Схема инвертора электрическая: Схема сварочного инвертора – принципиальная схема инверторной сварки

Содержание

Схема простого сварочного инвертора — электросхема инверторного сварочного аппарата

Схема простого сварочного инвертора разделяется на силовую, то есть как раз ту, которая выдает ток на дугу, и управляющую части. Инвертор по сути своей – это блок питания, достаточно мощный, позволяющий поддерживать работу дуги. По рабочим схемам напоминает импульсный блок питания, у них весьма схожая работа по преобразованию энергии.

По какому принципу работает электросхема инверторного сварочного аппарата?

Схема работает по тому же принципу, что и, например, блок питания в персональном компьютере. В процессе работы происходит преобразование тока и напряжения, причем несколько раз и в разных параметрах.

В работе прослеживаются несколько четких этапов:

  1. Напряжение в розетке составляет 220V, поэтому сначала происходит выпрямление переменного напряжения.
  2. Вступает в работу преобразователь, постоянное напряжение переводится в переменные высокие частоты.
  3. Напряжение высокой частоты постепенно понижается до нужных значений.
  4. В свою очередь, на этом этапе, уже пониженное напряжение нуждается в выпрямлении.

Весь процесс кажется немного нелогичным, но у этого есть свои причины.

Ранее в сварочных инверторах использовались трансформаторы, очень мощные, работающие за счет обмотки трансформатора и имеющие, из-за этого, размеры и вес, делающие сварочные аппараты громоздкими и неудобными в применении.

Инверторные же аппараты удалось существенно уменьшить и облегчить с помощью увеличения частоты работы до 70-80 кГц и удешевить, поскольку меди на обмотку и других материалов уходит в разы меньше.

Схема инвертора

Электросхема сварочного инвертора состоит из транзисторов, мощных, берущих на себя большую часть работы. Частота тока в сети составляет всего 50 Гц, транзисторы же переключаются с высокой частотой, поэтому необходимо обеспечить их подачей постоянного напряжения. Вот тут и вступает в работу выпрямитель, как раз занимающийся тем, чтобы поступающий ток имел постоянные параметры.

Достигается этот эффект диодным мостом и фильтрующими конденсаторами. Диодный мост очень мощный, поэтому есть необходимость ставить его в паре с охлаждающим радиатором. На нем, в свою очередь, установлен предохранитель от перегревания, который при достижении критических температур размыкается. Необходим он для того, чтобы избежать поломки прибора от перегрева. Таким образом, на первом этапе мы получаем на выходе с выпрямителя постоянный ток, имеющий значение более 220V.

Важным элементом схемы является фильтр электромагнитной совместимости, ставится он перед выпрямителем и защищает сеть от высокочастотных помех, появляющихся из-за работы инвертора.

Сам инвертор состоит из двух транзисторов на радиаторах для контроля тепла. Для понижения же напряжения схема простого сварочного инвертора успешно работает с трансформатором высокой частоты. Далее транзисторы коммутируют постоянное напряжение через обмотку трансформатора, величины достигают примерно 340V.

Если совсем по-простому, то роль трансформатора в том, что первичная обмотка выдает большое напряжение и маленький ток, а с вторичной обмотки уходит меньшее напряжение, но максимальный ток, показатели могут быть около 120 ампер.

Выходной выпрямитель – это диоды с высокими показателями быстродействия, сдвоенные, с общим катодом. Электросхема инверторного сварочного аппарата нуждается в именно быстродействующих диодах, суть их работы в том, что они очень шустро открываются и закрываются, нужно это для того, чтобы защитить сами диоды и весь прибор от перегревания и выхода из строя.

Когда инвертор включается, начинают заряжаться конденсаторы, поскольку в этот момент зарядный ток очень велик, настолько, что может вывести из строя диодные мосты, то применяется схема ограничения заряда, еще она называется «мягкий пуск». Работа его основывается на резисторе, имеющем высокое сопротивление, как раз он и принимает на себя основной удар и отвечает за ограничение тока в схеме.

Самостоятельный подход к ремонту и эксплуатации

Самые важные элементы схемы уже описаны, остается лишь добавить, что сварочный инвертор — прибор не очень сложный, при желании и заинтересованности его можно собрать своими руками. По запросу: схемы сварочных инверторов скачать, можно найти огромное количество готовых схем и видеороликов о самостоятельной сборке сварочных инверторов и их ремонте на нашем сайте.

Если вы понимаете сам принцип работы аппарата, то, достав нужные запчасти, можно очень экономно подойти к вопросу, покупать ли инвертор, чинить его самим или отнести в мастерскую.


Поделитесь со своими друзьями в соцсетях ссылкой на этот материал (нажмите на иконки):

Принципиальная электрическая схема сварочного инвертора

Современные схемотехнические решения и элементная полупроводниковая база позволили уйти от устаревших и тяжёлых трансформаторных выпрямителей. В наши дни используется преобразование сетевого напряжения по несколько иному принципу.

Образцом такого решения служат схемы сварочных инверторов, преимуществами которых являются как небольшой вес, так и отсутствие нагрузок на электрические сети общего пользования.

Электрические схемы, основанные на использовании современной полупроводниковой электроники, открыли широкие возможности для совмещения инновационных принципов с высокими потребительскими качествами.

Виды сварочных аппаратов

Технологические возможности нашего века характерны использованием новых решений не только в военно-космической сфере, но и в бытовом применении инженерных, прогрессивных принципов. Этот процесс находит отражение и в технологии производства оборудования для сварочных работ. Стали возможными операции по соединению сплавов металлов и разнородных составов в единое целое. Для этого предназначены различные схемы сварочных инверторов, которые необходимы для выполнения определённых функций, а именно:

  1. для электродуговой сварки покрытыми электродами необходимы инверторы ММА, которые обеспечивают высокий КПД, при малом потреблении и невысоком весе оборудования;
  2. аппараты ММА+TIG, которые обеспечивают отличные показатели работы тугоплавкими электродами в среде инертных газов;
  3. агрегаты с полуавтоматической подачей сварочной проволоки (MMA+MIG) в среду защитных или активных газов в сварочной ванночке;
  4. оборудование для импульсной, точечной сварки для осуществления кузовного и прочего ремонта.
  5. сварочные преобразователи для резки металлов различного принципа действия.

Учитывая возможности этого спектра устройств, можно вести работы в среде разных газов и сваривать разнообразные металлы и сплавы с высоким качеством конечного изделия. При этом питающее напряжение может быть от 160 до270 В, а сварочный ток достигает значений 250 А, что не исключает применения электродов до 5 мм в диаметре. С использованием электросхем инверторного типа становится достижимым сочетание небольшого веса и мощного импульсного сварочного тока.


Эти параметры позволяют соединять тонкостенные листы, разнородные сплавы, оцинкованную и нержавеющую сталь в среде инертных газов, а также использовать точечную сварку для кузовного ремонта. Оборудование типа TIG и MAG/MIG нужно дополнить еврорукавами для подачи газа и сварочной проволоки, и приобрести баллоны с газом и редукторы для регулировки давления.
Такое оборудование открывает широкие возможности по сварке разнообразных металлов.

Важно подбирать оборудование в соответствии с вашими потребностями, чтобы не переплачивать за аппаратуру, которая в дальнейшем может не понадобиться, и убедиться в наличии центров гарантийного ремонта сварочных инверторов и обслуживания.

Принципиальная схема аппаратов инверторного типа

Для того чтобы понимать суть работы современного сварочного агрегата, необходимо знать из каких блоков состоит принципиальная схема сварочного инвертора, который обеспечивает энергией дугу короткого замыкания при сварочном процессе. Эти аппараты могут питаться как от трёхфазной сети 380В, так и от однофазного напряжения 220 В. Причём колебания питающего напряжения могут достигать значительных величин, что не сказывается на работоспособности агрегатов. Это позволяет работать в нестабильных сетях загородного электроснабжения, которое довольно часто присутствует в дачных поселениях.



Переменное напряжение частотой 50 Гц поступает на вход аппарата, где выпрямляется и преобразуется в высокочастотные колебания до 70−85 кГц. Это даёт возможность за счёт высококачественной элементной базы и компактных трансформаторов получать на выходе импульсный и постоянный сварочный ток. Такая схема сварочного аппарата состоит из следующих элементов:

  • низкочастотный понижающий выпрямительный блок с конденсаторным фильтром;
  • регулируемый инвертор, преобразующий постоянный ток в высокочастотный переменный;
  • трансформатор высокой частоты, выдающий на выходе высокочастотный или постоянный сварочный ток большой мощности;
  • сдвигающий фазу дроссель, стабилизирующий характеристики выходного напряжения;
  • схема обратной связи, управляющая выходными параметрами и блок управления, который меняет параметры тока и напряжения сварки.

Крайне важно подбирать полупроводниковую базу от надёжных, проверенных производителей, которые обеспечивают высокие параметры при сварочных процессах и обеспечивают долговечную службу.

Мощные выходные транзисторы и диоды должны обладать эффективными теплоотводящими радиаторами, которые охлаждаются принудительной вентиляцией, интенсивность действия которой должна зависеть от сварочной нагрузки. Только в этом случае удастся избежать неисправности силового блока инверторного аппарата. Также безупречная работа обеспечивается путём соблюдения правил безопасной работы и своевременного обслуживания отдельных агрегатов и узлов. Важное место занимает регулярная очистка от пыли охлаждающих радиаторов силовых, полупроводниковых элементов.

Отличия схемотехнических решений разных видов инверторов

Инверторные аппараты кроме принципиальной электрической схемы обладают рядом преимуществ в конструктивной реализации, которые позволяют использовать функции форсированного розжига дуги. Также существуют схемы антизалипания электродов, осцилляторы, которые обеспечивают устойчивое горение дуги в среде защитных газов. Есть и схемы задержки подачи защитного газа и тока сварки, именно они и дают возможность осуществлять работу в среде инертного облака, препятствующего окислению заготовок. Подача сварочной проволоки имеет свои особенности, где регулирование скорости и задержка движения определяется схемотехническими решениями.

Отличие от стандартных решений ММА заключается, в первую очередь, наличием системы подведения инертных газов в зону сварочного шва. Это касается системы сварки методами TIG и MIG/MAG, которые обеспечивают подачу защитного или активного газа в зону плавления металлов. Здесь выходные импульсные напряжения при крутопадающей частотной характеристике имеют свои особенности, связанные с наличием газовой среды с защитными физическими свойствами.

Поэтому сварка в таких условиях имеет свои отличия от стандартной схемы, а именно:

  • в аппаратуре TIG и MIG/MAG присутствует схема задержки сварочного тока относительно подачи защитного газа;
  • для обеспечения работы аргонодугового метода (TIG) аппаратура снабжается специальными разъёмами для подачи газа, а горелка имеет устройство крепления для вольфрамового электрода;
  • в полуавтоматических инверторах присутствует устройство протяжки сварочной проволоки с регулируемой скоростью, для этой цели используют еврорукав, через который подаётся газ и проволока в зону сварочного шва.

Широкие возможности аппаратурной регулировки параметров импульсного напряжения, позволяют сваривать сплавы титана и алюминия, тонкостенную легированную и нержавеющую сталь. Прочность соединения различных материалов обеспечивается правильным подбором параметров тока и состава сварочной проволоки, а также грамотным выбором состава газовой смеси.

Важно при покупке сложной аппаратуры и комплектующих выбирать надёжных производителей и особое внимание уделять качеству баллонов с газом, редукторов, шлангов и еврорукавов.

Возможные неисправности и способы их устранения

Даже надёжные электронные компоненты могут иногда выходить из строя, поломки случаются при неправильной эксплуатации сварочных инверторов. Эти ситуации могут происходить по причине недостаточного охлаждения силовых элементов при высокой температуре окружающего воздуха, а также при работе в условиях запылённой или слишком влажной атмосферы. Пыль, осаждаясь на радиаторах, препятствует эффективному отводу тепла, поэтому одним из требований производителя, является периодическая очистка аппарата. В условиях повышенной влажности могут возникать утечки, которые также могут привести к неисправности.

Начинать поиск неисправности следует с простейших причин, поскольку в схемах современных сварочных инверторов присутствует многоуровневая защита от перегрева и короткого замыкания. Необходимо ознакомиться с инструкцией по эксплуатации прибора, где чётко указаны пределы внешнего питающего напряжения и длительность работы при максимальном значении сварочного тока. Также указывается диаметр электрода, и даются советы по использованию газовых смесей в определённых пропорциях.

Основными причинами плохой или неустойчивой работы схемы инвертора могут быть следующие причины:

  • слишком низкое или высокое напряжение в электрической сети, обычно инвертор работоспособен от 170 до 250 В;
  • малое сечение или большая длина сетевого провода, жилы должны быть сечением не менее 2,5 мм2, а длина не превышать 30 метров;
  • штатный сварочный кабель не должен быть длиннее 3 м, а сечение от 35 до 50 мм2;
  • необходимо убедиться в бесперебойной работе вентилятора, иначе может произойти выход из строя силовых полупроводниковых элементов схемы инвертора;
  • плохой контакт одного или обоих кабелей.

Если причина неработоспособности инверторного аппарата заключается в подгорании контактов или транзисторов схемы, то лучше не предпринимать самостоятельных действий. Дело в том, что видимая неисправность, может повести за собой выход из строя других элементов схемы аппарата, которые можно обнаружить только с помощью соответствующего оборудования.

Важно проводить сложный ремонт в гарантийных и специализированных мастерских, чтобы избежать последствий и затрат, связанных с неквалифицированным вмешательством.

Итог

Мы рассмотрели принципиальную схему сварочного инвертора, знание которой убережёт вас от основных ошибок при эксплуатации сложной аппаратуры. Современные схемные решения сделали возможным создание лёгких и мощных сварочных аппаратов с широкими возможностями и высоким классом защиты. Но не следует забывать о правилах техники безопасности при выполнении сварочных работ, а также использовать спецодежду.

Принципиальная электрическая схема сварочного инвертора

Бытовые сварочные устройства все больше представлены на прилавках магазинов. Поскольку схема сварочного инвертора основана на использовании токов


высокой частоты, то габариты и вес устройства выгодно отличается от прочих выпрямителей, преобразователей и сварочных трансформаторов для переменного тока сварки. Отсюда и возникает высокий спрос на них. Поскольку электросхема сварочного инвертора, основанная на электронном принципе с использованием импульсного резонанса в работе, достаточно сложная, то и цена на инверторы значительно выше других сварочных агрегатов. Тем не менее, высокая цена компенсируется многими преимуществами.

Структурная схема сварочного инвертора упрощенно показана на Рис. 1

Схема состоит из 3 блоков.

  • На входе стоит выпрямитель (входной) с емкостью подключенной параллельно. Конденсатор является накопителем, позволяющим поднять напряжение постоянного тока до 300в. Входной выпрямитель работает без трансформатора.
  • Модуль инвертора производит преобразование постоянного тока в высокочастотный, переменный. Частота преобразованного тока измеряется в десятках килогерц. Понижение напряжения происходит в высокочастотном импульсном трансформаторе в составе инверторного блока. Модуль инвертора выполняется с использованием в схеме активных элементов. Схемотехническое исполнение блока инвертора подразумевает два варианта работы. Принципиальная электрическая схема сварочного инвертора может быть основана на использовании однотактных импульсов, другой вырабатывает двухтактные. Разница состоит в полярности импульсов. Двухтактные импульсы двухполярны, а однотактные являются однополярными. Но в обоих случаях транзисторы всегда работают в режиме ключей с возможностью регулировки времени включения. Такой режим позволяет регулировать ток нагрузки.
  • Выходной выпрямительный блок преобразует переменный ток после инвертора в постоянный ток сварки.
Различные решения модульного блока в принципиальной схеме сварочного инвертора можно рассмотреть на представленных схемах.

Схема двухтактного инверторного модуля (сварочный инвертор мостовая схема). Рис. 2-1

В мостовом типе двухполярные импульсы образуются за счет парной работы ключевых транзисторов (VT1-VT3; VT2-VT4)/ Через них проходит только половина тока от моста, естественно, что напряжение на каждом будет составлять половину от емкости «С».

Схема двухтактного инверторного модуля (полумостовая схема). Рис. 2-2.

У полумостового модуля благодаря емкостному делителю напряжение на транзисторах (на каждом из них) и в первичной обмотке (у трансформатора) будет составлять половину от входного значения. Таким образом, при питании от входного выпрямителя напряжение составит 150в. В этой схеме при больших сварочных токах должны быть использованы мощные транзисторы (возможно использование групп). Потребление тока сети повышено в сравнении с полным мостом.

Схема однотактного инверторного модуля (косой полумост). Рис. 2-3.

У однотактовой схемы «косого моста» ключевые транзисторы VT1-VT2 работают одновременно на отпирание и запирание. Напряжение в транзисторах (в запертом случае) не достигает половины входного. Энергия при закрытии транзисторов поглощается входным конденсатором «С» через диоды (VD1-VD2 на схеме). Недостатком «косого полумоста» является подмагничивание стержня трансформатора за счет составляющей константы выходного тока.

Схема импульсного сварочного инвертора может содержать все три рассмотренных варианта модуля.

Сварочный аппарат инвертор — схема которого изображена на Рис. 1 представляет собой настолько компактную конструкцию, что вес готового инвертора в корпусе составит 5-12 кг вместе с приборами контроля, в зависимости от его мощности.

СХЕМА СВАРОЧНОГО ИНВЕРТОРА

СХЕМА СВАРОЧНОГО ИНВЕРТОРА

Современные сварочные инверторы, за счёт высокой частоты преобразования тока и системы электронной стабилизации, обеспечивают очень стабильную сварочную дугу. Современная элементарная база позволяет создавать сварочные инверторы очень компактными и оснащенными всеми необходимыми функциями. Имеющиеся на данный момент в продаже сварочные аппараты отличаются ограниченной потребляемой мощностью; режимом антиприлипания электрода; плавную регулировку тока сварки, часто с помощью микропроцессорного управления и защиту от перегрузок и перегрева схемы. Напряжение питания всех схем стандартное, сетевое 220 В при токе до 30 А. Выходной сварочный ток регулируется в пределах 5 — 200 А.

При сварке металлов с помощью инвертора, электрическая дуга возникает между электродом, диаметром 1-5 мм, который часто изготовлен из того же материала, что и соединяемый материал и свариваемым материалом. Из-за горения этой дуги, происходит плавление электродов и материала. После расплава происходит смешение соединяемого материала с материалом электрода и возникает прочное соединение.

Хочу представить вашему вниманию сборник принципиальных схем промышленных аппаратов сварочных инверторов, собранных «с миру по нитке». Кому-то эти схемы понадобятся для ремонта, а кто и сам захочет повторить одну из схем. Ведь цена на готовое заводское устройство обычно лежит в пределах 300 — 500уе, и самостоятельная сборка сварочного инвертора вполне оправдана.

На нашем сайте имеются в наличии для скачивания такие файлы:

  • — Электрическая схема сварочного инвертора САИ;
  • — Электрическая схема сварочного инвертора MOS;
  • — Электрическая схема сварочного инвертора TELWIN;
  • — Электрическая схема сварочного инвертора NEON;
  • — Электрическая схема сварочного инвертора Inverter TOP DC;
  • — Электрическая схема сварочного инвертора Prestige;
  • — Электрическая схема сварочного инвертора ВДУЧ;
  • — Электрическая схема сварочного инвертора ThermalArc;
  • — Электрическая схема сварочного инвертора MARC;
  • — Электрическая схема сварочного инвертора Maxstar;
  • — Электрическая схема сварочного инвертора РУСЬ;
  • — Электрическая схема сварочного инвертора DC250;
  • — Электрическая схема сварочного инвертора Форсаж;
  • — Электрическая схема сварочного инвертора Invertec V.

Все принципиальные схемы выложены в разделе КНИГИ и доступны для скачивания всем пользователям, по прямой ссылке с сервера сайта, без всяких депозитов и летитбитов.

Если у вас имеется ещё какая-либо схема сварочного инвертора — можете поделиться ей с посетителями нашего сайта прислав схему на почту.

ФОРУМ по сварочным инверторам.

Схема сварочного инвертора. Принципиальная электрическая схема сварочного инвертора

В статье будет рассмотрена классическая схема сварочного инвертора. На сегодняшний день они очень популярны, цена их достаточно доступна. У них очень много положительных качеств, в частности, простота работы и малый вес. Но, как и остальные электронные устройства, сварочный аппарат может выйти из строя. И чтобы провести качественный ремонт, необходимо хотя бы в общих чертах иметь представление о его устройстве, из каких элементов состоит схема инвертора. Без этого вы не сможете отремонтировать сварочники, в схеме которых используются инверторные преобразователи. Поэтому необходимо очень много теории узнать об этом устройстве.

Основные сведения про инверторные аппараты

По сути, это блок питания, принцип его действия похож на тот, который используется в персональных компьютерах. Преобразование электрической энергии происходит по одинаковым принципам, несмотря на то, что размеры и функции этих устройств различные. Можно выделить несколько этапов, которые протекают в сварочном инверторе. Первым делом происходит преобразование переменного напряжения, которое поступает от сети 220 В, в постоянное. О том, как это происходит, будет рассказано немного ниже, равно как и приведена электрическая схема сварочного инвертора.

Затем происходит преобразование этого напряжения в переменное, но с более высокой частотой. Вы знаете, что в электрической сети частота тока 50 Гц. В инверторных сварочных аппаратах происходит повышение вплоть до 80 тысяч Гц. Затем необходимо снизить значение напряжения с высокой частотой. На последнем этапе происходит преобразование этого низкого напряжения с частотой порядка 80 тысяч Гц. Это краткое описание, на самом деле все этапы можно разбить на более мелкие составляющие. Но для понимания принципа функционирования этого достаточно.

За счет чего уменьшается вес сварочного аппарата

А теперь о том, почему были выбраны схемы именно инверторного типа. Посмотрите на сварочные аппараты, которые использовались ранее, в том числе и самодельные. Их основное предназначение – снижение переменного напряжения, которое поступает от бытовой электросети до безопасного значения, но с большим вторичным током. По этой причине первичная обмотка мотается более тонким проводом, нежели вторичная. От толщины провода зависит то, какой ток вы получаете в обмотке. Ниже приведена принципиальная схема сварочного инвертора в статье. Внимательно ее изучите, чтобы иметь представление о том, какие элементы входят в нее. Для сварки порой обходимо несколько сотен ампер. Из-за того, что мощность таких трансформаторов очень высокая, а работают они только при частоте тока 50 Гц, кроме того, у них очень большие габариты. Как вы понимаете, частота входящего и выходящего тока одинакова. Другими словами, если подали на первичную обмотку 50 Гц, со вторичной снимите электрический ток с такими же параметрами.

Рабочая частота инвертора

Но вот благодаря инверторным сварочным аппаратам, в которых увеличивается рабочая частота на значение порядка восьмидесяти тысяч герц, а в некоторых аппаратах и больше, можно во много раз уменьшить размеры трансформаторов, которые применяются при преобразовании электрического тока. Если увеличить рабочую частоту, то можно уменьшить трансформатор как минимум в четыре раза. Следовательно, суммарный вес всего сварочника будет очень маленьким. Себестоимость этого аппарата также уменьшается, так как происходит экономия меди и стали, которые используются при изготовлении трансформаторов. Но чтобы получить такое значение частоты, необходимо применять инверторные схемы. Они состоят из мощных полевых транзисторов, которые работают в режиме ключа. С их помощью происходит переключение тока с необходимой для работы частотой. Обратите внимание на то, что работать полевой транзистор может лишь при постоянном напряжении. Стоит отметить, что схема сварочного инвертора «Ресанта» во многом схожа с той, которая используется в других аппаратах.

Принцип работы выпрямителя

Поэтому прежде чем подать на них питание, необходимо выпрямить поступающий ток. Для этого используется выпрямитель, в котором находятся мощные диоды. Они соединены по мостовой схеме. После этого происходит отсечка переменной составляющей при помощи электролитических конденсаторов. Это происходит на первой ступени преобразования. Полевые транзисторы подключаются к трансформатору. С его помощью получается понизить напряжение. Как упоминалось выше, эти транзисторы производят переключение тока с частотой иногда даже более 80 тысяч Гц. Понятное дело, что трансформатор тоже должен быть рассчитан на работу при таких параметрах. Габариты этого устройства очень маленькие, не сравниться ему с теми, которые применяются в обычных трансформаторных сварочных аппаратах. А вот мощность у него такая же. Понятное дело, что появляется еще множество различных элементов, которые необходимы для стабильной работы сварочного аппарата. А теперь более подробно о том, как работает каждый блок обычного сварочного инвертора. В нем имеется две основных части – силовая и схема управления.

Выпрямительный каскад

В этом блоке происходит преобразование переменного тока, который поступает от сети 220 Вольт. В нём имеется несколько полупроводниковых диодов с большой мощностью, а также электролитические конденсаторы и дроссель. Это вкупе дает то, что переменный ток с рабочей частотой 50 Гц становится постоянным. Конденсаторы необходимы для того чтобы отсечь переменную составляющую, которая все равно остается в выпрямленном напряжении. Обратите внимание, что существует несколько вариантов схем для выпрямления напряжения. Если подключение необходимо производить к трехфазной сети, то схема соединений полупроводниковых диодов будет несколько иной. Поэтому нужно определиться с тем, какая вам необходима схема сварочного инвертора. Своими руками такое устройство можно собрать достаточно просто.

Фильтры

Обратите внимание также, что практически в полтора раза увеличивается напряжение после того как оно поступит на фильтр, собранный на электролитических конденсаторах. Другими словами, если происходит питание от сети 220 Вольт, то на выводах конденсаторов, если произвести замер, будет 310 В. Для сглаживания пульсаций тока, чтобы не возникало высокочастотных помех, а также для избегания попадания их в электрическую сеть, необходимо установить специальный фильтр. Обычно он собирается на дросселе, который намотан на кольцевом сердечнике, а также в схему включены несколько конденсаторов.

Инверторный каскад

Обычно для реализации инвертора используют два мощных транзистора, которые работают в режиме ключа. Стоит отметить, что они обязательно монтируются на алюминиевом радиаторе. Также имеется дополнительное принудительное охлаждение при помощи вентилятора. Благодаря этим транзисторам происходит коммутация постоянного напряжения, которое впоследствии поступает на импульсный трансформатор. Причем переключение происходит с частотой около 80 кГц. Но имеется отличие от переменного тока, который протекает в бытовой электросети. Во-первых, само значение частоты во много раз превосходит его. Во-вторых, форма импульса этого переменного напряжения, которое вырабатывается полевыми транзисторами, прямоугольная, а не синусоида. Чтобы обезопасить транзисторы от чрезмерного превышения напряжения, необходимо использовать цепи, состоящей из сопротивлений и конденсаторов. Стоит отметить, что принципиальная электрическая схема сварочного инвертора не обходится без этих элементов.

ВЧ-трансформатор

Высокочастотный трансформатор, на который подается напряжение от транзисторов, работающих в ключевом режиме, позволяет снизить его значение до 65 вольт в среднем. Но при этом ток может составлять порядка 130 А. Можно даже провести аналогию с катушкой зажигания, которая используется в автомобилях. В сварочных инверторах на первичную обмотку подается высокое напряжение, но ток у него очень маленький. Снимается с вторичной обмотки напряжение с меньшим значением, но ток при этом увеличивается. Обратите внимание на то, что автомобильная катушка зажигания работает по обратному принципу. То есть низкое напряжение с большим током подается на первичную обмотку. А с вторичной снимается высокое напряжение, но с меньшим значением тока.

Выходной выпрямитель

Но стоит взглянуть на то, из каких компонентов состоит еще эл. схема сварочного инвертора. На выходе также установлен выпрямитель, который собирается из полупроводниковых диодов большой мощности. У них очень высокое быстродействие, они открываются и закрываются за время, которое намного меньше, чем 50 наносекунд. Обратите внимание при проектировании сварочных инверторов на то, что нужно подбирать эти полупроводниковые элементы с таким расчетом, чтобы их параметры удовлетворяли режиму работы. Простые диоды не справятся с поставленной задачей, так как они не смогут своевременно открыться и закрыться. Сразу же начнется чрезмерный нагрев и, как следствие, выход из строя. По этой причине необходимо при проектировании или же при ремонте производить установку диодов, которые имеют очень малое время переключения.

Радиосхемы. — Схемы сварочных инверторов

схемы сварочного оборудования

В этом разделе нашего сайта мы публикуем схемы сварочных инверторов промышленного производства.

 

Кроме этого Вы сможете здесь узнать и их характеристики.

 

Любую их схем Вы можете скачать. У нас на сайте все в открытом доступе и поэтому для того чтобы скачать любую их схем Вам не потребуется регистрация, не нужно будет отправлять никаких сообщений или указывать свой е-мэйл, и вас не перенаправят на удаленный файловый сервер со скрытыми платежами и вирусами.
Ну а если вдруг возникли вопросы по ремонту сварочных инверторов- заходите к нам на форум!

Материалы данного раздела:

Ресанта САИ-140
Ресанта САИ-150АД
Ресанта САИ-160К
Ресанта САИ-180АД
Ресанта САИ-190К
Ресанта САИ- 220
Ресанта САИ- 230
Ресанта САИ-250
Ресанта САИ-315
Ресанта САИПА-135
Ресанта САИПА-165
Ресанта САИПА-190МФ
Ресанта САИПА-200
Источник плазменной резки ИПР-25 производства Ресанта
Источник плазменной резки ИПР-40 производства Ресанта
Источник плазменной резки ИПР-40К производства Ресанта
Сварочный инвертор Eurolux IWM-160 производства Ресанта
Сварочный инвертор Eurolux IWM-190 производства Ресанта
Сварочный инвертор Eurolux IWM-220 производства Ресанта
Сварочный инвертор Eurolux IWM-250 производства Ресанта
ИИСТ-140
ИИСТ-160
Инвертор сварочный GYSMI-131
СВАРОЧНЫЙ ИНВЕРТОР GYSMI 160P
Сварочный инвертор Gysmi 161
Сварочный инвертор Gysmi 165
Сварочный инвертор Gysmi 183
Сварочный инвертор Gysmi 190
INVERTER 3200 TOP
PULS mini ММА 250
Сварочный аппарат FORWARD 200 IGBT
Полуавтомат сварочный Пульсар
Сварочный источник BLUEWELD Prestige 144
Prestige-164/ Technika- 164 инструкция по ремонту
TELWIN-140 сварочный инвертор
TELWIN TECNICA 141-161
Telwin TECNICA 144-164
TELWIN TECNICA 150, 152, 168, 170
Telwin Technology 175, 210, 188CE/GE
Сварочные источники COLT 1300, COLT и PUMA 150
Red Welder i2100
Инверторы сварочные ASEA-160 и ASEA-250
Инвертор сварочный ARC-200
Инвертор сварочный САИ-200
Сварочный инвертор ZX7- 200
Сварочный источник Kende ZX7-160
Инвертор сварочный ММА-160
Сварочный выпрямитель ВДУ-504
Сварочный выпрямитель ВДУ-506, ВДУ-506С
Сварочный источник ВД-200
Инвертор сварочный DECA MOS-168
Инвертор сварочный Калибр СВИ-160АП
Инвертор сварочный Калибр MINI СВИ-225 (225)
Инвертор сварочный Монолит ММА 161
Инвертор-плазморез Telwin TECNICA PLASMA 34
Источник сварочный ФЭБ Альфа 161
Инвертор сварочный Tecnoweld Monster 170
Схема сварочного полуавтомата ПДГ100-УХЛ4
Сварочный источник МАГМА‐З15
Сварочный полуавтомат Edon MIG-308
Аппарат точечной сварки Aurora PRO SHOOT M10
Сварочный полуавтомат Норма- 200МП
Славтех 185\ 200\ 205
Инверторный сварочный полуавтомат Энергомаш СА-97ПА17(ПА20)
Сварочный источник Энергомаш СА-97И14Н
Сварочный источник Приоритет САУ-150 схема
Сварочные инверторы Страт-160\ 160\ 160КС\ 200КС\ 200У схемы
Схема основной платы Awelco 5679 сварочного источника Awelco
Принципиальная электрическая схема основной платы PIASTRA BASE 5680 сварочных источников подобных Awelco
Схема сварочного полуавтомата ПДГ-151
Инверторный сварочный источник MIG 160 IGBT схема
Схемы на инверторные источники TIG160….TIG400
Blueweld Combi 4.165 сварочный полуавтомат
Инверторные сварочные источники Minarc-150
Сварочный полуавтомат MIG200
Сварочный полуавтомат ПДГ-201
EWM PICO 162 схема и инструкция
Инверторы сварочные ВДУЧ-315 (315М)
Сварочные полуавтоматы ESAB LAX 320, LAX 380 схемы
Сварочный полуавтомат ПДГ-102 УЗ СВАП-02
Сварочный аппарат LHF 250 (400, 630, 800 )
Сварочный аппарат LHF 405 (615) Pipeweld
Сварочные инверторы LHQ150\ LTV150\ Caddy 150\ Caddytig 150
Сварочный полуавтомат ESAB LKA150
Сварочный полуавтомат ESAB LKA 180\ LKA 140
Сварочный аппарат ESAB LTH 161\ Tigma 161
Сварочный аппарат ESAB LKB 400W мануал
Устройство протяжки сварочной проволоки ESAB MED 44 Aristo
Сварочный аппарат ВДУЧ-350МАГ схема
Сварочный источник ТИР-630 инструкция и схема
Комплект электродуговой металлизации КДМ-2 схема
Инвертор сварочный ДОН-150
Выпрямитель сварочный ВДУ-506М
Сварочный источник FUBAG IR160\ IR180\ IR200
Генератор сварочный ГД-4002 У2
Источник плазменной резки КАРАТ-100М схема
Сварочный источник Kemppi PS5000 схема
Сварочные полуавтоматы ESAB Mig C141/C151
Сварочный источник универсальный ESAB DTA400ACDC
Сварочные полуавтоматы MIG Autoplus-120\ 130
Сварочный аппарат TIG схема
Сварочный источник TRIODIN TIG-20
Генератор для импульсной сварки Triodyn DP20
Сварочный регулируемый выпрямитель WTU-200
Инверторный сварочный источник АСПТ-60 схема
Инверторный сварочный источник АСПТ-90 схема
Инверторный сварочный источник Фора-60 схема
Источник плазменной резки LGK8-40 производства Китай
Источник плазменной резки SUPERIOR PLASMA 90 HF
Источник сварочный BestWeld BEST 210
Автомобильная сварочная приставка АСП1
Источник сварочный STURM AW97I20
Сварочный инвертор КРАТОН WT-130S
Сварочный аппарат Дуга-Профессионал схема
Сварочный полуавтомат ПСТ-161
Сварочный источник ВД-306Д схема
Сварочный инвертор Форсаж 160\ 250
Сварочный полуавтомат MIGATRONIC AUTOMIG
Установка плазменной резки MEGATRONIC PI 400 PLASMA
Сварочный аппарат GYSPOT мануал
Сварочные инвертор Idealarc DC400
Сварочный инвертор МК-300А схема
Инверторный сварочный источник IDEALARC DC-400 инструкция по тех.обслуживанию
Сварочный инвертор ASEA-160 схема
Сварочный инвертор INVERTEC STT схема
Сварочный инвертор INVERTEC V205-T схема
Сварочный инвертор INVERTEC V250-S схема
Сварочный инвертор INVERTEC V300-I схема
Сварочные аппараты PHOENIX 301\ 351\ 401\ 421\ 521
Сварочный аппарат Murex Transtig AC/DC 200 схема
Регулятор контактной сварки РКС-601 УХЛ4 схема и описание
Регулятор контактной сварки РКС-502 УХЛ4 схема
Установка для аргонно-дуговой сварки УДГУ-2510
Аппарат сварочный Akai TE-7514AAAC
Сварочный выпрямитель универсальный ВСВУ-400 схема
Регулятор контактной сварки РКС-801 УХЛ4 схема
Сварочные полуавтоматы ПДГ-250-3 «Есаул», ПДГ-270-3, ПДГ-350-3 и ПДГ-350 схемы

Электрическая принципиальная схема инверторного сварочного аппарата

Главная » Статьи » Электрическая принципиальная схема инверторного сварочного аппарата

Описание схемы сварочного инвертора

  • 28 декабря
  • 57 просмотров
  • 18 рейтинг

Оглавление: [скрыть]

  • Описание некоторых деталей схемы инвертора
    • Некоторые конструкционные особенности бытового инвертора для сварки
    • Коротко в итоге

Схема сварочного инвертора применяется для сварки с использованием штучного электрода. Для оборудования самого начального уровня чаще применима небольшая нагрузка у индивидуальных предпринимателей или же просто у обычных людей в бытовых нуждах. Такие простенькие агрегаты не пригодны для использования в производстве. Приводимая микросхема используется для ремонта этих устройств своими руками.

Для начала познакомимся с основными требованиями, которые устанавливаются для инверторных источников тока для сварки самого простого, бытового уровня. К ним относятся:

  1. Работа оборудования должна осуществляться от однофазной сети частотой 220/50 Герц (Гц).
  2. Аппарат должен иметь возможность использовать штучные электроды, диаметр которых 1,6 до 3,25 мм.
  3. Доступная стоимость, минимальный вес и габариты.
  4. Ремонт такого агрегата должен быть доступен в обычных мастерских или же своими руками.

Аппараты для сварных работ с подобными характеристиками получили широкое применение в быту. И их сборка или же ремонт производится в соответствии с принципиальной схемой к сварочному инвертору и в точном соответствии с прилагаемой инструкцией к оборудованию. Особенно это касается случаев ремонта оборудования дома.

Способы подключения сварочного инвертора.

Описывая схему бытового устройства для сварки металла, стоит заострить внимание на которых деталях. Понятно, что всю координацию работы этого преобразователя осуществляет микросхема и ее главный элемент — ШИМ-контроллер.

С точки зрения схемотехнических особенностей инверторного сварочного аппарата выбор используемой в ШИМ-контроллере микросхемы напрямую зависит от того, какие функции выполняет конкретное устройство. В любой электрической схеме соединение двух или нескольких компонентов осуществляет деталь, которая называется мост. Но, помимо связующей функции, эта часть микросхемы несет еще и некоторые дополнительные функции в работе, которую выполняет вся электрическая схема сварочного инвертора.

Вернуться к оглавлению

Не будет лишним сказать, что при использовании инверторного сварочного аппарата удается получить высококачественные сварные швы и при этом не затратить много усилий оператора сварки. К тому же работа с таким оборудованием очень комфортна и продуктивна. Да и сборка этого устройства своими руками по типовому чертежу самого обычного агрегата не представит особого труда.

Промышленные трансформаторные преобразователи в своем строении более электротехничны.

Напротив, глядя на принципиальную схему сварочного аппарата, можно увидеть, что он является электронным устройством.

Блок-схема полумостового инвертора..

При ремонте такого оборудования нужно следовать схемам сварочных инверторов. Для диагностики неисправностей и ремонта этого механизма необходимо последовательно выполнить проверку:

  • состояния стабилитронов;
  • транзисторов;
  • диодов;
  • резисторов.

При обнаружении неисправностей в конструкции нужно выполнить ремонт по чертежам устройства аппарата для таких технических работ.

Вернуться к оглавлению

Подробнее описывать конструкционные особенности всех типов механизмов этого типа не имеет смысла, поскольку существует большое количество специальной литературы по этому вопросу.

Целью же этого обзора было лишь ознакомление читателей с принципиальным строением инверторного сварочного аппарата и его некоторыми основными узлами.

expertsvarki.ru

Какова схема сварочного аппарата – разбор в деталях

Частичная автоматизация сварочного процесса гарантирует получение качественного соединительного шва, а также существенно облегчает работу сварщика. Современные полуавтоматические сварочники являются мощными и достаточно эффективными в применении агрегатами. Они позволяют производить с помощью плавящихся стержней быструю и надежную электродуговую сварку. В таких устройствах функцию электрода выполняет специальная проволока, которая подается в зону проведения работ по непрерывной схеме.

Современные полуавтоматические сварочники

При использовании полуавтомата сварщик вручную осуществляет движение проволоки вдоль соединительного шва, кроме того, он имеет возможность регулировать скорость подачи плавящегося электрода. Полуавтоматические агрегаты производят сварку в газовой среде и с флюсом. Также они могут функционировать с особой порошковой проволокой. В быту и на небольших предприятиях чаще всего эксплуатируются полуавтоматы, работающие в среде защитного газа. Даже в тех случаях, когда применяется порошковая проволока, сварочный процесс, как правило, проходит в газовой атмосфере.

Полуавтоматические устройства состоят из;

  • трансформатора – источника тока;
  • системы, позволяющей управлять и контролировать сварку;
  • горелки с рукавом и электродом;
  • приспособления (механического) для подачи проволоки;
  • аппарата для подачи защитного газа.

В полуавтоматах в качестве источника тока может выступать не только трансформатор, но и обычный сварочный инвертор. Причем использование последнего сейчас признается более разумным. Далее мы поговорим об этом подробнее. И вы поймете, почему схема сварочного полуавтомата в наши дни признается устаревшей по сравнению с устройством инверторных сварочников.

Схема современного сварочного инвертора кардинально отличается от принципов, по которым работают трансформаторные аппараты. Последние функционируют за счет наличия в их конструкции понижающего устройства. Оно имеет немалый вес и габариты. Большая масса трансформатора, естественно, утяжеляет и сам сварочник, а значит, его использование в полевых условиях связано с определенными трудностями. Таковых лишены инверторы. Они компактные и легкие, могут применяться в любых условиях.

К тому же, работать с такими агрегатами может обычный человек, которому практически нереально справиться с традиционным трансформаторным сварочником. Для изготовления инверторного сварочного аппарата применяются особые электросхемы. Их ключевым элементом является специальный преобразователь импульсного типа. Он способен вырабатывать высокочастотный ток, который позволяет без проблем производить розжиг электродуги. Импульсный преобразователь, кроме того, обеспечивает в течение всего сварочного процесса стабильное горение дуги.

Преобразователь импульсного типа

Сразу хочется отметить один момент. Электросхема сварочного инвертора всегда имеет собственные особенности, определяющие технические характеристики и рабочий потенциал конкретного сварочника. При этом принцип функционирования последнего является неизменным. Электрическая схема инвертора включает в себя следующие обязательные компоненты:

  1. Питающий блок. Этот элемент подает на силовую часть сварочного агрегата электроток. Конструктивно блок состоит из зарядной нелинейной цепи, особого емкостного фильтрующего устройства и выпрямителя.
  2. Блок для питания слаботочных элементов электросхемы.
  3. Силовое оборудование. Оно включает в себя дроссель (выходной), еще один выпрямитель (его принято называть вторичным) и трансформирующий ток механизм.
  4. Контроллер ШИМ. Он состоит из датчика нагрузки и небольшого трансформатора.
  5. Органы индикации сварочного процесса и управления им.
  6. Охлаждающий и термозащитный модуль. Такое устройство состоит из датчиков температуры и механизмов для вентилирования сварочника.

Схема инверторного агрегата может дополняться и другими элементами, которые дают возможность расширить его функциональность и повысить эффективность использования сварочного оборудования.

Инвертор формирует электродугу, она расплавляет используемый присадочный материал и кромки свариваемых изделий. Главное достоинство инверторного оборудования состоит в том, что оно позволяет создавать ток для проведения указанной операции с большим диапазоном рабочих показателей. Далее мы приводим блок-схему функционирования стандартного инвертора, которая наглядно демонстрирует принцип его применения.

Сварка инверторным аппаратом

Из схемы хорошо видно, как работает инверторный агрегат. Здесь все относительно просто:

  1. На выпрямляющее устройство поступает 50-герцный по частоте переменный ток (стандартная бытовая электросеть). Он преобразовывается в постоянный.
  2. Фильтрующее приспособление сглаживает показатели тока и подает его непосредственно на инвертор.
  3. Инверторное устройство еще раз преобразовывает электроток (теперь уже в переменный), увеличивая при этом его частоту.
  4. Силовой трансформатор снижает напряжение тока, за счет чего сила последнего повышается.

Давайте немного подробнее разберемся с описанной схемой. Инвертор способен увеличить частоту электротока до 60–80 кГц. Подобный процесс осуществляется на участке электросхемы, на котором находятся силовые (очень мощные) транзисторы. На них разрешается подавать исключительно постоянный ток. По этой причине на входе инверторного оборудования всегда устанавливается выпрямитель. Конструктивно электрическую схему инвертора делят на цепи управления и на силовой модуль.

Первым ее элементом всегда является диодный мост. Его ставят в начале силового участка. Мост модифицирует ток (из переменного в постоянный). При этом в электросхеме формируются импульсы. Их следует в обязательном порядке сглаживать. Эту задачу выполняют электролитические конденсаторы (они скомпонованы в фильтре). Элементы диодного моста при работе нагреваются. Связано это с тем, что показатель напряжения на выходе с диодов в 1,3–1,5 раз выше, чем на входе. Чтобы данные элементы не сгорали в процессе преобразования тока, в принципиальную схему интегрируют защитные радиаторы.

А непосредственно на мост монтируют температурный предохранитель. Если диоды нагреваются до температуры более 90°, он просто-напросто отключает инвертор. Перед выпрямителем всегда размещается особое фильтрующее приспособление. Оно состоит из 2–4 конденсаторов и дросселя. Такой фильтр исключает риск попадания в бытовую электросеть помех (высокочастотных), которые возникают при функционировании сварочного агрегата. Устройство в составе инвертора, выполняющее обратное преобразование электротока (из постоянного в переменный), строится по специальной схеме. Профессиональные электротехники называют ее косым мостом.

Такая схема работает за счет ряда транзисторов, которые создают ток высокой частоты (его амплитуда, кстати говоря, характеризуется четкой прямоугольной формой).

Схема сварочного аппарата

За инверторным модулем ставится дополнительный трансформатор, необходимый для понижения напряжения до определенной величины. Без такого механизма невозможно добиться на выходе агрегата требуемого показателя сварочного тока. Самым же последним элементом, которым располагают все принципиальные схемы современных сварочных инверторов, является выпрямитель повышенной мощности. Его собирают на диодах и устанавливают после описанного выше трансформирующего напряжение блока.

Домашний мастер, имеющий некоторые знания в электротехнической сфере, без проблем разберется с принципом работы инверторного оборудования. А разнообразные схемы сварочных инверторов, которых выложено немало на специализированных интернет-сайтах, позволят ему создать эффективный и надежный сварочник своими руками. Мы не будем описывать здесь технологию изготовления самодельного агрегата для сварки (этому вопросу имеет смысл посвятить отдельную статью). Вместо этого мы дадим пару важных рекомендаций домашним умельцам, которые помогут им сконструировать свой собственный сварочный инверторный аппарат.

Наши советы касаются обязательных элементов защиты инверторного оборудования. Их следует интегрировать в любые схемы сварочных аппаратов, чтобы иметь возможность пользоваться долговечными и безопасными в эксплуатации аппаратами. Полезные рекомендации приведены далее:

  1. Защита преобразующих электроток транзисторов осуществляется при помощи предохранительных цепей (они носят название демпфирующих), которые оснащаются термодатчиками и системами охлаждения (принудительного).
  2. Конденсаторы фильтрующего устройства нужно предохранять от выхода из строя специальными стабилизаторами. Эти приспособления обеспечивают оборудованию плавный пуск, что существенно снижает риск поломки инвертора.
  3. В обязательном порядке внедряйте в схему сварочника надежный контроллер ШИМ. Он управляет всеми элементами инвертора, отсылает сигналы на силовые транзисторы, диодные мосты, трансформирующие ток механизмы. К выбору данного контроллера следует подходить максимально ответственно, если вы планируете создать свой собственный качественный и надежный сварочник.

Добавим, что ШИМ-устройство функционирует от электрических сигналов. Они вырабатываются в операционном усилителе. Желательно, чтобы на него приходили и сигналы от всех имеющихся в конструкции сварочного агрегата защитных систем. Тогда при возникновении какой-либо критической ситуации при эксплуатации инвертора усилитель сможет оперативно отключить аппарат от электрической сети, обезопасив тем самым элементы электросхемы от сгорания.

tutmet.ru

Радиосхемы. — Инверторы сварочные

В этом разделе нашего сайта мы публикуем схемы сварочных инверторов промышленного производства.

Кроме этого Вы сможете здесь узнать и их характеристики.

Любую их схем Вы можете скачать. У нас на сайте все в открытом доступе и поэтому для того чтобы скачать любую их схем Вам не потребуется регистрация, не нужно будет отправлять никаких сообщений или указывать свой е-мэйл, и вас не перенаправят на удаленный файловый сервер со скрытыми платежами и вирусами.Ну а если вдруг возникли вопросы по ремонту сварочных инверторов- заходите к нам на форум!

Материалы данного раздела:

Ресанта САИ-140Ресанта САИ-150АДРесанта САИ-160КРесанта САИ-180АДРесанта САИ-190КРесанта САИ- 220Ресанта САИ- 230Ресанта САИ-250Ресанта САИ-315Ресанта САИПА-135Ресанта САИПА-165Ресанта САИПА-190МФРесанта САИПА-200Источник плазменной резки ИПР-25 производства РесантаИсточник плазменной резки ИПР-40 производства РесантаИсточник плазменной резки ИПР-40К производства РесантаСварочный инвертор Eurolux IWM-160 производства РесантаСварочный инвертор Eurolux IWM-190 производства РесантаСварочный инвертор Eurolux IWM-220 производства РесантаСварочный инвертор Eurolux IWM-250 производства РесантаИИСТ-140ИИСТ-160Инвертор сварочный GYSMI-131СВАРОЧНЫЙ ИНВЕРТОР GYSMI 160PСварочный инвертор Gysmi 161Сварочный инвертор Gysmi 165Сварочный инвертор Gysmi 183Сварочный инвертор Gysmi 190 INVERTER 3200 TOPPULS mini ММА 250Сварочный аппарат FORWARD 200 IGBTПолуавтомат сварочный ПульсарСварочный источник BLUEWELD Prestige 144Prestige-164/ Technika- 164 инструкция по ремонтуTELWIN-140 сварочный инверторTELWIN TECNICA 141-161Telwin TECNICA 144-164TELWIN TECNICA 150, 152, 168, 170Telwin Technology 175, 210, 188CE/GEСварочные источники COLT 1300, COLT и PUMA 150Red Welder i2100Инверторы сварочные ASEA-160 и ASEA-250Инвертор сварочный ARC-200Инвертор сварочный САИ-200Сварочный инвертор ZX7- 200Сварочный источник Kende ZX7-160Инвертор сварочный ММА-160Сварочный выпрямитель ВДУ-504Сварочный выпрямитель ВДУ-506, ВДУ-506ССварочный источник ВД-200Инвертор сварочный DECA MOS-168Инвертор сварочный Калибр СВИ-160АПИнвертор сварочный Калибр MINI СВИ-225 (225)Инвертор сварочный Монолит ММА 161Инвертор-плазморез Telwin TECNICA PLASMA 34Источник сварочный ФЭБ Альфа 161Инвертор сварочный Tecnoweld Monster 170Схема сварочного полуавтомата ПДГ100-УХЛ4Сварочный источник МАГМА‐З15Сварочный полуавтомат Edon MIG-308Аппарат точечной сварки Aurora PRO SHOOT M10Сварочный полуавтомат Норма- 200МПСлавтех 185\ 200\ 205Инверторный сварочный полуавтомат Энергомаш СА-97ПА17(ПА20)Сварочный источник Энергомаш СА-97И14НСварочный источник Приоритет САУ-150 схемаСварочные инверторы Страт-160\ 160\ 160КС\ 200КС\ 200У схемыСхема основной платы Awelco 5679 сварочного источника AwelcoПринципиальная электрическая схема основной платы PIASTRA BASE 5680 сварочных источников подобных AwelcoСхема сварочного полуавтомата ПДГ-151Инверторный сварочный источник MIG 160 IGBT схемаСхемы на инверторные источники TIG160….TIG400Blueweld Combi 4.165 сварочный полуавтоматИнверторные сварочные источники Minarc-150Сварочный полуавтомат MIG200Сварочный полуавтомат ПДГ-201EWM PICO 162 схема и инструкцияИнверторы сварочные ВДУЧ-315 (315М)Сварочные полуавтоматы ESAB LAX 320, LAX 380 схемыСварочный полуавтомат ПДГ-102 УЗ СВАП-02Сварочный аппарат LHF 250 (400, 630, 800 )Сварочный аппарат LHF 405 (615) PipeweldСварочные инверторы LHQ150\ LTV150\ Caddy 150\ Caddytig 150Сварочный полуавтомат ESAB LKA150Сварочный полуавтомат ESAB LKA 180\ LKA 140Сварочный аппарат ESAB LTH 161\ Tigma 161Сварочный аппарат ESAB LKB 400W мануалУстройство протяжки сварочной проволоки ESAB MED 44 AristoСварочный аппарат ВДУЧ-350МАГ схемаСварочный источник ТИР-630 инструкция и схемаКомплект электродуговой металлизации КДМ-2 схемаИнвертор сварочный ДОН-150Выпрямитель сварочный ВДУ-506МСварочный источник FUBAG IR160\ IR180\ IR200Генератор сварочный ГД-4002 У2Источник плазменной резки КАРАТ-100М схемаСварочный источник Kemppi PS5000 схемаСварочные полуавтоматы ESAB Mig C141/C151Сварочный источник универсальный ESAB DTA400ACDCСварочные полуавтоматы MIG Autoplus-120\ 130Сварочный аппарат TIG схемаСварочный источник TRIODIN TIG-20Генератор для импульсной сварки Triodyn DP20Сварочный регулируемый выпрямитель WTU-200Инверторный сварочный источник АСПТ-60 схемаИнверторный сварочный источник АСПТ-90 схемаИнверторный сварочный источник Фора-60 схемаИсточник плазменной резки LGK8-40 производства КитайИсточник плазменной резки SUPERIOR PLASMA 90 HFИсточник сварочный BestWeld BEST 210Автомобильная сварочная приставка АСП1Источник сварочный STURM AW97I20Сварочный инвертор КРАТОН WT-130SСварочный аппарат Дуга-Профессионал схемаСварочный полуавтомат ПСТ-161Сварочный источник ВД-306Д схемаСварочный инвертор Форсаж 160\ 250Сварочный полуавтомат MIGATRONIC AUTOMIGУстановка плазменной резки MEGATRONIC PI 400 PLASMAСварочный аппарат GYSPOT мануалСварочные инвертор Idealarc DC400Сварочный инвертор МК-300А схемаИнверторный сварочный источник IDEALARC DC-400 инструкция по тех.обслуживаниюСварочный инвертор ASEA-160 схемаСварочный инвертор INVERTEC STT схемаСварочный инвертор INVERTEC V205-T схемаСварочный инвертор INVERTEC V250-S схемаСварочный инвертор INVERTEC V300-I схемаСварочные аппараты PHOENIX 301\ 351\ 401\ 421\ 521Сварочный аппарат Murex Transtig AC/DC 200 схемаРегулятор контактной сварки РКС-601 УХЛ4 схема и описаниеРегулятор контактной сварки РКС-502 УХЛ4 схемаУстановка для аргонно-дуговой сварки УДГУ-2510Аппарат сварочный Akai TE-7514AAACСварочный выпрямитель универсальный ВСВУ-400 схемаРегулятор контактной сварки РКС-801 УХЛ4 схемаСварочные полуавтоматы ПДГ-250-3 «Есаул», ПДГ-270-3, ПДГ-350-3 и ПДГ-350 схемы

radio-uchebnik.ru

Принципиальная схема простого сварочного инвертора

Сварочный аппарат инверторного типа работает на основе принципиальной схемы, созданной специально для повышения производительности и экономии. С помощью такого аппарата производится целый спектр сварочных работ. Специалистом, который планирует использовать подобный агрегат, должна быть изучена принципиальная схема сварочного инвертора, чтобы иметь представление о его работе.

Существует много разных моделей таких инверторов, потому что каждый производитель старается создать такой агрегат, который способен выполнять все виды сварки с минимальными энергетическими потерями. Если агрегат действительно качественный и отвечает всем технологическим требованиям, он будет обеспечивать надежный и равномерный шов.

Типы сварочных агрегатов

Данные инверторы применяются не только в промышленной сфере, но все больше их используют в быту. Если есть возможность, любой человек способен приобрести такое устройство и выполнять им сварку различной степени сложности. Он сможет:

  • создавать металлические конструкции, сваривая места соединений,
  • производить ремонт автомобиля,
  • выполнять сваривание инженерных коммуникаций.

В данных устройствах используется широтно-импульсная модуляция. Если пользователь применяет дуговую ручную сварку ММА, то он может рассчитывать на высокие экономические показатели. Агрегат выгоден еще и тем, что он обладает сравнительно небольшим весом, так что сварщик способен свободно перемещать аппарат к месту проведения работ.

Для сварки алюминиевых конструкций применяется аргонодуговая сварка, причем используемый аппарат легко настраивается и регулируется для конкретных условий проведения работ. Выполняется настройка параметров и рекомендуется применение вольфрамового электрода, позволяющего обеспечивать безупречные швы.

Полуавтоматические аппараты сконструированы таким образом, чтобы не происходило разбрызгивания металлов.

Особенности схемы

Стабильная работа дуги инверторных устройств создает оптимальные условия для выполнения качественной сварки. Когда работает плазменно-дуговая резка современного типа, то обеспечивается аккуратная и равномерная кромка.

Такая кромка соответствует эстетическим требованиям, и нет необходимости ее дополнительно обрабатывать. Существуют такие модели инверторов, которые автоматически ограничивают мощность, так что при грамотной настройке вы получите оптимальное качество соединения.

Инвертор имеет небольшие габариты, что позволяет свободно его транспортировать на разных видах транспорта. Классическая принципиальная схема сварочного инвертора позволяет рассчитывать на обеспечение частоты от 55 до 75 кГц.

Схема сварочного агрегата

В инверторе основную роль выполняют транзисторы высокой частоты, так что входной ток коммутируется и обеспечивается необходимая мощность. На транзисторы электричество поступает после диодного моста, а когда ток выравнивается, то обеспечивается стабильное напряжение.

В качестве фильтрующего элемента применяется конденсатор с соответствующими параметрами. Нелинейная зарядная цепь, находящаяся в принципиальной схеме, создает условия для лимитирования электрического тока. В нелинейной цепи главные функции выполняют шунтирующий тиристор и сопротивление с такими параметрами, которые ограничивают ток.

Главная функция, которую выполняет принципиальная схема сварочного инвертора – это подача стабильного напряжения на транзисторный блок ИИСТ. Этот важнейший узел работает при частотном режиме 60-80 кГц, а значит, для обеспечения данной частоты необходим соответствующий трансформатор.

Преимущества инверторных аппаратов

Современные ИИСТ отличаются компактностью и стабильностью работы, так что пользователь может рассчитывать на постоянную мощность, которую при необходимости настраивают, на подходящий для выполнения конкретной работы режим.

Трансформаторные сварочные аппараты не всегда готовы обеспечивать стабильность, поэтому есть опасность получения швов низкого качества. Инверторные агрегаты обладают положительными качествами, которые подняли сварку на принципиально новый уровень.

Никакие внешние факторы не способны негативно сказаться на стабильном функционировании инверторного устройства. Если профессионально отнестись к настройке прибора, то есть все шансы для получения высокого качества. Все помехи оперативно устраняются, и инверторный прибор работает стабильно и эффективно.

Поделитесь со своими друзьями в соцсетях ссылкой на этот материал (нажмите на иконки):

swarka-rezka.ru

7 простых инверторных схем, которые вы можете построить дома

Эти 7 инверторных схем могут выглядеть простыми с их конструкцией, но способны обеспечить достаточно высокую выходную мощность и КПД около 75%. Узнайте, как собрать этот дешевый мини-инвертор и запитать небольшие приборы на 220 или 120 В, такие как сверлильные станки, светодиодные лампы, лампы CFL, фен, мобильные зарядные устройства и т. Д., От аккумулятора 12 В 7 Ач.

Что такое простой инвертор

Инвертор, который использует минимальное количество компонентов для преобразования 12 В постоянного тока в 230 В переменного тока, называется простым инвертором.Свинцово-кислотная батарея на 12 В является наиболее стандартной формой батареи, которая используется для работы таких инверторов.

Начнем с самого простого из списка, в котором используется пара транзисторов 2N3055 и несколько резисторов.

1) Схема простого инвертора на транзисторах с перекрестной связью

В статье рассматриваются детали конструкции мини-инвертора. Прочтите, чтобы узнать о процедуре построения базового инвертора, который может обеспечивать достаточно хорошую выходную мощность, но при этом очень доступный и элегантный.

В Интернете и электронных журналах может быть огромное количество схем инвертора. Но эти схемы часто представляют собой очень сложные и высокотехнологичные инверторы.

Таким образом, у нас не остается выбора, кроме как задаваться вопросом, как построить силовые инверторы, которые могут быть не только простыми в сборке, но также дешевыми и высокоэффективными в своей работе.

Принципиальная схема инвертора от 12 В до 230 В

На этом поиск такой схемы заканчивается. Описанная здесь схема инвертора, пожалуй, самая маленькая по количеству компонентов, но при этом достаточно мощная, чтобы удовлетворить большинство ваших требований.

Порядок изготовления

Для начала убедитесь, что для двух транзисторов 2N3055 установлены подходящие радиаторы. Его можно изготовить следующим образом:

  • Вырежьте два листа алюминия по 6/4 дюйма каждый.
  • Согните один конец листа, как показано на схеме. Просверлите отверстия подходящего размера на изгибах, чтобы его можно было надежно прижать к металлическому шкафу.
  • Если вам сложно изготовить этот радиатор, вы можете просто приобрести его в местном магазине электроники, показанном ниже:
  • Также просверлите отверстия для установки силовых транзисторов.Отверстия диаметром 3мм, типоразмер ТО-3.
  • Плотно закрепите транзисторы на радиаторах с помощью гаек и болтов.
  • Подключите резисторы перекрестной связью непосредственно к выводам транзисторов в соответствии с принципиальной схемой.
  • Теперь присоедините радиатор, транзистор, резистор в сборе ко вторичной обмотке трансформатора.
  • Закрепите всю схему вместе с трансформатором внутри прочного, хорошо вентилируемого металлического корпуса.
  • Смонтируйте выходные и входные гнезда, держатель предохранителя и т. Д. Снаружи шкафа и подключите их соответствующим образом к схемному узлу.

После завершения вышеуказанной установки радиатора вам просто нужно соединить несколько резисторов высокой мощности и 2N3055 (на радиаторе) с выбранным трансформатором, как показано на следующей схеме.

Полная схема электропроводки

После того, как вышеуказанная проводка завершена, пора подключить ее к батарее 12 В 7 Ач с лампой на 60 Вт, прикрепленной к вторичной обмотке трансформатора.При включении в результате груз будет мгновенно освещен с поразительной яркостью.

Здесь ключевым элементом является трансформатор, убедитесь, что трансформатор действительно рассчитан на 5 ампер, иначе вы можете обнаружить, что выходная мощность намного меньше ожидаемой.

Я могу сказать это по своему опыту, я построил это устройство дважды, один раз, когда я учился в колледже, и второй раз недавно, в 2015 году. Приобрел от своего предыдущего агрегата.Причина была проста: предыдущий трансформатор представлял собой надежный, изготовленный на заказ трансформатор 9-0-9В на 5 ампер, по сравнению с новым, в котором я, вероятно, использовал ложно рассчитанный 5 ампер, что на самом деле было всего 3 ампер на его выходе.

Перечень деталей

Для конструкции вам потребуются всего несколько следующих компонентов:

  • R1, R2 = 100 Ом / 10 Вт намотка провода
  • R3, R4 = 15 Ом / 10 Вт намотка провода
  • T1, Т2 = 2Н3055 СИЛОВЫЕ ТРАНЗИСТОРЫ (МОТОРОЛА).
  • ТРАНСФОРМАТОР = 9-0-9 Вольт /8 Ампер или 5 ампер.
  • АВТОМОБИЛЬНЫЙ АККУМУЛЯТОР = 12 В / 10 Ач
  • АЛЮМИНИЕВЫЙ РАДИАТОР = ОТРЕЗАТЬ ПО ТРЕБУЕМОМУ РАЗМЕРУ.
  • ВЕНТИЛИРУЕМЫЙ МЕТАЛЛИЧЕСКИЙ ШКАФ = СООТВЕТСТВУЕТ РАЗМЕРАМ ВСЕГО УЗЛА

Видео тестовое испытание

Как это проверить?

  • Тестирование этого мини-инвертора выполняется следующим методом:
  • Для тестирования подключите лампу накаливания мощностью 60 Вт к выходному разъему инвертора.
  • Затем подключите полностью заряженный автомобильный аккумулятор на 12 В к его клеммам питания.
  • Лампа мощностью 60 Вт должна сразу же ярко загореться, указывая на то, что инвертор работает нормально.
  • На этом конструирование и тестирование схемы инвертора завершается.
  • Я надеюсь, что из приведенных выше обсуждений вы, должно быть, ясно поняли, как построить инвертор, который не только прост в сборке, но и очень доступен для каждого из вас.
  • Его можно использовать для питания небольших электроприборов, таких как паяльник, лампы КЛЛ, небольшие переносные вентиляторы и т. Д.Выходная мощность будет около 70 Вт и зависит от нагрузки.
  • КПД этого инвертора составляет около 75%. Устройство может быть подключено к аккумуляторной батарее вашего автомобиля, когда вы находитесь на улице, так что проблема с переносом дополнительной батареи исключена.

Работа схемы

Работа этой схемы мини-инвертора довольно уникальна и отличается от обычных инверторов, в которых для питания транзисторов используется каскад дискретного генератора.

Однако здесь две секции или два плеча схемы работают в регенеративном режиме.Это очень просто и может быть понято по следующим пунктам:

Две половины схемы, независимо от того, насколько они совпадают, всегда будут иметь небольшой дисбаланс в параметрах, окружающих их, таких как резисторы, Hfe, витки обмотки трансформатора и т. Д.

Из-за этого обе половины не могут проводить вместе одновременно.

Предположим, что верхние полупроводниковые полупроводники проводят первыми, очевидно, они будут получать свое напряжение смещения через нижнюю половину обмотки трансформатора через R2.

Однако в тот момент, когда они насыщаются и проводят полную проводку, все напряжение батареи передается через их коллекторы на землю.

Отсасывает любое напряжение через R2 к их базе, и они немедленно прекращают проводить.

Это дает возможность нижним транзисторам проводить, и цикл повторяется.

Таким образом, вся цепь начинает колебаться.

Базовые эмиттерные резисторы используются для определения определенного порога разрыва их проводимости, они помогают установить базовый опорный уровень смещения.

Вышеупомянутая схема была вдохновлена ​​следующим дизайном Motorola:


ОБНОВЛЕНИЕ: вы также можете попробовать это: Схема мини-инвертора 50 Вт


Форма выходного сигнала лучше, чем прямоугольная (разумно подходит для всех электронных устройств ))

Конструкция печатной платы для описанной выше простой схемы инвертора 2N3055 (компоновка со стороны рельсов)

Инвертор с перекрестными связями на полевых МОП-транзисторах

Следующая конструкция представляет собой простую схему инвертора на полевых МОП-транзисторах с перекрестными связями, способную подавать сетевое напряжение 220/120 В переменного тока или постоянного тока (с выпрямителем и фильтром).Схема представляет собой простой в сборке инвертор, который будет повышать напряжение 12 или 14 вольт до любого уровня в зависимости от номинала вторичной обмотки трансформатора.

В этой схеме первичная и вторичная обмотки трансформатора T1 представляют собой понижающий трансформатор с 12,6 В до 220 В, подключенный в обратном порядке.

МОП-транзисторы Q1 и Q2 могут быть любыми N-канальными полевыми транзисторами высокой мощности. Не забудьте установить радиатор на полевые МОП-транзисторы Q1 и Q2. Конденсаторы C1 и C2 расположены так, чтобы подавлять всплески обратного высокого напряжения от трансформатора.Вы можете использовать любое близкое значение для резисторов R1-R4 с допуском ± 20% от значений, показанных на диаграмме.

Схема идеально подходит для питания ламповой цепи, или она может быть соединена с повышающим трансформатором для создания искрового промежутка, лестницы Иакова, или, регулируя частоту, она может быть использована для возбуждения катушки Тесла.

2) Использование IC 4047

Как показано выше, простой, но полезный небольшой инвертор может быть построен с использованием всего лишь одной микросхемы IC 4047. IC 4047 — это универсальный генератор с одной микросхемой, который будет генерировать точные периоды включения / выключения на своем выходном контакте. # 10 и штифт # 11.Частоту здесь можно определить, точно рассчитав резистор R1 и конденсатор C1. Эти компоненты определяют частоту колебаний на выходе ИС, которая, в свою очередь, устанавливает выходную частоту 220 В переменного тока этой схемы инвертора. Он может быть установлен на 50 Гц или 60 Гц в зависимости от индивидуальных предпочтений.

Аккумулятор, МОП-транзистор и трансформатор можно модифицировать или модернизировать в соответствии с требуемой выходной мощностью инвертора.

Для расчета значений RC и выходной частоты, пожалуйста, обратитесь к таблице данных IC

Результаты видеотестирования

3) Использование IC 4049

Сведения о выводах IC 4049

В этой простой схеме инвертора мы используйте одну микросхему IC 4049, которая включает в себя 6 вентилей НЕ или 6 инверторов внутри.На диаграмме выше N1 —- N6 обозначают 6 вентилей, которые сконфигурированы как каскады генератора и буфера. Вентили НЕ N1 и N2 в основном используются для каскада генератора, C и R могут быть выбраны и зафиксированы для определения частоты 50 Гц или 60 Гц в соответствии со спецификациями страны

Остальные вентили N3 — N6 настраиваются и конфигурируются как буферы и инверторы, так что конечный результат приводит к генерации чередующихся импульсов переключения для силовых транзисторов. Конфигурация также гарантирует, что никакие вентили не останутся неиспользованными и простаивающими, что в противном случае может потребовать, чтобы их входы были изолированы отдельно по линии питания.

Трансформатор и аккумулятор можно выбрать в соответствии с требованиями к мощности или характеристиками мощности нагрузки.

На выходе будет чисто прямоугольная волна.

Формула для расчета частоты имеет следующий вид:

f = 1 /1.2RC,

, где R будет в Ом, а F в Фарадах

4) Использование IC 4093

Детали вывода IC 4093

Очень похоже По сравнению с предыдущим инвертором логического элемента НЕ, простой инвертор на основе логического элемента И-НЕ, показанный выше, может быть построен с использованием одной микросхемы 4093.Створки с N1 по N4 обозначают 4 затвора внутри IC 4093.

N1 подключен как схема генератора для генерации требуемых импульсов 50 или 60 Гц. Они соответствующим образом инвертируются и буферизируются с использованием оставшихся вентилей N2, N3, N4, чтобы, наконец, передать чередующуюся частоту переключения между базами силовых BJT, которые, в свою очередь, переключают силовой трансформатор с поставленной скоростью для выработки необходимых 220 В или 120 В. Переменный ток на выходе.

Хотя здесь подойдет любая ИС логического элемента NAND, рекомендуется использовать IC 4093, поскольку в ней есть функция триггера Шмидта, которая обеспечивает небольшую задержку переключения и помогает создать своего рода мертвое время на коммутационных выходах, гарантируя, что питание устройства никогда не включаются вместе даже на долю секунды.

5) Другой простой инвертор с затвором NAND с использованием полевых МОП-транзисторов

В следующих параграфах объясняется еще одна простая, но мощная схема инвертора, которая может быть создана любым энтузиастом электроники и использоваться для питания большинства бытовых электроприборов (резистивных нагрузок и нагрузок SMPS) .

Использование пары МОП-транзисторов влияет на мощный отклик схемы, состоящей из очень небольшого количества компонентов, однако конфигурация прямоугольной волны действительно ограничивает использование устройства во многих полезных приложениях.

Введение

Расчет параметров полевого МОП-транзистора может показаться сложным, однако, следуя стандартному дизайну, реализовать эти замечательные устройства в действии определенно легко.

Когда мы говорим о схемах инвертора, включающих выходы мощности, полевые МОП-транзисторы обязательно становятся частью конструкции, а также основным компонентом конфигурации, особенно на выходных концах схемы.

Инверторные схемы являются фаворитами этих устройств, поэтому мы будем обсуждать одну из таких конструкций, включающую полевые МОП-транзисторы для питания выходного каскада схемы.

Обращаясь к схеме, мы видим очень простую конструкцию инвертора, включающую каскад прямоугольного генератора, буферный каскад и выходной каскад мощности.

Использование одной ИС для генерации требуемых прямоугольных волн и для буферизации импульсов, в частности, упрощает разработку конструкции, особенно для начинающих энтузиастов электроники.

Использование IC 4093 вентилей И-НЕ для схемы генератора

IC 4093 — это ИС триггера Шмидта с четырьмя вентилями И-НЕ, одиночная И-НЕ подключена как нестабильный мультивибратор для генерации базовых прямоугольных импульсов.Величину резистора или конденсатора можно отрегулировать для получения импульсов частотой 50 или 60 Гц. Для приложений 220 В необходимо выбрать вариант 50 Гц, а для версий на 120 В. — 60 Гц.

Выход из вышеупомянутого каскада генератора связан с парой дополнительных логических элементов И-НЕ, используемых в качестве буферов, выходы которых в конечном итоге завершаются затвором соответствующих полевых МОП-транзисторов.

Два логических элемента И-НЕ соединены последовательно, так что два полевых МОП-транзистора получают поочередно противоположные логические уровни от каскада генератора и попеременно переключают полевые МОП-транзисторы для создания желаемой индукции во входной обмотке трансформатора.

Коммутация Mosfet

Вышеупомянутое переключение полевых МОП-транзисторов заполняет весь ток батареи внутри соответствующих обмоток трансформатора, вызывая мгновенное повышение мощности на противоположной обмотке трансформатора, где в конечном итоге выводится выход на нагрузку.

МОП-транзисторы способны выдерживать ток более 25 ампер, а их диапазон довольно велик, поэтому они подходят для управления трансформаторами с различными характеристиками мощности.

Это просто вопрос модификации трансформатора и батареи для создания инверторов разных диапазонов с разной выходной мощностью.

Список деталей для объясненной выше принципиальной схемы инвертора на 150 Вт:
  • R1 = 220K pot, необходимо установить для получения желаемой выходной частоты.
  • R2, R3, R4, R5 = 1K,
  • T1, T2 = IRF540
  • N1 — N4 = IC 4093
  • C1 = 0,01 мкФ,
  • C3 = 0,1 мкФ

TR1 = входная обмотка 0-12 В , ток = 15 А, выходное напряжение в соответствии с требуемыми спецификациями

Формула для расчета частоты будет идентична описанной выше для IC 4049.

f = 1 / 1.2RC. где R = R1 установленное значение, а C = C1

6) Использование IC 4060

Если у вас есть одна микросхема 4060 в вашем электронном мусорном ящике, а также трансформатор и несколько силовых транзисторов, вы, вероятно, готовы к созданию ваша простая схема инвертора мощности, использующая эти компоненты. Базовая конструкция предлагаемой схемы инвертора на основе IC 4060 может быть представлена ​​на диаграмме выше. Концепция в основном та же, мы используем IC 4060 в качестве генератора и настраиваем его выход для создания поочередно переключающихся импульсов через транзисторный каскад инвертора BC547.

Как и IC 4047, IC 4060 требует внешних RC-компонентов для настройки выходной частоты, однако выход IC 4060 ограничен 10 отдельными выводами в определенном порядке, при этом частота на выходе генерируется со скоростью, вдвое превышающей его предыдущей распиновки.

Несмотря на то, что вы можете найти 10 отдельных выходов с удвоенной частотой по выводам IC, мы выбрали вывод №7, поскольку он обеспечивает самую быструю частоту среди остальных и, следовательно, может выполнить это, используя стандартные компоненты для RC. сеть, которая может быть легко доступна вам независимо от того, в какой части земного шара вы находитесь.

Для расчета значений RC для R2 + P1 и C1 и частоты вы можете использовать формулу, как описано ниже:

Или другой способ — с помощью следующей формулы:

f (osc) = 1 / 2.3 x Rt x Ct

Rt в омах, Ct в фарадах

Более подробную информацию можно получить из этой статьи

Вот еще одна крутая идея инвертора DIY, которая чрезвычайно надежна и использует обычные детали для реализации конструкции инвертора высокой мощности, и может быть повышен до любого желаемого уровня мощности.

Давайте узнаем больше об этой простой конструкции

7) Простейший инвертор на 100 Вт для новичков

Схема простого инвертора на 100 Вт, обсуждаемая в этой статье, может считаться наиболее эффективным, надежным, простым в сборке и мощным инвертором дизайн. Он эффективно преобразует любые 12 В в 220 В с использованием минимального количества компонентов.

Введение

Идея была опубликована много лет назад в одном из электронных журналов Elecktor. Я представляю ее здесь, чтобы вы все могли создать и использовать эту схему для своих личных приложений.Узнаем больше.

Предлагаемая простая схема инвертора на 100 ватт была опубликована довольно давно в одном из электронных журналов elektor, и, на мой взгляд, эта схема — одна из лучших схем инвертора, которую вы можете получить.

Я считаю его лучшим, потому что конструкция хорошо сбалансирована, хорошо рассчитана, использует обычные детали, и если все будет сделано правильно, то сразу заработает.

Эффективность этой конструкции составляет около 85%, что хорошо, учитывая простой формат и низкую стоимость.

Использование нестабильного транзистора в качестве генератора 50 Гц

В основном вся конструкция построена вокруг каскада нестабильного мультивибратора, состоящего из двух маломощных транзисторов общего назначения BC547 вместе с соответствующими частями, состоящими из двух электролитических конденсаторов и некоторых резисторов.

Этот каскад отвечает за генерацию основных импульсов 50 Гц, необходимых для запуска работы инвертора.

Вышеуказанные сигналы относятся к низким текущим уровням и, следовательно, их необходимо поднять до некоторых более высоких уровней.Это делается с помощью транзисторов драйвера BD680, которые по своей природе являются дарлингтонскими.

Эти транзисторы принимают сигналы малой мощности 50 Гц от транзисторных каскадов BC547 и поднимают их при более высоких уровнях тока, чтобы их можно было подать на выходные транзисторы.

Выходные транзисторы представляют собой пару 2N3055, которые получают усиленный ток в своих базах от вышеупомянутого каскада драйвера.

2N3055 Транзисторы как силовой каскад

Транзисторы 2N3055, таким образом, также работают с высоким уровнем насыщения и высоким током, который попеременно накачивается в соответствующие обмотки трансформатора и преобразуется в требуемые напряжения переменного тока 220 В на вторичной обмотке трансформатора.

Список деталей для описанной выше простой схемы инвертора на 100 Вт
  • R1, R2 = 27K, 1/4 Вт 5%
  • R3, R4, R5, R6 = 330 Ом, 1/4 Вт 5%
  • R7 , R8 = 22 ОМ, ТИП НАВИВКИ ПРОВОДА 5 Вт
  • C1, C2 = 470nF
  • T1, T2 = BC547,
  • T3, T4 = BD680, ИЛИ TIP127
  • T5, T6 = 2N3055,
  • D1, D2 = 1N5402
  • ТРАНСФОРМАТОР = 9-0-9 В, 5 ампер
  • БАТАРЕЯ = 12 В, 26 Ач,

Радиатор для T3 / T4 и T5 / T6

Технические характеристики:

  1. Выходная мощность: 100 Вт, если На каждом канале используются одиночные транзисторы 2n3055.
  2. Частота: 50 Гц, прямоугольная волна,
  3. Входное напряжение: 12 В при 5 А для 100 Вт,
  4. Выходное напряжение: 220 В или 120 В (с некоторыми настройками)

Из приведенного выше обсуждения вы можете почувствовать себя полностью осведомленным относительно как построить эти 7 простых инверторных схем, сконфигурировав данную базовую схему генератора с BJT-каскадом и трансформатором, и включив очень обычные детали, которые могут быть уже у вас или доступны после утилизации старой собранной печатной платы.

Как рассчитать резисторы и конденсаторы для частот 50 Гц или 60 Гц

В этой транзисторной схеме инвертора конструкция генератора построена с использованием транзисторной нестабильной схемы.

В основном резисторы и конденсаторы, связанные с базами транзисторов, определяют частоту выхода. Хотя они правильно рассчитаны для получения частоты приблизительно 50 Гц, если вы хотите дополнительно настроить выходную частоту в соответствии с собственными предпочтениями, вы можете легко сделать это, рассчитав их с помощью этого калькулятора нестабильного мультивибратора .

Другая простая схема транзисторного преобразователя постоянного тока в переменный ток

Q1 и Q2 могут быть любым малосигнальным PNP-транзистором, например BC557.

Универсальный двухтактный модуль

Если вы заинтересованы в достижении более компактной и эффективной конструкции с помощью простой двухтактной конфигурации с двухпроводным трансформатором, вы можете попробовать следующую пару концепций

В первом ниже используется ИС 4047, вместе с парой p-канальных и n-канальных MOSFET:

Если вы хотите использовать какой-либо другой каскад генератора в соответствии с вашими предпочтениями, в этом случае вы можете применить следующую универсальную конструкцию.

Это позволит вам интегрировать любой желаемый каскад генератора и получить требуемый двухтактный выход 220 В.

Кроме того, он также имеет встроенное зарядное устройство с автоматическим переключением.

Преимущества простого двухтактного инвертора

Основными преимуществами этой универсальной конструкции двухтактного инвертора являются:

  • В нем используется 2-проводный трансформатор, что делает конструкцию высокоэффективной с точки зрения размера и выходной мощности.
  • Он включает в себя переключение с зарядным устройством, которое заряжает батарею при наличии сети, а во время сбоя сети переключается в инверторный режим, используя ту же батарею для выработки намеченных 220 В от батареи.
  • Он использует обычные p-канальные и N-канальные MOSFET без каких-либо сложных схем.
  • Он дешевле в сборке и более эффективен, чем аналог центрального смесителя.
УНИВЕРСАЛЬНЫЙ МОДУЛЬ МОП-транзистора с вытяжной муфтой, который будет взаимодействовать с любой желаемой схемой осциллятора

Инвертор SCR

В следующей схеме инвертора используются тиристоры вместо транзисторов, что позволяет получить еще более высокую выходную мощность при простой конфигурации.

Колебание запускается парой UJT, которые обеспечивают точный контроль частоты, а также облегчают регулировку частоты на двух тиристорах

Трансформатор может быть любым обычным железным сердечником от 9-0-9 В до 220 В или понижающий трансформатор на 120 В, подключаемый в обратном порядке.

Для продвинутых пользователей

Выше было объяснено несколько простых схем инвертора, однако, если вы думаете, что они довольно обычные для вас, вы всегда можете изучить более сложные конструкции, представленные на этом веб-сайте. Вот еще несколько ссылок для справки:


Другие проекты инверторов для вас с полной онлайн-справкой!


Как сделать простую принципиальную схему инвертора за 5 минут

Представьте себе, через несколько минут вы знаете, что электричество отключится.У тебя нет свечей. У вас есть только фонарик от вашего мобильного телефона. Но вам нужно сэкономить аккумулятор вашего мобильного телефона. Для использования в экстренных случаях. Как ты будешь делать?

В вашем магазине есть светодиодная лампа 220 В мощностью 5 Вт и аккумулятор 12 В.

ฺ Но сделать светодиодную лампу яркой, используя только аккумулятор на 12 В., невозможно.

Им нужна помощь, чтобы поднять напряжение батареи, достаточное для этой лампочки. Это называется инверторной схемой.

Они могут преобразовать батарею 12 В постоянного тока в 220 В переменного тока / 120 В переменного тока, чтобы использовать небольшую лампочку или лампу максимальной мощностью 10 Вт.

Вот как сделать схему инвертора за 5 минут. В 2 простых схемах инвертора ниже. Просто используя только 2 транзистора, 2 резистора и один трансформатор. Это просто?

Они включают 2 идеи схемы

  1. Принципиальная схема микро-инвертора с использованием TIP41 или 2N6121
  2. Схема простого инвертора Supper с использованием MJ2955 (транзисторы PNP)

Принципиальная схема микро-инвертора с использованием TIP41 или 2N6121

Если у вас есть 2 силовых транзистора NPN, TIP41 и миниатюрный транзистор, 0.5А. Эта схема может быть отличным выбором.

Он может преобразовывать аккумулятор 12 В в напряжение переменного тока в диапазоне от 180 до 220 В. На выходных частотах от 30 Гц до 65 Гц.

Вы можете использовать его с бытовой техникой до 10 Вт. Например, маленькие люминесцентные лампы, светодиодные лампы, таймеры и т. Д.

Светодиодная лампа экономит больше энергии, чем люминесцентная лампа, при той же яркости.

Схема может вам понравиться. Потому что, собирая схему, вы просто соединяете части вместе только ногой к ноге.

Завершение этой цепи может занять около 5 минут.

Примечание: Пожалуйста, прочтите «Тестирование / применение» ниже для реального применения.

Описание схемы

В общей схеме инвертора используется генератор для управления трансформатором с силовым транзистором.

Использование двойных транзисторов — это двухтактное переключение для попеременного включения и выключения. Оба транзистора должны иметь одинаковый коэффициент усиления. Но не надо же.

Как это работает

Посмотрите на блок-схему ниже.

При подаче питания (DC12V) на цепь. Один из транзисторов насыщается (замкнутая цепь) быстрее, чем другой.

Предположим, что Q1 замкнул цепь первым. Таким образом, ток коллектора Q1 создает магнитное поле в катушке L2. Затем он получает большее базовое напряжение через R1. Итак, Q1 быстро переходит в состояние замкнутой цепи. Кроме того, Q2 быстро размыкает цепь.

Состояние будет таким, пока сердечник трансформатора не достигнет точки насыщения.Таким образом, ток, протекающий к R1, уменьшается до тех пор, пока не перестанет переводить Q1 в состояние замкнутой цепи. Q1 — это разомкнутая цепь.

Напротив, в то время как Q1 медленно переходит из состояния замкнутой цепи в состояние разомкнутой цепи. Q2 начнет проводить больше токов. Ток будет протекать через R2, увеличивая ток смещения до Q2. Это позволяет быстро замкнуть Q2.

Теперь ток батареи будет течь к катушке L1 в обратном направлении. Это заставляет индукцию напряжения иметь противоположную полярность во вторичной обмотке трансформатора.
Q2 будет проводить ток, пока сердечник трансформатора не достигнет насыщения.

После этого процесс замкнутого-разомкнутого контура между Q1 и Q2 снова будет таким же. Пока в цепь подается 12 В постоянного тока.


Принципиальная схема микропреобразователя

Посмотрите на полную схему выше. Разработчик поместил несколько компонентов:

  • C1-конденсатор на первичный трансформатор, чтобы сделать выходное переменное напряжение сглаженным или низким уровнем шума.
  • F1-предохранитель для защиты выхода и цепи при перегрузке.
  • Светодиод 1 показывает, что цепь работает. Используйте резистор серии R3 для ограничения тока до безопасного значения.

Как сделать инвертор

Для в проекте используйте несколько компонентов. Итак, мы можем использовать схему подключения ниже, без разводки печатной платы. Я предлагаю следующие техники изготовления.

Схема подключения этого проекта

Правильный способ монтажа транзистора

Посмотрите на рис. Ниже.

Это правильный способ установки транзистора в радиаторе. Используйте слюдяной изолятор между корпусом и корпусом транзистора. Затем используйте пластиковый изолятор. Затем закрепите корпус транзистора шестигранной гайкой и металлическим винтом.


Монтаж транзистора на радиаторе

Помните! Не прикасайтесь проводами транзистора к корпусу и не допускайте короткого замыкания между этими выводами.

Проверить короткое замыкание!
Мы можем проверить сопротивление, чтобы убедиться в отсутствии электрического замыкания на металлический корпус.

Установите на цифровом мультиметре (DMM) положение «НЕПРЕРЫВНОСТЬ». Затем коснитесь концом обоих щупов между каждым выводом (B, C и E) транзистора и металлическим корпусом. Он должен молчать и читать OL.

.


Проверить короткое замыкание с помощью мультиметра

Тестирование / применение

Я выполняю тест следующим образом:

1. Получите аккумулятор 12 В, стабилизированный источник питания 2,5 Ач или 12 В постоянного тока, ток более 2 А для тестирование.
2.Установите шкалу цифрового мультиметра в положение ACV для измерения выхода (розетки).
3. Примените к этому проекту аккумулятор на 12 В.
4. Измерьте выходное напряжение. Напряжение должно быть от 220 до 330 В.

После этого попробуйте использовать этот проект схемы инвертора для загрузки светодиодной лампы мощностью 3 Вт. Из-за низкого энергопотребления.

Эта схема имеет выходную мощность от 5 до 10 Вт.

Как и на видео выше, светодиодная лампа ярко светится 3 часа.Потому что он использует только 0,5 А.

Другие варианты

Так как у меня есть предельные компоненты.
Собираю детали, в том числе 2 x TIP41 с радиатором, резисторы 1K на универсальной плате PCB.

Я использую трансформатор 0,75A, 9V CT 9V.

Но эта схема может обеспечивать другую частоту и выходной сигнал в зависимости от технических характеристик устройства. Но это неважно. Потому что мы используем нагрузку как светодиодные лампочки.

Список компонентов

Полупроводники
Q1, Q2: TIP41 или 2N6121, транзисторы NPN 40W 45V 4A
LED1: Красный светодиод или как вам нужно.
Резисторы (0,5 Вт +/- 5% углерода)
R1, R2: 1 кОм
R3: 4,7 кОм
Конденсаторы
C1: майларовый конденсатор 630 В переменного тока 0,1 мкФ
Разное
T1: трансформатор 220 В перем. Тока или Первичная катушка 120 В / 10-0-10 В, 750 мА — вторичная катушка
F1: Предохранитель — 0,1 A
SW1: Тумблер
Переменный ток — вилка, слюдяной изолятор, светодиод, пластик, 12 В постоянного тока Аккумулятор, одножильный Провода № 20 AWG, гайка , и винт и т. д.

Принципиальная схема Super Simple Inverter с использованием MJ2955

Из предыдущей схемы, если она дает низкую выходную мощность для вас, я тоже.Мы можем изменить некоторые детали.

На данный момент я сосредоточусь на схемах, в которых используется необходимое оборудование. И только временно.

В случае добавления мощности более 10 Вт. Для этого требуется трансформатор, который обеспечивает ток более 2 А, а вместо этого изменяет R1 и R2 на 100 Ом 5 ​​Вт.

Эта схема выглядит как крошечная схема инвертора выше.

Но я меняю оба транзистора на 2N3055, а использование R1 и R2 составляет 68 Ом 5 ​​Вт.

Принципиальная схема инвертора от 15 Вт до 20 Вт с использованием 2N3055

Другие идеи.Проверяю в своем магазине. Есть много MJ2955. Это спичечная пара 2N3055. Но это силовой транзистор PNP.

Я ими почти не пользовался.

Таким образом, я установил новую принципиальную схему инвертора. См. Рис. Это так просто. Это два MJ2955, два резистора на 68 Ом и только один трансформатор.

Видите ли, действительно возможно!

В данном случае мне не нужна большая мощность и длительное использование. Потому что я использую мощность 10 Вт только на короткое время (примерно 30 минут).

Затем я ищу все запчасти в своем магазине. У меня много силовых транзисторов MJ2955.

Таким образом, я выбрал принципиальную схему инвертора, как на рис. 1. Это так просто. Это два MJ2955, два резистора на 68 Ом и только один трансформатор.
Видите ли, это действительно возможно!

Схема инвертора MJ2955

В данном случае мне не нужна большая мощность и длительное использование. Потому что я использую мощность 10 Вт только на короткое время (примерно 30 минут).

Оба транзистора и два резистора установлены в режим нестабильного мультивибратора.

Мне рассказал мой друг, который является гуру в области энергетики. Хотя в схемотехнике не будет конденсаторов. Но он может генерировать частоту. Вторичный трансформатор работает как нагрузка, которая может преобразовывать электрическое напряжение в высокое. Но не уверен, что это 50 Гц. Это дает частоту от 30 Гц до 90 Гц.

В зависимости от устройства, например, каждый транзистор имеет разные электрические свойства.Уровень напряжения аккумулятора также влияет на частоту.

Впрочем, если в нагрузке только светодиодные лампочки. Работает без проблем.

Давайте построим эту схему

Эта схема очень проста и крошечная по размеру. Я собираю их на радиаторе и подключаю все провода, как показано на видео ниже.

Примечание:
Вот правильный способ установки транзистора в радиаторе. Помните, проверьте наличие короткого замыкания, как указано выше.

Тестирование

Как и на видео, я использую аккумулятор на 12 В 2.Размер 5Ач в качестве источника. Во-вторых, я измеряю выходное переменное напряжение как 225 вольт. Далее прикладываю к выходу светодиодные лампы. Напряжение ниже 190 вольт и может поддерживать мощность (свет сглаживается).


Применение этого проекта

Детали, которые вам понадобятся
Q1, Q2: MJ2955 или TIP2955 PNP-транзисторы = 2 шт.
R1, R2: резисторы 68 Ом 2 Вт на 5 Вт = 2 шт.
T1: 12 В CT Трансформатор 12 В / 220 В или 110 В = 1 шт.
Если вам нужна выходная мощность 20 Вт, используйте трансформатор на 1 А.
Радиатор, аккумулятор 12 В и т. Д.

Недостатком этой схемы является нестабильная частота. Поэтому он не подходит для длительного использования и не должен использоваться с высокоточными нагрузками. Но стоит ли оно того? Это просто и очень дешево.

Также, Вы можете использовать проект ниже, он отлично выглядит.

Посмотрите те схемы, которые вам тоже могут понравиться

ПОЛУЧИТЬ ОБНОВЛЕНИЕ ПО ЭЛЕКТРОННОЙ ПОЧТЕ

Я всегда стараюсь сделать Electronics Learning Easy .

Как сделать простой инвертор в домашних условиях

Инвертор легко сделать дома. Чтобы понять, как легко сделать инвертор, в этом посте обсуждается простой пошаговый метод.

Раньше наши требования к мощности (электричеству) были меньше. Но сейчас сценарий сильно изменился. От простых индукционных до сложных стиральных машин, от сотовых телефонов до наших высококлассных гаджетов — все оборудование, связанное с нашим повседневным использованием, требует источника питания. Это основная причина недавнего увеличения использования инверторов в нашем доме.На рынке доступны различные типы инверторов, но эти схемы сложны, высокопроизводительны и дороги. Итак, давайте сделаем свой инвертор дома.

Схема (схема) для изготовления инвертора в домашних условиях

Эта схема не имеет каких-либо функциональных ограничений и имеет КПД более 75%. Кроме того, он способен компенсировать почти все наши потребности в энергии, а также большую часть ваших требований к мощности по очень разумной цене.

Фиг.1 — Принципиальная схема изготовления инвертора в домашних условиях

Теория схемы

Схема этого инвертора отличается по сравнению с обычно используемыми инверторами, поскольку в нем не задействована отдельная схема генератора для питания установленных транзисторов. Вместо этого в нашей схеме обе половины схемы функционируют как регенеративный процесс (как двухполупериодные мостовые выпрямители).

Что бы мы ни делали для балансировки обеих частей цепи, всегда будет дисбаланс значений сопротивления и обмоток трансформаторов.Это причина того, что обе части схемы никогда не могут работать одновременно.

Теперь предположим, что первая часть цепи начинает проводить сначала. Напряжение смещения для первой половины подается обмоткой трансформатора второй части через R2. Как только первая часть завершает стадию проводимости, выход батареи заземляется коллекторами.

Процесс отводит любое доступное напряжение к базе через R2, и, таким образом, проводимость первой части полностью прекращается.В этом случае транзисторы во второй части получают возможность проводить ток. и, следовательно, этот цикл продолжается.

Рис. 2 — Схема для изготовления инвертора в домашних условиях

элементов, необходимых для изготовления инвертора в домашних условиях

  • R1, R2 = 100 Ом / намотанный провод 10 Вт.
  • R3, R4 = 15 Ом / 10 Вт проволочная обмотка
  • Т1, Т2 = 2N3055 силовые транзисторы.
  • Трансформатор = 9-0-9 Вольт / 5 Ампер.
  • Автомобильный аккумулятор = 12 Вольт / 10 Ач.
  • Алюминиевый радиатор = вырезать по нужному размеру.
  • Шкаф металлический вентилируемый = по размеру всей сборки.

Пошаговый метод изготовления инвертора в домашних условиях

Шаг 1

Возьмите алюминиевый лист и сделайте / разрежьте лист на две части примерно 5 × 5 дюймов. Просверлите отверстия для установки силовых транзисторов. Отверстия должны быть примерно 3 мм в диаметре. Просверлите / сделайте подходящие отверстия, чтобы обеспечить легкую и надежную установку на корпусе инвертора.

Шаг 2

Возьмите резистор и соедините его в перекрестном режиме с плечами транзистора в соответствии со схемой, показанной ниже.

Шаг 3

Надежно закрепите транзисторы на радиаторах с помощью гаек / болтов.

Шаг 4

Соединить блок радиатор + резисторы + транзисторы с вторичной (выходной) обмоткой трансформатора.

Шаг 5

Поместите полную сборку печатной платы и трансформатора в металлический шкаф.Учтите, что вентиляция в шкафу должна быть хорошей. Присоедините точки ввода / вывода, включая держатель предохранителя, к шкафу и подключите их в соответствии со схемой, размещенной выше.

Теперь ваш инвертор готов. Если хотите, вы можете использовать корпус для размещения инверторной цепи.

Рис.3 — Корпус цепи инвертора

Операционные проверки схемы самодельного инвертора

Совершенно необходима проверка работоспособности схемы перед ее использованием в полном объеме.Для проверки подключите лампочку на 50-60 Вт к разъему инвертора. После этого вставьте аккумулятор (12 В) в гнездо i / p инвертора. Лампочка загорится ярко, что будет означать, что подключение цепи выполнено правильно и инвертор готов к работе. Однако, если лампочка не загорается, проверьте соединения еще раз.

Где использовать этот самодельный инвертор

Выходная мощность инвертора находится в диапазоне 70-80 Вт, а время поддержки полностью зависит от нагрузки.Его можно использовать для питания лампочек, ламп КЛЛ, вентиляторов и других небольших электроприборов, таких как паяльник и т. Д. КПД этого инвертора составляет примерно 75%.

Самое большое преимущество: блок схемы компактен и удобен в переноске. Он также может быть подключен к самой батарее вашего автомобиля, когда вы находитесь на улице, чтобы избежать проблем с переноской дополнительной батареи.

Научитесь делать проектор в домашних условиях, выполнив простые шаги.

Ратна имеет степень бакалавра компьютерных наук и имеет опыт работы в сфере IT-технологий в Великобритании.Она также является активным веб-дизайнером. Она является автором, редактором и основным партнером Electricalfundablog.

Цепи инвертора питания: преобразователь постоянного тока в переменный


Инверторы используются в самых разных приложениях, от адаптеров для небольших автомобилей до крупных сетевых систем, которые могут обеспечивать электричеством весь дом.

ТИПЫ ИНВЕРТОРОВ

. В зависимости от формы выходного переменного тока существует три основных типа преобразователей постоянного тока в переменный: прямоугольная волна, модифицированная синусоида и чистая синусоида (см. Диаграмму ниже).Прямоугольный — самый простой и дешевый тип, но в настоящее время он практически не используется в коммерческих целях из-за низкого качества электроэнергии (THD≈45%). Модифицированная синусоидальная топология (которая фактически представляет собой модифицированные квадраты) обеспечивает прямоугольные импульсы с некоторыми мертвыми точками между положительными и отрицательными полупериодами. Они подходят для большинства электронных нагрузок, хотя их THD составляет почти 24%. Стоимость моделей, использующих такую ​​технику, составляет от 0,05 до 0,10 доллара за ватт.Сегодня они являются наиболее популярными недорогими инверторами на потребительском рынке, особенно среди автомобильных инверторов. Причина, по которой большинство электронных устройств не заботится о форме подаваемого сигнала, заключается в том, что они имеют внутренний импульсный источник питания, который в любом случае выпрямляет входное напряжение. Тем не менее, для некоторого оборудования требуется более чистая энергия. К сожалению, тип выхода переменного тока редко упоминается в потребительских товарах. Если вы видите устройство, в описании которого не указано, что это чисто синусоидальный тип, то, скорее всего, это прямоугольная волна или модифицированная.Мы видели, что форма выходного сигнала в обычных модифицированных синусоидальных цепях постоянного и переменного тока имеет только три уровня: нулевое или пиковое напряжение обеих полярностей. Добавив еще два уровня напряжения, разработчик может снизить THD с 24% до 6,5%. Периодическое подключение выхода к определенному уровню напряжения с правильной синхронизацией может создать многоуровневый сигнал, который ближе к синусоидальному, чем обычный модифицированный.
Истинный синусоидальный инвертор выдает выходной сигнал с наименьшим общим гармоническим искажением (обычно менее 3%).Это самый дорогой тип источника переменного тока, который используется, когда есть потребность в синусоидальном выходе для определенных устройств, таких как медицинское оборудование, лазерные принтеры, стереосистемы и т. Д. Эти типы также используются в приложениях, подключенных к сети.

В схемах силового инвертора используется несколько топологий. В дешевых схемах, подходящих в первую очередь для проектов любителей, может быть только двухтактный преобразователь с повышающим трансформатором. Если такой преобразователь использует внешнее возбуждение без управления режимом тока, его трансформатор может страдать от дисбаланса потока, что может привести к выходу из строя силовых транзисторов.Описанная схема является примером одноступенчатой ​​конструкции. В большинстве серийно выпускаемых моделей используется многоступенчатая концепция. При таком методе сначала переключающий предварительный регулятор повышает напряжение от источника входного сигнала до регулируемого уровня постоянного тока, соответствующего пиковому значению желаемого синусоидального напряжения. Затем выходной каскад генерирует переменный ток. На этом этапе обычно используется конфигурация полного моста (см. Диаграмму справа) или полумоста. Обратите внимание, что с полумостом напряжение промежуточного контура должно более чем в два раза превышать пиковое значение генерируемого выходного сигнала.Гальваническая развязка входа и выхода обеспечивается либо высокочастотным трансформатором в импульсном предварительном регуляторе, либо большим низкочастотным (НЧ) выходным трансформатором. Если используется низкочастотный трансформатор, синусоида генерируется на его первичной стороне и преобразуется во вторичную. Есть также бестрансформаторные инверторы , которые набирают популярность в солнечных системах.
В конструкциях с прямоугольным режимом выходной уровень должен регулироваться на стороне постоянного тока. Цепи синусоидальной волны работают в режиме широтно-импульсной модуляции (ШИМ), в котором генерируемое напряжение и частота регулируются путем изменения рабочего цикла высокочастотных импульсов.Затем «прерванное» напряжение проходит через LC-фильтр нижних частот, чтобы обеспечить чистый синусоидальный выходной сигнал. Хотя такой подход является более дорогостоящим, он обычно используется в сетевых устройствах, где требуется высокое качество электроэнергии. Кстати, раньше инверсия производилась с помощью генераторов переменного тока с двигателями постоянного тока. В настоящее время инвертор не имеет движущихся частей и, в отличие от генератора, не сжигает топливо и не выделяет токсичных паров.

АВТОМОБИЛЬНЫЕ ИНВЕРТОРЫ

. Автомобильные инверторы часто поставляются с разъемом, который можно подключить к прикуривателю.Однако обратите внимание, что зажигалки защищены предохранителем, номиналом которого обычно является от 10 до 20 А. Этого обычно достаточно для работы вашего ноутбука или другой портативной электроники. Как правило, максимальная мощность, которую вы можете получить от розетки прикуривателя, составляет 12 В × (сила тока предохранителя) × η вольт-ампер, где η — КПД инвертора (обычно η = 0,95–0,98). Если вам нужно запитать электронику, которая потребляет больше, ваше устройство должно быть подключено напрямую к автомобильному аккумулятору. Вот почему модели мощностью более 200 ВА обычно даже не имеют вилки для розетки постоянного тока.Вместо этого они включают соединительные кабели, которые можно подключить к клеммам аккумулятора. Обратите внимание, что коммерческие инверторы обычно рассчитываются в вольт-амперах (ВА). Реальная мощность (ватт), которую они могут выдать, будет зависеть от коэффициента мощности вашей нагрузки: Вт = ВА × коэффициент мощности, где коэффициент мощности всегда <1.

Ниже вы найдете теорию проектирования силового инвертора, а также электронные принципиальные схемы для любителей, студентов и инженеров.

Инвертор (электрический) | Инжиниринг | Фэндом

Инвертор относится к двум различным типам электрических цепей.В аналоговой электронике инвертор — это схема преобразования постоянного тока в переменный.

В цифровой электронике инвертор представляет собой схему, которая преобразует логический уровень 1 в логический уровень 0 и наоборот.

Схема простого аналогового инвертора

Аналоговые инверторы используются в широком диапазоне приложений, от небольших источников питания для компьютеров до крупных промышленных приложений для передачи большой мощности.Инвертор может иметь один или два импульсных источника питания (SMPS).

Простые инверторы состоят из генератора, управляющего транзистором, который используется для прерывания входящего постоянного тока для создания прямоугольной волны. Затем он пропускается через трансформатор для получения необходимого выходного напряжения. Передовые инверторы начали использовать более совершенные формы транзисторов или подобных устройств, таких как тиристоры.

Более эффективные инверторы используют различные уловки, чтобы попытаться получить разумную синусоидальную волну на входе трансформатора, вместо того, чтобы полагаться на трансформатор для ее сглаживания.Конденсаторы и катушки индуктивности могут использоваться для сглаживания потока тока в транзистор и из него. Кроме того, можно создать более синусоидальную волну, используя входы постоянного тока с разделенной шиной при двух напряжениях или положительные и отрицательные входы с центральным заземлением. Последовательно соединив входные клеммы трансформатора между положительной шиной и землей, положительной шиной и отрицательной шиной, заземляющей шиной и отрицательной шиной, а затем обеими к заземляющей шине, на входе трансформатора генерируется ступенчатая синусоида и ток сток на источнике постоянного тока менее прерывистый.Эти методы приводят к выходу, который называется «измененная синусоида». Инверторы с модифицированным синусом могут привести к тому, что некоторые нагрузки, например двигатели, будут работать менее эффективно.

Более дорогие силовые инверторы используют широтно-импульсную модуляцию (ШИМ) с высокочастотной несущей для более точного приближения к синусоидальной функции. Качество инвертора определяется его мощностью импульсов: 3-пульсный — это очень простая схема, в которой используются только 3 транзистора, тогда как более сложная 12-пульсная система дает почти точную синусоидальную волну.В удаленных районах, где электроэнергия, вырабатываемая коммунальным предприятием, подвергается значительным внешним искажающим воздействиям, таким как индуктивные нагрузки или нагрузки полупроводникового выпрямителя, 12-импульсный инвертор может даже предложить лучший, «чистый» выход, чем электросеть, поставляемая коммунальным предприятием.

Схема цифрового инвертора с насыщенной нагрузкой

Шаблон: Mergeto Цифровой инвертор — это схема, которая выводит на входе напряжение, представляющее противоположный логический уровень. Цифровая электроника — это схемы, которые работают при фиксированных уровнях напряжения, соответствующих логическому 0 или 1 (см. Двоичный код).Схема инвертора служит основным логическим элементом для переключения между этими двумя уровнями напряжения. Реализация определяет фактическое напряжение, но общие уровни включают (0, +5 В) для цепей TTL.

Общие типы включают резистивный сток с использованием одного транзистора и одного резистора; и CMOS, который использует два (противоположного типа) транзистора на схему инвертора.

Качество цифрового инвертора часто измеряется с помощью кривой передачи напряжения, которая представляет собой график зависимости входного напряжения от выходного напряжения. Из такого графика могут быть получены параметры устройства, включая устойчивость к помехам, усиление и рабочие логические уровни.

Кривая передачи напряжения для инвертора 20 мкм, построенного в Университете штата Северная Каролина

В идеале кривая передачи напряжения (VTC) выглядит как инвертированная ступенчатая функция — это будет указывать на точное переключение между на и на — но в В реальных устройствах существует область постепенного перехода. VTC показывает, что при низком входном напряжении схема выводит высокое напряжение; при высоком входном напряжении выходное напряжение сужается до 0 вольт.Наклон этой переходной области является мерой качества — крутые (близкие к бесконечности) наклоны обеспечивают точное переключение.

Устойчивость к шуму может быть измерена путем сравнения минимального входного сигнала с максимальным выходным сигналом для каждой области работы (вкл. / Выкл.).

Выходное напряжение VOH может быть мерой мощности управляющего сигнала при каскадном соединении нескольких устройств.

Цифровой инвертор считается базовым строительным блоком для всей цифровой электроники. Память (1-битный регистр) построена как защелка, объединяя выход двух последовательных инверторов.Мультиплексоры, декодеры, конечные автоматы и другие сложные цифровые устройства полагаются на базовый инвертор.

Простые инверторы генерируют гармоники, которые влияют на качество получаемой с их помощью энергии. Но инверторы PWM устраняют это посредством подавления синусоидальной волны с использованием свойств ряда Фурье.

Как сделать схему преобразователя / инвертора с 12 В постоянного тока в 220 В переменного тока?

Инверторы часто необходимы в местах, где невозможно получить питание переменного тока от сети.Схема инвертора используется для преобразования мощности постоянного тока в мощность переменного тока. Инверторы могут быть двух типов: инверторы истинной / чистой синусоидальной волны и квази или модифицированные инверторы. Эти инверторы истинной / чистой синусоидальной волны дороги, в то время как модифицированные или квазиинверторы недороги.

Эти модифицированные инверторы генерируют прямоугольную волну и не используются для питания чувствительного электронного оборудования. Здесь построена простая схема инвертора, управляемая напряжением, с использованием силовых транзисторов в качестве переключающих устройств, которая преобразует сигнал 12 В постоянного тока в однофазный 220 В переменного тока.

Принцип, лежащий в основе этой схемы

Основная идея, лежащая в основе каждой схемы инвертора, состоит в том, чтобы создавать колебания с использованием заданного постоянного тока и передавать эти колебания через первичную обмотку трансформатора путем усиления тока. Это первичное напряжение затем повышается до более высокого напряжения в зависимости от количества витков в первичной и вторичной катушках.

Также получите представление о схеме преобразователя постоянного тока с 12 В в 24 В

Схема преобразователя с использованием транзисторов

Преобразователь с 12 В постоянного тока в 220 В переменного тока также может быть спроектирован с использованием простых транзисторов.Его можно использовать для питания ламп мощностью до 35 Вт , но его можно использовать для управления более мощными нагрузками, добавив больше полевых МОП-транзисторов.

Инвертор, реализованный в этой схеме, представляет собой преобразователь прямоугольной формы и работает с устройствами, которым не требуется чистый синусоидальный переменный ток.

Принципиальная схема

Необходимые компоненты
  • Батарея 12 В
  • МОП-транзистор IRF 630-2
  • 2N2222 Транзисторы
  • 2,2 мкФ конденсаторы-2
  • Резистор
  • с повышенным напряжением, центральный трансформатор, 12 В-220 В .
Рабочий

Схему можно разделить на три части: генератор, усилитель и трансформатор. Требуется генератор на 50 Гц, так как частота переменного тока составляет 50 Гц.

Этого можно достичь, сконструировав нестабильный мультивибратор, который генерирует прямоугольную волну с частотой 50 Гц. В цепи R1, R2, R3, R4, C1, C2, T2 и T3 образуют генератор.

Каждый транзистор генерирует инвертирующие прямоугольные волны. Значения R1, R2 и C1 (R4, R3 и C2 идентичны) будут определять частоту.Формула для частоты прямоугольной волны, генерируемой нестабильным мультивибратором:

F = 1 / (1,38 * R2 * C1)

Инвертирующие сигналы генератора усиливаются силовыми полевыми МОП-транзисторами T1 и T4. Эти усиленные сигналы подаются на повышающий трансформатор, центральный отвод которого подключен к 12 В постоянного тока.

Выходное видео
Передаточное число трансформатора должно быть 1:19, чтобы преобразовать 12 В в 220 В. Трансформатор объединяет оба инвертирующих сигнала для генерации переменного выходного сигнала прямоугольной формы 220 В.

По с использованием батареи 24 В , нагрузки до 85 Вт могут питаться , но конструкция неэффективна. Чтобы увеличить мощность инвертора, необходимо увеличить количество полевых МОП-транзисторов.

Чтобы спроектировать инвертор на 100 Вт, прочтите Простой инвертор на 100 Вт

Схема преобразователя 12 В постоянного тока в 220 В переменного тока с использованием нестабильного мультивибратора

В схемах инвертора могут использоваться тиристоры в качестве переключающих устройств или транзисторов. Обычно для приложений малой и средней мощности используются силовые транзисторы.Причина использования силовых транзисторов заключается в том, что они имеют очень низкий выходной импеданс, позволяющий протекать на выходе максимальному току.

Одно из важных применений транзисторов — переключение. В этом случае транзистор смещен в области насыщения и отсечки.

Когда транзистор смещен в области насыщения, переходы коллектор-эмиттер и коллектор-база смещены в прямом направлении. Здесь напряжение коллектор-эмиттер минимально, а коллекторный ток максимален.

Еще одним важным аспектом этой схемы является генератор. Важное применение 555 Timer IC — это использование в качестве нестабильного мультивибратора.

Нестабильный мультивибратор генерирует выходной сигнал, который переключается между двумя состояниями и, следовательно, может использоваться в качестве генератора. Частота колебаний определяется номиналами конденсатора и резисторов.

[Также прочтите: Как сделать регулируемый таймер]

Принципиальная схема

Принципиальная электрическая схема преобразователя 12 В постоянного тока в 220 В переменного тока — ElectronicsHub.Org

Компоненты цепи

  • V1 = 12 В
  • R1 = 10 кОм
  • R2 = 150 кОм
  • R3 = 10 Ом
  • R4 = 10 Ом
  • Q1 = TIP41
  • Q2 = TIP42
  • 1 = D2
  • C3 = 2200 мкФ
  • T1 = повышающий трансформатор 12 В / 220 В
Описание схемы конструкции

Конструкция осциллятора: В качестве генератора можно использовать нестабильный мультивибратор. Здесь сконструирован нестабильный мультивибратор с таймером 555.Мы знаем, что частота колебаний таймера 555 в нестабильном режиме определяется выражением:

f = 1,44 / (R1 + 2 * R2) * C

, где R1 — сопротивление между выводом разряда и Vcc, R2 — сопротивление. сопротивление между разрядным выводом и пороговым выводом, а C — это емкость между пороговым выводом и землей. Также рабочий цикл выходного сигнала определяется следующим образом:

D = (R1 + R2) / (R1 + 2 * R2)

Поскольку наше требование составляет f = 50 Гц и D = 50% и предполагается, что C равно 0.1 мкФ, мы можем рассчитать, что значения R1 и R2 составляют 10 кОм и 140 кОм соответственно. Здесь мы предпочитаем использовать потенциометр 150K для точной настройки выходного сигнала.

Также между выводом управления и землей используется керамический конденсатор емкостью 0,01 мкФ.

Схема коммутации: Наша основная цель — разработать сигнал переменного тока напряжением 220 В. Это требует использования мощных транзисторов, чтобы обеспечить прохождение максимального количества тока к нагрузке. По этой причине мы используем силовой транзистор TIP41 с максимальным током коллектора 6 А, где ток базы определяется как ток коллектора, деленный на коэффициент усиления постоянного тока.Это дает ток смещения около 0,4 А * 10, то есть 4 А. Однако, поскольку этот ток больше максимального тока базы транзистора, мы предпочитаем значение меньше максимального тока базы. Предположим, что ток смещения равен 1А. Тогда резистор смещения равен

R b = (V cc — V BE (ON) ) / I bias

Для каждого транзистора V BE (ON) равен около 2В. Таким образом, R b для каждого рассчитано как 10 Ом.Поскольку диоды используются для смещения, прямое падение напряжения на диодах должно быть равно прямому падению напряжения на транзисторах. По этой причине используются диоды 1N4007.

Конструкция транзисторов PNP и NPN одинакова. Мы используем силовой транзистор PNP TIP42.

Конструкция выходной нагрузки: Поскольку выход схемы переключения является выходом с широтно-импульсной модуляцией, он может содержать гармонические частоты, отличные от основной частоты переменного тока.По этой причине необходимо использовать электролитный конденсатор, чтобы пропускать через него только основную частоту. Здесь мы используем электролитный конденсатор емкостью 2200 мкФ, достаточно большой, чтобы отфильтровать гармоники. Поскольку требуется выходное напряжение 220 В, рекомендуется использовать повышающий трансформатор. Здесь используется повышающий трансформатор 12 В / 220 В.

Работа цепи преобразователя 12 В постоянного тока в 220 В переменного тока
  • Когда это устройство питается от батареи 12 В, таймер 555, подключенный в нестабильном режиме, выдает прямоугольный сигнал с частотой 50 Гц.
  • Когда на выходе высокий логический уровень, диод D2 будет проводить, и ток пройдет через диоды D1, R3 на базу транзистора Q1.
  • Таким образом, транзистор Q1 будет включен. Когда выход находится на низком логическом уровне, диод D1 будет проводить, и ток будет течь через D1 и R4 к базе Q2, вызывая его включение.
  • Это позволяет создавать постоянное напряжение через первичную обмотку трансформатора с чередующимися интервалами. Конденсатор обеспечивает требуемую основную частоту сигнала.
  • Этот сигнал 12 В переменного тока на первичной обмотке трансформатора затем повышается до сигнала 220 В переменного тока на вторичной обмотке трансформатора.
Применение схемы преобразователя 12 В постоянного тока в 220 В переменного тока
  1. Эту схему можно использовать в автомобилях и других транспортных средствах для зарядки небольших аккумуляторов.
  2. Эту схему можно использовать для управления двигателями переменного тока малой мощности.
  3. Ее можно использовать в солнечной энергетической системе.
Ограничения
  1. Поскольку используется таймер 555, выходной сигнал может незначительно изменяться в пределах требуемого рабочего цикла 50%, т.е.е. Трудно достичь точного сигнала 50% рабочего цикла.
  2. Использование транзисторов снижает КПД схемы.
  3. Использование переключающих транзисторов может вызвать перекрестные искажения выходного сигнала. Однако это ограничение было до некоторой степени уменьшено за счет использования смещающих диодов.

Примечание

Вместо таймера 555 можно использовать любой нестабильный мультивибратор. Например, эти схемы также могут быть построены с использованием нестабильного мультивибратора 4047, выходной ток которого усиливается и подается на трансформатор.

[Читать: Солнечный инвертор для дома ]

Как инверторы преобразуют электричество постоянного тока в переменный?

Криса Вудфорда. Последнее изменение: 17 августа 2020 г.

Одна из самых значительных битв 19 века велась не за землю или ресурсы, а за установление типа электричества. это приводит в действие наши здания.

В самом конце 1800-х годов американские электрические пионер Томас Эдисон (1847–1931) изо всех сил старался продемонстрировать что постоянный ток (DC) был лучшим способом подачи электроэнергии мощность, чем переменного тока (AC), система, поддерживаемая его главный соперник Никола Тесла (1856–1943).Эдисон пробовал все виды хитрые способы убедить людей в том, что кондиционер слишком опасен, от убить слона на электрическом стуле, чтобы (довольно хитро) поддержать использование AC на электрическом стуле для приведения в исполнение смертной казни. Несмотря на это, Система Tesla победила, и мир в значительной степени работает на переменном токе власть с тех пор.

Беда только в том, что многие наши приборы предназначены для работы с переменным током, малогабаритные генераторы часто вырабатывают постоянный ток. Что означает, что если вы хотите запустить что-то вроде гаджета с питанием от переменного тока от Автомобильный аккумулятор постоянного тока в мобильном доме, вам нужно устройство, которое преобразует DC to AC — инвертор, как его еще называют.Давай ближе посмотрите на эти гаджеты и узнайте, как они работают!

На фото: набор электрических инверторов, которые можно использовать с оборудованием для производства возобновляемой энергии, например, солнечными батареями и ветряными микровентиляторами. Фото Уоррена Гретца любезно предоставлено Министерство энергетики США / NREL (DoE / NREL).

В чем разница между электричеством постоянного и переменного тока?

Когда учителя естествознания объясняют нам основную идею электричества как поток электронов обычно говорят о прямом ток (постоянный ток).Мы узнаем, что электроны работают как линия муравьев, идущих вместе с пакетами электрической энергии в одном способ, которым муравьи несут листья. Это достаточно хорошая аналогия для что-то вроде базового фонарика, где у нас есть схема ( непрерывный электрический контур), соединяющий батарею, лампу и выключатель, и электрическая энергия систематически транспортируется от батареи к лампу, пока не разрядится вся энергия батареи.

Анимация: В чем разница между электричеством постоянного и переменного тока? Предположим, вам нужно пропылесосить комнату.Прямой ток немного похож на движение от одной стороны к другой по прямой; переменный ток похож на движение вперед и назад на пятно. Оба выполняют свою работу, хотя и немного по-разному!

В более крупных бытовых приборах электричество работает иначе. Источник питания, который поступает из розетки в стене, основан на переменный ток (AC), где переключается электричество примерно 50–60 раз в секунду (другими словами, частота 50–60 Гц). Может быть трудно понять, как AC обеспечивает энергия, когда она постоянно меняет свое мнение о том, куда она идет! Если электроны, выходящие из вашей розетки, получат, скажем, несколько миллиметрах вниз по кабелю, затем нужно изменить направление и вернуться опять же, как они вообще добрались до лампы на вашем столе, чтобы сделать ее загораться?

Ответ на самом деле довольно прост.Представьте себе кабели бегает между лампой и стеной, набитой электронами. Когда вы нажимаете на переключатель, все электроны заполняют кабель колебаться взад и вперед в нити лампы — и эта быстрая перетасовка преобразует электрическую энергию в тепло и заставляет лампы накаливания свечения. Электроны не обязательно должны двигаться по кругу для переноса энергии: в AC они просто «бегут на месте».

Что такое инвертор?

Фото: Типичный электрический инвертор.Это сделано Xantrex / Trace Engineering. Фото Уоррена Гретца любезно предоставлено Министерством энергетики США / NREL (DoE / NREL).

Одно из наследий Теслы (и его делового партнера Джорджа Westinghouse, босс Westinghouse Electrical Company), что большинство бытовой техники, которая есть в наших домах, специально спроектированы работать от сети переменного тока. Устройства, которым нужен постоянный ток, но которые должны потреблять электроэнергию от розеток переменного тока требуется дополнительное оборудование, называемое выпрямителем, обычно строится из электронных компонентов, называемых диоды для преобразования переменного тока в постоянный.

Инвертор выполняет противоположную работу, и его довольно легко понять суть того, как это работает. Предположим, у вас в фонарик и выключатель замкнут, поэтому постоянный ток течет по цепи, всегда в одном направлении, как гоночная машина по трассе. Что теперь если вынуть аккумулятор и перевернуть. Предполагая, что он подходит в противном случае он почти наверняка будет питать фонарик, и вы не заметит никакой разницы в получаемом вами свете, но электрический ток на самом деле будет течь в обратном направлении.Предположим, вы у них были молниеносные руки и они были достаточно ловкими, чтобы постоянно менять направление движения. аккумулятор 50–60 раз в секунду. Тогда вы станете чем-то вроде механического инвертор, превращающий питание постоянного тока батареи в переменный ток с частотой 50–60 герц.

Конечно, инверторы, которые вы покупаете в магазинах электротоваров, не работают должным образом. таким образом, хотя некоторые из них действительно механические: они используют электромагнитные Включает и выключает эти переключатели на высокой скорости для реверсирования тока направление. Подобные инверторы часто производят так называемый прямоугольный выход: ток либо течет в одну сторону, либо наоборот, или он мгновенно переключается между двумя состояниями:

Такие внезапные переключения мощности довольно жестоки для некоторых видов электрического оборудования.При нормальном питании переменного тока ток постепенно переключается с одного направления на другое по синусоидальной схеме, например:

Электронные инверторы могут использоваться для создания такого плавно изменяющегося выхода переменного тока из Вход постоянного тока. В них используются электронные компоненты, называемые индукторами и конденсаторы, чтобы выходной ток увеличивался и падал более плавно чем резкое включение / выключение прямоугольного сигнала на выходе, которое вы получаете с базовый инвертор.

Инверторы

также могут использоваться с трансформаторами для изменения определенного Входное напряжение постоянного тока в совершенно другое выходное напряжение переменного тока (либо выше, либо ниже), но выходная мощность всегда должна быть меньше чем входная мощность: из сохранения энергии следует, что инвертор и трансформатор не могут выдавать больше мощности, чем потребляют в, и некоторая энергия неизбежно будет потеряна в виде тепла, когда течет электричество через различные электрические и электронные компоненты.В На практике КПД инвертора часто превышает 90 процентов, хотя основы физики говорят нам, что некоторая энергия — пусть и небольшая — всегда где-то потрачено впустую!

Как работает инвертор?

Мы только что получили очень простой обзор инверторов — и теперь давайте вернемся к нему еще раз. немного подробнее.

Представьте, что вы аккумулятор постоянного тока, и кто-то хлопает вас по плечу и просит вас вместо этого производить AC. Как бы ты это сделал? Если все ток, который вы производите, течет в одном направлении, как насчет добавления просто переключиться на выходной провод? Включение и выключение тока, очень быстро, будет давать импульсы постоянного тока — что будет при минимум половина работы.Чтобы обеспечить надлежащий AC, вам понадобится переключатель, который позволил вам полностью изменить направление тока и сделать это около 50-60 раз в секунду. Визуализируйте себя как человеческую батарею, меняющую контакты вперед и назад более 3000 раз в минуту. Вам понадобится аккуратная работа пальцами!

По сути, устаревший механический инвертор сводится к коммутационному блоку. подключен к электрическому трансформатору. Если вы изучили наши статья о трансформаторах, вы узнаете, что они электромагнитные устройства, которые изменяют переменный ток низкого напряжения на переменный ток высокого напряжения или наоборот, с использованием двух катушек проволоки (называемых первичной и вторичной), намотанной вокруг общего железного сердечника.В механическом инверторе либо электродвигатель или какой-либо другой механизм автоматического переключения переворачивает входящий постоянный ток вперед и назад в первичный, просто поменяв местами контакты, и это производит переменный ток во вторичной — так он не так уж сильно отличается от воображаемого инвертора, который я набросал выше. Переключающее устройство работает примерно так же, как и в электрический дверной звонок. Когда питание подключено, он намагничивает переключатель, потянув ее открыть и на короткое время выключить.Весна тянет переключите обратно в положение, включите его снова и повторите процесс — снова и снова.

Анимация: Базовая концепция электромеханического инвертора. Постоянный ток подается на первичную обмотку (розовые зигзагообразные провода с левой стороны) тороидального трансформатора (коричневый пончик) через вращающуюся пластину (красный и синий) с перекрестными соединениями. Когда пластина вращается, она неоднократно переключает соединения с первичной обмоткой, поэтому трансформатор получает на вход переменный ток, а не постоянный ток.Это повышающий трансформатор с большим количеством обмоток во вторичной обмотке (желтый зигзаг, правая сторона), чем в первичной, поэтому он увеличивает небольшое входное напряжение переменного тока до большего выходного переменного тока. Скорость вращения диска определяет частоту выходного переменного тока. Большинство инверторов не работают так; это просто иллюстрирует концепцию. Установленный таким образом инвертор будет давать очень грубый выходной сигнал прямоугольной формы.

Типы инверторов

Если вы просто включаете и выключаете постоянный ток или переключаете его обратно и вперед, так что его направление продолжает меняться, то, что вы в конечном итоге, очень резкие изменения тока: все в одну сторону, все в другую направление и обратно.Нарисуйте диаграмму тока (или напряжения) против времени, и вы получите прямоугольную волну. Хотя электричество, различающееся таким образом, составляет , технически , переменный ток, это совсем не похоже на переменный ток доставляется в наши дома, что гораздо более плавно волнообразная синусоида). Вообще здоровенный бытовые приборы в наших домах, которые используют чистую электроэнергию (например, электрические обогреватели, лампы накаливания, чайники или холодильники) не особо заботятся волны какой формы они получают: все, что им нужно, это энергия и много это — так что прямоугольные волны их действительно не беспокоят.Электронные устройства, на с другой стороны, они гораздо более привередливы и предпочитают более плавный ввод они получают от синусоидальной волны.

Это объясняет, почему инверторы бывают двух разных видов: инверторы истинной / чистой синусоидальной волны (часто сокращается до PSW) и модифицированные / квазисинусоидальные инверторы (сокращенно MSW). В виде их название предполагает, что настоящие инверторы используют так называемые тороидальные (в форме пончика) трансформаторы и электронные схемы для преобразования постоянный ток в плавно изменяющийся переменный ток очень похожий на настоящую синусоиду, обычно подаваемую в наши дома.Их можно использовать для питания любых устройств переменного тока от источника постоянного тока. источник, включая телевизоры, компьютеры, видеоигры, радио и стереосистемы. С другой стороны, модифицированные синусоидальные инверторы используют относительно недорогая электроника (тиристоры, диоды и другие простые компоненты) на производят своего рода «закругленную» прямоугольную волну (гораздо более грубую приближение к синусоиде), и пока они подходят для доставки мощность для здоровенных электроприборов, они могут вызывать и вызывают проблемы с тонкой электроникой (или чем-либо с электронным или микропроцессорным контроллером), в общем, это означает, что они не подходят для ноутбуков, медицинского оборудования, цифровых часы и устройства умного дома.Кроме того, если задуматься, их закругленный квадрат волны в целом обеспечивают большую мощность устройства, чем чистая синусоида (площадь под квадратом больше, чем под кривой). Это делает их менее эффективными и потерянная мощность, рассеиваемая в виде тепла, означает некоторый риск перегрева инверторов MSW. С другой стороны, они, как правило, немного дешевле, чем настоящие инверторы.

Изображение: Модифицированная синусоида (MSW, зеленый) больше похожа на синусоидальную волну (синюю), чем на прямоугольную волну (оранжевая), но все же включает в себя внезапные резкие изменения тока.Чем больше шагов в модифицированной синусоиде, тем ближе она к идеализированная форма истинной синусоиды.

Хотя многие инверторы работают как автономные блоки с аккумулятором, которые полностью Независимо от сети, другие инверторы (известные как инверторы , связанные с энергосистемой, или инверторы , привязанные к сети, ) являются специально разработан для постоянного подключения к сети; обычно они используются для передачи электричества от чего-то как солнечная панель, обратно в сеть с правильным напряжением и частотой.Это нормально, если ваша главная цель — выработать собственную силу. Это не так полезно если вы хотите иногда быть независимым от сетки или хотите резервный источник питания на случай отключения электроэнергии, потому что если ваш подключение к сети прерывается, и вы не производите электроэнергию самостоятельно (например, сейчас ночь и ваши солнечные панели неактивны), инвертор тоже выходит из строя, и вы совершенно лишены силы — так же беспомощны, как если бы вы генерировали свою собственную силу или нет.По этой причине некоторые люди используют бимодальные преобразователи или , которые могут работать либо в автономном, либо в привязанном к сети режиме (хотя и не в обоих одновременно). С у них есть лишние детали, они имеют тенденцию быть более громоздкими и более дорого.

Подпись: Никола Тесла. Хотя он выиграл войну токов, его соперника Томаса Эдисона до сих пор помнят как первооткрывателя электроэнергии. Гравюра Теслы работы Саронга, 1906 год, любезно предоставлено Библиотекой Конгресса США.

Что такое инверторы?

Инверторы

могут быть очень большими и здоровенными, особенно если они имеют встроенный аккумуляторные батареи, чтобы они могли работать автономно. Они также выделяют много тепла, поэтому они имеют большие радиаторы (металлические плавники) и часто охлаждающие вентиляторы. Как вы можете видеть на нашем верхнем фото, типичные размером с автомобильный аккумулятор или автомобильное зарядное устройство; большие единицы выглядят немного похоже на батарею автомобильных аккумуляторов в вертикальной стопке. Самые маленькие инверторы больше портативные коробки размером с автомобильный радиоприемник, которые можно подключить к прикуривателю розетка для производства переменного тока для зарядки портативных компьютеров или мобильных телефонов.

Как бытовые приборы различаются по потребляемой мощности, так и инверторы различаются. в мощности, которую они производят. Как правило, на всякий случай вы нужен инвертор, рассчитанный примерно на четверть выше максимальной мощности устройства, которым вы хотите управлять.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *