Ремонт трехфазного электродвигателя: диагностика, перемотка, ТО
ЗАО «ПромЭлектроРемонт» на выгодных условиях осуществляет ремонт трехфазных электродвигателей любой сложности. Принимаем заказы на срочный, текущий, капитальный ремонт крановых, лифтовых, тяговых и прочих машин всех моделей и конфигураций.
Трехфазный двигатель – электрическая машина, работающая от трехфазной сети переменного тока. Основные его составляющее – статор с тройной обмоткой и ротор. В зависимости от типа ротора двигатели делят на:
- синхронные, с фазным ротором;
- асинхронные, с короткозамкнутым ротором.
Перемотка трехфазного электродвигателя выполняется при проведении капитального ремонта. Причины замены обмотки в этом случае могут быть разными:
- Ухудшение качества изоляционного материала и снижение его сопротивления с течением времени в результате температурных или механических воздействий.
- Возникновение виткового или межвиткового короткого замыкания, короткого замыкания на корпус.
- Обрыв провода.
В асинхронных моделях при возникновении необходимости перемотать трехфазный двигатель, работы по замене обмоток проводятся только на статоре. В синхронных машинах перемотке может быть подвергнут, как статор, так и трехфазный ротор. Также может потребоваться ремонт коллектора, установленного на валу.
Ремонт трехфазных электродвигателей
Активная эксплуатация двигателя приводит к постепенному разрушению изоляции обмотки и необходимости её восстановления. Этому способствует нагрев, центробежные силы (для ротора), вибрация, механические нагрузки при пуске (особенно, если изоляция дала усадку и обмотка сидит в пазах не плотно), воздействие влаги или попавшей внутрь пыли. В результате сопротивление изоляционного материала уменьшается, что может в итоге привести к короткому замыканию и выходу из строя электрической машины. Качество изоляции проверяется при выполнении текущего ремонта, и если оно оказывается неудовлетворительным, то принимается решение перемотать трехфазный электродвигатель.
Перемотка трехфазного электродвигателя – сложная технологическая операция, включающая в себя ряд последовательных работ:
- Демонтаж старой обмотки и очистка каналов от старой изоляции.
- Расчет новой обмотки на основании параметров демонтированной.
- Подготовка катушек при помощи специальных шаблонов.
- Подготовка активного железа статора (ротора) и укладка обмотки.
- Пайка катушек в соответствии со схемой.
- Пропитка обмотки в специальном лаке и сушка.
После того, как была выполнена перемотка трехфазного электродвигателя, пропитка лаком выполняется с целью обеспечения высокого уровня изоляции токопроводящей части. Следующие этапы ремонта – сборка машины и ее испытание. Перемотать двигатель можно с сохранением его предыдущих технических характеристик или с заданием новых, требуемых заказчиком.
В любом случае, капитальный ремонт трехфазного электродвигателя с перемоткой статора или фазного ротора – выгодная по цене альтернатива приобретению нового. Если все работы выполнены грамотно, с использованием медного провода и изоляционных материалов высокого качества, то машина после починки по своим техническим и эксплуатационным характеристикам не будет уступать новому оборудованию.
Стоимость перемотки трехфазного электродвигателя для каждого заказа определяется в индивидуальном порядке. С расценками можете ознакомиться, изучив размещенный в данном разделе нашего сайта прайс-лист.
Цены на ремонт трёхфазного электродвигателя
Мощность, (кВт) | Частота вращения,об/мин | |||
3000 | 1500 | 1000 | 750 | |
До 1,5 | 2740 | 2806 | 3417 | 4057 |
2.2 | 3090 | 3245 | 4154 | 4897 |
3 | 3642 | 3901 | 4973 | 5179 |
4 | 5012 | 4652 | 5413 | 6804 |
5. 5 | 5296 | 5301 | 5978 | 7511 |
7.5 | 6630 | 6919 | 7312 | 11021 |
11 | 8139 | 8147 | 9937 | 13182 |
15 | 12088 | 12049 | 11737 | 14803 |
18,5 | 13001 | 13345 | 15217 | 24450 |
22 | 15057 | 15805 | 23408 | 25522 |
30 | 17648 | 18202 | 25857 | 29275 |
37 | 23803 | 25949 | 30677 | 40080 |
45 | 29055 | 28737 | 38389 | 48070 |
55 | 34546 | 32811 | 41481 | 60759 |
75 | 44670 | 48812 | 64472 | 82899 |
90 | 47893 | 51078 | 78166 | 99898 |
110 | 67202 | 73052 | 95759 | 122517 |
132 | 80848 | 87962 | 114110 | 147423 |
160 | 98012 | 106439 | 138740 | 179116 |
200 | 123101 | 132548 | 173924 | ———- |
250 | 154120 | 167435 | ———- | ——— |
320 | 237156 | ————— | ———- | ———— |
кВт | 3000 об/мин | 1500 об/мин | 1000 об/мин | 750 об/мин |
КОЭФФИЦИЕНТЫ ПРИМЕНЯЕМЫЕ ПРИ РАСЧЕТЕ:
- Однофазные-1. 5;
- Иностранного производства -1.5;
- Взрывобезопасные – 1.3;
- Срочный – 1.5;
- Двухскоростные – 1.5; Двухскоростные с независимыми обмотками – 2.
- Старого образца типа АО, А, ВАО -1,5
Трёхфазные электродвигатели Принцип действия | Каталог самоделок
Существует два типа трехфазных электродвигателей, которые различаются по конструкции вращающейся части (ротора). Подвижную часть двигателя иногда называют якорем, но будет правильнее и профессиональнее называть ее ротором.
Асинхронные электродвигатели.
Если у электродвигателя ротор не имеет своей обмотки (к ротору не подводиться напряжение через щетки), то это двигатель с короткозамкнутым ротором, или как еще называю его асинхронный двигатель. Асинхронный он, потому, что в этом двигателе скорость изменения магнитной индукции в обмотках статора не совпадает (не синхронна) со скоростью вращения ротора. Таких трехфазных двигателей выпускается большее количество, из-за простоты конструкции.
Электродвигатель с фазным ротором.
Трехфазный электродвигатель, у которого ротор имеет собственные обмотки и к этим обмоткам подводиться напряжение через щетки, называют двигателем с фазным ротором. Сложная конструкция такого электродвигателя оправдана, когда нужно регулировать скорость вращения и необходимо снизить пусковые токи мощного двигателя.
Статор (неподвижная часть) у всех трехфазных электродвигателей делается одинаковым по устройству. Конструктивно в магнитопровод статора вкладываются обмотки из медных обмоточных проводов. Количество отдельных обмоток может быть от 3, 6, 9 12. С тремя обмотками электродвигатель, при подключении к сети, будет вращаться со скоростью 3000 об. в мин. С шестью, девятью, двенадцатью обмотками электродвигатели будут вращаться, соответственно со скоростями 1500, 1000, 750 об. в мин, но с большими вращающими моментами, чем двигатель на 3000 об. в мин.
Все приведенные значения скорости вращения для отдельных двигателей достигаются только при подключении в трехфазную сеть с напряжением 380В, когда обмотки статора соединении по схеме «звезда».
Принцип действия.
Все дело в магнитной индукции, которая также совершает полезную работу в электромагнитах и трансформаторах. Благодаря магнитной индукции, к включенным электромагнитам притягиваются металлические предметы. Благодаря этой же силе в трансформаторах передается электроэнергия от одной катушки до другой, которые изолированы друг от друга.
В электродвигателях магнитная индукция проявляется, когда создается бесконтактная связь между статором и ротором. Более подробно, это происходит следующим образом. Ток, проходя через обмотки статора электродвигателя, создает магнитное поле. Это поле не постоянно, как в электромагните или трансформаторе. А быстро поочередно изменяет свою полярность, и возвращается в начальное состояние, когда сделает оборот по обмоткам статора.
А польза от этого электромагнитного поля в том, что оно благодаря силе индукции намагничивает отдельный участок на поверхности ротора, параллельный к физической оси двигателя. А дальше, переменное магнитное поле тянет его за собой, таким образом, заставляя вращаться статор вокруг своей оси.
Аварийный режим работы (при обрыве фазы).
Любой обрыв проводов двигателя является аварийной ситуацией, которая приводит к порче, как самого двигателя, так и пусковых устройств подключенных к нему. Серьезность последствий при обрыве фазы зависит от того, по какой схеме подключены обмотки двигателя к питающей сети.
При подключении электродвигателя по схеме «звезда».
Если двигатель работал, то ротор будет и дальше крутиться с неизменным моментом, но заметно снизиться скорость его вращения. При этом в остальных обмотках, которые остались подключенными к напряжению, будет протекать завышенный ток, одинаковый по величине в двух этих обмотках.
Если оставить двигатель долго работать при обрыве фазы, две подключенные обмотки равномерно нагреются. В конечном итоге двигатель не максимально нагруженный, и качественно сделанный, может остаться относительно целым. Но снизиться сопротивление изоляции обмоточных проводов, так как они обуглятся при перегреве. И повторных таких мучений электродвигатель уже не выдержит.
При подключении электродвигателя по схеме «треугольник».
Если двигатель работал, то ротор будет и дальше крутиться, как и в предыдущем рассмотренном случае. Но при этом, в одной из оставшихся подключенных обмоток, будет протекать завышенный 1,73 раза ток, чем при нормальном режиме работы.
Так что, если оставить двигатель долго работать при обрыве фазы, одна из двух подключенных обмоток сильно нагреется. А сам двигатель, в конечном итоге задымиться и остановиться. Так как, разрушиться эмалевая изоляция на обмоточных проводах внутри двигателя, и произойдет короткое замыкание.
Если попытаться запустить электродвигатель с оборванной фазой, он или вовсе не начнет вращаться, или будет очень медленно набирать обороты. И без разницы, по какой схеме двигатель подключен. При этом двигатель будет сильно шуметь, из-за чрезмерного магнитного потока, что проходит через часть магнитопровода двигателя.
При обрыве двух фаз работающий электродвигатель остановиться, не работающий двигатель не запуститься, и никаких вредных последствий не будет.
Подключение к однофазной сети.
Очень часто появляется необходимость использовать трехфазный двигатель вместо однофазного на стиральной машине, вентиляторе, различных деревообрабатывающих станках, водных насосах, шлифовальных станках.
Подключение по схеме «звезда».
Чаще всего электродвигатели подключаются по схеме «звезда», так как в этом случае их можно использовать в трехфазной сети, то есть при максимальном рабочем напряжении 380В. Но при подключении к однофазной сети, на пониженное напряжение 220В, такая схема совсем не годиться. Потому что электродвигатель, подключенный по схеме «звезда» к однофазной сети, потеряет половину своей мощности.
Конкретно, подключение по схеме «звезда», это когда концы трех обмоток скручены вместе, а начала этих обмоток подключаются к питающей сети.
Вот как подключаются провода до клемной колодки и так нужно расположить перемычки в распределительной коробке (борне) электродвигателя при подключении по схеме «звезда».
По схеме «треугольник».
Если нужно подключить трехфазный электродвигатель к однофазной сети с напряжением 220В, тогда желательно собрать обмотки по схеме «треугольник». По тому что, при такой схеме включения двигатель потеряет всего лишь 30% от номинальной мощности. И к тому же, вовсе не снизиться скорость вращения.
В общем, чтобы выполнить подключение по схеме «треугольник», нужно конец одной обмотки подключить к началу другой, и так последовательно соединить все обмотки, а места их соединения подключить к питающей сети.
Так вот должны быть подключены провода до клемной колодки, и так расположены перемычки в борне электродвигателя при подключении по схеме «треугольник».
Будьте внимательны! Существуют трехфазные электродвигатели, рассчитанные на рабочие напряжения 220/127В. И если переключить в борне такой двигатель на схему «треугольник», то есть на пониженное напряжение 127В, а дальше включить его в однофазную сеть стандартного напряжения 220В, то двигатель быстро сгорит.
Для того, чтобы трехфазный электродвигатель работал в однофазной сети необходим еще будет фазосдвигающий, или как его еще называют рабочий конденсатор.
В конечном итоге, нужно концы фазосдвигающего конденсатора подключить к двум клеммам в борне, а два провода от сети подкинуть так: один к любому выводу конденсатора; второй до свободной клеммы в борне.
Автор: Виталий Петрович. Украина.
13 распространенных причин неисправности электродвигателей
4 Февраля 2018
В промышленности электродвигатели используются повсеместно, они становятся технически все сложнее, что часто может осложнять поддержание их работы на пике эффективности. Важно помнить, что причины неисправностей электродвигателей и приводов не ограничиваются одной областью специализации: они могут быть как механического, так и электрического характера.
Наиболее частые неисправности электродвигателей — повреждения изоляции обмоток и износ подшипников, возникающие по множеству разных причин. Эта статья посвящена заблаговременному обнаружению 13 наиболее распространенных причин повреждений изоляции и выхода из строя подшипников.
Качество электроэнергии
1. Переходное напряжение
2. Асимметрия напряжений
3. Гармонические искажения
Частотно-регулируемые приводы
4. Отражения на выходных ШИМ-сигналах привода
5. Среднеквадратичное отклонение тока
6. Рабочие перегрузки
Механические причины
7. Нарушение центрирования
8. Дисбаланс вала
9. Расшатанность вала
10. Износ подшипника
Факторы, связанные с неправильной установкой
11. Неплотно прилегающее основание
12. Напряжение трубной обвязки
13. Напряжение на валу
Качество электроэнергии
1. Переходное напряжение
Обнаружение источника переходных процессов может оказаться сложной задачей, поскольку они происходят нерегулярно, а их последствия могут проявляться по-разному. Например, переходные процессы могут проявиться в контрольных кабелях и необязательно нанесут вред непосредственно оборудованию, но они могут нарушить его работу.
Воздействие: повреждение изоляции обмотки электродвигателя приводит к раннему возникновению неисправностей и незапланированному простою.
Прибор для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.
Критичность: высокая.
2. Асимметрия напряжений
Трехфазные распределительные сети часто питают однофазные нагрузки. Асимметрия сопротивления или нагрузки может быть причиной асимметрии напряжений на всех трех фазах. Возможные неисправности могут находиться в проводке электродвигателя, на клеммах электродвигателя, а также в самих обмотках. Эта асимметрия может вызывать перегрузки в каждой фазной цепи трехфазной сети. Одним словом, напряжение на всех трех фазах всегда должно быть одинаковым.
Воздействие: асимметрия является причиной сверхтоков в одной или нескольких фазах, которые вызывают перегрев и повреждение изоляции.
Инструмент для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.
Критичность: средняя.
3. Гармонические искажения
Проще говоря, гармоники — это любые нежелательные дополнительные высокочастотные колебания напряжения или тока, поступающие на обмотки электродвигателя. Эта дополнительная энергия не используется для вращения вала электродвигателя, а циркулирует в обмотках и в конечном итоге приводит к потере внутренней энергии. Эти потери рассеиваются в виде тепла, которое со временем ухудшает изолирующие свойства обмоток. Некоторые гармонические искажения формы тока являются нормой для систем, питающих электронную нагрузку. Гармонические искажения можно измерить с помощью анализатора качества электроэнергии, проконтролировав величины токов и температуры на трансформаторах и убедившись, что они не перегружены. Для каждой гармоники утвержден приемлемый уровень искажений, который регламентируется стандартом IEEE 519-1992.
Воздействие: снижение эффективности электродвигателя приводит к дополнительным расходам и увеличению рабочей температуры.
Инструмент для измерения и диагностики: трехфазный анализатор качества электроэнергии Fluke 435-II.
Критичность: средняя.
Частотно-регулируемые приводы
4. Отражения на выходных ШИМ-сигналах привода
Частотно-регулируемые приводы используют широтно-импульсную модуляцию (ШИМ) для управления выходным напряжением и частотой питания электродвигателя. Отражения возникают из-за несогласованности полных сопротивлений источника и нагрузки. Несогласованность полных сопротивлений может произойти в результате неправильной установки, неправильного выбора компонентов или ухудшения состояния оборудования со временем. Пик отражения в цепи электропривода может достигать уровня напряжения шины постоянного тока.
Воздействие: повреждение изоляции обмотки электродвигателя приводит к незапланированному простою.
Прибор для измерения и диагностики: Fluke 190-204 ScopeMeter® , 4-канальный портативный осциллограф с высокой частотой выборки.
Критичность: высокая.
5. Среднеквадратичное отклонение тока
По своей сути среднеквадратичное отклонение тока — это паразитные токи, циркулирующие в системе. Среднеквадратичное отклонение тока образуется как результат частоты сигнала, уровня напряжения, емкости и индуктивности в проводниках. Эти циркулирующие токи могут выйти через системы защитного заземления, вызывая ложное размыкание или, в некоторых случаях, нагревание обмотки. Среднеквадратичное отклонение тока можно обнаружить в проводке электродвигателя, это сумма тока с трех фаз в любой момент времени. В идеальной ситуации сумма этих трех токов должна равняться нулю. Иными словами, обратный ток от привода будет равняться току, поступающему на привод. Среднеквадратичное отклонение тока можно также представить в виде асимметричных сигналов в нескольких проводниках, имеющих емкостную связь с заземляющим проводником.
Воздействие: произвольное размыкание цепи из-за прохождения тока по защитному заземлению.
Прибор для измерения и диагностики: изолированный 4-канальный портативный осциллограф Fluke 190-204 ScopeMeter с широкополосными (10 кГц) токовыми клещами (Fluke i400S или аналогичные).
Критичность: низкая.
6. Рабочие перегрузки
Перегрузка электродвигателя возникает, когда он работает под повышенной нагрузкой. Основными признаками перегрузки электродвигателя являются чрезмерное потребление тока, недостаточный крутящий момент и перегрев. Избыточное тепловыделение электродвигателя является главной причиной его неисправности. При перегрузке электродвигателя его отдельные компоненты — включая подшипники, обмотки и другие части — могут работать нормально, но электродвигатель будет перегреваться. Поэтому начинать поиски неисправности следует с проверки именно перегруженности электродвигателя. Поскольку 30% всех неисправностей электродвигателей происходят именно из-за их перегруженности, важно понимать, как измерять и определять перегрузку электродвигателя.
Воздействие: преждевременный износ электрических и механических компонентов электродвигателя, ведущий к необратимому выходу из строя.
Инструмент для измерения и диагностики: цифровой мультиметр Fluke 289.
Критичность: высокая.
7. Нарушение центрирования
Нарушение центрирования возникает при неправильном выравнивании вала привода относительно нагрузки или смещении передачи, которая их соединяет. Многие специалисты считают, что гибкое соединение устраняет и компенсирует смещение, тем не менее, гибкое соединение защищает от смещения только саму передачу. Даже с гибким соединением не отцентрированный вал будет передавать повреждающие циклические усилия по своей длине на электродвигатель, вызывая повышенный износ электродвигателя и увеличивая фактическую механическую нагрузку. Кроме того, нарушение центрирования может быть причиной вибрации валов как нагрузки, так и электропривода. Существует несколько типов нарушения центрирования:
- Угловое смещение: оси валов пересекаются, но не параллельны;
- Параллельное смещение: оси валов параллельны, но не соосны;
- Сложное смещение: сочетание углового и параллельного смещений. (Примечание: практически всегда нарушение центрирования является сложным, но практикующие специалисты рассматривают их как сумму составляющих смещений, поскольку устранять нарушение центрирования проще по отдельности — угловую и параллельную составляющие).
Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности.
Прибор для измерения и диагностики: лазерный инструмент для центрирования вала Fluke 830.
Критичность: высокая.
8. Дисбаланс вала
Дисбаланс — это состояние вращающейся детали, когда центр масс расположен не на оси вращения. Иными словами, когда центр тяжести находится где-то на роторе. Хотя устранить дисбаланс двигателя полностью невозможно, можно определить, не выходит ли он за рамки приемлемых значений, и предпринять меры для исправления ситуации.
Дисбаланс может быть вызван различными причинами:
- скопление грязи;
- отсутствие балансировочных грузов;
- отклонения при производстве;
- неравная масса обмоток двигателя и другие факторы, связанные с износом.
Тестер или анализатор вибрации поможет определить, сбалансирован вращающийся механизм или нет.
Влияние: преждевременный износ механических компонентов привода, вызывающий преждевременные неисправности.
Прибор для измерения и диагностики: измеритель вибрации Fluke 810.
Критичность: высокая.
9. Расшатанность вала
Расшатанность возникает из-за чрезмерного зазора между деталями. Расшатанность может возникать в нескольких местах:
- Расшатанность с вращением возникает из-за чрезмерного зазора между вращающимися и неподвижными частями машины, например, в подшипнике.
- Расшатанность без вращения возникает между двумя обычно неподвижными деталями, например, между опорой и основанием или корпусом подшипника и машиной.
Как и в случаях со всеми другими источниками вибрации, важно уметь определить расшатанность и устранить проблему, избежав убытков. Определить наличие расшатанности во вращающейся машине можно с помощью тестера или анализатора вибрации.
Влияние: ускоренный износ вращающихся компонентов, вызывающий механические неисправности.
Прибор для измерения и диагностики: измеритель вибрации Fluke 810.
Критичность: высокая.
10. Износ подшипника
Неисправный подшипник имеет повышенное трение, сильнее нагревается и имеет пониженную эффективность из-за механических проблем, проблем со смазкой или износа. Неисправность подшипника может быть следствием различных факторов:
- нагрузка, превышающая расчетную;
- недостаточная или неправильная смазка;
- неэффективная герметизация подшипника;
- нарушение центрирования вала;
- неправильная установка;
- нормальный износ;
- наведенное напряжение на валу.
Когда неисправности подшипников начинают проявляться, это также вызывает каскадный эффект, ускоряющий выход двигателя из строя. 13% неисправностей двигателя вызваны неисправностями подшипников, и более 60 % механических неисправностей на предприятии вызваны износом подшипников, поэтому важно знать, как устранять эти потенциальные проблемы.
Влияние: ускоренный износ вращающихся компонентов приводит к выходу подшипников из строя.
Прибор для измерения и диагностики: измеритель вибрации Fluke 810.
Критичность: высокая.
Факторы, связанные с неправильной установкой
11. Неплотно прилегающее основание
Неплотное прилегание вызывается неровным монтажным основанием двигателя или приводимого в движение компонента или неровной монтажной поверхностью, на которой располагается монтажное основание. Данное состояние может создать неприятную ситуацию, при которой затяжка монтажных болтов на самом деле привносит новые нагрузки и нарушение центрирования. Неплотное прилегание опоры часто возникает между двумя диагонально расположенными крепежными болтами, как, например, в случае с неровным стулом или столом, которые раскачиваются по диагонали. Существуют два типа неплотного прилегания основания:
- Параллельное неплотное прилегание основания —возникает, когда одна монтажная опора расположена выше, чем три другие;
- Угловое неплотное прилегание основания —возникает, когда одна из монтажных опор не параллельна или не перпендикулярна по отношению к монтажной поверхности.
В обоих случаях неплотное прилегание основания может быть вызвано неровностями в монтажной опоре механизма или в монтажном основании, на котором находится опора. В любом случае найти и устранить неплотное прилегание необходимо до центрирования вала. Качественный лазерный инструмент для центрирования может определить неплотное прилегание основания данной вращающейся машины.
Влияние: нарушение центрирования компонентов механического привода.
Прибор для измерения и диагностики: лазерный инструмент для центрирования вала Fluke 830.
Критичность: средняя.
12. Напряжение трубной обвязки
Натяжением трубной обвязки называется состояние, при котором новые нагрузки, натяжения и силы, действующие на остальное оборудование и инфраструктуру, передаются назад на двигатель и привод, приводя к нарушению центрирования. Наиболее часто встречающимся примером этого являются простые схемы с электродвигателем/насосом, когда что-то оказывает воздействие на трубопроводы, например:
- смещение в фундаменте;
- недавно установленный клапан или другой компонент;
- предмет, ударяющий, сгибающий или просто давящий на трубу;
- сломанные или отсутствующие крепления для труб или настенная арматура.
Эти силы могут оказывать угловое или смещающее воздействие, что в свою очередь приводит к смещению вала двигателя/насоса. По этой причине важно проверять центрирование машины не только во время установки — точное центрирование является временным состоянием и может изменяться с течением времени.
Влияние: нарушение центрирования вала и последующие нагрузки на вращающиеся компоненты, приводящие к преждевременным неисправностям.
Прибор для измерения и диагностики: лазерный инструмент для центрирования вала Fluke 830.
Критичность: низкая.
13. Напряжение на валу
Когда напряжение на валу электродвигателя превышает изолирующие характеристики смазки подшипника, происходит пробой на внешний подшипник, что вызывает точечную коррозию и образование канавок на дорожке качения подшипника. Первыми признаками проблемы являются шум и перегрев, возникающие по мере того, как подшипники теряют первоначальную форму, а также появление металлической крошки в смазке и увеличение трения подшипника. Это может привести к разрушению подшипника уже через несколько месяцев работы электродвигателя. Неисправность подшипника — это дорогостоящая проблема как с точки зрения восстановления электродвигателя, так и с точки зрения простоя оборудования, поэтому предотвращение этого посредством измерения напряжения на валу и тока в подшипниках является важной частью диагностики. Напряжение на валу присутствует только тогда, когда на двигатель подается питание, и он вращается. Угольная щетка, устанавливаемая на щуп, позволяет измерять напряжение на валу при вращении электродвигателя.
Влияние: дуговые разряды на поверхности подшипника вызывают точечную коррозию и образование канавок, что в свою очередь приводит к чрезмерной вибрации и последующей неисправности подшипника.
Прибор для измерения и диагностики: изолированный 4-канальный портативный осциллограф Fluke-190-204 ScopeMeter, щуп AEGIS с угольными щетками для измерения напряжения на валу.
Критичность: высокая.
Четыре стратегии для достижения успеха
Системы управления электродвигателями используются в важных процессах на заводах. Поломка оборудования может привести к большим финансовым потерям, связанным как с потенциальной заменой электродвигателя и его деталей, так и с простоем систем, зависящих от данного электродвигателя. Обеспечивая обслуживающих инженеров и техников необходимыми знаниями, определяя приоритеты работ и проводя профилактическое обслуживание для контроля оборудования и устранения трудно обнаруживаемых проблем, зачастую можно избежать неисправностей, вызванных рабочими нагрузками, и сократить потери от простоя.
Существуют четыре ключевые стратегии для устранения или предотвращения преждевременных поломок электродвигателя и вращающихся деталей:
- Запись рабочих условий, технических характеристик оборудования и диапазонов допусков рабочих характеристик.
- Регулярный сбор и запись критических измерений при установке, до и после технического обслуживания.
- Создание архива эталонных измерений для анализа тенденций и обнаружения изменения состояния.
- Построение графиков отдельных измерений для выявления основных тенденций.Любые изменения в линии тенденций более чем на +/- 10-20% (или любую другую определенную величину, в зависимости от эксплуатационных характеристик или критичности системы) необходимо исследовать для выявления причин возникновения проблем.
Мощность, кВт | 4 – 250 |
Напряжение, В | 220/380, 380/660 (400/690, 660 и др. – опционально) |
Частота вращения, об/мин | 500 – 3000 |
КПД, % | 95,8 — 83 |
Коэффициент мощности | 0,93 — 0,7 |
Степень защиты | IP54 (IP55 – опционально) |
Класс энергоэффективности | IE1, IE2 (IE3 — опционально) |
Исполнение по способу монтажа | IM1081, IM1082, IM2081, IM2082, IM3081, IM3082 |
Способ охлаждения | IC141 |
Режим работы | S1, S9 (S2 — S6 — опционально) |
Условия пуска | прямой (в составе ЧРП – опционально) |
Соединение с приводным механизмом | упругая муфта |
Подшипники | качения |
Класс нагревостойкости изоляции | F (Н – опционально) |
Соединение фаз обмоток | звезда/треугольник |
Датчики | контроля температуры обмотки статора |
Направление вращения | левое, правое (изменение вращения из состояния покоя) |
Высота оси вращения, мм | 132 — 315 |
Как подключить трёхфазный электродвигатель на 380 Вольт
Трехфазные электродвигатели обладают более высокой эффективностью, чем однофазные на 220 вольт. Если у Вас в доме или гараже есть ввод на 380 Вольт, тогда обязательно покупайте компрессор или станок с трехфазным электродвигателем. Это обеспечит более стабильную и экономичную работу устройств. Для пуска мотора не понадобятся различные пусковые устройства и обмотки, потому что вращающееся магнитное поле возникает в статоре сразу после подключения к электросети 380 Вольт.
Выбор схемы включения электродвигателя
Схемы подключения 3-х фазных двигателей при помощи магнитных пускателей Я подробно описывал в прошлых статьях: «Схема подключения электромоторов с тепловым реле» и «Схема реверсивного пуска«.
Подключить трех фазный двигатель возможно и в сеть 220 Вольт с использованием конденсаторов по этой схеме. Но будет значительное падение мощности и эффективности его работы.
В статоре асинхронного двигателя на 380 В расположены три отдельные обмотки, которые соединяются между собой в треугольник или звезду и к трем лучам или вершинам подключаются 3 разноименные фазы.
Вы должны учитывать, что при подключении звездой пуск будет плавным, но для того что бы достичь полной мощности необходимо подключить мотор треугольником. При этом мощность возрастет в 1.5 раза, но ток при запуске мощных или средних моторов будет очень высоким, и да же может повредить изоляцию обмоток.
Перед подключением электродвигателя ознакомьтесь с его характеристиками в паспорте и на шильдике. Особенно это важно при подключении 3 фазных электродвигателей западно-европейского производства, которые рассчитаны на работу от сети напряжением 400/690. Пример такого шильдика на картинке снизу. Такие моторы подключаются только по схеме «треугольник» к нашей электросети. Но многие монтажники подключают их аналогично отечественным в «звезду» и электромоторы при этом сгорают, особенно быстро под нагрузкой.
На практике все электродвигатели отечественного производства на 380 Вольт подключаются звездой. Пример на картинке. В очень редких случаях на производстве для того что бы, выжать всю мощность используется комбинированная схема включения звезда-треугольник. Об этом подробно узнаете в самом конце статьи.
Схема подключения электродвигателя звезда треугольник
В некоторых наших электромоторах выходит всего 3 конца из статора с обмотками- это означает, что уже внутри двигателя собрана звезда. Вам только остается подключить к ним 3 фазы. А для того, что бы собрать звезду необходимы оба конца, каждой обмотки или 6 выводов.
Нумерация концов обмоток на схемах идет слева направо. К номерам 4, 5 и 6 подключаются 3 фазы А-В-С от электросети.
При соединении звездой трёхфазного электродвигателя начала его обмоток статора соединяются вместе в одной точке, а к концам обмоток подключаются 3 фазы электропитания на 380 Вольт.
При соединении треугольником статорные обмотки между собой соединяются последовательно. Практически, необходимо соединить конец одной обмотки с началом следующей. К трем точкам соединения их между собой подключаются 3 фазы питания.
Подключение схемы звезда-треугольник
Для подключения мотора по довольно редкой схеме звезды при запуске, с последующим переводом для работы в рабочем режиме в схему треугольника. Так Мы сможем выжать максимум мощности, но получается довольно сложная схема без возможности реверсирования или изменения направления вращения.
Для работы схемы необходимы 3 пускателя. На первый К1 подключено электропитание с одной стороны, а с другой — концы обмоток статора. Их же начала подключены к К2 и К3. С пускателя К2 начала обмоток подключаются соответственно на другие фазы по схеме треугольник. При включении К3 все 3 фазы закорачиваются между собой и получается схема работы звездой.
Внимание, одновременно не должны включаться магнитные пускатели К2 и К3, а то произойдет произойдет аварийное отключение автомата защиты из-за возникновения межфазного короткого замыкания. Поэтому и делается электрическая блокировка между ними- при включении одного из них размыкается блок контактами цепь управления другого.
Схема работает следующим образом. При включении пускателя К1 реле времени включает К3 и двигатель запускается по схеме звезда. По истечении заданного промежутка, достаточного для полного запуска двигателя реле времени отключает пускатель К3 и включает К2. Мотор переходит на работу обмоток по схеме треугольник.
Отключение происходит пускателем К1. При повторном запуске все снова повторяется.
Фазы двигателей
Электродвигатели осуществляют питание с помощью переменного тока. Электродвигатели разделяются на синхронные и асинхронные, отличие этих двигателей в принципе их работы. Синхронные движутся синхронно с магнитным полем, питающего их напряжения. Они в основном используются при наличии большой мощности. Асинхронные двигатели – это электродвигатели, которые работают с помощью переменного тока, где частота вращения ротора зависит от частоты вращающего магнитного поля. Такие двигатели широко применяются в наше время. Также электродвигатели переменного тока отличаются количеством фаз. Они подразделяются на однофазные, двухфазные, трехфазные и многофазные.
Особенности фаз электродвигателей
- Однофазные двигатели применяются для подключения к однофазной сети переменного тока. Это асинхронный двигатель, у которого статор имеет одну обмотку, подключающуюся к сети однофазного тока.
- Двигатель с однофазной обмоткой подключается с помощью вращающегося магнитного поля.
- Магнитное поле создается основной обмоткой и дополнительной пусковой обмоткой.
- Преимущество однофазного двигателя, заключается в простоте конструкции (короткозамкнутый ротор), а недостаток это малый пусковой объем и низкое КПД.
Двигатели двухфазные
- Двухфазные двигатели имеют две рабочие обмотки, которые сдвинуты на 90 градусов.
- При подаче переменного тока они питаются по двум токам, и образуется вращающееся магнитное поле.
- В двухфазном асинхронном двигателе создается вращающийся момент в стержнях ротора электродвигателя.
- Ротор ускоряется до достижения конечной частоты вращения поля. В настоящее время чаще используется асинхронный двухфазный электродвигатель, имеющий полый ротор.
- Если двухфазный электродвигатель питать от однофазной сети, то сдвиг фаз может произойти путем подключения конденсатора, имеющего достаточную емкость.
Трехфазный двигатель
- Трехфазный двигатель предназначен для работы от трехфазной сети переменного тока.
- Это электродвигатель, статор которого состоит из трех обмоток. В этом случае магнитное поле сдвинуто на 120 градусов.
- Наибольшее распространение получил асинхронный электродвигатель с короткозамкнутой обмоткой ротора.
При необходимости приобретения однофазных, двухфазных двигателей обращайтесь в компании, которые сотрудничают с испытанными временем производителями. В нашей компании имеется широкий выбор электродвигателей разных моделей и марок.
Просмотров: 2165
Дата: Воскресенье, 15 Декабрь 2013
Все, что вам нужно знать — Блог CLR
Электродвигатели позволяют нам получать механическую энергию самым простым и эффективным способом. В зависимости от количества фаз питания , мы можем найти однофазных , двухфазных и трехфазных двигателей с витых пусковой обмотки и спиральных пусковых обмоток с конденсатором . Причем выбор того или другого будет зависеть от необходимой мощности .
Если вы участвуете в проекте и не знаете, какой тип двигателя вам следует использовать, этот пост вас заинтересует! В нем мы расскажем вам о каждом моторе и его отличиях.Поехали!
Что такое однофазный двигатель?
Однофазный двигатель — это вращающаяся машина с электрическим приводом , которая может преобразовывать электрической энергии в механическую энергию .
Работает от однофазного источника питания . Они содержат двух типов проводки : горячую и нейтральную. Их мощность может достигать 3 кВт , а напряжения питания меняются в унисон.
У них есть только одиночного переменного напряжения .Схема работает с двумя проводами , и ток, который проходит по ним, всегда одинаков.
В большинстве случаев это малых двигателей с ограниченным крутящим моментом . Однако есть однофазные двигатели мощностью до 10 л.с., которые могут работать с подключениями до 440 В.
Они не создают вращающегося магнитного поля; они могут генерировать только альтернативное поле , что означает, что для запуска им нужен конденсатор.
Их легко ремонтировать, и обслуживать, а также доступные по цене .
Этот тип двигателя используется в основном в домах, офисах, магазинах и небольших непромышленных компаниях . Чаще всего использует , включая бытовую технику, домашнее и рабочее оборудование HVAC и другие приборы, такие как дрели, кондиционеры и системы открытия и закрытия гаражных ворот.
Вас может заинтересовать: Советы по выбору малых электродвигателей
Что такое двухфазный двигатель?
Двухфазный двигатель — это система, которая имеет двух напряжений, разнесенных на 90 градусов , которая в настоящее время больше не используется.Генератор состоит из двух обмоток, расположенных под углом 90 градусов друг к другу.
Им требуется 2 провода под напряжением и один провод заземления, которые работают в двух фазах . Один увеличивает ток до 240 В для движения, а другой поддерживает плавность тока для использования двигателя.
Что такое трехфазный двигатель?
Трехфазный двигатель — это электрическая машина , которая преобразует электрическую энергию в механическую энергию посредством электромагнитных взаимодействий .Некоторые электродвигатели реверсивны — они могут преобразовывать механическую энергию в электрическую, действуя как генераторы.
Они работают от трехфазного источника питания . Они управляются тремя переменными токами одинаковой частоты , которые достигают максимума в переменные моменты. Они могут иметь мощность от до 300 кВт и скорость от 900 до 3600 об / мин.
Трехпроводные линии используются для передачи, но для конечного использования требуются 4-проводные кабели, которые соответствуют 3 фазам плюс нейтраль.
Трехфазная электроэнергия — это наиболее распространенный метод , используемый в электрических сетях по всему миру, поскольку он передает больше энергии и находит значительное применение в промышленном секторе .
Различия между однофазным двигателем и трехфазным двигателем
Во-первых, нам нужно различать тип установки и ток , протекающий через него. В этом отношении разница между однофазным током и трехфазным током заключается в том, что однофазный ток передается по одной линии. Кроме того, поскольку имеется только одна фаза или переменный ток, , напряжение не меняется .
Однофазные двигатели используются, когда трехфазная система недоступна и / или для ограниченной мощности — они обычно используются для мощностей менее 2 кВт или 3 кВт .
Трехфазные двигатели обычно находят более широкое применение в промышленности , поскольку их мощность более чем на 150% выше, чем у однофазных двигателей, и создается трехфазное вращающееся магнитное поле .
При работе однофазного двигателя может быть шумно и генерироваться вибрации , трехфазные двигатели более дорогие, но они не создают этих вибраций и менее шумны.
В CLR мы ежедневно работаем с однофазных двигателей , проектируя и производя редукторов скорости для достижения идеального движения. Наши истории успеха включают систему складывания боковых зеркал для легковых и коммерческих автомобилей , которая может превышать 50 000 циклов — на 100% больше циклов, чем было первоначально запрошено нашим клиентом Volkswagen .
Нужна помощь с вашим проектом? В CLR мы постоянно ищем новых решений , адаптированных к потребностям наших клиентов, которые успешно соблюдают все новые правила. Какое движение вам нужно?
Трехфазные и однофазные двигатели переменного тока: что вам нужно знать
Если вам интересно узнать о разнице между трехфазными и однофазными двигателями переменного тока, просто запомните это. Однофазные двигатели переменного тока обычно работают от однофазного источника питания, а трехфазные двигатели переменного тока работают от трехфазного источника энергии.Однофазный переменный ток — наиболее распространенный источник энергии, используемый большинством домашних хозяйств и непромышленных предприятий. Это мощность, которая используется для освещения домов и питания телевизоров в Северной Америке. Сегодня в большинстве коммерческих зданий в США используются трехфазные двигатели переменного тока из-за их гибкости и плотности мощности. Трехфазный двигатель переменного тока особенно распространен на крупных предприятиях, в том числе на производстве и в промышленности.
Центры обработки данных сегодня стали энергоемкими, поэтому они могут предлагать возможности хранения и вычислений.Это привело к росту спроса на источники питания для удовлетворения потребностей этих центров обработки данных. Однофазный силовой двигатель переменного тока больше не может удовлетворить потребности этих центров обработки данных в электроэнергии, так как требует дорогостоящего переналадки. Трехфазный силовой двигатель переменного тока экономичен для подачи энергии в центр обработки данных, поскольку для подачи электроэнергии требуется меньше проводящего материала. Это объясняет, почему трехфазный двигатель переменного тока используется для передачи, производства и распределения электроэнергии в большинстве стран мира.Однофазный двигатель переменного тока менее надежен и более дорог для использования в национальной электросети по сравнению с трехфазным двигателем переменного тока.
Трехфазные и однофазные двигатели переменного тока состоят из двух частей, а именно ротора и статора. Статор — это неподвижная часть двигателя, а ротор — это просто вращающаяся часть двигателя.
Преимущества трехфазных двигателей переменного тока по сравнению с однофазными
Одним из основных преимуществ трехфазного двигателя переменного тока является его гибкость для разделения электрической нагрузки на три фазы.Это снижает нагрузку на одну фазу, и если вы используете в своем доме три кондиционера, вы можете настроить ее таким образом, чтобы каждый кондиционер использовал свою собственную фазу. Это снизит нагрузку на одну фазу источника питания. Использование трехфазного двигателя переменного тока может привести к экономии средств. То есть трехфазный двигатель переменного тока может передавать больше электроэнергии при меньших затратах по сравнению с однофазным двигателем переменного тока. Большинство предприятий в Северной Америке используют трехфазные двигатели переменного тока, поскольку это приводит к снижению затрат на электроэнергию в долгосрочной перспективе при одновременном повышении эффективности электроснабжения. Это связано с тем, что для передачи электроэнергии на большую площадь дешевле использовать трехфазный двигатель переменного тока. Кроме того, они более эффективны при передаче электроэнергии, следовательно, способны передавать больший объем электроэнергии с меньшими затратами.
Недостатки трехфазных однофазных электродвигателей переменного тока по сравнению с
Основным недостатком трехфазных электродвигателей переменного тока является то, что в случае выхода из строя одного трансформатора это приведет к полному отключению всей системы. Кроме того, стоимость ремонта трехфазного двигателя переменного тока высока по сравнению с однофазным двигателем переменного тока.Если у вас есть какие-либо вопросы относительно трехфазных и однофазных двигателей переменного тока, в том числе о том, как они работают, мы будем рады на них ответить. Вы можете отправлять свои вопросы или комментарии через наши контакты, указанные на этом сайте.
Чтобы узнать больше об услугах, которые предлагает наша компания, посетите нашу домашнюю страницу.
Двигатели переменного тока | Однофазный | 3-фазный | Миннеаполис, Миннесота
ISC Компании и дочерняя компания Adams-ISC являются дистрибьюторами деталей механической передачи энергии, включая двигатели переменного тока.Для получения дополнительной информации о брендах, которые мы предлагаем, и / или о ценах, свяжитесь с нами по телефону 763-559-0033, по электронной почте [email protected] или заполнив нашу онлайн-форму для связи.
Переменный ток (AC) — это то, что энергетические компании передают по электрическим проводам. Переменный ток движется в обоих направлениях и используется так, чтобы трансформаторы могли повышать и понижать напряжение. Электрогенераторы производят электричество низкого напряжения, а трансформаторы используются для повышения напряжения при передаче на большие расстояния.
Электропитание в розетках в домах составляет 115 В или 230 В однофазный . Однофазный означает, что на двигатель подается только одна форма напряжения. Трехфазный , 230 В, 460 В, 575 В или выше, имеет три провода, которые подают сигналы напряжения, каждый из которых подает электричество в разное время. Трехфазный более эффективен и экономичен и предусмотрен на промышленных площадках для тяжелого оборудования с трехфазными двигателями.
Конструкция трехфазного асинхронного двигателя переменного тока
Двигатель переменного тока состоит из двух основных частей: ротора и статора.Статор является внешней оболочкой и остается неподвижным. Он имеет обмотки, которые преобразуют поступающее электричество в магнитное поле. Это заставляет ротор намагничиваться с противоположной полярностью, отталкиваться и вращаться. Статор может быть намотан двумя или более наборами обмоток, называемых полюсами. Количество полюсов определяет частоту вращения двигателя. Доступны стандартные синхронные скорости; 900, 1200, 1800 и 3600 об / мин. Асинхронный двигатель вращается немного медленнее, чем синхронный двигатель, и имеет форму двигателя с короткозамкнутым ротором. Снижение скорости называется проскальзыванием двигателя.
Ротор состоит из продольных алюминиевых или медных стержней. Электрический ток индуцируется в этих стержнях, создавая магнитное поле. Это индуцирование тока и дало имя асинхронному двигателю. Ротор асинхронного двигателя имеет две конструкции: с короткозамкнутым ротором и намотанный.
- Ротор с короткозамкнутым ротором (наиболее распространенный) представляет собой цилиндр из стали с алюминиевыми или медными проводниками.
- Ротор с фазой имеет обмотки, которые через контактные кольца соединены с внешними сопротивлениями.
Магнитные полюса
Число полюсов в двигателе всегда четное и бывает по два (север и юг). В двигателе переменного тока количество полюсов работает вместе с частотой, чтобы определить синхронную скорость.
Мотор скольжения
Разница между синхронной скоростью и фактической скоростью ротора называется скольжением. Большинство асинхронных двигателей переменного тока имеют скольжение от 3 до 5 процентов при полной нагрузке. В таблицах двигателей и в каталогах производителей указаны значения частоты вращения с учетом скольжения.
Критические уровни крутящего момента
Кривая скорость-крутящий момент (S-T) отображает четыре значения крутящего момента, которые имеют решающее значение для выбора двигателя и его применения. Заторможенный ротор — это крутящий момент, доступный при нулевой скорости для ускорения. Подтягивание — это минимум, доступный при ускорении. Пробойный момент создается двигателем непосредственно перед тем, как он перестает вращаться из-за внезапной нагрузки.
Многофазные двигатели (3-фазные)
Из-за высокой эффективности и низкой стоимости трехфазные асинхронные двигатели переменного тока являются наиболее распространенным типом двигателей, используемых в промышленности.
Типы конструкции трехфазного двигателя
Стандартыв Северной Америке признают четыре распространенных конструкции асинхронных двигателей: конструкция A, конструкция B, конструкция C и конструкция D. Конструкции A, B и C имеют схожие отношения между мощностью и мощностью. Двигатели конструкции D больше и дороже.
- Двигатели конструкции A имеют более высокий ток заторможенного ротора с более высоким моментом пробоя, чем двигатели конструкции B.
- Конструкция B — стандартный двигатель промышленного назначения. Он имеет приемлемый пусковой момент при умеренном пусковом токе.Обычно применяется к вентиляторам, нагнетателям, насосам, компрессорам и другим легким пусковым устройствам.
- Design C рассчитаны на высокий пусковой момент. Обычно применяется для нагруженных конвейеров, дробилок, миксеров, мешалок, поршневых компрессоров, поршневых насосов и других нагрузок с жестким пуском. Двигатели
- конструкции D устанавливаются на пробивные прессы, ножницы, подъемники, насосы для нефтяных скважин и другие машины с высокими пиковыми нагрузками. У них больше всего скольжения.
Многоскоростные двигатели
Трехфазные асинхронные двигатели также доступны для работы на двух или более скоростях. Двигатели этого типа работают только на одно напряжение. Обмотки статора могут быть соединены между собой, чтобы обеспечить разное количество полюсов.
Приводы переменного тока с регулируемой скоростью
Чтобы удовлетворить потребность в регулируемой скорости, был разработан контроллер двигателя (инвертор). Управление процессом и энергосбережение являются основными причинами использования привода с регулируемой скоростью.
Преимущества управления процессом при использовании привода с регулируемой скоростью:
- Управление ускорением, крутящим моментом и натяжением
- Отрегулируйте скорость производства с разными рабочими скоростями для каждого процесса
- Компенсация за изменение переменных процесса
- Разрешает медленную работу в целях настройки
- Обеспечить точное позиционирование
Однофазные асинхронные двигатели
Однофазный двигатель работает по тому же принципу, что и многофазный двигатель, за исключением того, что эффект вращающегося магнитного поля, создаваемый статором, не существует до тех пор, пока не будет достигнута рабочая частота вращения. Поскольку пусковой крутящий момент недоступен, предусмотрен конструктивный механизм для запуска двигателя. Это различные обозначения:
Кривые крутящего момента для различных однофазных асинхронных двигателей
Затененный полюс: Имеет только одну главную обмотку и без пусковой обмотки. Эта конфигурация вызывает смещение приложенного магнитного поля по отношению к ротору, создавая постоянный крутящий момент. Применения включают вентиляторы и мелкую бытовую технику.
Расщепленная фаза (двигатель с индукционным пуском): Имеет два набора обмоток статора.«Пусковые» обмотки расположены под углом 90 градусов к «рабочим» обмоткам и смещают магнитное поле статора, создавая пусковой момент. Применения включают небольшие измельчители, маленькие вентиляторы и воздуходувки.
Capacitor-Start: Наиболее распространенный однофазный двигатель, используемый в промышленности. Это модифицированный двигатель с расщепленной фазой, в котором конденсатор включен последовательно с пусковой обмоткой для обеспечения пускового ускорения. Применение: небольшие конвейеры, большие нагнетатели, насосы и прямые приводы.
Постоянный разделенный конденсатор (PSC): Используются идентичные основная и вспомогательная обмотки с конденсатором для обеспечения пускового момента. Это самый надежный однофазный двигатель, поскольку не требуется центробежный пусковой выключатель. Применения включают вентиляторы и насосы в HVAC и холодильной промышленности.
Лучшие бренды предлагаемых нами двигателей переменного тока
Контент на этой странице был создан с использованием выдержек из Руководства по передаче электроэнергии (5 -е издание) , которое написано и продано Ассоциацией дистрибьюторов электроэнергии (PTDA).
Закажите копию здесь
Трехфазные двигатели
Трехфазный асинхронный двигатель получил свое название от тока ротора, который индуцируется магнитным полем, а не электрическими соединениями. Трехфазный асинхронный двигатель имеет простую конструкцию, изначально высокий пусковой момент и высокую эффективность.
Они широко используются в промышленных приложениях, таких как большие воздухоочистители, краны и водяные насосы.Они прочные, надежные и легко регулируют скорость трехфазного асинхронного двигателя с помощью частотно-регулируемого привода (ЧРП).
Статор и ротор являются двумя основными частями трехфазного двигателя:
Статор состоит из множества пазов, предназначенных для трехфазной цепи обмотки. Схема обмотки предназначена для создания вращающегося магнитного поля. Он имеет электрический угол смещения обмотки внахлест 120 °. Эта схема подключена к трехфазному источнику переменного тока.
Направление вращения двигателя зависит от чередования фаз линий питания и порядка, в котором эти линии подключены к статору. Меняя местами подключения любых двух первичных клемм к источнику питания, вы можете изменить направление вращения.
Есть два типа роторов. Это ротор с короткозамкнутым ротором и ротор с фазной обмоткой (или просто ротор с обмоткой) .
A Ротор с короткозамкнутым ротором имеет очень простую и прочную конструкцию.Этот ротор имеет многослойный цилиндрический сердечник с параллельными пазами на нем. Эти пазы несут проводники ротора. В качестве проводников ротора вместо проволоки используются тяжелые стержни из меди, алюминия или сплавов.
Стержни ротора припаяны или электрически приварены к концевым кольцам, которые замыкаются на обоих концах. Таким образом, конструкция ротора напоминает беличью клетку.
A Ротор с фазной намоткой имеет трехфазную двухслойную распределенную обмотку. Число полюсов ротора обычно равно числу полюсов статора.(Ротор всегда намотан трехфазным, даже если статор намотан двухфазным.)
Трехфазная обмотка ротора внутри соединена звездой. Остальные три вывода обмотки выводятся через три изолированных стопорных кольца, установленных на валу, и опирающиеся на них щетки. Эти три щетки подключены к внешнему реостату, соединенному звездой. Это создает внешнее сопротивление в цепи ротора для запуска и изменения характеристик скорости и крутящего момента.
Когда двигатель работает с номинальной скоростью, токосъемные кольца автоматически замыкаются накоротко с помощью металлической манжеты, а щетки поднимаются над контактными кольцами, чтобы минимизировать потери на трение.
Преимущества трехфазных двигателей:
- Простая и прочная конструкция
- Очень надежный и недорогой
- Высокая эффективность и хороший коэффициент мощности
- Минимальные требования к техническому обслуживанию
- Самозапуск
- Меньшая реакция якоря и искрение щеток
Мы являемся авторизованным дистрибьютором широкого спектра электродвигателей таких производителей, как WEG, Baldor, GE, Siemens, A.О. Смит, Эмерсон и Вестингауз. Наши обученные специалисты установят ваш двигатель и проведут плановое техническое обслуживание, чтобы обеспечить его безупречную работу.
IER Services предлагает дополнительные услуги, такие как услуги диагностики, тепловидение, лазерная центровка и расширенный анализ обмоток двигателя. Эти инструменты помогают нам быстро определить причину проблемы, и часто мы можем исправить ее на месте! Звоните нам по всем вашим коммерческим проектам ремонта электродвигателей. 614.298.1600
Электродвигатель | Британника
Самый простой тип асинхронного двигателя показан на рисунке в разрезе.Трехфазный набор обмоток статора вставлен в пазы в железе статора. Эти обмотки могут быть соединены либо по схеме звезды, обычно без внешнего подключения к нейтральной точке, либо по схеме треугольник. Ротор состоит из цилиндрического стального сердечника с проводниками, размещенными в пазах по всей поверхности. В наиболее обычной форме эти проводники ротора соединены вместе на каждом конце ротора проводящим концевым кольцом.
Поперечное сечение трехфазного асинхронного двигателя.
Encyclopædia Britannica, Inc.Основы работы асинхронного двигателя можно разработать, сначала предположив, что обмотки статора подключены к трехфазному источнику питания и что набор из трех синусоидальных токов, показанных на рисунке, протекает в обмотках статора. На этом рисунке показано влияние этих токов на создание магнитного поля в воздушном зазоре машины в течение шести моментов цикла. Для простоты показана только центральная токопроводящая петля для каждой фазной обмотки.В момент t 1 на чертеже ток в фазе a является максимально положительным, а в фазах b и c — вдвое отрицательным. Результатом является магнитное поле с приблизительно синусоидальным распределением вокруг воздушного зазора с максимальным значением наружу вверху и максимальным значением внутрь внизу. В момент времени t 2 на рисунке (т. Е. Одна шестая цикла позже), ток в фазе c является максимально отрицательным, в то время как в фазе b и фазе a составляет половину значения положительный.Результатом, как показано на рисунке для t 2 , снова является синусоидально распределенное магнитное поле, но повернутое на 60 ° против часовой стрелки. Исследование распределения тока для t 3 , t 4 , t 5 и t 6 показывает, что магнитное поле продолжает вращаться с течением времени. Поле совершает один оборот за один цикл токов статора. Таким образом, совокупный эффект трех равных синусоидальных токов, равномерно смещенных во времени и протекающих в трех обмотках статора, равномерно смещенных в угловом положении, состоит в создании вращающегося магнитного поля постоянной величины и механической угловой скорости, которая зависит от частоты электроснабжение.
Оформите подписку Britannica Premium и получите доступ к эксклюзивному контенту. Подпишись сейчасВращательное движение магнитного поля относительно проводников ротора вызывает индуцирование напряжения в каждом из них, пропорциональное величине и скорости поля относительно проводников. Поскольку проводники ротора замкнуты накоротко на каждом конце, это приведет к протеканию токов в этих проводниках. В простейшем режиме работы эти токи будут примерно равны индуцированному напряжению, деленному на сопротивление проводника.На этом рисунке показана диаграмма токов ротора за момент времени t 1 . Видно, что токи приблизительно синусоидально распределены по периферии ротора и расположены так, чтобы создавать вращающий момент против часовой стрелки на роторе (то есть вращающий момент в том же направлении, что и вращение поля). Этот крутящий момент ускоряет ротор и вращает механическую нагрузку. По мере увеличения скорости вращения ротора его скорость относительно скорости вращающегося поля уменьшается.Таким образом, индуцированное напряжение снижается, что приводит к пропорциональному снижению тока в проводнике ротора и крутящего момента. Скорость ротора достигает постоянного значения, когда крутящий момент, создаваемый токами ротора, равен крутящему моменту, необходимому на этой скорости для нагрузки, при отсутствии избыточного крутящего момента для ускорения объединенной инерции нагрузки и двигателя.
Вращающееся поле и токи, которые оно создает в короткозамкнутых проводниках ротора.
Encyclopædia Britannica, Inc.Механическая выходная мощность должна обеспечиваться входной электрической мощностью. Первоначальных токов статора, показанных на рисунке, достаточно для создания вращающегося магнитного поля. Чтобы поддерживать это вращающееся поле при наличии токов ротора, показанных на рисунке, необходимо, чтобы обмотки статора несли дополнительную составляющую синусоидального тока такой величины и фазы, чтобы нейтрализовать влияние магнитного поля, которое в противном случае могло бы возникнуть. токами ротора на рисунке.Общий ток статора в каждой фазной обмотке является суммой синусоидальной составляющей, создающей магнитное поле, и другой синусоиды, опережающей первую на четверть цикла, или 90 °, для обеспечения необходимой электроэнергии. Второй, или силовой, компонент тока находится в фазе с напряжением, приложенным к статору, в то время как первый, или намагничивающий, компонент отстает от приложенного напряжения на четверть цикла или 90 °. При номинальной нагрузке эта намагничивающая составляющая обычно находится в диапазоне 0.От 4 до 0,6 величины силовой составляющей.
Большинство трехфазных асинхронных двигателей работают с обмотками статора, подключенными непосредственно к трехфазному источнику питания постоянного напряжения и постоянной частоты. Типичные напряжения питания находятся в диапазоне от 230 вольт между фазами для двигателей относительно небольшой мощности (например, от 0,5 до 50 киловатт) до около 15 киловольт между фазами для двигателей большой мощности и до около 10 мегаватт.
За исключением небольшого падения напряжения на сопротивлении обмотки статора, напряжение питания согласовано со скоростью изменения магнитного потока в статоре машины во времени.Таким образом, при питании с постоянной частотой и постоянным напряжением величина вращающегося магнитного поля остается постоянной, а крутящий момент примерно пропорционален силовой составляющей тока питания.
В асинхронном двигателе, показанном на предыдущих рисунках, магнитное поле вращается на один оборот за каждый цикл частоты питания. Для источника с частотой 60 Гц скорость поля составляет 60 оборотов в секунду или 3600 оборотов в минуту. Скорость ротора меньше скорости поля на величину, достаточную для того, чтобы индуцировать необходимое напряжение в проводниках ротора для создания тока ротора, необходимого для момента нагрузки.При полной нагрузке скорость обычно на 0,5–5 процентов ниже полевой скорости (часто называемой синхронной скоростью), причем более высокий процент применяется к двигателям меньшего размера. Эта разница в скорости часто называется скольжением.
Другие синхронные скорости могут быть получены с источником постоянной частоты путем создания машины с большим количеством пар магнитных полюсов, в отличие от двухполюсной конструкции, показанной на рисунке. Возможные значения скорости магнитного поля в оборотах в минуту: 120 f / p , где f — частота в герцах (циклов в секунду), а p — количество полюсов (которое должно быть четное число). Данный железный каркас может быть намотан для любого из нескольких возможных количеств пар полюсов с использованием катушек, охватывающих угол приблизительно (360/ p ) °. Крутящий момент, поступающий от рамы машины, останется неизменным, поскольку он пропорционален произведению магнитного поля и допустимого тока катушки. Таким образом, номинальная мощность рамы, являющаяся произведением крутящего момента и скорости, будет примерно обратно пропорциональна количеству пар полюсов. Наиболее распространенные синхронные скорости для двигателей с частотой 60 Гц — 1800 и 1200 оборотов в минуту.
Как работает электродвигатель в автомобиле
Трехфазный четырехполюсный асинхронный двигатель состоит из двух основных частей: статора и ротора. Статор состоит из трех частей: сердечника статора, токопроводящего провода и рамы. Сердечник статора представляет собой группу стальных колец, которые изолированы друг от друга и затем соединены друг с другом.
Внутри этих колец есть прорези, через которые проводящий провод будет наматывать обмотки статора. Проще говоря, в трехфазном асинхронном двигателе есть три разных типа проводов.Вы можете назвать эти типы проводов Фазой 1, Фазой 2 и Фазой 3.
Провода каждого типа наматываются вокруг пазов на противоположных сторонах внутренней части сердечника статора. Как только токопроводящий провод находится внутри сердечника статора, сердечник помещается внутри рамы.
Из-за сложности темы ниже приводится упрощенное объяснение того, как четырехполюсный трехфазный асинхронный двигатель переменного тока работает в автомобиле. Все начинается с аккумулятора в автомобиле, который подключен к двигателю. Электроэнергия поступает в статор через аккумуляторную батарею автомобиля. Катушки внутри статора (сделанные из токопроводящей проволоки) расположены на противоположных сторонах сердечника статора и в некотором смысле действуют как магниты. Следовательно, когда электрическая энергия от автомобильного аккумулятора подается на двигатель, катушки создают вращающиеся магнитные поля, которые тянут за собой проводящие стержни на внешней стороне ротора. Вращающийся ротор — это то, что создает механическую энергию, необходимую для вращения шестерен автомобиля, которые, в свою очередь, вращают шины.В обычном автомобиле, то есть неэлектрическом, есть и двигатель, и генератор. Аккумулятор питает двигатель, который приводит в действие шестерни и колеса. Вращение колес — это то, что затем приводит в действие генератор в автомобиле, а генератор перезаряжает аккумулятор. Вот почему вам советуют водить машину в течение некоторого времени после прыжка: аккумулятор необходимо подзарядить, чтобы он функционировал должным образом. В электромобиле нет генератора.
Итак, как же тогда перезаряжается аккумулятор? Хотя нет отдельного генератора переменного тока, двигатель в электромобиле действует как двигатель и как генератор переменного тока.
Это связано с переменным характером сигнала переменного тока, который позволяет легко повышать или понижать напряжение до различных значений. Это одна из причин, почему электромобили так уникальны.
Как упоминалось выше, аккумулятор запускает двигатель, который подает энергию на шестерни, которые вращают шины. Этот процесс происходит, когда ваша нога находится на акселераторе — ротор тянется вращающимся магнитным полем, требуя большего крутящего момента.Но что происходит, когда вы отпускаете акселератор? Когда ваша нога отрывается от акселератора, вращающееся магнитное поле останавливается, и ротор начинает вращаться быстрее (в отличие от магнитного поля). Когда ротор вращается быстрее, чем вращающееся магнитное поле в статоре, это действие перезаряжает аккумулятор, действуя как генератор переменного тока.
Концептуальные различия этих двух типов токов должны быть очевидны; в то время как один ток (постоянный) постоянный, другой (переменный) более прерывистый. Однако все немного сложнее, чем это простое объяснение, поэтому давайте разберем эти два термина более подробно.
Постоянный ток (DC)Непрерывный ток означает постоянный и однонаправленный электрический поток. Кроме того, напряжение сохраняет полярность во времени. На батареях, по сути, четко обозначен положительный и отрицательный полюсы. Они используют постоянную разность потенциалов для генерации тока всегда в одном и том же направлении.В дополнение к батареям, топливным элементам и солнечным батареям, скольжение между определенными материалами может производить постоянный ток.
Переменный ток (AC) Термин «переменный ток» определяет тип электричества, характеризующийся напряжением (представьте давление воды в шланге) и током (представьте скорость потока воды через шланг), которые изменяются во времени (рис. 1). При изменении напряжения и тока сигнала переменного тока они чаще всего следуют по форме синусоидальной волны. Поскольку форма волны является синусоидальной, напряжение и ток чередуются с положительной и отрицательной полярностью во времени. Форма синусоидальной волны сигналов переменного тока обусловлена способом генерации электричества.
Другой термин, который вы можете услышать при обсуждении электроэнергии переменного тока, — это частота. Частота сигнала — это количество полных волновых циклов, завершенных за одну секунду времени. Частота измеряется в герцах (Гц), а в США стандартная частота в электросети составляет 60 Гц.Это означает, что сигнал переменного тока колеблется с частотой 60 полных обратных циклов каждую секунду.
Электроэнергия переменного тока — лучший способ передачи полезной энергии от источника генерации (например, плотины или ветряной мельницы) на большие расстояния.
Рис. 2. Многофазная система использует несколько напряжений для сдвига фазы отдельно от каждого из них, чтобы намеренно выйти из строя. Это связано с переменным характером сигнала переменного тока, который позволяет легко повышать или понижать напряжение до различных значений. Вот почему в розетках вашего дома будет указано 120 вольт переменного тока (безопаснее для потребления человеком), но напряжение распределительного трансформатора, который подает питание в район (те цилиндрические серые коробки, которые вы видите на полюсах линии электропередачи), может иметь напряжение до 66 кВА (66000 вольт переменного тока). Энергия переменного тока
позволяет нам создавать генераторы, двигатели и распределительные системы из электричества, которые намного более эффективны, чем постоянный ток, поэтому переменный ток является наиболее популярным током для источников питания.
Большинство крупных промышленных двигателей представляют собой асинхронные двигатели, которые используются для питания дизельных поездов, посудомоечных машин, вентиляторов и многих других вещей. Однако что именно означает «асинхронный» двигатель?
С технической точки зрения это означает, что обмотки статора индуцируют ток, протекающий в проводники ротора.
С точки зрения непрофессионала это означает, что двигатель запускается, потому что электричество индуцируется в роторе магнитными токами, а не прямым подключением к электричеству, как у других двигателей, таких как коллекторный двигатель постоянного тока.
Что означает многофазность? Всякий раз, когда у вас есть статор, который содержит несколько уникальных обмоток на полюс двигателя, вы имеете дело с многофазностью (рис. 2).
Обычно предполагается, что многофазный двигатель состоит из трех фаз, но есть двигатели, которые используют две фазы. Многофазная система использует несколько напряжений для сдвига фазы отдельно от каждого, чтобы намеренно выйти из строя.
Что означает трехфазный ? Основываясь на основных принципах Николы Теслы, определенных в его многофазном асинхронном двигателе, сформулированном в 1883 году, «трехфазный» относится к токам электрической энергии, которые подводятся к статору через аккумуляторную батарею автомобиля (рис. 3).
Эта энергия заставляет катушки проводящих проводов вести себя как электромагниты. Простой способ понять три фазы — рассмотреть три цилиндра в форме буквы Y, использующие энергию, направленную к центральной точке, для выработки энергии.Когда энергия создается, ток течет в пары катушек внутри двигателя таким образом, что он естественным образом создает северный и южный полюсы внутри катушек, позволяя им действовать как противоположные стороны магнита.
По мере того, как эта технология продолжает развиваться, характеристики электромобилей начинают быстро догонять и даже превосходить их газовые аналоги. Несмотря на то, что электромобилям еще предстоит пройти определенное расстояние, шаги, предпринятые такими компаниями, как Tesla и Toyota, вселили надежду на то, что будущее транспорта больше не будет зависеть от ископаемого топлива.На данный момент мы все знаем, какой успех Tesla испытывает в этой области, выпустив седан Tesla Model S, способный проехать до 288 миль, разогнаться до 155 миль в час и иметь крутящий момент 687 фунт-фут.
Тем не менее, есть десятки других компаний, которые добиваются огромного прогресса в этой области, например, Ford Fusion Hybrid, Toyota Prius и Camry-Hybrid, Mitsubishi iMiEV, Ford Focus, BMW i3, Chevy’s Spark и Mercedes B-Class Electric. (рис.4).
Электродвигатели влияют на окружающую среду как напрямую, и косвенно, на микро- и макроуровне.Это зависит от того, как вы хотите воспринимать ситуацию и сколько энергии вам нужно. С индивидуальной точки зрения, электромобили не требуют бензина для работы, что приводит к тому, что автомобили без выбросов заполняют наши шоссе и города. Хотя это представляет собой новую проблему с дополнительным бременем производства электроэнергии, оно снижает нагрузку на миллионы автомобилей, густонаселенных в городах и пригородах, выбрасывающих токсины в воздух (рис. 5).
Примечание. Значения MPG (миль на галлон), указанные для каждого региона, представляют собой комбинированный рейтинг экономии топлива для города / шоссе бензинового автомобиля, который будет иметь глобальное потепление, эквивалентное вождению электромобиля. Рейтинги выбросов глобального потепления в регионах основаны на данных электростанций за 2012 год в базе данных EPA eGrid 2015. Сравнения включают выбросы при производстве бензина и электрического топлива. Среднее значение в 58 миль на галлон в США — это средневзвешенное значение продаж, основанное на том, где были проданы электромобили в 2014 году. С большой точки зрения, рост количества электромобилей дает несколько преимуществ.
Во-первых, снижается уровень шумового загрязнения, так как шум, исходящий от электродвигателя, намного ниже, чем от газового двигателя. Кроме того, поскольку электрические двигатели не требуют того же типа смазочных материалов и технического обслуживания, что и газовые двигатели, количество химикатов и масел, используемых в автомагазинах, будет сокращено из-за меньшего количества автомобилей, нуждающихся в проверках.
Заключение Электродвигатель меняет ход истории точно так же, как паровой двигатель и печатный станок изменили определение прогресса.Хотя электродвигатель не открывает новые возможности в том же духе, что и эти изобретения, он открывает совершенно новый сегмент транспортной отрасли, ориентированный не только на стиль и характеристики, но и на внешнее воздействие . Таким образом, хотя электрический двигатель, возможно, не реформирует мир из-за внедрения какого-то нового изобретения или создания нового рынка, он меняет определение того, как мы, как общество, определяем прогресс. Если больше ничего не получится от достижений в области электродвигателя, то по крайней мере мы можем сказать, что наше общество продвинулось вперед с осознанием своего воздействия на окружающую среду.Это новое определение прогресса, определяемое электрическим двигателем.
(Джилл Скотт)
WEG Управление электродвигателем трехфазным магнитным пускателем мощностью 5 л.
с. NEMA4X 20 — компрессор-источник WEG PESW-18V24EX-R32 Трехфазный магнитный пускатель мощностью 5 л.с.
Корпус NEMA 4X
Совершенно новый WEG PESW-18V24EX-R32 5 лошадиных сил, трехфазный, магнитный пускатель на 208–240 В с корпусом NEMA 4X. Это стартер отличного качества со встроенной перегрузкой, регулируемой в диапазоне 11-17 ампер, и оснащен кнопкой ручного сброса.
Магнитные пускатели PESW идеальны для защиты двигателей и обеспечения надежной работы из года в год. Собран вместе в корпусе NEMA 4x с кнопкой RESET на крышке для быстрой и простой работы.
Корпус NEMA 4X предназначен для использования в помещении или на открытом воздухе и обеспечивает определенную степень защиты от падающей грязи, дождя, мокрого снега, снега, переносимой ветром пыли, брызг воды и воды, направляемой из шланга. Не будет поврежден внешним обледенением корпуса.
РЕКОМЕНДУЕТСЯ ПРОФЕССИОНАЛЬНАЯ УСТАНОВКА
Технические характеристики
• HP при 208–240 Вольт: 5 HP
• Мин. Диапазон перегрузки (А): 11
• Максимальный диапазон перегрузки (А): 17
• Напряжение катушки: 208–240 Вольт
• Фаза: три
• Частота: 60 Гц
• Класс защиты: NEMA 4X
• Материал корпуса: пластик
• Функция кнопки: сброс
• Вес: 1,7
• Приблизительные размеры (Ш x В x Г): 3-7 / 8 «x 7-1 / 16» x 4-1 / 4 «
Стандартные характеристики
• Быстрое ускорение и высокий начальный крутящий момент
• Биметаллические реле перегрузки — класс 10
• Регулируемый ток отключения
• Температурная компенсация окружающей среды — От 4 ° F до 140 ° F
• Защита от обрыва фазы
• Выбираемый ручной или автоматический сброс
• Электрически изолированные вспомогательные контакты NO-NC
• Сертификаты UL, IEC и CSA
Если вы используете этот стартер на воздушном компрессоре, вам также понадобится реле давления для управления стартером.В этом случае реле давления управляет включением и выключением стартера в соответствии с настройкой давления реле давления.