Что такое диодный мост и как он работает: Как проверить диодный мост мультиметром

Содержание

Как проверить диодный мост мультиметром

Диодный мост – электрическое устройство, используемое в современной электронике, люминесцентных лампах, сварочных аппаратах, автомобильных генераторах для выпрямления переменного тока, поступающего от источника, и получения постоянного.

Содержание статьи

В однофазной электрической сети в состав мостовой схемы входят 4 кремниевых выпрямительных или 4 диода Шоттки. В трехфазной сети в мост соединяют 6 полупроводников. Эти элементы часто выходят из строя, провоцируя сгорание предохранителя. После замены предохранителя необходимо проверить работоспособность полупроводников. Существует несколько вариантов того, как проверить диодный мост, выбор зависит от вида схемы. Диоды могут располагаться дискретно или представлять собой заводскую сборку, в которой все элементы находятся в одном корпусе.

Как прозвонить диодный мост из дискретно расположенных диодов

Все детали мостовой схемы можно прозвонить без выпайки.

Для этого необходим мультиметр, в котором есть режим проверки диодов, обычно совмещаемый со звуковой прозвонкой. Суть проверки заключается в измерении разности напряжений между щупами.

Как правильно проверить исправность диодного моста тестером:

  • Для начала осуществляют прямое подключение прибора. Для этого щуп красного цвета подсоединяют к аноду, а черного – к катоду. При таком подключении ток протекает свободно. Для кремниевого диода падение напряжения на p-n-переходе составляет примерно 500-700 мВ. Для диодов Шоттки падение напряжения на переходе между зонами ниже и равно примерно 300 мВ.
  • Прямое подключение диодного моста

  • Далее осуществляют обратное подключение. Красный щуп подсоединяют к катоду, а черный – к аноду. Для исправного полупроводника значение падения напряжения будет равно 1 или более 1000 (обычно 1500).
  • Обратное подключение диодного моста

Если в результате проверки в обоих направлениях наблюдаются высокие значения или срабатывает звуковой сигнал, то диодный мост оборван.

Как проверить диодный мост в трансформаторном блоке питания с помощью лампочки

Для этого способа понадобится лампа накаливания мощностью до 100 Вт, вкрученная в патрон. Лампу подключают в разрыв силового фазного провода. Если на плате произошло короткое замыкание, то при включении устройства в сеть перегорит предохранитель, сам провод или выбьют автоматические выключатели. Если провести проверку с использованием лампочки накаливания, то подобных неприятностей можно избежать. При наличии короткого замыкания лампочка, включенная в сеть, загорится ярким светом. Она не сгорит, поскольку сопротивление спирали ограничит ток. Если же электронные компоненты платы исправны, то лампочка не загорится совсем или будет наблюдаться слабое свечение.

Пробой диодного моста

Простая проверка целостности диодного моста трансформаторного блока питания

Если мы выяснили с помощью лампочки, что на плате существуют проблемы, с помощью индикаторной отвертки можно выяснить, есть ли обрыв на диодном мосту.

Если на входе в выпрямитель на фазном проводе загорается индикатор, проводим дальнейшую проверку. Если же индикатор не загорелся, то проблема не в диодной схеме, а в силовом кабеле. Индикатором проверяют наличие напряжения на плюсовом выходе выпрямителя. Если оно присутствует, то диодный мост не оборван. Большего количества информации при такой проверке мы не получим.

Пробоя диодного моста нет

Как точно проверить диодную сборку: подробный анализ

Для проверки понадобится мультиметр, имеющий режим проверки диодов.

Этапы проверки:

  • Тестирование начинают с диодов 1 и 2. Для этого красный щуп тестера подключают к выводу со знаком «-». Над двумя центральными выводами имеется маркировка AC или ̴. Черный щуп по очереди подключают сначала к одному такому выводу, а затем ко второму. Это прямое включение, при котором ток протекает свободно. На дисплее цифрового мультиметра отобразится значение падение напряжения на переходе p-n при прямом включении. В зарубежных даташитах эта величина обозначается как Vf. Для кремниевых диодов она находится в пределах 0,4-0,7 В. Для полупроводников Шоттки она ниже, и равна примерно 0,3 В. Если на измерительном приборе отобразились эти значения, то диодная сборка исправна.
  • Для уточнения результатов проверки диодов 1 и 2 проводят обратное подключение. Для этого к выводу «-» подключают черный щуп (минусовый). Красный щуп поочередно подводят к выводам, промаркированным AC или ̴. На дисплее должна быть единица, свидетельствующая о высоком сопротивлении и отсутствии обратного тока. Если это так, то исправность диодов 1 и 2 подтверждена.
  • Далее проверяют проверку диодов 3 и 4 при условии прямого подсоединения. Для этого к плюсу подключают черный щуп, а красный по очереди подводят к выводам AC. На дисплее должно отображаться падение напряжения на p-n переходе, о котором подробно было рассказано в первом пункте.
  • Для подтверждения результата к плюсу подключают красный щуп, а черный – к выводам AC.
    На дисплее должна быть единица.

Если диодная сборка благополучно пройдет эту проверку, можно с уверенностью сказать, что все элементы исправны.

Как проверить диодный мост генератора

Диодный мост генератора

Диодный мост генератора автомобиля или мотоцикла предназначен для выпрямления переменного тока, вырабатываемого генератором, и получения постоянного тока для зарядки АКБ и других потребителей электропитания. Неисправность диодного моста приводит к полному исчезновению или значительному уменьшению количества тока, вырабатываемого генератором. Наиболее точные результаты можно получить на СТО – на стенде с использованием осциллографа.

Один из вариантов простой проверки полупроводников – прозвонка с помощью мультиметра. Однако это ненадежный способ, поскольку нагрузка у прибора совсем небольшая, поэтому неисправность может быть не выявлена.

Для проверки диодного моста генератора под нагрузкой используют контрольную лампочку, это может быть обычная автомобильная лампа 12 В.

Выпрямительный блок состоит из двух алюминиевых пластин, объединенных в единую конструкцию. В каждую из них впаяны по 3 диода. Положительные и отрицательные диоды спаяны попарно. Проверка мостовой схемы на короткое замыкание (КЗ) между пластинами производится следующим способом:

  • Положительный провод от лампы подсоединяют к верхней пластине, а отрицательный – к нижней. Если лампочка не загорелась, то КЗ отсутствует.
  • Полярность меняют. При отсутствии КЗ лампочка загорается.
  • Положительные полупроводники на пробой и обрыв проверяют прижатием плюсового провода от лампочки к верхней пластине. Минус поочередно подсоединяют к точкам соединения полупроводников. Если схема исправна, лампочка не горит. При смене полярности лампочка должна гореть.
  • Проверку отрицательных диодов проводят прижатием отрицательного провода к нижней пластине, а положительного – к точкам соединения полупроводников. При исправной схеме лампочка не горит, при смене полярности она должна загореться.

Видео: как проверить диодный мост мультиметром


Была ли статья полезна?

Да

Нет

Оцените статью

Что вам не понравилось?


Другие материалы по теме


Анатолий Мельник

Специалист в области радиоэлектроники и электронных компонентов. Консультант по подбору деталей в компании РадиоЭлемент.


Как проверить диодный мост на исправность? 3 пошаговые методики

Современные бытовые приборы и различные устройства содержат огромное количество радиоэлементов, которые обеспечивают их исправную работу и комфортное существование обывателей.

Однако вся техника, эксплуатируемая человеком, иногда выходит со строя и во время ее ремонта приходится проверять состояние радиодеталей.

Одной из наиболее распространенных составляющих, которую вы можете испытать на исправность самостоятельно, является диодный мост. В виду  конструктивных особенностей многие новички сталкиваются с рядом сложностей, поэтому будет целесообразно детально разобраться, как проверить диодный мост на исправность.

О диодных мостах

Прежде чем разбираться в способах проверки диодных мостов на исправность, вам нужно  как следует изучить общую информацию об устройстве и принципе его работы.  Наиболее простой вариант, с практической точки зрения, это четыре выпрямительных диода спаянные в единую схему. Более сложным с точки зрения диагностики является диодная сборка – заводской четырехполюсник, внутри которого набраны четыре полупроводниковых элемента. Но, схематическая реализация и первого, и второго варианта происходит одинаково, принципиальная схема обоих диодных мостов приведена на рисунке ниже:

Рис. 1. Принципиальная схема диодного моста

Как видите, в диоды собираются в мост по такому принципу, в одной точке подключатся катоды двух соседних диодов, а в другой, аноды соседних диодов, с каждого из них снимается полуволна отрицательной или положительной части синусоиды на входе. Другие две точки, имеющие и анодный и катодный вывод диода, предназначены для подачи переменного напряжения. На электрической схеме или непосредственно на диодном мосте выводы переменного напряжения обозначаются буквенной маркировкой  AC или значком «~», а положительный и отрицательный вывод постоянного напряжения «+» и «– » соответственно.

Ищем диодный мост на плате

Проверять можно как установленный на плате диодный мост, так и выпаянный из нее, второй  вариант считается более точным, поскольку на проверку не влияют другие элементы цепи, но следует помнить, что некоторые методы проверки можно реализовать только в рабочем устройстве. Если конструкция прибора довольно сложная или плата переполнена деталями, диодный мост целесообразно искать в таких локациях:

  • в блоках питания;
  • во вторичных цепях трансформаторов;
  • на выходе генераторов;
  • перед аккумуляторными батареями.  

После обнаружения диодного моста, необходимо осмотреть его корпус или каждый диод в отдельности. Опытный электрик для себя автоматически заметит расположение вводов, но если вам сложно ориентироваться на память, можете нарисовать схему применительно к вашей ситуации. На такой схеме нужно отобразить плюсовую клемму и отрицательную клемму, клеммы ввода переменного напряжения.

Также следует отметить, что неисправность может заключаться не только в диодных мостах, поэтому при обследовании стоит внимательно осматривать все элементы и детали, а при проверке не исключать целостности объекта.

Проверка индикаторной отверткой

Это наиболее простой вариант опробования, который даст обще представление о состоянии диодного моста и всей схемы  в целом. Для работы вам понадобится только индикатор, вся процедура выполняется под напряжением, поэтому следует соблюдать предельную осторожность:

  • Коснитесь жалом отвертки поочередно к каждому выводу переменного напряжения AC  диодного моста. Если лампочка не горит, то это свидетельствует о неисправности цепи до диодного моста – обрыве обмотки, поломке зарядного устройства и т.д. Если же лампочка горит, значит напряжение на мост поступает нормально.
Рис. 2. Опробование индикаторной отверткой
  • Также коснитесь отверткой к плюсу клеммы – если лампочка загорится, то диодный мост нормально пропускает положительные полупериоды, соответственно, на этом выводе присутствует потенциал. Если не горит, присутствует повреждение диодного моста.
  • Ту же процедуру повторите с минусовой клеммой. Обязательно разделяйте проверку на оба вывода выпрямительного блока, так как неисправность может присутствовать в любом диоде и в любой ветви.

Как видите, в данном примере была использована отвертка с изолированным стержнем. Это связанно с необходимостью выполнять работу под напряжением, кода вы можете перекрыть металлической деталью разные части электроустановки, что повлечет за собой крайне неприятные последствия. Существенным недостатком метода является его низкая информативность и ограничение  по величине рабочего напряжения  — так как индикатор рассчитан на номинал 220 В, то использовать его для низковольтных цепей не получится.

С помощью лампочки и батарейки

Довольно простым способом, позволяющим проверить диодный мост, является использование батарейки и электрической лампочки, которые практически каждый может найти у себя дома. Этот метод не сложнее предыдущего, лампа выступает в роли контрольки, а батарейка в качестве источника питания пониженным напряжением. Батарейку подбирают в соответствии с параметрами самого диода. Для проверки исправности необходимо разделить диоды из моста по отдельности и собрать несложную схему:

Рис. 3. Схема проверки лампочкой и батарейкой

Как видите, вам нужно собрать последовательное соединение от контактов лампочки к  батарейке и самому диоду.

  1. Первый этап – правильное соединение, когда плюс батарейки подключается к положительной пластине выпрямителя, а минус аккумулятора на отрицательную пластину выпрямителя. Если диод исправен, то в цепи будет протекать ток и лампочка загорится.
  2. Второй этап заключается в переворачивании диода, когда на минусовую пластину подключится положительный вывод выпрямителя, а на плюсовую отрицательный.
Обратная схема проверки лампочкой и батарейкой

При исправном диоде ток протекать не будет, и лампочка не загорится. С практической точки зрения можно не искать батарейку, а обойтись любыми подручными источниками питания, чей номинал сопоставим с номиналом диодного моста и каждого элемента. К примеру, в гараже можно подключиться к автомобильному генератору или клеммам аккумулятора.

Методика проверки мультиметром

Наиболее информативной является полная проверка диодного моста. Для ее реализации вам понадобится мультиметр, тестер или Цешка – любой из этих приборов в равной мере подойдет для измерений.

Выполните такую последовательность действий:

Время затраченное на проверку: 10 минут

Определите назначение выводов.

Метод универсальный, поэтому вы можете проверить как диодный выпрямитель в сборке, так и конструкцию из отдельных деталей, не разбирая их.

Установите щупы мультиметра.

Установите щупы мультиметра в соответствующие разъемы на приборе, соблюдая цветовую маркировку (черный – минус, красный — плюс). Переключатель выведите в режим прозвонки.

Используйте минусовый щуп мультиметра.

Подведите минусовый щуп мультиметра к плюсу диодного моста, а положительный поочередно к каждому из выводов переменного напряжения.

В результате прикосновения на табло мультиметра должно отображаться напряжение открытия диодов, в обеих точках это измеримая величина одинаковая для каждого измерения. В противном случае, сборка неисправна.

Поменяйте щупы тестера местами.

Далее необходимо поменять щупы тестера местами – красный установите на плюс, а черным попеременно касайтесь выводов для переменного напряжения.

На табло будет отображаться единица, свидетельствующая о бесконечно большом сопротивлении – при обратной полярности диоды остаются закрытыми. В противном случае, если отображается какое-то напряжение, мост пробит.

Используйте плюсовой щуп мультиметра.

Коснитесь плюсовым щупом мультиметра отрицательного вывода диодного моста, а минусовым щупом по очереди переменных выводов. В обоих случаях на табло должно отображаться падение напряжения.

Используйте черный щуп.

Установите черный щуп на отрицательный контакт сборки, а красный подводите к переменным выводам. В обеих позициях на мультиметре должна быть единица, в противном случае, элемент пробит.

Видео по теме

Как работает диодный мост?

Диодный мост — один из самых распространенных компонентов в мире радиоэлектроники. Многим радиолюбителям будет полезно знать, как работает диодный мост, а также из чего он состоит.  Основная цель данного элемента — это преобразовывать переменное входящее напряжение на постоянное, диодный мост зачастую применяется в разного рода выпрямителях, зарядных устройствах и различных блоках питания.

Как работает диодный мост?

Нетрудно заметить, что классический диодный мост состоит из четырех диодов, собранных в схему в виде моста. Для такого моста подбираются диоды с определенными характеристиками по току и напряжению, а также желательно одинаковой маркировки. Во многих случаях диоды моста устанавливаются на радиаторы, чтобы исключить перегрев и преждевременный выход их из строя.  О том, как подобрать диоды для диодного моста, мы напишем немного позже.




Диодный мост, принцип работы

В каждом из полупериодов ток проходит только через соответствующих два диода, а остальная пара диодов заперта.

В итоге, на выходе имеем постоянное напряжение, но с удвоенной частотой пульсации. Как видим принцип работы диодного моста очень прост.

Иногда для питания некоторых схем этого достаточно, например простые зарядные устройства для АКБ и т.п., для них подобные пульсации напряжения абсолютно не критичны. Но при необходимости питать усилитель от такого источника питания ничего путного с этого не получится (услышим лишь громкий гул) — ему нужно сглаженное напряжение. Для получения сглаженного напряжения, а не пульсирующего, диодный мост можно дополнять электролитическим конденсатором большой емкости, установленным на выходе моста. Чем больше будет емкость такого фильтрующего конденсатора, тем менее заметными станут подобные пульсации.

При ремонте различных приборов важно знать не только то, как работает диодный мост, но и уметь его проверять. О том, как проверить диодный мост читаем тут.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Как проверить диодный мост? — Diodnik

Диодный мост — важный элемент в цепи питания любого устройства, без него редко обходится работа любого блока питания или выпрямителя.  Процесс проверки диодного моста будет интересный не только радиолюбителям, но и автомобилистам. Состоит это устройство из четырех диодов, собранных  по мостовой схеме, и может быть выполнено как в едином корпусе, так с помощью отдельных диодов. В автомобиле мост состоит из шести диодов, если генератор трехфазный. О том, как проверить диодный мост читаем далее.

Более подробно о принципе работы диодного моста можно ознакомиться в предыдущей нашей статье.

Как проверить диодный мост?

В случае, если мост состоит из отдельных диодов, необходимо поочередно их выпаивать и проверять. Принцип проверки детально читаем в статье о том, как проверить диод.

Пример того, как проверить диодный мост мы покажем на диодной сборке. Подопытная сборка — GBU408, 4A 800V. В данном корпусе заключены четыре диода связанным между собой должным образом. Если хоть один из диодов окажется неработоспособным, придется заменить весь мост целиком.

Для удобства проверки диодов изображена схема, по которой соединены диоды в данном корпусе.  Она поможет протестировать каждый диод и не запутаться с выводами.

Тест диода D1 – выводы 1;3.

Тест диода D2 – выводы 3;4.

Тест диода D3 – выводы 1;2.

Тест диода D4 – выводы 2;4.

В данном случае все диоды работают исправно, такой диодный мост рабочий.

Как проверить диодный мост без мультиметра?

Есть еще несколько способов, как проверить диодный мост если нет под рукой мультиметра. Например, стоит подать постоянное напряжение на вход диодного моста и измерить его потом на выходе. Поменяв после этого полярность напряжения, на входе смотреть на показатели вольтметра. Если показатели напряжения не изменяются в зависимости от полярности, в принципе можно сказать, что мост выполняет свою функцию.

Вконтакте

Facebook

Twitter

Одноклассники

comments powered by HyperComments

Как работают диоды и что такое диодный мост?

Здравствуйте друзья!  Каждый день мы встречаем огромное число людей, людей с которыми мы общаемся, живем, учимся или ходим не работу. Готов поспорить что как минимум половина людей с которыми вы общаетесь имеет смутное представление о диодах, и это не смотря на то  что понятие диодов входит в школьную программу .

Возможно что такое понятие как диодный мост вызывает точно такие же ассоциации как и Бруклинский.  Я все-таки думаю, что эта статья в какой-то степени уменьшит подобные ассоциации в головах людей и принесет чуточку понимания, по крайней мере я на это надеюсь.

Ну что? Заинтересовал? Тогда поехали.

[contents]

О чем сегодня статья

Как вы наверное поняли из вступления сегодняшняя статья  будет ориентирована на новичков. И сегодня я освещу сакральную тему, свет которой будет освещать  полупроводниковые приборы под названием диоды.

Как работает диод

Как работает диод? Многих новичков интересует данный вопрос и многие учителя в школах и вузах начинают чертить на доске электрические схемы и временные диаграммы.  Я считаю что это полная фигня, так  как пока ты  не получишь практический опыт ты не достигнешь полного понимания и весь наукоемкий фарш останется лишь непонятными каракулями на доске.

Так что же я этим хочу сказать? А сказать я хочу,что нужно просто брать в руки паяльник и идти вперед —  превращать теорию в ценный практический опыт!

Хорошо, а теперь обсудим немного теорию.

На электрических схемах диоды изображаются как равнобедренный  треугольник на одной из вершин которого размещается черточка. Это словесное описание условного  графического обозначения диода (принятое сокращение УГО). Графически  это обозначение выглядит вот так.

У диода всего два вывода и обозначаются они катод и анод.  На условном обозначении диода вывод катода всегда обозначен «палочкой», а треугольник можно представить как стрелка указывающая на черточку катода.

Впрочем так диоды обозначаются на электрических схемах.  В жизни диоды могут быть разными, к примеру могут быть как на этих картинках.

Как определить на каком выводе у диода анод, а на каком катод? В принципе это можно определить визуально, по маркировке.

Как правило катод на корпусе диода обозначается полоской, точкой или чертой. Если сомневаетесь то катод и анод можно определить с помощью мультиметра. О том как пользоваться мультиметром  и в частности как проверить диод мультиметром я писал здесь, так что почитаете и разберетесь — ничего сложного.

Диоды примечательны тем, что обладают односторонней проводимостью. Это значит что электрический ток «потечет» через диод только в том случае если к аноду приложить  плюс (более положительный потенциал ) а к катоду приложить минус (более отрицательный  потенциал). В обратной ситуации у вас ничего не получится. Подобное поведение диода определяется таким понятием как ВАХ.

Что означает ВАХ диода?

ВАХ диода это просто напросто вольтамперная характеристика диода. Она описывает зависимость тока от напряжения прикладываемого к диоду.  Давайте рассмотрим это обстоятельство чуток подробнее.

Слева у нас показан вольтамперной характеристики для резистора. Как видите, зависимость тока от напряжения линейная, чем больше напряжение приложенное к резистору  тем больше ток.

Для диода кривая зависимости явно отличается. Если мы подключим к аноду положительный потенциал, а к катоду отрицательный  и будем плавно повышать напряжение то будет происходить следующее. Ток в начальный момент времени будет очень мал поэтому диод еще не будет открыт по полной. Но если мы будем прибавлять напряжение то это приведет к полному открытию диода.

Хорошо, а что же случится если мы подключим диод иначе? Положительный потенциал приложим к катоду, а отрицательный к аноду. В этом случае график ВАХ диода у нас буквально перевернется и картина будет следующая. При плавном повышении напряжения ток будет повышаться, но величина тока будет настолько незначительной, что им зачастую пренебрегают. Этот ток при обратном подключении называют еще током утечки.

Только есть здесь один нюанс.  Если мы будем и дальше повышать обратное напряжения на диоде, то можно добиться резкого повышения тока. На вольтамперной характеристике этот момент выглядит в виде небольшого «хвостика» причудливо оттопыренного в конце. Это так называемый обратимый пробой диода. Такой пробой не страшен, если напряжение уменьшить то ток снова уменьшится и будет вновь очень незначительным. Явление подобного обратимого пробоя является  побочным и  для диода его всегда стараются сводить к минимуму.

Как видите всю эту информацию мы получили лишь используя график ВАХ, но будет полезно все это проверить своими руками на практике. Действительно, соберите несложную схему и  сделайте несколько замеров мультиметром, это пойдет на пользу. Вот только диод нужно уметь правильно подключать, ато ведь его легко можно пожечь, так что читайте дальше -поведаю обо всем.

Для чего используют диоды и как включать в цепь?

О том как функционирует диод мы поговорили, вот только пока непонятно как его можно применять и вообще для чего все это.

Для начала рассмотрим простейший пример включения диода в электрическую цеп, причем в переменке. 

И для начала простой вопрос, зачем здесь резистор? Внимательный читатель посмотрит вольтамперную характеристику диода и все станет ясно. Ток в диоде без дополнительной нагрузке начнет очень быстро расти, возникнет подобие короткого замыкания от чего диоду может не поздоровиться. Дабы не произошло подобного конфуза применяют токоограничивающий резистор.

Свойство односторонней проводимости диода применяется не просто широко а повсеместно. В состав любого блока питания входят диоды как сами по себе так и в составе диодного моста. Ведь в любом блоке питания происходит один очень важный момент, а именно происходит превращение переменного тока в постоянный. А вот эту ответственную миссию берут на себя именно диоды. Полное превращение мы рассмотрим когда будем обсуждать диодные мосты, но как ведет себя диод в переменном токе мы сейчас увидим. Схема все та же что и была, диод и резистор включенные в цепь переменного тока.

Вот вам наглядный пример в виде временной диаграммы зависимости тока от напряжения до и после применения диода.

 

 

Как видите произошел очень интересный момент, нижние полупериоды диод просто срезал, оставив холмики положительной полярности.  Это уже более похоже на постоянку, можно еще кстати использовать конденсатор для лучшего сглаживания.

Хотя диод и справляется с задачей выпрямления переменного тока, все-таки с этой задачей диодный мост справится лучше, кстати диодный мост мы сейчас и рассмотрим.

Как построить  диодный мост?

При использовании одиночного диода в целях выпрямления переменки остаются ощутимые провалы в диаграмме. Этого нужно как-то избегать, а вот избежать этого явления нам поможет диодный мостик.

Диодный мост это не один диодик а целых четыре, включенных специальным образом. На электрических схемах додные мосты выглядят вот таким незамысловатым образом.

Кликните чтобы увеличить

И диодный мост отчасти позволяет решить проблему провалов, возникающую при использовании одиночного диода.

 

Как видите диодный мост работает на каждом полупериоде синусоиды, организуя такие холмики положительной полярности. Это уже более похоже на постоянку, хотя постоянный здесь только знак  положительного потенциала. О постоянном напряжении здесь пока говорить рано. Далее вид выходного напряжения еще можно будет скорректировать используя стабилитрон и конденсатор. Правда о конденсаторах мы сегодня разговаривать не будем, а как работает стабилитрон рассмотрим в следующих статьях так что не пропустите и обязательно подпишитесь.

Ну чтож, на этом у меня все, поэтому я буду закругляться и пойду готовить материалы для новых статей. Также очень советую подписаться через форму Email рассылок, тогда вы точно ничего не пропустите и более того каждый подписчик получит от меня подарок.

Желаю вам удачи , успехов и до новых встреч.

С н/п Владимир Васильев.

Принцип работы диодного моста. Как проверить диодный мост.

Диодный мост – простейшая схема, которая преобразует переменный ток в постоянный. Она используется практически во всей современной электронике, поэтому грамотный мастер должен понимать принцип работы диодного моста и уметь его ремонтировать. В российских розетках частота тока 50 Герц, и чтобы выровнять его для работы оборудования и применяют это нехитрое устройство.

Принцип работы

Давайте разберем, как работает данное устройство. Оно собирается из диодов – элементов, пропускающих ток в одну сторону. Современные диоды являются полупроводниковыми устройствами небольшого размера – в этой статье мы не будем разбирать их особенности и маркировку, а поговорим только о том, как работает диодный мост.

Состав и принцип работы диода

У диода имеется два контакта – анод и катод. Ток течет от анода к катоду практически с нулевым сопротивлением. Но если ситуация меняется и ток подается на катод, то противоположное сопротивление не дает ему пробиться через элемент (ток практически равен нулю и в большинстве случаев им можно пренебречь). Схему работы вы можете увидеть на приведенном выше рисунке.

 

Классический диодный мост

Стандартная схема диодного моста выпрямителя содержит в себе вместо одного диода и конденсатора четыре диода, объединенных изображенным на рисунке способом. Его можно условно разбить на два полупериода. В каждом полупериоде находится два диода, работающих в одном направлении, и два – запрещающих проход тока. Положительное напряжение приходит на анод VD1, отрицательное на катод VD3. Данные диоды открываются, а VD2 и VD4 — закрываются.

Когда положительный полупериод заменяется на отрицательный, происходит смена работоспособности. Положительное напряжение приходит на анод VD2, отрицательное — на катодный выход VD4. Происходит смена направлений, но ток идет в нужном направлении. Получается, что в подобной схеме частота возрастает в два раза, за счет чего удается добиться лучшего сглаживания, используя идентичный с первой схемой конденсатор. Благодаря этому возрастает коэффициент полезного действия устройства и падают возможные потери.

Принцип работы классического моста

Изучая, как собрать диодный мост, не забывайте о том, что не обязательно спаивать его из четырех микроэлементов и подбирать соответствующий конденсатор. В большинстве случаев можно приобрести готовое решение в магазине, с подобранными параметрами и известными характеристиками. Достоинства подобной сборки в маленьких размерах, единых тепловых режимах и небольшом весе. Основной недостаток в том, что если выходит из строя один элемент, то приходится менять весь узел.

Посмотрите обзорное видео с канала “Радиолюбитель TV”.

 

Как проверить диод

Начиная проверку диода на работоспособность, необходимо понимать, что визуально неисправный диод иногда фактически невозможно отличить от рабочего. О том, как проверить диод мы детально расскажем в нашей статье.

Также, перед проверкой необходимо знать, что основные неисправности диодов бывают трех видов:

  • пробой диода (наиболее распространенный дефект). В результате такого дефекта диод проводит ток в любом направлении, фактически не имея собственного сопротивления:
  • обрыв диода (на практике встречается реже). В данном случае такой диод перестает полностью проводить ток, независимо от направления течения тока.
  • утечка. В этом случае диод проводит незначительный обратный ток.

При любой проверки диодов лучше всего их выпаивать с основной схемы полностью.

Подопытный диод 1n5844 – это 5А диод Шоттки. Проверка производится мультиметром Unit 151B.

Любой диод имеет два вывода: катод и анод. Катод помечен серебристой полоской.

Для того, чтобы ток протекал через диод, на анод должно поступать положительное напряжение, а к катоду отрицательное. Включив необходимый режим измерений на мультиметре, можно приступать к проверке диода.

Необходимо помнить, рабочий диод проводит ток лишь в одном направлении.

Подключив щупы, к аноду (красный +), а к катоду (черный ), мы видим значения на дисплее — это пороговое напряжение диода. Из этого можно сделать вывод, p-n переход открыт.

Подключив щупы, к катоду (красный -), а к аноду (черный +), значений на дисплее нет, кроме 1.

На этом процедура проверки диода закончена – диод исправен.

Если независимо от полярности подключения диода прибор показывает значение 0 или 001, (и иногда слышим характерный звуковой сигнал), это свидетельствует о том, что диод пробит. Такой диод проводит ток в любом направлении.

Если независимо от полярности подключения диода прибор показывает значение 1, такой диод имеет обрыв. Он вообще не проводит ток.

Как проверить диод, в случае когда, под рукой нет мультиметра с функцией проверки диода? Можно использовать для этой цели обычный омметр. Установив значение предела измерений до 20кОм, проверку диода таким тестером производят по схеме, описанной выше.

Иногда можно столкнутся со сдвоенными диодами. Такие диоды имеют три вывода, в одном корпусе заключены сразу два диода. Они имеют общий анод или катод. Проверка такой сдвоенной сборки абсолютно ничем не отличается от проверки обычного диода, только проверять нужно каждый диод в сборке.

Теперь мы знаем, как проверить диод, можем приступить к проверке диодного моста.

Как проверить диодный мост

Пример того, как проверить диодный мост мы покажем на диодной сборке. Подопытная сборка — GBU408, 4A 800V. В данном корпусе заключены четыре диода связанным между собой должным образом. Если хоть один из диодов окажется неработоспособным, придется заменить весь мост целиком.

Для удобства проверки диодов изображена схема, по которой соединены диоды в данном корпусе.  Она поможет протестировать каждый диод и не запутаться с выводами.

Тест диода D1 – выводы 1;3.

Тест диода D2 – выводы 3;4.

Тест диода D3 – выводы 1;2.

Тест диода D4 – выводы 2;4.

В данном случае все диоды работают исправно, такой диодный мост рабочий.

Также вы можете посмотреть видео по проверке диодного моста с канала “ElectronicsClub”

Что означает светодиодный индикатор и как он работает? | Домашняя страница Руководства

Даниэль Хольцер Обновлено 17 декабря 2018 г.

Энергоэффективность в моде не без оснований. Выбор энергоэффективного освещения снижает счета за коммунальные услуги и снижает нагрузку на невозобновляемые источники энергии, на которые приходится 89 процентов производства энергии в США (см. Ссылки 4). Светодиоды, самые эффективные лампы на рынке, начинают появляться вместе с лампами накаливания и компактными люминесцентными лампами в хозяйственных магазинах и магазинах товаров для дома.Однако они являются загадкой для многих, так как их внутреннее устройство несколько отличается от стандартных ламп.

Определение

LED означает «светоизлучающий диод». Диод — это электрический компонент с двумя выводами, которые проводят электричество только в одном направлении. Под действием электрического тока диод излучает яркий свет вокруг маленькой лампочки. Обычно диоды используются во многих технологиях, таких как радио, телевизоры и компьютеры, в качестве электрического компонента для проводимости.(См. Ссылки 1)

Как они работают

Подключение диода к электрическому току возбуждает электроны внутри диода, заставляя их испускать фотоны, которые мы видим как свет. Цвет света является прямым результатом энергетической щели в полупроводнике диода. Это означает, что светодиоды легко и ярко воспроизводят спектр цветов, потребляя при этом очень мало электроэнергии. (См. Ссылки 1)

Важность

В поисках энергоэффективного освещения светодиоды оказались наиболее эффективными из имеющихся ламп.По данным Министерства энергетики США, светодиоды с рейтингом Energy Star потребляют как минимум на 75 процентов меньше энергии, чем традиционные лампы накаливания, и служат в 25 раз дольше. Светодиоды даже превосходят лампы CFL (компактные люминесцентные лампы) по эффективности, в первую очередь потому, что их срок службы вдвое больше, чем у CFL. Светодиоды более эффективны, чем лампы накаливания и КЛЛ, потому что они излучают свет в определенном направлении — вместо того, чтобы рассеивать его во всех направлениях — и они не требуют и не выделяют большое количество тепла. Лампы накаливания и КЛЛ выделяют большую часть своей энергии в виде тепла — 90% и 80% соответственно.(См. Ссылки 1)

Соображения

Самая большая проблема для потребителей при покупке светодиодов для освещения жилых помещений — это первоначальная стоимость. В зависимости от размера и марки лампы светодиоды могут стоить от двух до шести раз дороже КЛЛ. При замене лампочек на несколько осветительных приборов идея потратить сотни долларов на лампочки отпугивает многих потенциальных клиентов. Однако производство светодиодов не только улучшается, но и увеличивается, что означает большую доступность для потребителей в ближайшем будущем.(См. Ссылки 3)

Что такое диод? (с картинками)

Проще говоря, диод похож на односторонний клапан, который позволяет электрическому току течь в одном направлении, но обычно не позволяет ему течь в противоположном направлении. Направление электрического тока в диоде может быть изменено на обратное. Однако даже если это так, поток все равно будет однонаправленным.

Диоды используются для направления электрического тока.

Диод содержит два электрода, которые действуют примерно так же, как полупроводники. Положительный или p-тип обычно является анодом, а отрицательный или n-тип — катодом. Другими словами, катод заряжен отрицательно по сравнению с анодом. Если катод заряжен при таком же или очень близком напряжении к аноду, ток не будет течь.

Ток — это движение электрического заряда.

В электронике диод действует аналогично носителям заряда. Диоды также можно сравнить с обратными клапанами или переключателями. Если бы жидкость или вода были задействованы вместо тока, это было бы похоже на воду, текущую вверх или вниз по потоку. Проще говоря, диод имеет тенденцию допускать поток от входа к потоку, но не наоборот.

Чтобы изменить направление потока, катод должен заряжаться более высоким напряжением, чем анод. Это называется лавинным напряжением, но, несмотря на название, не всегда требуется большое количество вольт для изменения направления.На самом деле это может быть разница всего в несколько вольт.

Диод может преобразовывать электрический ток из переменного в постоянный или из переменного тока в постоянный. Это называется выпрямлением, и выпрямительные диоды чаще всего используются в слаботочных источниках питания.Переключающий диод чаще всего используется для включения или выключения схемы, а переключающие диоды используются для переключения сигналов высокочастотной полосы. Стабилитрон известен как диод постоянного напряжения из-за того, что даже при изменении напряжения источника питания напряжение стабилитрона остается на постоянном уровне. Диод с барьером Шоттки, когда он используется для высокоскоростного переключения, а не для базового выпрямления, используется для таких вещей, как УВЧ и другие высокочастотные сигналы.

Диод может использоваться для различных целей, включая создание различных сигналов, таких как аналоговый сигнал, частоты, такие как микроволновые частоты, или свет.Те, которые излучают свет, известны как светоизлучающие диоды или светодиоды. Этот тип диода излучает свет, когда через него течет ток. Светодиоды используются для таких вещей, как освещенные элементы в компьютерных системах, часах, дисплеях на микроволновых печах и электронике, солнечном освещении и даже в некоторых более современных конструкциях рождественских огней.

Как работает СВЧ диод IMPATT »Электроника

Описание принципа работы микроволнового диода IMPATT: описание, теория; операция


Учебное пособие по диоду IMPATT Включает:
диод IMPATT Как работает диод IMPATT Структура диода IMPATT Диод TRAPATT БАРИТОВЫЙ диод

Другие диоды: Типы диодов


Структура IMPATT-диода очень похожа на стандартный диод Шоттки или PIN-диод, но если посмотреть, как работает IMPATT-диод, можно заметить, что он сильно отличается.

В микроволновом диоде IMPATT используется сочетание лавинного пробоя и времени прохождения носителей заряда для создания области отрицательного сопротивления, которая позволяет ему действовать как генератор.

Поскольку характер лавинного пробоя очень зашумлен, и сигналы, создаваемые диодом IMPATT, имеют высокий уровень фазового шума.

Основы теории диодов IMPATT

IMPATT-диод имеет очень схожую вольт-амперную характеристику с любыми другими формами диодов с PN переходом. Он проводит в прямом направлении после достижения напряжения включения.В обратном направлении он блокирует ток, пока не будет достигнуто напряжение пробоя диода. В этой точке происходит лавинный пробой, и ток течет в обратном направлении.

ВАХ

диода IMPATT Для работы в качестве генератора СВЧ-сигналов диод IMPATT работает в условиях обратного смещения. Они настроены таким образом, что происходит лавинный срыв.

Пробой происходит в области, очень близкой к P + (т.е. сильно легированной области P). Электрическое поле в PN-переходе очень велико, потому что напряжение появляется в очень узком зазоре, создавая высокий градиент потенциала.В этих условиях любые перевозчики очень быстро разгоняются.

В результате они сталкиваются с кристаллической решеткой и освобождают другие носители. Эти недавно освобожденные носители аналогичным образом ускоряются и сталкиваются с кристаллической решеткой, освобождая больше носителей. Этот процесс приводит к так называемому лавинному выходу из строя, поскольку количество носителей очень быстро увеличивается. Для этого типа пробоя возникает только при приложении определенного напряжения к переходу. Ниже этого потенциала потенциал недостаточно ускоряет носители.

С точки зрения работы IMPATT-диод можно рассматривать как состоящий из двух областей, а именно области лавины или области инжекции и, во-вторых, области дрейфа.

Эти две области выполняют разные функции. Область лавины или инжекции создает носители, которые могут быть либо дырками электронов, а область дрейфа — это то место, где носители перемещаются через диод, занимая определенное время в зависимости от его толщины.

Движение носителей заряда внутри диода IMPATT

Работа диода IMPATT

После того, как носители сформированы, устройство использует отрицательное сопротивление для создания и поддержания колебаний. Эффект не возникает в устройстве на постоянном токе, но вместо этого здесь это эффект переменного тока, который вызывается разностями фаз, которые видны на рабочей частоте. Когда подается сигнал переменного тока, обнаруживается, что пики тока сдвинуты по фазе на 180 ° по фазе с напряжением. Это происходит из-за двух задержек, которые происходят в устройстве: задержки впрыска и задержки времени прохождения, когда носители тока перемещаются или дрейфуют через устройство.

Осциллограммы напряжения и тока диода IMPATT

Напряжение, приложенное к диоду IMPATT, имеет среднее значение, когда оно находится на грани лавинного пробоя.Напряжение изменяется как синусоида, но генерация носителей не происходит синхронно с изменениями напряжения. Можно было ожидать, что это произойдет при пиковом напряжении. Это происходит потому, что образование носителей является функцией не только электрического поля, но и количества уже существующих носителей.

С увеличением электрического поля увеличивается и количество носителей. Тогда даже после того, как поле достигнет своего пика, количество носителей все еще продолжает расти в результате количества уже существующих носителей.Это продолжается до тех пор, пока поле не упадет ниже критического значения, когда количество несущих начнет падать. В результате этого эффекта возникает фазовая задержка, так что ток примерно на 90 ° отстает от напряжения. Это известно как задержка фазы впрыска.

Когда электроны движутся через область N +, наблюдается внешний ток, и это происходит в пиках, что приводит к повторяющейся форме волны.

Цепи диодов IMPATT

Диоды

IMPATT обычно используются на частотах выше примерно 3 ГГц или более.Обнаружено, что когда настроенная схема подается вместе с напряжением, близким к напряжению пробоя, к IMPATT, возникают колебания.

По сравнению с другими устройствами, использующими отрицательное сопротивление и доступными для работы на этих частотах, IMPATT способен производить гораздо более высокие уровни мощности. Обычно можно получить десять или более ватт, в зависимости от устройства.

Типовая схема генератора на диоде IMPATT

Диод IMPATT питается от источника питания через токоограничивающий резистор.Значение этого ограничивает ток до требуемого значения. Ток пропускается через радиочастотный дроссель, чтобы изолировать постоянный ток от радиочастотного сигнала. Микроволновый диод IMPATT помещен поперек настроенной цепи. Обычно диод может быть установлен в резонаторе волновода, который обеспечивает необходимую настроенную схему. При подаче напряжения питания цепь будет колебаться.

Одним из основных недостатков IMPATT-диода в его работе является генерация высоких уровней фазовых шумов в результате лавинного механизма пробоя.Установлено, что устройства, основанные на технологии арсенида галлия, намного лучше, чем устройства, использующие кремний. Это связано с гораздо более близкими коэффициентами ионизации дырок и электронов.

Другие электронные компоненты:
Резисторы Конденсаторы Индукторы Кристаллы кварца Диоды Транзистор Фототранзистор FET Типы памяти Тиристор Разъемы Разъемы RF Клапаны / трубки Аккумуляторы Переключатели Реле
Вернуться в меню «Компоненты». . .

Как работает подвесной мост?

Вам когда-нибудь приходилось пересекать водоем? Мы уверены, что у вас есть! Возможно, вы летели через океан на самолете. Возможно, вы переплыли озеро на лодке. Вы, вероятно, перешли реку по мосту.

Представляете, как сложно было бы перейти реку без этих построек? Возьмем, к примеру, Миссисипи. Многие люди не смогут переплыть.Было бы сложно даже взять лодку! Мосты значительно повысили способность людей переходить водные пути.

Одним из самых популярных типов является подвесной мост. Вы когда-нибудь видели фотографии моста Золотые Ворота в Сан-Франциско? Если да, то вы знаете, что эти структуры не только полезны. Также они могут быть красивыми и элегантными.

Подвесные мосты получили свое название от того, что проезжая часть подвешена на тросах от двух высоких башен. Большую часть веса поддерживают две башни.Они, в свою очередь, передают сжимающие силы от кабелей непосредственно в землю.

Подвесные мосты также имеют более мелкие тросы, называемые подтяжками. Они проходят вертикально от палубы до основных поддерживающих тросов. Подвески передают силы сжатия палубы к башням через основные опорные тросы. Это создает изящные дуги между башнями и спуском к земле.

Башни подвесного моста могут быть довольно тонкими. Это потому, что действующие силы тщательно сбалансированы с каждой стороны башен.Сила палубы притягивает башни внутрь. В то же время основные опорные тросы выходят за пределы башен, чтобы закрепить каждый конец. Обычно это твердая скала или тяжелые бетонные блоки, закрепленные под землей.

Якоря тянут наружу башни с силой, равной силе палубы. Это центрирует вес моста на башне. Сегодняшние подвесные мосты могут преодолевать расстояния до 7000 футов и более.

Ранние формы этой конструкции имели конструктивные недостатки. Например, некоторые использовали цепи для основных кабелей.Они могут разрушиться, если разорвется одна ссылка. Эта проблема была решена путем изготовления основных опорных линий из пучков высокопрочной стали. Некоторые части связки могут выйти из строя, и мост останется стоять.

У некоторых ранних подвесных мостов также были тонкие и неустойчивые настилы. Под сильным ветром они тряслись. Сегодня конструкции имеют более толстые и жесткие настилы. Они вряд ли поколеблются.

Подвесные мосты кажутся чудом современной инженерии. Но первые построили инки более 500 лет назад.Они были сделаны из скрученной травы и часто превышали 150 футов. Их использовали для пересечения глубоких горных ущелий в Перу!

Вы когда-нибудь переходили подвесной мост? Вы когда-нибудь видели такое издалека? Они и красивы, и полезны. Может быть, вы когда-нибудь захотите помочь построить такой!

Стандарты: CCRA. L.3, CCRA.L.6, CCRA.R.1, CCRA.R.2, CCRA.R.4, CCRA.R.10, CCRA.SL.1, CCRA.SL.2

Что такое макетная плата и как она работает? Быстрый ускоренный курс

Макетная плата — это хлеб с маслом DIY электроники. Макетные платы позволяют новичкам знакомиться со схемами без необходимости пайки, и даже опытные мастера используют макеты в качестве отправной точки для крупномасштабных проектов.

Если вы делаете первые шаги в мире DIY или микроконтроллеров, возможно, вы получили макет в своем стартовом наборе Arduino или стартовом комплекте Raspberry Pi. Давайте посмотрим, что такое макетные платы, откуда они взялись и как их можно использовать.

4 лучших стартовых набора для начинающих Arduino

Существует множество отличных проектов Arduino для начинающих, которые вы можете использовать для начала, но для начала вам понадобится Arduino и некоторые компоненты.Вот наш выбор из 4 лучших стартовых наборов для любого начинающего энтузиаста Arduino.

Что такое макетная плата?

Макетная плата — это простое устройство, позволяющее создавать схемы без пайки. Они бывают разных размеров и дизайна, но, как правило, выглядят примерно так:

Если вы никогда не видели такого раньше, вы можете задаться вопросом, как определить, какие отверстия и что делают. Когда вы смотрите снизу, становится немного легче понять, что происходит.

Если взглянуть на это с этой точки зрения, легче понять, что происходит. Два больших куска провода с каждой стороны обычно используются для подключения источника питания к плате. Обычно они обозначаются как шины питания . Другие меньшие куски провода, идущие перпендикулярно на всем протяжении платы, используются для компонентов в вашей схеме. Эта диаграмма поможет визуализировать этот узор сверху.

Рельсы питания проходят горизонтально двумя рядами вверху и внизу. Между тем, вертикальные столбцы движутся внутрь, когда вы двигаетесь вниз по доске.

Если бы вы вытащили любую из этих металлических частей, вы бы увидели их назначение.Они предназначены для захвата ножек любых компонентов, проталкиваемых через отверстия в макете. Это позволяет тестировать схемы, не беспокоясь о пайке или хорошем контакте с платой.

Как правило, именно так работают все макеты, хотя они могут быть разных размеров. На некоторых макетных платах есть клеммы для подключения к источнику питания, но вы можете обойтись и без них. Кроме того, большинство макетов предназначены для скрепления вместе, если вам нужно много места для мегапроекта!

Прежде чем мы продолжим, нужно знать еще об одной важной особенности макетных плат:

Интегральные схемы (IC) и двухрядные блоки (DIP)

Видите эту небольшую щель посередине макета? Этот пробел существует не просто так.Интегральные схемы!

Интегральные схемы (ИС) есть почти в каждом электронном устройстве.Они запускают двигатели, регулируют напряжение, действуют как таймеры, выполняют логические задачи и делают практически все, что вам нужно.

ИС могут иметь разное количество выводов, размеров и функций.Однако многие ИС соответствуют стандарту, называемому Dual In-Line Packages (DIP), что означает, что все они имеют одинаковую ширину. Эта ширина — как вы уже догадались — точно соответствует размеру щели в середине макета. Это значительно упрощает работу с ИС, не беспокоясь о случайном соединении неправильных контактов.

Как используются макетные платы сегодня?

В последние годы почти вся электроника начального уровня использует либо Arduino, либо Raspberry Pi.

Хотя есть много вещей, которые вы можете делать с Raspberry Pi, которые не требуют внешних компонентов, все становится интереснее, когда вы используете микроконтроллеры со схемами DIY.Эскиз Blink для Arduino — обычно это первое, что делают новички — можно модифицировать, чтобы использовать фактическую комбинацию светодиода и резистора на макетной плате.

Используя то, что мы уже знаем, мы можем видеть, что провод от контакта 2 Arduino идет в линию питания , прежде чем соединиться с положительным контактом светодиода.Резистор входит в линию с отрицательным выводом, а другой конец резистора идет на сторону заземления линии питания, прежде чем вернуться к выводу GND Arduino.

Если вы хотите попробовать это сами, просмотрите код измененного скетча мигания.

Контакт питания

Для простых проектов, подобных этому, шины питания не всегда используются, но если вам нужно использовать несколько компонентов, для которых требуется питание, вы можете обеспечить питание от контактов питания Arduino или Raspberry Pi.

На рисунке выше показан сервопривод, которому требуется питание, а также инструкции от Arduino.Мы запускаем кабели от контактов 5v и GND Arduino к верхнему набору шин питания. Затем мы закрываем зазор на другом конце для подачи питания на нижние шины питания и используем небольшие кусочки провода для подачи питания на провода VCC и GND сервопривода. Этот метод подключения линий электропередач является хорошей практикой, поскольку он гарантирует, что ваши компоненты всегда будут иметь доступ к источнику питания, независимо от того, где они находятся на макетной плате.

Чтобы получить более подробный проект с использованием Arduino, светодиодов и макета, ознакомьтесь с нашим руководством для начинающих по контроллеру светофора.

Вы используете макетную плату так же для автономных проектов любительской электроники, как и для сборок Raspberry Pi.В качестве примера проекта, использующего несколько компонентов, простой код и практический результат, взгляните на наше руководство по дверному датчику Raspberry Pi.

Что делать, если у вас нет макета?

Если у вас нет макета, все еще можно создавать простые схемы, но это немного менее удобно.

Один из методов — использовать вариант конструкции «точка-точка»: либо паять компоненты вместе, либо оборачивать проволоку вокруг каждой ножки компонента для их соединения.Однако этот метод невероятно неудобен, и если вы вынуждены использовать этот метод, он может помочь использовать изоленту, чтобы удерживать все на месте.

Proto-Board vs.Макетная

Более простой, но более постоянный метод — использовать прототипную плату.Эти платы покрыты отверстиями с медными кольцами вокруг них, что позволяет создавать схемы путем пайки компонентов на месте и соединения их проволокой или другим припоем. Это гораздо более постоянное решение, и обычно оно появляется позже, когда вы знаете, что ваша схема будет работать без каких-либо проблем!

Это изображение из нашего учебного пособия «Рождественский венок с активированным движением» и является прекрасным примером проекта, который требует использования прототипной платы поверх макета.

Печатные платы (PCB)

Последний пример — это создание собственной печатной платы для проекта.

Это постоянное решение, специально разработанное для вашей схемы.Обычно печатные платы — это последний шаг после тестирования как на макетной, так и на прототипной плате. Есть много компаний, которые производят печатные платы на заказ, хотя их можно сделать самостоятельно дома, если вы хотите получить полный опыт DIY.

На YouTuber Extralife есть видео, объясняющее, как работает этот процесс:

Сделайте первые шаги с Arduino или Raspberry Pi

Макетная плата — идеальный аксессуар для изучения электроники на любом уровне.

Делаете ли вы свои первые шаги с проектами для начинающих на Raspberry Pi или с проектами для начинающих Arduino, макет — это место, где можно начать возиться.

25 потрясающих наборов значков приложений для iPhone для настройки домашнего экрана

Загрузите эти пакеты значков iOS, чтобы оживить значки приложений на главном экране вашего устройства.

Об авторе Ян Бакли (Опубликовано 182 статьи)

Ян Бакли, журналист-фрилансер, музыкант, исполнитель и видеопродюсер, живет в Берлине, Германия.Когда он не пишет или не на сцене, он возится с электроникой или кодом своими руками в надежде стать безумным ученым.

Ещё от Ian Buckley
Подпишитесь на нашу рассылку новостей

Подпишитесь на нашу рассылку, чтобы получать технические советы, обзоры, бесплатные электронные книги и эксклюзивные предложения!

Еще один шаг…!

Подтвердите свой адрес электронной почты в только что отправленном вам электронном письме.

Как работают диоды Шоттки | EAGLE

Как и другие диоды, диод Шоттки регулирует направление тока в цепи. Эти устройства действуют как улица с односторонним движением в мире электроники, позволяя току проходить только от анода к катоду. Однако, в отличие от стандартных диодов, диод Шоттки известен своим низким прямым напряжением и возможностью быстрого переключения. Это делает их идеальным выбором для радиочастотных приложений и любых устройств с низким напряжением.Диод Шоттки имеет множество применений, в том числе:

  • Выпрямление мощности. Диоды Шоттки могут использоваться в приложениях с большой мощностью благодаря низкому прямому падению напряжения. Эти диоды потребляют меньше энергии и могут уменьшить размер радиатора.
  • Несколько источников питания. Диоды Шоттки также могут помочь разделить питание в схеме с двумя источниками питания, например, с сетью и батареей.
  • Солнечные элементы.Диоды Шоттки могут помочь максимизировать эффективность солнечных элементов благодаря низкому прямому падению напряжения. Они также помогают защитить ячейку от обратных зарядов.
  • Зажим. Диоды Шоттки также могут использоваться в качестве фиксаторов в транзисторных схемах, например, в логических схемах 74LS или 74S.

( Источник изображения )

Преимущества и недостатки диода Шоттки

Одним из основных преимуществ использования диода Шоттки перед обычным диодом является их низкое прямое падение напряжения.Это позволяет диоду Шоттки потреблять меньше напряжения, чем стандартному диоду, используя только 0,3-0,4 В на его переходах. На приведенном ниже графике вы можете видеть, что прямое падение напряжения примерно на 0,3 В начинает значительно увеличивать ток в диоде Шоттки. Это увеличение тока не вступит в силу до 0,6 В для стандартного диода.

( Источник изображения )

На изображениях ниже показаны две схемы, иллюстрирующие преимущества более низкого прямого падения напряжения.Схема слева содержит обычный диод, справа — диод Шоттки. Оба питаются от источника постоянного тока 2 В.

( Источник изображения )

Обычный диод потребляет 0,7 В, а для питания нагрузки остается только 1,3 В. Благодаря более низкому прямому падению напряжения диод Шоттки потребляет всего 0,3 В, оставляя 1,7 В для питания нагрузки. Если бы наша нагрузка требовала 1,5 В, то для работы подойдет только диод Шоттки.

Другие преимущества использования диода Шоттки по сравнению с обычным диодом:

  • Более быстрое время восстановления .Небольшой заряд, накопленный в диоде Шоттки, делает его идеальным для приложений с высокоскоростным переключением.
  • Меньше шума . Диод Шоттки будет производить меньше нежелательных шумов, чем обычный диод с p-n переходом.
  • Лучшая производительность . Диод Шоттки потребляет меньше энергии и может легко удовлетворить требования низковольтных приложений.

Диоды Шоттки имеют некоторые недостатки. Диод Шоттки с обратным смещением будет испытывать более высокий уровень обратного тока, чем традиционный диод.При обратном подключении это приведет к большей утечке тока.

Диоды Шоттки

также имеют более низкое максимальное обратное напряжение, чем стандартные диоды, обычно 50 В или меньше. Как только это значение будет превышено, диод Шоттки выйдет из строя и начнет проводить большой ток в обратном направлении. Однако даже до достижения этого обратного значения диод Шоттки будет пропускать небольшой ток, как и любой другой диод.

Как работает диод Шоттки

Типичный диод объединяет полупроводники p-типа и n-типа для образования p-n перехода.В диоде Шоттки металл заменяет полупроводник p-типа. Этот металл может варьироваться от платины до вольфрама, молибдена, золота и т. Д.

Когда металл соединяется с полупроводником n-типа, образуется m-s переход. Это соединение называется барьером Шоттки. Поведение барьера Шоттки будет отличаться в зависимости от того, находится ли диод в несмещенном, прямом или обратном смещении.

( Источник изображения )

Беспристрастное состояние

В несмещенном состоянии свободные электроны будут перемещаться от полупроводника n-типа к металлу, чтобы установить баланс.Этот поток электронов создал барьер Шоттки, где встречаются отрицательные и положительные ионы. Свободным электронам потребуется большая подводимая энергия, чем их встроенное напряжение, чтобы преодолеть этот барьер.

( Источник изображения )

Состояние с опережением

Подключение положительной клеммы батареи к металлической и отрицательной клеммы к полупроводнику n-типа создаст состояние с прямым смещением. В этом состоянии электроны могут пересекать переход от n-типа к металлу, если приложенное напряжение больше 0.2 вольта. Это приводит к протеканию тока, типичному для большинства диодов.

( Источник изображения )

Состояние с обратным смещением

Подключение отрицательной клеммы батареи к металлу и положительной клеммы к полупроводнику n-типа создаст состояние с обратным смещением. Это состояние расширяет барьер Шоттки и предотвращает прохождение электрического тока. Однако, если обратное напряжение смещения продолжает расти, это может в конечном итоге сломать барьер.Это позволит току течь в обратном направлении и может повредить компонент.

( Источник изображения )

Производство диодов Шоттки и параметры

Существует множество способов изготовления диода Шоттки. Самый простой способ — подключить металлический провод к поверхности полупроводника, это называется точечным контактом. Некоторые диоды Шоттки до сих пор производятся с использованием этого метода, но он не известен своей надежностью.

( Источник изображения )

Самый популярный метод — это использование вакуума для осаждения металла на поверхность полупроводника. Этот метод представляет собой проблему разрушения металлических краев из-за воздействия электрических полей вокруг полупроводниковой пластины. Чтобы исправить это, производители будут защищать полупроводниковую пластину оксидным защитным кольцом. Добавление этого защитного кольца помогает улучшить порог обратного пробоя и предотвращает физическое разрушение соединения.

( Источник изображения )

Параметры диода Шоттки

Ниже вы найдете список параметров, которые следует учитывать при выборе диода Шоттки для вашего следующего электронного проекта:

Примеры диодов Шоттки

Это помогает увидеть, как эти параметры обычно указаны на веб-сайте производителя или в техническом описании. Вот два примера:

Диод Шоттки 1N5711 — это сверхбыстрый переключающийся диод с высоким обратным пробоем, низким прямым падением напряжения и защитным кольцом для защиты перехода.

Диод Шоттки 1N5828 представляет собой стержневой диод, используемый для выпрямления мощности.

Управляйте потоком

Планируете работать с ВЧ или силовым приложением, требующим работы от низкого напряжения? Диоды Шоттки — это то, что вам нужно! Эти диоды известны своим низким падением прямого напряжения и быстрой скоростью переключения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *