Конденсаторный асинхронный двигатель — это… Что такое Конденсаторный асинхронный двигатель?
- Конденсаторный асинхронный двигатель
- 1) Асинхронный электродвигатель, питаемый от однофазной сети и имеющий на статоре две обмотки, одна из которых включается в сеть непосредственно, а другая — последовательно с электрическим конденсатором для образования вращающегося магнитного поля. Конденсаторы создают сдвиг фаз между токами обмоток, оси которых сдвинуты в пространстве. Наибольший вращающий момент развивается, когда сдвиг фаз токов составляет 90°, а их амплитуды подобраны так, что вращающееся поле становится круговым. При пуске К. а. д. оба конденсатора включены, а после его разгона один из конденсаторов отключают; это обусловлено тем, что при номинальной частоте вращения требуется значительно меньшая емкость, чем при пуске. К. а. д. по пусковым и рабочим характеристикам близок к трёхфазному асинхронному двигателю. Применяется в электроприводах малой мощности; при мощностях свыше 1
Рис. 1. Схема (а) и векторная диаграмма (б) конденсаторного асинхронного двигателя: U, UБ, UC — напряжения; IA, IБ — токи; А и Б — обмотки статора; В — центробежный выключатель для отключения С1 после разгона двигателя; C1 и C2 — конденсаторы.
Рис. 2. Схема включения в однофазную сеть трёхфазного асинхронного двигателя с обмотками статора, соединёнными по схеме «звезда» (а) или «треугольник» (б): B1 и В2 — выключатели; Ср — рабочий конденсатор; Cп
Большая советская энциклопедия. — М.: Советская энциклопедия. 1969—1978.
- Конденсаторные масла
- Конденсаторный микрофон
Смотреть что такое «Конденсаторный асинхронный двигатель» в других словарях:
конденсаторный асинхронный двигатель — конденсаторный двигатель Двигатель с расщепленной фазой, у которого в цепь вспомогательной обмотки постоянно включен конденсатор. [ГОСТ 27471 87] Тематики машины электрические вращающиеся в целом Синонимы конденсаторный двигатель … Справочник технического переводчика
конденсаторный двигатель — Однофазный асинхронный двигатель, снабженный вспомогательной обмоткой, в цепь которой включается емкость … Политехнический терминологический толковый словарь
Двигатель — У этого термина существуют и другие значения, см. Двигатель (значения). Двигатель, мотор (от лат. motor приводящий в движение) устройство, преобразующее какой либо вид энергии в механическую. Этот термин используется с конца XIX века… … Википедия
Двухфазный двигатель — Двухфазный двигатель электрический двигатель с двумя обмотками, сдвинутыми в пространстве на 90°. При подаче на двигатель двухфазного напряжения, сдвинутого по фазе на 90°, образуется вращающееся магнитное поле. Короткозамкнутый ротор… … Википедия
Однофазный двигатель — электродвигатель, конструктивно предназначенный для подключения к однофазной сети переменного тока. Фактически является двухфазным, но вследствие того, что рабочей является только одна обмотка, двигатель называют однофазным. Однофазный… … Википедия
Трёхфазный двигатель — Трёхфазный синхронный двигатель Трёхфазный двигатель электродвигатель, который конструктивно предназначен для питания от трехфазной сети переменного тока. Представляет собой машину переменного тока, состоящую из статора с тремя обмотками,… … Википедия
Электрический двигатель — Основная статья: Электрическая машина Электродвигатели разной мощности (750 Вт, 25 Вт, к CD плееру, к игрушке, к дисководу). Батарейка «Крона» дана для сравнения Электрический двигатель … Википедия
Линейный двигатель
— Лабораторный синхронный линейный двигатель. На заднем плане статор ряд индукционных катушек, на переднем плане подвижный вторичный элемент, содержащий постоянный магнит … ВикипедияПеременного тока электродвигатель — машина переменного тока, предназначенная для работы в режиме двигателя (см. Переменного тока машина). П. т. э. подразделяют на синхронные и асинхронные. Синхронные электродвигатели (См. Синхронный электродвигатель) применяют в… … Большая советская энциклопедия
Схема однофазного двигателя с конденсатором
Главная » Блог » Схема однофазного двигателя с конденсаторомПодключение однофазного конденсаторного двигателя
Здравствуйте, уважаемые читатели и гости сайта http://zametkielectrika.ru. Несколько дней назад ко мне обратился один из моих читателей с просьбой о подключении однофазного двигателя серии АИРЕ 80С2.- мощность 2,2 (кВт)
- частота вращения 3000 об/мин
- КПД 76%
- cosφ = 0,9
- режим работы S1
- напряжение сети 220 (В)
- степень защиты IP54
- емкость рабочего конденсатора 50 (мкФ)
- напряжение рабочего конденсатора 450 (В)
В данной статье габаритные и установочные размеры однофазного двигателя АИРЕ 80С2 я приводить не буду. Их можно найти в паспорте на этот двигатель. Давайте лучше перейдем к его подключению.
Асинхронный конденсаторный однофазный двигатель состоит из двух одинаковых обмоток, которые сдвинуты в пространстве относительно друг друга на 90 электрических градусов:
Главную обмотку такого двигателя подключают непосредственно в однофазную сеть. Вспомогательную обмотку подключают в эту же сеть, но только через рабочий конденсатор.
На этом этапе многие электрики путаются и ошибаются, потому что в обычном асинхронном однофазном двигателе вспомогательную обмотку после пуска нужно отключать. Здесь же вспомогательная обмотка всегда находится под напряжением, т.е. в работе. Это значит, что конденсаторный однофазный двигатель имеет вращающуюся магнитодвижущую силу (МДС) на протяжении всего рабочего процесса. Вот поэтому он по своим характеристикам практически не уступает трехфазным. Но тем не менее недостатки у него имеются:Для нашего однофазного двигателя АИРЕ 80С2 емкость рабочего конденсатора уже известна (из паспорта), и она составляет 50 (мкФ). Вообще то можно и самостоятельно рассчитать емкость рабочего конденсатора, но формула эта достаточно сложная, поэтому я ее Вам приводить не буду.
Если по условиям пуска однофазного двигателя требуется более высокий момент, то параллельно рабочему конденсатору на время пуска необходимо подключить пусковой конденсатор, емкость которого выбирают опытным путем для получения наибольшего пускового момента. По опыту могу сказать, что емкость пускового конденсатора можно взять в 2-3 раза больше рабочего.
Вот пример подключения однофазного конденсаторного двигателя с тяжелым пуском:
Забыл сказать о роторах.
Чаще всего роторы однофазных двигателей выполняются короткозамкнутыми. Более подробно о короткозамкнутых роторах я рассказывал в статье про устройство асинхронных двигателей. Ну вот мы добрались и до схемы подключения конденсаторного двигателя. На клеммнике такого двигателя расположены 6 выводов:Эти вывода подключены к обмоткам двигателя в следующем порядке:
Вот так выглядит клеммник с выводами двигателя АИРЕ 80С2:
Чтобы подключить двигатель в прямом направлении, нужно подать переменное напряжение ~220 (В) на клеммы W2 и V1, а перемычки поставить, как показано на картинке ниже, т.е. между клемм U1-W2 и V1-U2.
countrydreams18. blogspot.com
Как определить рабочую и пусковую обмотки у однофазного двигателя
Однофазные двигатели — это электрические машины небольшой мощности. В магнитопроводе однофазных двигателей находится двухфазная обмотка, состоящая из основной и пусковой обмотки.
Две обмотки нужны для того, что бы вызвать вращение ротора однофазного двигателя. Самые распространенные двигатели такого типа можно разделить на две группы: однофазные двигатели с пусковой обмоткой и двигатели с рабочим конденсатором.
У двигателей первого типа пусковая обмотка включается через конденсатор только на момент пуска и после того как двигатель развил нормальную скорость вращения, она отключается от сети. Двигатель продолжает работать с одной рабочей обмоткой. Величина конденсатора обычно указывается на табличке-шильдике двигателя и зависит от его конструктивного исполнения.
У однофазных асинхронных двигателей переменного тока с рабочим конденсатором вспомогательная обмотка включена постоянно через конденсатор. Величина рабочей емкости конденсатора определяется конструктивным исполнением двигателя.
То есть если вспомогательная обмотка однофазного двигателя пусковая, ее подключение будет происходить только на время пуска, а если вспомогательная обмотка конденсаторная, то ее подключение будет происходить через конденсатор, который остается включенным в процессе работы двигателя.
Знать устройство пусковой и рабочей обмоток однофазного двигателя надо обязательно. Пусковая и рабочие обмотки однофазных двигателей отличаются и по сечению провода и по количеству витков. Рабочая обмотка однофазного двигателя всегда имеет сечение провода большее, а следовательно ее сопротивление будет меньше.
Посмотрите на фото наглядно видно, что сечение проводов разное. Обмотка с меньшим сечением и есть пусковая. Замерять сопротивление обмоток можно и стрелочным и цифровым тестерами, а также омметром. Обмотка, у которой сопротивление меньше – есть рабочая.
Рис. 1. Рабочая и пусковая обмотки однофазного двигателя
А теперь несколько примеров, с которыми вы можете столкнуться:
Если у двигателя 4 вывода, то найдя концы обмоток и после замера, вы теперь легко разберетесь в этих четырех проводах, сопротивление меньше – рабочая, сопротивление больше – пусковая. Подключается все просто, на толстые провода подается 220в. И один кончик пусковой обмотки, на один из рабочих. На какой из них разницы нет, направление вращения от этого не зависит. Так же и от того как вы вставите вилку в розетку. Вращение, будет изменятся, от подключения пусковой обмотки, а именно – меняя концы пусковой обмотки.
Следующий пример. Это когда двигатель имеет 3 вывода. Здесь замеры будут выглядеть следующим образом, например – 10 ом, 25 ом, 15 ом. После нескольких измерений найдите кончик, от которого показания, с двумя другими, будут 15 ом и 10 ом. Это и будет, один из сетевых проводов. Кончик, который показывает 10 ом, это тоже сетевой и третий 15 ом будет пусковым, который подключается ко второму сетевому через конденсатор. В этом примере направление вращения, вы уже не измените, какое есть такое и будет. Здесь, чтобы поменять вращение, надо будет добираться до схемы обмотки.
Еще один пример, когда замеры могут показывать 10 ом, 10 ом, 20 ом. Это тоже одна из разновидностей обмоток. Такие, шли на некоторых моделях стиральных машин, да и не только. В этих двигателях, рабочая и пусковая – одинаковые обмотки (по конструкции трехфазных обмоток). Здесь разницы нет, какой у вас будет рабочая, а какая пусковая обмотка. Подключение пусковой обмотки однофазного двигателя, также осуществляется через конденсатор.
Автор: Л. Рыженков
Редактировал А. Повный
electrik.info
Однофазный асинхронный двигатель, схема подключения и запуска
Работа асинхронных электрических двигателей основывается на создании вращающегося магнитного поля, приводящего в движение вал. Ключевым моментом является пространственное и временное смещение обмоток статора по отношению друг к другу. В однофазных асинхронных электродвигателях для создания необходимого сдвига по фазе используется последовательное включение в цепь фазозамещающего элемента, такого как, например, конденсатор.
Содержание:
Отличие от трехфазных двигателей
Использование асинхронных электродвигателей в чистом виде при стандартном подключении возможно только в трехфазных сетях с напряжением в 380 вольт, которые используются, как правило, в промышленности, производственных цехах и других помещениях с мощным оборудованием и большим энергопотреблением. В конструкции таких машин питающие фазы создают на каждой обмотке магнитные поля со смещением по времени и расположению (120˚ относительно друг друга), в результате чего возникает результирующее магнитное поле. Его вращение приводит в движение ротор.
Однако нередко возникает необходимость подключения асинхронного двигателя в однофазную бытовую сеть с напряжением в 220 вольт (например в стиральных машинах). Если для подключения асинхронного двигателя будет использована не трехфазная сеть, а бытовая однофазная (то есть запитать через одну обмотку), он не заработает. Причиной тому переменный синусоидальный ток, протекающий через цепь. Он создает на обмотке пульсирующее поле, которое никак не может вращаться и, соответственно, двигать ротор. Для того, чтобы включить однофазный асинхронный двигатель необходимо:
- добавить на статор еще одну обмотку, расположив ее под 90˚ углом от той, к которой подключена фаза.
- для фазового смещения включить в цепь дополнительной обмотки фазосдвигающий элемент, которым чаще всего служит конденсатор.
Редко для сдвига по фазе создается бифилярная катушка. Для этого несколько витков пусковой обмотки мотаются в обратную сторону. Это лишь один из вариантов бифиляров, которые имеют несколько другую сферу применения, поэтому, чтобы изучить их принцип действия, следует обратиться к отдельной статье.
После подключения двух обмоток такой двигатель с конструкционной точки зрения является двухфазным, однако его принято называть однофазным из-за того что в качестве рабочей выступает лишь одна из них.
Схема подключения коллекторного электродвигателя в 220В Схема подключения однофазного асинхронного двигателя (схема звезда)Как это работает
Пуск двигателя с двумя расположенными подобным образом обмотками приведет к созданию токов на короткозамкнутом роторе и кругового магнитного поля в пространстве двигателя. В результате их взаимодействия между собой ротор приводится в движение. Контроль показателей пускового тока в таких двигателях осуществляется частотным преобразователем.
Несмотря на то, что функцию фаз определяет схема присоединения двигателя к сети, дополнительную обмотку нередко называют пусковой. Это обусловлено особенностью, на которой основывается действие однофазных асинхронных машин – крутящийся вал, имеющий вращающее магнитное поле, находясь во взаимодействии с пульсирующим магнитным полем может работать от одной рабочей фазы. Проще говоря, при некоторых условиях, не подсоединяя вторую фазу через конденсатор, мы могли бы запустить двигатель, раскрутив ротор вручную и поместив в статор. В реальных условиях для этого необходимо запустить двигатель с помощью пусковой обмотки (для смещения по фазе), а потом разорвать цепь, идущую через конденсатор. Несмотря на то, что поле на рабочей фазе пульсирующее, оно движется относительно ротора и, следовательно, наводит электродвижущую силу, свой магнитный поток и силу тока.
Основные схемы подключения
В качестве фазозамещающего элемента для подключения однофазного асинхронного двигателя можно использовать разные электромеханические элементы (катушка индуктивности, активный резистор и др.), однако конденсатор обеспечивает наилучший пусковой эффект, благодаря чему и применяется для этого чаще всего.
однофазный асинхронный двигатель и конденсаторРазличают три основные способа запуска однофазного асинхронного двигателя через:
- рабочий;
- пусковой;
- рабочий и пусковой конденсатор.
В большинстве случаев применяется схема с пусковым конденсатором. Это связано с тем, что она используется как пускатель и работает только во время включения двигателя. Дальнейшее вращение ротора обеспечивается за счет пульсирующего магнитного поля рабочей фазы, как уже было описано в предыдущем абзаце. Для замыкания цепи пусковой цепи зачастую используют реле или кнопку.
Поскольку обмотка пусковой фазы используется кратковременно, она не рассчитана на большие нагрузки, и изготавливается из более тонкой проволоки. Для предотвращения выхода её из строя в конструкцию двигателей включают термореле (размыкает цепь после нагрева до установленной температуры) или центробежный выключатель (отключает пусковую обмотку после разгона вала двигателя).
Таким путем достигаются отличные пусковые характеристики. Однако данная схема обладает одним существенным недостатком – магнитное поле внутри двигателя, подключенного к однофазной сети, имеет не круговую, а эллиптическую форму. Это увеличивает потери при преобразовании электрической энергии в механическую и, как следствие, снижает КПД.
Схема с рабочим конденсатором не предусматривает отключение дополнительной обмотки после запуска и разгона двигателя. В данном случае конденсатор позволяет компенсировать потери энергии, что приводит к закономерному увеличению КПД. Однако в пользу эффективности проходится жертвовать пусковыми характеристиками.
Для работы схемы необходимо подбирать элемент с определенной ёмкостью, рассчитанной с учетом тока нагрузки. Неподходящий по емкости конденсатор приведет к тому, что вращающееся магнитное поле будет принимать эллиптическую форму.
Своеобразной «золотой серединой» является схема подключения с использованием обоих конденсаторов – и пускового, и рабочего. При подключении двигателя таким способом его пусковые и рабочие характеристики принимают средние значения относительно описанных выше схем.
На практике для приборов, требующих создания сильного пускового момента используется первая схема с соответствующим конденсатором, а в обратной ситуации – вторая, с рабочим.
Другие способы
При рассмотрении методов подключения однофазных асинхронных двигателей нельзя обойти внимание два способа, конструктивно отличающихся от схем для подключения через конденсатор.
С экранированными полюсами и расщепленной фазой
В конструкции такого двигателя используется короткозамкнутая дополнительная обмотка, а на статоре присутствуют два полюса. Аксиальный паз делит каждый из них на две несимметричные половины, на меньшей из которых располагается короткозамкнутый виток.
После включения двигателя в электрическую сеть пульсирующий магнитный поток разделяется на 2 части. Одна из них движется через экранированную часть полюса. В результате получается два разнонаправленных потока с отличной от основного поля скоростью вращения. Благодаря индуктивности появляется электродвижущая сила и сдвиг магнитных потоков по фазе и времени.
Витки короткозамкнутой обмотки приводят к существенным потерям энергии, что и является главным недостатком схемы, однако она относительно часто используется в климатических и нагревательных приборах с вентилятором.
С асимметричным магнитопроводом статора
Особенностью двигателей с данной конструкцией заключается в несимметричной форме сердечника, из-за чего появляются явно выраженные полюса. Для работы схемы необходим короткозамкнутый ротор и обмотка в виде беличьей клетки. Характерным отличием этой конструкции является отсутствие необходимости в фазовом смещении. Улучшенный пуск двигателя осуществляется благодаря оснащению его магнитными шунтами.
Среди недостатков этих моделей асинхронных электродвигателей выделяют низкий КПД, слабый пусковой момент, отсутствие реверса и сложность обслуживания магнитных шунтов. Но, несмотря на это, они имеют широкое применение в производстве бытовой техники.
Подбор конденсатора
Перед тем как подключить однофазный электродвигатель, необходимо произвести расчет необходимой ёмкости конденсатора. Это можно сделать самостоятельно или воспользоваться онлайн-калькуляторами. Как правило, для рабочего конденсатора на 1 кВт мощности должно приходиться примерно 0,7-0,8 мкФ емкости, и около 1,7-2 мкФ – для пускового. Стоит отметить, что напряжение последнего должно составлять не менее 400 В. Эта необходимость обусловлена возникновением 300-600 вольтного всплеска напряжения при старте и останове двигателя. Керамический и электролитический конденсатор
Ввиду своих функциональных особенностей однофазные электродвигатели находят широкое применение в бытовой технике: пылесосах, холодильниках, газонокосилках и других приборов, для работы которых достаточно частоты вращения двигателя до 3000 об/мин. Большей скорости, при подключении к стандартной сети с частотой тока в 50 Гц, невозможно. Для развития большей скорости используют коллекторные однофазные двигатели.
Это может быть интересно:tokidet.ru
Подключение электродвигателя через конденсатор
Тема очень востребованная и вызывающая множество вопросов. Для начала разберемся какие бывают асинхронные электродвигатели переменного тока и в каких случаях применяется подключение через конденсаторы. Затем рассмотрим схемы и формулы для выбора конденсаторов.
Двигатели по способу питания делятся на трехфазные и однофазные. Вначале разберемся с подключением через конденсатор трехфазного ЭД.
Коротенько про трехфазные асинхронные электродвигатели
Трехфазные асинхронные электродвигатели получили широкое применение в различных отраслях промышленности, сельского хозяйства, быту. ЭД состоит из статора, ротора, клеммной коробки, щитов с подшипниками, вентилятора и кожуха вентилятора.
Стягивающие шпильки я уже снимать не стал, чтобы добраться до статора с ротором. Но выпирающая часть, на которой сидит вентилятор и есть ротор. Ротор — вращающаяся часть, статор неподвижная (на рисунке его не видно).
Далее посмотрим на клеммник более внимательно. С одной стороны у нас С1-С2-С3, а ниже — С4-С5-С6. Это начала и концы обмоток фаз электродвигателя. У нас имеются три фазы, так как двигатель трехфазный — С1-С4, С2-С5, С3-С6. Также присутствует на фото ржавый болт заземления, он находится в клеммнике сверху слева.
Соединение, которое видно на фотографии называется “звезда”. Я уже писал про звезду и треугольник для трансформаторов — аналогично и для электродвигателей. Сбоку на фотографии я добавил как выглядит схематично звезда для данного электродвигателя и треугольник. Вся разница в расположении перемычек. Их комбинации определяют схему соединения ЭД.
работа трехфазного электродвигателя без одной фазы при постоянной нагрузке
Электродвигатель может работать от однофазной сети и без дополнительных мер и схем. Например, при повреждении одной из фаз. Однако, в данном случае произойдет снижение частоты вращения. Снижение частоты вращения приведет к увеличению скольжения, что в свою очередь вызовет увеличение тока двигателя.
А возрастание тока приведет к нагреву обмоток. При такой ситуации необходимо разгрузить ЭД до 50%. Работа в таком режиме возможна, однако, если двигатель остановится, то повторно пуститься уже не получится.
почему для пуска от однофазной сети используют именно конденсаторы
Повторный пуск не произойдет, так как магнитное поле статора будет пульсирующим и, коротко говоря, из-за направленности определенных векторов в противоположные стороны ротор будет неподвижен. Чтобы двигатель пустился, нам необходимо изменить расположение этих векторов. Для этого и используют элементы, которые сдвигают фазы векторов. Рассмотрим схему, которая реализует эту возможность.
На схеме мы видим, что обмотка разделилась на две ветви — пусковую и рабочую. Пусковая используется с начала пуска до разворота двигателя, затем отключается и используется только рабочая. Для отключения пусковой можно использовать кнопку, например. Нажал и держи пока не развернулся двигатель, а потом отпускай и цепочка разорвана.
Фазосдвигающими элементами могут выступать сопротивления или конденсаторы. Разница в применении тех или иных в форме магнитного поля. И если, говорить проще, то выбирают конденсаторы, так как при одном значении пускового момента, меньший пусковой ток будет при использовании конденсаторов.
А при одинаковых пусковых токах у схем с конденсатором будет больше начальный вращающий момент, то есть движок будет быстрее разгоняться, что несомненно лучше для эксплуатации.
Важно: подключение через конденсаторы производят для двигателей до 1,5кВ. Вычислено, что для более мощных ЭД стоимость емкостных элементов превысит стоимость самого движка, следовательно, их установка является нерентабельной. Хотя, если достать их нахаляву, что в нашем пространстве не редкость, то можно и попробовать.
как подключить электродвигатель через конденсатор
Так как конденсаторы выгоднее во многих смыслах для пуска ЭД, то разберем пару схемок пуска с применением конденсаторов. Для схемы соединения “треугольник” и для схемы соединения “звезда”.
Пусковая ветвь будет использоваться до момента разворота ЭД, рабочая — напротяжении всей работы двигателя.
конденсаторы для запуска электродвигателя
Логично будет далее разобраться, как рассчитать пусковой и рабочий конденсатор для двигателя. Для правильного подбора нам необходимо знать паспортные данные ЭД, или иметь шильду с заводскими значениями.
Существуют различные схемы и в каждой конденсаторы выбираются по своему. Для схем, приведенных выше выбор конденсаторов осуществляется по двум формулам:
схема “звезда”:
Рабочая емкость = 2800*Iном.эд/Uсети
схема “треугольник”:
Рабочая емкость = 4800*Iном/Uсети
Пусковая емкость в обоих случаях принимается равной 2-3 от рабочей.
В формулах выше Iном — это номинальный ток фазы электродвигателя. Если посмотреть на табличку, где через дробь указываются два тока, то это будет меньший из них. Uсети — напряжение питающей сети(~127, ~220). Значит, вычислили мы ёмкость и следующим шагом нам надо знать напряжение на конденсаторе. Для схем приведенных на рисунках выше напряжение на конденсаторе равняется 1,15 от напряжения сети. Но это напряжение переменного тока, а для выбора конденсаторов надо знать напряжение постоянного тока. Тут нам и понадобится небольшая табличка:
Например, напряжение сети ~220, умножаем на 1,15 получаем 253. В таблице смотрим переменка 250 соответствует постоянке 400В для емкости до 2мкФ, или 600В для емкостей 4-10мкФ. Нужно, чтобы номинальное напряжение конденсатора было равно или больше расчетного.
Далее, зная рабочее напряжение и требуемую емкость подбираем конденсаторы по параметрам: типы и нужное количество. Конденсаторы для пусковой цепи порой так и называются — пусковыми.
Вот так, шаг за шагом, мы разобрали как подключить трехфазный асинхронный электродвигатель в однофазную сеть и что для этого необходимо рассчитать и знать. Существуют и другие схемы для подключения двигателя через конденсатор, но эти вопросы рассмотрим в другой раз в другой статье.
pomegerim.ru
Конденсаторный двигатель
- Подробности
- Категория: Электрические машины
Пусковые характеристики при однофазном включении двигателя становятся наиболее благоприятными, когда в качестве пускового элемента используется конденсатор. Для улучшения рабочих характеристик конденсатор определенной емкости оставляют включенным на весь рабочий период.
Асинхронный двигатель, работающий от сети однофазного тока, с конденсатором в его цепи называется конденсаторным.
По теории и расчету конденсаторного двигателя опубликовано значительное число работ в отечественной и иностранной литературе. Еще в 1934 г. один из видных советских ученых — академик В. С. Кулебакич, рассмотрев основные свойства конденсаторного двигателя, указал на широкие возможности его применения в народном хозяйстве и, в частности, выдвинул идею его использования в электрической тяге.
Данные теоретических и экспериментальных исследований конденсаторного двигателя с тремя статорными обмотками и специального исполнения нашли отражение в работах М. Крондля, В. Шуйского, И. М. Эдельмана, Г. Б. Меркина, Н. М. Булаева, В. Е. Розенфельда, М. И. Крайдберга, Б. Н. Тихменева, X. Клауснитцера, О. А. Некрасова, А. Г. Мирера, Ю. С. Чечета, Ф. М. Юферова и др.
Фундаментальные исследования вопросов теории и особенностей различных схем конденсаторного двигателя принадлежат А. И. Адаменко.
Внимание исследователей продолжают занимать вопросы дальнейшего развития методики проектирования и расчета конденсаторных двигателей специального исполнения. Вместе с тем большой интерес вызывает изучение возможностей улучшения эксплуатационных свойств асинхронного двигателя трехфазного тока, работающего в схеме однофазного включения с конденсатором. Сказанное в значительной мере объясняется расширением областей применения конденсаторного двигателя. Каковы же его характерные особенности?
По сравнению со схемой однофазного включения, конденсаторный двигатель развивает большую полезную мощность. Ее значение достигает 65— 85 % номинальной мощности, указанной на щитке. Конденсаторный двигатель как асинхронный короткозамкнутый очень прост по устройству и надежен в работе. Его питание осуществляется от двухпроводной сети.
Ценным свойством конденсаторного двигателя является высокий коэффициент мощности, который может приобретать значения, практически равные единице. В последнем случае двигатель потребляет из сети ток, пропорциональный только активной мощности, так как источником реактивной мощности для него является конденсатор.
Пусковая и рабочая емкости при данном напряжении сети и принятой схеме включения зависят от мощности двигателя. С увеличением мощности они возрастают. Начиная с некоторой мощности, применение конденсаторных двигателей экономически уже не оправдывается из-за относительно высокой стоимости конденсаторов. Предельной мощностью конденсаторного двигателя общего назначения следует принять номинальную мощность 1,5 кВт, обозначенную на щитке.
Таблица 1
Номинальная мощность, кВт | Высота оси вращения, мм | Синхронная частота вращения, об/мин | Степень защиты |
0,09 0,12 0,18 0,25 0,37 0,55 0,75 1,1 1,5 | 50 50 56 56 63 63 71 71 80 | 3000 |
|
0,06 0,09 0,12 0,18 0,25 0,37 0,55 0,75 1,1 1,5 | 50 50 56 56 63 63 71 71 80 80 | 1500 | IP 44 |
0,18 0,25 0,37 0,55 0,75 1,1 | 63 63 71 71 80 80 | 1000 |
|
0,25 0,37 0,55 0,75 1,1 1,5 | 71 80 80 90 90 100 | 750 |
|
Поясним сказанное на примере двигателя серии 4Л в защищенном исполнении с синхронной частотой вращения 1500 об/мин. Стоимость конденсаторов типа К.БГ-МН, образующих рабочую емкость, при мощности двигателя 1 кВт примерно равна стоимости двигателя, т.е. составляет приблизительно 100%. Для мощностей 1,5 и 10 кВт соответственно получаем 140 и 270 % стоимости двигателей.
Мощность от нескольких сотен ватт до 1,5 кВт имеет огромное число асинхронных трехфазных двигателей, применяемых в народном хозяйстве В связи с освоением отечественными заводами технологии изготовления высококачественных конденсаторов становится реальной возможность широкого использования конденсаторных двигателей, особенно в условиях сельскохозяйственного производства.
Шкала номинальных мощностей электродвигателей серии 4А сельскохозяйственного назначения приведена в табл. 1.
Для работы в средах повышенной влажности (птицеводческие помещения, животноводческие фермы) выпускают электродвигатели серии 4А климатического исполнения У2, которые отличаются от двигателей основного исполнения УЗ влагоморозостойкой изоляцией и защитными покрытиями.
Кроме сельскохозяйственных электроустановок конденсаторный двигатель может также найти применение в промышленности и быту для привода механизмов и машин небольшой мощности.
Отличительным элементом конденсаторного двигателя является конденсатор. См. также технические данные конденсаторов, пригодных для использования в цепи конденсаторного двигателя.
Однофазные электродвигатели и их применение в быту | Полезные статьи
Электродвигатели однофазные 220 В являются приводами небольшой мощности (до 2,2 кВт), которые подключаются к однофазной сети переменного тока. Такие электромоторы нашли широкое применение в бытовой сфере. Они могут служить комплектацией к стиральным машинам, вентиляторам, электроинструменту, кухонной и бытовой технике.
Параметры технических характеристик однофазных асинхронных электромоторов уступают трехфазным. Примечательно, что при одинаковых габаритах с трехфазными электродвигателями они уступают в показателе мощности, КПД, перегрузочной способности и частоте вращения на холостом ходу.
Электродвигатели однофазные 220 В также не имеют пускового момента. Их статор обладает двумя обмотками — одной рабочей, которая создает магнитное поле, и второй пусковой, позволяющей получать пусковой момент и использующейся только во время запуска электромотора. У такого электродвигателя одна рабочая фаза. У асинхронного двигателя на роторе отсутствует обмотка, и он считается короткозамкнутым.
Оси обеих обмоток такого электромотора смещены относительно друг друга на 90 градусов. В начале запуска однофазных асинхронных электродвигателей происходит относительное смещение дополнительной фазы. Такая фаза подключается к питающей сети 220 вольт и гарантирует разгон ротора электромотора. При достижении номинальных оборотов ротора однофазного устройства дополнительная фаза отключается и электродвигатель переключается из двухфазного в однофазный режим. Примечательно, что период разгона электромотора не превышает 3 секунд, что характерно для такой конструкции пусковой обмотки электродвигателя.
От трехфазных электромоторов однофазные электродвигатели АИРЕ отличаются одинарной обмоткой, подключающейся в однофазную сеть и занимающей до 65 % объема статора. Примечательно, что частота изменения электромагнитного потока на рабочей обмотке синхронных агрегатов идентична скорости прохождения по ней тока.
Однофазные асинхронные электродвигатели имеют вторичную пусковую обмотку, которая предназначена для передачи вращающего момента и ее подключают через резистор. При необходимости реверсного вращения вала электромоторов используется обратное подключение, которое способствует появлению крутящего момента в противоположном направлении.
Асинхронные однофазные конденсаторные электродвигатели в схеме подключения имеют пусковые конденсаторы, которые востребованы при запуске электромотора для возникновения начального крутящего момента и для кратковременного смещения фазы тока на одну из обмоток сердечника статора. Чтобы повысить КПД таких агрегатов и снизить потребление энергии, для бытовых нужд применяют асинхронные однофазные конденсаторные электродвигатели с двумя обмотками.
Однофазные электродвигатели АИРЕ имеют повышенный КПД, который может доходить до 76 %, и пониженный уровень шума, который достигается за счет применения в их конструкции подшипников повышенной точности и отличной системы вентиляции.
Данные электромоторы нашли широкое применение в бетономешалках, строительном электроинструменте, кухонных многофункциональных комбайнах и сверлильных станках.
Подключение однофазного двигателя: типы, различия, инструкция, подбор
Вначале выясним тип двигателя. Не всегда решим вопрос однозначно. Внешний вид мало говорит, шильдик старого двигателя способен не соответствовать реальной начинке агрегата. Предлагаем кратко рассмотреть, какие асинхронные и коллекторные двигатели выпускает промышленность. Расскажем отличия эксплуатации, ключевых свойств, внешних и внутренних. Обсудим подключение однофазного двигателя к сети переменного тока.
Коллекторные vs асинхронные двигатели
Вопрос – коллекторный двигатель или асинхронный – решаем первоочередно. Процесс несложный. Коллектором называется барабан, разделенный медными секциями, формой близкой прямоугольной, сделанными из меди. Формирует токосъемник, в коллекторных двигателях ротор всегда питается электрическим током. Постоянным, переменным – поле создается приложенным напряжением.
Коллекторный двигатель
Коллекторный двигатель содержит минимум две щетки. Трехфазные встретим редко. Сведения о таких агрегатах описаны литературой середины прошлого века. Применялись коллекторные трехфазные двигатели, регулируя скорость вращения вала в широких пределах. Мотор указанного типа снабжен щетками, медным барабаном, разделенным секциями. Пропустить признак и невооруженным глазом затруднительно. Примеры коллекторных двигателей:
- Пылесос, стиральная машина.
- Болгарка, дрель, электрический ручной инструмент.
Коллекторные двигатели широко используются, обеспечивая сравнительно простой реверс, реализуемый переменой коммутации обмоток. Скорость регулируется изменением угла отсечки питающего напряжения, либо амплитуды. К общим недостаткам коллекторных двигателей относятся:
- Шумность. Трение щетками барабана неспособно происходить бесшумно. При переходе секцией идет искрение. Эффект вызывает помехи радиочастотного диапазона, издается сонм посторонних звуков. Коллекторные двигатели сравнительно шумные. Потрудитесь вспомнить пылесос. Стиральная машина, выполняя режим стирки работает не так громко? Низкие обороты коллекторных двигателей хороши.
- Необходимость обслуживания обуславливается наличием трущихся деталей. Токосъемник чаще загрязнен графитом. Попросту недопустимо, может замкнуть соседние секции. Грязь повышает уровень шума, прочие негативные эффекты.
Все хорошо в меру. Коллекторные двигатели позволят получить заданную мощность (крутящий момент), на старте, после разгона. Сравнительно просто регулировать обороты. Названа причина увлечения бытовой техники коллекторными разновидностями, асинхронные двигатели выступают сердцем оборудования, обладающего повышенными требованиями к уровню звукового давления. Вентиляторы, вытяжки. Серьезные нагрузки потребуют внесения серьезных конструктивных изменений. Повышаются стоимость, размеры, сложность, делая невыгодным изготовление.
Коллекторный двигатель отличается наличием… коллектора. Даже если нельзя увидеть снаружи (скрыт кожухом), заметим непременные графитовые щетки, прижатые пружинками. Деталь требует замены со временем, поможет коллекторный двигатель от асинхронного отличить.
Однофазные и трехфазные д0вигатели асинхронного типа
Договорились – трехфазные коллекторные двигатели достать сложно, текущий раздел речь ведет касательно асинхронных машин. Разновидности перечислим:
- Трехфазные асинхронные двигатели снабжены числом выводов три-шесть рабочих обмоток за вычетом различных предохранителей, внутренних реле, разнообразных датчиков. Катушки статора внутри объединяются звездой, делая невозможным напрямую включение в однофазную сеть.
- Однофазные двигатели, снабженные пусковой обмоткой, помимо прочего снабжаются парой контактов, ведущих к концевому центробежному выключателю. Миниатюрное устройство обрывает цепь, когда вал раскручен. Пусковая обмотка катализирует начальный этап. Дальнейшим действием будет мешать, снижая КПД двигателя. Принято конструкцию называть бифилярной. Пусковая обмотка наматывается двойным проводом, снижая реактивное сопротивление. Помогает уменьшить емкость конденсатора – критично. Ярким примером однофазных двигателей асинхронного типа с пусковой обмоткой выступают компрессоры бытовых холодильников.
- Конденсаторная обмотка, отличаясь от пусковой, работает непрерывно. Двигатели найдем внутри напольных вентиляторов. Конденсатор дает сдвиг фаз 90 градусов, позволяя выбрать направление вращения, поддержать нужную форму электромагнитного поля внутри ротора. Типично на корпусе двигателя конденсатор крепится.
Трехфазные асинхронные двигатели
- Мелкие асинхронные двигатели, применяемые вытяжками, вентиляторами, способны запускаться без конденсатора вовсе. Начальное движение образуется махом лопастей, либо искривлением проводки (бороздок) ротора в нужном направлении.
Научимся, как отличить однофазные двигатели асинхронного типа от трехфазных. В последнем случае внутри всегда имеется три равноценных обмотки. Поэтому можно найти три пары контактов, которые при исследовании тестером дают одинаковое сопротивление. Например, 9 Ом. Если обмотки объединены звездой внутри, выводов с одинаковым сопротивлением будет три. Из них любая пара дает идентичные показания, отображаемые экраном мультиметра. Сопротивление каждый раз равно двум обмоткам.
Поскольку ток должен выходить, иногда трехфазный двигатель имеет вывод нейтрали. Центр звезды, с каждым из трех других проводов дает идентичное сопротивление, вдвое меньшее, нежели демонстрирует попарная прозвонка. Указанные выше симптомы говорят красноречиво: двигатель трёхфазный, теме сегодняшнего разговора чуждый.
Рассматриваемые рубрикой моторы обмоток содержат две. Одна пусковая, либо конденсаторная (вспомогательная). Выводов обычно три-четыре. Отсутствуй украшающий корпус конденсатор, можно попробовать рассуждать, озадачиваясь предназначением контактов следующим образом:
- Выводов четыре штуки – нужно измерить сопротивление. Обычно звонятся попарно. Сопротивление ниже – нашли основную обмотку, подключаемую к сети 230 вольт без конденсатора. Полярность не играет роли, направление вращения задается способом включения вспомогательной обмотки, коммутацией катушек. Проще говоря, осуществите подключение однофазного электродвигателя характерного типа с одной лишь основной обмоткой – в начальный период времени вал стоит стоймя. Куда раскрутишь, туда пойдет вращение. Остерегайтесь производить старт рукой – поломает.
Устройство асинхронного двигателя
- Видим три вывода. Внутри концы катушек соединены, образуя звезду. Подаётся нейтраль (схемный нуль). Касаемо двух других выводов, сопротивление попарное будет наибольшим (равняется обеим обмоткам, включенным последовательно). Самое маленькое значение, как прежде, будет рабочей обмотки, фазу пусковой проходит, минуя конденсатор. Обеспечит сдвиг в нужную сторону. Обычно такой двигатель вращается однонаправленно, нельзя физически изменить полярность включения емкости. Однако существуют сведения (проверим эпюры в другой раз): питая рабочую катушку напряжением через конденсатор, пусковую включив напрямую, выполним реверс. Возможность подключить электродвигатель 3-проводной, реализуя обратное вращение, литературой опускается.
Различение типов однофазных двигателей на практике
Научимся, как отличить бифилярный двигатель от конденсаторного. Следует сказать, разница чисто номинальная. Схема подключения однофазного двигателя схожа. Бифилярная обмотка не предназначена работать постоянно. Будет мешать, снижать КПД. Поэтому обрывается после набора оборотов пускозащитным реле (присуще бытовым холодильникам), либо центробежными выключателями. Считается, пусковая обмотка работает несколько секунд. По общепринятым нормам, обеспечит запуск 30 раз в час длительностью 3 секунды каждый. Дальше витки могут перегреться (сгореть). Причина, ограничивающая нахождение пусковой обмотки под напряжением.
Разница номинальная, но профессионалы отмечают любопытную особенность, по которой судят, находится перед нами бифилярный, либо конденсаторный двигатель. Сопротивление вспомогательной обмотки. Отличается номиналом от рабочей более чем в 2 раза, скорее всего, двигатель бифилярный. Соответственно, обмотка пусковая. Конденсаторный двигатель работает, пользуясь услугами двух катушек. Обе постоянно находятся под напряжением.
Однофазный асинхронный двигатель
Тест нужно проводить осторожно, при отсутствии термопредохранителей, других средств защиты пусковая обмотка может сгореть. Придется вал раскручивать вручную, явно нелегкая задачка. Иногда целесообразно подключение однофазного асинхронного двигателя к однофазной сети выполнить, используя аналогичную схему, как сделано в предшествующем оборудовании. Рядовой холодильник снабжен пускозащитным реле, отдельная тема разговора. Параметры устройства тесно связаны с типом используемого двигателя, взаимная замена возможна далеко не в каждом случае (нарушение простого правила может вызвать поломку).
Упомянем дважды: выводов обмоток может быть три-четыре. Число неинформативно. Допустима пара контактов термопредохранителя. Плюс описанное выше, включая центробежный выключатель. В случае при прозвонке сопротивление либо мало, либо наоборот – фиксируем разрыв. Кстати, не забудьте при определении сопротивления каждый конец катушки пробовать на корпус. Изоляция стандартно не ниже 20 МОм. В противном случае стоит задуматься о наличии пробоя. Также допускаем, что трехфазный двигатель, имеющий внутреннюю коммутацию обмоток по типу звезды, может иметь выход нейтрали на корпус. В этом случае двигатель требует непременного заземления, под которую предусматривается клемма (но более вероятно, что мотор просто вышел из строя из-за пробоя изоляции).
Как подобрать конденсатор для пуска однофазного двигателя
Уже рассказывали, как подобрать конденсатор для пуска трёхфазного двигателя, но методика в нашем случае не годится. Любители рекомендуют произвести попытку входа в так называемый резонанс. При этом потребление агрегата на 9 кВт составит порядка (!) 100 Вт. Это не значит, что вал потянет полную нагрузку, но в холостом режиме потреблением станет минимальным. Как подключить электродвигатель этим способом.
Любители рекомендуют ориентироваться на потребляемый ток. При оптимальном значении емкости мощность станет минимальной. Оценить потребляемый ток можно при помощи китайского мультиметра. А так, подключение однофазного двигателя с пусковой обмоткой выполняют, руководствуясь электрической схемой, указанной на корпусе. Там приведены, например, сведения:
- Цвет кембрика определённой обмотки.
- Электрическая схема коммутации для цепи переменного тока.
- Номинал используемой емкости.
Итак, если брать однофазный асинхронный двигатель, схема подключения чаще указана на корпусе.
Однофазные промышленные электродвигатели 220В от производителя в Киеве – УКРВЕНТ
Представленный в каталоге интернет-магазина «УКРВЕНТ» однофазный асинхронный электродвигатель от производителя широко востребован среди покупателей в Украине. Устройства такого типа с напряжением питания 220 В, которые предлагается заказать на сайте, характеризуются повсеместным использованием. Они находят применение не только в квартирах, домах, на дачах, участках, но и в цехах на производстве.
Характеристики и назначение однофазного промышленного двигателя
Данное устройство достаточно маломощно – ограничивается 2-3 кВт в силу конструктивной специфики и некоторых технических особенностей. Последние выражаются в:
- возможностях электрической проводки;
- ЭДС;
- пусковых токах, формирующихся в обмотке.
Агрегат находит активное применение в сельскохозяйственном, насосном, вентиляционном оборудовании. Двигатели ориентированы на привод разных механизмов, машин и устройств для функционирования от однофазной сети переменного тока.
Можно купить однофазный электродвигатель в одной из двух модификаций, первая из которых выполнена по двухфазной схеме и наделена мощностью трехфазных двигателей, а вторая – по трехфазной схеме, но обладает однофазным включением с утратой мощности на одну ступень. И та, и другая модификация представляет собой конденсаторный двигатель, функционирование которого предполагает систематическое включение рабочего конденсатора. Приводы, пуск которых затруднен, нуждаются во включении пускового конденсатора на этапе пуска.
Устройство однофазного двигателя с пусковой обмоткой
Главными составляющими электродвигателя выступают 2 элемента:
- ротор – вращающийся. Данная обмотка короткозамкнутая, внешне напоминает беличью клетку. Стержни из алюминия либо меди замыкаются с концов кольцами, а участок между стержнями зачастую заливается алюминиевым сплавом. Помимо прочего, ротор общепромышленного однофазного двигателя нередко представлен полым ферромагнитным либо немагнитным цилиндром;
- статор – неподвижный, посредством него формируется магнитное поле для вращения предыдущего элемента. Предполагает наличие двух перпендикулярно расположенных обмоток: основная, или главная, зачастую заполняет собой 2/3 пазов сердечника; пусковая, или вспомогательная – 1/3.
По сути, двигатель можно считать двухфазным, но ввиду наличия только одной рабочей обмотки он именуется однофазным. Недорого купить асинхронный двигатель с напряжением питания 220 В в Киеве можно непосредственно на сайте. Приятная цена и оперативная доставка гарантированы каждому, кто остановит свой выбор на компании «УКРВЕНТ» и захочет купить по-настоящему надежное устройство.
Однофазный конденсаторный асинхронный двигатель — общее применение
Однофазный конденсаторный асинхронный двигатель — общее применение
Cтраница 1
Однофазные конденсаторные асинхронные двигатели общего применения обычно работают в различных условиях эксплуатации в установившемся режиме. В связи с этим, рабочий процесс данного двигателя можно рассматривать как частный случай режима работы управляемого конденсаторного асинхронного двигателя на основе ранее полученных уравнений для токов и вращающих моментов. [1]
Однофазные конденсаторные асинхронные двигатели общего применения обычно работают в различных условиях эксплуатации в установившемся режиме. В связи с этим рабочий процесс данного двигателя можно рассматривать как частный случай режима работы управляемого конденсаторного асинхровного двигателя на основе ранее полученных уравнений для токов и вращающих моментов. [3]
В однофазных конденсаторных асинхронных двигателях общего применения величина активного сопротивления беличьей клетки ротора обычно определяется по условиям допустимой плотности тока в стержнях и ее короткозамыкающих кольцах, как показано в предыдущем случае. [4]
Как известно, в однофазных конденсаторных асинхронных двигателях общего применения с не-явнополюсным статором с пазами в последних располагаются две однофазные обмотки с разным числом витков, взаимно-сдвинутые по окружности статора на половину полюсного деления. Одна из этих обмоток — главная, а другая — вспомогательная, в которую включается конденсатор. В однофазном конденсаторном асинхронном двигателе каждая из этих обмоток занимает по половине общего числа пазов статора. Обычно — это двухслойные петлевые обмотки преимущественно с целым числом пазов, приходящихся на полюс и фазу, и с сокращенным шагом. В некоторых случаях применяется также и однослойная катушечная обмотка. [5]
Как указывалось выше, в однофазных конденсаторных асинхронных двигателях общего применения конденсатор включается во вспомогательную обмотку, а в исполнительных двигателях — в главную обмотку статора. [6]
В связи с этим рассмотренная выше теория рабочего процесса однофазного конденсаторного асинхронного двигателя общего применения с некоторым приближением в принципе может быть использована и для анализа рабочих свойств однофазного асинхронного двигателя с экранированными полюсами. Особенностью здесь является то, что между осями главной и вспомогательной обмоток статора пространственный угол сдвига р меньше 90 эл. [7]
По своему конструктивному исполнению управляемые конденсаторные асинхронные электродвигатели ничем не отличаются от рассмотренных выше однофазных конденсаторных асинхронных двигателей общего применения. Они также имеют неявнополюсный статор с пазами и распределенными в них двумя однофазными обмотками с разным числом витков — главной и вспомогательной или управляющей. Обе эти обмотки взаимно сдвинуты по окружности статора на половину полюсного деления. [8]
По своему конструктивному исполнению управляемые конденсаторные асинхронные двигатели ничем не отличаются от рассмотренных выше однофазных конденсаторных асинхронных двигателей общего применения. [9]
Потери и коэффициент полезного действия однофазного асинхронного двигателя с экранированными полюсами определяются так же, как и для однофазного конденсаторного асинхронного двигателя общего применения, по формулам позиций 62 — 67 гл. [10]
Потери и коэффициент полезного действия однофазного асинхронного двигателя с экранированными полюсами определяются так же, как и для однофазного конденсаторного асинхронного двигателя общего применения, по формулам позиций 62 — 67 главы двадцать третьей. [11]
Как указывалось выше, в однофазных конденсаторных асинхронных двигателях общего применения конденсатор включается во вспомогательную обмотку, а в исполнительных двигателях — в главную обмотку статора. [12]
Толщина этих пакетов по оси вала обычно значительно меньше аналогичной толщины пакета полюса. По устройству этих магнитных шунтов асинхронный двигатель с расщепленными полюсами в некоторой степени приближается к асинхронному двигателю с равномерным воздушным зазором. В связи с этим рассмотренная выше теория рабочего процесса однофазного конденсаторного асинхронного двигателя общего применения с некоторым приближением в принципе может быть использована и для анализа рабочих свойств однофазного асинхронного двигателя с экранированными полюсами. Особенностью здесь является то, что между осями главной и вспомогательной обмоток статора пространственный угол сдвига р меньше 90 эл. [13]
Страницы: 1
Зачем однофазным асинхронным двигателям конденсаторы
Однофазный асинхронный двигатель — популярный двигатель рабочей лошадки с преимуществами дешевизны, надежности и возможности прямого подключения к однофазной сети, что делает их особенно распространенными в домашних условиях коммерческая техника. Однако, в отличие от трехфазных двигателей, они не запускаются автоматически и требуют дополнительной обмотки, приводимой в действие конденсатором, для ускорения с места.
Вращающиеся магнитные поля
Для запуска асинхронного двигателя в статоре должно создаваться вращающееся магнитное поле (RMF), которое вызывает вращение и крутящий момент в роторе.Поскольку статор физически не движется, вращение магнитного поля создается взаимодействием между электромагнитными силами, возникающими в обмотках статора. В трехфазном двигателе, когда на каждую обмотку подается напряжение, которое на 120 градусов не совпадает по фазе с другими обмотками, сумма создаваемых сил представляет собой вектор, который непрерывно вращается. Это означает, что трехфазное питание может вызывать крутящий момент в роторе в состоянии покоя, а трехфазные двигатели могут запускаться самостоятельно без дополнительных компонентов.
Однако однофазный асинхронный двигатель питается от однофазного источника питания, который проходит через единственную обмотку статора. Одна обмотка статора сама по себе не может создать RMF — она просто создает импульсное магнитное поле, состоящее из двух противоположных полей, разнесенных на 180 градусов.
Это создает две проблемы:
Во-первых, двигатель не запускается автоматически, потому что магнитное поле, создаваемое статором, не вращается.
Во-вторых, хотя одна обмотка может приводить в движение двигатель, когда он набирает скорость, она не создает постоянного крутящего момента в роторе во время полного оборота, что приводит к снижению эффективности и производительности.Ротор испытывает максимальный крутящий момент при проскальзывании примерно 10% (разница во вращении ротора и обмотки статора). Следовательно, ротор будет проводить большую часть каждого оборота с очень низким крутящим моментом.
Вспомогательная обмотка
В однофазных асинхронных двигателях для решения этих проблем используется вторая обмотка статора, называемая «вспомогательной обмоткой» или «пусковой обмоткой». Эта обмотка поворачивается на 90 градусов от основной обмотки, и с помощью конденсатор, изменяющий фазу питающего напряжения, на него подается напряжение, которое не совпадает по фазе с напряжением, подаваемым на основную обмотку.Это означает, что взаимодействие между двумя обмотками создает вращающееся магнитное поле, и двигатель может запускаться самостоятельно.
Однофазные асинхронные двигатели используют два конденсатора с разными характеристиками на разных этапах их работы.
Пусковые конденсаторыПусковой конденсатор — это конденсатор, который используется для обеспечения пускового момента двигателя. Это электролитические конденсаторы со значением емкости от 50 мкФ до 1500 мкФ.Они имеют относительно высокие потери и низкий КПД и не рассчитаны на продолжительную работу; их необходимо отключить, как только двигатель наберет скорость, используя центробежный выключатель или какое-либо реле.
Рабочие конденсаторыРабочие конденсаторы используются для сглаживания крутящего момента двигателя во время каждого оборота, повышая эффективность и производительность. Обычно он намного меньше пускового конденсатора, часто менее 60 мкФ, и масляного типа, чтобы уменьшить потери энергии.
ОграниченияДаже с дополнительной вспомогательной обмоткой однофазный асинхронный двигатель имеет несколько ограничений по сравнению с трехфазным двигателем. Фазовый сдвиг, обеспечиваемый рабочим конденсатором, изменяется в зависимости от скорости двигателя, что означает, что эффективность не постоянна, поскольку двигатель изменяет скорость. На КПД также влияет RMF, создаваемый двумя обмотками статора. Это не так близко к идеальному кругу, как трехфазный RMF, а это означает, что крутящий момент все еще значительно изменяется во время каждого оборота, снижая производительность и увеличивая вибрацию.Компоненты, необходимые для самозапуска однофазных асинхронных двигателей, в том числе конденсаторы и центробежный выключатель, обеспечивают возможность теплового и механического износа, что приводит к проблемам при обслуживании.
Для более крупных промышленных приложений, требующих высокой эффективности, работающих в областях, где доступно трехфазное питание, трехфазный двигатель может быть лучше подходящим.
РезюмеОднофазные асинхронные двигатели обычно используются везде, где используется однофазное питание.Когда они оснащены пусковым конденсатором, они могут развивать достаточный пусковой момент для самозапуска, а рабочий конденсатор повышает их эффективность и производительность во время работы.
Основная причина неисправностей однофазного двигателя
Большинство проблем с однофазными двигателями связаны с центробежным выключателем, термовыключателем или конденсатором (-ами). Если проблема в центробежном выключателе, термовыключателе или конденсаторе, двигатель обычно обслуживается и ремонтируется. Однако, если двигателю более 10 лет и он менее 1 л.с., двигатель обычно заменяют.Если мощность мотора меньше 1/8 л.с., его почти всегда заменяют.
Устранение неисправностей однофазных (однофазных) двигателей
Двухфазный двигатель имеет пусковую и рабочую обмотки. Пусковая обмотка автоматически снимается центробежным переключателем при разгоне двигателя. Некоторые электродвигатели с расщепленной фазой также включают термовыключатель, который автоматически выключает электродвигатель при его перегреве. Термовыключатели могут иметь ручной или автоматический сброс. Следует проявлять осторожность с любым двигателем, который имеет автоматический сброс, поскольку двигатель может автоматически перезапуститься в любое время.
Для диагностики двигателя с расщепленной фазой выполните следующую процедуру:
- Отключите питание двигателя. Осмотрите мотор. Замените двигатель, если он сгорел, вал заклинило или есть признаки повреждения.
- Проверьте, управляется ли двигатель термовыключателем. Если термовыключатель ручной, сбросьте термовыключатель и включите двигатель.
- Если двигатель не запускается, используйте вольтметр, например промышленный мультиметр Fluke 87V, для проверки напряжения на клеммах двигателя.Напряжение должно быть в пределах 10% от указанного напряжения двигателя. Если напряжение неправильное, устраните неисправность цепи, ведущей к двигателю. Если напряжение в норме, выключите двигатель, чтобы его можно было проверить.
- Выключите ручку предохранительного выключателя или комбинированного стартера. Заблокируйте и пометьте пусковой механизм в соответствии с политикой компании.
- При выключенном питании подключите Fluke 87V к тем же клеммам двигателя, от которых были отключены подводящие провода питания. Омметр покажет сопротивление пусковой и ходовой обмоток.Поскольку обмотки параллельны, их общее сопротивление меньше, чем сопротивление каждой обмотки в отдельности. Если счетчик показывает ноль, короткое замыкание. Если счетчик показывает бесконечность, имеется обрыв цепи. В любом случае двигатель следует заменить. Примечание. Размер двигателя слишком мал для того, чтобы его ремонт был рентабельным.
- Осмотрите центробежный выключатель на предмет признаков перегорания или поломки пружин. Если присутствуют какие-либо очевидные признаки проблем, отремонтируйте или замените переключатель.Если нет, проверьте переключатель с помощью омметра.
Вручную задействуйте центробежный выключатель. (Концевой колокол на стороне переключателя, возможно, придется удалить.) Если двигатель исправен, сопротивление на омметре уменьшится. Если сопротивление не меняется, проблема существует. Продолжайте проверять, чтобы определить проблему.
Устранение неисправностей конденсаторных двигателей
Конденсаторный двигатель — это двигатель с расщепленной фазой с добавлением одного или двух конденсаторов. Конденсаторы придают двигателю больший пусковой и / или рабочий крутящий момент.Устранение неисправностей конденсаторных двигателей похоже на поиск неисправностей в двигателях с расщепленной фазой. Единственное дополнительное устройство, которое следует учитывать, — это конденсатор.
Конденсаторы имеют ограниченный срок службы и часто являются проблемой конденсаторных двигателей. Конденсаторы могут иметь короткое замыкание, разрыв цепи или могут выйти из строя до такой степени, что их необходимо заменить. Износ может также изменить емкость конденсатора, что может вызвать дополнительные проблемы. При коротком замыкании конденсатора обмотка в двигателе может перегореть.Когда конденсатор выходит из строя или открывается, двигатель имеет плохой пусковой момент. Низкий пусковой крутящий момент может помешать запуску двигателя, что обычно вызывает перегрузки.
Все конденсаторы имеют две проводящие поверхности, разделенные диэлектрическим материалом. Диэлектрический материал — это среда, в которой электрическое поле поддерживается при небольшой подаче внешней энергии или вообще без нее. Это тип материала, используемого для изоляции проводящих поверхностей конденсатора. Конденсаторы бывают масляные или электролитические.Масляные конденсаторы залиты маслом и опломбированы в металлический контейнер. Масло служит диэлектрическим материалом.
Электролитические конденсаторы используются в двигателях чаще, чем масляные. Электролитические конденсаторы образуются путем наматывания двух листов алюминиевой фольги, разделенных кусками тонкой бумаги, пропитанной электролитом. Электролит — это проводящая среда, в которой ток происходит за счет миграции ионов. Электролит используется как диэлектрический материал. Алюминиевая фольга и электролит закрыты картонной или алюминиевой крышкой.Предусмотрено вентиляционное отверстие для предотвращения возможного взрыва в случае короткого замыкания или перегрева конденсатора.
Конденсаторы переменного токаиспользуются с конденсаторными двигателями. Конденсаторы, предназначенные для подключения к сети переменного тока, не имеют полярности.
Для диагностики конденсаторного двигателя выполните следующую процедуру:
- Выключите ручку предохранительного выключателя или комбинированного стартера. Заблокируйте и пометьте пусковой механизм в соответствии с политикой компании.
- Используя Fluke 87V, измерьте напряжение на клеммах двигателя, чтобы убедиться, что питание отключено.
- Конденсаторы расположены на внешней раме двигателя. Снимаем крышку конденсатора. Внимание: хороший конденсатор будет держать заряд даже при отключении питания.
- Осмотрите конденсатор на предмет утечки, трещин или вздутия. Замените конденсатор, если он есть.
- Вынуть конденсатор из цепи и разрядить. Чтобы безопасно разрядить конденсатор, поместите резистор 20 000 Ом, 2 Вт на клеммы на пять секунд.
- После того, как конденсатор разрядится, подключите провода Fluke 87V к клеммам конденсатора.Fluke 87V покажет общее состояние конденсатора. Конденсатор исправен, закорочен или разомкнут.
Настройте Fluke 87V на измерение емкости. Считываемое значение емкости должно находиться в пределах ± 20% от значения, указанного на этикетке конденсатора.
Связанные ресурсы
Однофазные двигатели переменного тока (часть 2)
(продолжение части 1)
ОПРЕДЕЛЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ ДВИГАТЕЛЕЙ РАЗДЕЛЕННОЙ ФАЗЫ
==
FGR.26 Определение направления вращения для двигателя с расщепленной фазой.
==
FGR. 27 А конденсаторный двигатель с конденсаторным запуском.
==
FGR. 28 Конденсаторный пуск Конденсаторный двигатель с дополнительным пуском
конденсатор.
==
FGR. 29 Потенциальные пусковые реле.
==
FGR. 30 Подключение реле потенциала.
==
Направление вращения однофазного двигателя в целом можно определить когда мотор подключен.
Направление вращения определяется обращением к задней или задней части мотор. FGR. 26 показана схема подключения для вращения. Если по часовой стрелке вращение желательно, T5 должен быть соединен с T1. Если вращение против часовой стрелки желательно, T8 (или T6) должен быть подключен к T1. Эта схема подключения Предполагается, что двигатель содержит два набора рабочих и два набора пусковых обмоток. Тип используемого двигателя будет определять фактическое подключение.
Например, FGR.24 показано подключение двигателя с двумя рабочими обмотками. и только одна пусковая намотка. Если бы этот двигатель был подключен по часовой стрелке вращения, клемма T5 должна быть подключена к T1, а клемма T8 должен быть подключен к T2 и T3. Если вращение против часовой стрелки желательно, клемма T8 должна быть подключена к T1, а клемма T5 должен быть подключен к T2 и T3.
КОНДЕНСАТОРНО-ПУСКОВЫЕ МОТОРЫ КОНДЕНСАТОРА
Хотя двигатель с конденсаторным пуском работает от конденсатора, это двигатель с расщепленной фазой, он работает по другому принципу, чем индукционный пуск с сопротивлением. двигатель или асинхронный двигатель с конденсаторным пуском.Конденсатор-пуск, конденсатор-бег двигатель сконструирован таким образом, что его пусковая обмотка остается под напряжением всегда. Конденсатор включен последовательно с обмоткой для обеспечения непрерывный ведущий ток в пусковой обмотке (FGR.27). Поскольку пусковая обмотка все время находится под напряжением, центробежный переключатель не необходимо для отключения пусковой обмотки при приближении двигателя к полной скорости.
Конденсатор, используемый в этом типе двигателя, обычно заполнен маслом. типа, так как он предназначен для постоянного использования.Исключение из этого общего Правило — это небольшие двигатели с дробной мощностью, используемые в реверсивном потолке поклонники. Эти вентиляторы имеют низкое потребление тока и используют электролитический конденсатор переменного тока. чтобы сэкономить место.
Конденсаторный двигатель с конденсаторным пуском на самом деле работает по принципу вращающегося магнитного поля в статоре. Поскольку и запускающие, и пусковые обмотки остаются под напряжением все время, магнитное поле статора продолжает вращаться и двигатель работает как двухфазный двигатель.У этого мотора отличный запуск и рабочий крутящий момент. Он тих в работе и имеет высокий КПД. Поскольку конденсатор все время остается подключенным к цепи, коэффициент мощности двигателя близок к единице.
Хотя конденсаторный двигатель с конденсаторным пуском не требует центробежного выключатель для отключения конденсатора от пусковой обмотки, некоторые двигатели используйте второй конденсатор во время пускового периода, чтобы улучшить пуск крутящий момент (FGR.28).
Хороший пример этого можно найти на компрессоре системы кондиционирования. Блок кондиционирования предназначен для работы от однофазной сети. Если двигатель не герметичен, для отключения используется центробежный выключатель пусковой конденсатор из цепи, когда двигатель достигает примерно 75% номинальной скорости. Однако для герметичных двигателей необходимо использовать некоторые тип внешнего переключателя для отключения пускового конденсатора от цепи.
Двигатель с конденсаторным пуском, работающий от конденсатора, или постоянный разделенный конденсатор двигатель, как его обычно называют в системах кондиционирования и охлаждения промышленность, как правило, использует потенциальное пусковое реле для отключения пусковой конденсатор, когда нельзя использовать центробежный выключатель.Потенциал пусковое реле, FGR. 29A и B, работает, обнаруживая увеличение напряжение, возникающее в пусковой обмотке при работе двигателя. Схема Схема потенциальной цепи пускового реле приведена на FGR. 30. Внутри схемы реле потенциала используется для отключения пускового конденсатора от цепи когда двигатель достигает 75% своей полной скорости. Пусковое реле Катушка SR подключена параллельно пусковой обмотке двигателя.Нормально замкнутый контакт SR включен последовательно с пусковым конденсатором. Когда контакт термостата замыкается, питание подается как на рабочий, так и на рабочий цикл. пусковые обмотки. На этом этапе подключены как пусковой, так и рабочий конденсаторы. в цепи.
Когда ротор начинает вращаться, его магнитное поле индуцирует напряжение в пусковая обмотка, создавая более высокое напряжение на пусковой обмотке чем приложенное напряжение. Когда двигатель разогнался примерно до 75% от на полной скорости, напряжение на пусковой обмотке достаточно высокое, чтобы подать напряжение на катушку реле потенциала.Это вызывает нормально закрытый Контакт SR для размыкания и отключения пускового конденсатора от цепи. Поскольку пусковая обмотка этого двигателя никогда не отключается от линия питания, катушка потенциального пускового реле остается под напряжением пока двигатель работает.
===
FGR. 31 Затененный полюс.
FGR. 32 Затеняющая катушка противодействует изменению магнитного потока при увеличении тока.
FGR.34 Затеняющая катушка препятствует изменению магнитного потока при уменьшении тока.
FGR. 33 Существует противодействие магнитному потоку, когда ток не
меняется.
====
ИНДУКЦИОННЫЕ ДВИГАТЕЛИ С ТЕНЕННЫМИ ПОЛЮСАМИ
Асинхронный двигатель с расщепленными полюсами популярен благодаря своей простоте. и долгая жизнь. Этот двигатель не содержит пусковых обмоток или центробежного переключателя. Он содержит ротор с короткозамкнутым ротором и работает по принципу вращающегося магнитное поле, создаваемое затеняющей катушкой, намотанной на одной стороне каждого полюса кусок.
Двигатели с расщепленными полюсами обычно представляют собой двигатели с дробной мощностью, используемые для приложения с низким крутящим моментом, такие как рабочие вентиляторы и воздуходувки.
ШЕЙДИНГ
Затеняющая катушка намотана на один конец полюсного наконечника (FGR. 31). На самом деле это большая петля из медной проволоки или медной ленты. Два конца соединены, чтобы сформировать полную цепь. Затеняющая катушка действует как трансформатор с закороченной вторичной обмоткой.Когда ток переменного тока форма волны увеличивается от нуля к своему положительному пику, магнитное поле создается в полюсе. Когда магнитные линии потока прорезают затеняющая катушка, в катушке индуцируется напряжение. Поскольку катушка низкая сопротивление короткому замыканию, в контуре протекает большое количество тока. Этот ток вызывает сопротивление изменению магнитного потока (FGR. 32). Пока в затеняющей катушке наведено напряжение, будет противодействие изменению магнитного потока.
Когда переменный ток достигает своего пикового значения, он больше не меняется, и на затеняющую катушку не наведено напряжение. Поскольку нет протекает ток в затеняющей катушке, нет противодействия магнитному поток. Магнитный поток полюсного наконечника теперь однороден по полюсу. лицо (ЛГР. 33).
Когда переменный ток начинает уменьшаться от пикового значения обратно в сторону нуля магнитное поле полюсного наконечника начинает схлопываться.Напряжение снова вводится в затеняющую катушку. Это индуцированное напряжение создает ток, противодействующий изменению магнитного потока (FGR. 34). Это вызывает магнитный поток, который должен быть сосредоточен в заштрихованной части полюса кусок.
Когда переменный ток проходит через ноль и начинает увеличиваться отрицательное направление, происходит тот же набор событий, за исключением того, что полярность магнитного поля обратное. Если бы эти события были просмотрены в быстрый порядок, магнитное поле будет видно, чтобы вращаться поперек лица полюса.
==
FGR. 35 Четырехполюсный асинхронный двигатель с расщепленными полюсами.
==
FGR. 36 Обмотка статора и ротор асинхронного двигателя с экранированными полюсами ..
===
СКОРОСТЬ
Скорость асинхронного двигателя с расщепленными полюсами определяется тем же Факторы, определяющие синхронную скорость других асинхронных двигателей: частота и количество полюсов статора.
Двигатели с расщепленными полюсами обычно имеют четырех- или шестиполюсные двигатели.FGR. 35 показан чертеж четырехполюсного асинхронного двигателя с расщепленными полюсами.
ОБЩИЕ РАБОЧИЕ ХАРАКТЕРИСТИКИ
Двигатель с расщепленными полюсами содержит стандартный ротор с короткозамкнутым ротором. Количество крутящего момента определяется силой магнитного поля статора, напряженности магнитного поля ротора и разность фазовых углов между магнитным потоком ротора и статора. Индукция заштрихованного полюса двигатель имеет низкий пусковой и рабочий крутящий момент.
Направление вращения определяется направлением, в котором вращающееся магнитное поле движется по лицевой стороне полюса. Ротор поворачивается направление показано стрелкой на FGR. 35.
Направление можно изменить, сняв обмотку статора и повернув это вокруг. Однако это не обычная практика. Как правило, Асинхронный двигатель с расщепленными полюсами считается нереверсивным. FGR. 36 показаны обмотка статора и ротор асинхронного двигателя с экранированными полюсами.
==
FGR. 37 Трехскоростной мотор.
==
МНОГОСКОПНЫЕ ДВИГАТЕЛИ
Есть два основных типа многоскоростных однофазных двигателей. Один из них последовательный тип полюса, а другой — запуск конденсатора со специальной обмоткой. конденсаторный двигатель или асинхронный двигатель с экранированными полюсами. Последующий полюс однофазный двигатель работает, реверсируя ток через переменный полюсов и увеличение или уменьшение общего количества полюсов статора.В последующий полюсный двигатель используется там, где необходимо поддерживать высокий крутящий момент на разных скоростях; например, в двухскоростных компрессорах для центрального кондиционеры.
МНОГОСКОРОСТНЫЕ ДВИГАТЕЛИ ВЕНТИЛЯТОРА
Многоскоростные двигатели вентиляторов используются уже много лет. Они вообще намотать от двух до пяти ступеней скорости и задействовать вентиляторы и беличью клетку воздуходувки. Схематический чертеж трехскоростного двигателя показан на FGR. 37. Обратите внимание, что обмотка хода была выбрана для получения низкого, среднего и высокоскоростной.Пусковая обмотка подключена параллельно обмотке хода. раздел. Другой конец провода пусковой обмотки подсоединяется к внешнему маслонаполненный конденсатор. Этот двигатель изменяет скорость, добавляя индуктивность последовательно с ходовой обмоткой. Фактическая рабочая обмотка для этого двигателя между выводами отмечены высокий и общий. Обмотка, показанная между высокий и средний соединены последовательно с обмоткой главного хода.
Когда поворотный переключатель установлен в положение средней скорости, индуктивное сопротивление этой катушки ограничивает количество тока, протекающего через обмотка хода.При уменьшении тока обмотки хода сила его магнитного поля уменьшается, и двигатель производит меньший крутящий момент. Этот вызывает большее скольжение, и скорость двигателя снижается.
Если поворотный переключатель установлен в нижнее положение, индуктивность увеличивается. вставлены последовательно с ходовой обмоткой. Это приводит к меньшему току через обмотку хода и очередное снижение крутящего момента. Когда крутящий момент уменьшается, скорость двигателя снова уменьшается.
Обычные скорости для четырехполюсного двигателя этого типа: 1625, 1500 и 1350. Об / мин. Обратите внимание, что этот двигатель не имеет широких диапазонов между скоростями, поскольку было бы в случае с последующим полюсным двигателем. Большинство асинхронных двигателей перегрев и повреждение обмотки двигателя, если скорость была снижена до этого степень. Однако этот тип двигателя имеет гораздо более высокое сопротивление обмоток. чем у большинства моторов. Ходовые обмотки большинства электродвигателей с расщепленной фазой имеют провод сопротивление от 1 до 4 Ом.Этот двигатель обычно имеет сопротивление От 10 до 15 Ом в обмотке. Это высокий импеданс обмоток что позволяет двигателю работать таким образом без повреждений.
Поскольку этот двигатель предназначен для замедления при добавлении нагрузки, он не работает. используется для работы с нагрузками с высоким крутящим моментом — только с нагрузками с низким крутящим моментом, такими как вентиляторы и воздуходувки.
ОДНОФАЗНЫЕ СИНХРОННЫЕ ДВИГАТЕЛИ
Однофазные синхронные двигатели малы и развивают только дробную часть Лошадиные силы.Они работают по принципу вращающегося магнитного поля. разработан статором с расщепленными полюсами. Хотя они будут работать синхронно скорости, они не требуют постоянного тока возбуждения. Они используются там, где постоянная требуется скорость, например, в часовых двигателях, таймерах и записывающих приборах, и как движущая сила для маленьких вентиляторов, потому что они маленькие и недорогие. для производства. Есть два основных типа синхронных двигателей: Уоррен, или двигатель General Electric, и двигатель Holtz.Эти двигатели также упоминаются как гистерезисные двигатели.
==
FGR. 38 Мотор Уоррена.
==
FGR. 39 Мотор Holtz.
==
FGR. 40 Якорь и щетки универсального двигателя.
==
FGR. 41 Компенсирующая обмотка включена последовательно с последовательным
обмотка возбуждения.
==
УОРРЕН МОТОРС
Двигатель Уоррена состоит из ламинированного сердечника статора и одного катушка.Катушка обычно наматывается для работы на переменном токе 120 В. Ядро содержит две опоры, каждая из которых разделена на две секции.
Половина каждого полюсного наконечника содержит затеняющую катушку для вращения магнитное поле (FGR. 38). Поскольку статор разделен на два полюса, скорость синхронного поля составляет 3600 об / мин при подключении к 60 Гц.
Разница между двигателями Уоррена и Хольца заключается в типе ротора. использовал. Ротор двигателя Уоррена построен путем укладки закаленных стальные пластины на валу ротора.Эти диски имеют высокий гистерезис. потеря. Пластины образуют две поперечины для ротора. Когда питание подключено к двигателю вращающееся магнитное поле индуцирует напряжение в роторе, и создается сильный пусковой крутящий момент, заставляющий ротор ускоряться до почти синхронной скорости. Как только двигатель разгонится до почти синхронного скорости, поток вращающегося магнитного поля следует по пути минимума реактивное сопротивление (магнитное сопротивление) через две поперечины.Это вызывает ротор блокируется синхронно с вращающимся магнитным полем, а двигатель работает со скоростью 3600 об / мин. Эти двигатели часто используются с небольшими зубчатыми передачами. снизить скорость до желаемого уровня.
ДВИГАТЕЛИ HOLTZ
В двигателе Holtz используется ротор другого типа (FGR. 39). Этот ротор вырезан таким образом, чтобы образовалось шесть прорезей. Эти слоты образуют шесть выступающие (выступающие или выступающие) полюса ротора. Обмотка типа «беличья клетка» создается путем вставки металлической планки в нижнюю часть каждого слота.Когда питание подключено к двигателю, обмотка с короткозамкнутым ротором обеспечивает крутящий момент, необходимый для начала вращения ротора. Когда ротор приближается синхронная скорость, выступающие полюса будут синхронизироваться с полюсами поля каждый полупериод. Это обеспечивает скорость ротора 1200 об / мин (одна треть от синхронная скорость) для двигателя.
УНИВЕРСАЛЬНЫЕ ДВИГАТЕЛИ
Универсальный двигатель часто называют двигателем переменного тока. это очень похож на двигатель серии постоянного тока по своей конструкции в том, что он содержит раневая арматура и кисти (FGR.40). Однако универсальный двигатель имеет добавление компенсирующей обмотки. Если был подключен двигатель постоянного тока к переменному току двигатель будет плохо работать по нескольким причинам. Обмотки якоря будут иметь большое индуктивное сопротивление. при подключении к переменному току. Кроме того, полевые столбы большинство машин постоянного тока содержат цельнометаллические полюсные наконечники. Если бы поле было подключено к переменному току большое количество энергии будет потеряно из-за индукции вихревых токов в полюсах. Универсальные двигатели содержат ламинированный сердечник для предотвращения Эта проблема. Компенсирующая обмотка намотана на статор и функционирует для противодействия индуктивному сопротивлению обмотки якоря.
Универсальный двигатель назван так потому, что он может работать от переменного или постоянного тока. Напряжение. При работе от постоянного тока компенсирующая обмотка включен последовательно с последовательной обмоткой возбуждения (FGR. 41).
==
FGR.42 Компенсация проводимости.
==
FGR. 43 Индуктивная компенсация.
==
FGR. 44 Использование поля серии для установки кистей в нейтральной плоскости
должность.
==
ПОДКЛЮЧЕНИЕ КОМПЕНСАЦИОННОЙ ОБМОТКИ ПЕРЕМЕННОГО ТОКА
Когда универсальный двигатель работает от сети переменного тока, компенсирующий обмотку можно подключить двумя способами. Если он подключен последовательно с якорь, как показано на FGR.42, это называется компенсацией проводимости.
Компенсирующая обмотка также может быть подключена путем короткого замыкания ее выводов вместе. как показано в FGR. 43. При таком подключении обмотка действует как закороченная вторичная обмотка трансформатора. Наведенный ток позволяет обмотка должна работать при таком подключении. Эта связь известна как индуктивная компенсация. Индуктивная компенсация не может использоваться, когда двигатель подключен к постоянному току.
НЕЙТРАЛЬНАЯ ПЛОСКОСТЬ
Так как универсальный двигатель содержит намотанный якорь, коллектор и щетки, щетки должны быть установлены в положение нейтральной плоскости. Этот может быть выполнено в универсальном двигателе аналогично настройке нейтральная плоскость машины постоянного тока. При установке щеток на нейтраль положение плоскости в универсальном двигателе, последовательное или компенсирующее можно использовать обмотку. Чтобы установить кисти в нейтральную плоскость, используйте последовательная обмотка (FGR.44), переменный ток подключен к якорю. ведет. К последовательной обмотке подключают вольтметр. Напряжение тогда наносится на арматуру. Затем положение щетки перемещается, пока вольтметр не подключенное к серии поле достигает нулевой позиции. (Нулевая позиция достигается, когда вольтметр достигает своей нижней точки.)
===
FGR. 45: Использование компенсирующей обмотки для установки щеток в нейтральную плоскость
должность.
===
Если компенсирующая обмотка используется для установки нейтральной плоскости, то попеременно на якорь снова подключается ток и подключается вольтметр к компенсационной обмотке (FGR. 45). Затем применяется переменный ток. к якорю, а щетки перемещают до тех пор, пока вольтметр не покажет его максимальное или пиковое напряжение.
РЕГУЛИРОВКА СКОРОСТИ
Регулировка скорости универсального двигателя очень плохая.Поскольку это у серийного двигателя такая же плохая регулировка скорости, как у серийного двигателя постоянного тока. Если универсальный двигатель подключен к малой нагрузке или без нагрузки, его скорость практически неограничен. Этот двигатель нередко эксплуатируется при несколько тысяч оборотов в минуту. Универсальные двигатели используются в количество портативных устройств, отличающихся высокой мощностью и малым весом. необходимы, например, буровые электродвигатели, пилы и пылесосы. Универсальный двигатель способен производить высокую мощность в лошадиных силах для своего размера и веса, потому что его высокой рабочей скорости.
ИЗМЕНЕНИЕ НАПРАВЛЕНИЯ ВРАЩЕНИЯ
Направление вращения универсального двигателя можно изменить в таким же образом, как и изменение направления вращения двигателя постоянного тока. Чтобы изменить направление вращения, измените выводы якоря относительно к полю ведет.
РЕЗЮМЕ
• Не все однофазные двигатели работают по принципу вращающегося магнитного поле.
• Двигатели с разделенной фазой запускаются как двухфазные двигатели, создавая противофазу. условие тока в обмотке хода и тока в пуске обмотка.
• Сопротивление провода в пусковой обмотке пускового резистора. Асинхронный двигатель используется для создания разности фаз между ток в пусковой обмотке и ток в пусковой обмотке.
• В асинхронном двигателе с конденсаторным пуском используется электролитический конденсатор переменного тока. для увеличения разности фаз между пусковым и рабочим током. Это вызывает увеличение пускового момента.
• Максимальный пусковой момент для двигателя с расщепленной фазой достигается, когда Пусковой ток обмотки и ток рабочей обмотки сдвинуты по фазе на 90 ° с друг с другом.
• Большинство асинхронных двигателей с резистивным пуском и индукционные двигатели с конденсаторным пуском. двигатели используют центробежный переключатель для отключения пусковых обмоток, когда двигатель достигает примерно 75% скорости при полной нагрузке.
• Конденсаторный двигатель с конденсаторным пуском работает как двухфазный двигатель. потому что и пусковая, и пусковая обмотки остаются под напряжением во время работы двигателя.
• В большинстве двигателей с конденсаторным пуском, работающих от конденсатора, используется масляный конденсатор переменного тока. соединены последовательно с пусковой обмоткой.
• Конденсатор конденсаторного пускового конденсаторного двигателя помогает исправить коэффициент мощности.
• Асинхронные двигатели с расщепленными полюсами работают по принципу вращающегося магнитное поле.
• Вращающееся магнитное поле асинхронного двигателя с экранированными полюсами создается. размещая затемняющие петли или катушки на одной стороне полюсного наконечника.
• Синхронная скорость возбуждения однофазного двигателя определяется количество полюсов статора и частота приложенного напряжения.
• Последовательные полюсные двигатели используются, когда требуется изменение скорости двигателя. и должен поддерживаться высокий крутящий момент.
• Двигатели многоскоростных вентиляторов состоят из последовательного соединения обмоток. с обмоткой главного хода.
• Двигатели многоскоростных вентиляторов имеют обмотки статора с высоким сопротивлением для предотвращения их от перегрева при уменьшении их скорости.
• Направление вращения двигателей с расщепленной фазой изменяется реверсированием. пусковая обмотка по отношению к ходовой обмотке.
• Двигатели с расщепленными полюсами обычно считаются нереверсивными.
• Существует два типа однофазных синхронных двигателей: Уоррена и Holtz.
• Однофазные синхронные двигатели иногда называют двигателями с гистерезисом.
• Двигатель Уоррена работает со скоростью 3600 об / мин.
• Двигатель Holtz работает со скоростью 1200 об / мин.
• Универсальные двигатели работают от постоянного или переменного тока.
• Универсальные двигатели содержат намотанный якорь и щетки.
• Универсальные двигатели также называются двигателями серии переменного тока.
• Универсальные двигатели имеют компенсирующую обмотку, которая помогает преодолевать индукционные реактивное сопротивление.
• Направление вращения универсального двигателя можно изменить реверсированием. якорь ведет относительно проводов возбуждения.
ВИКТОРИНА
1. Какие три основных типа двигателей с расщепленной фазой?
2.Напряжения в двухфазной системе на сколько градусов не совпадают по фазе. друг с другом?
3. Как подключены пусковая и рабочая обмотки двигателя с расщепленной фазой? по отношению друг к другу?
4. Для обеспечения максимального пускового момента в двигателе с расщепленной фазой, на сколько градусов не совпадает по фазе должны запускаться и запускаться токи обмотки быть друг с другом?
5. В чем преимущество асинхронного двигателя с конденсаторным пуском перед индукционный двигатель с резистивным пуском?
6.В среднем, на сколько градусов не совпадают по фазе друг с другом пусковые и управляющие токи обмотки в асинхронном двигателе с резистивным пуском?
7. Какое устройство используется для отключения пусковых обмоток цепи? в большинстве негерметичных асинхронных двигателей с конденсаторным пуском?
8. Почему двигатель с расщепленной фазой продолжает работать после пусковых обмоток были отключены от цепи?
9. Как можно изменить направление вращения двигателя с расщепленной фазой?
10.Если двигатель с двойным напряжением и расщепленной фазой должен работать от высокого напряжения, как связаны друг с другом ходовые обмотки?
11. При определении направления вращения двигателя с расщепленной фазой, следует ли смотреть на двигатель спереди или сзади?
12. Какой тип двигателя с расщепленной фазой обычно не содержит центробежного выключатель?
13. Каков принцип работы конденсаторно-пускового конденсатора. запустить мотор?
14.Что заставляет магнитное поле вращаться по индукции с заштрихованными полюсами мотор?
15. Как изменить направление вращения асинхронного двигателя с экранированными полюсами? быть изменен?
16. Как изменяется скорость последующего полюсного двигателя?
17. Почему многоскоростной вентиляторный двигатель может работать на более низкой скорости, чем большинство других? асинхронные двигатели без вреда для обмоток двигателя?
18. Какова скорость работы мотора Уоррена?
19.Какая скорость работы мотора Хольца?
20. Почему электродвигатель серии переменного тока часто называют универсальным электродвигателем?
21. Какова функция компенсирующей обмотки?
22. Как изменить направление вращения универсального двигателя?
23. Когда двигатель подключен к постоянному напряжению, как должна компенсировать обмотку подключать? 24. Объясните, как установить положение нейтральной плоскости. кистей, используя поле серии.
25. Объясните, как установить положение нейтральной плоскости с помощью компенсирующего обмотка.
ПРАКТИЧЕСКОЕ ПРИМЕНЕНИЕ:
Вы — подрядчик по электрике, и вас вызвали на дом. установить скважинный насос. Домовладелец купил насос, но делает не знаю как его подключить. Вы открываете крышку клеммной коробки и Обнаружьте, что двигатель имеет 8 выводов, помеченных с T1 по T8. Двигатель должен быть подключен к напряжению 240 В.В настоящее время Т-выводы подключены следующим образом: T1, T3, T5 и T7 соединены вместе; и T2, T4, T6 и Т8 соединены вместе. Линия L1 подключена к группе клемм с T1, а линия L2 подключена к группе клемм с T2. Является нужно ли поменять провода для работы от 240 В? Если да, то как они связаны?
Пуск однофазного двигателя — нарушение напряжения
Основы пуска однофазного двигателя: Однофазный двигатель, подключенный к однофазной сети, не будет вращаться, поскольку обмотки не создают вращающееся магнитное поле.В течение одного полупериода сигнала переменного тока крутящий момент будет создаваться в одном направлении, а затем в противоположном направлении в течение следующего полупериода, тем самым нейтрализуя крутящий момент ротора. Однако двигатель можно повернуть вручную, и он продолжит вращаться в том направлении, в котором был повернут. Это ненадежный способ запуска двигателя. Для запуска двигателя необходимо создать вращающееся магнитное поле. . Есть несколько различных способов реализовать подключение однофазного двигателя, которое приводит к вращающемуся магнитному полю.Их:
* Конденсаторный пуск Мотор
* Навсегда Двигатель с разделенным конденсатором
* Конденсаторный пусковой конденсаторный двигатель
* Двигатель с разделенной фазой
Конденсаторный пусковой двигательКонденсаторные пусковые двигатели — это однофазные асинхронные двигатели, которые имеют две обмотки — главную обмотку и пусковую обмотку, в которых пусковая обмотка имеет последовательно соединенный конденсатор . Ток, проходящий через пусковую обмотку (с конденсатором), будет иметь разность фазового угла 90 градусов (в идеале) по сравнению с током, протекающим через основную обмотку.Из-за этой разности фаз создается результирующее вращающееся магнитное поле статора, которое вращает ротор. Схема однофазного двигателя с конденсаторным пуском показана ниже.
Конденсаторный пусковой двигательПосле запуска двигателя и достижения желаемой скорости центробежный переключатель, установленный на роторе, размыкает переключатель, тем самым отключая конденсатор от цепи. Такое расположение позволяет использовать конденсатор с кратковременным номиналом и, следовательно, снизить стоимость двигателя.
Конденсаторный пуск двигателя — Диаграмма вектораДвигатели с конденсаторным пуском используются для жестких пусковых нагрузок, таких как компрессоры, конвейеры, насосы и некоторые машины инструменты.
Двигатели с постоянным разделенным конденсаторомДвигатели с постоянным разделенным конденсатором (PSC) имеют две обмотки, которые называются основной и вспомогательной обмотками. Конденсатор постоянно включен последовательно со вспомогательной обмоткой. Основная и вспомогательная обмотки электрически установлены под углом 90 градусов.Кроме того, из-за наличия конденсатора ток, протекающий через вспомогательную обмотку, будет опережать ток в основной обмотке (ток в конденсаторе опережает напряжение). Благодаря этому в статоре создается чистое вращающееся магнитное поле, которое заставляет ротор вращаться.
Паспортная табличка двигателя с постоянным разделенным конденсатором показана выше. В этом случае производитель рекомендует конденсатор емкостью 15 мкФ с номинальным напряжением 370 В переменного тока.
Двигатели с постоянным разделенным конденсатором (PSC) Двигатели с постоянными разделенными конденсаторами (PSC) -Фазовая диаграммаВыбор конденсатора — это компромисс между стоимостью, пусковым моментом и рабочими характеристиками.Двигатели PSC тихие и обладают высоким КПД. Двигатели PSC используются в вентиляторах, нагнетателях в системах отопления и кондиционирования воздуха.
PSC Показан двигатель с подключенным конденсаторомКонденсатор Пусковой Конденсатор Рабочий Двигатель
Сбалансированная двухфазная работа двигателя при пуске и на другой скорости может быть достигнута путем параллельного соединения двух конденсаторов при пуске, в результате чего конденсатор запускает двигатель с пусковым конденсатором. При запуске оба конденсатора будут включены в цепь, и как только скорость достигнет примерно 80%, пусковой конденсатор откроется, и в цепи будет только рабочий конденсатор. Пусковой конденсатор представляет собой большой электролитический конденсатор, а рабочий конденсатор обычно из маслонаполненной бумаги / полимера с низкими потерями и меньшей стоимости. Большой пусковой конденсатор увеличивает пусковой крутящий момент двигателя, а рабочий конденсатор используется для улучшения рабочих характеристик.
Конденсаторные двигатели с двумя номиналами работают тихо, плавно и имеют более высокий КПД.
конденсатор пусковой конденсатор запуск двигателя Электродвигатель с разделенной фазойАсинхронный двигатель с расщепленной фазой имеет две обмотки — основную и пусковую.В пусковой обмотке используются провода меньшего размера (более тонкие), которые имеют более высокое сопротивление и меньшее количество витков (меньшая индуктивность и меньшее соотношение X / R), чем основная обмотка. Это приводит к тому, что ток пусковой обмотки будет больше совпадать по фазе с приложенным напряжением по сравнению с основной обмоткой. Эта разность фаз, которая не является идеальной 90 градусами, а больше около 30 градусов или меньше, достаточна для создания небольшого вращающегося магнитного поля и запуска двигателя. Крутящий момент для таких двигателей будет низким () из-за неидеальной разности фаз между токами обмоток.
Асинхронный двигатель с расщепленной фазойПосле запуска двигателя установленный на роторе центробежный выключатель отключает пусковую обмотку, и двигатель продолжает работать на основной обмотке. Пусковой ток для такого двигателя обычно выше, чем у конденсаторного пускового двигателя, а рабочие характеристики такие же хорошие, как у других типов однофазных пускателей.
Схема мотор-вектор с расщепленной фазойАсинхронные двигатели с расщепленной фазой используются для запуска легко запускаемых нагрузок, таких как вентиляторы, пилы и т. Д.
Дополнительная информация : Калькулятор двигателя, Калькулятор пускового тока двигателя
Однофазные электродвигатели: характеристики и применение
Там, где трехфазное питание недоступно или непрактично, на помощь приходят однофазные двигатели. Хотя им не хватает более высокого КПД, чем у их трехфазных собратьев, однофазные двигатели — правильного размера и номинала — могут прослужить весь срок службы при минимальном техническом обслуживании.
Иногда производственный брак может привести к преждевременному отказу двигателя.Однако большинство отказов происходит из-за неправильного применения. Обратите особое внимание на требования к применению, прежде чем выбирать двигатель для замены вышедшего из строя или для новой конструкции. Неправильный выбор типа двигателя и мощности может привести к повторному отказу двигателя и простоям оборудования. Очевидно, что вы не хотите указывать двигатель слишком маленького размера для приложения, что приведет к электрическим напряжениям, вызывающим преждевременный отказ двигателя. Но также не следует указывать двигатель слишком мощным — либо из-за его мощности, либо из-за присущих ему конструктивных характеристик.Это также может иметь серьезные последствия. Например, двигатель с высоким заторможенным ротором и крутящим моментом пробоя может повредить оборудование, которым он управляет. Кроме того, работа двигателя при нагрузке ниже полной номинальной неэффективна, так как вы тратите деньги на потерю мощности.
Ключ: во-первых, выберите двигатель в соответствии с приложением, но, что не менее важно, необходимо понимать характеристики основных типов однофазных двигателей — характеристики, которые лежат в основе согласования двигателя с применением.
Как правило, многофазный двигатель с короткозамкнутым ротором переменного тока, подключенный к многофазной линии, развивает пусковой крутящий момент.Двигатель с короткозамкнутым ротором, подключенный к однофазной сети, не развивает пусковой крутящий момент, но, будучи запущен каким-либо внешним способом, он работает примерно как многофазный двигатель. Многие типы однофазных двигателей различаются в основном способами их запуска.
Двухфазный
Электродвигатель с расщепленной фазой, также называемый электродвигателем с индукционным пуском / электродвигателем с асинхронным двигателем, вероятно, является самым простым однофазным электродвигателем, предназначенным для промышленного использования, хотя и с некоторыми ограничениями. Он имеет две обмотки: пусковую и главную, Рисунок 1 .Пусковая обмотка сделана из провода меньшего калибра и с меньшим количеством витков относительно основной обмотки, чтобы создать большее сопротивление, таким образом, поле пусковой обмотки находится под другим электрическим углом, чем у основной обмотки, и заставляет двигатель вращаться. Основная обмотка из более толстого провода обеспечивает работу двигателя в остальное время.
Двигатель с расщепленной фазой использует механизм переключения, который отключает пусковую обмотку от основной обмотки, когда двигатель достигает примерно 75% номинальной скорости.В большинстве случаев это центробежный выключатель на валу двигателя.
Простая конструкция электродвигателя с расщепленной фазой обычно делает его менее дорогим, чем другие типы однофазных электродвигателей для промышленного использования. Однако это также ограничивает производительность. Пусковой крутящий момент низкий, обычно от 100 до 175% от номинальной нагрузки. Кроме того, двигатель развивает высокий пусковой ток, примерно от 700 до 1000% от номинального. Следовательно, продолжительное время пуска приводит к перегреву пусковой обмотки и выходу ее из строя; поэтому не используйте этот двигатель, если вам нужен высокий пусковой момент.
Другие характеристики двигателя с расщепленной фазой: Максимальный рабочий крутящий момент составляет от 250 до 350% от нормального. Кроме того, тепловая защита затруднена, потому что высокий ток заторможенного ротора по сравнению с рабочим током затрудняет поиск предохранителя с достаточно коротким временем срабатывания, чтобы предотвратить перегорание пусковой обмотки. И эти двигатели обычно рассчитаны на одно напряжение, что ограничивает гибкость применения.
Хорошее применение для электродвигателей с расщепленной фазой включает небольшие измельчители, небольшие вентиляторы и нагнетатели, а также другие приложения с низким пусковым моментом и потребляемой мощностью от 1/20 до 1/3 л.с.Избегайте применений, требующих высокой частоты цикла или высокого крутящего момента.
Конденсаторный пуск / индукционный пуск
Вот настоящий двигатель широкого применения для промышленных условий. Думайте об этом как о двигателе с расщепленной фазой, но с усиленной пусковой обмоткой, которая включает в себя конденсатор в цепи для обеспечения пускового «наддува», Рисунок 2 . Как и двигатель с расщепленной фазой, двигатель с конденсаторным пуском также имеет пусковой механизм — механический или твердотельный электронный переключатель. Это отключает не только пусковую обмотку, но и конденсатор, когда двигатель достигает примерно 75% номинальной скорости.
Двигатели с конденсаторным пуском / асинхронные двигатели имеют ряд преимуществ перед двигателями с расщепленной фазой. Конденсатор включен последовательно с пусковой цепью, поэтому он создает больший пусковой крутящий момент, обычно от 200 до 400% от номинальной нагрузки. А пусковой ток, обычно от 450 до 575% от номинального, намного ниже, чем у разделенной фазы из-за большего диаметра провода в пусковой цепи. Это обеспечивает более высокую продолжительность цикла и надежную тепловую защиту.
Двигатель с запуском от конденсатора / индукционным пуском дороже, чем сопоставимый двигатель с расщепленной фазой, из-за дополнительной стоимости пускового конденсатора.Но область применения намного шире из-за более высокого пускового момента и меньшего пускового тока. Используйте двигатели в широком диапазоне приложений с ременным приводом, таких как небольшие конвейеры, большие нагнетатели и насосы, а также во многих приложениях с прямым или редукторным приводом. Это рабочие лошадки промышленных двигателей общего назначения.
Конденсатор постоянный разделенный
Двигатель с постоянным разделенным конденсатором (PSC), Рис. 3 , не имеет ни пускового переключателя, ни конденсатора, предназначенного исключительно для запуска.Вместо этого он имеет рабочий конденсатор, постоянно включенный последовательно с пусковой обмоткой. Это делает пусковую обмотку вспомогательной обмоткой, когда двигатель достигает рабочей скорости. Поскольку рабочий конденсатор должен быть рассчитан на непрерывное использование, он не может обеспечить пусковой импульс пускового конденсатора. Типичный пусковой крутящий момент двигателей PSC низкий, от 30 до 150% от номинальной нагрузки, поэтому эти двигатели не предназначены для применения в условиях трудностей пуска. Однако, в отличие от двигателей с расщепленной фазой, двигатели PSC имеют низкий пусковой ток, обычно менее 200% от номинального тока нагрузки, что делает их идеальными для приложений с высокой частотой цикла.Момент пробоя варьируется в зависимости от типа конструкции и области применения, хотя обычно он несколько ниже, чем у двигателя с капстартом.
ДвигателиPSC имеют несколько преимуществ. Им не нужен пусковой механизм, поэтому их можно легко реверсировать. Конструкции можно легко изменить для использования с регуляторами скорости. Они также могут быть разработаны для обеспечения оптимального КПД и высокого коэффициента мощности при номинальной нагрузке. И они считаются самыми надежными из однофазных двигателей, в основном потому, что не требуется пусковой выключатель.
Двигатели с постоянными разделенными конденсаторами имеют широкий спектр применения в зависимости от конструкции. К ним относятся вентиляторы, воздуходувки с низким начальным крутящим моментом и устройства с прерывистой цикличностью, такие как регулирующие механизмы, приводы ворот и устройства открывания гаражных ворот, многие из которых также нуждаются в мгновенном реверсировании.
Конденсаторный пуск / конденсаторная работа Этот тип, , рис. 4 , сочетает в себе лучшее из конденсаторного двигателя / асинхронного двигателя и двигателя с постоянным разделением конденсаторов. В нем есть пусковой конденсатор, включенный последовательно со вспомогательной обмоткой, как у конденсаторного пускового двигателя, для высокого пускового момента.И, как и двигатель PSC, он также имеет рабочий конденсатор, который включен последовательно со вспомогательной обмоткой после того, как пусковой конденсатор отключен от цепи. Это допускает высокий момент пробоя или перегрузки.
Еще одно преимущество двигателя с конденсаторным пуском / конденсаторным запуском: он может быть рассчитан на более низкий ток полной нагрузки и более высокий КПД. Среди прочего, это означает, что он работает при более низкой температуре, чем другие типы однофазных двигателей сопоставимой мощности.
Единственным недостатком двигателя с запуском от капсюля / запуском по капле является его более высокая цена — в основном из-за большего количества конденсаторов и пускового выключателя.Но это электростанция, способная справляться с приложениями, слишком требовательными для любого другого типа однофазного двигателя. К ним относятся деревообрабатывающее оборудование, воздушные компрессоры, водяные насосы высокого давления, вакуумные насосы и другие приложения с высоким крутящим моментом, требующие от 1 до 10 л.с.
Шестигранник
В отличие от всех рассмотренных выше типов однофазных двигателей, двигатели с расщепленными полюсами имеют только одну главную обмотку и не имеют пусковой обмотки, Рисунок 5 . Запуск осуществляется с помощью конструкции, в которой непрерывная медная петля огибает небольшую часть каждого полюса двигателя.Это «затеняет» эту часть полюса, заставляя магнитное поле в кольцевой области отставать от поля в неокрашенной части. Реакция двух полей заставляет вал вращаться.
Поскольку электродвигатель с экранированными полюсами не имеет пусковой обмотки, пускового переключателя или конденсатора, он электрически прост и недорог. Кроме того, скорость можно регулировать просто путем изменения напряжения или с помощью многоточечной обмотки. С механической точки зрения конструкция двигателя с расщепленными полюсами позволяет производить крупносерийное производство. Фактически, это обычно считается «одноразовыми» двигателями — их намного дешевле заменить, чем ремонтировать.
Двигатель с расщепленными полюсами имеет много положительных характеристик, но также имеет ряд недостатков. Его низкий пусковой крутящий момент обычно составляет от 25 до 75% крутящего момента при полной нагрузке. Это двигатель с высоким скольжением, скорость вращения которого на 7-10% ниже синхронной скорости. Кроме того, он очень неэффективен, обычно ниже 20%.
Низкая начальная стоимость подходит для двигателей с расщепленными полюсами для маломощных или легких условий эксплуатации. Возможно, наиболее часто они используются в многоскоростных вентиляторах для домашнего использования. Но низкий крутящий момент, низкая эффективность и менее прочные механические характеристики делают двигатели с экранированными полюсами непрактичными для большинства промышленных или коммерческих применений, где нормой является более высокая частота цикла или непрерывная работа.
Приведенная выше информация содержит рекомендации по определению правильного типа двигателя для вашего приложения. Однако есть особые случаи и приложения, в которых допустимо отклонение от этих рекомендаций. Обязательно обратитесь к производителю двигателя за технической поддержкой в этих областях.
КонденсаторыПусковой конденсатор. Электролитический пусковой конденсатор помогает двигателю достичь наиболее выгодных фазовых углов между пусковой и главной обмотками для достижения максимального крутящего момента заторможенного ротора на каждый ампер заторможенного ротора.Он отключается от цепи пуска, когда двигатель достигает примерно 75% скорости полной нагрузки. Пусковой конденсатор рассчитан на кратковременный режим работы. Продолжительное приложение напряжения к конденсатору приведет к преждевременному выходу из строя, если не немедленному разрушению. Типичные характеристики пусковых конденсаторов двигателя находятся в диапазоне от 100 до 1000 микрофарад (мкФ) и от 115 до 125 В переменного тока. Однако для специальных приложений требуются конденсаторы на напряжение от 165 до 250 В переменного тока, которые физически больше, чем конденсаторы с более низким номинальным напряжением при той же емкости.Емкость — это мера того, сколько заряда может хранить конденсатор по отношению к приложенному напряжению. Рабочий конденсатор. Конструкция аналогична пусковым конденсаторам, за исключением электролита. Они предназначены для непрерывной работы в цепи запуска конденсаторного двигателя / двигателя с конденсаторным питанием. Они выдерживают более высокие напряжения в диапазоне от 250 до 370 В переменного тока. У них также меньшая емкость, обычно менее 65 мкФ. |
Кевин Хейнеке — инженер-электрик в группе двигателей переменного тока Leeson Electric Corp., Графтон, Висконсин. Он проработал в Лисоне 8 лет и имеет степень инженера-электрика в Инженерной школе Милуоки, а также степень младшего специалиста по электромеханической технологии в Техническом колледже Морейн Парк.
Статьи по теме
Двигатели и приводы
Типы двигателей | Бэй Мотор Продактс
Двигатель с экранированными полюсами
Двигатели с экранированными полюсами являются оригинальным типом однофазных асинхронных двигателей переменного тока. Также называется однофазным асинхронным двигателем, просто подключив его к одной линии напряжения, и для его вращения требуется внешний конденсатор.Различные типы однофазных асинхронных двигателей различаются в зависимости от метода их запуска. Четыре основных типа — это разделенная фаза, конденсаторный запуск, постоянный разделенный конденсатор и конденсаторный запуск / работа конденсатора.
Электродвигатель с расщепленной фазой
Двигатель с расщепленной фазой использует переключающее устройство для отключения пусковой обмотки, когда двигатель достигает 75% своей номинальной скорости. Хотя этот тип имеет простую конструкцию, что делает его менее дорогим для коммерческого использования, он также имеет низкие пусковые моменты и высокие пусковые токи.
Конденсаторный пусковой двигатель
Конденсаторный пусковой двигатель — это конденсаторный двигатель с расщепленной фазой, в котором конденсатор включен последовательно с пусковой обмоткой для создания большего пускового момента. Этот двигатель более дорогой из-за требуемых коммутационных и конденсаторных компонентов.
Постоянный разделенный конденсатор
Двигатель с постоянным разделенным конденсатором не имеет пускового переключателя. Для этого типа конденсатор постоянно подключен к обмотке пускателя. Поскольку для этого требуется конденсатор для непрерывного использования, он не обеспечивает пусковую мощность, поэтому пусковые моменты обычно малы.Эти двигатели не будут работать при высоких пусковых нагрузках. Однако они имеют низкие пусковые токи, более тихую работу и более высокий срок службы / надежность, что делает их хорошим выбором для высоких циклов. Они также являются наиболее надежными конденсаторными двигателями из-за отсутствия пускового переключателя. Различные конструкции обеспечивают более высокий КПД и коэффициент мощности при номинальных нагрузках.
Конденсаторный пуск / Конденсаторный двигатель
Конденсаторный пусковой / конденсаторный двигатель имеет как пусковой, так и пусковой конденсатор в цепи.После достижения полного пуска пусковой конденсатор отключается. Этот тип двигателя имеет более высокий пусковой ток, меньшие токи нагрузки и более высокий КПД. Недостатком является стоимость двух конденсаторов и переключающего устройства. Надежность также играет важную роль в механизме переключения.
Технология
Для сравнения, эти типы асинхронных двигателей с разделенным сопротивлением обеспечивают пусковой крутящий момент от низкого до среднего, и это ограничивает их применениями с низкой мощностью, для которых они лучше всего подходят.В этих двигателях используется одна вспомогательная обмотка меньшего размера, чем обычно, что создает более низкую скорость индукции и гораздо более высокое сопротивление, чем в других типах. Такие простые модели можно использовать только при низкой нагрузке и небольшом пусковом приводе.
Для некоторых применений, таких как небольшие вентиляторы, шлифовальные машины и нагреватели, не требуются более высокие пусковые моменты, но в большинстве случаев, чем больше крутящий момент при запуске двигателя, тем большую нагрузку можно приложить к машине. Однофазный двигатель с высоким пусковым крутящим моментом часто бывает дороже, чем более простые двигатели с разделенной индукцией.Однако разница в мощности может окупиться для разных промышленных нужд. От однофазного двигателя с высоким пусковым моментом можно ожидать другого уровня производительности, это может сэкономить время и энергию.
Переменные токи, протекающие в однофазном двигателе, одновременно достигают своих пиковых значений; это составляет одну единственную фазу. В трехфазных системах пиковые значения тока достигаются последовательно, в три отдельных этапа. По сравнению с трехфазными системами, эти двигатели не обладают таким же высоким КПД, но могут работать бесконечно долго при минимальном техническом обслуживании.
Электродвигатели асинхронныеимеют разные классификации в зависимости от источника электроэнергии и типа конструкции. Двигатели асинхронного типа, также называемые асинхронными двигателями, работают на переменном токе (AC), создаваемом электромагнитной индукцией, в отличие от коммутаторов, обычно используемых в других типах двигателей переменного тока. Асинхронные двигатели используются в промышленности, а также в стандартных устройствах, таких как холодильники, стиральные машины, посудомоечные машины и сушилки для одежды.
Электродвигатели индукционного типа были первоначальным двигателем переменного тока, который должен был быть создан; Никола Тесла придумал прототип в 1883 году. Эти асинхронные двигатели имеют очень простую конструкцию и управление по сравнению с современными двигателями переменного тока, но они по-прежнему очень прочные, тихие и долговечные. Асинхронные двигатели отличаются тем, что они используют индуцированный ток в роторе для создания вращательного движения.
Асинхронные двигателисостоят из двух простых частей: статора с медной обмоткой и узла якоря или ротора.Обмотки статора удерживаются в пазах вокруг статора с соблюдением баланса между количеством северных и южных полюсов. Сборка ротора производится в нескольких вариантах: роторы с короткозамкнутым ротором, роторы с контактным кольцом и роторы с твердым сердечником.
Эти двигатели лучше всего подходят для нужд малой мощности и приложений, где было бы неэффективно использовать более мощные механизмы. Многие однофазные двигатели идеально подходят для приложений с низким моментом инерции, в то время как другие спроектированы с учетом требований к высокому пусковому крутящему моменту.
Может ли однофазный двигатель работать без конденсатора?
Ответ:
Существует три распространенных типа однофазных двигателей: конденсаторные двигатели, двигатели с экранированными полюсами и двигатели с расщепленной фазой.
Однофазные двигатели с экранированными полюсами и с расщепленной фазой не требуют для работы конденсатора. В то время как конденсаторные двигатели работают с помощью конденсаторов. Конденсаторные двигатели также бывают разных типов в зависимости от роли конденсатора. Некоторые из них обсуждаются ниже.
Конденсаторный пусковой двигатель
В конденсаторном пусковом двигателе, как также ясно из названия, роль конденсатора заключается в запуске двигателя. Таким образом, конденсатор предназначен для обеспечения начального крутящего момента ротору путем добавления разности фаз к магнитному полю ротора. Если снять конденсатор с такого двигателя, он не начнет вращаться, когда на обмотку статора будет подаваться питание, так как начальный крутящий момент будет отсутствовать. Однако после подачи питания, если кто-то обеспечивает этот первоначальный толчок к ротору вручную с вала внешнего ротора, двигатель начнет работать и будет продолжать работать до тех пор, пока питание не будет подключено к обмотке статора.Опять же, при следующем запуске потребуется внешний толчок для запуска вращения двигателя.
Конденсаторный рабочий двигатель
Этот тип конденсатора двигателя постоянно включен последовательно с пусковой обмоткой и обеспечивает постоянный крутящий момент. Следовательно, этот тип двигателя не сможет работать без конденсатора даже после первоначального нажатия.