определен, как поток электрического заряда, который изменяет свое направление через регулярные промежутки времени.

Период / регулярные интервалы, при котором AC меняет свое направление, является его частотой (Гц). Морские транспортные средства, космические аппараты, и военная техника иногда используют AC с частотой 400 Гц. Тем не менее, в течение большей части времени, в том числе внутреннего использования, частота переменного тока устанавливается на 50 или 60 Гц.

Что такое DC? (Условное обозначение на электроприборах) Постоянный ток является током (поток электрического заряда или электронов), который течет только в одном направлении. Впоследствии, нет частоты связанной с DC. DC или постоянный ток имеет нулевую частоту.
Источники переменного и постоянного тока:

АС: Электростанции и генераторы переменного тока производят переменный ток.

DC: Солнечные батареи, топливные элементы, и термопары являются основными источниками для производства DC. Но основным источником постоянного тока является преобразование переменного тока.

Применение переменного и постоянного тока:

АС используется для питания холодильников, домашних каминов, вентиляторов, электродвигателей, кондиционеров, телевизоров, кухонных комбайнов, стиральных машин , и практически всего промышленного оборудования.

DC в основном используется для питания электроники и другой цифровой техники. Смартфоны, планшеты, электромобили и т.д.. LED и LCD телевизоры также работают на DC, который преобразовывается от обычной сети переменного тока.

Почему AC используется для передачи электроэнергии. Это дешевле и проще в производстве. AC при высоком напряжении может транспортироваться на сотни километров без особых потерь мощности. Электростанции и трансформаторы уменьшают величину напряжения до (110 или 230 В) для передачи его в наши дома.

Что является более опасным? AC или DC?
Считается, что DC является менее опасным, чем AC, но нет окончательного доказательства. Существует заблуждение, что контакт с высоким напряжением переменного тока является более опасным, чем с постоянного тока. На самом деле, это не о напряжении, речь идет о сумме тока, проходящего через тело человека. Постоянный и переменный ток может привести к летальному исходу. Не вставляйте пальцы или предметы внутрь розеток или гаджетов и высокой мощности оборудования.

На сегодняшнее время в продаже существует адаптивный ксенон с лампами и блоками розжига AC и DC. Это один и тот же ксенон, но имеющий некоторые различия, о которых вы, как покупатель и пользователь, обязательно должны знать. Этот материал посвящен ксенону AC и DC, особенностям, отличиям и многому другому, что полезно будет знать.

Вступительная часть о ксеноне AC и DC

На первый взгляд отличить блоки розжига AC и DC невозможно. Главное их различие в том, что AC – это блоки розжига, которые имеют переменный ток, а DC – постоянный. Различие таких двух ксенонов можно заметить при их работе, а точнее во время розжига и поддержания тлеющего разряда. Мерцание ламп выдает блоки розжига DC.

Для того, чтобы конкретно понять различия между ксеноном AC и DC необходимо знать их конструкцию. Разительно отличаются такие комплекты именно по принципу работы, что является наиболее важным для данного устройства в светотехнике для автомобилей. Как уже отмечалось, их принцип работы виден в момент розжига ксеноновой лампы и поддержании горения. Для того, чтобы образовать электрическую дугу между электродами в колбе лампы необходима мощная подача импульса, то есть тока до 25000 В.

После того, как запустилось горение источника, для поддержания функционирования лампы необходима беспрерывная подача тока с напряжением 80-85 В, и следит за этим контроллер, который вмонтирован в балласт игнитора. Это стандартный принцип работы блоков розжига ксеноновых ламп. В AC блоках присутствует игнитор (инвертер) и стабильно работающий стабилизатор, в отличие от комплектов DC.

Комплекты блоков розжига DC: принцип розжига лампы

Адаптивные блоки розжига и ксеноновые лампы с постоянным током DC имеют значительно меньшую стоимость, легкий вес и небольшие габариты. Они обеспечивают единичный и нецикличный разряд, что и приводит, зачастую, к дрожанию электрической дуги и мерцанию света ксенонового источника. Чтобы правильно активизировать работу ксеноновой лампы необходим повторный импульс, что занимает дополнительные несколько секунд на ожидание повторной подачи тока. Отметим, что система DС по качеству намного лучше, чем галоген, но все же уступает комплектам AC c переменным током.

Комплекты блоков розжига AC: принцип розжига лампы

Ксеноновые блоки розжига и лампы с переменным током AC работают намного стабильнее и лучше, поскольку оснащены специальным стабилизатором, выравнивающим напряжение. АС блоки создают импульсы необходимой частоты и мощности, что и позволяет обеспечить бесперебойность и стабильность выдачи света лампами. Для того, чтобы создать амплитуду колебания в блоках и лампах АС используются специальные игниторы (иногда могут называться инверторами), которые обеспечивают преобразование низковольтного тока в высоковольтный импульс и наоборот. Таким образом из напряжения бортовой сети транспортного средства 12 В (иногда 24 В) обеспечивается генерация тока в 25000 В, что в считанные секунды гарантирует розжиг ксенонового излучателя. Стоит отметить, что у блоков АС есть двусторонняя связь с ксеноновыми лампами, таким образом, если свет начинает тухнуть, то блок обеспечивает подачу высоковольтного импульса, чтобы не привести к деактивации излучателя. Таким образом, комплекты адаптивного ксенона АС более стабильно работают, не наблюдается мерцаний ламп и скачков напряжения.

Параметры Блоки AC Блоки DC
Ток Переменный Постоянный
Стартовый импульс Один мощный импульс в 25000 В, что обеспечивает моментальный розжиг ксеноновой лампы. Лампа моментально разжигается, не наблюдается мерцаний и снижения яркости света. Иногда стартовый импульс полностью не активизирует электрическую дугу, а поэтому приходится ждать повторной реакции, что занимает намного больше времени и свет лампы мерцает.
Вес Имеют больший вес, чем блоки с постоянным током, благодаря конструктивным особенностям. Характеризуются максимальной легкостью, а поэтому не создают давление на блок фары.
Габариты Бывают разные габариты, в зависимости от поколения. Блоки обладают практически одинаковыми габаритами.
Конструкция Имеют игнитор (инвертер) и стабилизатор. Отсутствует инвертер и стабилизатор напряжения.
Форм-фактор Бывают стандартного размера и слим, для использования в авто с маленьким подкапотным пространством. Практически все блоки розжига имеют стандартные размеры, но меньшего формата, чем обыкновенные блоки АС.
Звуковой сигнал Обладают специальным звуковым сигналом, который со временем затухает и оповещает водителя о пригодности ксенона для использования и начала движения авто. Блоки розжига постоянного тока не обеспечивают подачу звукового сигнала для водителя, а поэтому приходится ждать дольше, чтобы начать движение.
Лампы Используется исключительно с лампами переменного тока АС. Если подключить блок с лампами DC, то свечение не активизируется, поскольку блок не создает специальную полярность, которая нужна для функционирования ламп с постоянным током. Необходимо использовать исключительно с лампами DC. Если же подключить блок к лампам с переменным током АС, то увеличивается износ и ламп, и разжигающего изделия. К тому же свет ламп АС будет «дрожать», за счет отсутствия стабильности в дуговом разряде.
Длительность эксплуатации Использовав лампы и блоки АС комплект прослужит в среднем 2500-3000 часов. Пользуясь лампами и блоками DC свет фар будет годен в течении 1500-2000 часов.
Процент дефективности В среднем 2% брака. В среднем 5% брака.
Надежность Блоки обладают высокой надежностью и стабильностью работы, не допускают короткого замыкания и гарантируют бесперебойность свечения ксеноновой лампы. Надежность, по сравнению с блоками розжига АС немного снижена, не говоря о стабильности функционирования и бесперебойности свечения ксенонового излучателя.
Устойчивость к температурным перепадам Блоки обладают высокой устойчивостью к перепадам температуры, корпус надежно и герметично запаян, а элементы, которые максимально подвержены выходу из строя при попадании влаги — спрятаны. Стоит отметить, что блоки DC и AC по устойчивости к температуре идентичны. К тому же, благодаря качественному герметику блоки постоянного напряжения не подвержены попаданию влаги.
Стоимость За счет того, что блоки розжига АC оснащаются дополнительными компонентами, они стоят на порядок дороже, чем устройства постоянного тока. Стоят намного дешевле, чем блоки розжига с переменным током, поскольку отсутствуют важные компоненты, например, стабилизатор напряжения.

Будьте бдительны!

Зачастую случается так, что приобретая блоки розжига у недобросовестных продавцов, например на базарах, или же магазинах «в подвалах» покупатели наталкиваются на мошенничество. Многие хитрят и монтируют муляж инвертера в блоки розжига DC и выдают их за AC, естественно по стоимости на порядок выше. Именно поэтому, приобретайте адаптивные комплекты ксенона только у проверенных продавцов, которые гарантируют высокое качество продукции и обязательно предоставляют гарантию на любые приобретенные комплекты.

Услышав музыку этой группы хотя бы один раз, её невозможно забыть или спутать с чем-то другим. Потрясающий звук, бешеная энергетика, незабываемый вокал — это всё «AC/DC», культовая рок-группа родом из Австралии, ставшая настоящей легендой хеви-метала и хард-рока. Удивителен тот факт, что коллектив продолжает существовать с 1971 года, а в конце лета 2015 года музыканты, которым давно перевалило за 60, собрались в большой гастрольный тур по Канаде и США, что доказывает, что эту удивительную рок-группу рано списывать со счетов, и они еще могут «задать жару».

Становление рок-легенды

У Уильяма и Маргарет Янг, коренных шотландцев, переехавших в Австралию в 1963 году, всего было девять детей, в том числе трое сыновей — Джордж, Малкольм и Агнус. На удивление, все они были чрезвычайно талантливы в музыкальном плане. Первым братом, втянувшимся в рок-музыку, был старший, Джордж. Он с друзьями основал «Easybeats», подростковый рок-бэнд, чем привлек внимание младших Янгов к музыке. Малкольм, а затем и Агнус, взяв в руки гитару, обнаружили настоящий талант, обучаясь с рекордной быстротой.

После нескольких неудачных попыток участия в музыкальных коллективах, в голову Малкольму Янгу приходит идея создать собственную группу, а его младший брат Агнус с энтузиазмом поддерживает эту задумку. Вокалиста Дейва Эванса братья нашли по объявлению в газете, а на барабаны и бас-гитару были приглашены знакомые молодых Янгов.

Название своей группы будущие легенды рока придумали, а точнее сказать, нашли, довольно быстро: надпись «AC/DC», что означает «переменно-постоянный ток» часто размещалась на бытовых приборах, вроде пылесоса или электрической швейной машины, где её и увидела сестра братьев Янг, Маргарет. Такое название показалось друзьям оригинальным, звучным и очень метким, и было единогласно принято всеми членами группы.

Так как к созданию группы Малкольм и Агнус подходили очень серьезно, они решили придумать также какой-то оригинальный сценический имидж. И здесь им снова помогла Маргарет, которая, как и родители молодых людей, очень поддерживала их в организации собственного музыкального коллектива. Она придумала оригинальную «изюминку» группы: выступать в форменной школьной одежде. Благодаря этой судьбоносной идее, Ангуса Янга узнают по коротким школьным штанишкам, галстучку и забавной кепке, в которые он бессменно облачается на концертах группы и по сей день.

Свое дебютное выступление группа провела в последний день 1973 года, а местом, где квинтет сыграл в первый раз, был выбран бар «Chequers». С этого момента начала своё существование хард-рок-группа, которой было предначертано стать мировой легендой и обрести огромное количество фанатов и последователей.

Карьера: находки и потери

В 1974 году в составе группы произошли множественные перемены, были замещены несколько барабанщиков и бас-гитаристов. А самой главной и судьбоносной заменой того времени в «AC/DC» стала смена вокалиста. Дейв Эванс отказался выходить на сцену на одном из выступлений, необходимо было срочно что-то предпринять, и тут свою кандидатуру предложил шофер группы Бон Скотт, по счастливой случайности оказавшийся в нужное время в нужном месте. После выступления Бон был взят в коллектив на постоянной основе. Настоящим именем нового вокалиста было Роналд Белфорд Скотт, и он оказался необыкновенно харизматичным и энергичным молодым человеком, к тому же, наделенным незаурядным музыкальным талантом и вокальными данными. С ним дела у группы стремительно пошли в гору. Позже британский журнал «Classic Rock» поставит его на первое место в рейтинге «100 величайших фронтменов всех времён».


Группа пишет несколько довольно успешных песен и в 1975 выпускает свой первый альбом — «High Voltage». Альбом хоть и не занял лидирующих мест, тем не менее, был неплохой заявкой на популярность. В этом же году «AC/DC» выпускают второй альбом, под названием «T.N.T.», что в переводе означает «тринитротолуол». Этот альбом имел немалый успех, но, как и первый, официально выпускался лишь в Австралии. Мировая известность была еще впереди.


Участники группы понимают, что для того, чтобы по-настоящему «расправить крылья» им необходимо расширить границы своего влияния. Они активно работают в этом направлении, и вскоре подписывают международный контракт с «Atlantic Records», что позволяет «AC/DC» наконец вырваться из Австралии. Они начинают покорение сцен Великобритании и Европы со старыми хитами, тем не менее, не забывая про новые: в 1976 году выходит «Dirty Deeds Done Dirt Cheap» — третья пластинка группы, имевшая довольно неплохой успех. После этого члены группы принимают решение переселиться в Великобританию. Они активно выступают, общаются с СМИ и поклонниками, постепенно завоевывая все большую популярность.


Работа кипит. Один за одним выходят альбомы «Let There Be Rock» (1977), «Powerage» (1978), «Highway to Hell» (1979). Последний возносит «AC/DC» на пик популярности и на верхушки мировых чартов. Большинство композиций этого альбома являются абсолютными хитами по сей день, по праву считаясь одними из лучших песен в истории мирового рока. Кажется, ничто не может омрачить бешеный успех молодых энергичных исполнителей… Как оказалось, это было не так.

19 февраля 1980 года происходит страшная трагедия — внезапно умирает вокалист группы, блистательный Бон Скотт. По официальной версии это произошло из-за злоупотребления алкоголем. Группа просто раздавлена.


Потеряв свой «голос», «AC/DC» подумывают о прекращении карьеры, но принимают решение сохранить коллектив, полагая, что жизнерадостный Бон Скотт хотел бы именно этого. Друзья встают на ноги после потрясения, и спустя несколько прослушиваний они находят необыкновенно талантливого вокалиста — Брайана Джонсона. У рок-группы словно открывается второе дыхание и они начинают работать не покладая рук.

В том же году выходит легендарный альбом «Back in Black», обложку которого было принято решение сделать черной, в память о бывшем солисте и верном друге. Альбом имеет головокружительный успех, впоследствии он станет самым продаваемым альбомом за всю историю группы и удостоится статуса «дважды бриллиантовый».

Следующие годы рок-коллектив ведет очень продуктивную деятельность. Великолепным «золотым составом» (Малкольм и Агнус Янг, Клифф Уильямс (гитара, бас-гитара), Брайан Джонсон (вокал), Фил Радд (ударные)) они пишут и играют свои лучшие хиты, записывают огромное количество альбомов, выступают на концертах по всему свету, завоевывают престижнейшие музыкальные награды.


В 2003 году легендарная группа была занесена в «Зал славы», так же заняла в США почетное 5-е место по числу проданных альбомов за всю историю. На родине группы, в Австралии в их честь назвали улицу.

Вызывает восхищение неиссякающая энергия группы, которая, несмотря на свой «солидный возраст», не перестает радовать поклонников. «AC/DC» выпустили прекрасные альбомы (2008 и 2014), которые почитатели их творчества встретили с ликованием и раскупили огромными тиражами.


И ни болезнь Малкольма Янга, который вынужден был покинуть группу в 2014, ни небольшие проблемы с законом Фила Радда, не смогли сломить дух легендарных «AC/DC». Вот это и есть настоящие рокеры, которые, несомненно, еще не раз удивят своих фанатов, утерев нос многим молодым группам.

Рано или поздно каждый человек вынужден столкнуться с ситуацией, когда необходимо познакомиться с электричеством ближе, чем на уроках физики в школе. Отправным моментом для этого может стать как поломка электроприборов или розеток, так и просто искренний интерес к электронике со стороны человека. Один из основных вопросов, который необходимо рассмотреть: каким образом обозначены постоянный и переменный ток. Если вы знакомы с понятиями:электрический ток, напряжение и сила тока, вам будет проще понять , о чём идёт речь в этой статье.

Электрическое напряжение делят на два вида:

  1. постоянное (dc)
  2. переменное (ас)

Обозначение постоянного тока (-), у переменного тока обозначение (~). Аббревиатуры ac и dc устоявшиеся, и употребляются наравне с названиями «постоянный» и «переменный». Теперь рассмотрим в чём их отличие. Дело в том, что постоянное напряжение течёт только в одном направлении, из чего и вытекает его название. А переменное, как вы уже поняли, может менять своё направление. В частных случаях направление переменного может оставаться одним и тем же. Но, кроме направления, у него также может меняться и величина. В постоянном ни величина, ни направление, не изменяется. Мгновенным значением переменного тока называют его величину, которая берётся в данный момент времени.

В Европе и России принята частота в 50 Гц, то есть изменяет своё направление 50 раз в секунду, в то время, как в США, частота равна 60 Гц. Поэтому техника, приобретённая в Соединённых штатах и в других государствах, с отличающейся частотой может сгореть. Поэтому при выборе техники и электроприборов следует внимательно смотреть на то, чтобы частота была 50 Гц. Чем больше частота у тока, тем больше его сопротивление. Также можно заметить, что в розетках у нас дома течёт именно переменный.

Помимо этого, у переменного электрического тока существует деление ещё на два вида:

  • однофазный
  • трёхфазный

Для однофазного необходим проводник, который будет проводить напряжение, и обратный проводник. А если рассматривать генератор трёхфазного тока , у него, на всех трёх намотках вырабатывается переменное напряжение частотой в 50 Гц. Трёхфазная система — это не что иное, как три однофазных электрических цепи , сдвинутых по фазе относительно друг друга под углом в 120 градусов. Посредством его использования, можно одновременно обеспечивать энергией три независимые сети, пользуясь при этом только шестью проводами, которые нужны для всех проводников: прямых и обратных, чтобы проводить напряжение.

А если у вас, например, имеется только 4 провода, то и тут проблем не возникнет. Вам нужно будет только соединить обратные проводники. Объединив их, вы получите проводник, который называют нейтральным. Обычно его заземляют. А оставшиеся внешние проводники кратко обозначают как L1, L2 и L3.

Но существует и двухфазный, он представляет из себя комплекс двух однофазных токов, в которых также присутствуют прямой проводник для проведения напряжения и обратный, они сдвинуты по фазе относительно друг друга на 90 градусов.

Применение

Из-за того что постоянный течёт лишь в одну сторону, его использование обычно ограничивается носителями с небольшой энергоёмкостью, например, его можно встретить в обычных батарейках, аккумуляторах для электроприборов с маленьким энергопотреблением, такие как фонарики или телефоны и батареях, использующих солнечную энергию. Но постоянный источник необходим не только для зарядки небольших аккумуляторов, так постоянный ток большой мощности используется для работы электрифицированных железнодорожных путей, при электролизе алюминия или при дуговой электросварке, а также других промышленных процессов .

Для выработки постоянного тока такой силы используют специальные генераторы. Также его можно получить посредству преобразования переменного, для этого используется прибор, в котором применяют электронную лампу, его называют кенотронный выпрямитель, а сам процесс обозначается как выпрямление. Ещё для этого используется двухполупериодный выпрямитель. В нём, в отличие от простого лампового выпрямителя, находятся электронные лампы, которые имеют два анода — двуханодные кенотроны.

Если вы не знаете как определять то, с какого полюса течёт постоянный ток, запоминайте: он всегда течёт от знака «+» к знаку «-«. Первыми источниками постоянного тока были особые химические элементы, их называют гальванические. Уже позже люди изобрели аккумуляторы .

Переменный применяют почти везде , в быту, для работы домашних электроприборов подпитывающихся из домашней розетки, на заводах и фабриках, на стройплощадках и многих других местах. Электрификация железнодорожных путей также может быть и на dc напряжении. Так, напряжение идёт по контактному проводу, а рельсы являются обратным электрическим проводником . По такому принципу работает около половины всех железных дорог в нашей стране и странах СНГ. Но, помимо электровозов, работающих лишь на постоянном и только на переменном, существуют также электровозы, совмещающие в себе способность работы как на одном виде электричества, так и на другом.

Переменный ток используется и в медицине

Так, например,дарсонвализация — это метод воздействия электричеством при большом напряжении, на наружные покровы и слизистые оболочки организма. Посредством этого метода у пациентов улучшается кровоснабжение, улучшается тонус венозных сосудов и обменных процессов организма. Дарсонвализация может быть как местная, на определённом участке, так и общая. Но чаще используют местную терапию.

Таким образом, мы узнали, что есть два вида электрического тока : постоянный и переменный , по-другому их называют ac и dc, поэтому, если вы скажете одну из этих аббревиатур, вас точно поймут. Кроме того, обозначение постоянного и переменного тока в схемах выглядит как (-) и (~), что упрощает их узнавание. Теперь, при починке электроприборов, вы, без сомнений, скажете, что в них используется переменное напряжение, а если вас спросят какой ток находится в батарейках, вы ответите, что постоянный.

Сегодня, если вы посмотрите вокруг, практически все, что вы видите, питается от электричества в той или иной форме.
Переменный ток и постоянный ток являются двумя основными формами зарядов, питающих наш электрический и электронный мир.

Что такое AC? Переменный ток может быть определен, как поток электрического заряда, который изменяет свое направление через регулярные промежутки времени.

Период / регулярные интервалы, при котором AC меняет свое направление, является его частотой (Гц). Морские транспортные средства, космические аппараты, и военная техника иногда используют AC с частотой 400 Гц. Тем не менее, в течение большей части времени, в том числе внутреннего использования, частота переменного тока устанавливается на 50 или 60 Гц.

Что такое DC? (Условное обозначение на электроприборах) Постоянный ток является током (поток электрического заряда или электронов), который течет только в одном направлении. Впоследствии, нет частоты связанной с DC. DC или постоянный ток имеет нулевую частоту.
Источники переменного и постоянного тока:

АС: Электростанции и генераторы переменного тока производят переменный ток.

DC: Солнечные батареи, топливные элементы, и термопары являются основными источниками для производства DC. Но основным источником постоянного тока является преобразование переменного тока.

Применение переменного и постоянного тока:

АС используется для питания холодильников, домашних каминов, вентиляторов, электродвигателей, кондиционеров, телевизоров, кухонных комбайнов, стиральных машин, и практически всего промышленного оборудования.

DC в основном используется для питания электроники и другой цифровой техники. Смартфоны, планшеты, электромобили и т.д.. LED и LCD телевизоры также работают на DC, который преобразовывается от обычной сети переменного тока.

Почему AC используется для передачи электроэнергии. Это дешевле и проще в производстве. AC при высоком напряжении может транспортироваться на сотни километров без особых потерь мощности. Электростанции и трансформаторы уменьшают величину напряжения до (110 или 230 В) для передачи его в наши дома.

Что является более опасным? AC или DC?
Считается, что DC является менее опасным, чем AC, но нет окончательного доказательства. Существует заблуждение, что контакт с высоким напряжением переменного тока является более опасным, чем с низким напряжением постоянного тока. На самом деле, это не о напряжении, речь идет о сумме тока, проходящего через тело человека. Постоянный и переменный ток может привести к летальному исходу. Не вставляйте пальцы или предметы внутрь розеток или гаджетов и высокой мощности оборудования.

Почему AC более «опасен», чем DC?

Среднеквадратичное значение (среднеквадратичное) значение напряжения переменного тока, которое обозначается как «110 В», «120 В» или «240 В», ниже пикового напряжения электричества. Переменный ток имеет синусоидальное напряжение, вот как он меняется. Так что да, это больше, чем кажется, но не на огромную сумму. Среднеквадратическое значение напряжения 120 В составляет около 170 В от пика до земли.

Я помню, как однажды услышал, что ток, а не напряжение опасен для человеческого организма. Эта страница описывает это хорошо. По их словам, если через ваше тело, AC или DC, пройдет более 100 мА, вы, вероятно, мертвы.

Одна из причин, по которой AC может считаться более опасным, состоит в том, что он, возможно, имеет больше способов проникнуть в ваше тело. Поскольку напряжение меняется, это может привести к тому, что ток будет входить и выходить из вашего тела даже без замкнутого контура, поскольку ваше тело (и к какому заземлению оно подключено) имеет емкость. DC не может этого сделать. Кроме того, переменный ток довольно легко повышается до более высоких напряжений с помощью трансформаторов, в то время как с постоянным током требуется некоторая относительно сложная электроника. Наконец, в то время как ваша кожа имеет достаточно высокое сопротивление, чтобы защитить вас, и воздух также является потрясающим изолятором, если вы не касаетесь проводов, иногда индуктивность трансформаторов переменного тока может вызывать высоковольтные искры, которые разрушают воздух и я думаю, что может пройти через вашу кожу немного.

Кроме того, как вы упомянули, сердце контролируется электрическими импульсами, и повторяющиеся импульсы электричества могут немного сбить это и вызвать сердечный приступ. Однако я не думаю, что это уникально для переменного тока. Однажды я прочитал о несчастном молодом человеке, который изучал электричество и хотел измерить сопротивление своего тела. Он взял мультиметр и указал на каждый большой палец. Случайно или по глупости он пробил оба больших пальца проводами, и небольшая (я предполагаю, что это 9 В) батарея в мультиметре вызвала ток в его крови, и он скончался на месте. Поэтому, возможно, невежество более опасно, чем переменный или постоянный ток.

Основные отличия инверторов TIG DC и TIG AC-DC

Чем отличается TIG DC от TIG AC-DC?

Когда необходимо получить шов максимально высокого качества, используется аргонная сварка. Она может выполняться при помощи инверторов TIG класса DC и AC-DC. Широта функционала — основное отличие между этими двумя аппаратами. Так, агрегат TIG DC представляет собой устройство, которое обычно используется для ручной сварки в быту и на предприятиях. Чтобы начать сварку, потребуются покрытые электроды и подключение агрегата к сети в 220 вольт. В устройстве TIG DC применяется технология создания постоянного тока для сварки. При использовании моделей AC-DC работать можно не в одном, а в двух режимах. То есть в зависимости от существующих задач допускается варить под действием переменного или постоянного тока. Несмотря на такие функциональные различия ремонт сварочного оборудования TIG DC и AC-DC выполняется, как правило, без особых сложностей, но с различными временными затратами.

Нюансы использования инверторов

Для работы с алюминием, а также его сплавами нужен переменный ток. Это значит, что для подобной работы вместо TIG DC потребуется AC-DC. Универсальный агрегат для аргонной сварки считается одним из наиболее сложных среди агрегатов TIG. Переменный контур предусмотрен схемой инверторов AC-DC, что позволяет при смене характера работ легко переходить на сварку алюминия, его сплавов.

На практике доказано, что использование мастерами агрегатов TIG DC, то есть постоянного тока для сваривания алюминия, приводит к низкому качеству швов по причине формирования оксидной тугоплавкой пленки на поверхности сплава. Благодаря особым процессам в дуге под влиянием переменного тока (то есть, когда работает агрегат TIG AC-DC), приводят к разрушению оксидной пленки и увеличению качества шва. Однако для достижения высокого результата сварщик должен действовать более четко и быстро, поскольку скорость создания шва достаточно велика. Качество стыка получается настолько хорошим, что не требуется дополнительной обработки швов. Как правило, ремонт сварочных аппаратов TIG DC и AC-DC выполняется в специализированных мастерских, а частота его проведения во многом зависит от эксплуатационной нагрузки.

Различие ксенона AC и DC

     Существует два типа ксеноновых ламп и блоков — это тип DC и тип АС. Главное их отличие друг от друга в том, что в первом случае питание ламп производится  постоянным током DC (с низкой амплитудой колебаний импульсов 40-60 Гц), в то время как в типе АС используется переменный ток.

     Как правило, блоки розжига типа DC имеют более низкую стоимость, т. к. имеют более упрощенную схему электроники — в схеме отсутствует инвертор (в некоторых случаях присутствует только его «фейк»). Чаще всего, срок «жизни» таких блоков весьма невелик, поэтому гарантийный срок достаточно мал. При использовании блоков с несоответствующим им типом ламп, приводит к значительному сокращению срока «жизни» блоков. Несоответствие блоков и ламп можно выявить визуально — при использовании блоков DC с лампами AC проявляется эффект «подрагивания света», которое происходит за счёт нестабильности электрической дуги в колбе. Если же использовать АС блоки с DC лампами, то такая связка вовсе не станет работать, т.к. лампа DC имеет полярность, а блок АС выдаёт переменный ток (без полярности). Ещё одно отличие — это звуковое сопровождение… AC балласт издаёт достаточно громкий характерный «писк» в начале розжига, который затихает по мере розжига лампы, в то время как DC балласт не издаёт ни единого звука, либо издаёт очень тихий однотонный писк на всём протяжении работы.

     Ксенон переменного тока AC имеет иной принцип работы нежели DC. За счет более сложной схемы блоков AC, достигается более высокая светоотдача ламп, но и цена, при этом, несколько выше. Сам АС блок имеет либо двухкомпонентное строение (slim — тонкие): основная часть в металлическом корпусе, а высоковольтная часть вынесена в отдельный пластиковый корпус; либо один корпус в котором располагается обе части схемы. Обычно, блоки типа AC имеют процент брака от 0.5 до 2, в то время как у блоков DC брак достигает 5 и более процентов.

     Соблюдайте правильную комплектацию ксенона: DC блоки + DC лампы, либо AC блоки + АС лампы.

AC/DC Shield [Амперка / Вики]

AC/DC Shield — это плата расширения, которая преобразовывает входящий переменный ток в постоянный для питания микроэлектроники и выступает в роли реле для потребителей нагрузки до 10 А. Такой модуль поможет запитать Arduino или Iskra JS от бытовой сети 220 В.

Внимание! На плате расширения присутствуют области, прикосновение к которым приведёт к поражению электрическим током. Не работайте с платой, если она подключена к бытовой сети. Для готового устройства используйте изолированный корпус.

Перед подключением убедитесь, что отлично понимаете принцип работы устройства и опасность, которая связана с напряжением в 220 В. Если есть хоть капля сомнения в правильности подключения электроприбора к реле, остановитесь. Высокое напряжение опасно для жизни: можно устроить пожар или убить себя током.

Видеообзор

Подключение и настройка

Блок питания

Плата расширения AC/DC поможет подключить управляющую платформу к бытовой сети 220 В без использования дополнительных блоков питания. Рассмотрим на примере с платформой Iskra JS.

  1. Возьмите сетевой фильтр. Разрежьте провод питания посередине и зачистите контакты от изоляции.
  2. Установите AC/DC Schied сверху в пины управляющей платформы.

  3. Подключите провод со стороны вилки к разъёму IN в клеммы:

После подачи питания от сети на плате расширения загорится светодиод POWER.

Электромеханическое реле

Усложним задачу. Добавим к проекту нагрузку, которой будем управлять при помощи установленного реле на плате расширения.

Подключите провода со стороны оставшегося сетевого фильтра в контакты клеммникаOUT:

Если на 7 пине управляющей платформы установить высокий уровень, реле включится и на нагрузку поступит напряжение 220 В. Если подать низкий уровень, реле отключится, а ток перестанет течь через нагрузку.

Примеры работы

Работа на Arduino

В качестве примера повторим эксперимент «Маячок» из набора Матрёшка. Только измените управляющий пин на 7 и прошейте платформу следующим кодом:

blinkRelay.ino
// пин подключения светодиода
#define RELAY_PIN  7
 
void setup() {
  // настраиваем пин светодиода в режим выхода
  pinMode(RELAY_PIN, OUTPUT);
}
 
void loop() {
  // подаём на пин светодиода «высокий уровень»
  digitalWrite(RELAY_PIN, HIGH);
  // ждём одну секунду
  delay(1000);
  // подаём на пин светодиода «низкий уровень»
  digitalWrite(RELAY_PIN, LOW);
  // ждём одну секунду
  delay(1000);
}

После загрузки кода реле начнёт каждую секунду включаться и выключаться.

Работа на Espruino

В качестве примера повторим эксперимент «Маячок» из набора Йодо. Только измените управляющий пин на P7 и прошейте платформу следующим скриптом:

blink-relay.js
// создаём объект для работы со светодиодом на пине P7
var relay = require('@amperka/led').connect(P7);
// мигаем светодиодом каждые полсекунды
relay.blink(1, 1);

После загрузки кода реле начнёт каждую секунду включаться и выключаться.

Элементы платы

Преобразователь питания

На борту модуля размещён стабилизированный импульсный блок питания HE05P15LRN. Блок преобразует переменный ток в постоянный c выходом 5 В и силой тока 3 А.

Входной клеммник питания

AC/DC питается через клеммник входного напряжение INPUT.

Если не знаете, где в вашей сети фаза и ноль, ничего страшного. Провода L и N можно менять местами. Через данный клеммник входное напряжение поступает на AC/DC преобразователь и коммутирующие контакты реле.

Реле

За нагрузку отвечает электромеханическое реле TRU-5VDC с контактами:

  • NC — нормально замкнутый;

  • NO — нормально разомкнутый;

  • COM — коммутируемый контакт.

Нормально замкнутые контакты — это контакты реле, которые находятся в замкнутом состоянии, пока через катушку реле не начнёт течь ток. При нормально разомкнутых контактах всё происходит наоборот: пока через катушку реле не начнёт течь ток, её контакты разомкнуты.

Таким образом, если на управляющей обмотке реле отсутствует напряжение, то между нормально замкнутым NC и коммутируемым COM контактами есть электрическая связь, а между нормально разомкнутым NO и коммутируемым COM — нет. При подаче напряжения на управляющую обмотку нормально разомкнутый NO контакт замыкается c COM, а нормально замкнутый NC — размыкается.

На плате расширения AC/DC Shield контакты реле скоммутированы c источником питания и выходным клеммником:

  • NC — c контактом L. NC клеммника нагрузки;

  • NO — c контактом L.NO клеммника нагрузки;

  • COM — c контактом фазы входного клеммника.

Если на управляющей обмотке реле отсутствует напряжение, то между нормально замкнутым L.NC и N контактами присутствует входное напряжение на плату, а между нормально разомкнутым L.NO и N — нет. При подаче напряжения на управляющую обмотку всё наоборот — между нормально замкнутым L.NC и N контактами отсутствует напряжение, а между нормально разомкнутым L.NO и N присутствует входное напряжение модуля.

Выходной клеммник нагрузки

Провода нагрузки подключаются через выходной клеммник OUTPUT. Один провод нагрузки подключается к выводу N, а второй — к контакту L.NO или L.NC, в зависимости от задачи, которую выполняет реле.

Чаще всего реле используется для замыкания внешней цепи при подаче напряжения на управляющую обмотку. Даже если напряжение на управляющей плате по какой-то причине пропадёт, управляемая нагрузка будет автоматически отключена.

  • N — контакт, подключённый к питающей сети от входного клеммника. Подключается к одному из проводов нагрузки.

  • L.NO — нормально разомкнутый NO вывод реле. Подключается ко второму проводу нагрузки, если устройство должно включаться при высоком уровне напряжение на управляющей обмотке реле.

  • L.NC — нормально замкнутый NC вывод реле. Подключается ко второму проводу нагрузки, если устройство должно включаться при низком уровне напряжения на управляющей обмотке реле.

  • — подключается к земле бытовой розетки.

Светодиодная индикация

Имя светодиода Когда горит
POWER При подключении платы питания
RELAY Если реле замкнуто

Джампер выбора управляющего пина

На плате расширения расположена колодка контактов выбора управляющего пина для включение реле. Это удобно, если управляющий цифровой пин 7 в вашем проекте уже занят другим устройством. В этом случае снимите джампер и выберите другой цифровой пин. Доступные контакты: 7, 8, 9 и 10.

Защита

На плате расположена обвязка для защиты от короткого замыкания и перенапряжения. Если нагрузка в цепи подскочит до 10 А, плавкий предохранитель разорвёт цепь.

Принципиальная и монтажная схемы

Характеристики

  • Входное напряжение: ~220 В

  • Выходное напряжение с преобразователя: 5 В

  • Максимальный выходной ток с преобразователя: 3 A

  • Максимальный коммутируемый ток реле: 10 А

  • Габариты: 69×53×25 мм

Дополнительные материалы и ссылки

В чем разница между питанием переменного и постоянного тока?

Электричество В чем разница между питанием переменного и постоянного тока?

Автор / Редактор: Люк Джеймс / Erika Granath

Электроэнергия бывает двух видов — переменного тока (AC) и постоянного тока (DC). Оба необходимы для обеспечения функционирования нашей электроники, но знаете ли вы разницу между ними и к чему они применяются?

Связанные компании

И переменный, и постоянный ток описывают типы протекания тока в цепи.В постоянном токе (DC) электрический заряд (ток) течет только в одном направлении. Электрический заряд переменного тока (AC), с другой стороны, периодически меняет направление.

(Источник: Unsplash)

Что такое переменный ток?

Мощность переменного тока (AC) — это стандартное электричество, которое выходит из электрических розеток и определяется как поток заряда, который демонстрирует периодическое изменение направления.

Поток переменного тока изменяется с положительного на отрицательный из-за электронов — электрические токи возникают из-за потока этих электронов, которые могут двигаться в положительном (вверх) или отрицательном (вниз) направлении. Это известно как синусоидальная волна переменного тока, и эта волна возникает, когда генераторы переменного тока на электростанциях создают мощность переменного тока.

Генераторы переменного тока вырабатывают переменный ток путем вращения проволочной петли внутри магнитного поля. Волны переменного тока образуются, когда провод движется в области с разной магнитной полярностью — например, ток меняет направление, когда провод вращается от одного полюса магнитного поля к другому. Это волнообразное движение означает, что мощность переменного тока может распространяться дальше, чем мощность постоянного тока, что является огромным преимуществом, когда речь идет о доставке энергии потребителям через розетки.

Что такое питание постоянного тока?

Электропитание постоянного тока (DC), как можно понять из названия, представляет собой линейный электрический ток — он движется по прямой линии.

Постоянный ток может поступать из нескольких источников, включая батареи, солнечные элементы, топливные элементы и некоторые модифицированные генераторы переменного тока. Электропитание постоянного тока также может быть «получено» из переменного тока с помощью выпрямителя, преобразующего переменный ток в постоянный.

Питание

постоянного тока гораздо более стабильно с точки зрения подачи напряжения, а это означает, что большая часть электроники полагается на него и использует источники питания постоянного тока, такие как батареи.Электронные устройства также могут преобразовывать мощность переменного тока из розеток в мощность постоянного тока с помощью выпрямителя, часто встроенного в блок питания устройства. Трансформатор также будет использоваться для повышения или понижения напряжения до уровня, подходящего для рассматриваемого устройства.

Однако не все электрические устройства используют питание постоянного тока. Многие устройства, особенно бытовые приборы, такие как лампы, стиральные машины и холодильники, используют переменный ток, который подается непосредственно из электросети через розетки.

Зачем нужны два разных типа питания?

Хотя многие современные электронные и электрические устройства предпочитают питание постоянного тока из-за его плавности и равномерного напряжения, мы не смогли бы обойтись без переменного тока. Оба типа власти важны; один не «лучше» другого.

Фактически, AC доминирует на рынке электроэнергии; все электрические розетки подают питание в здания в виде переменного тока, даже если может потребоваться немедленное преобразование тока в мощность постоянного тока. Это связано с тем, что постоянный ток не может перемещаться на такие же большие расстояния от электростанций до зданий, как переменный ток. Также намного проще генерировать переменный ток, чем постоянный, из-за того, как работают генераторы, и система в целом дешевле в эксплуатации — с переменным током мощность может легко передаваться по национальным сетям через мили и мили проводов и опор.

DC в первую очередь вступает в игру, когда устройству необходимо сохранять энергию в батареях для будущего использования. Смартфоны, ноутбуки, портативные генераторы, фонарики, системы наружных камер видеонаблюдения… вы называете это, все, что работает от батарей, требует хранения постоянного тока. Когда батареи заряжаются от сети, переменный ток преобразуется в постоянный ток выпрямителем и сохраняется в батарее.

Однако это не единственный используемый метод зарядки. Например, если вы когда-либо заряжали свой телефон с помощью блока питания, вы используете источник питания постоянного тока, а не переменного тока.В этих ситуациях источникам питания постоянного и постоянного тока может потребоваться изменить выходное напряжение (в данном случае, блок питания) для использования устройства (в данном случае телефона).

(ID: 46408650)

Что такое переменный ток (AC)? | Базовая теория переменного тока

Большинство студентов, изучающих электричество, начинают свое изучение с так называемого постоянного тока (DC), то есть электричества, протекающего в постоянном направлении и / или имеющего напряжение с постоянной полярностью.

постоянного тока — это вид электричества, вырабатываемый батареей (с определенными положительными и отрицательными клеммами), или вид заряда, генерируемый при трении определенных типов материалов друг о друга.

Переменный ток против постоянного

Такой же полезный и простой для понимания, как постоянный ток, это не единственный используемый «вид» электричества. Определенные источники электричества (в первую очередь роторные электромеханические генераторы) естественным образом вырабатывают напряжения, меняющие полярность, меняя положительную и отрицательную с течением времени.

Либо как полярность переключения напряжения, либо как направление переключения тока вперед и назад, этот «вид» электричества известен как переменный ток (AC):

Постоянный и переменный ток

В то время как знакомый символ батареи используется как общий символ для любого источника постоянного напряжения, круг с волнистой линией внутри является общим символом для любого источника переменного напряжения.

Кто-то может задаться вопросом, зачем вообще возиться с такой вещью, как кондиционер. Верно, что в некоторых случаях переменный ток не имеет практического преимущества перед постоянным током.

В приложениях, где электричество используется для рассеивания энергии в виде тепла, полярность или направление тока не имеют значения, пока на нагрузку подается достаточное напряжение и ток для получения желаемого тепла (рассеивание мощности). Однако с помощью переменного тока можно создавать электрические генераторы, двигатели и системы распределения энергии, которые намного более эффективны, чем постоянный ток, и поэтому мы обнаруживаем, что переменный ток используется преимущественно во всем мире в приложениях с большой мощностью.

Чтобы подробно объяснить, почему это так, необходимы некоторые базовые знания об AC.

Генераторы переменного тока

Если машина сконструирована так, чтобы вращать магнитное поле вокруг набора неподвижных катушек с проволокой с вращением вала, то в соответствии с законом электромагнитной индукции Фарадея на катушках с проволокой будет создаваться переменное напряжение.

Это основной принцип работы генератора переменного тока, также известного как генератор переменного тока : Рисунок ниже

Работа генератора

Обратите внимание, как полярность напряжения на проволочных катушках меняется на противоположные по мере прохождения противоположных полюсов вращающегося магнита.

При подключении к нагрузке эта реверсивная полярность напряжения создает реверсивное направление тока в цепи. Чем быстрее вращается вал генератора, тем быстрее будет вращаться магнит, что приведет к появлению переменного напряжения и тока, которые чаще меняют направление за заданный промежуток времени.

Хотя генераторы постоянного тока работают по тому же общему принципу электромагнитной индукции, их конструкция не так проста, как их аналоги переменного тока.

В генераторе постоянного тока катушка с проводом установлена ​​на валу, где магнит находится на генераторе переменного тока, и электрические соединения с этой вращающейся катушкой выполняются через неподвижные угольные «щетки», контактирующие с медными полосками на вращающемся валу.

Все это необходимо для переключения изменяющейся выходной полярности катушки на внешнюю цепь, чтобы внешняя цепь видела постоянную полярность:

Работа генератора постоянного тока

Генератор, показанный выше, будет производить два импульса напряжения на один оборот вала, причем оба импульса имеют одинаковое направление (полярность). Чтобы генератор постоянного тока вырабатывал постоянное напряжение , а не короткие импульсы напряжения каждые 1/2 оборота, имеется несколько наборов катушек, которые периодически контактируют со щетками.

Схема, показанная выше, немного более упрощена, чем то, что вы видите в реальной жизни.

Проблемы, связанные с замыканием и разрывом электрического контакта с движущейся катушкой, должны быть очевидны (искрение и нагрев), особенно если вал генератора вращается с высокой скоростью. Если в атмосфере, окружающей машину, содержатся легковоспламеняющиеся или взрывоопасные пары, практические проблемы искрообразования щеточных контактов еще больше.

Генератор переменного тока (генератор переменного тока) не требует для работы щеток и коммутаторов, поэтому он невосприимчив к этим проблемам, с которыми сталкиваются генераторы постоянного тока.

Двигатели переменного тока

Преимущества переменного тока по сравнению с постоянным током с точки зрения конструкции генератора также отражены в электродвигателях.

В то время как двигатели постоянного тока требуют использования щеток для электрического контакта с движущимися катушками провода, двигатели переменного тока этого не делают. Фактически, конструкции двигателей переменного и постоянного тока очень похожи на их аналоги-генераторы (идентичны для этого руководства), двигатель переменного тока зависит от реверсивного магнитного поля, создаваемого переменным током через его неподвижные катушки из проволоки для вращения вращающегося магнита. на валу, а двигатель постоянного тока зависит от контактов щетки, замыкая и размыкая соединения, для обратного тока через вращающуюся катушку каждые 1/2 оборота (180 градусов).

Трансформаторы

Итак, мы знаем, что генераторы переменного тока и двигатели переменного тока, как правило, проще, чем генераторы постоянного тока и двигатели постоянного тока. Эта относительная простота приводит к большей надежности и более низкой стоимости производства. Но для чего еще нужен AC? Конечно, это должно быть что-то большее, чем детали конструкции генераторов и двигателей! Действительно есть.

Существует эффект электромагнетизма, известный как взаимной индукции , при котором две или более катушек провода размещены таким образом, что изменяющееся магнитное поле, создаваемое одной, индуцирует напряжение в другой.Если у нас есть две взаимно индуктивные катушки, и мы запитываем одну катушку переменным током, мы создадим переменное напряжение в другой катушке. При использовании как таковое это устройство известно как трансформатор :

Трансформатор «преобразует» переменное напряжение и ток.

Основное значение трансформатора — его способность повышать или понижать напряжение с катушки с питанием на катушку без питания. Напряжение переменного тока, индуцированное в обмотанной («вторичной») катушке, равно напряжению переменного тока на питаемой («первичной») катушке, умноженному на отношение витков вторичной катушки к виткам первичной катушки.

Если вторичная обмотка питает нагрузку, ток через вторичную обмотку прямо противоположен: ток первичной обмотки, умноженный на соотношение первичных и вторичных витков. Это соотношение имеет очень близкую механическую аналогию, когда крутящий момент и скорость используются для представления напряжения и тока соответственно:

Зубчатая передача умножения скорости снижает крутящий момент и увеличивает скорость. Понижающий трансформатор понижает напряжение и увеличивает ток.

Если передаточное число обмоток изменено так, что первичная обмотка имеет меньше витков, чем вторичная обмотка, трансформатор «увеличивает» напряжение от уровня источника до более высокого уровня на нагрузке:

Редукторная передача увеличивает крутящий момент и снижает скорость.Повышающий трансформатор увеличивает напряжение и уменьшает ток.

Способность трансформатора с легкостью повышать или понижать переменное напряжение дает переменному току преимущество, не имеющее себе равных с постоянным током, в области распределения мощности на рисунке ниже.

При передаче электроэнергии на большие расстояния гораздо эффективнее делать это с помощью повышенных напряжений и пониженных токов (провод меньшего диаметра с меньшими резистивными потерями мощности), затем понижать напряжение и повышать ток. для промышленности, бизнеса или потребительского использования.

Трансформаторы обеспечивают эффективную передачу электроэнергии высокого напряжения на большие расстояния.

Трансформаторная технология сделала практичным распределение электроэнергии на большие расстояния. Без возможности эффективно повышать и понижать напряжение было бы непомерно дорого строить энергосистемы для чего угодно, кроме использования на близком расстоянии (не более нескольких миль).

Какими бы полезными ни были трансформаторы, они работают только с переменным током, а не с постоянным током.Поскольку явление взаимной индуктивности основано на изменении магнитных полей на , а постоянный ток (DC) может создавать только постоянные магнитные поля, трансформаторы просто не будут работать с постоянным током.

Конечно, постоянный ток может прерываться (пульсировать) через первичную обмотку трансформатора для создания изменяющегося магнитного поля (как это делается в автомобильных системах зажигания для выработки питания высоковольтной свечи зажигания от низковольтной батареи постоянного тока), но импульсный постоянный ток не так уж отличается от переменного тока.

Возможно, именно поэтому переменный ток в большей степени, чем какая-либо другая причина, находит такое широкое применение в энергосистемах.

ОБЗОР:

  • DC означает «постоянный ток», что означает напряжение или ток, который сохраняет постоянную полярность или направление, соответственно, с течением времени.
  • AC означает «переменный ток», что означает напряжение или ток, который со временем меняет полярность или направление соответственно.
  • Электромеханические генераторы переменного тока
  • , известные как генераторы переменного тока , имеют более простую конструкцию, чем электромеханические генераторы постоянного тока.
  • Конструкция двигателей переменного и постоянного тока
  • очень точно соответствует принципам конструкции генератора.
  • Трансформатор — это пара взаимно индуктивных катушек, используемых для передачи мощности переменного тока от одной катушки к другой. Часто количество витков в каждой катушке устанавливается для создания увеличения или уменьшения напряжения от активной (первичной) катушки к обмотке без питания (вторичной).
  • Вторичное напряжение = Первичное напряжение (вторичные витки / первичные витки)
  • Вторичный ток = Первичный ток (первичные витки / вторичные витки)

СВЯЗАННЫЕ РАБОЧИЕ ЛИСТЫ:

Сравнение переменного и постоянного тока

Большинство рассмотренных до сих пор примеров, особенно те, которые используют батареи, имеют источники постоянного напряжения.Как только ток установлен, он также становится постоянным. Постоянный ток (DC) — это поток электрического заряда только в одном направлении. Это установившееся состояние цепи постоянного напряжения. Однако в большинстве известных приложений используется источник переменного напряжения. Переменный ток (AC) — это поток электрического заряда, который периодически меняет направление. Если источник периодически меняется, особенно синусоидально, цепь называется цепью переменного тока.Примеры включают коммерческую и бытовую энергетику, которая удовлетворяет многие наши потребности. На рисунке 1 показаны графики зависимости напряжения и тока от времени для типичных источников постоянного и переменного тока. Напряжение и частота переменного тока, обычно используемые в домах и на предприятиях, различаются по всему миру.

Рис. 1. (a) Постоянное напряжение и ток постоянны во времени после установления тока. (б) График зависимости напряжения и тока от времени для сети переменного тока 60 Гц. Напряжение и ток синусоидальны и совпадают по фазе для простой цепи сопротивления.Частоты и пиковое напряжение источников переменного тока сильно различаются.

Рис. 2. Разность потенциалов V между выводами источника переменного напряжения колеблется, как показано. Математическое выражение для V задается следующим образом: [latex] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex].

На рисунке 2 показана схема простой схемы с источником переменного напряжения. Напряжение между клеммами колеблется, как показано на рисунке: напряжение переменного тока определяется как

.

[латекс] V = {V} _ {0} \ sin \ text {2} \ pi {ft} \\ [/ latex],

, где В, — напряжение во время t , В 0 — пиковое напряжение, а f — частота в герцах.Для этой простой цепи сопротивления I = V / R , поэтому переменный ток равен

[латекс] I = {I} _ {0} \ sin 2 \ pi {ft} \\ [/ latex],

, где I — ток в момент времени t , а I 0 = V 0 / R — пиковый ток. В этом примере считается, что напряжение и ток находятся в фазе, как показано на рисунке 1 (b).

Ток в резисторе меняется взад и вперед, как и напряжение возбуждения, поскольку I = V / R .Например, если резистор представляет собой люминесцентную лампочку, она становится ярче и гаснет 120 раз в секунду, поскольку ток постоянно проходит через ноль. Мерцание с частотой 120 Гц слишком быстро для ваших глаз, но если вы помашите рукой вперед и назад между лицом и флуоресцентным светом, вы увидите стробоскопический эффект, свидетельствующий о переменном токе. { 2} \ text {2} \ pi {ft} \\ [/ latex], как показано на рисунке 3.

Подключение: домашний эксперимент — лампы переменного / постоянного тока

Помашите рукой между лицом и люминесцентной лампочкой. Вы наблюдаете то же самое с фарами своей машины? Объясните, что вы наблюдаете. Предупреждение: Не смотрите прямо на очень яркий свет .

Рис. 3. Мощность переменного тока как функция времени. Поскольку напряжение и ток здесь синфазны, их произведение неотрицательно и колеблется от нуля до I 0 V 0 .Средняя мощность (1/2) I 0 V 0 .

Чаще всего нас интересует средняя мощность, а не ее колебания — например, у лампочки 60 Вт в настольной лампе средняя потребляемая мощность 60 Вт. Как показано на Рисунке 3, средняя мощность P ave составляет

[латекс] {P} _ {\ text {ave}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex].

Это очевидно из графика, поскольку области выше и ниже линии (1/2) I 0 V 0 равны, но это также можно доказать с помощью тригонометрических тождеств.Точно так же мы определяем средний или среднеквадратичный ток I среднеквадратичное значение и среднее значение или среднеквадратичное напряжение В среднеквадратичное значение , соответственно, равное

[латекс] {I} _ {\ text {rms}} = \ frac {{I} _ {0}} {\ sqrt {2}} \\ [/ latex]

и

[латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex].

, где среднеквадратичное значение означает среднеквадратичное значение, особый вид среднего. Как правило, для получения среднеквадратичного значения конкретная величина возводится в квадрат, определяется ее среднее значение (или среднее значение) и извлекается квадратный корень.Это полезно для переменного тока, так как среднее значение равно нулю. Сейчас,

P среднекв. = I среднеквадратичное значение В среднеквадратичное значение ,

, что дает

[латекс] {P} _ {\ text {ave}} = \ frac {{I} _ {0}} {\ sqrt {2}} \ cdot \ frac {{V} _ {0}} {\ sqrt {2}} = \ frac {1} {2} {I} _ {0} {V} _ {0} \\ [/ latex],

, как указано выше. Стандартной практикой является указание I среднеквадратичного значения , В среднеквадратичного значения и P , среднего , а не пиковых значений.Например, напряжение в большинстве домашних хозяйств составляет 120 В переменного тока, что означает, что В среднеквадратичное значение равно 120 В. Обычный автоматический выключатель на 10 А прервет устойчивое напряжение I среднеквадратичное значение более 10 А. Ваш 1,0-кВт микроволновая печь потребляет P , среднее = 1,0 кВт и т. д. Вы можете рассматривать эти среднеквадратичные и средние значения как эквивалентные значения постоянного тока для простой резистивной цепи. Подводя итог, при работе с переменным током закон Ома и уравнения мощности полностью аналогичны таковым для постоянного тока, но для переменного тока используются среднеквадратические и средние значения.{2} R \\ [/ латекс].

Пример 1. Пиковое напряжение и мощность для переменного тока

(a) Каково значение пикового напряжения для сети 120 В переменного тока? (б) Какова пиковая потребляемая мощность лампочки переменного тока мощностью 60,0 Вт?

Стратегия

Нам говорят, что В среднеквадратичное значение составляет 120 В, а P среднеквадратичное значение составляет 60,0 Вт. Мы можем использовать [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex], чтобы найти пиковое напряжение, и мы можем манипулировать определением мощности, чтобы найти пиковую мощность из заданной средней мощности.

Решение для (a)

Решение уравнения [латекс] {V} _ {\ text {rms}} = \ frac {{V} _ {0}} {\ sqrt {2}} \\ [/ latex] для пикового напряжения В 0 и замена известного значения на V rms дает

[латекс] {V} _ {0} = \ sqrt {2} {V} _ {\ text {rms}} = 1,414 (120 \ text {V}) = 170 \ text {V} \\ [/ latex ]

Обсуждение для (а)

Это означает, что напряжение переменного тока меняется от 170 В до –170 В и обратно 60 раз в секунду. Эквивалентное постоянное напряжение составляет 120 В.

Решение для (b)

Пиковая мощность равна пиковому току, умноженному на пиковое напряжение. Таким образом,

[латекс] {P} _ {0} = {I} _ {0} {V} _ {0} = \ text {2} \ left (\ frac {1} {2} {I} _ {0} {V} _ {0} \ right) = \ text {2} {P} _ {\ text {ave}} \\ [/ latex].

Мы знаем, что средняя мощность составляет 60,0 Вт, поэтому

P 0 = 2 (60,0 Вт) = 120 Вт.

Обсуждение

Таким образом, мощность меняется от нуля до 120 Вт сто двадцать раз в секунду (дважды за цикл), а средняя мощность составляет 60 Вт.

Постоянный ток в сравнении с переменным током

Батареи, топливные элементы и солнечные элементы производят то, что называется постоянного тока ( DC ). Положительный и отрицательный полюсы аккумулятора всегда соответственно положительный и отрицательный. Ток всегда течет в одном и том же направлении между этими двумя клеммами.

С другой стороны, мощность, поступающая от электростанции, называется переменным током ( AC ).Направление тока меняется или меняется 60 раз в секунду (в США) или 50 раз в секунду (например, в Европе). В настенной розетке в США имеется 120-вольтное напряжение переменного тока с периодом 60 циклов.

Большим преимуществом переменного тока для электросети является тот факт, что относительно легко изменить напряжение питания с помощью устройства, называемого трансформатором . Энергетические компании таким образом экономят много денег, используя очень высокое напряжение для передачи энергии на большие расстояния.

Как это работает? Что ж, допустим, у вас есть электростанция, которая может производить 1 миллион ватт энергии. Один из способов передать эту мощность — послать 1 миллион ампер при напряжении 1 вольт. Другой способ передать его — посылать 1 ампер на 1 миллион вольт. Для передачи 1 А требуется только тонкий провод, и при передаче на тепло теряется не так много энергии. Для отправки 1 миллиона ампер потребуется огромный провод.

Таким образом, энергетические компании преобразуют переменный ток в очень высокие напряжения для передачи (например, 1 миллион вольт), затем снова понижают его до более низких напряжений для распределения (например, 1000 вольт) и, наконец, для безопасности внутри дома до 120 вольт.Как вы можете себе представить, намного сложнее убить кого-то с помощью 120 вольт, чем с помощью 1 миллиона вольт (и большинство электрических смертей сегодня предотвращается с помощью розеток GFCI). Чтобы узнать больше, прочтите Как работают электросети.

Осталась одна важная электрическая концепция, которую мы не обсуждали: заземление.

В чем разница между переменным и постоянным током?

Прежде чем углубиться в вопрос, что более опасно, а что более эффективно, давайте поговорим о переменном и постоянном токе.

Что такое переменный ток?

Переменный ток периодически и непрерывно меняет свою полярность и величину в зависимости от времени. Переменный ток может быть произведен с помощью устройства под названием генератор переменного тока, которое производит переменный ток.

Давайте разберемся с переменным током на примере воды

Предположим, что поршень вставлен внутрь трубы и соединен с вращающимся штоком, как показано на рисунке ниже. Здесь поршень совершает два хода: один вверх, а другой — назад при ходе вверх, вода движется по часовой стрелке, а в обратном направлении вода перемещается против часовой стрелки, поэтому в этом случае направление воды периодически меняет свое направление с колебаниями поршень.

Осциллограммы переменного тока

Каждая форма сигнала переменного тока имеет разделительную линию или называется линией нулевого напряжения, которая делит форму волны на две половины, поскольку ток переменного тока периодически меняет величину и направление, поэтому в каждом полном цикле он достигает нуля вольт.

Характеристики формы сигнала переменного тока

Период времени (T)

Общее количество времени, которое требуется сигналу для повторения самого себя или для повторения своего одного цикла, называется периодом времени. Вы также можете сказать, что общее количество времени, затрачиваемое волновой формой на завершение одного полного цикла, называется периодом времени.

Частота (ж)

Скорость, с которой форма сигнала повторяется, называется частотой или, можно сказать, количество раз, которое форма сигнала повторяется за одну секунду, называется частотой. Единица Si — герц

f = 1 / T

Амплитуда: -Величина сигнала называется амплитудой

Типы сигналов переменного тока

Синусоидальная волна

прямоугольная волна

Треугольник Волна

Применение AC

  • AC используется для передачи данных на большие расстояния для офисов и домов
  • Потери энергии в переменном токе менее широко используются в передаче
  • Переменный ток можно эффективно преобразовать в высокое напряжение в низкое и низкое в высокое напряжение с помощью трансформатора
  • Питание переменного тока используется в более крупных приложениях и приборах, таких как морозильные камеры переменного тока. Посудомоечные машины, стиральные машины, вентиляторы, лампочки.

Что такое постоянный ток?

Постоянный ток — это однонаправленный поток тока или электрического заряда, в отличие от переменного тока, он не меняет величину и полярность со временем. Постоянный ток имеет постоянную величину и направление, а поскольку направление и величина не меняются, частота постоянного тока равна нулю. Электроны в постоянном токе текут от высокой электронной плотности к низкой.

Мы можем получить постоянный ток из переменного тока, используя процесс, называемый выпрямлением, а устройство, которое это делает, называется выпрямителем.

Применение постоянного тока

  • Постоянный ток широко используется в небольших электронных устройствах и гаджетах
  • Постоянный ток не подходит для передачи на большие расстояния, но хранить постоянный ток легко в виде батареи.
  • Источник постоянного тока используется в сотовых телефонах, ноутбуках, радио и других электронных устройствах
  • Постоянный ток используется в фонариках
  • Постоянный ток используется в электромобилях, гибридных автомобилях и автомобилях

Разница между переменным и постоянным током

  • Переменный ток меняет свое направление во время протекания, в то время как постоянный ток не меняет своего направления во время протекания и остается постоянным.
  • У переменного тока есть частота, которая показывает, сколько раз направление тока изменяется во время потока, в то время как частота постоянного тока равна нулю, поскольку он не меняет направление потока.
  • Коэффициент мощности переменного тока составляет от 0 до 1, в то время как постоянный ток имеет постоянный ноль.
  • Переменный ток генерируется генератором переменного тока, а постоянный ток генерируется фотоэлектрическими элементами, генераторами и батареями.
  • Нагрузка переменного тока может быть емкостной, индуктивной или резистивной, но нагрузка постоянного тока всегда резистивная.
  • На графике постоянного тока есть постоянная линия, показывающая постоянную величину и направление, в то время как переменный ток может быть синусоидальной, прямоугольной или треугольной.
  • Переменный ток преобразуется в постоянный ток с помощью устройства, называемого выпрямителем, а постоянный ток преобразуется в переменный ток, называемого инвертором.
  • AC широко используется в промышленном оборудовании и бытовой электронике, такой как переменный ток, морозильная камера, холодильник, стиральная машина, освещение, вентиляторы, а постоянный ток используется в электронных гаджетах и ​​небольших устройствах, таких как часы, ноутбуки, сотовые телефоны, датчики.
  • Ac может передаваться на большие расстояния с некоторыми потерями, в то время как постоянный ток может передаваться на очень большие расстояния с очень низкими потерями, используя HVDC
Чтобы узнать, какой ток более опасен, переменный или постоянный: нажмите здесь

AC и DC (переменный ток и постоянный ток) — разница и сравнение

Электроэнергия течет двумя способами: переменным током (AC) или постоянным током (DC) .Электричество или «ток» — это не что иное, как движение электронов по проводнику, например по проводу. Разница между переменным и постоянным током заключается в направлении потока электронов. В постоянном токе электроны стабильно движутся в одном направлении или «вперед». В переменном токе электроны постоянно меняют направление, иногда идя «вперед», а затем «назад».

Переменный ток — лучший способ передавать электричество на большие расстояния.

Таблица сравнения

Сравнительная таблица переменного и постоянного тока
Переменный ток Постоянный ток
Количество энергии, которое может быть перенесено Безопасно для передачи на большие расстояния по городу и может обеспечить большую мощность. Напряжение постоянного тока не может перемещаться очень далеко, пока не начнет терять энергию.
Причина направления потока электронов Вращающийся магнит вдоль провода. Постоянный магнетизм вдоль провода.
Частота Частота переменного тока составляет 50 Гц или 60 Гц в зависимости от страны. Частота постоянного тока равна нулю.
Направление Он меняет направление на противоположное при движении по контуру. Он течет в контуре в одном направлении.
Ток Это ток, величина которого меняется со временем Это ток постоянной величины.
Поток электронов Электроны меняют направление движения — вперед и назад. Электроны стабильно движутся в одном направлении или «вперед».
Получено от Генератор переменного тока и сеть. Элемент или батарея.
Пассивные параметры Импеданс. Только сопротивление
Коэффициент мощности Входит между 0 и 1. всегда 1.
Типы Синусоидальный, трапециевидный, треугольный, квадратный. Чистый и пульсирующий.

Содержание: переменный ток против постоянного (переменный ток против постоянного)

Переменный и постоянный ток. По горизонтальной оси отложено время, а по вертикальной оси — напряжение.

Истоки переменного и постоянного тока

Магнитное поле около провода заставляет электроны течь в одном направлении вдоль провода, потому что они отталкиваются отрицательной стороной магнита и притягиваются к положительной стороне. Так родилась мощность постоянного тока от батареи, в первую очередь благодаря работе Томаса Эдисона.

Генераторы переменного тока

постепенно заменили систему батарей постоянного тока Эдисона, потому что переменный ток безопаснее передавать на большие расстояния по городу и может обеспечить большую мощность. Вместо постоянного приложения магнетизма к проводу ученый Никола Тесла использовал вращающийся магнит. Когда магнит был ориентирован в одном направлении, электроны текли к положительному положению, но когда ориентация магнита менялась, электроны также вращались.

Видео сравнения переменного и постоянного тока

Применение трансформаторов переменного тока

Еще одно различие между переменным и постоянным током заключается в количестве энергии, которое он может переносить. Каждая батарея предназначена для выработки только одного напряжения, и это напряжение постоянного тока не может перемещаться очень далеко, пока не начнет терять энергию. Но напряжение переменного тока от генератора на электростанции может быть увеличено или уменьшено с помощью другого механизма, называемого трансформатором .Трансформаторы располагаются на опоре на улице, а не на электростанции. Они изменяют очень высокое напряжение на более низкое, подходящее для ваших бытовых приборов, таких как лампы и холодильники.

Хранение и преобразование из переменного тока в постоянный и наоборот

AC может даже быть изменен на DC с помощью адаптера, который вы можете использовать для питания аккумулятора вашего ноутбука. DC можно «подтолкнуть» вверх или вниз, это только немного сложнее. Инверторы изменяют постоянный ток на переменный. Например, для вашего автомобиля инвертор изменит 12 вольт постоянного тока на 120 вольт переменного тока, чтобы запустить небольшое устройство. Хотя постоянный ток можно хранить в батареях, вы не можете хранить переменный ток.

Список литературы

Поделитесь этим сравнением:

Если вы дочитали до этого места, подписывайтесь на нас:

«Переменный ток против постоянного (переменный ток против постоянного)». Diffen.com. ООО «Диффен», н.д. Интернет. 30 января 2021 г. <>

Как заряжать телефон постоянного тока от источника переменного тока?

Позвольте мне начать с того, что этот пост был вдохновлен потрясающей демонстрацией физики, которую я видел в секции Северной Каролины Американской ассоциации учителей физики.Версия демонстрации (которую я покажу ниже) была создана учителем физики средней школы Джеффом Регестером. Фактически, вы можете увидеть его страницу об адаптерах питания переменного тока здесь (включая эту демонстрацию).

AC vs. DC

Вы не можете жить без зарядного устройства для смартфона. Я это понимаю. Однако для зарядного устройства требуется источник постоянного тока. DC означает постоянный ток (это означает, что вы не можете сказать «постоянный ток» — это все равно, что сказать «постоянный ток»). Это тип тока, который вы получаете, когда подключаете батарею к лампочке.Это означает, что ток в цепи движется в одном направлении, и, надеюсь, ток в основном постоянный. Многим устройствам в вашем доме нужен постоянный ток.

Rhett Allain

Когда вы подключаете какие-либо предметы к розетке в вашем доме, вы не получаете постоянного тока. Бытовые розетки — переменный ток. Этот ток имеет частоту 60 Гц и будет выглядеть примерно так (если вы построите график зависимости тока от времени).

Этот переменный ток хорошо работает с чем-то вроде лампы накаливания, но не подходит для аккумулятора вашего смартфона.

Но почему мы используем переменный ток вместо постоянного? На то есть две причины. Во-первых, если у вас переменный ток, вы можете легко изменить напряжение с помощью трансформатора (по сути, это всего две катушки с разным числом витков).

Добавить комментарий

Ваш адрес email не будет опубликован.