Обозначение постоянного и переменного тока: значок напряжения
Когда произносят слово «электричество», один человек представит себе обычную бытовую розетку из дома, а другой – высоковольтную линию электропередач. Более продвинутые вспомнят молнию, батарейки и даже сварочный аппарат. Все эти явления и приборы так или иначе связаны с электричеством, основными характеристиками которого, в соответствии с законом Ома, являются сила тока, напряжение и сопротивление. Ток, в свою очередь, бывает постоянным и переменным. В обозначении двух этих видов на схемах возникает еще больше путаницы, чем при поиске ассоциаций со словом «электричество». В этой статье будет рассказано о том, как обозначается постоянный ток, маркируется переменное напряжения и силы постоянного характера, используемые для обозначения на схемах и чертежах.
Что такое электричество
Появление электричества – это определенная совокупность явлений, которые обусловлены существованием электрических зарядов со знаком «+» и «-», их взаимодействием между собой и возможностью движения.
С точки зрения физики, электричество – это упорядоченное движение положительно и отрицательно заряженных частиц по материалу проводникового типа под действием электрического поля. В качестве частиц выступают ионы, протоны, нейтроны и электроны.
Какое отличие между переменным и постоянным током
Ток – это движение заряженных электронов в определенном направлении. Это перемещение необходимо для того, чтобы бытовые и профессиональные электроприборы могли работать с установленной номинальной мощностью. В домашней розетке ток появляется из электростанции, где кинетическая энергия электронов преобразуется в электрическую.
Электроток постоянного характера – электричество, получаемое из аккумулятора телефона или батарейки. Он называется так, потому что направление движения электронов в нем не меняется. На таком принципе основана работа зарядных устройств: они конвертируют переменное электричество сети в постоянное и в таком виде оно накапливается в аккумуляторных батареях.
Переменный ток – электричество в любой домашней электросети. Он называется так из-за того, что направление движения электронов постоянно меняется. Количество изменений направления задается частотой, которая для домашних сетей в СНГ равно 50 Гц. Это значит, что за одну секунду электроток меняет направление движения целых 50 раз. Напряжение же в сети – это максимальный «напор», который заставляет двигаться электроны.
Обозначение постоянного и переменного токаКак обозначается постоянное и переменное напряжение
Постоянное напряжение или ток обозначаются аббревиатурой DC, что означает Direct current. На схемах и электроприборах принято также указывать постоянное напряжение простой ровной линией (—).
Значок переменного напряжения записывается в виде несколько иной аббревиатуры ( – AC. Если расшифровать, то получится «Alternating current». На клеммах электроприборов и распределительных щитков, а также на схемах она может изображаться как волнистая линия (~).
Важно! Если в сеть рассчитана для пропуска и того, и другого видов электроэнергии, она маркируется как «AC/DC» и обозначается на схеме двойной линией (верхняя линия прямая и сплошная, а нижняя прямая и пунктирная).
Какой значок напряжения
Напряжение означает поток электрических заряженных частиц по проводнику определенного сечения и обычно обозначается как «U». Если напряжение в сети постоянное, то около латинской буквы ставится символ прямой линии или двух линий (верхняя сплошная прямая, а нижняя пунктирная). Для мультиметров и прочих приборов, связанных с измерением напряжения, используют латинскую букву «V», которая обозначает единицу измерения напряжения – Вольт (Volt). Значение линий при этом сохраняется.
Важно! Многие обыватели полагают, что напряжение обозначается как «E», но это не так. «Е» — это электродинамическая сила (ЭДС) источника питания проводника.
Обозначение вида тока на мультиметреТаким образом, маркировка проводов, клемм электроприборов и схем имеет совершенно четкий и понятный характер. Она указывает на силу тока и напряжение, с которыми работает та или иная сеть или прибор. Каждый взрослый человек может научиться читать электротехнические схемы буквально за несколько дней, так как для этого достаточно лишь изучить основные маркировки, а также обозначения постоянного и переменного напряжения.
Обозначение переменки. Переменный электрический ток
Среди видов электрического тока различают:
Постоянный ток:
Обозначение (-) или DC (Direct Current = постоянный ток).
Переменный ток:
Обозначение (~) или AC (Alternating Current = переменный ток).
В случае постоянного тока (-) ток течет в одном направлении. Постоянный ток поставляют, например, сухие батарейки, солнечные батареи и аккумуляторы для приборов с небольшим потреблением электротока. Для электролиза алюминия, при дуговой электросварке и при работе электрифицированных железных дорог требуется постоянный ток большой силы. Он создается с помощью выпрямления переменного тока или с помощью генераторов постоянного тока.
В качестве технического направления тока принято, что он течет от контакта со знаком «+» к контакту со знаком «-».
В случае переменного тока (~) различают однофазный переменный ток, трехфазный переменный ток и высокочастотный ток.
При переменном токе ток постоянно изменяет свою величину и свое направление. В западноевропейской энергосети ток за секунду меняет свое направление 50 раз. Частота изменения колебаний в секунду называется частотой тока.
Переменный ток применяется на стройплощадке и в промышленности для работы электрических машин, например ручных шлифовальных устройств, электродрелей и круговых пил, а также для освещения стройплощадок и оборудования стройплощадок.
Генераторы трехфазного переменного тока вырабатывают на каждой из своих трех намоток переменное напряжение частотой 50 Гц. Этим напряжением можно снабжать три раздельные сети и при этом использовать для прямых и обратных проводников всего шесть проводов. Если объединить обратные проводники, то можно ограничиться только четырьмя проводами
Общим обратным проводом будет нейтральный проводник (N). Как правило, он заземляется. Три другие проводника (внешние проводники) имеют краткое обозначение LI, L2, L3. В единой энергосистеме Германии напряжение между внешним проводником и нейтральным проводником, или землей, составляет 230 В. Напряжение между двумя внешними проводниками, например между L1 и L2, составляет 400 В.
О высокочастотном токе говорят, когда частота колебаний значительно превышает 50 Гц (от 15 кГц до 250 МГц). С помощью высокочастотного тока можно нагревать токопроводящие материалы и даже плавить их, например металлы и некоторые синтетические материалы.
Переменный ток – или AC (Alternating Current ). Обозначение (~).
Электрический ток называется переменным , если он в течение времени меняет свое направление и непрерывно изменяется по величине.
Переменный ток , который используется для подключения бытовых или производственных электрических приборов, изменяется по синусоидальному закону:
i = I m sin(2πft)
График переменного тока
- i – мгновенное значение тока
- Im – амплитудное или наибольшее значение тока
- f – значение частоты переменного тока
- t – время
Широко используется
Распиновка разъемов блока питания: какая линия за что отвечает | Блоки питания компьютера | Блог
Подключение проводов блока питания при сборке ПК — одна из самых серьезных задач, с которой сталкиваются начинающие пользователи. Все слышали фразу «с электричеством шутки плохи», и нужно понимать, что в случае неправильного подключения проводов можно запросто повредить дорогие комплектующие. Чтобы этого не случилось, нужно знать распиновку разъемов БП, максимальную нагрузку на каждый разъем и положение ключей, которые не дают подключить провода неправильно. В этой статье вы найдете всю информацию на эту тему.
Стандарты блоков питания для ПК и их разъемов развиваются уже почти 40 лет — со времен выхода первых компьютеров IBM PC. За это время сменилось несколько стандартов AT и ATX. Казалось бы, все возможные разъемы уже придуманы и ничего нового не требуется, но осенью этого года ожидается выход видеокарт Nvidia GeForce RTX 3000-й серии, который принесет с собой новый, 12-контактный разъем питания. Производители уже стали добавлять в комплекты проводов новых БП коннектор 12-Pin Micro-Fit 3.0. Будет неудивительно, если этот разъем питания дополнит новые стандарты ATX.
Перед тем, как перейти к описанию и распиновке всех разъемов в современном БП, хотелось бы напомнить, что основные напряжения, которые нам встретятся, это +3. 3 В, +5 В и +12 В. Сейчас основное напряжение, которое требуется и процессору, и видеокарте — это +12 В. В свою очередь, +5 В нужно накопителям, а +3.3 В используется все реже.
И если взглянуть на табличку, которая есть на боку каждого БП, мы увидим выдаваемые им напряжения, токи и мощность по каждому из каналов.
Разъем Molex
Начнем с самого древнего разъема, который почти без изменений дошел до наших времен, появившись у первых «персоналок». Это всем известный 4-контактный разъем, называемый Molex.
Сегодня сфера применения этого разъема сузилась до питания корпусных вентиляторов, передних панелей корпусов ПК, разветвителей и переходников питания видеокарт и накопителей. Например, переходников питания видеокарты «Molex — PCI-E 6 pin». Несмотря на то, что разъем выдает до 11 А на контакт, а значит, может дать видеокарте, в теории, 132 ватта мощности, использовать его стоит крайне осторожно.
Надо учитывать, что толщина проводов может не соответствовать такой мощности, а сами контакты могут быть разболтанными, с неплотной посадкой. В результате это чревато нагревом проводов, контактов и расплавлению изоляции.
Если вам обязательно требуется такой переходник, выбирайте модель с двумя разъемами Molex.
Обязательно проверяйте качество контактов переходника и вставляйте его надежно, до упора. Для защиты от неправильного подключения в разъеме предусмотрены два скоса.
Внимание! Несмотря на то, что скосы не дают воткнуть разъем другой стороной, при определенном усилии и разболтанных гнездах есть вероятность воткнуть разъем, развернутый на 180 градусов, что приведет к выходу из строя оборудования.
24-контактный разъем питания материнской платы
Этот разъем появился в спецификациях ATX12V 2.0 в 2004 году и заменил устаревший 20-контактный разъем. Он может обеспечить довольно серьезные мощности для питания процессора, видеокарты и материнской платы: по линии +3.3 В — 145.2 Вт, по линии +5 В — 275 Вт и 264 Вт по линии +12 В (при использовании контактов Molex Plus HCS).
Примечание. Контакты Molex сертифицированы на ток 6 А. Molex HCS — до 9 А. А Molex Plus HCS — до 11 А.
Разъемы питания процессора
Энергопотребление процессоров неуклонно росло последние 20 лет, что потребовало дополнительных разъемов питания для них. И в спецификациях ATX12V был введен дополнительный 4-контактный разъем питания процессора +12 В.
8-контактный разъем питания процессора
Несмотря на то, что 4-контактный разъем питания процессора рассчитан на максимальную мощность до 288 Вт (при использовании контактов Plus HCS), в спецификации EPS12V версии 1.6, появившейся в 2000 году, был представлен 8-контактный разъем питания процессора. Первоначально этот разъем использовался в серверах с серьезными нагрузками на систему питания, но впоследствии перекочевал и в обычные ПК.
Сегодня даже на бюджетных материнских платах мы встречаем именно этот разъем, который теоретически может подать на питание процессора мощность до 576 Вт.
4-контактный и 8-контактный разъемы совместимы между собой. Если на вашем БП есть только 4-контактный кабель питания, он подойдет в 8-контактный разъем на материнской плате. А 8-контактный кабель, соответственно, подойдет в 4-контактный разъем.
Значения передаваемой мощности выглядят просто фантастически, но вы должны понимать, что это теоретическая мощность. На практике производители топовых материнских плат, ориентированных на разгон, ставят два 8-контактных разъема питания процессора.
Например, на MSI MEG Z490 ACE. Увеличение контактов разъема и сечения проводов приводит к снижению их нагрева и, как следствие, к безопасной работе.
Внимание! При подключении 8-контактных разъемов питания процессора и видеокарты нужно учитывать, что несмотря на то, что они не совпадают по скосам контактов, их вилки очень похожи. При определенном усилии можно воткнуть вилку питания процессора в разъем на видеокарте и наоборот. Это приведет к замыканию и выходу оборудования из строя.
Разъем питания 3.5″ дисководов
Еще один разъем, уже практически не встречающийся на новых БП. Ранее использовался для питания дисководов 3.5″ и некоторых карт расширения.
Разъем питания SATA
Стандартный разъем для питания HDD, DVD и 2.5″ SSD-приводов. Надежный и удобный разъем, воткнуть который другой стороной не получится из-за расположения специальных выступов. Ток, потребляемый HDD и SSD, довольно небольшой и беспокоиться о нагреве таких разъемов не стоит.
Разъемы дополнительного питания видеокарт
В начале нулевых годов резко выросло энергопотребление видеокарт, что потребовало для них специальных разъемов питания, принятых в спецификациях ATX12V 2.x.
Спецификация PCI Express x16 Graphics 150W-ATX Specification 1.0 была принята рабочей группой PCI-SIG в 2004 году. Она представила 6-контактный разъем, который может давать видеокарте 75 Вт мощности. И еще 75 Вт берутся со слота PCI-E x16. Получившиеся в сумме 150 ватт достаточны для питания видеокарт среднего уровня, например, GeForce GTX 1650 SUPER.
Но этих возможностей питания быстро стало недостаточно и вскоре была принята спецификация PCI Express 2.0, которая дала уже 8-контактный разъем питания для видеокарт. 8-контактный разъем питания позволял передать 150 Вт мощности и вместе с 75 Вт, идущими со слота PCI-E x16, получалось 225 Вт, которых стало достаточно уже для производительных видеокарт.
Производители видеокарт обычно стараются разгрузить питание по слоту PCI-E x16 и обеспечить запас питания для разгона, поэтому видеокарты с потреблением 120 ватт и выше, например, GeForce GTX 1660 SUPER, все чаще оснащаются восьмипиновым разъемом питания.
Конструкция разъемов позволяет подключение 6-контактного кабеля питания в 8-контактный разъем. Но, скорее всего, потребуется специальный переходник, ведь в этом случае видеокарта по сигнальным контактам распознает, какой кабель подключен в разъем питания.
8-контактный разъем обычно делается разборным, что позволяет подключить его в 6-контактную колодку.
Вставить неправильно разъемы этого типа не получится: скосы на пинах расположены в строго определенном порядке. Но нужно подключать питание до упора — до защелкивания предохранительного язычка.
87,34,48,34,48s21.79-0.13,27.1-1.55c2.93-0.78,4.64-3.26,5.42-6.19C67.94,34.95,68,24,68,24S67.94,13.05,66.52,7.74z’></path><path fill=#fff d=’M 45,24 27,14 27,34′></path></svg></a>» frameborder=»0″ allow=»accelerometer; autoplay; encrypted-media; gyroscope; picture-in-picture» allowfullscreen=»»/>
Выводы
Как вы могли заметить, все разъемы на современных БП разработаны так, чтобы исключить неправильное подключение. Также они обеспечивают избыточную надежность по нагрузке питания, что достигается увеличением числа контактов.
Но при сборке ПК не помешает помнить распиновки всех разъемов и максимальную силу тока, которую может выдержать разъем. Если пренебречь этими знаниями, можно рано или поздно повредить комплектующие. С подобным в период «крипто-лихорадки» 2017-2018 года столкнулись майнеры, у которых массово горели дешевые переходники питания видеокарт «Molex — PCI-E 6 pin».
Как разогнать процессор Intel на примере Intel Core i9-9900K | Процессоры | Блог
Разгон процессоров от компании Intel в первую очередь связан с выбором процессора с индексом K или KF (К — означает разблокированный множитель) и материнской платы на Z-чипсете (Z490–170). А также от выбора системы охлаждения.
Чтобы понять весь смыл разгона, нужно определиться, что вы хотите получить от разгона. Стабильной работы и быть уверенным, что не вылезет синий экран смерти? Или же вам нужно перед друзьями пощеголять заветной частотой 5000–5500 MHz?
Сегодня будет рассмотрен именно первый вариант. Стабильный разгон на все случаи жизни, однако и тем, кто выбрал второй вариант, будет полезно к прочтению.
Выбор материнской платы
К разгону нужно подходить очень ответственно и не пытаться разогнать Core i9-9900K на материнских платах, которые не рассчитаны на данный процессор (это, к примеру, ASRock Z390 Phantom Gaming 4, Gigabyte Z390 UD, Asus Prime Z390-P, MSI Z390-A Pro и так далее), так как удел этих материнских плат — процессоры Core i5 и, возможно, Core i7 в умеренном разгоне. Intel Core i9-9900K в результате разгона и при серьезной постоянной нагрузке потребляет от 220 до 300 Ватт, что неминуемо вызовет перегрев цепей питания материнских плат начального уровня и, как следствие, выключение компьютера, либо сброс частоты процессора. И хорошо, если просто к перегреву, а не прогару элементов цепей питания.
Выбор материнской платы для разгона — это одно из самых важных занятий. Ведь именно функционал платы ее настройки и качество элементной базы и отвечают за стабильность и успех в разгоне. Ознакомиться со списком пригодных материнских плат можно по ссылке.
Все материнские платы разделены на 4 группы: от начального уровня до продукта для энтузиастов. По большому счету, материнские платы второй и, с большой натяжкой, третьей группы хорошо справятся с разгоном процессора i9-9900K.
Выбор системы охлаждения
Немаловажным фактором успешного разгона является выбор системы охлаждения. Как я уже говорил, если вы будете разгонять на кулере который для этого не предназначен, у вас ничего хорошего не получится. Нам нужна либо качественная башня, способная реально отводить 220–250 TDP, либо жидкостная система охлаждения подобного уровня. Здесь все зависит только от бюджета.
Из воздушных систем охлаждения обратить внимание стоит на Noctua NH-D15 и be quiet! DARK ROCK PRO 4.
Силиконовая лотерея
И третий элемент, который участвует в разгоне — это сам процессор. Разгон является лотереей, и нельзя со 100% уверенностью сказать, что любой процессор с индексом К получится разогнать до частоты 5000 MHz, не говоря уже о 5300–5500 MHz (имеется в виду именно стабильный разгон). Оценить шансы на выигрыш в лотерее можно, пройдя по ссылке, где собрана статистика по разгону различных процессоров.
Приступаем к разгону
Примером в процессе разгона будет выступать материнская плата ASUS ROG MAXIMUS XI HERO и процессор Intel Core i9-9900K. За охлаждение процессора отвечает топовый воздушный кулер Noctua NH-D15.
Первым делом нам потребуется обновить BIOS материнской платы. Сделать это можно как напрямую, из специального раздела BIOS с подгрузкой из интернета, так и через USB-накопитель, предварительно скачав последнюю версию c сайта производителя. Это необходимо, потому как в новых версиях BIOS уменьшается количество багов. BIOS, что прошит в материнской плате при покупке, скорее всего, имеет одну из самых ранних версий.
Тактовая частота процессора формируется из частоты шины BCLK и коэффициента множителя Core Ratio.
Как уже было сказано, разгон будет осуществляться изменением множителя процессора.
Заходим в BIOS и выбираем вкладку Extreme Tweaker. Именно тут и будет происходить вся магия разгона.
Первым делом меняем значение параметра Ai Overclocker Tuner с Auto в Manual. У нас сразу становятся доступны вкладки, отвечающие за частоту шины BCLK Frequency и CPU Core Ratio, отвечающая за возможность настройки множителя процессора.
ASUS MultiCore Enhancement какой-либо роли, когда Ai Overclocker Tuner в режиме Manual, не играет, можно либо не трогать, либо выключить, чтобы глаза не мозолило. Одна из уникальных функций Asus, расширяет лимиты TDP от Intel.
SVID Behavior — обеспечивает взаимосвязь между процессором и контроллером напряжения материнской платы, данный параметр используется при выставлении адаптивного напряжения или при смещении напряжения (Offset voltages). Начать разгон в любом случае лучше с фиксированного напряжения, чтобы понять, что может конкретно ваш экземпляр процессора, ведь все они уникальны. Если используется фиксация напряжения, значение этого параметра просто игнорируется. Установить Best Case Scenario. Но к этому мы еще вернемся чуть позже.
AVX Instruction Core Ratio Negative Offset — устанавливает отрицательный коэффициент при выполнении AVX-инструкций. Программы, использующие AVX-инструкции, создают сильную нагрузку на процессор, и, чтобы не лишаться заветных мегагерц в более простых задачах, придумана эта настройка. Несмотря на все большее распространение AVX-инструкции, в программах и играх они встречаются все еще редко. Все сугубо индивидуально и зависит от задач пользователя. Я использую значение 1.
Наример, если нужно, чтобы частота процессора при исполнении AVX инструкций была не 5100 MHz, а 5000 MHz, нужно указать 1 (51-1=50).
Далее нас интересует пункт CPU Core Ratio. Для процессоров с индексом K/KF выбираем Sync All Cores (для всех ядер).
1-Core Ratio Limit — именно тут и задается множитель для ядер процессора. Начать лучше с 49–50 для 9 серии и 47–48 для 8 серии процессоров Intel соответственно, с учетом шины BCLK 100 мы как раз получаем 4900–5000 MHz и 4700–4800 MHz.
Опускаемся ниже:
DRAM Frequency — отвечает за установку частоты оперативной памяти. Но это уже совсем другая история.
CPU SVID Support — данный параметр необходим процессору для взаимодействия с регулятором напряжения материнской платы. Блок управления питанием внутри процессора использует SVID для связи с ШИМ-контроллером, который управляет регулятором напряжения. Это позволяет процессору выбирать оптимальное напряжение в зависимости от текущих условий работы. В адаптивном режиме установить в Auto или Enabled. При отключении пропадет мониторинг значений VID и потребляемой мощности.
CPU Core/Cache Current Limit Max — лимит по току в амперах (A) для процессорных ядер и кэша. Выставляем 210–220 A. Этого должно хватить всем даже для 9900к на частоте 5100MHz. Максимальное значение 255.75.
Min/Max CPU Cache Ratio — множитель кольцевой шины или просто частота кэша. Для установки данного параметра есть неофициальное правило, множитель кольцевой шины примерно на два–три пункта меньше, чем множитель для ядер.
Например, если множитель для ядер 51, то искать стабильность кэша нужно от 47. Все очень индивидуально. Начать лучше с разгона только ядер. Если ядро стабильно, можно постепенно повышать частоту кэша на 1 пункт.
Разгон кольцевой шины в значении 1 к 1 с частотой ядер это идеальный вариант, но встречается такое очень редко на частоте 5000 MHz.
Заходим в раздел Internal CPU Power Management для установки лимитов по энергопотреблению.
SpeedStep — во время разгона, выключаем. На мой взгляд, совершенно бесполезная функция в десктопных компьютерах.
Long Duration Packet Power Limit — задает максимальное энергопотребление процессора в ватах (W) во время долгосрочных нагрузок. Выставляем максимум — 4095/6 в зависимости от версии Bios и производителя.
Short Duration Package Power Limit — задает максимальное возможное энергопотребление процессором в ваттах (W) при очень кратковременных нагрузках. Устанавливаем максимум — 4095/6.
Package Power Time Window — максимальное время, в котором процессору разрешено выходить за установленные лимиты. Устанавливаем максимальное значение 127.
Установка максимальных значений у данных параметров отключает все лимиты.
IA AC Load Line/IA DC Load Line — данные параметры используются в адаптивном режиме установки напряжения, они задают точность работы по VID. Установка этих двух значений на 0,01 приведет ближе к тому напряжению, которое установил пользователь, при этом минимизируются пики. Если компьютер, после установки параметра IA DC Load line в значение 0,01, уходит в «синьку», рекомендуется повысить значение до 0,25. Фиксированное напряжение будет игнорировать значения VID процессора, так что установка IA AC Load Line/IA DC Load Line в значение 0,01 не будет иметь никакого влияния на установку ручного напряжения, только при работе с VID. На материских платах от Gigabyte эти параметры необходимо устанавливать в значение 1.
Возвращаемся в меню Extrime Tweaker для выставления напряжения.
BCLK Aware Adaptive Voltage — если разгоняете с изменением значения шины BCLK, — включить.
CPU Core/Cache Voltage (VCore) — отвечает за установку напряжения для ядер и кэша. В зависимости от того, какой режим установки напряжения вы выберете, дальнейшие настройки могут отличаться.
Существует три варианта установки напряжения: адаптивный, фиксированный и смещение. На эту тему много мнений, однако, в моем случае, адаптивный режим получается холоднее. Зачастую для 9 поколения процессоров Intel оптимальным напряжением для использования 24/7 является 1. 350–1.375V. Подобное напряжение имеет место выставлять для 9900К при наличии эффективного охлаждения.
Поднимать напряжение выше 1.4V для 8–9 серии процессоров Intel совершенно нецелесообразно и опасно. Рост потребления и температуры не соразмерен с ростом производительности, которую вы получите в результате такого разгона.
- Для тех кто выбрал фиксированный режим — установить Manual Mode. Напряжение подбирается индивидуально.
- Для тех, кто выбрал адаптивный режим — установки напряжения Adaptive mode.
Offset mode Sign — устанавливает, в какую сторону будет происходить смещение напряжения, позволяет добавлять (+) или уменьшать (-) значения к выставленному вольтажу.
Additional Turbo Mode CPU Core Voltage — устанавливает максимальное напряжение для процессора в адаптивном режиме. Я использую 1.350V, данное напряжение является некой золотой серединой по соотношению температура/безопасность.
Offset Voltage — величина смещения напряжения. У меня используется 0.001V, все очень индивидуально и подбирается во время тестирования.
Для тех кто выбрал установку напряжения смещением, установить Offset Mode и выбрать сторону смещения -/+ и указать величину.
DRAM Voltage — устанавливает напряжение для оперативной памяти. Условно безопасное значение при наличии радиаторов на оперативной памяти составляет 1.4–1.45V, без радиаторов до 1.4V.
CPU VCCIO Voltage (VCCIO) — устанавливает напряжение на IMC и IO.
CPU System Agent Voltage (VCCSA) — напряжение кольцевой шины и контроллера кольцевой шины.
Таблица с соотношением частоты оперативной памяти и напряжениями VCCIO и VCCSA:
Однако, по личному опыту, даже для частоты 4000 MHz требуется напряжение примерно 1.15V для VCCIO и 1.2V для VCCSA. На мой взгляд, разумным пределом является для VCCIO 1.20V и VCCSA 1. 25V. Все что выше, должно быть оправдано либо частотой разгона оперативной памяти за 4000MHz +, либо желанием получить максимум на свой страх и риск.
Часто при использовании XMP профиля оперативной памяти параметры VCCIO и VCCSA остаются в значении Auto, тем самым могут повыситься до критических показателей, это, в свою очередь, чревато деградацией контроллера памяти с последующим выхода процессора из строя.
Поднимать данные напряжения выше 1.35V не рекомендуется в связи с риском деградации контроллера памяти и полной возможностью убить процессор. Оба эти параметра отвечают за разгон оперативной памяти.
Установка LLC
LLC (Load-Line Calibration) В зависимости от степени нагрузки на процессор, напряжение проседает, это называется Vdroop. LLC компенсирует просадку напряжения (vCore) при высокой нагрузке. Но есть определенные особенности работы с LLC.
Например, мы установили фиксированное напряжение в BIOS для ядер 1. 35V. После старта компьютера на рабочем столе мы видим уже не 1.35V, а 1.32V. Но, если запустим более требовательное к ресурсам процессора приложение, например Linx, напряжение может провалиться до 1.15V, и мы получим синий экран или «невязки», ошибки или выпадение ядер.
Чтобы напряжение проседало не так сильно и придумана функция LLC c разным уровнем компенсации просадки. Не стоит сразу гнаться за установкой самого высокого/сильного уровня компенсации. В этом нет никакого смысла. Это может быть даже опасно ввиду чрезвычайно завышенного напряжения (overshoot) в момент запуска и прекращения ресурсоемкой нагрузки перед и после Vdroop. Нужно оптимально подобрать выставленное напряжение с уровнем LLC. Напряжение под нагрузкой и должно проседать, но должна оставаться стабильность. Конкретно у меня в BIOS материнской платы стоит 1.35V c LLC 5. Под нагрузкой напряжение опускается до 1.19–1.21V, при этом процессор остается абсолютно стабильным под длительной и серьезной нагрузкой. Завышенное напряжение выливается в большем потреблении и, как следствие, более высоких температурах.
Например, при установке LCC 6 с напряжением 1.35V во время серьезной нагрузки напряжение проседает до 1.26V, при этом справиться с энергопотреблением и температурой с использованием воздушной системы охлаждения уже нет возможности.
Чтобы наглядно изучить процесс работы LLC и то, какое влияние оказывает завышенный LLC на Overshoot’ы, предлагаю ознакомиться с работами elmora, более подробно здесь.
Идеальным вариантом, с точки зрения Overshoot’ов, является использование LLC в значении 1 (самое слабое на платах Asus), однако добиться стабильности с таким режимом работы LLC во время серьезной нагрузки будет сложно, как выход, существенное завышенное напряжение в BIOS. Что тоже не очень хорошо.
Пример использовании LLC в значении 8 (самое сильно на платах Asus)
При появлении нагрузки на процессоре напряжение просело, но потом в работу включается LLC и компенсирует просадку, причем делая это настолько агрессивно, что напряжение на мгновение стало даже выше установленного в BIOS.
В момент прекращения нагрузки мы видим еще больший скачок напряжения (Overshoot), а потом спад, работа LLC прекратилась. Вот именно эти Overshoot’ы, которые значительно превышают установленное напряжение в BIOS, опасны для процессора. Какого-либо вреда на процессор Undershoot и Vdroop не оказывают, они лишь являются виновниками нестабильности работы процессора при слишком сильных просадках.
CPU Current Capability — увеличивает допустимое значение максимального тока, подаваемого на процессор. Сильно не увлекайтесь, с увеличением растет так же и температура. Оптимально на 130–140%
VRM Spread Spectrum — лучше выключить и кактус у компьютера поставить, незначительное уменьшение излучения за счет ухудшения сигналов да и шина BLCK скакать не будет.
Все остальные настройки нужны исключительно для любителей выжимать максимум из своих систем любой ценой.
Проверка стабильности
После внесения всех изменений, если компьютер не загружается, необходимо повысить напряжение на ядре или понизить частоту. Когда все же удалось загрузить Windows, открываем программу HWinfo или HWMonitor для мониторинга за состоянием температуры процессора и запускаем Linx или любую другую программу для проверки стабильности и проверяем, стабильны ли произведенные настройки. Автор пользуется для проверки стабильности разгона процессора программами Linx с AVX и Prime95 Version 29.8 build 6.
Если вдруг выявилась нестабильность, то повышаем напряжение в пределах разумного и пробуем снова. Если стабильности не удается добиться, понижаем частоту. Все значения частоты и напряжения сугубо индивидуальны, и дать на 100 % верные и подходящие всем значения нельзя. Как уже писалось, разгон — это всегда лотерея, однако, купив более качественный продукт, шанс выиграть всегда будет несколько выше.
Резюмируем все выше сказанное
Максимально допустимое напряжение на процессор составляет до 1.4V. Оптимально в пределах 1.35V, со всем что выше, возникают трудности с температурой под нагрузкой.
Существует 3 способа установки напряжения:
- Manual mode
- Adaptive mode
- Offset mode
Adaptive mode — это предпочтительный способ для установки напряжения.
Он работает с таблицей значений VID вашего процессора и позволяет снижать напряжение в простое.
Оптимально найти стабильное напряжение в фиксированном режиме, потом выставить адаптивный режим и вбить это знание для адаптивного режима, далее выставить величину смещения по необходимости.
При разгоне оперативной памяти и использовании XMP профиля, необходимо контролировать напряжение на CPU VCCIO Voltage (VCCIO) и CPU System Agent Voltage (VCCSA).
Подобрать оптимальный уровень работы LLC, VDROOP ДОЛЖЕН БЫТЬ.
Название и принцип работы LLC у разных производителей | ||
Производитель | Название | Компенсация от меньшего к большему |
ASRock | CPU Load-Line Calibration | Level 5 to Level 1 |
ASUS | CPU Load-line Calibration | Level 1 to Level 8 |
Gigabyte | CPU Vcore Loadline Calibration | Turbo, Extreme, Ultra Extreme |
MSI | CPU Loadline Calibration Control | Mode 8 to Mode 1 |
Никто никому не обещал, что процессор с индексом K обязан 100 % разгоняться до частоты 5000–5500 MHz, это ЛОТЕРЕЯ.
Всем спасибо и удачного разгона.
Как сказал один человек «…Плох тот разгон, что не крашится после теста…»(с)
Как разогнать процессор AMD Ryzen третьего поколения на примере Ryzen 9 3900X
Маркировка и параметры выключателей, сертификация
Маркировка и параметры выключателей, сертификация
Основные параметры переключателей, на которые следует обратить внимание при подборе, являются следующие:
- сила тока (ампер)
- напряжение (вольт)
- мощность (лошадиные силы) (если это применимо)
Ниже приводим описание этих параметров:
Номинальное напряжение — это способность переключателя подавлять дугу, которая возникает, при размыкании контакта. Т. е. указанное номинальное напряжение — это максимальное допустимое напряжение, при котором переключатель нормально работает при номинальном токе.
Номинальный ток — это ток, который выдерживает переключатель в течение длительного времени.
Максимальный ток — это макс. ток, который выдерживает переключатель.
Лошадиными силами (англ.: HP) измеряется мощность эл. двигателей которые будут коммутироваться переключателями. Могут использоваться относительные части лошадиных сил (1/4, 1/3, 1/2 и т.д.)
Лошадиная сила — единица измерения мощности, принятая Джеймсом ВАТТОМ в XVIII столетии. Он определил это как груз массой в 250 кг, который могла поднять лошадь на высоту 0,3 м за одну секунду, то есть 1 л.с. = 75 кгм/с.
В мире существует несколько единиц измерения под названием «лошадиная сила». В России и в большинстве европейских стран, как правило, под лошадиной силой имеется в виду так называемая «метрическая лошадиная сила», равная 735,499 Вт, что иногда называют метрической лошадиной силой (обозначение нем.: PS, фр.: CH, нидерл.: PK), хотя она не входит в метрическую систему единиц.
В США и Великобритании чаще до сих пор приравнивают лошадиные силы к 745,69988145 Вт (обозначение англ.: HP), что равно 1,01386967887 метрической лошадиной силы. Т. е. одна лошадиная сила (1HP) равна 746 Вт электрической мощности.
Например, обозначение 3/4HP 125-250VAC означает, что переключатель может использоваться с двигателем мощностью 3/4 л.с. при 125 — 250 вольтах переменного тока.
Лошадиные силы указываются в дополнение к амперам и вольтам для переключателей, которые будут использоваться при значительных бросках тока индуктивных нагрузок, например в двигателях переменного тока. Эта величина показывает величину тока, который могут выдержать контакты переключателя в момент отключения индуктивного устройства. В двигателе переменного тока этот ток превышает в восемь раз рабочий ток.
Виды нагрузок
Электрическая нагрузка — это величина электрической мощности, подаваемая или потребляемая в определенной точке системы. Проще говоря, нагрузка — часть потребляемой мощности подключаемого/отключаемого устройства.
Резистивная нагрузка — это, прежде всего, сопротивление движению тока. Примеры резистивных нагрузок: электронагреватели, печи, тостеры, утюги и т. д. Если устройство необходимо нагреть, а не привести в движение, то, скорее всего, это резистивная нагрузка.
Индуктивная нагрузка, — как правило, присутствует в устройствах, которые перемещаются и, как правило, содержат электрические магниты, — напр., электрический двигатель. Примеры индуктивных нагрузок: дрели, электрические миксеры, вентиляторы, швейные машинки, и пылесосы. Трансформаторы также имеют индуктивную нагрузку.
Высокая пусковая нагрузка, — это величина тока в начальный момент включении устройства, по сравнению с количеством тока, необходимого для продолжения работы. Примеры высокой пусковой нагрузки: электрическая лампа, пусковой ток которой может быть в 20 и более раз больше нормального рабочий тока. Её часто называют ламповой нагрузкой. Другие примеры высокой пусковой нагрузки: импульсные источники питания (емкостная нагрузка) и двигатели (индуктивная нагрузка).
Европейская классификация IEC (TUV, VDE, ENEC, CQC)
В типичной европейской классификации проводятся значения резистивной и индуктивной нагрузок. Ниже приведен пример европейской классификации:
16 (4) A 250В ~ 5E4 T85 μ
В данном примере:
- 16 = Резистивная нагрузка (16А).
- (4) = Индуктивная нагрузка (4А).
- A = Сила тока.
- 250В ~ = Переменное напряжение (AC).
- 5E4 = Это означает, что кол-во рабочих циклов (срок службы) переключателя достигает 50.000 циклов. Символ «E» указывает на показатель степени (например, 6E3 означает 6,000 циклов). В соответствии с классификацией IEC этот параметр не указывается для переключателей со сроком службы от 10.000 циклов.
- T85 = Макс. рабочая температура по Цельсию. Символ «Т» обозначает предельные номинальные температуры окружающей среды для переключателя. Более низкое значение температуры предшествует букве «Т», а самая высокая температура указывается после буквы «Т». Если нижнее значение температуры не указано, оно имеет значение 0°С.
Например:
1) 25T85: (означает от -25°C до +85°C)
2) T85: (означает от 0°C до +85°C).Если никакой информации не дается, значит, номинальный диапазон температур окружающей среды от 0°C до 55°C.
Для переключателей лишь частично соответствующих условиям номинальной температуры окружающей среды выше 55°C, параметры температуры указывают следующим образом:
Т 85/55 (это означает температуру до 85°C для корпуса переключателя и до 55°C для исполнительного элемента. - μ = Микрозазор (<3 мм), прошедший проверку. Если между контактами переключателя в открытом положении имеется микрозазор меньше 3 мм воздушного пространства, то может прилагаться Сертификат, подтверждающий наличие микрозазора. Также знак μ указывает на то, что в дополнение к переключателю следует использовать альтернативный способ отключения источника питания, например, шнур и вилкой. Знак μ означает, что диэлектрическая прочность контактов переключателя не способна выдержать 1.500V при отключении, а составляет 500V. Такие переключатели можно использовать в бытовых и аналогичных электрических приборах.
Классификация UL/CSA (ETL, CSA)(США)
Ниже приведен пример UL/CSA (ETL, CSA) классификации:
YSR-10 16A 125VAC,10A 250VAC, 1/3HP 125/250VAC T85
Типичная классификация UL/CSA по току представляет собой одно значение индуктивной/резистивной нагрузок.
Таблица соответствия мощности нагрузки (лошадиных сил) току и напряжению:
AC | DC | |||||||
Full-load(A) | Overload(A) | Full-load(A) | Overload(A) | |||||
125V | 250V | 125V | 250V | 125V | 250V | 125V | 250V | |
1/4H/P | 5.8 | 2.9 | 34.8 | 17.4 | 3 | 1.5 | 30 | 15 |
1/3H/P | 7.2 | 3.6 | 43.2 | 21.6 | 3.8 | 1.9 | 38 | 19 |
1/2H/P | 9.8 | 4.9 | 58.8 | 29.4 | 5.4 | 2.7 | 54 | 27 |
3/4H/P | 13.8 | 6.9 | 52.8 | 26.4 | 7.4 | 3.7 | 74 | 37 |
1H/P | 16 | 8 | 96 | 48 | 9.6 | 4.8 | 96 | 48 |
Прим.:
В данном стандарте (UL 61058) для резистивных нагрузок может указываться величина тока за которой следует буква R, а затем напряжения и тип питания.
Например: 5RA 240 V ~ или 5RA 125 VDC.
- T85: Макс. рабочая температура по Цельсию.
Ещё примеры UL/CSA (ETL, CSA) классификации:
10A 250В, 15A 125VAC, 3/4HP 125-250VAC
Классификация L & T
«L» классификация (только для переменного напряжения) обозначает способность переключателя выдерживать высокие начальные пусковые нагрузки вольфрамовой лампы накаливания.
«Т» классификация — аналогичная способность выдерживать высокие начальные пусковые нагрузки вольфрамовой лампы накаливания для постоянного тока.
Классификация H
«H» классификация используется для резистивной нагрузки. В этом случае, значения, приведенные в информации о продукте могут сопровождаться символом «H» или со словами «non-inductive» или «resistive.
Как правило, «H» классификация применяется для переключателей, используемых в печах.
Рабочая Температура
Все европейские сертифицированные переключатели имеют максимальную рабочую температуру 85 градусов по Цельсию, если не указано иное.
Переключатели, сертифицированные для температуры T85, не следует использовать в тех случаях, когда окружающая температура выше 85 градусов по Цельсию.
Если не указано иное, все переключатели, сертифицированные в США, имеют максимальную номинальную температуру 105 градусов по Цельсию.
Варианты коммутации контактов
В таблице ниже приводится краткая информация по основным типам контаПеременный | АС-1 | Электроцепи сопротивления; неиндуктивная или малоиндуктивная нагрузка |
АС-2 | Пуск и торможение противовключением электродвигателей с фазным ротором | |
АС-3 | Прямой пуск электродвигателей с короткозамкнутым ротором, отключение вращающихся двигателей (может предусматривать случайные повторно-кратковременные включения или торможение противотоком ограниченной длительности, например при наладке механизма) | |
АС-4 | Пуск и торможение противовключением электродвигателей с короткозамкнутым ротором | |
АС-5а, AC-5b | Коммутирование разрядных электрических ламп и ламп накаливания соответственно | |
AC-6a, AC-6b | Управление трансформаторами и батареями конденсаторов соответственно | |
AC-7a, AC-7b | Коммутирование слабоиндуктивных и двигательных нагрузок в бытовых сетях соответственно | |
AC-8a, AC-8b | Коммутирование герметичных двигателей компрессоров холодильников (сочетание двигателя и компрессора в одном корпусе) с ручным или автоматическим взводом расцепителей перегрузки соответственно | |
AC-11 | Управление электромагнитами переменного тока | |
AC-20 | Коммутация электрических цепей без тока или с незначительным током | |
AC-21 | Коммутация активных нагрузок, включая умеренные перегрузки | |
AC-22 | Коммутация смешанных активных и индуктивных нагрузок, включая умеренные перегрузки | |
AC-23 | Коммутация нагрузок двигателей или других высокоиндуктивных нагрузок | |
Постоянный | ДС-1 | Электропечи сопротивления; неиндуктивная или малоиндуктивная нагрузка |
ДС-2 | Пуск электродвигателей с параллельным возбуждением и отключение вращающихся двигателей с параллельным возбуждением | |
ДС-3 | Пуск электродвигателей с параллельным возбуждением, отключение неподвижных или медленно вращающихся электродвигателей, торможение противовключением | |
ДС-4 | Пуск электродвигателей с последовательным возбуждением и отключение вращающихся электродвигателей с последовательным возбуждением | |
ДС-5 | Пуск электродвигателей с последовательным возбуждением, отключение неподвижных или медленно вращающихся двигателей, торможение противовключением | |
ДС-6 | Управление лампами с вольфрамовой нитью накаливания | |
ДС-11 | Управление электромагнитами постоянного тока | |
DС-20 | Включение и отключение цепи без нагрузки или с незначительным током | |
DС-21 | Коммутация активных нагрузок, включая умеренные перегрузки | |
DС-22 | Коммутация смешанных активных и индуктивных нагрузок, включая умеренные перегрузки, например, двигателей с параллельным возбуждением | |
DС-23 | Коммутация высокоиндуктивных нагрузок, например, двигателей с последовательным возбуждением |
Electronics Club — AC, DC и электрические сигналы
Electronics Club — AC, DC и электрические сигналы — свойства сигнала, амплитуда, пиковое значение, период времени, частота, RMSAC | DC | Свойства сигнала | RMS
Следующая страница: Осциллографы (CRO)
См. Также: Диоды | Блоки питания
AC означает переменный ток, а DC означает постоянный ток. Переменный и постоянный ток также используются при обозначении напряжений и электрических сигналов. которые не токи! Например: источник питания 12 В переменного тока имеет переменное напряжение. (что сделает поток переменного тока).
Электрический сигнал — это напряжение или ток, передающий информацию, обычно это означает напряжение. Этот термин может использоваться для любого напряжения или тока в цепи.
Переменный ток (AC)
Переменный ток (AC) течет в одну сторону, затем в другую, постоянно меняя направление.
Напряжение переменного тока постоянно меняется с положительного (+) на отрицательное (-).
Скорость изменения направления называется частотой переменного тока и измеряется в герц (Гц) , количество циклов в прямом и обратном направлении циклов в секунду .
Электросеть в Великобритании имеет частоту 50 Гц.
Подробнее о свойствах сигнала см. Ниже.
Источник переменного тока подходит для питания некоторых устройств, таких как лампы и обогреватели, но почти все электронные схемы требуют постоянного источника постоянного тока (см. ниже).
Переменный ток от источника питания
Эта форма называется синусоидой .
Этот треугольный сигнал является переменным током, потому что он меняет значение
между положительным (+) и отрицательным (-).
Постоянный ток (DC)
Постоянный ток (DC) всегда течет в одном направлении, но может увеличиваться и уменьшаться.
Напряжение постоянного тока всегда положительное (или всегда отрицательное), но оно может увеличиваться и уменьшаться.
Для электронных схем обычно требуется постоянный источник питания постоянного тока , который имеет одно значение. или источник питания smooth DC , который имеет лишь небольшую вариацию, называемую пульсации .
Элементы, батареи и регулируемые источники питания обеспечивают постоянный ток постоянного тока , который идеально подходит для электронных схем.
Блоки питания содержат трансформатор, преобразующий от сети переменного тока к безопасному низковольтному переменному току. Затем переменный ток преобразуется в постоянный ток мостовой выпрямитель, но выход изменяет постоянный ток , что не подходит для электронных схем.
Некоторые блоки питания включают конденсатор для обеспечения smooth DC , который подходит для менее чувствительных электронных схем, в том числе большинство проектов на этом сайте.
Лампы, обогреватели и двигатели будут работать от любого источника постоянного тока.
Дополнительную информацию см. На странице источников питания.
Источники питания также описаны на веб-сайте Electronics in Meccano.
Постоянный ток
от батареи или регулируемого источника питания,
идеально подходит для электронных схем.
Smooth DC
от сглаженного источника питания,
подходит для некоторой электроники.
Изменение постоянного тока
от источника питания без сглаживания,
это не подходит для электроники.
Свойства электрических сигналов
Электрический сигнал — это напряжение или ток, который передает информацию, обычно это означает напряжение. Этот термин может использоваться для любого напряжения или тока в цепи.
График «напряжение-время» ниже показывает различные свойства электрического сигнала. Помимо свойств, отмеченных на графике, существует частота количество циклов в секунду.
На диаграмме показан синусоидальный сигнал , но свойства применимы к любому сигналу с постоянно повторяющейся формой.
- Амплитуда — максимальное напряжение, достигаемое сигналом. Измеряется в В , В .
- Пиковое напряжение — другое название амплитуды.
- Пиковое напряжение в два раза больше пикового напряжения (амплитуды). При считывании осциллограммы обычно измеряют пиковое напряжение.
- Период времени — это время, необходимое сигналу для завершения одного цикла.
Он измеряется в секундах (с) , но периоды времени обычно короткие, поэтому часто используются миллисекунды (мс) и микросекунды (мкс).
1 мс = 0,001 с и 1 мкс = 0,000001 с. - Частота — это количество циклов в секунду.
Он измеряется в герцах (Гц) и , но частоты имеют тенденцию быть высокими, поэтому часто используются килогерцы (кГц) и мегагерцы (МГц).
1 кГц = 1000 Гц и 1 МГц = 1000000 Гц.
Частота и период времени
Частота и период времени противоположны друг другу:
частота = | 1 |
период времени |
и
период времени = | 1 |
частота |
Электросеть в Великобритании имеет частоту 50 Гц поэтому он имеет период времени 1 / 50 = 0.02с = 20 мс .
Не хватает денег на проекты в области электроники? Продайте свой старый iPhone, iPad, MacBook или другое устройство Apple: macback.co.uk
Среднеквадратические значения (RMS)
Значение переменного напряжения непрерывно изменяется от нуля до положительного пика через от нуля до отрицательного пика и снова обратно к нулю. Очевидно, что в большинстве случаев оно меньше пикового напряжения, так что это не лучшая мера его реального эффекта.
Вместо этого мы используем среднеквадратичное напряжение (В RMS ) что равно 0.7 пикового напряжения (В пика ):
и
Эти уравнения также применимы к current .
Важно отметить, что эти уравнения верны только для синусоидальных волн (наиболее распространенного типа переменного тока), поскольку Коэффициенты 0,7 и 1,4 — это разные значения для других форм.
Среднеквадратичное значение — эффективное значение переменного напряжения или текущий. Это эквивалентное постоянное значение постоянного тока, которое дает такой же эффект.
Например, лампа, подключенная к источнику питания 6V RMS AC , будет гореть с той же яркостью. при подключении к источнику постоянного тока 6 В постоянного тока . Однако лампа будет тусклее при подключении к пиковому источнику переменного тока 6 В переменного тока питание, потому что его среднеквадратичное значение составляет всего 4,2 В (это эквивалентно постоянному 4,2 В постоянного тока).
Возможно, вам будет полезно думать о среднеквадратичном значении как о среднем значении, но, пожалуйста, помните что это не совсем средний показатель! Фактически, среднее напряжение (или ток) типичного сигнала переменного тока равен нулю, потому что положительная и отрицательная части полностью компенсируются.
Что показывают измерители переменного тока, это среднеквадратичное или пиковое напряжение?
Вольтметры и амперметры переменного тока показывают значение RMS, напряжения или тока.
Что на самом деле означает «6 В переменного тока», это среднеквадратичное или пиковое напряжение?
Если имеется в виду пиковое значение, оно должно быть четко указано, в противном случае предположим, что это значение RMS . В повседневном использовании напряжение переменного тока (и токи) всегда задается как RMS значений , потому что это позволяет провести разумное сравнение с постоянными напряжениями (и токами) постоянного тока, например, от батареи.
Например, «питание 6 В переменного тока» означает 6 В RMS, пиковое напряжение составляет 8,4 В. Электроснабжение Великобритании 230 В переменного тока, это означает 230 В RMS, поэтому пиковое напряжение сети составляет около 320 В.
Итак, что на самом деле означает среднеквадратичное значение (RMS)?
Сначала возведите все значения в квадрат, затем найдите среднее (среднее) этих квадратичных значений по полный цикл и найдите квадратный корень из этого среднего. Это значение RMS. Смущенный? Не обращайте внимания на математику (она выглядит сложнее, чем есть на самом деле), просто примите что среднеквадратичные значения напряжения и тока являются гораздо более полезной величиной, чем пиковые значения.
Следующая страница: Осциллографы (CRO) | Исследование
Политика конфиденциальности и файлы cookie
Этот сайт не собирает личную информацию. Если вы отправите электронное письмо, ваш адрес электронной почты и любая личная информация будет используется только для ответа на ваше сообщение, оно не будет передано никому. На этом веб-сайте отображается реклама, если вы нажмете на рекламодатель может знать, что вы пришли с этого сайта, и я могу быть вознагражден. Рекламодателям не передается никакая личная информация.Этот веб-сайт использует некоторые файлы cookie, которые классифицируются как «строго необходимые», они необходимы для работы веб-сайта и не могут быть отклонены, но они не содержат никакой личной информации. Этот веб-сайт использует службу Google AdSense, которая использует файлы cookie для показа рекламы на основе использования вами веб-сайтов. (включая этот), как объяснил Google. Чтобы узнать, как удалить файлы cookie и управлять ими в своем браузере, пожалуйста посетите AboutCookies.org.
electronicsclub.info © Джон Хьюс 2020
Веб-сайт размещен на Tsohost
Введение, Генерация переменного тока, переменного и постоянного тока и трансформаторы
Введение
Электрическая цепь — это полный проводящий путь, по которому электроны текут от источника к нагрузке и обратно к источнику.Однако направление и величина потока электронов зависят от типа источника. В «Электротехника» есть два основных типа источника напряжения или тока (электрическая энергия), которые определяют тип цепи, и они есть; Переменный ток (или напряжение) и постоянный ток .
В следующих двух статьях мы сосредоточимся на переменном токе и рассмотрим темы от , что такое переменный ток, , до , формы волны переменного тока, и так далее.
Цепи переменного тока
Цепи переменного тока, как следует из названия («Переменный ток»), — это просто цепи, питаемые от переменного источника напряжения или тока. Переменный ток или напряжение — это тот, в котором значение либо напряжения, либо тока изменяется около определенного среднего значения и периодически меняет направление.
Большинство современных бытовых и промышленных устройств и систем питаются от переменного тока.Все подключаемые к сети электроприборы на базе постоянного тока и устройства на базе аккумуляторных батарей технически работают от переменного тока, поскольку все они используют некоторую форму постоянного тока, получаемую от переменного тока, либо для зарядки своих батарей, либо для питания системы. Таким образом, переменный ток — это форма, по которой мощность передается в сеть.
Схема переменного тока возникла в 1980-х, когда Тесла решил решить проблему неспособности генераторов постоянного тока Томаса Эдисона на больших расстояниях. Он искал способ передачи электроэнергии с высоким напряжением, а затем использовал трансформаторы для повышения или понижения его, что может потребоваться для распределения, и, таким образом, смог минимизировать потери мощности на большом расстоянии, что было основной проблемой Direct Текущий в то время.
Переменный ток и постоянный ток (переменный и постоянный)
переменного тока и постоянного тока отличаются от поколения к передаче и распределению, но для простоты мы сохраним сравнение их характеристик в этом посте.
Основное различие между переменным током и постоянным током, которое также является причиной их различных характеристик, заключается в направлении потока электрической энергии. В постоянном токе электроны движутся стабильно в одном направлении или вперед, в то время как в переменном токе электроны периодически меняют направление потока.Это также приводит к изменению уровня напряжения, когда он переключается с положительного на отрицательный в соответствии с током.
Ниже приведена сравнительная таблица, чтобы выделить некоторые различия между и переменным током . Другие различия будут выделены, когда мы углубимся в изучение цепей переменного тока.
Основание для сравнения | переменного тока | постоянного тока |
Мощность передачи энергии | Путешествует на большие расстояния с минимальными потерями энергии | Большое количество энергии теряется при передаче на большие расстояния |
Основы поколения | Вращение магнита по проволоке. | Устойчивый магнетизм вдоль проволоки |
Частота | Обычно 50 Гц или 60 Гц в зависимости от страны | Частота равна нулю |
Направление | Периодически меняет направление при прохождении через контур | Это устойчивый постоянный поток в одном направлении. |
Текущий | Его величина меняется со временем | Постоянная звездная величина |
Источник | Все виды генераторов переменного тока и сети | Элементы, батареи, преобразование из переменного тока |
Пассивные параметры | Импеданс (RC, RLC и т. Д.) | Только сопротивление |
Коэффициент мощности | Лежит между 0 и 1 | Всегда 1 |
Форма сигнала | Синусоидальная, трапецеидальная, треугольная и квадратная | Прямая линия, иногда пульсирующая. |
Базовый источник переменного тока (генератор переменного тока с одной катушкой)
Принцип вокруг генератора переменного тока прост. Если магнитное поле или магнит вращается вдоль стационарного набора катушек (проводов) или вращение катушки вокруг стационарного магнитного поля, переменный ток генерируется с помощью генератора переменного тока (генератора переменного тока).
Самая простая форма генератора переменного тока состоит из проволочной петли, которая механически вращается вокруг оси, находясь между северным и южным полюсами магнита.
Обратите внимание на изображение ниже.
Когда катушка якоря вращается в магнитном поле, создаваемом магнитами северного и южного полюсов, магнитный поток через катушку изменяется, и заряды, таким образом, проталкиваются через провод, создавая эффективное напряжение или индуцированное напряжение. Магнитный поток через петлю зависит от угла петли по отношению к направлению магнитного поля. Рассмотрите изображения ниже;
Из изображений, показанных выше, мы можем сделать вывод, что определенное количество линий магнитного поля будет обрезано при вращении якоря, количество «обрезанных линий» определяет выходное напряжение .С каждым изменением угла поворота и результирующим круговым движением якоря относительно магнитных линий также изменяется величина «перерезания магнитных линий», следовательно, изменяется и выходное напряжение. Например, линии магнитного поля, обрезанные под нулевым градусом, равны нулю, что делает результирующее напряжение равным нулю, но при 90 градусах почти все линии магнитного поля обрезаются, таким образом, максимальное напряжение в одном направлении генерируется в одном направлении. То же самое относится к 270 градусам, но только в обратном направлении.Таким образом, возникает результирующее изменение напряжения, когда якорь вращается в магнитном поле, что приводит к формированию синусоидальной формы сигнала . Таким образом, результирующее индуцированное напряжение имеет синусоидальную форму с угловой частотой ω, измеряемой в радианах в секунду.
Наведенный ток в приведенной выше схеме определяется уравнением:
I = V / R
Где V = NABwsin (вес)
Где N = Скорость
A = Площадь
B = Магнитное поле
w = Угловая частота.
Настоящие генераторы переменного тока, очевидно, сложнее этого, но они работают на тех же принципах и законах электромагнитной индукции, которые описаны выше. Переменный ток также генерируется с помощью определенных типов преобразователей и схем генераторов, которые можно найти в инверторах.
Трансформаторы
Принципы индукции, на которых основан переменный ток, не ограничиваются только его производством, но также и его передачей и распределением .Как и в то время, когда переменный ток приходил в расчет, одной из основных проблем было то, что постоянный ток не мог передаваться на большие расстояния, поэтому одной из основных проблем, которую необходимо было решить, чтобы переменный ток стал жизнеспособным, была возможность для безопасной доставки генерируемых высоких напряжений (KV) потребителям, которые используют напряжения в диапазоне V, а не KV. Это одна из причин, по которой трансформатор описывается как один из основных компонентов переменного тока, и о нем важно говорить.
В трансформаторе две катушки соединены таким образом, что при приложении переменного тока к одной он индуцирует напряжение в другой.Трансформаторы — это устройства, которые используются для понижения или повышения напряжения, подаваемого на одном конце (первичная обмотка), для создания более низкого или более высокого напряжения соответственно на другом конце (вторичная обмотка) трансформатора. Индуцированное напряжение во вторичной обмотке всегда равно напряжению, приложенному к первичной обмотке, умноженному на отношение количества витков вторичной обмотки к первичной обмотке.
Трансформатор, являющийся понижающим или повышающим трансформатором, таким образом, зависит от отношения числа витков на вторичной катушке к числу витков проводника на первичной обмотке.Если на первичной обмотке на витков больше, чем на вторичной, трансформатор понижает напряжение , но если первичная обмотка имеет меньшее количество витков по сравнению с вторичной обмоткой, трансформатор увеличивает напряжение применяется на первичной.
Трансформаторы сделали распределение электроэнергии на большие расстояния очень возможным, рентабельным и практичным. Чтобы уменьшить потери при передаче, электроэнергия передается от генерирующих станций при высоком напряжении и низком токе, а затем распределяется в дома и офисы при низком напряжении и высоком токе с помощью трансформаторов.
Так что на этом мы остановимся, чтобы не перегружать статью слишком большим количеством информации. Во второй части этой статьи мы обсудим формы сигналов переменного тока и рассмотрим некоторые уравнения и расчеты. Следите за обновлениями.
Напряжение постоянного тока | Airwindows
TL: DW; Буквально контролируйте напряжение для цифровых рабочих станций, потому что почему бы и нет?
DC Напряжение
Это именно то, что написано на банке. НЕ просто добавляйте это в смесь и крутите, чтобы увидеть, что из этого получится.Если вся ваша система связана по постоянному току, вы просто взорвете свои вуферы после сильного удара. Я не несу ответственности за ущерб, вызванный неправильным использованием необычных инструментов.
Что СЛЕДУЕТ делать? Вот несколько идей.
Нет почти такого же хорошего фильтра смещения постоянного тока, как применение противоположного смещения. Используйте замер, возможно, перетащите ползунок option / alt, если это позволяет ваша DAW, чтобы отменить смещение постоянного тока без каких-либо звуковых штрафов. Это называется «сервопривод постоянного тока», но в цифровом виде.Если вы можете сделать это идеально, а затем отскакивать файлы, чтобы вы могли работать с разделом с исправленным центром (чтобы вам не приходилось получать треск при его включении или выключении), это был бы самый качественный способ избавиться от ИСПРАВЛЕННОЙ Смещение по постоянному току без какого-либо изменения басов. Он сохранит вплоть до 0,001 Гц или что-то еще, и убьет только то, что является полностью неизменным постоянным током.
Если у вас есть преобразователь со связью по постоянному току и аналоговые модульные синтезаторы, вы можете использовать его для создания и модуляции управляющих напряжений.Используйте его как источник напряжения, а затем смешивайте все вместе, используя маршрутизацию DAW, так же, как вы используете патч-корды на своих синтезаторах, и будьте осторожны, чтобы не направлять управляющие напряжения на мониторы! Я знаю, что есть люди, которые делали странные вещи, чтобы получить постоянное напряжение внутри своих DAW. Теперь все намного проще 🙂
Этот плагин может быть бесполезен для вас, и не играйте с ним, если вы не знаете, что это такое. Если это полезно для вас, вы уже точно знаете, что с ним делать, так что вперед, теперь у вас есть управляющие напряжения DAW из простого плагина.
В моем Patreon ЕСТЬ ИЗМЕНЕНИЯ. Ленточные эмуляции ближе! Я уменьшил все цели, чтобы сделать их более достижимыми. (помните, я бы хотел, чтобы это было через многих людей, а не только через нескольких, цель должна оставаться достигнутой, чтобы я продолжал получать эти награды!)
Новое «начало просмотра списка один раз в месяц» теперь стоит 600 долларов, опенсорсинг — 800 долларов, выпуск двух в месяц — 1000 долларов и т. Д. Это добавлено к тому, что я уже делаю, а не заменяет его: я буду продолжать плагины, которые я делаю, вы тоже только начинаете получать «лучшие хиты».С нетерпением жду вступления в эту фазу! Я чувствую, что больше людей признают ценность моего Patreon, если эти плагины начнут выпускаться. Они довольно удивительны (и как только они ВЫПУСКАЮТСЯ, я могу разрабатывать новые версии, расширяя возможности моих исследований).
VOLTAGE AC / DC Tribute
VOLTAGE AC / DC TributeDIE AC / DC-TRIBUTE-SHOW
НАПРЯЖЕНИЕ — Дань AC / DC
AC / DC — dieser Name steht seit über 40 Jahren für puren Rock’n’Roll.Grundehrlich und kompromiss-los, dargeboten in energiegeladenen Live-Shows. VOLTAGE spielen AC / DC nicht einfach nur nach — sie zelebrieren die Idee ihres Vorbilds mit Respekt!
Seit ihrer Gründung 2001 rockt die Band vom Club bis zum Open-Air all Lokalitäten, die der Energie ihrer Show standhalten. Dabei haben sich die 5 Musiker einen guten Ruf unter den deutschen AC / DC-Tribute-Bands erspielt und ihrem Publikum в zahlreichen Konzerten в Германии и Österreich bewiesen: рок-н-ролл не остановить!
Im Programm: selbstverständlich Rock-Hymnen wie „T.N.T. »,« Highway to Hell »,« Thunderstruck »или« Hells Bells ». Aber eben kein Klassiker-Gedrängel, все незапланированные песни haben ihren festen Platz. Песни aus der Zeit vor 1980, mit den herrlich doppelbödigen Texten, bei denen jeder eingefleischte Fan leise in sein Bon-Scott-Gedenk-Shirt weint.
Musikalisch und optisch sind VOLTAGE dabei so nahe am Original, dass man meinen könnte, die Rock-Ikonen gäben sich höchstpersönlich die Ehre. Инструменты и оборудование из 70-х инструментов для аутентификации AC / DC-Sound.Ein Schlichter Sound, der heute genauso satt klingt wie damals. Eine Rhythmusfraktion an Bass und Drums, die den rollenden AC / DC-Groove — den unvergleichlichen «Rock’n’Roll Train» — в Bewegung setzt, während der Rhythmusgitarrist die rohen Riffs erbarmungslos aus seiner Gretsch würgt. Эйн Ангус-Янг-Клон в zu enger Schuluniform, mal hingebungsvoll im Blues, dann wieder giftig kreischend, der im Duckwalk wie unter Strom die Bühne kreuzt и beim обязательный стриптиз tatsächlich sein letztes Hemd gibt.Ein Sänger mit Brian-Johnson-Schiebermütze, der plärrt wie der Alte und presst wie der Neue. Der bei «The Jack» mit rostiger Kehle zum fiesesten Pokerspieler der Welt wird und bei «Rock or Bust» в Johnson-Manier die Wörter auf die Welt zu serveen scheint. Und das Beste: ohne an Authentizität einzubüßen, rockt die Band dermaßen entiastisch durch das Programm, dass sich das Publikum bereitwillig mitreißen lässt.
Diese Mischung aus optischer Ähnlichkeit, Sound-Brett und purer Leidenschaft, die von der Bühne stürmt und einem in die Knochen fährt, macht ein VOLTAGE-Konzert zum echten Live-Erlebnis und zu einem Muss DC für-jeden AC!
Вы хотите увидеть, как мы делаем свое дело? Все, что вам нужно сделать, это подключить нас к высокому…
НАПРЯЖЕНИЕ !!
НАПРЯЖЕНИЕ В ПОЕЗДКЕ
————————————-
06.05.2017 — 82296 Schöngeising, 25 Jahre Landjugend Schöngeising — Rock im Stadl
27.05.2017 — Schlachthof, Zenettistr. 9, 80337 München, 19: 00Uhr Einlass — 20:00 Uhr Showtime
17,06.2017 — 34. Harley-Davidson Treffen «DAYS OF THUNDER», am Unterberg in Kössen, Österreich
15.07 ODER 29.07.2017 Esconova Open Air, 86972 Altenstadt
Keine Veranstaltungen mehr.
НАПРЯЖЕНИЕ НА YOUTUBE
НАПРЯЖЕНИЕ ПЕСНИ
ИНФОРМАЦИЯ О БРОНИРОВАНИИ
Реле контроля напряжения CM-ESS.2 Для однофазного переменного / постоянного напряжения
Трехфазное реле контроля CM-PFE
Техническое описание Трехфазное контрольное реле CM-PFE CM-PFE — это трехфазное контрольное реле, которое контролирует фазовый параметр, последовательность фаз и обрыв фазы в трехфазной сети.2CDC 251005 S0012 Характеристики
ПодробнееТермисторная защита двигателя
Термисторная защита двигателя Серия CM-E Термисторная защита двигателя Термисторная защита двигателя Реле защиты двигателя Преимущества и преимущества Таблица выбора Принцип действия и области применения термистора
ПодробнееРучной пускатель двигателя MS116
Техническое описание Ручной пускатель двигателя MS116 Ручной пускатель двигателя представляет собой электромеханическое устройство для защиты двигателя и цепи.Эти устройства предлагают средства местного отключения двигателя, ручное управление ВКЛ / ВЫКЛ и
ПодробнееИндекс преобразователей сигналов
Преобразователи сигналов Указатель Источники питания 2 — Преобразователи сигналов Преобразователи сигналов … 2. 2.24 Выбор принадлежностей, CC-U … 2.7 Преобразователи аналоговых сигналов, CC-E / STD и CC-E x / x … 2.3 Стандартный аналоговый сигнал конвертер,
ПодробнееИндекс преобразователей сигналов
Указатель Источники питания — преобразователи сигналов и данных Общие сведения…1 Преобразователи аналоговых сигналов …. 3.26 Характеристики и преимущества … 3 Применение, сертификаты и отметки … 4 Обзор … 5 -.6 Информация для заказа … 7
ПодробнееКлеммная колодка с винтовыми зажимами ZS10
Технический паспорт 1SNK 161 004 D0201 ZS10 Клеммная колодка с винтовыми зажимами Проходная страница каталога 1SNK 161 004 S0201 10 мм² 6 AWG 8 мм 0,315 дюйма Расстояние между элементами и преимуществами 53 2,09 дюйма Экономия места при подключении
ПодробнееМодули дискретного ввода
8 172 TX-I / O Модули дискретного ввода TXM1.8D TXM1.16D Две полностью совместимые версии: TXM1.8D: 8 входов, каждый с трехцветным светодиодом (зеленый, желтый или красный) TXM1.16D: Как TXM1.8X, но 16 входов, каждый с
ПодробнееR.C.C.B. s двухполюсный LEXIC
87045 LIMOGES Cedex Телефон: (+33) 05 55 06 87 87 Факс: (+ 33) 05 55 06 88 88 R.C.C.B. s двухполюсный LEXIC 089 06/09/10/11/12/15/16/17/18/27/28/29/30/35, СОДЕРЖАНИЕ СТРАНИЦЫ 1. Электрические и механические характеристики…
ПодробнееМодуль резервирования QUINT-DIODE / 40
Модуль резервирования QUT DIODE обеспечивает: 00% развязку параллельно подключенных источников питания Может быть установлен во взрывоопасных зонах Поддерживаются токи нагрузки до 60 А Простая сборка путем защелкивания
ПодробнееТехнические данные Общие
Реле перегрузки, управляемое трансформатором тока, 60-90A, 1N / O + 1N / C Partno.ZW7-90 Артикул. 002618 Каталожный XTOT090C3S Программа поставки Ассортимент продукции Реле перегрузки с трансформатором тока ZW7 Описание
ПодробнееФЕНИКС-КОНТАКТ — 01/2007
Источник бесперебойного питания INTERFACE Data Sheet 103123_00_ru PHOENIX CONTACT — 01/2007 Описание Новый MINI-DC-UPS / 24 DC / 2, особенно компактный и простой в использовании, представляет собой комбинацию источника питания
ПодробнееПредустановленный счетчик signo 721
Максимально простое управление Впечатляющий, четко читаемый дисплей размером 48×48 мм Входная частота до 60 кГц Простая установка благодаря вставным клеммам ОБЩИЕ ТЕХНИЧЕСКИЕ ДАННЫЕ Дисплей Высота цифр Напряжение питания
ПодробнееMINI MCR-SL-R-UI (-SP)
Датчик сопротивления / положения INTERFACE, техническое описание 0807_en_05 Описание PHOENIX CONTACT — 0/008 Особенности Тонкий MINI MCR-SL-R-UI.