Схема инвертора электрическая: Схема сварочного инвертора – принципиальная схема инверторной сварки

Содержание

Электрические Схемы Сварочных Инверторов — tokzamer.ru

Причем использование последнего сейчас признается более разумным. Устанавливаются на радиатор.


Получаемый результат связан с выходом постоянного сварочного тока, сила которого является очень высокой, а напряжение низким. Мост модифицирует ток из переменного в постоянный.

Получить на выходе устройства ток достаточной силы для того, чтобы можно было с его помощью эффективно выполнять сварочные работы, позволяет понижающий напряжение трансформатор, установленный за инверторным блоком.
Схемы сварочных инверторов самодельных и заводских.

Сопротивление резистора — 47 ом. У новой версии три импульсных трансформатора, в то время как у старой только два.

Возможные неисправности и способы их устранения Даже надёжные электронные компоненты могут иногда выходить из строя, поломки случаются при неправильной эксплуатации сварочных инверторов. Одновременно происходит возрастание силы сварочного тока, которая превышает А.

Вот схема.

Для обеспечения циркуляции воздуха между обмотками оставляется воздушный зазор.

Датчик срабатывает при достижении критической температуры нагрева какого-либо элемента.

РЕМОНТ СВАРОЧНОГО ИНВЕРТОРА ИНТЕРСКОЛ ИСА 250/10, 6

Типовая схема и принцип работы инвертора

В этом и заключается основная роль трансформатора T3. Читать далее. Для питания микросхем и элементов, которые расположены на плате управления, используется интегральный стабилизатор на 15 вольт — LMA. По принципу действия он очень схож с импульсными блоками питания, например, компьютерными блоками питания AT и ATX.


Проверка работоспособности После сборочных и отладочных работ проверяется работоспособность сварочного аппарата. Модуль ключей представлен четырьмя транзисторами в каждой из четырех групп.

Дополнительное расположение конденсаторов 0,15 мкФ позволяет сбрасывать избыток мощности обратно в цепь.

При этом принцип функционирования последнего является неизменным.

Трансформатор понижает ток до уровня напряжения, равного В.

Вот тут и вступает в работу выпрямитель, как раз занимающийся тем, чтобы поступающий ток имел постоянные параметры.

Сопротивление резистора — 47 ом. Показатель напряжения холостого хода 62 В.
ДВА в ОДНОМ. СВАРКА + ИНДУКЦИОННАЯ ПЕЧЬ. Краткий обзор. Сварочный аппарат — нагреватель 2 в 1

Читайте также: Подключить электричество на участок

Виды инверторных источников сварочного тока

Корпус с вентилятором системы охлаждения.

Принципиальная схема аппаратов инверторного типа Для того чтобы понимать суть работы современного сварочного агрегата, необходимо знать из каких блоков состоит принципиальная схема сварочного инвертора, который обеспечивает энергией дугу короткого замыкания при сварочном процессе.


Оно состоит из 2—4 конденсаторов и дросселя.

Эти ситуации могут происходить по причине недостаточного охлаждения силовых элементов при высокой температуре окружающего воздуха, а также при работе в условиях запылённой или слишком влажной атмосферы. Причем использование последнего сейчас признается более разумным. Как работает сварочный инвертор Формирование тока большой силы, при помощи которого создается электрическая дуга для расплавления кромок соединяемых деталей и присадочного материала, — это то, для чего предназначен любой сварочный аппарат.

Этот элемент подает на силовую часть сварочного агрегата электроток. Давайте немного подробнее разберемся с описанной схемой.


В условиях повышенной влажности могут возникать утечки, которые также могут привести к неисправности. Электрическая схема инвертора включает в себя следующие обязательные компоненты: Питающий блок.

Важным этапом является решение задачи, связанной с выбором необходимой технологии, оптимизирующей работу силовой части. В устройство входит силовой трансформатор. Для улучшения теплового контакта нужно использовать кремнийорганическую термопасту.

Если он попросту закипает, значит, в схеме есть недочеты и работу лучше не продолжать. Понижение высокочастотного напряжения; 4. Исключительная стабильность напряжения, подаваемого на сварочную дугу, обеспечивается за счет автоматических элементов электрической схемы инвертора. Поэтому в случае ремонта заменять диоды в выходном выпрямителе следует именно быстродействующими.
Ремонт сварочного инвертора Ресанта 190А. Не включается .Repair welding inverter 190A Resanta

Cхемы сварочных инверторов

Возможные неисправности и способы их устранения Даже надёжные электронные компоненты могут иногда выходить из строя, поломки случаются при неправильной эксплуатации сварочных инверторов.

Все сварочные аппараты делятся на несколько основных групп: Для проведения электродуговой сварки при применении покрытых специальным составом электродов применяется оборудование типа ММА. Далее мы приводим блок-схему функционирования стандартного инвертора, которая наглядно демонстрирует принцип его применения. Возможные неисправности и способы их устранения Даже надёжные электронные компоненты могут иногда выходить из строя, поломки случаются при неправильной эксплуатации сварочных инверторов.

Пайка платы.

Выводы Инвертор — сложное электронное устройство, но простое в использовании, его подключают к электрической цепи с напряжением V и без опасения проводить сварочные работы. При испытаниях следует добавлять витки до тех пор, пока дуга не начнёт ощутимо сильно тянуться, мешая отрыву.

Схемы аппаратов Сварис

Конденсаторы, установленные в фильтре, после активации зарядки способны выдавать большой силы ток, который сжигает, поэтому инвертор обеспечивается плавным пуском. Несмотря на применение схожей схемы при создании практически всех инверторов, они существенно отличаются друг от друга. Электрическая схема предполагает работу агрегата на основе импульсных преобразователей высокой частоты. Обычные выпрямительные диоды с такой задачей бы не справились — они бы просто не успевали открываться и закрываться, нагревались и выходили бы из строя.

Возможные неисправности и способы их устранения Даже надёжные электронные компоненты могут иногда выходить из строя, поломки случаются при неправильной эксплуатации сварочных инверторов. Модуль ключей представлен четырьмя транзисторами в каждой из четырех групп. Затем происходит выравнивание тока при наличии конденсатора и его поступление к блоку транзистора.

Принципиальная электрическая схема в деталях: составляющие

Таким образом, на первом этапе мы получаем на выходе с выпрямителя постоянный ток, имеющий значение более V. Ранее в сварочных инверторах использовались трансформаторы, очень мощные, работающие за счет обмотки трансформатора и имеющие, из-за этого, размеры и вес, делающие сварочные аппараты громоздкими и неудобными в применении. Инверторное устройство еще раз преобразовывает электроток теперь уже в переменный , увеличивая при этом его частоту.

Через них протекают огромные токи. Часть 1. При устройстве вторичной обмотки витки наматываются в несколько слоев. Если напряжение провода меньше В, значит, устройство неисправно.
Схема китайского инвертора

Инвертор напряжения ⋆ diodov.net

Программирование микроконтроллеров Курсы

С развитием альтернативных источников энергии, в частности с массовым внедрением солнечных панелей, инвертор напряжения находит все более широкое применение. Поскольку применяется как постоянный, так и переменный ток, то часто возникает необходимость в преобразовании энергии одного рода в другой. Устройства, преобразующие переменный ток в постоянный называются выпрямителями. В качестве выпрямителя чаще всего применяют диодный мост. А устройство, преобразующее постоянный ток в переменный называют инвертором.

Структура инвертора напряжения

По ряду положительный свойств большую популярность завоевал инвертор напряжения. Особенно широко он используется с целью преобразования электрической энергии постоянного тока аккумуляторной, солнечной батареи или суперконденсатор в переменное напряжение 230 В, 50 Гц для питания большинства промышленных устройств.

Принцип работы инвертора напряжения

Представим, что у нас имеется источник электрической энергии постоянного тока такой, как аккумулятор или гальванический элемент и потребитель (нагрузка), который работает только от переменного напряжения. Как преобразовать один вид энергии в другой? Решение было найдено довольно просто. Достаточно подключить аккумулятор к потребителю сначала одной полярностью, а затем через короткий промежуток отключить аккумулятор, а потом снова подключить, но уже обратной полярностью. И такие переключения повторять все время через равные промежутки времени. Если выполнять таких переключений 50 раз за секунду, то на потребитель будет подаваться переменное напряжение частотой 50 Гц. Роль переключателей чаще всего выполняют транзисторы или тиристоры, работающие в ключевом режиме.

На схеме, приведенной ниже, изображен источника питания Uип с клеммами 1-2 и потребитель RнLн, обладающий активно-индуктивным характером, с клеммами 3-4. В один момент времени потребитель клеммами 3-4 подключается к клеммам 1-2 Uип, при этом I от Uип протекает в направлении LнRн, а в следующий момент клеммы 3-4 изменяют свое положение и I протекает в противоположном направлении относительно потребителя электрической энергии.

Схема преобразования постоянного напряжения в переменное

Схема инвертора напряжения

Наиболее распространённая схема инвертора напряжения состоит из четырех IGBT транзисторов VT1…VT4, включенных по схеме моста, и четырех обратных диодов, обозначенных VD1…VD4, параллельно соединенных с управляемыми полупроводниковыми ключами во встречном направлении. Преобразователь питает активно-индуктивную нагрузку. Именно она является самой распространенной, поэтому была взята за основу.

Схема инвертора напряжения

Входные клеммы инвертора подключаются к Uип. Если таким источником служит диодный выпрямитель, то выход его обязательно шунтируется конденсатором C.

В силовой электронике наибольшее применение нашли транзисторы с изолированным затвором IGBT (именно они показаны на схеме) и GTO, IGCT тиристоры. При оперировании меньшими мощностями вне конкуренции полевые транзисторы MOSFET.

В момент времени t1 открываются VT1 и VT4, а VT2 и VT3 – закрыты. Образуется единственный путь для протекания тока через нагрузку: «+» Uип – VT1 – нагрузка RнLн VT4«-» Uип. Таким образом, на интервале времени t1 ‑ t2 создается замкнутая цепь для протекания iн в соответствующем направлении.

Инвертор напряжения

Режим работы схемы

Для изменения направления iн снимаются управляющие импульсы с баз VT1 и VT4 и подаются сигналы на открытие второго и третьего VT2,3. В точке t2 на оси времени t, первый и четвертый VT1,4 закрыты, а второй и третий – открыты. Однако, поскольку нагрузка активно-индуктивная, то iн не может мгновенно изменить направление на противоположное. Этому будет препятствовать энергия, запасенная на индуктивности Lн. Поэтому он будет сохранять прежнее направление до тех пор, пока не рассеется все энергия, запасенная на индуктивности в виде магнитного поля, равная Wм = (Lн∙i2)/2.

Автономный инвертор напряжения

В связи с этим, на отрезке времени t2 – t3 ток будет протекать через диоды VD2 и VD3, сохраняя прежнее направление на RнLн, но пройдет в обратном направлении через Uип или конденсатор C, если источником энергии является диодный выпрямитель. Поэтому следует обязательно установить конденсатор C, если преобразователь подключен к диодному выпрямителю. Иначе прервется путь протекания iн, в результате чего возникнут сильное перенапряжение, которое может повредить изоляцию потребителя и выведет из строя полупроводниковые приборы.

В момент времени t3 вся запасенная на индуктивности энергия снизится до нуля. Начиная с момента t3 до момента t4 под действием приложенного Uип через открытые полупроводниковые ключи VT2 и VT3 будет протекать iн через LнRн уже в другую сторону.

Схема автономного инвертора напряжения

В точке t4, расположенной на оси времени t, снимается управляющий сигнал с VT1,3, а VT1 и VT4 открываются. Однако iн продолжает протекать в ту же сторону, пока не расходуется энергия, запасенная в индуктивности. Это будет происходить на интервале времени t4 – t5.

Принцип работы инвертора напряжения

Работа схемы

Начиная с момента tiн изменить направление и потечет от Uип через LнRн по пути через VT1 и VT4. Далее все процессы, протекающие в электрической цепи, будут повторяться. На LнRн форма напряжения будет прямоугольной, но ток на активно-индуктивной нагрузке будет иметь пилообразную форму за счет наличия индуктивности, которая не позволяет ему мгновенно вырасти и снизиться. Если потребитель имеет чисто активный характер (индуктивность и емкость практически равны нулю), то формы iн и uн будет в виде прямоугольников.

Поскольку VT1…VT4 попарно открывались на всей протяженности соответствующих полупериодов, то на выходе преобразователя формировалось максимально возможное uн, поэтому через LнRн протекал iн максимальной величины. Однако часто требуется обеспечить плавное нарастание мощности на потребителе, например для постепенного увеличения яркости освещения или частоты вращения вала двигателя.

Следует пояснить, что сигналы, поступающие из системы управления СУ, подаются не сразу на базы полупроводниковых ключей, а посредством драйвера. Так как современные СУ построены на безе микроконтроллеров, которые выдают маломощные сигналы, не способные открыть IGBT, то для увеличения мощности открывающего импульса применяется промежуточное звено – драйвер. Кроме того на часто драйвер выполняет множество дополнительных функций – защищает транзистор от короткого замыкания, перегрева и т.п.

Инвертор напряжения с регулированием выходных параметров

Самый простой способ изменить величину uн заключается в регулировании величины подводимого Uип, если такая возможность имеется. Например, для регулируемого выпрямителя это не проблема. Но такие источники электрической энергии как аккумуляторная батарея, суперконденсатор или солнечная батарея не имеют данной возможности. Поэтому регулировка частоты и величины выходного uн полностью возлагается на инвертор.

Для регулирования величины uн одну пару диагонально противоположных транзисторов следует открыть несколько ранее, чем в рассмотренном выше случае. Поэтому алгоритмом системы управления следует предусмотреть сдвигу управляющих сигналов. Например, подаваемых на открытие VT1 и VT4 относительно импульсов управления, подаваемых на базы VT2 и VT3, на некоторый угол, называемый углом управления α.

Алгоритм управления транзисторами инвертора напряжения

Обратите внимание, что амплитудное значение uн остается неизменной величины и приблизительно равно значению Uип, но действующее значение uн будет снижаться по мере увеличения угла управления α. Рассмотрим, как это работает.

На интервале времени от t1 до t2 открыта пара транзисторов VT1 и VT4; iн протекает справа налево, как показано на схеме. В момент t2 закрывается первый транзистор и открывается второй. Ток сохраняет прежнее направление, а нагрузка оказывается замкнутой, в результате чего напряжение на ней падает практически до нуля, соответственно снижается и iн.

Схема инвертора напряжения на транзисторах

Схема преобразователя напряжения

Принцип работы преобразователя напряжения

Схема преобразователя напряжения на транзисторах

Далее из системы управления поступает команда и VT2 открывается, а VT4 закрывается. Однако накопленная в индуктивности энергия не позволяет току iн изменить свое направление, и он протекает по прежней цепи, только уже через диоды VD2 и VD3 встречно источнику питания. Длительность этого процесса продолжается до точки времени t4. В точке t4 под действием приложенного Uип iн изменяет знак на противоположный.

Широтно-импульсная модуляция

Такой алгоритм работы полупроводниковых ключей в отличие от предыдущего алгоритма формирует паузу определенной длительности, которая в конечном итоге приводит к снижению действующего значения uн. Для формирования iн синусоидальной формы применяется широтно-импульсная модуляция ШИМ. Преобразователь с ШИМ, а точнее алгоритм его работы, предусматривающий ШИМ, мы рассмотрим отдельно.

Также следует заметить, что рассмотренный алгоритм управления полупроводниковыми ключами называется широтно-импульсным регулированием ШИР, который часто путают с ШИМ, хотя разница огромная.

В преобразовательной технике ШИМ практически вытеснила ШИР, поскольку обладает рядом положительных свойств, благодаря которым повышается КПД всего устройства и снижается уровень электромагнитных помех. Поэтому в дальнейшем мы рассмотрим инвертор напряжения с ШИМ.

Электроника для начинающих

Еще статьи по данной теме

Принципиальная схема сварочного инвертора для различных моделей

Современные сварочные работы проводятся при применении специальных инверторов. Ранее для подобной обработки металла использовали обычные трансформаторы, которые характеризуются меньшей эффективностью. Принципиальная схема сварочного инвертора может несколько отличаться, но все они характеризуются легкостью и компактностью. Только при учете конструктивных особенностей можно провести ремонт сварочного инвертора и его точную настройку.

Принципиальная схема сварочного инвертораПринципиальная схема сварочного инвертора Принципиальная схема сварочного инвертора

Элементы электрической схемы сварочных инверторов

Принципиальная электрическая схема инверторного сварочного аппарата предусматривает сочетание нескольких элементов, которые связаны между собой. Основными можно назвать:

  1. Блок, отвечающий за подачу энергии к силовой части. Этот элемент представлен сочетанием нескольких устройств, которые способны изменять параметры тока до требуемых значений. Как правило, включается емкостный фильтр и выпрямитель.
  2. В устройство входит силовой трансформатор. Также в блок питания сварочного инвертора входит транзистор 4n90.
  3. Отдельный элемент отвечает за питание слаботочной части конструкции.
  4. Для контроля основных параметров устанавливается ШИМ контроллер. Он представлен сочетанием датчика тока нагрузки и трансформатора.
  5. Отдельный блок отвечает за защиту конструкции от воздействия тепла. При прохождении электрического тока некоторые элементы могут серьезно нагреваться. Поэтому дополнительно устанавливается охлаждающий модуль, представленный вентилятором и датчиком температуры.
  6. Блоки управления, которые позволяют устанавливать основные параметры, а также элементы индикации.
Пример принципиальной схемы для тока 250АПример принципиальной схемы для тока 250А

Пример принципиальной схемы для тока 250А

Оборудование диодного моста для сварочного аппарата производится и устанавливается с учетом мощности устройства и некоторых других моментов. Каждый аппарат имеет свои особенности, которые рассмотрим далее подробно.

Схемы аппаратов Сварис

Сварочный аппарат Сварис 200 характеризуется простотой в применении и невысокой стоимостью. Уже моделям Сварис 160 были присущи высокие эксплуатационные характеристики, а новый вариант исполнения был усовершенствован. Схема инверторного сварочного аппарата определяет следующие эксплуатационные характеристики:

  1. Максимальный показатель потребления составляет 5 кВт.
  2. Сварочный ток может варьировать в пределе от 20-200 А.
  3. Показатель напряжения холостого хода 62 В.
  4. Показатель КПД 85%.
  5. Рекомендуемые электроды 1,6-5,0.

В целом можно сказать, что инвертор выполнен по классической схеме, которая была рассмотрена выше.

Сварочный аппарат СварисСварочный аппарат Сварис
Сварочный аппарат Сварис
Принципиальная схема сварочного инвертора СварисПринципиальная схема сварочного инвертора Сварис
Принципиальная схема сварочного инвертора Сварис

Схемы моделей ММА-200 и ММА-250

Большое распространение получили модели ММА-200 и ММА-250. Эти инверторы практически идентичны, разница заключается лишь в нижеприведенных моментах:

  1. Схема сварочного инвертора ММА 250 предусматривает наличие в выходном каскаде по 3 резистора полевого типа. Все ни подключены параллельно. Схема сварочного инвертора ММА 200 указывает лишь на наличие двух резисторов.
  2. У новой версии три импульсных трансформатора, в то время как у старой только два.

Основная схема обеих моделей практически полностью идентична.

Схема инвертора ММА-200Схема инвертора ММА-200

Схема инвертора ММА-200

Схемы Inverter 3200 и 4000

Для проведения ручной дуговой сварки можно использовать Inverter 4000 или 3200. Оба аппарата обладают практически идентичной конструкцией, которая обеспечивает наличие следующих функций:

  1. Защита от эффекта залипания электрода.
  2. Защита основных элементов от серьезного перепада напряжения.
  3. Контроль основных параметров дуги.
  4. Встроенный элемент охлаждения с контрольными датчиками.

При изготовлении инверторов была обеспечена защита по классу IP21. Мощность устройства составляет 5,3 кВт, питается от стандартной сети энергоснабжения. Подробная схема inverter 3200 pro определяет весьма привлекательные свойства этих моделей, за счет чего они получили широкое распространение.

Схемы других моделей

Как ранее было отмечено, практически все инверторы работают по схожему принципу, и создаваемые схемы могут отличаться несущественно. Все сварочные аппараты делятся на несколько основных групп:

  1. Для проведения электродуговой сварки при применении покрытых специальным составом электродов применяется оборудование типа ММА. Подобная схема характеризуется высокой эффективность, а конструкция имеет небольшой вес.
  2. Для применения тугоплавких электродов применяется сварочное оборудование типа ММА+TIG. Они могут работать в среде инертных газов.
  3. На производственных линиях встречаются агрегаты с полуавтоматической подачей прутка. В этом случае работа, как правило, проводится в среде инертных газов или в специальных ванночках.
  4. При кузнечном или прочем ремонте используется точечная сварка.

Модель ARC 160, схема которой довольно сложна, может применяться для проведения самых различных работ. В отличии от arc 140, схема новой модели лишена основных недостатков.

Сварочный инвертор ТОРУС 250Сварочный инвертор ТОРУС 250

Сварочный инвертор ТОРУС 250

Вариант исполнения торус 250 состоит из следующих элементов:

  1. Генератора тактового типа, построенного на микросхеме TL Стоит учитывать, что схема мощного инвертора не предусматривает использование ШИМ, но в микросхеме есть два компаратора с датчиками тепловой защиты.
  2. Система защиты и регулировочный модуль выполнены на основе LM Датчик, определяющий параметры тока, помещен на ферритовом кольце с обмоткой.
  3. В схему включается также два выходных драйвера, построенные на IR

В отдельную категорию относят схему сварочного инвертора на тиристорах, которая получила весьма широкое распространение.

Ремонт Торус 250 следует проводить с открытия конструкции и визуального осмотра основных элементов. В рассматриваемом случае они следующие:

  1. Выпрямитель выходного типа представлен отдельной платой, на которой размещается два радиатора. Они служат в качестве основания для размещения диодных сборок. Также в модуль входит один трансформатор и дроссель. Количество элементов в выходном выпрямителе во многом зависит от конкретной сборки.
  2. Модуль ключей представлен четырьмя транзисторами в каждой из четырех групп. Для того чтобы снизить степень нагрева все они размещаются на отдельных радиаторах, которые изолированы специальными прокладками.
  3. В качестве выходного выпрямителя используется мощный диодный мост. В рассматриваемом случае он расположен в нижней части конструкции. На этой модели устанавливается крайне надежный и практичный мост, который сложно спалить при исправной работе системы охлаждения.
  4. Микросхема управления является основным элементом конструкции. Как правило, от правильности его работы зависит долговечность всего аппарата. Самостоятельно проверить блок можно только при наличии специального осциллографа и соответствующих навыков работы с ним.
  5. Корпус с вентилятором системы охлаждения. Как правило, охлаждающий блок выходит из строя только в случае механического воздействия.

Для диагностики многих элементов приходится проводить их демонтаж. Именно поэтому лучше всего доверить работу профессионалам, так как неправильная сборка может привести к существенным проблемам.

Сварочный инвертор САИ 200, схема которого несущественно отличается от аппаратов схожего типа, применяется для ручной дуговой сварки и наплавки при применении штучных электродов. RDMMA 200 относится к оборудованию нового типа, которое создается без применения трансформаторов. За счет этого возможна более точная и плавная регулировка показателей тока, при работе не появляется сильного шума.

Инвертор САИ 200Инвертор САИ 200
Инвертор САИ 200
Принципиальная схема сварочного инвертора САИ 200Принципиальная схема сварочного инвертора САИ 200
Принципиальная схема сварочного инвертора САИ 200

В заключение отметим, что вышеприведенная информация определяет сложность конструкции сварочных инверторов. При этом производители не распространяют подробные схемы устройств, что усложняет обслуживание и ремонт. Несмотря на применение схожей схемы при создании практически всех инверторов, они существенно отличаются друг от друга. Именно поэтому перед проведением каких-либо работ нужно подробно ознакомиться с конструктивными особенностями устройства.

Схема сварочного инвертора: принципиальная электрическая схема аппарата

На чтение 6 мин. Просмотров 5.2k. Опубликовано

Схема и схема значительно отличаются друг от друга. Во втором случае базу ранних агрегатов, чтобы провести сварочные работы, составляют трансформаторы с понижающим типом, что придает им габаритность и тяжесть.

На сегодняшний день современное оборудование, за счет частой эксплуатации во время производства, стало легким, компактным, с широким спектром возможностей и особенностей.

Главный элемент в электросхеме сварочных инверторов заключается в импульсивном преобразователе, благодаря которому вырабатывается высокочастотный ток.

Классификация инверторов

Каждый отдельный тип сварочных работ подразумевает использование определенного инверторного оборудования, которое необходимо ещё правильно выбрать. У каждой модели есть схема с особенностями, отличной характеристикой от других агрегатов и спектром возможностей.

Оборудования от современных производителей одинаково используются предприятиями в производственной сфере, а также любителями бытовой эксплуатации.

Изготовители регулярно изменяют принципиальные электрические схемы для того чтобы усовершенствовать их, наделить новым функционалом и повысить качество их технических характеристик.

Инверторное оборудование является основным устройством, при помощи которого выполняют такие технологические операции:

  • электродуговая сварка с использованием плавящего либо неплавящегося электрода;
  • плазменная резка;
  • работы со сваркой по технологии полуавтоматики либо автоматики.

Помимо перечисленного, инверторное оборудование также считается самым эффективным способом, чтобы сварить алюминиевые детали, элементы из нержавеющей стали и иных материалов со сложной свариваемостью.

[box type=”fact”]Несмотря на индивидуальные особенности каждой модели и каждой электросхемы, в результате инвертор для сваривания делает шов качественным, надежным и аккуратным, вне зависимости от использованного вида технологий.[/box]

Стоит также отметить, что он отличается компактностью, легким весом, благодаря чему его можно использовать при любых условиях, отнести в любое место, где проводится сварочный процесс.

Схема инвертора для сварки

схема инвертора для сваркиЭлектрическая схема сварочного инвертора

Схема инверторного сварочного агрегата имеет особенную характеристику и функционал, в который входят следующие составляющие:

  1. Орган управления и индикации.
  2. Система, отвечающая за работу термической защитной функции и управлением охлаждающим вентилятором.
    Сюда также относят вентилятор самого инверторного аппарата и датчик с температурными показателями.
  3. Электрические принципиальные схемы подразумевают под собой наличие ШИМ-контроллера, состоящий из трансформатора с током, датчика с током нагрузки.
  4. Система питания на детали слаботочного участка электросхемы аппаратного инвертора для сварки.
  5. В преобразователе схемы может устанавливаться механизм, благодаря которому в силовую систему аппарата поступает электропитание.
    Сюда относится емкостный фильтр, выпрямитель, а также нелинейная зарядная цепь.
  6. Силовая часть с однотактным конвертором.
    В неё также входят: силовой трансформатор, выпрямитель вторичного типа и дроссель для выхода тока.

В каждом описании принципиальной должна быть краткая характеристика всех составляющих элементов.

Принцип работы схемы аппарата для сварки

Основной целью инверторного сварочного агрегата является создание тока с высокой мощностью, который формируется в электрическую дугу. Та, в свою очередь, плавит кромки свариваемых элементов и присадочный материал.

Все это происходит на большом диапазоне особенностей конструкции. Стоит также отметить и то, что схема сварочного аппарата помогает в ИПС ремонте любого устройства.

чертеж инвертораСхема инвертора для сварочных работ.

Примерно механизм действия электронной схемы выглядит следующим образом:

  1. Ток с переменной частотой в 50 гц через обычную электрическую сеть попадает в выпрямитель, в котором преобразовывается ток в постоянный.
  2. Затем ток происходит обработку для сглаживания за счет использования специализированной системы.
  3. После фильтра ток оказывается в самом инверторе, который, в свою очередь, должен переформировать его обратно в переменный, однако прибавляя к нему высокую частоту.
  4. Затем, применяя трансформатор, снижается напряжение в переменном токе с высокими частотами, благодаря чему усиливается его действие.
[box type=”info”]Чтобы более детально разобраться во всех нюансах принципиальной схемы сварочного инвертора, необходимо изучить все элементы по отдельности с их механизмом действия.[/box]

Достоинства и недостатки сварочных аппаратов инверторного типа

Инверторный сварочный аппарат, как и любая другая техника, имеет свои достоинства и недостатки.

чертеж инверторного сварочного аппаратаСхема сварочного аппарата инверторного типа.

К основным преимуществам этого оборудования, которое так умело заменило обычный трансформатор, можно отнести:

  1. За счет нового подхода к производству конструкций инверторного типа для сваривания металлов, а также новому контролю за током большинство моделей весит от 5 до 12 килограмм, в отличие от трансформаторов, которые имеют вес в 18-35 килограмм.
  2. У данных устройств есть достаточно высокий показатель КПД. Это происходит благодаря тому, что аппарат потребляет минимальное количество энергии для нагрева всех систем и механизмов. К примеру, трансформатор для сварки быстро нагревается, что приводит к перегреву и выходу из строя оборудования.
  3. В некоторых электросхемах трансформатора, также как и в инверторах, сварка может проходить при помощи электродов вне зависимости от его вида.
  4. Рассматриваемые устройства, за счет повышенного показателя КПД, тратят электроэнергию вдвое меньше, нежели простой трансформатор для сваривания.
  5. Многие современные оборудования имеют в своей структуре опции, благодаря которым минимизируется процесс совершения ошибок мастера во время технологических работ. К таким опциям можно отнести антизалипание и быстрый розжиг дуги.
  6. В некоторых устройствах встроена функция программирования, благодаря которой мастер с точностью и максимальной оперативностью регулирует режим работы во время сварочного процесса конкретного вида.
  7. Наличие высокое универсальности данных конструкций обуславливается регулированием всех систем, используя ток в широком диапазоне. Это дает возможность применять оборудование, что сваривает разнометалловые детали и выполняет процедуру с любой технологией.

У схем также имеются и недостатки.

Они заключаются в следующих аспектах:

  1. Инверторные оборудования сваривания на рынке стоят достаточно дорого, до 50% больше, чем цена классических трансформаторов для сварочных работ.
  2. Принципиальная электрическая схема инверторного сварочного аппарата подразумевает, что чаще всего будет ломаться такой механизм, как транзистор.
    Он является достаточно уязвимой деталью, что влечет за собой ремонт стоимостью до 60% от стоимости всего оборудования. Из этого можно сделать вывод, что ремонт сам по себе – дорогое удовольствие.
  3. Поскольку принципиальные электросхемы у инверторов, чтобы сваривать материал, являются достаточно сложными, специалисты не советуют их эксплуатировать во время плохой погоды, либо на морозе, чтобы не вывести из строя механизмы и сохранить аппарат на долгий период.
    Для сварочных работ в поле либо других открытых пространствах необходимо организовать и соорудить специальное закрытое место с отоплением, где можно будет воспользоваться данным агрегатом для сваривания.

Итог

Для некоторых специалистов схема сварки представляет собой дополнительную подсказку при сборке агрегатов для сваривания металлов, что позволяет быстро выполнить нужную работу. Достаточно важно обладать базовыми познаниями в сфере электротехники.

Доступность схем сварочных инверторов обуславливается их принципиальностью, иными словами любому мастеру для сборки понадобиться либо инструкция, либо чертежи. Стоит обратить внимание, что в принципиальных электрических схемах делается акцент на достижение стабильности высокого уровня у сварочной дуги.

Устройство сварочного инвертора.

Принцип работы сварочного инвертора

В настоящее время стали очень популярны и доступны по цене сварочные аппараты инверторного типа.

Несмотря на свои положительные качества, они, как и любое другое электронное устройство, временами выходит из строя.

Чтобы отремонтировать инвертор сварочного аппарата нужно хотя бы поверхностно знать его устройство и основные функциональные блоки.

В первых двух частях будет рассказано об устройстве сварочного аппарата модели TELWIN Tecnica 144-164. В третьей части будет рассмотрен пример реального ремонта сварочного инвертора модели TELWIN Force 165. Информация будет полезна всем тем начинающим радиолюбителям, которые хотели бы научиться самостоятельно ремонтировать сварочные аппараты инверторного типа.

Дальше будет много букв – наберитесь терпения .

Сам инверторный сварочный аппарат представляет не что иное, как довольно мощный блок питания. По принципу действия он очень схож с импульсными блоками питания, например, компьютерными блоками питания AT и ATX. Вы спросите: «Чем они похожи? Это ведь абсолютно разные устройства…». Схожесть заключается в принципе преобразования энергии.

Основные этапы преобразования энергии в инверторном сварочном аппарате:

  • 1. Выпрямление переменного напряжения электросети 220V;

  • 2. Преобразование постоянного напряжения в переменное высокой частоты;

  • 3. Понижение высокочастотного напряжения;

  • 4. Выпрямление пониженного высокочастотного напряжения.

Это кратко, так сказать, на пальцах . Такие же преобразования происходят в импульсных блоках питания для ПК.

Спрашивается, а зачем нужны эти пляски с бубном (несколько ступеней преобразования напряжения и тока)? А дело тут вот в чём.

Ранее основным элементом сварочного аппарата являлся мощный силовой трансформатор. Он понижал переменное напряжение электросети и позволял получать от вторичной обмотки огромные токи (десятки – сотни ампер), необходимых для сварки. Как известно, если понизить напряжение на вторичной обмотке трансформатора, то можно во столько же раз увеличить ток, который может отдать нагрузке вторичная обмотка. При этом уменьшается число витков вторичной обмотки, но и растёт диаметр обмоточного провода.

Из-за своей высокой мощности, трансформаторы, которые работают на частоте 50 Гц (такова частота переменного тока электросети), имеют весьма большие размеры и вес.

Чтобы устранить этот недостаток были разработаны инверторные сварочные аппараты. За счёт увеличения рабочей частоты до 60-80 кГц и более, удалось уменьшить габариты, а, следовательно, и вес трансформатора. За счёт увеличения рабочей частоты преобразования в 4 раза удаётся снизить габариты трансформатора в 2 раза. А это приводит к уменьшению веса сварочного аппарата, а также к экономии меди и других материалов на изготовление трансформатора.

Но где взять эти самые 60-80 кГц, если частота переменного тока электросети всего 50 Гц? Тут на выручку приходит инверторная схема, которая состоит из мощных ключевых транзисторов, которые переключаются с частотой 60-80 кГц. Но чтобы транзисторы работали, необходимо подать на них постоянное напряжение. Его получают от выпрямителя. Напряжение электросети выпрямляется мощным диодным мостом и сглаживается фильтрующими конденсаторами. В результате на выходе выпрямителя и фильтра получается постоянное напряжение величиной более 220 вольт. Это первая ступень преобразования.

Вот это напряжение и служит источником питания для инверторной схемы. Мощные транзисторы инвертора подключены к понижающему трансформатору. Как уже говорилось, транзисторы переключаются с огромной частотой в 60-80 кГц, а, следовательно, трансформатор работает также на этой частоте. Но, как уже говорилось, для работы на высоких частотах требуются менее громоздкие трансформаторы, ведь частота то уже не 50 Гц, а все 65000 Гц! В результате трансформатор «сжимается» до весьма малых размеров, а мощность его такая же, как и у здоровенного собрата, который работает на частоте 50 Гц. Думаю, идея понятна.

Вся эта петрушка с преобразованием привела к тому, что в схемотехнике сварочного аппарата появляется куча всяких дополнительных элементов, служащих для того, чтобы аппарат стабильно работал. Но, хватить теории, перейдём к «мясу», а точнее к реальному железу и тому, как оно устроено.

Устройство сварочного аппарата инверторного типа. Часть 1. Силовой блок.

Разбираться в устройстве сварочного инвертора желательно по схеме конкретного аппарата. К сожалению, схемы на TELWIN Force 165 я не нашёл, поэтому нагло позаимствуем схему из руководства по ремонту другого аппарата – TELWIN Tecnica 144-164. Фотографии аппарата и его начинки будут от TELWIN Force 165, так как именно он оказался в моём распоряжении. Исходя из анализа схемотехники и элементной базы, особых отличий между этими моделями практически нет, если не учитывать мелочи.

Внешний вид платы сварки TELWIN Force 165 с указанием расположения некоторых элементов схемы.

Внешний вид платы Telwin Force 165 с обозначением элементов схемы

Принципиальная схема сварочного аппарата инверторного типа TELWIN Tecnica 144-164 состоит из двух основных частей: силовой и управляющей.

Сначала разберёмся в схемотехнике силовой части. Вот схема. Картинка кликабельна (нажмите для увеличения – откроется в новом окне).

Схема силовой части сварочного аппарата Telwin Tecnica 144-164

Сетевой выпрямитель.

Как уже говорилось, сначала переменный ток электросети 220V выпрямляется мощным диодным мостом и фильтруется электролитическими конденсаторами. Это нужно для того, чтобы переменный ток электросети частотой 50 герц стал постоянным. Конденсаторы С21, С22 нужны для сглаживания пульсаций выпрямленного напряжения, которые всегда присутствуют после диодного выпрямителя. Выпрямитель реализован по классической схеме диодный мост. Он выполнен на диодной сборке PD1.

Следует знать, что на конденсаторах фильтра напряжение будет больше в 1,41 раза, чем на выходе диодного моста. Таким образом, если после диодного моста мы получим 220V пульсирующего напряжения, то на конденсаторах будет уже 310V постоянного напряжения (220V * 1,41 = 310,2V). Обычно же рабочее напряжение ограничивается отметкой в 250V (напряжение в сети ведь может быть и завышенным). Тогда на выходе фильтра мы получим все 350V. Именно поэтому конденсаторы имеют рабочее напряжение 400V, с запасом.

А что в железе?

На печатной плате сварочного аппарата TELWIN Force 165 элементы сетевого выпрямителя занимают довольно большую площадь (см. фото выше). Выпрямительный диодный мост установлен на охлаждающий радиатор. Через диодную сборку протекают большие токи и диоды, естественно, нагреваются. Для защиты диодного моста на радиаторе установлен термопредохранитель, который размыкается при превышении температуры радиатора выше 90С0. Это элемент защиты.

В выпрямителе применяются диодные сборки (диодный мост) типа GBPC3508 или аналогичный. Сборка GBPC3508 рассчитана на прямой ток (I0) — 35А, обратное напряжение (VR) — 800V.

Термопредохранитель на радиаторе диодной сборки

После диодного моста установлены два электролитических конденсатора (здоровенькие бочонки) ёмкостью 680 микрофарад каждый и рабочим напряжением 400V. Ёмкость конденсаторов зависит от модели аппарата. В модели TELWIN Tecnica 144 – 470 мкф., а в TELWIN Tecnica 164 – 680 мкф. Постоянное напряжение с выпрямителя и фильтра подаётся на инвертор.

Помеховый фильтр.

Для того чтобы высокочастотные помехи, которые возникают из-за работы мощного инвертора, не попадали в электросеть, перед выпрямителем устанавливается фильтр ЭМС – электромагнитной совместимости. На английский манер аббревиатура ЭМС обозначается как EMC (ElectroMagnetic Compatibility). Если взглянуть на схему, то фильтр EMC состоит из элементов С1, C8, C15 и дросселя на кольцевом магнитопроводе T4.

Фильтр ЭМС

Инвертор.

Схема инвертора собрана по схеме так называемого «косого моста». В нём используется два мощных ключевых транзистора. В сварочном инверторе ключевыми транзисторами могут быть как IGBT-транзисторы, так и MOSFET. Например, в моделях Telwin Tecnica 141-161 и 144-164 используются IGBT-транзисторы (HGTG20N60A4, HGTG30N60A4), а в модели Telwin Force 165 применены высоковольтные MOSFET-транзисторы (FCA47N60F). Оба ключевых транзистора устанавливаются на радиатор для отвода тепла. Фото одного из двух транзисторов MOSFET типа FCA47N60F на плате TELWIN Force 165.

Полевой MOSFET транзистор на плате инвертора

Снова взглянем на принципиальную схему и найдём на ней элементы инвертора.

Постоянное напряжение коммутируется транзисторами Q5 и Q8 через обмотку импульсного трансформатора T3 с частотой гораздо большей, чем частота электросети. Частота переключений может составлять несколько десятков килогерц! По сути, создаётся переменный ток, как и в электросети, но только он имеет частоту в несколько десятков килогерц и прямоугольную форму.

Для защиты транзисторов от опасных выбросов напряжения используются демпфирующие RC-цепи R46C25, R63C30.

Для понижения напряжения используется высокочастотный трансформатор T3. С помощью транзисторов Q5, Q8 через первичную обмотку трансформатора T3 (обмотка 1-2) коммутируется напряжение, которое поступает от сетевого выпрямителя (DC+, DC-). Это то самое постоянное напряжение в 310 – 350V, которое было получено на первом этапе преобразования.

За счёт коммутирующих транзисторов постоянное напряжение преобразуется в переменное. Как известно, трансформаторы постоянный ток не преобразуют. Со вторичной обмотки трансформатора T3 (обмотка 5-6) снимается уже намного меньшее напряжение (около 60-70 вольт), но максимальный ток может достигать 120 – 130 ампер! В этом и заключается основная роль трансформатора T3. Через первичную обмотку течёт небольшой ток, но большого напряжения. Со вторичной обмотки уже снимается малое напряжение, но большой ток.

Размеры этого самого трансформатора невелики.

Импульсный понижающий трансформатор

Его вторичная обмотка выполнена несколькими витками ленточного медного провода в изоляции. Сечение провода внушительное, да и не мудрено, ток в обмотке может достигать 130 ампер! 

Далее со вторичной обмотки импульсного трансформатора переменный ток высокой частоты выпрямляется мощными диодными выпрямителями. С выхода выпрямителя (OUT+, OUT-) снимается электрический ток с нужными параметрами. Это и необходимо для проведения сварочных работ.

Выходной выпрямитель.

Выходной выпрямитель собран на базе мощных сдвоенных диодов с общим катодом (D32, D33, D34). Эти диоды обладают высоким быстродействием, т. е. они могут быстро открываться и также быстро закрываться. Время восстановления trr < 50 ns (50 наносекунд).

Это свойство очень важно, поскольку они выпрямляют переменный ток высокой частоты (десятки килогерц). Обычные выпрямительные диоды с такой задачей бы не справились – они бы просто не успевали открываться и закрываться, нагревались и выходили бы из строя. Поэтому в случае ремонта заменять диоды в выходном выпрямителе следует именно быстродействующими.

В выпрямителе используются сдвоенные диоды марок STTH6003CW, FFh40US30DN, VS-60CPH03 (с ними мы ещё встретимся ). Все эти диоды являются аналогами, рассчитаны на прямой ток 30 ампер на один диод (60 ампер на оба) и обратное напряжение 300 вольт. Устанавливаются на радиатор.

Диоды выходного выпрямителя

Для защиты диодов выпрямителя используется демпфирующая RC-цепочка R60C32 (см. схему силовой части).

Схема запуска и реализация «мягкого пуска».

Для питания микросхем и элементов, которые расположены на плате управления, используется интегральный стабилизатор на 15 вольт – LM7815A. Он установлен на радиатор. Напряжение питания на стабилизатор поступает с основного выпрямителя PD1 через два последовательно включенных резистора R18, R35 (6,8 кОм 5W). Эти резисторы понижают напряжение и участвуют при запуске схемы.

Интегральный стабилизатор LM7815

Напряжение +15 со стабилизатора U3 (LM7815A) поступает на управляющую схему. Далее, когда схема управления и драйвер «раскачали» мощную схему инвертора, то на дополнительной вторичной обмотке трансформатора T3 (обмотка 3-4) появляется напряжение, которое выпрямляется диодом D11.

Через диод D9 напряжение питания поступает на интегральный стабилизатор LM7815A и теперь схема «запитывает» как бы сама себя. Вот такой вот хитрый «приём».

Выпрямленное напряжение после диода D11 также служит для питания реле RL1, охлаждающего вентилятора V1 и индикаторного светодиода D10 (Verde – «Зелёный»). Резисторы R40, R41, R65, R37 гасят излишки напряжения. Для стабилизации напряжения питания вентилятора V1 (12V) применяется 5-ти ваттный стабилитрон D36 на 12V.

Реле RL1 обеспечивает плавный запуск инвертора («мягкий пуск»). Разберёмся с этим подробнее.

В момент включения сварочного аппарата начинается заряд электролитических конденсаторов. В самом начале зарядный ток очень велик и может вызвать перегрев и выход из строя диодов выпрямителя. Чтобы уберечь диодную сборку от повреждения зарядным током применяется схема ограничения заряда (или «мягкого пуска»). Взглянем на схему.

Основным элементом схемы «мягкого пуска» служит резистор R4, мощность которого 8W (8 ватт). Сопротивление резистора – 47 ом. Именно на него возложена роль ограничения зарядного тока в первые моменты после включения.

После того, как заряд конденсаторов закончился, а инвертор начал работу в штатном режиме, электромагнитного реле RL1 замыкает контакты. Контакты реле шунтируют резистор R4, и в дальнейшем он не участвует в работе схемы, так как весь ток проходит через контакты реле. Таким образом реализован плавный запуск.

На плате инвертора TELWIN Force 165 также можно найти элементы схемы «мягкого пуска». В качестве реле RL1 выступает электромагнитное реле модели Finder на рабочее напряжение 24V (параметры контактов реле – 16A 250V~).

Элементы схемы мягкого запуска

Итак, мы узнали о том, что сварочный инвертор состоит из сетевого выпрямителя 220V, мощного инвертора на транзисторах, понижающего трансформатора и выходного выпрямителя. Это силовые части схемы. Через них протекают огромные токи. Но где же «мозги» этого устройства? Кто управляет работой инвертора?

Об этом мы узнаем из следующей части нашего повествования. Читать далее.

Главная &raquo Мастерская &raquo Текущая страница

Также Вам будет интересно узнать:

 

как её читать? – Виды сварочных аппаратов на Svarka.guru

Аналогичную аппаратуру все чаще покупают домашние мастера для выполнения специфических работ в гараже или на даче. Схема инверторного сварочного аппарата без баллонов сложнее, но сам он намного компактнее устаревшего трансформатора, а о весе и говорить не приходится — некоторые модели удобно располагаются на плече и не мешают проведению работ.

Современная аппаратура инверторного типа — это изделия, отличающиеся широким набором функциональных возможностей, потому что при их производстве использовались передовые технологии. Начинающие сварщики быстро становятся асами в проведении подобных работ на даче или в частном доме, потому что инвертор довольно прост в эксплуатации.

Виды источников тока

Импульсный преобразователь считается основным элементом электросхемы сварочных инверторов, потому что способен активно вырабатывать высокочастотные токи. Такое преимущество во время эксплуатации аппаратуры позволяет сварщику легко возбуждать дугу и поддерживать ее устойчивое горение.

Все источники сварочного тока имеют идентичную конструкцию и схема сварки у них одинаковая, разница только в каких вольт-амперных характеристиках переключает режимы аппарат. Производители аналогичных изделий выпускают универсальные модели, пригодные к разным видам сварочных работ:

Достоинства полуавтоматических аппаратов

  1. Малый вес — для любителей всего 5—6 кг.
  2. Дополнительные функции.
  3. Плавная регулировка напряжения.
  4. Хорошая внутренняя вентиляция, благодаря интегрирующему устройству.
  5. Точное настраивание тока, зависящее от материала соединяемых конструкций.

Инверторы имеют высокий КПД независимо от производителя.

Схемы сварочных аппаратов для полуавтоматической сварки интересны только специалистам, так как изобилуют техническими обозначениями понятными узкому контингенту.

Инверторы для плазменно-дуговой резки

Такие устройства отличаются небольшими размерами и потребляют немного электрической энергии, с их помощью производится соединение или резка черных, а также цветных металлов. Плазменный инвертор обладает большой многофункциональностью, поэтому используется на разных производствах:

  • термическая обработка любых металлов;
  • пайка, сварка или резка черных и цветных металлов;
  • промышленное воронение стали;
  • для разрезания керамической плитки, стеклянных заготовок, бетона и т.п.

К недостаткам можно отнести только высокую стоимость аналогичного оборудования.

Электрическая схема и ее нюансы

Важной деталью схемы инвертора для сварки является диодный мост, который преобразовывает поступающий переменный ток в его постоянный аналог, при этом происходит сильный нагрев, поэтому в схеме установлен предохранитель, отключающий подачу тока при нагреве выше 900C.

Для сглаживания возникших импульсов стоит фильтр-выпрямитель, в котором присутствуют электролитические конденсаторы.

Для предотвращения перегрева диодов в цепи устанавливаются радиаторы охлаждения. Помехи высокой частоты могут проникнуть в общую электросеть, для исключения этого перед выпрямителем стоит фильтр, в конструкции которого используются дроссель и конденсаторы.

В результате нескольких преобразований и благодаря понижающему трансформатору на выход подается постоянный ток, имеющий силу, достаточную для выполнения намеченных сварочных работы.

Принцип работы, краткое описание

Схема сварочного инвертора разных моделей имеет чисто индивидуальные особенности, но принципиальная основа работы — неизменная. Ток, подающийся вовнутрь изделия, подвергается нескольким изменениям:

  1. Выпрямление.
  2. Сглаживание амплитуды возникающих импульсов.
  3. Преобразование после прохождения выпрямителя.
  4. Понижается напряжения и увеличение сила тока до 250 А.
  5. Вторичное изменение на постоянный ток, подающийся на выход изделия.
Электронные составляющие инвертора выдают не только улучшенные характеристики, но и оригинальные функции, помогающие новичкам быстрее освоить премудрости сварки.

К дополнительным функциям относятся:

  • Hotstart — сила тока многократно повышается при образовании дуги.
  • Антизалипание — сведено к минимуму прилипание электрода к свариваемой конструкции.
  • Arcforce — чтобы исключить затухание дуги, подается добавочная сила тока.

В. Л. Лазакович, образование: Аттестационный научно-технический центр Эксперт (г. Москва), специальность – сварщик НАКС АНО, электрогазосварщик 4 разряда, опыт работы с 2000 года: «Современные инверторы облегчают работу начинающим сварщикам, но минимальные теоретические знания о процессах сварки различных конструкций должны присутствовать, иначе прогресса не будет».

Конструкция

Примерная базовая схема:

  1. Выпрямитель низкой частоты.
  2. Инвертор.
  3. Трансформатор.
  4. Выпрямитель тока высокочастотный.
  5. Ответвление цепи с пониженным сопротивлением (шунт).
  6. Блок электронного управления.

Аналогичные изделия отличаются конструкцией, но в основе заложено применение высокочастотных импульсных преобразователей.

Диод на выходе и характеристика его работы

При самостоятельной сборке пользователи устанавливают трансформаторы, у которых вторичная обмотка с такими параметрами: сечение медной проволоки 0,3 мм, а ширина конструкции до 40 мм, поэтому диоды на выходе обеспечивают его выпрямление. Рабочий цикл устройства осуществляется при токах высокой частоты, но с такими нагрузками справляются только быстродействующие диоды, так как восстановление происходит за 50 наносекунд.

Универсальность

Каждый производитель моделей сварочных инверторов заботится об увеличении надежности во время длительной эксплуатации, при условии соблюдения мер безопасности при работе с оригинальными изделиями. Обязательно в конструкции присутствует блок контроля повышения температуры, который защищает инвертор от перегревания и регулирует функционирование системы охлаждения.

В электросхеме изделия встроен трансформатор, имеющий биметаллические термодатчики с заданной температурой срабатывания не выше 75 градусов. Радиатор охлаждения имеет собственный интегральный датчик, который следит за повышением температуры и отключат подачу тока при ее недопустимом повышении.

Как сделать инвертор?

Для сборки аналогичного изделия надо знать, что схемы инверторов сварки рассчитаны на потребление напряжения 220 V с силой тока 32 А. После проведения преобразований внутри инвертора, на выходе получается около 250 ампер, что достаточно для создания прочного сварного шва.

Чтобы собрать конструкцию, нужны такие составляющие:

  • Трансформатор с ферритовым сердечником.
  • Первичная и три варианта вторичной обмотки.

Надо приобрести и такие компоненты:

  • провода с медными жилами;
  • стеклоткань, чтобы обеспечить надежную изоляцию обмоток;
  • небольшой лист текстолита с печатными платами;
  • сталь для электротехнических работ;
  • хлопчатобумажную ткань.

После закупки всего необходимого смело приступайте к сборке изделия по схеме, которую легко найти в интернете.

Защитные элементы

В общую электрическую цепь специально встроены элементы, которые исключают возникновение негативных факторов нормальной работы сложного электронного устройства. От воздействия высоких температур транзисторы защищают демпфирующие цепи с обозначением латинскими литерами RC. Ко всем элементам, функционирующим при больших нагрузках, подключены термодатчики, отключающие ток во время повышения температуры до критического значения.

Для управления всеми элементами электрической цепи установлен широтно-импульсный модулятор, получающий сигналы от системы электронного управления изделием. Далее, сигналы от него поступают на:

  • полевой транзистор;
  • трансформатор с двумя обмотками на выходе;
  • силовые диоды;
  • транзисторы, расположенные в инверторном блоке.

Важно! Конденсаторы, установленные в фильтре, после активации зарядки способны выдавать большой силы ток, который сжигает, поэтому инвертор обеспечивается плавным пуском.

Вырабатывает аналогичные сигналы операционный усилитель, потому что на вход подается сформированный в изделии постоянный ток с высокими показателями силы. Кроме этого, устройство принимает сигналы от контуров защиты, установленных в цепи. Такие предосторожности необходимы, чтобы быстро отключить подачу электрического питания во время критической ситуации.

Выводы

Инвертор — сложное электронное устройство, но простое в использовании, его подключают к электрической цепи с напряжением 220 V и без опасения проводить сварочные работы. Такие изделия пользуются повышенным спросом у домашних мастеров, потому что для надежного соединения металлических конструкций не требуется специальных навыков сварщика, а нужны только осторожность и аккуратность.

Электрическая и принципиальная схема сварочного инвертора

Чтобы обеспечить горение сварочной дуги, используются инверторы. У данных устройств есть определенные преимущества, недостатки, отличительные особенности. Схема сварочного инвертора включает в себя конструкционные элементы, каждый узел выполняет свою операцию.

Принцип работы

Если разобрать сварочный инвертор, можно поближе рассмотреть силовой трансформатор. Он является основным узлом конструкции и отвечает за уровень напряжения. Ток, исходящий от источника, должен быть понижен.

Схема сварочного инвертора

Важно! На плате управления используются конденсаторы, резисторы, отвечающие за проводимость электрического потока.

Чтобы частота находилась на уровне 50 герц, используется стабилизатор. К дополнительным элементам относится выпрямитель тока (отвечает за пульсацию) и дроссель, стабилизирующий выходное напряжение. Устройство работает в цепи постоянного, переменного тока. Когда напряжение выпрямляется, оно подается на дугу и разрешается заниматься сварочными работами.

Сварочные работы

Технические характеристики

При рассмотрении инверторов рекомендуется сосредоточиться на таких характеристиках:

  • напряжение от сети,
  • допустимый размер электрода,
  • напряжение без нагрузки,
  • рабочий цикл,
  • класс защиты,
  • показатель нагревостойкости,
  • температура эксплуатации.
Сварочные инверторы

Конструкция инверторного сварочного аппарата

Внутри сварочного инвертора имеется множество элементов, которые взаимодействуют между собой. К основным модулям силового блока приписывают следующее:

  • выпрямитель напряжения,
  • помеховый фильтр,
  • преобразователь (он же инвертор),
  • высокочастотный выпрямитель на выходе.

Рассматривая плату управления, на ней используются системы для охлаждения транзисторов, фильтров. У современных инверторов установлен радиатор, выпрямитель и преобразователь. Есть кулер, нацеленный на понижающий трансформатор.

Понижающий трансформатор

Важно! На плате управления может быть один или несколько помеховых фильтров и конденсаторов под них.

Рядом с понижающим трансформатором необходим датчик тока, интегральный стабилизатор. Продвинутые инверторы высокого уровня поставляются с реле мягкого пуска.

Достоинства и недостатки

К сильным сторонам оборудования важно приписать следующее:

  • высокая эффективность,
  • значительная удельная мощность,
  • ассортимент в наличии,
  • сфера применения.

Недостатки также всем знакомы, речь идёт о высокой стоимости продукции. Агрегаты не отличаются долгим сроком эксплуатации. Когда электронная плата перегорает, сделать что-либо нереально.

Электронная плата

Проблема кроется в незащищенности корпуса. На рабочем месте, как правило, большое количество пыли и грязи. Всё это оседает на внутренних элементах конструкции и происходит сбой.

Правильное назначение

Сварочные аппараты подходят для продуктивной работы в домашних условиях, а также в мастерских. Разнообразие функций в устройствах делает их разносторонними. Стандартные сварочные инверторы обеспечивают постоянный ток сварки, поэтому считаются универсальными агрегатами. Они подходят для сварки и резки чёрных, цветных металлов.

Полуавтоматика отличается тонким и ровным швом, практически не оставляет после себя следов. Плазморез востребован в промышленной сфере, годится для профессиональных работ. Резка металла происходит на высокой скорости. Допускаются различные типы заготовок.

Плазморезы

Интересно! Плазморезы годятся для длинных разрезов, к примеру, бронзы либо алюминия.

Аппараты аргонно-дуговой сварки считаются более подходящими для цветных металлов. Обеспечивается значительная глубина проварки и практически нет ограничений. Модели точечной сварки также могут называться споттерами, применимы на металлообрабатывающих предприятиях. Точечные аппараты подходят для резки крупных изделий.

Аппараты аргонно-дуговой сварки

Как правильно использовать

Чтобы приступить к сварочным работам, необходимо подготовить установку.

Основные этапы:

  1. размещение инвертора,
  2. проверка заземления,
  3. уборка лишних предметов,
  4. подключение к электросети,
  5. подсоединение удлинителя,
  6. использование генераторов,
  7. установка сварочных кабелей,
  8. настройка.

Чтобы агрегат работал должным образом, с учётом выбранного металла, производится регулировка частоты напряжения. Важно подобрать соответствующий электрод (минимальный диаметр 3 мм). Когда с подготовкой покончено, осуществляется розжиг дуги. Необходимо несколько раз стукнуть по металлу, важно контролировать положение электрода.

Положение электрода

Совет! Во время сварки электрод передвигается вдоль линии разреза.

Действовать разрешается под прямым или небольшим углом (не более 60 градусов). В труднодоступных местах работают другие правила. Электродом разрешается сваривать углом вперёд либо назад. Надо контролировать уровень прогрева металла.

Схемы сварочного аппарата

При рассмотрении сварочного оборудования изучается электрическая и принципиальная схема. Если обратиться к понятиям, заметно, что они несут разные посылы. Учитывается информативность и модель построения. Электросхема представляет собой документ, который сообщает о важных частях оборудования. Основная задача — показать путь прохождения электрической энергии по оборудованию.

Электросхема

Компоненты взаимодействуют между собой и на схеме можно это проследить. Используются специальные обозначения для каждого отдельного компонента. При составлении электрических схем учитывается структура, а также функциональность.

Важно! Все стандарты прописаны в ГОСТе 2.702-75.

Принципиальная схема также относится к электрическому типу, однако имеет другие задачи. Документ представляет собой чертеж, на котором также отображены компоненты агрегата. Разница заключается в том, что в принципиальной электрической схеме отображаются электромагнитные связи. По факту, они выглядят не такими детальными, как функциональные электрические схемы. Если посмотреть на чертеж, отображаются лишь основные узлы.

Принципиальная схема

Электрическая

Стандартная электрическая схема инверторного сварочного аппарата включает в себя мощные транзисторы с частотой 50 Герц. Они действуют в цепи постоянного тока. Подача энергии происходит на выпрямитель для обеспечения стабильного выходного напряжения.

Выпрямитель на схеме

Важная информация! Чтобы частота не прыгала, используется диодный мост. Элемент работает на пару с фильтрующим конденсатором.

Мосты отличаются по мощности и вырабатывают высокую температуру. С целью их охлаждения применяются вентиляторы, радиаторы. Для фильтрующих конденсаторов необходим предохранитель, который убережет компонент в случае замыкания цепи.

Замыкания цепи

Также на схеме обозначен электромагнитный фильтр, который отвечает за совместимость тока. Напряжение подаётся от выпрямителя, представленный блок отвечает за высокочастотные помехи. В случае с трансформаторами проблема является актуальной. Есть схемы аппарата, включающие два мощных транзистора, которые применяются с отдельными радиаторами.

Трансформатор установлен высокой частоты, он обеспечивает быстрое преобразование напряжения. Его коммутация происходит на обмотке, поэтому максимальное напряжение в устройствах подобного плана доходит до 340 вольт. Чтобы при большом напряжении создать низкий уровень тока, необходима первичная обмотка. У инверторов параметр составляет 120 ампер.

Коммутация на обмотке

Интересно! Быстродействующие диоды, которые установлены с катодом, можно только предполагать о связи с выпрямителями.

По конструкции элементы просты, способны включаться по команде. Они отвечают за открытие и закрытие моста. Основная функция опять же связана с защитой агрегата. Сразу после подключения цепи к источнику питания по схеме задействуются конденсаторы. Они начинают заряжаться, уровень тока возрастает до максимума. Основная нагрузка подаётся на мосты, поэтому уровень заряда ограничивается.

Конденсаторы на схеме

Принципиальная

Принципиальная схема выстроена таким образом, что напряжение идёт от выпрямителя к инвертору и подается на трансформатор. Далее ток проходит через вторичный выпрямитель, выходит через дроссель непосредственно к электроду.

Вторичный выпрямитель

Плюс ко всему, от вторичного выпрямителя ток поступает по принципиальной схеме на блок обратной связи. Он взаимосвязан с блоком управления. От блока обратной связи сигнал может поступить непосредственно на инвертор.

Выше рассмотрена электрическая, принципиальная схема сварочного инвертора. Изучен принцип работы, особенности моделей. При оценке агрегатов учитываются технические характеристики, достоинства, недостатки, назначение и сфера использования.

Схема инвертора переменного тока от 12 В до 220 В на 100 Вт

Мы все время от времени сталкиваемся с отключениями электроэнергии в наших домах или офисах. В таких случаях мы обычно используем генератор или инвертор . Электрогенераторы используют бензин или дизельное топливо в качестве топлива, и они очень шумные. Мы не будем здесь обсуждать генераторы энергии. Здесь мы будем говорить об инверторе. Инверторы питают мощность от блоков питания постоянного тока , таких как свинцово-кислотный аккумулятор. Эти инверторы сейчас используются повсеместно.Этот тип может использоваться для приложений средней мощности. Но для приборов большой мощности наиболее предпочтительны генераторы.

Самый распространенный тип инвертора, который мы видим в повседневной жизни, — это ИБП (источник бесперебойного питания) . Мы используем ИБП для обеспечения работы ПК (персонального компьютера) в случае отключения электроэнергии. ИБП поддерживает поставленную мощность до тех пор, пока батарея не разрядится.

ИБП

— это система, преобразующая постоянный ток в переменный. Таким образом, ИБП принимает питание постоянного тока от батареи в качестве входа и выдает мощность переменного тока в качестве выхода.Сегодня мы собираемся построить инвертор мощностью 100 Вт с 12 В постоянного тока на 220 В переменного тока. Эта схема проста и очень полезна.

Требуемые компоненты:

  • +12 В аккумулятор
  • Резистор 47 кОм
  • Конденсатор 1000 мкФ (2 шт.)
  • Конденсатор 4700 мкФ
  • потенциометр 10 кОм, резистор 1 кОм (2 шт.)
  • Резистор 10к (2шт)
  • In5408 диоды (2шт)
  • CD4047 IC
  • Конденсатор 4,7 мкФ
  • Понижающий трансформатор (220В на 12В-0-12В (центральный ответвитель)) (10А)
  • IRF540N МОП-транзистор (2 шт.)
  • Провода

12В-0-12В 10А понижающий трансформатор:

12v-0-12v 10amp step down transformer

IRF540N MOSFET следует использовать с радиатором, не используйте MOSFET без надлежащего радиатора, без них MOSFET не выдержит.MOSFET здесь — это n-канальный расширенный MOSFET.

Также используйте провод хорошего калибра. Если вы используете провод небольшого сечения, у вас будут потери, а при больших нагрузках они станут очень горячими и перегорят.

IRF540N MOSFET

Описание цепи:

Принципиальная схема преобразователя постоянного тока на 100 Вт приведена ниже. Мы использовали EasyEDA, чтобы нарисовать эту принципиальную схему, и рассмотрели учебник «Как использовать EasyEDA для рисования и моделирования схем».Вы также можете скрыть эту принципиальную схему в компоновке печатной платы, как мы объясняли в учебнике EasyEDA, и построить этот проект на печатной плате.

Рабочее пояснение:

Ядром схемы является микросхема CD4047 ; эта микросхема здесь действует как нестабильный мультивибратор . Таким образом, микросхема генерирует тактовые импульсы с частотой 50 Гц. Эта частота выбирается конденсатором C2 и резистором R1. Период времени для сигнала задается как:

Т = 4.71 R1 * C2.

Теперь, чтобы получить частоту (1 / T) 50 Гц, нам нужно поиграть с вышеуказанными числами. Мы можем выбрать емкость как постоянную и поиграть с сопротивлением для соответствующей частоты. Но если у вас нет осциллографа, чтобы настроить потенциометр на точное сопротивление, выберите емкость 4,7 мкФ и сопротивление 1 кОм. Это дает частоту 47 Гц, что вполне подходит для простых нагрузок. Если вы хотите получить точную частоту, вам необходимо точно выбрать сопротивление.

Таким образом, микросхема генерирует тактовые импульсы, эти импульсы передаются на N-MOSFET для управления трансформатором.Трансформатор увеличивает напряжение с 12 В до 230 В. Таким образом, каждый раз, когда импульс достигает затвора MOSFET, у нас на выходе будет полупериод 220 В. В следующем импульсе второй МОП-транзистор срабатывает для второго полупериода 220 В. Таким образом, если два полевых МОП-транзистора включаются и выключаются с частотой 50 Гц, то на выходе трансформатора будет выход с тактом 50 Гц и 220 В.

Итак, мы создали схему инвертора от 12 В постоянного тока до 220 В переменного тока .

,

Как сделать схему солнечного инвертора

У нас ограниченные природные ресурсы, которые мы тоже используем для производства электроэнергии. Вот почему большое внимание уделяется производству и использованию чистой энергии. Сегодня в этом проекте мы увидим, как электричество можно генерировать из солнечного света, как его можно хранить в виде постоянного тока, а затем как преобразовать в переменный ток для привода бытовой техники.

На солнечной электростанции солнечная энергия преобразуется в электрическую с помощью фотоэлектрических солнечных панелей, а затем генерируемый постоянный ток (постоянный ток) сохраняется в батареях, которые затем преобразуются в переменный ток (AC) солнечными инверторами.Затем этот переменный ток подается в коммерческую электрическую сеть или может быть напрямую поставлен потребителю. В этом уроке мы покажем, как сделать схему малого солнечного инвертора для бытовой техники .

Здесь Микросхема SG3524 — это основной компонент для создания солнечного инвертора. Он имеет полную схему управления широтно-импульсным модулятором (ШИМ). Он также имеет все функции для создания регулируемого источника питания. Микросхема SG3524 обеспечивает улучшенную производительность и требует меньшего количества внешних компонентов при создании импульсных источников питания.

Solar Inverter Circuit Block Diagram

SG3524 — Регулирующие широтно-импульсные модуляторы

SG3524 включает в себя все необходимые функции для разработки импульсного регулятора и инвертора. Эту ИС также можно использовать в качестве элемента управления для приложений с большой мощностью.

Некоторые из приложений SG3524 IC:

  • Преобразователи постоянного тока в постоянный с трансформаторной связью
  • Удвоители напряжения без трансформатора
  • Приложения преобразователя полярности
  • Методы широтно-импульсной модуляции (ШИМ)

Эта единственная ИС состоит из встроенного регулятора, программируемого генератора, усилителя ошибки, триггера с импульсным управлением, двух транзисторов незафиксированного прохода, компаратора с высоким коэффициентом усиления, а также схемы ограничения тока и отключения.

IC SG3524

TIP41 Транзистор

наивысшей мощности NPN

TIP41 — это силовой NPN-транзистор общего назначения с высокой скоростью переключения и улучшенным коэффициентом усиления, в основном используемый для приложений линейной коммутации средней мощности. Из-за высокого номинала V CE , V CB и V EB , который составляет 40 В, 40 В и 5 В соответственно, мы использовали этот транзистор для схемы инвертора. Кроме того, он имеет максимальный ток коллектора 6А.

Здесь, в этой схеме, эти транзисторы используются для , управляющего повышающим трансформатором 12-0-12 .

TIP41 High Power NPN transistor

Необходимые материалы

  • SG3254 IC
  • Солнечная панель
  • TIP41 NPN-транзистор высокой мощности
  • Резисторы (4 Ом, 100 кОм, 1 кОм, 4,7 кОм, 10 кОм, 100 кОм)
  • Конденсаторы (100 мкФ, 0,1 мкФ, 0,001 мкФ)
  • 12-0-12 Повышающий трансформатор
  • Соединительные провода
  • Макет

Схема

Solar Inverter Circuit Diagram

Solar Inverter Circuit Hardware

Работа цепи солнечного инвертора

Сначала солнечная панель заряжает аккумулятор, а затем аккумулятор подает напряжение на схему инвертора.Чтобы узнать больше о зарядке аккумулятора с помощью солнечной панели, следуйте этой схеме. Здесь мы используем RPS вместо аккумуляторной батареи.

Solar Inverter Circuit in action

Схема состоит из микросхемы SG3524, которая работает на фиксированной частоте, и эта частота определяется контактами 6 и 7 микросхемы IC, которая является RT и CT. RT устанавливает зарядный ток для CT, поэтому на CT существует линейное линейное напряжение, которое затем подается на встроенный компаратор.

Для обеспечения опорного напряжения в цепи SG3524 имеет встроенный регулятор 5V.Сетевой делитель напряжения создается с помощью двух резисторов 4.7k Ом, который подает опорное напряжение для встроенного усилителя ошибки. Затем усиленное выходное напряжение усилителя ошибки сравнивается с линейным нарастанием напряжения на ТТ компаратором, таким образом создавая импульс ШИМ (широтно-импульсной модуляции).

Этот ШИМ дополнительно подается на выходные транзисторы через триггер управления импульсами. Этот импульсный триггер управления синхронно переключается с помощью выхода встроенного генератора.Этот импульс генератора также действует как импульс гашения, чтобы оба транзистора никогда не включались одновременно во время переходного периода. Значение CT контролирует длительность импульса гашения.

Теперь, как вы можете видеть на принципиальной схеме, выводы 11 и 14 подключены к транзисторам TIP41 для управления повышающим трансформатором. Когда выходной сигнал на выводе 14 ВЫСОКИЙ, транзистор T1 включается, и ток течет от источника к земле через верхнюю половину трансформатора.И, когда выходной сигнал на выводе 11 ВЫСОКИЙ, транзистор T2 включается, и ток течет от источника к земле через нижнюю половину трансформатора. Следовательно, мы получаем переменный ток на выходе повышающего трансформатора.

,

Схема электрических соединений и подключения автоматического ИБП / инвертора к дому

Схема электрических соединений системы автоматического ИБП (один провод под напряжением и обычная проводка)

Автоматические подключения ИБП / инвертора

В случае аварийного отключения питания от электросети недоступен в электростанции, мы можем использовать автоматический инвертор / ИБП и батареи для бесперебойного подключения питания.

Мы покажем два основных ИБП / инвертора с подключением батарей к домашнему распределительному щиту.

  • Автоматический ИБП / инвертор с двумя проводами
  • Автоматическая разводка USP / инвертора с одним проводом под напряжением

Примечание. Для работы в безопасном режиме используйте 6 AWG ( 7/064 ″ или 16 мм 2 ) и сечение провода к для подключения ИБП к главной панели управления .

Автоматическая двухпроводная разводка ИБП / инвертора.

Здесь нет ракетостроения. Просто подключите отходящие провода нейтрали и напряжения к ИБП. Теперь подключите два исходящих провода нейтрали и фазы от ИБП / инвертора (в качестве выхода) к приборам, как показано на рис.1.

Automatic UPS Inverter System Wiring Diagram Automatic UPS Inverter System Wiring Diagram

Проводка ИБП / инвертора с одним дополнительным проводом под напряжением

Как правило, мы знаем, что каждая точка нагрузки должна быть подключена через провод под напряжением (фаза) и нейтраль для нормальной работы. В приведенном ниже примере мы уже подключили фазу и нейтраль (от электростанции к полюсу электросети и распределительному щиту) к каждому электроприбору, то есть к вентиляторам, точкам освещения и т. Д. Это то, что мы делаем в нашем распределительном щите для домашней электропроводки.

Теперь, в соответствии со схемой подключения ИБП ниже, подключите дополнительный провод (фазу) к тем приборам, к которым мы уже подключили фазный и нейтральный провода от (Power house и DB) (i.е., два провода в качестве фазы (под напряжением), как показано на рисунке ниже). И нет необходимости подключать дополнительный нейтральный провод от ИБП, поскольку он уже установлен и подключен ранее. Проще говоря, вам нужен только провод под напряжением для подключения к приборам, как показано на рис. 2. Теперь возникает вопрос: «Почему дополнительный фазный провод, а не нейтраль? … Да .. Прочтите следующую работу и работу схемы, чтобы получить представление.

Вы также можете прочитать:

Щелкните изображение, чтобы увеличить

Automatic UPS Inverter System Wiring Diagram (One Live Wire) Automatic UPS Inverter System Wiring Diagram (One Live Wire) Схема электрических соединений автоматической системы инвертора ИБП (один провод под напряжением)

Работа и работа подключения ИБП

(1) Когда электроснабжение отсутствует от электростанции

В этом случае электропитание будет продолжаться через фазный провод (выход ИБП), который подключен к батареям и ИБП, а затем к электрическим приборам (обратите внимание, что нейтраль уже подключена).Таким образом, первый однофазный провод, который уже был подключен перед установкой ИБП (т. Е. Провод под напряжением от главной платы к ИБП), будет неактивным, потому что источник питания недоступен из электростанции. В этом случае электрические приборы, подключенные через провод под напряжением от ИБП / инвертора, непрерывно потребляют накопленную электрическую энергию в батареях.

Связанные руководства:

(2) При восстановлении электропитания от электросети

Затем подача питания будет продолжаться через фазный провод (обратите внимание, что нейтраль уже подключена), который подключен к ИБП от главной платы (это будет заряжать вашу батарею), а затем от ИБП к подключенным электроприборам.Таким образом, второй провод (фаза или провод под напряжением), который подключается после установки ИБП (т. Е. Один провод под напряжением от ИБП), будет неактивен, поскольку источник питания от ИБП и батарей недоступен (поскольку это автоматическая система ИБП).

Как подключить ИБП / инвертор к распределительной плате?

На рисунке 3 ниже показано, как подключить ИБП / инвертор с батареями к главному распределительному устройству для непрерывного электроснабжения в случае сбоя в электросети.

Дополнительная проводка подключения к подключенной нагрузке и технике на две комнаты в доме. Как подключить автоматический ИБП / инвертор к домашней системе электроснабжения?

Щелкните изображение, чтобы увеличить

How to Wire UPS Inverter to the Home Supply How to Wire UPS Inverter to the Home Supply Как подключить ИБП / инвертор к распределительному щиту?

Цветовой код проводки:

Мы использовали Red для Live или Phase , Black для Neutral и Green для заземляющего провода в одной фазе.Вы можете использовать коды конкретных регионов, например, IEC — Международная электротехническая комиссия (Великобритания, ЕС и т. Д.) Или NEC (Национальный электротехнический кодекс [США и Канада], где:

NEC:

Однофазный 120 В переменного тока :

Черный = Фаза или Линия , Белый = Нейтраль и Зеленый / Желтый = Заземляющий провод

МЭК:

Одиночный AC:

Коричневый = Фаза или Линия , Синий = Нейтраль и Зеленый = заземляющий провод.

Общие меры предосторожности при игре с электричеством.

  • Отключите источник питания перед обслуживанием, ремонтом или установкой электрического оборудования.
  • Используйте кабель подходящего размера с помощью этого простого метода расчета (Как определить подходящий размер кабеля для электромонтажа)
  • Никогда не пытайтесь работать с электричеством без надлежащего руководства и ухода.
  • Работать с электричеством только в присутствии лиц, обладающих хорошими знаниями и практической работой и опытом, умеющих обращаться с электричеством.
  • Прочтите все инструкции, руководства пользователя, предупреждения и строго следуйте им.
  • Самостоятельное выполнение электромонтажных работ опасно, а также незаконно в некоторых регионах. Прежде чем вносить какие-либо изменения в подключение электропроводки, обратитесь к лицензированному электрику или в энергоснабжающую компанию.
  • Автор не несет ответственности за какие-либо убытки, травмы или повреждения в результате отображения или использования этой информации, или если вы попробуете какую-либо схему в неправильном формате. Поэтому, пожалуйста! Будьте осторожны, потому что все дело в электричестве, а электричество слишком опасно.

Связанные сообщения:

Теперь, если вы все еще сталкиваетесь с трудностями или не понимаете схему подключения, не стесняйтесь оставлять комментарий или просто просмотрите другие соответствующие пошаговые руководства по схемам подключения ИБП / инвертора и подключению с помощью описание и работа.

Вы также можете прочитать другие Руководства по установке электропроводки.

.Завод электрических цепей инвертора

, производственная компания OEM / ODM по изготовлению электрических цепей инвертора на заказ

Всего найдено 582 фабрики и компании по производству электрических инверторных схем с 1 746 продуктами. Получите высококачественные электрические инверторные схемы от нашего огромного выбора надежных заводов по производству электрических инверторных схем. Бриллиантовый член
Тип бизнеса: Производитель / Factory
Основные продукты: Печатная плата, PCBA
Mgmt.Сертификация:

ISO14001: 2004, IATF16949

Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: ODM, OEM
Расположение: Дунгуань, Гуандун
Золотой член
Тип бизнеса: Производитель / Factory
Основные продукты: Солнечный контроллер, распределительная коробка, датчик, генератор озона, кодировщик
Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: Собственный бренд, OEM
Расположение: Вэньчжоу, Чжэцзян
Производственные линии: 5
Бриллиантовый член
Тип бизнеса: Торговая компания
Основные продукты: Транзистор, ИС, Выпрямитель
Собственность завода: Общество с ограниченной ответственностью
Расположение: Шэньчжэнь, Гуандун
Основные рынки: Южная Америка , Европа , Другие , Юго-Восточная Азия / Ближний Восток
Персонал: 5-50 человек
Бриллиантовый член
Тип бизнеса: Производитель / Factory , Торговая компания
Основные продукты: Инвертор , инвертор на солнечной батарее , гибридный инвертор , инвертор Power , контроллер заряда солнечной батареи MPPT
Собственность завода: Общество с ограниченной ответственностью
Объем НИОКР: Собственный бренд, ODM, OEM
Расположение: Фошань, провинция Гуандун
Производственные линии: 4
,

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *