2А135 станок технические характеристики: 2А135 Станок вертикально-сверлильный универсальный Описание, характеристики, схемы

Содержание

2А135 Станок вертикально-сверлильный универсальный Описание, характеристики, схемы

Сведения о производителе вертикально-сверлильного станка 2А135

Изготовитель вертикальных сверлильных станков моделей 2А125, 2А135, 2А150, 2Г175 — Стерлитамакский станкостроительный завод, основанный в 1941 году и Завод «КиргизКабельМаш» г. Фрунзе.

История Стерлитамакского станкостроительного завода начинается 3 июля 1941 года, когда началась эвакуация Одесского станкостроительного завода в город Стерлитамак.

Уже 11 октября 1941 г. Стерлитамакский станкостроительный завод начал выпускать специальные агрегатные станки для оборонной промышленности.

В настоящее время завод выпускает металлообрабатывающее оборудование, среди которого — токарные и фрезерные станки с ЧПУ, многофункциональные обрабатывающие центры, металлообрабатывающий и режущий инструмент.

Продукция Стерлитамакского станкостроительного завода


2А135 Станок вертикально-сверлильный универсальный. Назначение и область применения

Вертикальный сверлильный станок 2А135 заменил в серийном производстве устаревший станок 2135. В новой модели обеспечивается более удобное управление коробкой соростей и подач. Улучшены эргономические показатели. Станок 2А135 был заменнен на более совершенную модель

2Н135

Универсальный вертикально-сверлильный станок, модель 2А135, предназначен для работы в ремонтных и инструментальных цехах, а также в производственных цехах с мелкосерийным выпуском продукции; оснащенный приспособлениями станок может быть применен в массовом производстве.

Вертикально-сверлильный станок 2а135, с условным диаметром сверления 35 мм, используется на предприятиях с единичным и мелкосерийным выпуском продукции и предназначены для выполнения следующих операций: сверления, рассверливания, зенкования, зенкерования, развертывания, нарезания резьб и подрезки торцев ножами.

Допускает обработку деталей в широком диапазоне размеров из различных материалов с использованием инструмента из высокоуглеродистых и быстрорежущих сталей и твердых сплавов.

Операции сверления на станке 2а135


Особенности конструкции сверлильного станка 2А135

Наличие на станке девятискоростной коробки скоростей с диапазоном регулирования 68-100-140-195-175-400-530-750-1100 оборотов в минуту, 11-скоростной коробки подач с диапазоном регулирования от 0,115 до 1,6 мм на оборот и электрореверса обеспечивает выбор нормативных режимов резания для диаметров отверстий до 35 мм при сверлении, рассверливании, зенковании, зенкеровании, развертывании, нарезке резьбы, а также допускает использование режущего инструмента, оснащенного твердым сплавом.

Наличие на станках механической подачи шпинделя, при ручном управлении циклами работы.

Допускает обработку деталей в широком диапазоне размеров из различных материалов с использованием инструмента из высокоуглеродистых и быстрорежущих сталей и твердых сплавов.

Станки снабжены устройством реверсирования электродвигателя главного движения» что позволяет производить на них нарезание резьбы машинными метчиками при ручной подаче шпинделя»

Станок обладает высокой жесткостью, прочностью рабочих механизмов, мощностью привода и широким диапазоном скоростей резания и подач, позволяющим использовать режущий инструмент, оснащенный твердым сплавом.

Наличие электрореверса, управляемого как автоматически, так и вручную, обеспечивает возможность нарезания резьбы при ручном подводе и Отводе метчика.

В конструкции вертикально-сверлильного станка модели 2А135 предусмотрено автоматическое включение движения подачи после быстрого подвода режущего инструмента к обрабатываемой детали и автоматическое выключение подачи при достижении заданной глубины сверления.

Заданная глубина сверления несквозных отверстий обеспечивается специальным механизмом останова с упором. Этот механизм является одновременно предохранительным устройством, предохраняющим механизм подач от поломок при перегрузках.

Шпиндель станка смонтирован на прецизионных подшипниках качения. Нижняя опора состоит из радиального шарикового подшипника класса АВ. В верхней опоре установлен один шариковый подшипник класса В.

Заводом предусмотрена возможность смены приводных шкивов клнноременной передачи, что позволяет устанавливать пределы чисел оборотов шпинделя в соответствии с технологическими задачами.

Для сокращения вспомогательного времени на станке модели 2А135 обеспечена возможность включения и выключения подачи тем же штурвалом, который осуществляет ручное быстрое перемещение шпинделя.

Категория размещения 4 по ГОСТ 15150-69.



Хронология выпуска заводом вертикально-сверлильных станков 2135 серии с диаметром сверления до 35 мм:

  • 2135 — первая модель серии вертикально-сверлильных станков, выпускалась с 1945 по 1952 г.
  • 2А135 — следующая серийная модель серии, выпускались с 1950 по 1965 г.
  • 2Н135, 2Н135А, 2Н135Б, 2Н135К, 2Н135Л — самая популярная и массовая модель серии, выпускалась c 1965 до начала 90-х годов
  • 2С135, 2С132 — последние модели серии. Сняты с производства в 2014 году

Аналоги вертикально-сверлильных станков 2А135, выпускаемые в настоящее время:

  • 2Т125, 2Т140, 2Т150 — производитель: Гомельский завод станочных узлов
  • 2АС132, 2АС132-01 — производитель: Астраханский станкостроительный завод
  • 2Л125, 2Л132, 2Л135, ЛС25, ЛС35 — производитель: Липецкое станкостроительное предприятие (ПАО СТП-ЛСП)
  • МН25Л, МН25Н-01 — производитель: Молодечненский станкостроительный завод


Габаритные размеры вертикально сверлильного станка 2А135

Габаритные размеры вертикально сверлильного станка 2А135


Общий вид сверлильного станка 2А135

Фото вертикально сверлильного станка 2А135


Расположение составных частей сверлильного станка 2А135

Расположение составных частей сверлильного станка 2А135

Перечень составных частей сверлильного станка 2А135

  1. плита
  2. стол
  3. шпиндель
  4. коробка подач
  5. шпиндельная головка
  6. электродвигатель
  7. штурвал ручной подачи шпинделя
  8. станина
  9. рукоятка вертикального перемещения стола

Принцип работы сверлильного станка 2А135

Обрабатываемая деталь устанавливается на столе станка и закрепляется в машинных тисках или в специальных приспособлениях. Совмещение оси будущего отверстия с осью шпинделя осуществляется перемещением приспособления с обрабатываемой деталью на столе станка.

Режущий инструмент в зависимости от формы его хвостовика закрепляется в шпинделе станка при помощи патрона или переходных втулок. В соответствии с высотой обрабатываемой детали и длиной режущего инструмента производится установка стола и шпиндельной бабки.

Отверстия могут обрабатываться как ручным перемещением шпинделя, так и механической подачей.


Кинематическая схема сверлильного станка 2А135

Кинематическая схема сверлильного станка 2А135

Схема кинематическая сверлильного станка 2А135. Смотреть в увеличенном масштабе

Движения в станке

  • Движение резания — вращение шпинделя с режущим инструментом
  • Движение подачи — осевое перемещение шпинделя с режущим инструментом
  • Вспомогательные движения — ручные перемещения стола и шпиндельной бабки в вертикальном направлении и быстрое ручное перемещение шпинделя вдоль его оси.

Движение резания. Шпиндель V (рис. 55, а) приводится в движение электродвигателем мощностью 4,5 кат через клиноременную передачу 140—178 и коробку скоростей.

На валу I коробки скоростей находится тройной подвижный блок шестерен Б1, обеспечивающий валу II три скорости вращения. От вала II через шестерни 34—48 вращение передается валу III, на котором расположен тройной подвижной блок шестерен Б2, приводящий в движение полый вал IV, связанный шлицевым соединением со шпинделем V. Как видно из графика (рис. 55, б), шпиндель V имеет девять скоростей вращения. Наибольшее число оборотов шпинделя nmax с учетом упругого скольжения ремня определяется из выражения = 1070 об/мин.

Движение подачи. Движение подачи заимствуется от шпинделя V. Движение передается через шестерни 27—50 и 27—50, коробку подач с выдвижными шпонками, предохранительную муфту М1, вал IX, червячную передачу 1—47. зубчатую муфту М2, вал X и реечную передачу гильзе шпинделя.

В коробке подач расположены трех- и четырехступенчатый механизмы с выдвижными шпонками.

От вала VI три скорости вращения сообщаются валу VII, на котором жестко закреплены шестерни 60, 56, 51, 35 и 21. От вала VII четыре скорости вращения передаются валу VIII.

Теоретически коробка подач обеспечивает 12 скоростей вращения, однако, как видно из графика (рис. 54), одна из них повторяющаяся, поэтому станок модели 2А135 имеет только 11 различных величин подач.

От вала VIII через кулачковую муфту M1 движение сообщается валу IX, на котором закреплен червяк. Червячное колесо расположено на одном валу с реечной шестерней 14, находящейся в зацеплении с рейкой, нарезанной на гильзе шпинделя. Муфта М1 служит для предохранения механизма подач от поломок при перегрузках, а также для автоматического выключения подачи при работе по упорам.

Наибольшая величина подачи smax определяется из выражения 3,14*3,5*14 = 1,6 мм/об.

Вспомогательные движения. Перемещение шпиндельной бабки осуществляется от рукоятки P1 через червячную передачу 1—32 и реечную шестерню 18, сцепляющуюся с рейкой m=2 мм, закрепленной на станине.

Вертикальное перемещение стола достигается поворотом рукоятки Р2 через вал XI, конические шестерни 16-43 и ходовой винт XII.

Быстрое перемещение шпинделя с гильзой производится штурвалом Ш, связанным специальным замком с валом X. Замок позволяет штурвалу свободно поворачиваться на валу X в пределах 20°, а в дальнейшем связывает их в одно целое.


Описание конструкции основных узлов сверлильного станка 2А135

Коробка скоростей и коробка подач

Коробка скоростей и коробка подач сверлильного станка 2А135

Коробка скоростей и коробка подач сверлильного станка 2А135. Смотреть в увеличенном масштабе

Шпиндель сверлильного станка 2А135

Шпиндель сверлильного станка 2А135

Шпиндель 2 (рис. 6) регулируется в осевом направлении подтяжкой гайки 1 через окно, расположенное на лобовой части кронштейна.

Осевые усилия подачи воспринимаются упорным подшипником 3.

Шпиндель уравновешивается грузом, помещенным в колонне станка.

Смазка подшипников шпинделя производится фитилем из полости коробки подач. Подача масла должна составлять одну каплю в минуту.

Подшипники шпинделя сверлильного станка 2А135

Шпиндель станка 2А135 смонтирован на 3-х подшипниках:

  • 2. Нижний подшипник № 710 шариковый радиальный однорядный подшипник, класс точности Н(0), размер 50х80х11 мм
  • 3. Подшипник № 8210 шариковый упорный, класс точности Н(0), 40х78х22
  • 2. Верхний подшипник № 710 шариковый радиальный однорядный подшипник, класс точности Н(0), размер 50х80х11 мм

Технические характеристики подшипника № 710

Подшипник 710 — это шариковый радиальный однорядный подшипник открытого типа. Предназначен для восприятия радиальных нагрузок при высокой скорости вращения.

Подшипник 710 в настоящее время не выпускается.

Размеры и характеристики подшипника 710 (6206)
  • Внутренний диаметр (d): – 50 мм;
  • Наружный диаметр (D): – 80 мм;
  • Ширина (H): – 11 мм;
  • Масса: – 0,213 кг;
  • Количество шариков в подшипнике: — 18 мм;
  • Диаметр шарика: — 6,35 шт;
  • Грузоподъемность динамическая: — 16 кН;
  • Грузоподъемность статическая: — 11 кН;
  • Максимальная номинальная частота вращения: — 9000 об/мин.

Схема подшипника 710


Коробка подач модели 2А135

Для изменения величины подачи на станке модели 2А135 используется коробка, состоящая из двух типовых механизмов с выдвижными шпонками. Продольный разрез коробки подач показан на рис. 56,6.

Из кинематической схемы (рис. 55, а) видно, что движение подачи заимствуется от шпинделя. Далее через блок шестерен 1 (рис. 56,6), установленный на оси 2, и зубчатое колесо 3 вращение передается полому валу 4 с прорезью в. На последнем свободно установлены три шестерни 16, имеющие шпоночные пазы б. Между шестернями 16 находятся промежуточные кольца. Внутри полого вала 4 перемещается штанга 14, представляющая в нижней своей части круглую рейку. В верхней части штанги 14 имеется сквозное окно, в котором на оси установлена выдвижная шпонка 15. Эта шпонка под действием пружины 17 стремится пойти в шпоночный паз одной из шестерен 16.

Перемещая штангу 14 с выдвижной шпонкой 15 внутри вала 4, можно соединить последний с любой из шестерен 16. Промежуточные кольца, которые не имеют шпоночных пазов, утапливают выдвижную шпонку в момент переключения скорости. Это необходимо для предупреждения поломки, которая могла бы иметь место в случае заклинивания на валу одновременно двух шестерен.

Аналогичный механизм, состоящий из четырех шестерен 10 с пазами а, выдвижной шпонки 8, пластинчатой пружины 9 и штанги 7, установлен на полом валу 11.

На валу 12 закреплен конус шестерен 13, состоящий из пяти колес. Три верхних колеса конуса находятся в постоянном зацеплении с шестернями 16, а, кроме того, верхнее и три нижних — в постоянном зацеплении с шестернями 10 вала 11. Перемещение штанг 7 и 14 с выдвижными шпонками 8 и 15 для переключения величины подачи шпинделя осуществляется рукоятками, расположенными на левой стороне корпуса шпиндельной бабки.

Плунжерный насос 6 приводится в действие эксцентриком 5.

Механизм подач. Включение и выключение механической подачи, а также подвод и отвод шпинделя рсуществляется штурвальным механизмом подач, изображенным на рис. 56, а. Механизм подач шпинделя вертикально-сверлильного станка модели 2А135 состоит из червячной передачи, реечной передачи, рукояток управления и ряда муфт включения. Привод механизма подач осуществляется от коробки подач через кулачковую муфту 16, предназначенную для автоматического выключения движения подачи по достижении заданной глубины сверления и являющуюся одновременно предохранительным устройством, отключающим цепь движения подачи при перегрузках. Предельная величина нагрузки на механизм подач регулируется винтом 15, который осуществляет предварительное сжатие пружины 14.

Для включения механической подачи штурвал 3 и соединенную с ним кулачковую муфту 22 поворачивают на себя. Угол поворота штурвала и муфты равен 20° и ограничивается прорезью а на муфте и штифтом 21, закрепленным на конце вала I. При повороте штурвала 3 зубья муфты 22, имеющие скосы, сдвигают кулачковую обойму 4 вправо и, входя торцом на торец зубьев обоймы, фиксируют это смещение. К обойме 4 прикреплен двусторонний храповой диск 6, связанный с обоймой 4 подпружиненными собачками 5. При смещении обоймы зубья храпового диска 6 зацепляются с зубьями диска 9, прикрепленного к червячному колесу 7 и связывают последнее с валом I. Таким образом, вращение от коробки подач через муфту 16 сообщается червяку 13, червячному колесу 7 и валу 1, задний конец которого представляет собой реечную шестерню. Последняя находится в зацеплении с рейкой, нарезанной на гильзе 10 шпинделя 11 станка.

Быстрый подвод инструмента к заготовке обеспечивается дальнейшим поворотом штурвала 3 при включенной подаче. В этом случае собачки 5 проскакивают по зубьям внутренней стороны диска 6, опережая механическую подачу.

Выключение механической подачи в любой момент осуществляется поворотом штурвала 3 от себя на 20°, при этом зубья муфты 22 станут напротив впадин обоймы 4, последняя под действием пружины 8 сместится влево, зубья храпового диска 6 расцепятся с зубьями диска 9, вследствие чего червячное колесо 7 будет свободно поворачиваться на валу I и механическая подача шпинделя прекратится.

При быстром подъеме шпинделя механическая подача также автоматически выключается.

Конструкция механизма подачи вертикально-сверлильного станка модели 2А135 допускает также медленное ручное перемещение штурвала 3, гильзы 10 со шпинделем. Для этого необходима выключить штурвалом 3 механическую подачу, после чего переместить кольцо 2 вдоль оси вала I вправо; при этом штифт 20 заблокирует штифт 21 и при повороте штурвала 3 на себя не будет включаться механическая подача.

Настройка механизма подачи для сверления отверстий заданной глубины осуществляется кулачком 18, который устанавливается на требуемый размер по шкале лимба 19.

При настройке станка на нарезание резьб метчиками реверсирование шпинделя для вывода режущего инструмента может быть осуществлено автоматически или вручную. При автоматическом реверсе настройка на глубину нарезания и переключение шпинделя производится кулачком 17, который заранее устанавливается на лимбе 19. При ручном управлении реверсом, когда достигнута требуемая глубина нарезания, изменение направления вращения шпинделя осуществляется рукояткой 12.


Регулировка и наладка сверлильного станка 2А135

После установки станка на рабочем месте, очистки, заливки масла и смазки, подключения к электрической сети, проверки работы на всех оборотах и подачах не требуется никакой регулировки. Наладка станка заключается в установке стола и кронштейна в необходимые для работы положения и зажиме клина кронштейна, а также в установке чисел оборотов и подачи.

Зазоры в подшипниках шпинделя выбираются через окно на передней стенке кронштейна, закрытое крышкой. При регулировке необходимо повернуть шпиндель так, чтобы винт регулировочной гайки находился в окне, затем, ослабив винт, подтянуть гайку и вновь зажать винт.

Глубина сверления устанавливается при помощи лимба следующим образом: вращая крестовый штурвал на себя, опускаем шпиндель до соприкосновения с обрабатываемой деталью. Отвертываем винт кулачка 17 (см. рис. 8) выключения подачи и кулачка 18, поворачиваем до совпадения края кулачка 17 с делением лимба, соответствующим глубине сверления, и вновь затягиваем винты. При этом деление на лимбе соответствует полной глубине сверления, включая конусную часть заточки сверла.

Кулачок 18 служит для настройки автоматического реверсирования направления шпинделя при нарезании резьбы. Установка этого кулачка производится аналогично установке кулачка выключения механической подачи. При этом кулачок выключения подачи отводится назад на 10 мм. Перемена направления вращения шпинделя производится за счет реверсирования электродвигателя.

Колпачок с накаткой, расположенный в центре крестового штурвала, служит для выключения механической подачи, если необходимо сверлить или нарезать с ручной подачей. Для включения ручной подачи колпачок следует отжать от себя до отказа.

Натяжение ремней производится перемещением кронштейна с электродвигателем при помощи натяжных винтов, расположенных на задней стенке коробки скоростей. Для подтягивания пружины предохранительной муфты, выключающей подачу при перегрузке, служит специальный винт с внутренним шестигранным отверстием, расположенный под колпачком верхней крышки кронштейна. Нормально пружина отрегулирована так, чтобы выключать подачу при осевом усилии, превышающем номинальное усилие подачи на 10%, т. е. при 1800 кг.


Электрооборудование и электрическая схема сверлильного станка 2А135

Электрическая схема сверлильного станка 2А135

Электрическая схема вертикально-сверлильного станка 2А135. Смотреть в увеличенном масштабе

Перечень элементов схемы электрической вертикально-сверлильного станка 2А135

  1. электродвигатель А42-2
  2. тепловое реле РТ-1
  3. предохранители ПР-60, НЕ-27
  4. вводный выключатель ВП-25
  5. выключатель освещения ВТ-1
  6. лампа освещения
  7. понижающий трансформатор ТПБ-50
  8. микропереключатели МП-1
  9. микропереключатели МП-1
  10. микропереключатели МП-1
  11. выключатель электронасоса ВПЗ-10
  12. электронасос ПД-22

КП и КЛ — магнитные пускатели МПКО-111

Электрооборудование вертикально-сверлильного станка 2А135. Общие сведения

Электрооборудование станка состоит из следующих узлов:

  1. Трехфазного асинхронного короткозамкнутого электродвигателя типа А42-2 мощностью 4,5 кВт, служащего для вращения шпинделя и рабочей подачи инструмента
  2. Электронасоса ПД-22 мощностью 0,125 кВт
  3. Пусковой и защитной аппаратуры, встроенной в нишу колонны станка
  4. Командной аппаратуры, состоящей из трех микропереключателей, управляемых от рукоятки
  5. Коммутационных проводов, идущих в основном по внутренним полостям колонны

На станке можно производить как сверление с автоматическим выключением подачи по окончании сверления, так и нарезание резьбы с автоматическим или ручным реверсированием вращения инструмента. Перестройка производится перестановкой кулачка на лимбе.

Описание электросхемы вертикально-сверлильного станка 2А135

  1. Включением вводного пакетного выключателя (ВПВ) 4 подается напряжение на пусковую и командную аппаратуру; пакетный выключатель насоса (ВПН) 11 служит для включения и выключения насоса охлаждения
  2. В исходном (среднем) положении рукоятки контакты а и б микропереключателя 10 разомкнуты, цепь управления обесточена
  3. Для пуска станка рукоятка управления переводится вниз, контакты о и б и контакты б и г микропереключателя 9 замыкаются, включается пускатель КП, включающий электродвигатель 1. Если станок был налажен для сверления, то по окончании обработки, в зависимости от настройки, происходит выключение подачи без выключения вращения. Отвод шпинделя производится вручную.
  4. Если станок был настроен для нарезки резьбы, то по окончании нарезания кулачок, укрепленный на лимбе, через специальный механизм воздействует на микропереключатель 8, контакты которого б и в размыкаются, и отключается пускатель КП; контакты б и д замыкаются, в результате чего включается реверсивный пускатель КЛ.
  5. Двигатель реверсируется, метчик вывертывается из изделия. При выводе метчика контакты б и д размыкаются, но пускатель КЛ питается через блок-контакты д и е
  6. Для следующей операции необходимо рукоятку дожать в положение «вправо», вследствие чего выключается пускатель КЛ и включается пускатель КП
  7. В любой момент станок можно выключить, переводя рукоятку в среднее положение и реверсировать двигатель вручную переводом рукоятки вверх

Защита электрооборудования вертикально-сверлильного станка 2А135

Схемой предусмотрена защита от короткого замыкания, от перегрузки и нулевая защита.

Кронштейн заземлен дополнительной жилой.

Станок должен быть заземлен, для чего имеется специальный болт.

Уход за электрооборудованием проводится согласно типовым инструкциям.


2А135 станок вертикально-сверлильный универсальный. Видеоролик.



Основные технические характеристики станка 2А135

Наименование параметра2А1252А1352А150
Основные параметры станка
Наибольший диаметр сверления в стали 45, мм253550
Наименьшее и наибольшее расстояние от торца шпинделя до стола, мм0… 7000… 7500… 800
Наименьшее и наибольшее расстояние от торца шпинделя до плиты, мм750… 1125705… 1130650… 1200
Расстояние от оси вертикального шпинделя до направляющих стойки (вылет), мм250300350
Рабочий стол
Максимальная нагрузка на стол (по центру), кг
Размеры рабочей поверхности стола, мм500 х 375450 х 500500 х 600
Число Т-образных пазов Размеры Т-образных пазов333
Наибольшее вертикальное перемещение стола (ось Z), мм325325325
Шпиндель
Наибольшее перемещение шпиндельной бабки (салазок шпинделя), мм200200250
Наибольшее перемещение (ход) шпинделя, мм175225300
Частота вращения шпинделя, об/мин (число ступеней)97… 1360 (9)68… 1100 (9)32… 1400 (12)
Количество скоростей шпинделя9912
Наибольший допустимый крутящий момент, Н*м (кгс*м)250400800
Конус шпинделяМорзе 3Морзе 4Морзе 5
Механика станка
Число ступеней рабочих подач9119
Пределы вертикальных рабочих подач на один оборот шпинделя, мм (число ступеней)0,1… 0,81 (9)0,115… 1,6 (11)0,12… 2,64 (9)
Наибольшее усилие подачи, Н (кгс)9000 (900)16000 (1600)25000 (2500)
Динамическое торможение шпинделяЕстьЕстьЕсть
Электрооборудование и привод станка
Электродвигатель привода главного движения, кВт2,84,57,5
Электронасос охлаждающей жидкости ТипХ14-22МХ14-22МХ14-22М
Габариты и масса станка
Габариты станка (длина х ширина х высота), мм980 х 825 х 23001240 х 810 х 25001550 х 970 х 2865
Масса станка, кг87013002250

    Список литературы:

  1. Универсальный вертикально-сверлильный станок модель 2А135. Описание и руководство по обслуживанию, 1960

  2. Барун В.А. Работа на сверлильных станках,1963
  3. Винников И.З., Френкель М.И. Сверловщик, 1971
  4. Винников И.З. Сверлильные станки и работа на них, 1988
  5. Лоскутов B.В Сверлильные и расточные станки, 1981
  6. Панов Ф.С. Работа на станках с ЧПУ, 1984
  7. Попов В.М., Гладилина И.И. Сверловщик, 1958
  8. Сысоев В.И. Справочник молодого сверловщика,1962
  9. Тепинкичиев В.К. Металлорежущие станки, 1973

Связанные ссылки

Каталог справочник сверлильных металлорежущих станков

Паспорта к сверлильным металлорежущим станкам и оборудованию

Купить каталог, справочник, базу данных: Прайс-лист информационных изданий


2135 Станок вертикально-сверлильный универсальный Описание, характеристики, схемы

Сведения о производителе вертикально-сверлильного станка 2135

Изготовитель вертикальных сверлильных станков моделей 2135, 2А125, 2А135, 2А150, 2Г175 — Стерлитамакский станкостроительный завод, основанный в 1941 году.

История Стерлитамакского станкостроительного завода начинается 3 июля 1941 года, когда началась эвакуация Одесского станкостроительного завода в город Стерлитамак.

Уже 11 октября 1941 г. Стерлитамакский станкостроительный завод начал выпускать специальные агрегатные станки для оборонной промышленности.

В настоящее время завод выпускает металлообрабатывающее оборудование, среди которого — токарные и фрезерные станки с ЧПУ, многофункциональные обрабатывающие центры, металлообрабатывающий и режущий инструмент.

Продукция Стерлитамакского станкостроительного завода


2135 Станок вертикально-сверлильный универсальный. Назначение и область применения

Вертикальный сверлильный станок 2135 был заменен в серийном производстве более совершенным станком 2А135. В новой модели обеспечивается более удобное управление коробкой соростей и подач. Улучшены эргономические показатели.

Станки универсальные вертикально-сверлильные 2135 с условным диаметром сверления 35 мм, используются на предприятиях с единичным и мелкосерийным выпуском продукции и предназначены для выполнения следующих операций: сверления» рассверливания» зенкования, зенкерования, развертывания и подрезки торцев ножами. На станке модели 2135 обрабатываются детали сравнительно небольших размеров и веса.

Универсальный вертикально-сверлильный станок, модель 2135, предназначен для работы в ремонтных и инструментальных цехах, а также в производственных цехах с мелкосерийным выпуском продукции; оснащенный приспособлениями станок может быть применен в массовом производстве.

Особенности конструкции станка

Конструктивные особенности станка 2135. Станок обладает высокой жесткостью, прочностью рабочих механизмов, мощностью привода и широким диапазоном скоростей резания и подач, позволяющим использовать режущий инструмент, оснащенный твердым сплавом. Наличие электрореверса, управляемого как автоматически, так и вручную, обеспечивает возможность нарезания резьбы при ручном подводе и Отводе метчика.


Хронология серийного выпуска вертикально-сверлильных станков 2135 серии с диаметром сверления до Ø 35 мм:

  • 2135 — первая модель серии вертикально-сверлильных станков, выпускалась с 1945 по 1952 г.
  • 2А135 — следующая модель серии, выпускались с 1950 по 1965 г.
  • 2Н135, 2Н135А, 2Н135Б, 2Н135К, 2Н135Л — самая популярная и массовая модель серии, выпускалась c 1965 до начала 90-х годов
  • 2С135, 2С132 — последние модели серии. Сняты с производства в 2014 году


Габаритные размеры вертикально сверлильного станка 2135

Габаритные размеры вертикально сверлильного станка 2135


Общий вид сверлильного станка 2135

Фото вертикально сверлильного станка 2135

Фото вертикально сверлильного станка 2135

Фото вертикально сверлильного станка 2135


Расположение составных частей сверлильного станка 2135

Расположение составных частей сверлильного станка 2135


Принцип работы сверлильного станка 2135

Обрабатываемая деталь устанавливается на столе станка и закрепляется в машинных тисках или в специальных приспособлениях. Совмещение оси будущего отверстия с осью шпинделя осуществляется перемещением приспособления с обрабатываемой деталью на столе станка.

Режущий инструмент в зависимости от формы его хвостовика закрепляется в шпинделе станка при помощи патрона или переходных втулок. В соответствии с высотой обрабатываемой детали и длиной режущего инструмента производится установка стола и шпиндельной бабки.

Отверстия могут обрабатываться как ручным перемещением шпинделя, так и механической подачей.

На чугунной плите 11 (рис. 20) установлена вертикальная колонна 10. К (верхней части этой колонны присоединена коробка скоростей 4 с индивидуальным электродвигателем 3. Последним валом коробки скоростей является шпиндель 2, вращающийся в гильзе 22. Опора вращения последней находится в шпиндельной бабке 21. Гильза 22 вместе со шпинделем 2 может перемещаться в осевом (направлении относительно неподвижной шпиндельной бабки (кронштейна) 21 вручную или механически при помощи привода подачи.

Цепь 1 одним концом присоединена к гильзе 22, другим — к грузу, расположенному внутри колонны 10 и уравновешивающему вес гильзы и шпинделя.

При настройке станка шпиндельную бабку можно перемещать по вертикальным направляющим 8 колонны вверх или вниз в пределах 200 мм, закрепляя болтами 12 в положении, наиболее удобном для выполнения данной работы. На тех же направляющих установлен стол 17. При настройке стол перемещают в вертикальном направлении и закрепляют в нужном положении рукояткой 9.

При обработке деталей значительной высоты их устанавливают на плиту 11, удалив стол 17 и подставку-гайку 14.


Шпиндель

Шпиндель сверлильного станка 2135

В шпинделе станка укрепляется режущий инструмент 19 (рис. 20).

Шестерни коробки скоростей имеют шлицевые отверстия, которыми они надеваются на верхний конец шпинделя, имеющий шлицы (рис. 21). Такое соединение позволяет передавать более значительные мощности, чем шпоночное. Размеры шлицевых отверстий зубчатых колес и шлицевого конца шпинделя подбирают так, что шпиндель может перемещаться в осевом направлении, не теряя связи с сидящими на нем и остающимися неподвижными в осевом направлении зубчатыми колесами.

Шпиндель 1 вращается в длинной гильзе 2 на радиальных шариковых подшипниках 7 и 12. В осевом направлении шпиндель и гильза должны перемещаться совместно: Это достигается тем, что в буртик 5 шпинделя упирается надетая на шпиндель шайба 6, верхний торец которой является опорой для внутренней обоймы радиального подшипника 7. Верхний торец обоймы через подкладку 8 соприкасается с упорным шариковым подшипником 9. Шайба 6, шариковые подшипники 7 и 9 и расположенная между ними подкладка 8 помещены в расточке, сделанной в нижнем конце гильзы 2.

В верхней расточке гильзы 2 установлены радиальный шариковый подшипник 12, шайба 13 и гайка 14. При вращении гайка через шайбу 13 и верхнюю обойму радиального подшипника 12 отжимает гильзу 2 вниз и тем самым устраняет осевой зазор в упорном подшипнике. Нужно отрегулировать положение гильзы 2 так, чтобы в осевом направлении она представляла одно целое со шпинделем, т. е. осевой зазор отсутствовал, но вращение шпинделя в гильзе происходило совершенно свободно.

Гильза имеет зубчатую рейку 10, благодаря которой она вместе со шпинделем может перемещаться в осевом направлении от реечного зубчатого колеса 39 привода подачи (см.рис. 22).

На верхний конец гильзы надет хомут 11 (рис. 21). К нему присоединяется цепь противовеса, уравновешивающего вес гильзы и шпинделя.

В нижнем конце шпинделя 1 имеется конусное отверстие 4 (конус Морзе 4), предназначенное для установки конического хвостовика режущего или вспомогательного инструмента. Удаление инструмента производится через проем 3 в шпинделе.

Главный привод

Кинематическая схема сверлильного станка 2135

1. Схема кинематическая сверлильного станка 2135. Смотреть в увеличенном масштабе

2. Схема кинематическая сверлильного станка 2135. Смотреть в увеличенном масштабе

Главный привод (рис. 22). Назначение главного привода — передать шпинделю станка вращательное движение, источником которого является электродвигатель 2 мощностью 5,2 кВт и скоростью вращения 1440 об/мин. Электродвигатель через эластичную муфту сцепления 3 передает вращение валу с зубчатым колесом 5. Благодаря эластичной муфте точность установки оси двигателя относительно этого вала необязательна. Передача движения шпинделю 1 производится с помощью коробки скоростей 4 через зубчатые зацепления 5—6 и дальше — 9—10, 8—11 или 7—12 (в зависимости от положения трехвенцового колеса 10—11—12) и через зубчатые зацепления 13—14, 16—18 или 15—17 (в зависимости от положения двухвенцового колеса 15—16). Для переключения блочных колес служат рукоятки 23 (рис.20). Каждому рабочему положению блочных колес соответствует определенное фиксированное положение этих рукояток. Всего на этом станке можно получить шесть различных скоростей вращения шпинделя (три положения трехвенцового колеса, умноженные на два положения двухвенцового) 45, 75, 117, 186, 298, 466 об/мин.

Коробка скоростей сверлильного станка 2135

Коробка скоростей сверлильного станка 2135. Смотреть в увеличенном масштабе

Привод подачи

Механизм подачи сверлильного станка 2135

Механизм подачи сверлильного станка 2135. Смотреть в увеличенном масштабе

Коробка подач сверлильного станка 2135

Коробка подач сверлильного станка 2135. Смотреть в увеличенном масштабе

Механизм подачи шпинделя сверлильного станка 2135

Механизм подачи шпинделя станка 2135. Смотреть в увеличенном масштабе

Гильза 47 шпинделя получает осевое перемещение от зубчатого колеса 19, сидящего на шпинделе через зубчатые передачи 19—20, 21—23, 22—24, коробку подач, муфту 36, червячную передачу 37—38 и реечную передачу 39—40.

Коробка подач состоит из двухвенцового подвижного колеса 29—30 и двух четырехвенцовых колес с вытяжной шпонкой. При одном рабочем положении двухвенцового колеса 29—30 в зацеплении находятся зубчатые колеса 30—31, а при другом — 29—27. Зубчатые пары 28—35, 27—34, 26—33 и 25—32 находятся в постоянном зацеплении. Передача движения дальнейшим механизмам привода подачи производится от одной из этих пар в зависимости от того, против какого из колес 32, 33, 34 или 35 установлена вытяжная шпонка. Так как двухвенцовое колесо 29—30 имеет два рабочих положения, а вытяжная шпонка — четыре, то коробка подач дает возможность сообщить шпинделю 2X4 = 8 разных по величине подач: 0,1; 0,145, 0,195; 0,275; 0,4; 0,575; 0,788; 1,11 мм/об.

Предохранительное устройство привода подачи

Предохранительный механизм привода подач сверлильного станка 2135

Назначение муфты 36 (рис. 22) — предохранять механизм подачи от перегрузки. Для этого червяк 1 (рис. 23) сидит на своем валу свободно, а рассматриваемая муфта (на рис. 23 она обозначена цифрой 2) на том же валу на скользящей шпонке. Действием пружины 3 муфта прижимается к червяку и ее торцовые зубья входят в соответствующие впадины на торце ступицы червяка. Тем самым вращение муфты передается червяку, а от него и механизму подачи.

Так как зубья муфты имеют наклонные рабочие поверхности, то при передаче вращения возникает осевая сила, стремящаяся оттолкнуть муфту от червяка. Нормальное давление пружины превышает отталкивающую осевую силу, и муфта остается в сцеплении с червяком. Если же нагрузка на механизм подачи превысит допустимую, то отталкивающая сила становится большей, чем сила действия пружины, муфта и червяк разобщаются и осевое движение шпинделя прекращается.

Величину нагрузки, при которой прекращается подача шпинделя, можно регулировать, изменяя натяжение пружины 3 при помощи регулировочной гайки 4.

Включение и выключение механической подачи шпинделя

Механизм включения и выключения подач сверлильного станка 2135

Механизм включения и выключения подач сверлильного станка 2135. Смотреть в увеличенном масштабе

Связь между червячным колесом 38 (рис. 22) и его валом осуществляется при помощи специального устройства (рис. 24, а, б), позволяющего производить включение и выключение механической подачи.

На левом конце валика 10 расположена муфта 4, на которой закреплен штурвал 1. Муфта 4, штурвал 1 и валик 10 связаны штифтом 3, проходящим через торцовую прорезь валика. Прорезь имеет скосы (рис. 24, б), позволяющие поворачивать штурвал независимо от валика 10 на угол около 30°. Дальнейший поворот штурвала совершается вместе с валиком 10.

На правом торце муфты 4 нарезаны зубья с наклонными рабочими поверхностями, которые входят во впадины зубьев муфты 5, скрепленной с валиком 10 скользящей шпонкой. Рядом с ней, тоже на скользящей шпонке, расположен диск 6, несущий шесть пружинных храповых собачек, находящихся в зацеплении с зубьями левого торца двухстороннего свободно сидящего храпового диска 7. Рядом с последним на валике 10 свободно установлено червячное колесо 12 (на рис. 22 оно обозначено позицией 38), к левому торцу которого прикреплен храповой диск 8.

Пружина 13 отталкивает двухсторонний храповой диск 7 влево, поэтому сцепление между ним и диском 8 отсутствует, вращение червячного колеса 12 валику 10 не передается и механическая подача шпинделя выключена.

Поворотом штурвала 1 на угол 30° шротов часовой стрелки (валик 10 при этом остается неподвижным) выступы зубьев муфты 4 располагаются против выступов зубьев муфты 5, муфта передвигается вправо вместе с дисками 6 и 7; зубья правой стороны диска 7 входят в зацепление с зубьями диска 8, и вращение червячного колеса 12 сообщается валику 10, реечное колесо 11 перемещает гильзу 9 шпинделя, т. е. выключается механическая подача.

Для выключения механической подачи достаточно задержать вращение штурвала 1. Как только впадины зубьев муфты 5, продолжающей вращение вместе с валиком 10, окажутся против выступов зубьев муфты 4, пружина 13 отодвинет диски 6 и 7 влево, прекращая связь между дисками 7 и 5.

Это устройство позволяет перейти к ручной рабочей подаче шпинделя в любой момент работы без отключения механической подачи с тем условием, что величина ручной подачи (скорость перемещения шпинделя) больше механической. Для ручной подачи шпинделя штурвал 1 вращается против часовой стрелки, увлекая за собой валик 10 вместе с муфтой 5 и диском 6. При этом собачки проскакивают по зубьям диска 7.

Ручная подача шпинделя в обоих направлениях производится поворотом штурвала 1 после вдвигания кнопки 2 для обеспечения непосредственной связи между штурвалом и валиком 10.

Автоматическое выключение механической подачи

Муфта 4 (рис. 24, б) имеет зубчатый венец, находящийся в зацеплении с рейкой, нарезанной на стержне 15. Вращение муфты 4 вместе с валиком 10 заставляет стержень 15 опускаться вниз. На верхнем конце стержня закреплен хомутик 14. Как только он дойдет до торцовой плоскости шпиндельной бабки, вращение муфты 4 и штурвала 1 будет задержано и механическая подача выключится.

Стол станка

Стол 17 (см. рис. 20) станка служит для установки и закрепления обрабатываемой детали. Закрепление детали или приспособления производится болтами, для головок которых в столе образованы Т-образные пазы. Важно, чтобы рабочая поверхность стола была перпендикулярна оси вращения шпинделя — это обеспечивает правильное расположение обрабатываемой детали относительно оси режущего инструмента, необходимое для получения точно направленного отверстия. Вот почему нужно очень бережно относиться к столу, предохранять его от забоин и других повреждений.

Вертикальное перемещение стола позволяет устанавливать его на различном расстоянии от торца шпинделя в зависимости от высоты обрабатываемой детали. Для перемещения стола вверх или вниз надо ослабить зажимные рукоятки 9 (см. рис. 20) и поворотом ручки 46 (см. рис.22) через зубчатую коническую пару 42—45 привести во вращение ходовой винт 44. При вращении винт входит в подставку гайку 43 или выходит из нее и заставляет опускаться или подниматься по направляющим 41 скрепленный с ним стол. В нужном положении стол вновь закрепляется поворотом рукояток 9 (см. рис. 20).



Система охлаждения

Система охлаждения сверлильного станка 2135

При выполнении сверлильных работ применяются охлаждающие и смазывающие жидкости.

Резервуар с жидкостью расположен в плите 4 (рис. 25). Отсюда жидкость через фильтр засасывает насос и по трубопроводам подает к месту обработки. Включение и выключение подачи жидкости, а также регулирование ее расхода, производится краном 1. Использованная жидкость стекает в желоб стола, а оттуда через фильтр 2 и трубопровод 3 направляется обратно в резервуар.


2135 станок вертикально-сверлильный универсальный. Видеоролик.



Основные технические характеристики станка 2135

Наименование параметра21352А1352Н135
Основные параметры станка
Наибольший диаметр сверления в стали 45 ГОСТ 1050-74, мм353535
Наименьшее и наибольшее расстояние от торца шпинделя до стола, мм0..7150..75030..750
Наименьшее и наибольшее расстояние от торца шпинделя до плиты, мм525. .1065705..1130700..1120
Расстояние от оси вертикального шпинделя до направляющих стойки (вылет), мм290300300
Рабочий стол
Размеры рабочей поверхности стола, мм450 х 480450 х 500450 х 500
Число Т-образных пазов Размеры Т-образных пазов333
Наибольшее вертикальное перемещение стола (ось Z), мм380325300
Шпиндель
Наибольшее перемещение шпиндельной бабки, мм200200170
Наибольшее перемещение (ход) шпинделя, мм340225250
Частота вращения шпинделя, об/мин53, 84, 131, 200, 320, 50068..110031,5. .1400
Количество скоростей шпинделя6912
Наибольший допустимый крутящий момент, кг*м400
Конус шпинделяМорзе 4Морзе 4Морзе 4
Механика станка
Число ступеней рабочих подач8119
Пределы вертикальных рабочих подач на один оборот шпинделя, мм0,1..1,110,1..1,60,1..1,6
Наибольшее усилие подачи, кН1615
Динамическое торможение шпинделяЕстьЕсть
Электрооборудование и привод станка
Электродвигатель привода главного движения, кВт (об/мин)4,5 (1440)4,54,0
Электронасос охлаждающей жидкости ТипП22А х 0,1Х14-22МХ14-22М
Габариты и масса станка
Габариты станка (длина х ширина х высота), мм1210 х 930 х 27351240 х 810 х 25002535 х 825 х 1030
Масса станка, кг155013001200

    Список литературы:

  1. Тепинкичиев В. К. Металлорежущие станки, 1973
  2. Барун В.А. Работа на сверлильных станках,1963
  3. Винников И.З., Френкель М.И. Сверловщик, 1971
  4. Винников И.З. Сверлильные станки и работа на них, 1988
  5. Лоскутов B.В Сверлильные и расточные станки, 1981
  6. Панов Ф.С. Работа на станках с ЧПУ, 1984
  7. Попов В.М., Гладилина И.И. Сверловщик, 1958
  8. Сысоев В.И. Справочник молодого сверловщика,1962

Связанные ссылки

Каталог справочник сверлильных металлорежущих станков

Паспорта к сверлильным металлорежущим станкам и оборудованию

Купить каталог, справочник, базу данных: Прайс-лист информационных изданий


Радиально-сверлильный станок 2А554: устройство,схемы,характеристика

Кинематическая схема радиально-сверлильного станка 2А554

Шпиндель радиально-сверлильного станка

Шпиндель станка 1 расположен в выдвижной пиноли 5. В передней опоре, кроме двух радиальных шариковых подшипников, установлен также упорный подшипник 3, воспринимающий осевую нагрузку при сверлении.

В задней опоре расположенный радиальный и упорный подшипники 7 и 6 соответственно. Затяжка упорных подшипников выполняется через опорную шайбу 8 гайкой 9.

Передача вращательного движения от коробки скоростей к шпинделю выполняется через  его хвостовую часть, которая шлицами входит в сопряжение с гильзой коробки скоростей.

Нижняя часть шпинделя имеет конус Морзе 5 для установки режущего инструмента.

На пиноли шпинделя 7 нарезана рейка, предназначенная для передачи движение подачи. Специальной шпонкой 12 обеспечивается ограничение хода шпинделя, конец которого заходит в паз пиноли.

Штырь 2 служить для остановки шпинделя в крайних положения, которые воздействует на микропереключатель 10, размыкая цепи питания электродвигателя.

Сверлильная головка станка

Сверлильная головка состоит из нескольких сборочных единиц. Коробка скоростей и подач расположены в верхней части головки. В задней плоскости прикреплена панель управления гидросистемой. Кроме этого, головка снабжена электрогидравлическими механизмами преднабора (преселекции). Позволяющие производить следующий технологический режим обработки еще до окончания предыдущего.

Размещается она на направляющих рукава, по которым с легкостью перемещается в радиальном направлении.

Легкость перемещения обеспечивается за счет применения комбинированных направляющих качения-скольжения. В отжатом состояние зазор между направляющими головки и рукава составляет 0,03-0,05 мм, а по верхним направляющим головка перемещается по роликам.

Ролики 1 и 4 установлены на шариковых подшипниках 13 на эксцентриковых осях 12.

Регулировка зазора между направляющими осуществляется за счет эксцентриковых осей 17.

Коробка скоростей радиально-сверлильного станка

Коробка скоростей сверлильного станка предназначена для передачи шпинделю 24-х скоростей вращения. Различные скорости вращения шпинделя обеспечиваются за счет переключение соответствующих подвижных блоков. На первом валу расположена фрикционная муфта, служащая для соединения кинематической цепи между приводом электродвигателя и шпинделем.

С верхней муфтой коробка скоростей станка соединяется зубчатым блоком 3 и 4, а с нижней муфтой – зубчатым колесом 24, закрепленным на валу 10, через паразитную шестерню 23.

Плавность и бесшумность работы, а также  передача высоких нагрузок обеспечивается за счет изготовления всех зубчатых колес и шестерен из качественной стали, закалкой и последующей шлифовкой.

Коробка подач радиально-сверлильного станка

Коробка подач сверлильного станка расположена между шпинделем и механизмом подачи и получает вращательное движение от шпинделя через зубчатую передачу 1.

Нижними опорами валов 6 и 7 служат гнезда, расположенные в промежуточной плите 4.

На валу 7 расположена переборная шестерня 3. В механизме подачи располагается дополнительная переборная группа.

Техническая характеристика радиально-сверлильного станка 2А554

Основные параметры 2A554
Наибольший диаметр сверления,мм:  
в стали 50
в чугуне 63
нарезаемой резьбы:  
в стали М52х5
в чугуне М54х4

Расстояние от оси шпинделя до направляющих колоны,мм:

 
наибольшее 1600
наименьшее 375
Перемещение шпинделя,мм:  
наибольшее 400
на один оборот лимба 120
на одно деления лимба 1

Наибольшее перемещение сверлильной головки по колонне,мм

1225

Наибольший угол поворота рукава вокруг 

оси колонны,град

360
Скорость вертикального перемещения рукава,м/с 0,023
Пределы частоты вращения шпинделя, об/мин 18. ..2000
Наибольший крутящий момент на шпинделе,Нм 7100
Габаритные размеры станка,мм:  
длина 2850
ширина 1030
высота 3430
Масса станка,кг 4700

 

Кинематика станка модели 2а135

2.1. Движение резания:

Шпиндель V (рис. 3,а) приводится в движение электродвигателем мощностью

4,5 кВт через клиноременную передачу 140178 и коробку скоростей.

На валу I коробки скоростей находится тройной подвижной блок шестерен Б1, обеспечивающий валу II три скорости вращения. От вала II через шестерни 34—48 вращение передается валу III, на котором расположен тройной подвижной блок шестерен Б2, приводящий в движение полый вал IV, связанный шлицевым соединением со шпинделем V. Как видно из графика (рис.3,б), шпиндель V имеет девять скоростей вращения. Наибольшее число оборотов шпинделя nmax с учетом упругого скольжения ремня определяется из выражения

    1. Движение подачи:

Движение подачи заимствуется от шпинделя V. Движение передается через шестерни 2750 и 2750, коробку подач с выдвижными шпонками, предохранительную муфту М1 вал IX, червячную передачу 1—47, зубчатую муфту М2, вал X и реечную передачу гильзе шпинделя.

В коробке подач расположены трех- и четырехступенчатый механизмы с выдвижными шпонками.

От вала VI три скорости вращения сообщаются валу VII, на котором жестко закреплены шестерни 60, 56, 51, 35 и 21. От вала VII четыре скорости вращения передаются валу VIII.

Теоретически коробка подач обеспечивает 12 скоростей вращения, однако, как видно из графика (рис. 2), одна из них повторяющаяся, поэтому станок модели 2А135 имеет только 11 различных величин подач.

От вала VIII через кулачковую муфту М1 движение сообщается валу IX, на котором закреплен червяк. Червячное колесо 47 расположено на одном валу с реечной шестерней 14, находящейся в зацеплении с рейкой, нарезанной на гильзе шпинделя. Муфта М1 служит для предохранения механизма подач от поломок при перегрузках, а также для автоматического выключения подачи при работе по упорам.

Наибольшая величина подачи smax определяется из выражения:

    1. Вспомогательные движения:

Перемещение шпиндельной бабки осуществляется от рукоятки Р1 через червячную передачу 1—32 и реечную шестерню 18, сцепляющуюся с рейкой т = 2 мм, закрепленной на станине.

Вертикальное перемещение стола достигается поворотом рукоятки Р2 через вал XI, конические шестерни 16—43 и ходовой винт XII.

Рис. 2

График подач шпинделя

Быстрое перемещение шпинделя с гильзой производится штурвалом Ш, связанным специальным замком с валом X. Замок позволяет штурвалу свободно поворачиваться на валу X в пределах 20°, а в дальнейшем связывает их в одно целое.

Рис. 3

Кинематическая схема вертикально-сверлильного станка модели 2А135

  1. Промышленный робот типа «Универсал-5»

В качестве манипулятора для разрабатываемой системы управления РТК выбираем промышленного робота модели «Универсал-5».

Многоцелевые роботы типа «Универсал-5» применяются для автоматизации погрузочно-разгрузочных работ, обслуживания различного технологического оборудования, межоперационного транспортирования объектов обработки и выполнения других вспомогательных операций.

Исполнительным механизмом ПР является манипулятор, который обеспечивает установку в пределах рабочей зоны захватного механизма-схвата. Манипулятор имеет четыре степени подвижности руки 1 в сферической системе координат:

1-поворота руки относительно вертикальной оси, чтобы обеспечить перемещение заготовки от накопителя к станку;

2-выдвижения руки относительно горизонтальной оси, чтобы перемещать заготовку непосредственно к шпинделю станка;

3-подъема руки вдоль вертикальной оси, чтобы компенсировать возможную разницу высот расположения заготовок в накопителе и шпинделя станка;

4— поворота кисти манипулятора вокруг горизонтальной оси, для переворота заготовки.

Две степени подвижности рабочего органа-схвата7 создают механизмы 6 вращения кисти руки относительно ее продольной оси IIIIII и поперечной оси IVIV.

Рис. 4

Сверлильный станок 2н135: назначение, принцип действия, характеристики

Станки универсальные вертикально-сверлильные 2Н125, 2Н135, 2Н150 – Всё для чайников

ПодробностиКатегория: Сверлильные и расточные станки

 Станки универсальные вертикально-сверлильные 2h225, 2h235, 2h250  используются на предприятиях с единичным и мелкосерийным выпуском продукции и предназначены для выполнения следующих операций: сверления» рассверливания, зенкования, зенкерования, развертывания и подрезки торцев ножами. Наличие на станках механической подачи шпинделя, при ручном управлении циклами работы, допускает обработку деталей в широком диапазоне размеров из различных материалов с использованием инструмента из высокоуглеродистых и быстрорежущих сталей и твердых сплавов.

 Станки снабжены устройством реверсирования электродвигателя главного движения, что позволяет производить на них нарезание резьбы машинными метчиками при ручной подаче шпинделя.

 Категория размещения 4 по ГОСТ 15150-69.

Скачать документацию

Кинематическая схема

 Схема кинематическая станков 2h225, 2h235 представлена на рис.5.Ввиду простоты кинематических схем описание их не приводится.Примечание. Цепь движения стола одинакова для всех трех станков.

Цепь подач одна и та же для станков моделей 2125 и 2h235.

Колонна, стол, плита

Колонна станка представляет собой чугунную отливку. По направляющим колонны типа “ласточкин хвост” вручную перемещаются сверлильная головка и стол. Стол станка имеет три Т-образных паза. На фундаментной плите установлен электронасос, а внутри плиты – резервуар с отстойником для охлаждающей жидкости.

Коробка скоростей и привод

 Коробка скоростей сообщает шпинделю 12 различных частот вращения с помощью передвижных блоков 5 (рис.7), 7, 8. Опоры валов коробки размещены в двух плитах -верхней 1 и нижней 4,скрепленных между собой четырьмя стяжками 6. Коробка скоростей приводится во вращение вертикально расположенная электродвигателем через эластическую муфту Ю и зубчатую передачу 9.

Последний вал 2 коробки – гильза – имеет шлицевое отверстие, через которое вращение передается шпинделю. Через зубчатую пару 3 вращение передается на коробку подач.Смазка коробки скоростей, как и всех сборочных единиц сверлильной головки, производится от плунжерного насоса,закрепленного на низшей плите 4.

Работа насоса контролируется специальным маслоуказателем на лобовой части подмоторной плиты.

Механизм переключение скоростей и подач

Переключение скоростей производится рукояткой 2 (рис.

8), которая имеет четыре положения по окружности и три вдоль оси» переключение подач осуществляется рукояткой 3, имеющей три положения по окружности для станков моделей 2h225, 2h235 и четыре для 2h250, и три положения вдоль оси. Рукоятки расположены на лобовой стороне сверлильной головки. Отсчет включаемых скоростей и подач производится по табличкам 1 и 4.

Коробка подач

Механизм смонтирован в отдельном корпусе в устанавливается в сверлильной головке. За счет перемещения двух тройных блоков шестерен осуществляются девять различных подач на станках 2h225, 2h235 и двенадцать подач на станке 2h250.

На станках 2h225 и 2h235 коробки подач отличаются только приводом, который состоит на станке 2h225 из зубчатых колес I (рис.9), на станках 2h225, 2h235 – из зубчатых колес 2, 3 – соответственно. Коробка подач смонтирована в расточке верхней опоры червяка механизма подач.

На последнем валу коробки посажена муфта 4, передающая вращение червяку.

Сверлильная головка

  Сверлильная головка представляет собой чугунную отливку коробчатого сечения, в которой монтируются все основные сборочные единицы станка: коробка скоростей, коробка подач, шпиндель, механизм подачи, противовес шпинделя и механизм переключения скоростей и подач.Механизм подачи, состоящий из червячной передачи, горизонтального вала с реечной шестерней, лимба, кулачковой и храповой обгонных муфт, штурвала, является составной частью сверлильной головки.

Механизм подачи приводится в движение от коробки подач и предназначен для выполнения следующих операций:

ручного подвода инструмента к детали; включения рабочей подача;ручного опережения подачи;выключения рабочей подачи;ручного отвода шпинделя вверх; ручной подача, используемой при нарезания резьбы.

Принцип работы механизма подачи заключается в следующем: при вращении штурвала 14 (рис.10) на себя поворачивается кулачковая муфта 8, которая черев обойму-полу муфту 7 вращает вал-шестерню 3 реечной передачи, происходит ручная подача шпинделя.

Когда инструмент подойдет к детали, на валу-шестерне 3 возникает крутящий момент, который не может быть передан зубцами кулачковой муфты 8, в обойма-полумуфта 7 перемещается вдоль вала до тех пор, пока торцы кулачков деталей 7 и 8 не встанут друг против друга.

В этот момент кулачковая муфта 8 поворачивается относительно вала шестерни 3 на угол 20°, который ограничен пазом в детали 8 и штифтом 10. На обойме – полумуфте 7 сидит двухсторонний храповой диск 6, связанный с полумуфтой  с собачками 13. При перемещении обоймы-полумуфты 7 зубцы диска 6 входят в зацепление с зубцами диска 6 выполненного заодно с червячным колесом 5.

В результате вращение от червяка передается на реечную шестерню и происходит механическая подача шпинделя. При дальнейшем вращении штурвала 14 при включенной подаче собачки 13, сидящие в обойме-полу муфте 7, проскакивают по зубцам внутренней стороны диска 6; происходит ручное опережение механической подачи.

Механизм подач допускает ручную подачу шпинделя. Для этого необходимо выключить штурвалом  14  механическую подачу и колпачок 9 переместить вдоль оси вала-шестерни 3 от себя. При этом штифт 11 передает крутящий момент от кулачковой муфты 8 на горизонтальный вал.

На левой стенке сверлильной головки смонтирован лимб 4 для визуального отсчета глубины обработки и настройки кулачков.
Для ручного перемещения сверлильной головки по направляющим колонны имеется механизм, который состоит из червячной пары 2 и реечной пары 1.

Для предохранения механизма подачи от поломки имеется предохранительная муфта 15. Гайка 16 и винт 17 служат для регулирования пружинного противовеса.

Шпиндель

 Шпиндель  (рис.11) смонтирован на двух шарикоподшипниках. Осевое усилие подачи воспринимается нижним упорным подшипником, а усилие по выбивке инструмента – верхним. Подшипники расположены в гильзе 3, которая с помощью реечной пары перемещается вдоль оси.

регулировка подшипников шпинделя осуществляется гайкой 1
Для выбивки инструмента служит специальное приспособление на головке шпинделя. Выбивка происходит при подъеме шпинделя штурвалом.

Обойма приспособления упирается в корпус сверлильной головки, и рычаг 4, поворачиваясь вокруг оси выбивает инструмент.

Электрическая схема

 Включением вводного автомата Q1 подается напряжение на главные и вспомогательные цепи, на пульте загорается сигнальная лампа Н2. Если необходимо охлаждение и освещение, то соответствующие выключатели ставятся в положение ВКЛЮЧЕНО.

Нажатием кнопки S2 ВПРАВО катушка пускателя К1 получает питание, главные контакты включают электродвигатель M1 на правое вращение шпинделя. Через блок-контакты K1 включается пускатель К2, включающий электродвигатель М2 и реле задержки К7.

При нажатии кнопки S3 ВЛЕВО происходит отключение пускателя K1, электродвигателя M1, реле К7. После разряда конденсатора СЗ контакты реле К7 (28-26) замыкаются,и происходит включение пускателя КЗ в электродвигателя M1 на левое вращение шпинделя. Реле К7 включается снова.

При автоматическом реверсе эти переключения происходят при срабатывании микропереключателя S6 от кулачка,установленного на лимбе.Останов осуществляется нажатием на кнопку S1 СТОП. При этом отключаются пускатели K1 или КЗ, К2,отключающие электродвигатели M1, М2.

Через контакты реле К7 (7-9) включается реле К6 с последующим включением пускателей К4 и К5. Обмотки электродвигателя M1 подключаются через выпрямитель V1, V2 к трансформатору T1. Происходит электродинамическое торможение шпинделя.

После разряда конденсаторов C1, С2 отключается реле К6, отключающее пускатели K4, К5.При переключении скоростей, если зубчатые колеса не входят в зацепление, применяют качательное движение ротора двигателя M1.

Нажатием кнопки S4 КАЧАТЕЛЬНСЕ ДВИЖЕНИЕ включается пускатель К4, подающий по фазам IC2-IC3 пониженное выпрямленное напряжение.

Через сопротивление R2 с задержкой включается реле К6, отключающее пускатель К4 и включающее пускатель К5. При этом пониженное напряжение протекает по фазам ICI-IC2. Такие переключения обеспечивают качание ротора, что облегчает переключение скоростей.

Скачать документацию

Источник: https://forkettle.ru/biblioteka/pasporta-i-tekhnicheskaya-dokumentatsiya/sverlilnye-i-rastochnye-stanki/8356-stanki-universalnye-vertikalno-sverlilnye-2n125-2n135-2n150

Вертикально сверлильный станок 2н135 технические характеристики

Главная » Станок » Вертикально сверлильный станок 2н135 технические характеристики

Назначение, устроиство и принцип работы станка модели 2Н135

Наибольший диаметр получаемого отверстия 35 мм;

Конус отверстия шпинделя Морзе №4;

Расстояние от торца шпинделя до стола 30-750 мм;

Число частот вращения шпинделя 12;

Пределы частот вращения шпинделя 31,5- 1400 мин-1;

Число подач 9;

Пределы подач 0,1 -1,6 мм/об.

Общее устройство станка.Общий вид и компоновка станка показаны на рисунке 1, а. Станок имеет следующие основные узлы: плиту 1, колонну 3, стол 2, шпиндельную бабку 6. Режущий инструмент закрепляется во внутреннем конусе (Морзе № 4) шпинделя 4. Обрабатываемые заготовки устанавливают и закрепляют на столе 2.

Для сверления отверстия вращением штурвала 5 «на себя» быстро опускают шпиндель вниз. Когда сверло упрется в поверхность обрабатываемой заготовки, автоматически включается подача шпинделя.

Глубина сверления настраивается кулачком 12, а глубина нарезания резьбы кулачком 14. Кулачки устанавливаются на вращающемся лимбе 13. Подъем шпинделя в верхнее положение производят вручную вращением штурвала 5 «от себя».

При необходимости можно в любой момент отключить подачу шпинделя поворотом этого штурвала «от себя».

Конструкция и характеристика работы основных узлов станка.Плита 1 (рисунок 1, а) является основанием станка, а внутренняя ее полость — резервуаром для охлаждающей жидкости.

Колонна 3 имеет вертикальные направляющие, по которым можно передвигать шпиндельную бабку 6 и стол 2 в положение, удобное для работы. Для уравновешивания шпиндельной бабки внутри колонны под­вешен груз.

Стол 2 имеет Т-образные пазы для крепления тисков, приспособ­лений или непосредственно обрабатываемых деталей. На шпиндельной бабке 6 расположены электродвигатель и меха­низмы привода главного движения и подач, механизм включения и от­ключения вращения шпинделя, органы управления и шпиндель станка.

Включение и отключение вертикальной подачи шпинделя 2

(рисунок 1, б) производится с помощью муфты МфЗ, состоящей из двух полумуфт 3 и 7 (рисунок 1, в) с торцовыми зубьями. Правая полумуфта 3 установлена на вал 8 на шлицах.

Вращением штурвала 1 «от себя» выступы 6 полумуфты 3 под действием пружины 4 попадают между выступами а; полумуфты рассоединены и червячное колесо z=60 вмес­те с полумуфтой 7 вращаются свободно на гладкой шейке вала 8—по­дача шпинделя отключена.

При вращении штурвала 1 «на себя» выступы а и б поворачивают правую полумуфту 3 и вал 8 с шестерней z=13 — происходит быстрое опускание шпинделя вручную.

При соприкосновении вершины сверла с деталью крутящий момент, нужный для поворота штурвала 1, увеличивается и штурвал можно по­вернуть «на себя» относительно вала 8 только на 20°, т. е. на угол, образованный между штифтом 2 и стенкой д паза для этого штифта на ступице штурвала 1 (см.

сечение А—А на рисунок 1, в). При повороте штурвала торцы выступов а переместятся на торцы выступов б, вслед­ствие чего полумуфта 3 переместится влево — произойдет включение муфты МфЗ и механической подачи шпинделя. Механизм обгона.

Корпус правой полумуфты 3 с помощью соба­чек 5 со скошенными зубьями соединен с двусторонним храповым дис­ком 6. Поэтому при включенной муфте МфЗ и механической подаче можно производить вращение штурвала 1, вала 8 и опускать шпиндель вручную со скоростью, большей, чем от механической подачи.

При этом зубья собачек 5 проскальзывают по правым зубьям в храпового диска 6, не препятствуя быстрому вращению штурвала 1.

Управление станком. Рукояткой 7 (рисунок 1, а) включают нужную частоту вращения шпинделя. Поворотом этой рукоятки «на себя» или «от себя» устанавливают указатель а в положение, обозначенное квадратом, окружностью или треугольником.

При этом включаются частоты вращения шпинделя, записанные в соответствующей строке таблицы.

Поворачивая рукоятку вверх или вниз, устанавливают указатель б посредине одной из вертикальных колонок, включая частоту вращения, записанную в этой колонке.

Аналогичным способом рукояткой 11 включают нужную подачу шпинделя. По положениям, в которых находятся указатели а и б на рисунке 1, а, видно, что включена частота вращения шпинделя 710 об/мин и подача 0,28 мм/об.

Вводным выключателем 9 включают и отключают станок от элек­трической сети, а выключателем 10 — подачу охлаждающей жидкости. Включение и отключение вращения шпинделя производят кнопками с пульта управления 8.

Поперечно-строгальный станок 7М36В группу строгальных входят станки с возвратно-поступательным движением резания и прерывистой подачей инструмента в направлении, перпендикулярном движению резания.

Так как обратный ход в строгальных станках холостой и высокие скорости резания недопустимы вследствие значительных сил инерции, развиваемых деталями станка при возвратно-поступательном движении, то в условиях массового и крупносерийного производства обработка на строгальных станках заменяется более производительной обработкой на фрезерных или протяжных станках. Строгальные станки в этих усло­виях применяются только в исключительных случаях.

Обычно строгальными станками пользуются для обработки изде­лий, изготовляемых в небольшом количестве, главным образом, в инст­рументальных, ремонтных, экспериментальных цехах и в основных цехах заводов с индивидуальным или мелкосерийным производ­ством.

Несмотря на то, что в большинстве случаев обработка на строгаль­ных станках менее производительна, чем обработка на фрезерных или протяжных станках, строгальные станки имеют и свои преимущества, заключающиеся в простоте и дешевизне применяемого инструмента и его заточке, возможности обработки сложных профилей простейшим универсальным инструментом (резцами) и высокой производительно­сти при обработке длинных узких поверхностей.

К группе строгальных станков относятся: поперечно-строгальные, продольно-строгальные, долбежные и специальные строгальные станки.

Станок предназначен для обработки плоских и фасонных поверх­ностей в индивидуальном и мелкосерийном производстве. Станок име­ет наибольшую длину хода ползуна — 700 мм.

Общий вид и компоновка станка показаны на рис. 47, а.

Основные узлы:станина 1,траверса 9,стол 8,ползун 24,суппорт 20, коробка подач 3, гидропанель 27.

Главное движение сообщается ползуну 24,который совершает воз­вратно-поступательные движения по верхним горизонтальным направ­ляющим гстанины 1.Вместе с ползуном перемещается суппорт 20,на котором установлен резец 12г обрабатывающий поверхность заго­товки.

Обрабатываемые заготовки устанавливают и закрепляют либо не­посредственно на столе 8, либо в тисках или других приспособлениях, предназначенных для этой цели.

Все подачи в станке происходят в поперечном направлении. Они осуществляются прерывисто в момент переключения движения ползуна с обратного на рабочий ход.

Обработку чаще всего производят с гори­зонтальной подачей стола, при которой стол перемещается по направ­ляющим б траверсы 9.Для более жесткой фиксации стола траверса должна быть закреплена гайками 10на направляющих станины.

Гайка­ми 7 нужно закрепить стойку 6 в таком положении, чтобы она сколь­зила по направляющим астанины, поддерживая переднюю выступаю­щую часть стола.

При необходимости обработку заготовки производят при верти­кальной подаче траверсы или салазок 17 суппорта. В первом случае гайки 7 и 10 должны быть отпущены, а во втором салазки 17 освобож­дены зажимом 16. При обработке, производимой без вертикальной подачи салазок 17, они должны быть закреплены зажимом 16.

Для осуществления движений ползуна и подач стола в станке при­менен гидравлический привод, что позволяет работать с более высо­кими скоростями обратного хода ползуна и производить бесступенча­тое изменение скоростей рабочего хода ползуна.

Станок имеет устройство, поднимающее с помощью электромаг­нита откидную доску 13 на время обратного хода ползуна 24 для того, чтобы резец 12 в этот период не касался обработанной поверхности детали.

Внутрифлифовальный станок 3Б250Станок предназначен для шлифования цилиндрических и кониче­ских отверстий диаметром от 50 до 200 мм в заготовках длиной до 200 мм с наружным диаметром до 400 мм. Наибольший угол при вер­шине конических отверстий 60°.

Для высокопроизводительного шлифования отверстий небольшого диаметра (50—80 мм) станок по особому заказу оснащается дополни­тельным быстроходным шпинделем.

Станок имеет торцешлифовальное приспособление, что позволяет шлифовать с одной установки кроме отверстия и наружный торец изделия. Применяется станок в индивидуальном и серийном произ­водстве.

Основные узлы станка: станина 1, передняя бабка 5, стол 24, шли­фовальная бабка 20, торцешлифовальное приспособление 13, аппарат правки 9.

Обрабатываемую заготовку закрепляют в кулачках патрона перед­ней бабки S. Для шлифования заготовки включают вращение шлифо­вального круга 16, круговую подачу заготовки и продольное возвратно-поступательное движение стола 24. При автоматическом цикле в конце каждого двойного хода стола совершается поперечная подача бабки 20 для врезания шлифовального круга на заданную глубину.

При обработке отверстия до заданного диаметра поперечная пода­ча шлифовального круга автоматически выключается. По мере надоб­ности производят правку шлифовального круга, которая осуществля­ется автоматически алмазом, установленным в оправку аппарата 9.

При необходимости можно производить вручную маховичком 19 гру­бую (ускоренную) или тонкую (замедленную) поперечную подачу шли­фовальной бабки 13, а маховичком 23 — продольную подачу стола 24.

megaobuchalka.ru

Паспорт на Станок вертикально-сверлильный 2Н-135, 2Н-125 | ПАСПОРТИЗАЦИЯ

Назначение технического устройства.

Станок универсальный вертикально-сверлильный 2Н-135 используется на предприятиях с единичным и мелкосерийным выпуском продукции и предназначен для выполнения следующих операций: сверления, рассверливания, зенкования, развертывания и подрезки торцов ножами.

Наличие на станках механической подачи шпинделя, при ручном управлении циклами работы, допускает обработку деталей в широком диапазоне размеров из различных материалов с использованием инструмента из высокоуглеродистых и быстрорежущих сталей из твердых сплавов.

Станок снабжен устройством реверсирования электродвигателя главного движения, что позволяет производить на них нарезание резьбы машинным метчиками при ручной подаче шпинделя.

Технические характеристики.

Наибольший диаметр сверления в стали 45 ГОСТ 1050- 74, мм — 35

Размеры конуса шпинделя по СТ СЭВ 147-75 — Морзе 4

Расстояние оси шпинделя до направляющих колонны, мм — 300

Наибольший ход шпинделя, мм — 250

Расстояние от торца шпинделя, мм: до стола — 30-750

до плиты — 700-1120

Наибольшие (установочное) перемещение сверлильной головки, мм — 170

Перемещение шпинделя за один оборот штурвала, мм  — 122,46

Рабочая поверхность стола, мм — 450х500

Наибольший ход стола, мм — 300

Количество скоростей шпинделя  — 12

Количество подач — 9

Пределы подач, мм/об — 0,1-1,6

Мощность электродвигателя главного движения, кВт — 4,0

Габарит станка: длина, ширина, высота, мм — 1030х835х2535

Масса станка, кг — 1200

Установочный размер Т-образных пазов в столе по ГОСТ 1574-75

-центрального — 18Н9

-крайних — 18Н11

Расстояние между двумя Т-образными пазами по ГОСТ 6569-75, мм — 100

Количество скоростей шпинделя — 12

Пределы частоты вращения шпинделя, мин-1 — 315-1400

Наибольшее количество нарезаемых отверстий, в час — 55

Управление циклами работ — Ручное

Род тока питающей сети — Трехфазный

Напряжение питающей сети, В — 380/220

Двигатель главного движения:

— тип — 4AM100L4

— мощность, кВт — 4,0

Электронасос системы охлаждения:

— тип — Х14-22М

— мощность, кВт — 0,12

-подача, л/мин — 22

Габаритные размеры, мм:

-высота — 2535

-ширина — 825

-длина — 1030

Масса станка, кг – 1200

Руководство по эксплуатации, паспорт на Станок вертикально-сверлильный 2Н-135, 2Н-125, 2Н-150 скачать бесплатно в формате djvu (35 страниц):

tu-passport.ru

ЗАО”ПКФ”ИНСАЙТ” – Характеристика 2Н135

vip-stanki.ucoz.ru

Источник: http://i-perf.ru/stanok/vertikalno-sverlilnyj-stanok-2n135-tehnicheskie-harakteristiki.html

Техническая характеристика сверлильного станка 2Н135

Назначение, устроиство и принцип работы станка модели 2Н135

Наибольший диаметр получаемого отверстия 35 мм;

Конус отверстия шпинделя Морзе №4;

Расстояние от торца шпинделя до стола 30-750 мм;

Число частот вращения шпинделя 12;

Пределы частот вращения шпинделя 31,5- 1400 мин-1;

Число подач 9;

Пределы подач 0,1 -1,6 мм/об.

Общее устройство станка.Общий вид и компоновка станка показаны на рисунке 1, а. Станок имеет следующие основные узлы: плиту 1, колонну 3, стол 2, шпиндельную бабку 6. Режущий инструмент закрепляется во внутреннем конусе (Морзе № 4) шпинделя 4. Обрабатываемые заготовки устанавливают и закрепляют на столе 2.

Для сверления отверстия вращением штурвала 5 «на себя» быстро опускают шпиндель вниз. Когда сверло упрется в поверхность обрабатываемой заготовки, автоматически включается подача шпинделя.

Глубина сверления настраивается кулачком 12, а глубина нарезания резьбы кулачком 14. Кулачки устанавливаются на вращающемся лимбе 13. Подъем шпинделя в верхнее положение производят вручную вращением штурвала 5 «от себя».

При необходимости можно в любой момент отключить подачу шпинделя поворотом этого штурвала «от себя».

Конструкция и характеристика работы основных узлов станка.Плита 1 (рисунок 1, а) является основанием станка, а внутренняя ее полость — резервуаром для охлаждающей жидкости.

Колонна 3 имеет вертикальные направляющие, по которым можно передвигать шпиндельную бабку 6 и стол 2 в положение, удобное для работы. Для уравновешивания шпиндельной бабки внутри колонны под­вешен груз.

Стол 2 имеет Т-образные пазы для крепления тисков, приспособ­лений или непосредственно обрабатываемых деталей. На шпиндельной бабке 6 расположены электродвигатель и меха­низмы привода главного движения и подач, механизм включения и от­ключения вращения шпинделя, органы управления и шпиндель станка.

Включение и отключение вертикальной подачи шпинделя 2

(рисунок 1, б) производится с помощью муфты МфЗ, состоящей из двух полумуфт 3 и 7 (рисунок 1, в) с торцовыми зубьями. Правая полумуфта 3 установлена на вал 8 на шлицах.

Вращением штурвала 1 «от себя» выступы 6 полумуфты 3 под действием пружины 4 попадают между выступами а; полумуфты рассоединены и червячное колесо z=60 вмес­те с полумуфтой 7 вращаются свободно на гладкой шейке вала 8—по­дача шпинделя отключена.

При вращении штурвала 1 «на себя» выступы а и б поворачивают правую полумуфту 3 и вал 8 с шестерней z=13 — происходит быстрое опускание шпинделя вручную.

При соприкосновении вершины сверла с деталью крутящий момент, нужный для поворота штурвала 1, увеличивается и штурвал можно по­вернуть «на себя» относительно вала 8 только на 20°, т. е. на угол, образованный между штифтом 2 и стенкой д паза для этого штифта на ступице штурвала 1 (см.

сечение А—А на рисунок 1, в). При повороте штурвала торцы выступов а переместятся на торцы выступов б, вслед­ствие чего полумуфта 3 переместится влево — произойдет включение муфты МфЗ и механической подачи шпинделя. Механизм обгона.

Корпус правой полумуфты 3 с помощью соба­чек 5 со скошенными зубьями соединен с двусторонним храповым дис­ком 6. Поэтому при включенной муфте МфЗ и механической подаче можно производить вращение штурвала 1, вала 8 и опускать шпиндель вручную со скоростью, большей, чем от механической подачи.

При этом зубья собачек 5 проскальзывают по правым зубьям в храпового диска 6, не препятствуя быстрому вращению штурвала 1.

Управление станком. Рукояткой 7 (рисунок 1, а) включают нужную частоту вращения шпинделя. Поворотом этой рукоятки «на себя» или «от себя» устанавливают указатель а в положение, обозначенное квадратом, окружностью или треугольником.

При этом включаются частоты вращения шпинделя, записанные в соответствующей строке таблицы. Поворачивая рукоятку вверх или вниз, устанавливают указатель б посредине одной из вертикальных колонок, включая частоту вращения, записанную в этой колонке.

Аналогичным способом рукояткой 11 включают нужную подачу шпинделя. По положениям, в которых находятся указатели а и б на рисунке 1, а, видно, что включена частота вращения шпинделя 710 об/мин и подача 0,28 мм/об.

Вводным выключателем 9 включают и отключают станок от элек­трической сети, а выключателем 10 — подачу охлаждающей жидкости. Включение и отключение вращения шпинделя производят кнопками с пульта управления 8.

Поперечно-строгальный станок 7М36В группу строгальных входят станки с возвратно-поступательным движением резания и прерывистой подачей инструмента в направлении, перпендикулярном движению резания.

Так как обратный ход в строгальных станках холостой и высокие скорости резания недопустимы вследствие значительных сил инерции, развиваемых деталями станка при возвратно-поступательном движении, то в условиях массового и крупносерийного производства обработка на строгальных станках заменяется более производительной обработкой на фрезерных или протяжных станках. Строгальные станки в этих усло­виях применяются только в исключительных случаях.

Обычно строгальными станками пользуются для обработки изде­лий, изготовляемых в небольшом количестве, главным образом, в инст­рументальных, ремонтных, экспериментальных цехах и в основных цехах заводов с индивидуальным или мелкосерийным производ­ством.

Несмотря на то, что в большинстве случаев обработка на строгаль­ных станках менее производительна, чем обработка на фрезерных или протяжных станках, строгальные станки имеют и свои преимущества, заключающиеся в простоте и дешевизне применяемого инструмента и его заточке, возможности обработки сложных профилей простейшим универсальным инструментом (резцами) и высокой производительно­сти при обработке длинных узких поверхностей.

К группе строгальных станков относятся: поперечно-строгальные, продольно-строгальные, долбежные и специальные строгальные станки.

Станок предназначен для обработки плоских и фасонных поверх­ностей в индивидуальном и мелкосерийном производстве. Станок име­ет наибольшую длину хода ползуна — 700 мм.

Общий вид и компоновка станка показаны на рис. 47, а.

Основные узлы:станина 1,траверса 9,стол 8,ползун 24,суппорт 20, коробка подач 3, гидропанель 27.

Главное движение сообщается ползуну 24,который совершает воз­вратно-поступательные движения по верхним горизонтальным направ­ляющим гстанины 1.Вместе с ползуном перемещается суппорт 20,на котором установлен резец 12г обрабатывающий поверхность заго­товки.

Обрабатываемые заготовки устанавливают и закрепляют либо не­посредственно на столе 8, либо в тисках или других приспособлениях, предназначенных для этой цели.

Все подачи в станке происходят в поперечном направлении. Они осуществляются прерывисто в момент переключения движения ползуна с обратного на рабочий ход. Обработку чаще всего производят с гори­зонтальной подачей стола, при которой стол перемещается по направ­ляющим б траверсы 9.

Для более жесткой фиксации стола траверса должна быть закреплена гайками 10на направляющих станины. Гайка­ми 7 нужно закрепить стойку 6 в таком положении, чтобы она сколь­зила по направляющим астанины, поддерживая переднюю выступаю­щую часть стола.

При необходимости обработку заготовки производят при верти­кальной подаче траверсы или салазок 17 суппорта. В первом случае гайки 7 и 10 должны быть отпущены, а во втором салазки 17 освобож­дены зажимом 16. При обработке, производимой без вертикальной подачи салазок 17, они должны быть закреплены зажимом 16.

Для осуществления движений ползуна и подач стола в станке при­менен гидравлический привод, что позволяет работать с более высо­кими скоростями обратного хода ползуна и производить бесступенча­тое изменение скоростей рабочего хода ползуна.

Станок имеет устройство, поднимающее с помощью электромаг­нита откидную доску 13 на время обратного хода ползуна 24 для того, чтобы резец 12 в этот период не касался обработанной поверхности детали.

Внутрифлифовальный станок 3Б250Станок предназначен для шлифования цилиндрических и кониче­ских отверстий диаметром от 50 до 200 мм в заготовках длиной до 200 мм с наружным диаметром до 400 мм. Наибольший угол при вер­шине конических отверстий 60°.

Для высокопроизводительного шлифования отверстий небольшого диаметра (50—80 мм) станок по особому заказу оснащается дополни­тельным быстроходным шпинделем.

Станок имеет торцешлифовальное приспособление, что позволяет шлифовать с одной установки кроме отверстия и наружный торец изделия. Применяется станок в индивидуальном и серийном произ­водстве.

Основные узлы станка: станина 1, передняя бабка 5, стол 24, шли­фовальная бабка 20, торцешлифовальное приспособление 13, аппарат правки 9.

Обрабатываемую заготовку закрепляют в кулачках патрона перед­ней бабки S. Для шлифования заготовки включают вращение шлифо­вального круга 16, круговую подачу заготовки и продольное возвратно-поступательное движение стола 24. При автоматическом цикле в конце каждого двойного хода стола совершается поперечная подача бабки 20 для врезания шлифовального круга на заданную глубину.

При обработке отверстия до заданного диаметра поперечная пода­ча шлифовального круга автоматически выключается. По мере надоб­ности производят правку шлифовального круга, которая осуществля­ется автоматически алмазом, установленным в оправку аппарата 9.

При необходимости можно производить вручную маховичком 19 гру­бую (ускоренную) или тонкую (замедленную) поперечную подачу шли­фовальной бабки 13, а маховичком 23 — продольную подачу стола 24.

Источник: https://megaobuchalka.ru/3/25648.html

Сверлильный станок 2 н 135 Основные части

Сверлильный станок 2 н 135

Основные части

Технические характеристики Станки модели 2 н 135 предназначены для сверления, рассверливания, зенкования, развертывания, нарезания резьбы; применяется в условиях единичного и серийного производства Класс точности Н Наибольший диаметр сверления в стали 45 ГОСТ 1050 -74, мм 35 Размеры конуса шпинделя по ГОСТ 25557 -82 Морзе 4 Расстояние от оси шпинделя до направляющих колонны, мм 300 Наибольший ход шпинделя, мм 250 Расстояние от торца шпинделя, мм: – до стола 30 -750 – до плиты 700 -4120

Наибольшее (установочное) перемещение сверлильной головки, мм 170 Перемещение шпинделя за один оборот штурвала, мм 122.

46 Рабочая поверхность стола, мм 450 x 500 Наибольший ход стола, мм 300 Расстояние между двумя Т-образными пазами по ГОСТ 6569 -75, мм 100 Количество скоростей 12 Пределы частоты вращения шпинделя, 1/мин 31, 5 -1400 Количество подач 9 Пределы подач, мм/об 0. 1 -1.

6 Наибольшее количество нарезаемых отверстий в час 55 Управление циклами работы Ручное Род тока питающей сети Трехфазный Напряжение питающей сети, В 380/220 Габаритные размеры, мм: – высота 2535 – ширина 825 – длина 1030 Масса станка, кг 1200

Назначение и область применения сверлильного станка 2 Н 135 Станки универсальные вертикально-сверлильные 2 Н 135, с условным диаметром сверления 35 мм, используются на предприятиях с единичным и мелкосерийным выпуском продукции и предназначены для выполнения следующих операций: сверления» рассверливания» зенкования, зенкерования, развертывания и подрезки торцев ножами. Пределы чисел оборотов и подач шпинделя позволяют обрабатывать различные виды отверстий на рациональных режимах резания. Наличие на станках механической подачи шпинделя, при ручном управлении циклами работы. Допускает обработку деталей в широком диапазоне размеров из различных материалов с использованием инструмента из высокоуглеродистых и быстрорежущих сталей и твердых сплавов. Станки снабжены устройством реверсирования электродвигателя главного движения, что позволяет производить на них

Допускает обработку деталей в широком диапазоне размеров из различных материалов с использованием инструмента из высокоуглеродистых и быстрорежущих сталей и твердых сплавов.

Станки снабжены устройством реверсирования электродвигателя главного движения, что позволяет производить на них нарезание резьбы машинными метчиками при ручной подаче шпинделя» Категория размещения 4 по ГОСТ 15150 -69.

Разработчик – Одесское специальное конструкторское бюро специальных станков.

Электрооборудование и электрическая схема сверлильного станка 2 Н 135

Требования ТБ Безопасность труда на станках 2 Н 125 обеспечивается изготовлением их в соответствии с требованиями ГОСТ 12. 2. 009 -80, СТ СЭВ 538 -77, СТ СЭВ 539 -77, СТ СЭВ 500 -77. Требования безопасности труда при эксплуатации станков устанавливаются соответствующими разделами руководства, руководством по эксплуатации ЭО И настоящим разделом

Источник: http://present5.com/sverlilnyj-stanok-2-n-135-osnovnye-chasti/

Вертикально сверлильный станок 2н135

Основная функция вертикально-сверлильного станка 2н135, как и всех установок такого типа — это высверливание отверстий различных диаметров при помощи разнообразных сверл.

Установка, в основном, применяется на предприятиях, где объем продукции выражается мелкими сериями или единицами изделий. Оборудование предназначено для таких функций как: сверление или рассверливание, зенкование или зенкерование, выполнение разверток или подрезание торцов детали. Подрезка торцов производится при помощи специальных ножей.

Такой станок имеет механическую вертикальную подачу шпинделя, приводимую в движение физической силой оператора. Допускается обработка заготовок из различных материалов, в том числе стали, пластика, дерева и пр. Для обработки тех или иных материалов должны применяться различные сверла. Следует учитывать характеристики материала при выборе технологических карт производства работ.

Основным назначением вертикально-сверлильного станка 2н135 является обработка металлических заготовок. Для заготовок из металла применяют инструмент из быстрорежущих, углеродистых и твердосплавных сталей.

Установка имеет специальное электрическое устройство реверсирования двигателя. Реверсирование дает возможность выполнять нарезку внутренней резьбы метчиками во время ручной подачи инструмента.

Главные технические параметры станка следующие:

  1. класс точности установки по ГОСТ 8-82 — показатель Н;
  2. максимальной возможный условный размер отверстия (диаметр) для стали 45 по ГОСТ 105-74, 35 мм;
  3. расстояние от оси шпинделя до салазок колонны — 300 мм;
  4. максимально возможный вертикальный ход шпинделя — 250 мм;
  5. свободное расстояние от шпинделя до плоскости стола — 30-750 мм;
  6. свободное расстояние от шпинделя до плоскости плиты — 700-1120 мм;
  7. максимально возможное перемещение сверлильной головки — 170 мм;
  8. длина перемещения шпинделя за один оборот ручки — 122 мм;
  9. габариты рабочей поверхности стола — 500х450 мм;
  10. максимально возможный ход стола — 300 мм;
  11. количество скоростей — 12, количество подач — 9;
  12. предел перемещения шпинделя за один оборот — 0,1-1,6 мм/об;
  13. мощность главного электродвигателя — 4 кВт;
  14. минимальная частота вращения шпинделя — 32 об/мин, максимальная — 1400 об/мин;

Модель 2Н135 довольно широко применяется при различных слесарных работах. При необходимости, для расширения технологических возможностей, возможно использование дополнительного оборудования и комплектующих.

Источник: http://OmashinoStroenie.com/stanki/vertikalno-sverlilnyj-stanok-2n135.html

Вертикально-сверлильный станок 2Н135

Главная » Новости

Опубликовано: 03.09.2018

Традиции выпуска качественного металлорежущего оборудования были заложены в СССР в послевоенный период. Очень часто конструкторам удавалось создать станки, которые длительный срок использовались производственниками. К ним можно отнести вертикально сверлильный станок 2Н135, технические характеристики которого долгое время были эталоном.

Вертикально-сверлильный станок 2Н135

Сверлильное оборудование

В станочном парке большой процент занимает сегмент сверлильных станков. Это объясняется необходимостью проводить сверление практически в любом технологическом процессе. Всю необходимую информацию, связанную с устройством агрегата содержит паспорт, поставляемый с любой моделью агрегата.

Все оборудование данного сегмента представляет собой три группы, каждая из которых выделяется в зависимости от специфики работы:

специальные; специализированные; универсальные.

В каждой из этих групп можно провести градацию в зависимости от размеров сверла, и соответственно отверстий, которые под силу данному сверлильному станку. Выделим основные:

легкие, до 12 мм; средние, 18-50 мм; тяжелые, свыше 50 мм.

Назначение, принцип действия, устройство станка 2Н135

Историческая справка

Вертикально-сверлильный станок модели 2Н135 негласно считается «рабочей лошадкой» всех механических участков машиностроительных производств. Устройство станка отличается максимальной простотой и надёжностью, а кинематическая схема действия коробки передач и коробки скоростей станка до сих пор не имеет себе равных.

Выпуск базовой модели 2135 начался в 1945 году на заводе города Стерлитамак. После этого, основываясь на данных эксплуатации, были проведены работы по модернизации. С 1965 года началось производство модели 2Н135.

Внешний вид станка 2Н135

Техническая характеристика сверлильного станка 2Н135

Расшифровка названия оборудования может быть произведена следующим образом.

При расшифровке первая цифра условного обозначения указывает на группу металлорежущего оборудования – сверлильное, буква дальше свидетельствует о глубокой модернизации предшествовавших вариантов конструкции (исторически первым был вариант «А», вторым – «Б» и т.д.).

Следующая после буквенного индекса цифра при расшифровке указывает на тип станка (1 – вертикальный), а две последних сообщают основные технические характеристики для всего сверлильного станочного парка – наибольшем диаметре просверливаемого отверстия в миллиметрах.

Материалом для эталонной заготовки принимается сталь марки Сталь 45 в обычном состоянии после прокатки.

Поэтому для деталей, изготовленных из других материалов с большей или меньшей прочностью, приведенная выше кинематическая характеристика может изменяться соответственно в меньшую или большую сторону.

В расшифровке могут встречаться также дополнительные цифры и буквы, указывающие на модификацию основной модели. Все данные в нашем случае находятся в паспорте вертикально сверлильного станка 2Н135.

Конструкция вертикально сверлильного станка 2Н135 ясна из представленного рисунка. Изготовитель вправе вносить в модель некоторые дизайнерские, технические или иные изменения в конструкцию и чертёж, которые не должны ухудшать в станке 2Н135 технические возможности и габариты общего вида агрегата описываемой модели.

В комплект к поставляемому оборудованию обычно прилагается паспорт, инструкция по эксплуатации, также вкладывают кинематическую и электрическую схемы, ведомость и чертежи быстроизнашиваемых деталей.  Ряд фирм производит и специальные исполнения – например, с поворотным столом, с ЧПУ, с коробкой пиноли под головку с несколькими шпинделями и пр. (обзор вариантов достаточно длинен).

Электрическая схема 2Н135

Основное назначение агрегата – выполнять разнообразные сверлильные и зенковочные операции, однако на 2Н135 можно также нарезать резьбу, резать торцы, производить развёртывание, вертикальную запрессовку и даже использовать специальный инструмент для фрикционной осадки изделий, прочностные характеристики которых не превышают значений для стали 45.

Вертикально сверлильный станок 2Н135 состоит из следующих механизмов:

Электродвигателя. Коробки скоростей. Плунжерного насоса. Коробки подач, которая может функционировать как в ручном, так и в автоматическом режиме. Большой опорной вертикальной колонны.

Инструментальной головки со шпинделем. Регулируемого по высоте стола. Основания. Системы управления агрегатом. Гидросистемы охлаждения. Электрическое оборудование.

Расположение составных частей сверлильного станка 2Н135

Принцип действия

Кинематика агрегата определяет возможности изменения числа оборотов для шпинделя. Конструктивные решения и габариты коробок скоростей и подач позволяют реализовать различную производительность операций, настройку которых определяет материал изделия, подвергаемого мехобработке, и отверстие в заготовке. Кроме того этот процесс зависит от габаритов детали.

Расшифровка и описание не вносят ясность в некоторые эксплуатационные и кинематические показатели, которыми располагает оборудование, поэтому далее приводится технические характеристики станка (касается только базового исполнения):

Возможный вертикальный вылет станины, м – 0,3. Эксплуатационный рабочий габарит между шпинделем и столом, мм – 30…750. Шпиндель: число оборотов, мин-1 – 31.5…1400; Наибольшее количество скоростей в коробке скоростей – 12. Максимальный сверлильный ход коробки подач, мм – 250.

Электрический двигатель: работа/номинальный крутящий момент, Нм – 400. Наибольшее усилие, развиваемое коробкой подач, Н – 15000. Размеры рабочего стола, мм — 500×450, способ фиксации заготовок – Т-образные пазы, возможность продольной регулировки стола ± 150 мм.

Точность устройства ручного управления для коробок: подачи, мм ± 0,05, скоростей, мм ± 0,05…0,8 (ручной отсчёт – по лимбу). Мощность приводного двигателя, кВт – 4. Габарит, м – 2,535×0,835×1,030. Вес, кг – 1200.

Полную информацию о любых станках можно почерпнуть из паспортов интересующих изделий.

Паспорт содержит схему установки агрегата, и план фундамента под его основание. Габариты сверлильного станка 2Н135 говорят о том, что он может устанавливаться в небольших помещениях.

Скачать паспорт (инструкцию по эксплуатации) вертикально-сверлильного станка 2Н135

Эксплуатация механизма в рабочем режиме заключается в следующем. Деталь, подлежащую обработке, следует расположить и зафиксировать на координатном столе. Шпиндель с установленным сверлом (или иным инструментом согласно чертежу) при этом должен находиться в крайнем нижнем положении. Шпиндель можно зацентровать, используя устройство продольного перемещения стола.

Убедившись в соосности взаимного расположения шпинделя и торца заготовки  и, выбрав подходящую скорость из кинематических возможностей в коробке скоростей, включают вертикальный двигатель главного привода. Когда кинематическая схема управления коробки подач настроена, осуществляют подачу инструментальной головки к торцу изделия, и производят необходимую технологическую операцию.

Особенности устройства

Основой всего агрегата выступает сверлильная головка. Это отливка, выполненная в форме коробки, в которой установлены основные узлы станка:

шпиндель; механизм переключения; коробка скоростей; механизм подачи; коробка подач.

Головка расположена на опоре, и на нее установлен двигатель. Он посредством муфты и зубчатой передачи передает вращательный момент на коробку скоростей станка 2Н135.

В ней имеются специальные блоки, способные изменять вращение режущего инструмента. Зубчатая пара на выходе, придает движение коробке подач, ее конструктивные особенности позволяют производить девять подач. В конечном итоге начинает работать механизм подачи.

Кинематическая схема станка 2Н135

На переднюю панель сверлильной головки вынесены все кнопки, отвечающие за управление электрической схемой станка 2Н135. При включении основного пускателя загорается лампочка, сигнализирующая, что электрический ток запитал цепи. Схема позволяет изменять направление вращения шпинделя, и производить динамическое торможение. Кроме того, ее устройство облегчает переключение скоростей.

От перегрузки защищают тепловые реле. Для устранения возможной опасности поражения оператора током электрическая схема агрегата предусматривает применение защитного заземления.

Нельзя начинать эксплуатацию механизма без детального изучения паспорта. Только так вы сможете избежать поломок и аварий.

Источник: http://oskar.odessa.ua/statti/2018-09-03/2011559766-vertikalno-sverlilnyy-stanok-2n135.html

Вертикально-сверлильный станок 2н135

Вертикально-сверлильный станок 2н135 представляет собой универсальное одношпиндельное оборудование, которое изготавливается Стерлитамакским станкостроительным заводом. Это предприятие было основано еще во времена Великой отечественной войны в результате перемещения мощного станкостроительного предприятия из Одессы в Стерлитамак.

Долгое время завод работал на благо оборонной промышленности. Сегодня же он представляет собой современное (насколько так можно сказать о постсоветском заводе) предприятие, которое специализируется на выпуске оборудования для обработки металла. И вертикально-сверлильные станки в ассортименте производителя стоят на одном из приоритетных мест.

Предприятие идет в ногу со временем, предлагая высокоточное оборудование, оснащенное числовым программным управлением. Многие агрегаты компании способны составить серьезную конкуренцию западным разработкам. И в этом плане сверлильный станок 2н135 можно назвать весьма успешным агрегатом, поставляемым на рынок в достаточно большом количестве по приемлемой цене.

Где применяется?

Одношпиндельные станки 2н135 зачастую применяются на предприятиях, которые занимаются мелкосерийным или единичным производством. В массовом производстве они практически не используются.

Техника рассчитана на выполнение ряда операций, будь то сверление, зенкерование, зенкование, подрезка торцев или развертывание. Оборудование Стерлитамакского завода – универсальное решение для реализации многих производственных задач.

Оператор станка может самостоятельно выбирать число оборотов и режим подачи шпинделя, что дает возможность настраивать работу оборудования для оптимальной обработки конкретного материала или получения определенного отверстия.

При этом мастер может вручную подавать шпиндель, благодаря специально предусмотренному механизму.

У вертикально-сверлильного станка 2н135 есть важное преимущество – он способен обрабатывать детали из самых разных материалов в большом диапазоне габаритов.

Техника демонстрирует особо высокую производительность при работе с инструментом, изготовленным из высокоуглеродистой стали. Оператор также может нарезать резьбу с помощью машинных метчиков, подавая шпиндель вручную.

Это стало возможным благодаря тому, что станок укомплектован системой реверсирования электрического двигателя.

Модификации

С целью обработки отверстий различных диаметров используются базовые агрегаты 2Н135. При этом на основе базовой модели производитель предлагает ряд модифицированных аппаратов. Определить целевое назначение конкретного станка можно по последней букве в его названии. К усовершенствованным моделям относятся:

  • 2Н135А – агрегат, укомплектованный автоматической системой управления. Оператор контролирует работу техники посредством кнопочного управления.
  • 2Н135К – агрегат координатного типа, оснащенный крестовым столом.
  • 2Н135-1 – координатный станок, имеющий круглый стол, поворачивающийся вокруг оси колонны.
  • 2Н135С – 1-позиционный аппарат с фланцевой пинолью, которая позволяет фиксировать головки для нескольких шпинделей.
  • 2Н135Н – многопозиционный аппарат, в котором предусмотрена возможность фиксации многошпиндельных головок и столов, крутящихся вокруг оси колонны.
  • 2Н135Ф2 – техника с числовым программным управлением. Данной модификацией также предусмотрено наличие револьверной головки, крестового стола и других дополнительных опций.

Особенности конструкции

Рассмотрим подробнее конструкционные особенности сверлильного станка 2Н135, состоящего из следующих элементов:

  • Плита, колонна и стол. Это – основная «несущая» конструкция. В плите располагается резервуар, в котором находится охлаждающая жидкость. Сама же колонна – это высокопрочная чугунная отливка.
  • Привод и коробка скоростей, которая обеспечивает двенадцать возможных частот вращения. Коробка движется благодаря встроенному электрическому двигателю и муфте.
  • Плунжерный насос располагается на плите. Его функция – смазка основных элементов головки.
  • Рукоятки для механического переключения скоростей, которые находятся на фронтальной части сверлильной головки.
  • Коробка подач, установленная в сверлильной головке. Обеспечивает девять возможных подач.
  • Сверлильная головка – место установки всех важных элементов агрегата. Ключевая составная часть конструкции – механизм подачи.
  • Шпиндель с выбивкой, которая позволяет быстро извлекать инструмент.

Технические характеристики

Сверлильный станок 2н135 технические характеристики демонстрирует весьма достойные. Рассмотрим основные параметры данного агрегата:

  • Класс точности: Н;
  • Предельный диаметр отверстия: 35 мм для стали 45;
  • Предельный ход шпинделя: 250 мм;
  • Рабочие габариты стола: 450×500 мм;
  • Предельный ход стола: 300 мм;
  • Число скоростей: 12;
  • Число подач: 9;
  • Производительность: 55 отверстий/ч;
  • Напряжение: 380/220V;
  • Габариты : 2535х825х1030 мм;
  • Масса: 1200 кг.

Выводы

Исходя из того, какие для сверлильного станка 2н135 свойственны технические характеристики, можно сделать вывод, что эта техника отлично подойдет для небольших объемов производства.

В этом смысле у данной модели практически нет конкурентов ни по цене, ни по надежности.

Если мастер планирует активно использовать вертикально-сверлильных станок для выполнения широкого спектра задач, то эта техника способна удовлетворить даже жесткие требования опытного профессионала.

Источник: http://prostostanok.ru/sverlilnye-stanki/vertikalno-sverlilnyj-stanok-2n135

С ручным управлением с откидным подъёмным столом и обработанной фундаментной плитой, предназначен для выполнения следующих операций:

·  сверления

·  зенкерования

·  зенкования

·  развёртывания

·  резьбонарезания в различных материалах. Позволяет использовать различные приспособления и инструменты, расширяющие его технологические возможности. Станок может использоваться в мелкосерийном производстве, на малых предприятиях, в ремонтных мастерских.

ТЕХНИЧЕСКИЕ ХАРАКТЕРИСТИКИ СТАНОК СВЕРЛИЛЬНЫЙ 2Н135

Характеристика2Н135
Наибольший диаметр сверления в стали 45 ГОСТ 1050- 74, мм35
Размеры конуса шпинделя по СТ СЭВ 147-75Морзе 4
Расстояние оси шпинделя до направляющих колонны, мм300
Наибольший ход шпинделя, мм250
Расстояние от торца шпинделя, мм: до столадо плиты
Наибольшие (установочное) перемещение сверлильной головки, мм170
Перемещение шпинделя за один оборот штурвала, мм122, 46
Рабочая поверхность стола, мм450х500
Наибольший ход стола, мм300
Количество скоростей шпинделя12
Количество подач9
Пределы подач, мм/об0,1-1,6
Мощность электродвигателя главного движения, кВт4,0
Габарит станка: длина, ширина, высота, мм1030х835х2535
Масса станка, кг1200

С Уважением Артём Романовичтел/факс: 8(34145)47-992сот: 8-950-837-00-77

Станок радиально-сверлильный 2А576

Радиально-сверлильный станок 2А576 считается усовершенствованной моделью 2М57. Впервые, техника начала выпускаться в 1987 году. На сегодня, оборудование успело зарекомендовать себя как точное и эффективное промышленное устройство, которое активно эксплуатируется ремонтными мастерскими, сборочными цехами и другими предприятиями, что специализируются на обработке металлических заготовок. Станок отлично встраивается в производственные линии серийного, единичного и крупносерийного выпуска.

Механизм 2А576 способен выполнять такие технологические операции:

  • формирование резьбы в отверстиях;
  • сверление;
  • развертывание;
  • подрезка торцов;
  • рассверливание;
  • зенкерование.

Промышленный агрегат предназначается для работы с крупногабаритными деталями разной твердости. За счет универсальной конструкции, возможно использовать дополнительное оснащение и приспособления, что значительно расширит ряд выполняемых операций, а именно станет возможным производить:

  • выточку внутренних канавок;
  • вырезку круглых пластин из листового материала и т.д.

Установка

Следует учесть, что механизм обладает внушительными размерами и требует заземления, поэтому рекомендуется заранее продумать местонахождение агрегата на производственных площадях. Станок 2А576 монтируется в закрытом помещении в фундаментную основу и «утапливается» на 87 см. Глубина заложения фундамента напрямую зависит от грунта, однако она не должна быть меньше 70 см. Между оборудованием и фундаментной основой располагают прокладки из железных пластин и клинья.

Стандартная компоновка

Буквально все элементы станка крепятся с помощью гидравлических зажимов, однако при минимальном усилии оператора, детали можно перемещать или демонтировать для очистки и последующей их замены. Важными частями и узлами являются:

  • фундаментная плита с Т-образными пазами, которые позволяют надежно крепить заготовки;
  • литая округлая колонна, что установлена на стационарной плите, способна проворачиваться за счет подшипников;
  • рукав, который двигается вдоль колонны и вращается вместе с ней;
  • сверлильная головка, позволяющая крепить рабочий инструмент;
  • штурвальное устройство, что позволяет контролировать ход и останавливать работу станка при достижении заданной глубины сверления;
  • шпиндель, имеющий возможность вертикально передвигаться в сверлильной головке (уравновешен в любой позиции перемещения).

Чтобы промышленная техника выполняла расточные работы, конструкция оснащается дополнительным инструментом. Станок компонован регулируемым приводом подач и на его основе устройствами автоматического управления стандартными сверлильными операциями. Оператор имеет возможность регулировать величину подачи на ходу, при этом не останавливая станок.

Данная модель оборудования имеет в своей конструкции многодисковую фрикционную муфту, которая помогает осуществить быстрый реверс в процессе нарезки резьбы, а также способна предохранять коробку скоростей от разного рода перегрузок. Органы управления станком представлены в виде кнопок и рукояток, которые сосредоточены на панели контроля, что крепится на сверлильной головке.

Основные движения резания и подачи осуществляются за счет вращения или прямолинейного поступательного перемещения шпинделя. Цена 2А576 напрямую зависит от того, какие именно дополнительные инструменты будут помещены в комплектацию станка.

Цена

в Бангладеш 2020, Технические характеристики, Пробег

Haojue KA 135 Основные характеристики

Двигатель
С воздушным охлаждением, 4-тактный, одноцилиндровый
Максимальная скорость
100+ км в час
Максимальная мощность
8,0 кВт при 8000 об / мин
Масса
126 кг
Пробег
50+ км на литр Топливо
Охлаждение
с воздушным охлаждением

Haojue KA 135 Цена в Бангладеш

Модель Haojue KA 135
Тип Пригородный
Статус Доступно в Бангладеш
Haojue KA 135 Цена в BD 122 000 / —
Последнее обновление 23 октября, 2020

Характеристики двигателя и трансмиссия

Тип двигателя С воздушным охлаждением, 4-тактный, одноцилиндровый
Рабочий объем 135 CC
Степень сжатия 9.6: 1
Диаметр x ход поршня 57,3 × 52,5
Система запуска Электрический и удар
Сцепление
Multiplate влажного типа
Кол-во цилиндров 1
Число передач 5
Максимальная мощность 8,0 кВт при 8000 об / мин
Максимальный крутящий момент 10,5 Нм при 6000 об / мин

Моторное масло класса

Рекомендуется 20W40

Размеры корпуса

Длина 1960 мм
Ширина 725 мм
Высота 1060 мм
Снаряженная масса 126 кг
Колесная база 1285 мм
Высота сиденья 760 мм
Минимальный дорожный просвет 170 мм
Запас топлива 12 л
Тип топлива 20W40
No.Количество мест 2

Тормоза

Передний тормоз Диск
Задний тормоз Барабан

Подвеска

Подвеска передняя Телескопический
Подвеска задняя Двойные амортизаторы

Шины и диски

Передняя шина 2.75-18
Задняя шина 90 / 90-18
Тип колеса Сплав
Бескамерные шины
Литые диски

Электрооборудование и функции

Фара 12 В 35-35 Вт
Аккумулятор 12 В
Часы
Индикатор низкого уровня топлива
Индикатор низкого уровня масла
Спидометр
Лампа Trun
Задний фонарь
Фара для проектора

Производительность и пробег

Максимальная скорость110 КМ / Ч
Пробег (город) 45 л.с. / л
Пробег (шоссе) 55 л.с. / л
Пробег (город и шоссе) 50 л.с. / л

Haojue KA 135 Обзор

Haojue — это высококачественный китайский бренд, который также является одним из крупнейших производителей мотоциклов в Китае.Там его популярность слишком высока. Он начал производить двухколесные автомобили в течение длительного времени, а позже компания объединилась с японским Suzuki, и они вместе начали производить продукцию. В последующие несколько раз Haojue также производила продукцию Suzuki, и затем их популярность выросла. Позже они были разделены, но к тому времени их постоянными клиентами стали более 80 стран. Кроме того, Бангладеш также импортировал свою продукцию из Китая, и теперь Karnaphuli Group является основным дистрибьютором Haojue в Бангладеш.

Мотоциклы китайской марки можно найти повсюду в Бангладеш, они очень дешевы по цене и благодаря своему стильному внешнему виду с привлекательными новейшими функциями, молодое поколение очень любит эти мотоциклы.Большинство жителей Бангладеш мечтают покататься на велосипеде с хорошей конфигурацией, но у них нет возможности его купить. Китайские продукты готовы удовлетворить их потребности в рамках дешевого бюджета.

Но большинство китайских брендов ненадежны там, где некоторым из них можно доверять. Среди них мы можем поставить Haojue в число надежных китайских брендов, которые уже давно ведут свой бизнес в Бангладеш. Кроме того, их продукция в Бангладеш такая же, как и в Китае, но есть только ограничения на перемещение в стране.

У них в настоящее время есть много мотоциклов, доступных в Бангладеш, где также есть байк 135 куб. По сути, велосипеды объемом 135 куб. См не очень доступны в Бангладеш, поэтому продукт Haojue можно считать одним из лучших в этом сегменте. Продукт — Haojue KA 135. Это стандартный байк без покрытия, но выглядит потрясающе. Давайте посмотрим на детали велосипеда ниже.

Дизайн и внешний вид: Haojue KA имеет почти агрессивный вид, но нет стандартного, но очень спортивного вида.Раздельное сиденье в спортивном стиле с топливным баком агрессивного дизайна с расширенным комплектом. Система защиты двигателя уменьшена, но есть подходящее крыло. Впрочем, брызговик не стильный, а простой. Труба глушителя похожа на остальные китайские байки, такие как Lifan KPR 150. Колеса легкосплавные, но не особо модернизированные. У него стильный налобный фонарь и очень привлекательные оттенки. Внешний вид у Haojue KA 135 просто фантастический.

Мощность двигателя: Haojue KA состоит из одноцилиндрового четырехтактного двигателя с воздушным охлаждением объемом 135 куб.см с максимальной мощностью 8 кВт при 8000 об / мин и 10.Максимальный крутящий момент 5 Нм при 6000 об / мин. Хотя это байк 135 куб.см, но заявленная максимальная скорость не так много, но 100 км в час. Его двигатель и детали полностью производятся в Китае, там же и собирают байк. Машина хоть и из Китая, но надежно обслуживает. Именно поэтому продукция Haojue сравнительно выше, чем у любых китайских брендов.

Размеры и положение для сидения: Состоит из 1960 мм, 725 мм, 1060 мм — это длина, ширина и высота велосипеда Haojue KA 135.Кроме того, колесная база делает его стандартным, потому что большая часть спортивных мотоциклов имеет колесную базу не менее 1300 мм, а у Haojue KA — 1285 мм. А клиренс KA 135 составляет 170 мм. Емкость топливного бака составляет 12 литров, а вес мотоцикла составляет 126 кг. Сиденье раздельное, но на нем могут ездить три самых высоких человека среднего роста.

Подвеска и тормоза: Haojue KA 135 имеет телескопическую переднюю подвеску и заднюю подвеску с двумя амортизаторами. Раньше они очень хорошо держали равновесие гонщиков и пилона.Кроме того, они использовали только передний гидравлический дисковый тормоз и задний барабанный тормоз. Это хорошее сочетание тормозов. Но шины недостаточно широки, если заднее колесо 90/90 — 18, которое следует увеличить как минимум на один размер.

Пробег: Заявленный пробег Haojue KA 150 составляет в среднем 50 км, но если это точно, это было бы здорово. Средний пробег в 50 км для такого умного велосипеда практически невозможен, но, возможно, они использовали более эффективную технологию экономии топлива.

Панель приборов и ее особенности: Маленькая, но цифровая передняя панель используется для Haojue KA 135, которая также уникальна по дизайну.Есть все цифровые счетчики, состоящие из цифрового тахометра, спидометра, индикатора передач, указателя уровня топлива, одометра.

Цвета и цена: Зеленый, красный, синий и черный Все четыре цвета Haojue KA 135 доступны в Бангладеш. Цена на 135-кубовый байк составляет 122000 бразильских динаров.

Haojue KA 135 Рейтинг

  • Смотрит — 7,5 / 10
  • Комфорт — 7/10
  • Служба поддержки клиентов — 6.5/10
  • Обработка и контроль — 7/10
  • Расход топлива — 7/10
  • Стоимость денег — 7/10
  • Стоимость при перепродаже — 6/10
  • Стоимость и долговечность запасных частей — 6.5 / 10
  • Максимальная скорость — 6.5 / 10
  • Надежность — 6.5 / 10

6,8 / 10

Сводка

Велосипед Haojue KA 135 имеет ряд положительных сторон.В этом сегменте используются мощные двигатели и лучший внешний вид, мотоцикл кажется довольно удобным, а сиденье толстым. Кроме того, это еще и экономичный мотоцикл. Но есть и отрицательные эффекты. Брызговик небольшой и не может полностью защитить двигатель. Задние колеса сильно скользят из-за узости, а выключателя двигателя нет вообще. Судя по всему, байк хорош, хотя есть и пара недостатков. Но их можно игнорировать.

Спецификация виртуальной машины Java®

Спецификация виртуальной машины Java®

Java SE 8, выпуск

Тим Линдхольм

Фрэнк Йеллин

Гилад Браха

Алекс Бакли

13.02.2015
Официальное уведомление

Содержание

Предисловие к Java SE 8 Edition
1.Введение
1.1. Немного истории
1.2. Виртуальная машина Java
1.3. Организация спецификации
1,4. Обозначение
1,5. Отзыв
2. Структура виртуальной машины Java
2.1. Формат файла class
2.2. Типы данных
2.3. Примитивные типы и значения
2.3.1. Целочисленные типы и значения
2.3.2. Типы с плавающей запятой, наборы значений и значения
2.3.3. returnAddress Тип и значения
2.3.4. Логическое значение Тип
2.4. Типы ссылок и значения
2,5. Области данных времени выполнения
2.5.1. ПК Регистр
2.5.2. Стеки виртуальных машин Java
2.5.3. Куча
2.5.4. Область метода
2.5.5. Пул постоянных времени выполнения
2.5.6. Стеки собственных методов
2.6. Рамки
2.6.1. Локальные переменные
2.6.2. Стеки операндов
2.6.3. Динамическое связывание
2.6.4. Нормальное завершение вызова метода
2.6.5. Внезапное завершение вызова метода
2.7. Представление объектов
2,8. Арифметика с плавающей запятой
2.8.1. Арифметика с плавающей запятой виртуальной машины Java и IEEE 754
2.8.2. Режимы с плавающей запятой
2.8.3. Преобразование набора значений
2.9. Специальные методы
2.10. Исключения
2.11. Обзор набора команд
2.11.1. Типы и виртуальная машина Java
2.11.2. Инструкции по загрузке и хранению
2.11.3. Арифметические инструкции
2.11.4. Инструкции по преобразованию типа
2.11.5. Создание объектов и манипулирование ими
2.11.6. Инструкции по управлению стеком операндов
2.11.7. Инструкции по передаче управления
2.11.8. Инструкции по вызову и возврату метода
2.11.9. Выбрасывание исключений
2.11.10. Синхронизация
2.12. Библиотеки классов
2.13. Общественный дизайн, частное внедрение
3.Компиляция для виртуальной машины Java
3.1. Формат примеров
3.2. Использование констант, локальных переменных и управляющих конструкций
3.3. Арифметика
3.4. Доступ к пулу постоянных времени выполнения
3.5. Дополнительные примеры управления
3.6. Получение аргументов
3.7. Вызов методов
3.8. Работа с экземплярами классов
3.9. Массивы
3.10. Компиляция переключателей
3.11. Операции со стеком операндов
3.12. Создание и обработка исключений
3.13. Компиляция окончательно
3.14. Синхронизация
3.15. Аннотации
4. Класс Формат файла
4.1. ClassFile Структура
4.2. Внутренняя форма имен
4.2.1. Имена двоичных классов и интерфейсов
4.2.2. Неквалифицированные имена
4.3. Дескрипторы
4.3.1. Грамматическая запись
4.3.2. Дескрипторы полей
4.3.3. Дескрипторы метода
4.4. Постоянный бассейн
4.4.1. Структура CONSTANT_Class_info
4.4.2. Структуры CONSTANT_Fieldref_info , CONSTANT_Methodref_info и CONSTANT_InterfaceMethodref_info
4.4.3. Структура CONSTANT_String_info Структура
4.4.4. Структуры CONSTANT_Integer_info и CONSTANT_Float_info
4.4.5. Структуры CONSTANT_Long_info и CONSTANT_Double_info
4.4.6. Структура CONSTANT_NameAndType_info
4.4.7. Структура CONSTANT_Utf8_info
4.4.8. Структура CONSTANT_MethodHandle_info
4.4.9. Структура CONSTANT_MethodType_info
4.4.10. Структура CONSTANT_InvokeDynamic_info
4.5. Поля
4.6. Методы
4.7. Атрибуты
4.7.1. Определение и именование новых атрибутов
4.7.2. Атрибут ConstantValue
4.7.3. Код Атрибут
4.7.4. Атрибут StackMapTable
4.7.5. Исключения Атрибут
4.7.6. Внутренние классы Атрибут
4.7.7. EnclosingMethod Атрибут
4.7.8. Синтетический Атрибут
4.7.9. Подпись Атрибут
4.7.9.1. Подписи
4.7.10. Исходный файл Атрибут
4.7.11. Атрибут SourceDebugExtension
4.7.12. Таблица LineNumberTable Атрибут
4.7.13. Атрибут LocalVariableTable
4.7.14. Атрибут LocalVariableTypeTable
4.7.15. Атрибут Устаревший атрибут
4.7.16. Атрибут RuntimeVisibleAnnotations
4.7.16.1. Структура element_value
4.7.17. The RuntimeInvisibleAnnotations Атрибут
4.7.18. Атрибут RuntimeVisibleParameterAnnotations Атрибут
4.7.19. The RuntimeInvisibleParameterAnnotations Атрибут
4.7.20. Атрибут RuntimeVisibleTypeAnnotations
4.7.20.1. Союз target_info
4.7.20.2. Структура type_path
4.7.21. Среда выполнения InvisibleTypeAnnotations Атрибут
4.7.22. Аннотации По умолчанию Атрибут
4.7.23. Атрибут BootstrapMethods
4.7.24. Параметры метода Атрибут
4.8. Проверка формата
4.9. Ограничения на код виртуальной машины Java
4.9.1. Статические ограничения
4.9.2. Структурные ограничения
4.10. Проверка класса Файлы
4.10.1. Проверка типовой проверкой
4.10.1.1. Аксессоры для артефактов виртуальной машины Java
4.10.1.2. Система типов подтверждения
4.10.1.3. Инструкция Представление
4.10.1.4. Представление фрейма карты стека
4.10.1.5. Проверка типов абстрактными и собственными методами
4.10.1.6. Методы проверки типа с кодом
4.10.1.7. Типовые инструкции по загрузке и хранению
4.10.1.8. Проверка типа для защищенных элементов
4.10.1.9. Инструкции по проверке типа
аалоад
aastore
aconst_null
aload , aload_
новый массив
оборот
длина массива
astore , astore_
через
балод
bastore
втулка
калод
касторе
checkcast
d2f , d2i , d2l
папа
далоад
хранилище
dcmp
dconst_
ddiv
dload , dload_
дмул
днег
дрем
dreturn
dstore , dstore_
dsub
дубли
dup_x1
dup_x2
дуп2
dup2_x1
dup2_x2
f2d , f2i , f2l
причёска
фалоад
fastore
fcmp
fconst_
fdiv
fload , fload_
фмул
фнег
фрем
кулиса
fstore , fstore_
fsub
Getfield
getstatic
goto , goto_w
i2b , i2c , i2d , i2f , i2l , i2s
iadd
iaload
iand
iastore
if_acmp <секунда>
if_icmp <секунда>
если <секунда>
ifnonnull
ifnull
iinc
iload , iload_
имул
ИНЭГ
экземпляр
invokedynamic
интерфейс вызова
invokespecial
invokestatic
invokevirtual
или
ирем
ireturn
ишл , ишр , иушр
istore , istore_
isub
ixor
l2d , l2f , l2i
лестница
лалоад
земля
lastore
ЖК-дисплей
lconst_
ldc , ldc_w , ldc2_w
льдив
lload , lload_
лмул
линег
переключатель поиска
лор
лрем
l возврат
lshl , lshr , lushr
lstore , lstore_
lsub
лк
монитор центра
monitorexit
многослойный массив
новый
новый массив
nop
поп , поп2
Путфилд
Putstatic
возврат
салат
sastore
сипуш
своп
переключатель стола
широкий
4.10.2. Проверка путем вывода типа
4.10.2.1. Процесс проверки посредством вывода типа
4.10.2.2. Верификатор байт-кода
4.10.2.3. Значения типов long и double
4.10.2.4. Методы инициализации экземпляра и вновь созданные объекты
4.10.2.5. Исключения и наконец
4.11. Ограничения виртуальной машины Java
5. Загрузка, связывание и инициализация
5.1. Пул постоянных времени выполнения
5.2. Запуск виртуальной машины Java
5.3. Создание и загрузка
5.3.1. Загрузка с использованием загрузчика классов Bootstrap
5.3.2. Загрузка с использованием определяемого пользователем загрузчика классов
5.3.3. Создание классов массивов
5.3.4. Ограничения нагрузки
5.3.5. Наследование класса из класса Представление файла
5.4. Связывание
5.4.1. Проверка
5.4.2. Подготовка
5.4.3. Разрешение
5.4.3.1. Класс и разрешение интерфейса
5.4.3.2. Разрешение поля
5.4.3.3. Разрешение метода
5.4.3.4. Разрешение метода интерфейса
5.4.3.5. Тип метода и разрешение обработки метода
5.4.3.6. Разрешение указателя сайта вызова
5.4.4. Контроль доступа
5.4.5. Отмена
5.5. Инициализация
5.6. Связывание реализаций собственных методов
5.7. Выход виртуальной машины Java
6. Набор команд виртуальной машины Java
6.1. Допущения: значение слова «должен»
6.2. Зарезервированные коды операций
6.3. Ошибки виртуальной машины
6.4. Формат описания инструкций
мнемоника
6.5. Инструкция
аалоад
aastore
aconst_null
загрузить
aload_
новый массив
оборот
длина массива
Astore
astore_
через
балод
bastore
втулка
калод
касторе
checkcast
d2f
d2i
d2l
папа
далоад
хранилище
dcmp
dconst_
ddiv
загрузить
dload_
дмул
днег
дрем
dreturn
dstore
dstore_
dsub
дубли
dup_x1
dup_x2
дуп2
dup2_x1
dup2_x2
f2d
f2i
f2l
причёска
фалоад
fastore
fcmp
fconst_
fdiv
fload
fload_
фмул
фнег
фрем
кулиса
fstore
fstore_
fsub
Getfield
getstatic
перейти
goto_w
i2b
i2c
i2d
i2f
i2l
i2s
iadd
iaload
iand
iastore
iconst_
идив
if_acmp <секунда>
if_icmp <секунда>
если <секунда>
ifnonnull
ifnull
iinc
iload
iload_
имул
ИНЭГ
экземпляр
invokedynamic
интерфейс вызова
invokespecial
invokestatic
invokevirtual
или
ирем
ireturn
исхл
ишр
магазин
istore_
isub
иушр
ixor
JSR
jsr_w
l2d
l2f
l2i
лестница
лалоад
земля
lastore
ЖК-дисплей
lconst_
ЖК-дисплей
ldc_w
ldc2_w
льдив
загрузка
lload_
лмул
линег
переключатель поиска
лор
лрем
l возврат
лшл
lshr
lstore
lstore_
lsub
лушр
лк
монитор центра
monitorexit
многослойный массив
новый
новый массив
nop
поп
поп2
Путфилд
Putstatic
рет
возврат
салат
sastore
сипуш
своп
переключатель стола
широкий
7.Мнемоника опкода
Индекс
A. Грант на ограниченную лицензию
->

α9 II полнокадровая камера с профессиональными возможностями | ИЛСЕ-9М2

Перейти к содержимомуГлавное менюSONY
  • SONY
  • Сайты Sony
  • ЭлектроникаТелевизоры и домашний кинотеатр
    • Все продукты для телевидения и домашнего кинотеатра
    • Телевизоры
    • Домашний кинотеатр и звуковые панели
    • Проекторы
    • Проекторы
    • Blu-ray
      • Все аудиопродукты
      • Наушники
      • MP3-плееры
      • Аудио высокого разрешения
      • Беспроводные колонки
      • 360 Reality Audio
      • Колонки
      • Портативные аудиосистемы
      • Аудиокомпоненты
      • Цифровые диктофоны и радиоприемники
      • CD-плееры
      • Домашний кинотеатр
      Посмотреть все Камеры
      • Все продукты камеры
      • Камеры со сменными объективами
      • Объективы
      • Компактные камеры
      • Профессиональные видеокамеры
      Посмотреть все Mobile
    • Все продукты для мобильных, S-
    • и смарт-устройств martphones
    • Профессиональные смартфоны
    Посмотреть все Видеокамеры
    • Все видеокамеры и продукты
    • Видеокамеры
    • Экшн-камеры
    • Профессиональные видеокамеры
    Посмотреть все Автомобильные и морские автомобили
    • Все автомобильные и морские товары
    • Плееры и автомобильные ресиверы
    • Автомобильные динамики и усилители
    • Морское аудио
    • Автомобильное OEM-аудио
    Просмотреть все Хранение и кабели
    • Вся продукция для энергии, хранения и кабелей
    • Карты памяти и твердотельные накопители
    • Кабели
    Просмотреть все Новые категории
    • Все новые категории Продукты
    • Дисплей пространственной реальности
    • aibo
    • Koov
    • Носимый динамик
    • Цифровая бумага
    Просмотреть всеВся электроникаПросмотреть профессиональные продукты и решенияНе пропустите новости.Будьте одними из первых, кто получит последние новости Новости Sony в вашем почтовом ящике. Сделайте мгновенные покупки в картинке Если будет одобрено, может быть выдан временный абонемент на покупки на сумму до 1500 долларов США, который будет отправлен на ваш смартфон, что позволит вам делать покупки в Интернете сразу же. Подробнее
  • PlayStation
  • РазвлеченияРазвлечения
    • Видеоигры
    • Фильмы и телешоу
    • Музыка
    Приложения для телефонов и планшетов Лучшее из того, что Sony может предложить на iOS или Android.Загрузите наши приложения.
  • SupportSupport
    • Самостоятельная поддержка
    • Связаться со службой поддержки
    • Сообщество
    • Зарегистрируйте продукт
  • Войти

Двигатель GYS Стандартные характеристики | Технические характеристики серводвигателя | FALDIC-α

с тормозом.
Тип двигателя
GYS □□□□□□
— □□□
500DC1
— □ 8B
(* 1)
101DC1
— □ 6B
201DC1
— □ 6B
371DC1
— □ 6B
500DC1
— □ 8B
(* 1)
101DC1
— □ B
201DC1
— □ A
401DC1
— □ A
751DC1
— □ A
Серия Однофазные серии 100 В 3 фазы 200 В серии
Номинальная мощность [кВт] 0.05 0,1 0,2 0,375 0,05 0,1 0,2 0,4 0,75
Номинальный крутящий момент
[Н · м]
0,159 0,318 0,637 1,19 0,159 0,318 0,637 1.27 2,39
Номинальная частота вращения
[об / мин]
3000
Макс.скорость
[об / мин]
5000
Максимальный крутящий момент
[Н · м]
0,478 0,955 1,91 3,58 0,478 0,955 1,91 3,82 7.17
Момент инерции
[кг · м 2 ]
0,0192
× 10 -4
0,0371
× 10 -4
0,135
× 10 -4
0,246
× 10 -4
0,0192
× 10 -4
0,0371
× 10 -4
0,135
× 10 -4
0,246
× 10 -4
0.853
× 10 -4
Номинальный ток [A] 0,85 1,5 2,7 4,8 0,85 0,85 1,5 2,7 4,8
Максимальный ток [A] 2,55 4,5 8,1 14,4 2.55 2,55 4,5 8,1 14,4
Класс изоляции Класс B
Рабочий режим непрерывный
Степень защиты оболочки Полностью закрытый, самоохлаждающийся (IP55) (без уплотнения вала и разъемов)
Палец (двигатель) Кабель 0.3м (с разъемом)
Пин (детектор) Кабель 0,3 м (с разъемом)
Защита от перегрева Не предусмотрено (обнаружено на сервоусилителе)
Способ установки Путем закрепления фланца IMB5 (L51), IMV1 (L52), IMV3 (L53)
Удлинитель вала Вал прямой без шпонки Вал прямой со шпонкой
Цвет краски N1.5
Кодировщик 16-битный последовательный энкодер (только ABS и INC, INC)
Уровень вибрации V5 или ниже
Место установки, высота над уровнем моря и окружающая среда В помещении (без прямых солнечных лучей), на высоте ≤ 1000 м, без коррозионных и легковоспламеняющихся газов, масляного тумана и пыли
Температура / влажность окружающей среды от -10 до + 40 ℃, макс. Относительная влажность 90%.(без конденсации)
Устойчивость к вибрации [м / с 2 ] 49
Масса [кг]
() обозначает тип
0,45 (0,62) 0,55 (0,72) 1,2 (1,7) 1,8 (2,3) 0,45 (0,62) 0,55 (0,72) 1,2 (1,7) 1,8 (2,3) 3.4 (4,2)
Стандарты UL / cUL (UL1004), маркировка CE (EN60034-1, EN60034-5), директива RoHS
.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *