Схема подключения электродвигателя 380 на 220 через конденсаторы: Подключение электродвигателя 380В на 220В

Содержание

Как подключить электродвигатель с 380 на 220: способы и схемы

Многими практиками доказана эффективность трехфазных асинхронных электродвигателей. Однако для ее использования необходимо подключение трехфазного питания, которое, увы, присутствует далеко не у каждого в доме. Но если вы задаетесь вопросом, как подключить электродвигатель с 380 на 220 В, мы рассмотрим возможные варианты включения трехфазных электрических машин в домашних условиях.

Общие правила

Перед началом включения обязательно проверяется величина напряжения, на которое рассчитан электродвигатель – если подключить разность потенциалов больше указанной, обмотки перегреются, если низкое, он не запустится.

Как правило, на асинхронных машинах указывается сразу два параметра, реже только один:

  1. 660/380 В;
  2. 380/220 В;
  3. 220/127 В.

Номинал определяется совместно со схемой соединения обмоток – звезда или треугольник.

В первом случае обмотки имеют общую точку, а фазные провода соединяются с остальными тремя выводами катушек. Во втором, конец одной обмотки присоединяется к началу следующей таким образом, что образуется замкнутый контур. Одни агрегаты включаются только звездой, другие, треугольником, а некоторые можно самостоятельно подключать любым из способов, обе характеристики указаны на шильде электродвигателя.

Для треугольника используется меньшее напряжение, а для звезды большее из двух указанных. Отличие в том, что трехфазные двигатели, соединенные звездой,  будут иметь плавный пуск, а треугольник сможет выдать большую мощность.

Физически подключение трехфазного электродвигателя в однофазную сеть не принесет никакого результата – вращение вала так и не произойдет. Причина этого в отсутствии переменного электрического поля, обеспечивающего попеременное воздействие на ротор. Поэтому проблему можно решить, обеспечив смещение электрического напряжения и тока в фазных обмотках. Чтобы получить желаемый результат от одной фазы, можно дополнительно включить в цепь конденсатор, который обеспечит отставание напряжения до -90º.

Однако полноценного смещения напряжения в обмотках статора добиться не получится. Хоть на электродвигатель подается и номинальное напряжение, КПД составит всего 30 – 50%, что будет определяться схемой соединения обмоток асинхронного электродвигателя.

Не включайте электродвигатель без нагрузки. Так как он не предназначен для такого режима, электрическая машина быстро выйдет со строя. Минимизируйте холостой ход насколько это возможно.

Способы и схемы подключения

В зависимости от типа используемой нагрузки для электродвигателя, его конструктивных особенностей и характеристик, желаемого результата могут использоваться различные схемы подключения. Чаще всего, чтобы подключить трехфазный агрегат в качестве бытовой однофазной нагрузки используются конденсаторы, но их количество и способ введения в работу зависят от многих параметров. Поэтому далее мы рассмотрим различные варианты схем подключения электродвигателей.

Без конденсаторов

Чтобы подключить асинхронный электродвигатель к сети 220В вовсе не обязательно использовать емкостной элемент. Благодаря развитию полупроводниковых ключей и схем с их использованием вы можете  избежать ненужных потерь мощности. Для этого применяется транзисторный или динисторный ключ.

Схема бесконденсаторного пуска треугольник

Приведенная выше схема предназначена для пуска электродвигателей с малыми оборотами до 1500 об/мин и относительно небольшой мощностью.

Работа схемы производится следующим образом:

  • при подаче напряжения на ввод провода подключаются к двум точкам мотора;
  •  напряжение на третью точку треугольника подается через времязадающую R-C  цепочку;
  • магазин сопротивлений R1 и R2 регулирует интервал сдвига за счет перемещения бегунка;
  • после насыщения конденсатора в цепочке динистор VS1 пропускает сигнал на открытие симистора VS2.

Если же подключение электрического агрегата предусматривает большую пусковую нагрузку и требует работы на высоких оборотах – до 3000об/мин, то необходимо применять аналогичную схему электронного ключа с двумя симисторами и отдельными времязадающими элементами для каждого из них. Но обмотки электрической машины будут подключаться по схеме разомкнутой звезды. Работа схемы аналогична предыдущей:

Схема бесконденсаторного пуска звезда

С конденсаторами

Использование емкостных элементов, чтобы подключить электродвигатель, является наиболее распространенным способом. Для этого используются два конденсатора, один из которых пусковой, а второй рабочий.  Пусковой вводится кратковременно, дополнительная емкость позволяет увеличить сдвиг напряжения в соответствующей обмотке и создать большее усилие.

Схема включения с конденсаторами

Как видите из рисунка выше, на электродвигатель подается однофазное напряжение между точками L и N. Асинхронный двигатель АД подключается к ним двумя обмотками,  а к третей та же фаза подключается через  контакты кнопочного переключателя SA1 и SA2, коммутирующие параллельно включенные конденсаторы C1 и C2.

Включение асинхронного электродвигателя происходит по такому принципу:

  • Нажатием кнопки Пуск приводятся в движение две пары контактов — SA1 и SA2, после чего в обмотках начинает протекать электроток;
  • После отпускания кнопки контакт SA2 остается замкнутым, подавая фазу со смещением через конденсатор  C1, а SA1 размыкается, выводя из цепи пусковой конденсатор C2;
  • Пусковые характеристики возвращаются к номинальным и двигатель работает в штатном режиме.

Но при таком подключении асинхронного двигателя в сеть 220В будет обеспечиваться вращение ротора лишь в одну сторону. Поэтому для выполнения реверсивных движений понадобится полностью перебирать точки подключения или использовать другой способ.

С реверсом

Для некоторых технологических операций требуется осуществлять прямое и обратное вращение вала электродвигателя, поэтому подключение должно менять последовательность чередования напряжения на обмотках. Разумеется, что вручную выполнять подобные операции нецелесообразно, особенно, когда смена направления производится по нескольку раз в час.

Поэтому осуществление реверса электродвигателя, гораздо эффективнее сделать через коммутатор с двумя парами контактов, имеющих противоположную логику. Это может быть тумблер или поворотный переключатель, включаемый в схему вместо обычной кнопки:

Включение трехфазного двигателя с реверсом

Как видите на рисунке, принцип подключения ничем не отличается от рассмотренной схемы с конденсатором с той лишь разницей, что переключатель SA имеет два устойчивых положения. В одном случае он подает напряжение на конденсаторы с фазы, во втором с нулевого проводника. Поэтому чередование обмоток меняется на противоположное простым переключением тумблера.

Используя пускатель

Если в работе электродвигатель создает большую пусковую и рабочую нагрузку, то лучше подключить его через магнитный пускатель или контактор. Который обеспечит надежную коммутацию и последующую защиту электрической машины от аварийных ситуаций.

Схема включения через магнитный пускатель

Как видите на схеме, включение осуществляется за счет нажатия кнопки Пуск, которая замыкает цепь управления катушкой пускателя и подает напряжение на пусковой конденсатор С

пуск.  При протекании тока по катушке пускателя К1 происходит замыкание ее контактов К1.1 и К1.2. Первые предназначены для замыкания питающей линии электродвигателя. Вторые шунтируют кнопку Пуск, которая возвращается в отключенное состояние и размыкает цепь питания пускового конденсатора.

Как подбирать конденсаторы?

Если вы собрались подключить электродвигатель, то выбор  конденсатора осуществляется по таким принципам:

  • Номинальное напряжение выбирается из соотношения 1,15 от подаваемого на мотор. Если брат больше, это увеличит стоимость установки и ее габариты. Если емкость рассчитать впритык, конденсатор перегреется и перегорит.
  • Тип конденсатора – наиболее распространенные модели – бумажные, но они обладают большими габаритами. Поэтому выгоднее приобретать полипропиленовые. От электролитических лучше отказаться.
  • Чтобы выбрать емкость пускового и рабочего конденсатора, необходимо воспользоваться таблицей соответствия по мощности электродвигателя:

Таблица: определение емкости конденсаторов

Мощность трехфазного электродвигателя, кВт0,40,60,81,11,52,2
Минимальная емкость конденсатора Ср , мкф406080100150230
Емкость пускового конденсатора (Сп), мкф80120160200250300

Если нужной вам мощности в таблице нет, можно воспользоваться расчетными формулами:

Сраб = (2800*I)/U — для включения трехфазного двигателя звездой

Cраб = (4800*I)/U — для включения трехфазного двигателя треугольником

где I – величина ток, протекающего через обмотки электродвигателя, а U – напряжение сети. Чтобы узнать емкость пускового конденсатора для подключения трехфазного агрегата, необходимо полученную величину рабочего умножить на два.

Видео в помощь

Как подключить двигатель 380

Как подключить двигатель 380

Опубликовано в рубрике Электромонтажные работы

Дома, в гараже, или на производстве иногда возникает необходимость подключения двигателя 380 В к стационарной сети 220 В. Очень часто можно встретить двигатели, которые рассчитаны на питание электросети и на 380 В., и на 220 В. Для подключения двигателя можно либо воспользоваться услугами электрика, либо попытаться подключить самостоятельно. Если в качестве примера рассмотреть асинхронный двигатель на 1,0кВт. То для его подключения лучше воспользоваться схемой «треугольник» и применить конденсатор исходя из расчета 7-10 мкФ на каждые 100 Вт двигателя.

Как подключить асинхронный двигатель 380 на 220

Максимальной мощности двигателя на 380 В в сети 220 В можно добиться при использовании соединения в треугольник. Основным моментам, на который необходимо уделить внимание является выбор конденсаторов. Первое что необходимо знать это то, что они не должны быть полярными. Всем нам знакомы конденсаторы советской эпохи, которые хорошо используются и в настоящее время. Вторым моментом является то, что если на валу двигателя будет нагрузка, или мощность двигателя больше 1,5 кВт, то необходимо предусмотреть конденсаторы для запуска. Это значит, что они будут использоваться только для запуска двигателя, поле чего их необходимо отключить. Обычно используют либо кнопку, либо переключатель. Емкость пускового конденсатора берется исходя из мощности рабочего в 2-3 раза большего номинала.

Подключение двигателя 380В в сеть 220В

На фото ниже представлено подключение двигателя 380 на 220. Для того чтобы сильно не углубляться в суть, нам просто необходимо:

  1. На крайние контакты клемной колодки подать питание 220В.
  2. Подключить конденсатор одним концом на свободный контакт, а вторым на фазу, либо ноль. (В зависимости от необходимого направления двигателя)

Для того чтобы предусмотреть реверс можно использовать переключатель, где на центральный контакт подается вывод от конденсатора, а на крайние выводы от «фазы» и «нуля».

Комментарии и размещение обратных ссылок в настоящее время закрыты.

звезда, треугольник, трехфазная сеть 380В, однофазная сеть 220В

Практически ежедневно мы сталкиваемся с одним и тем же вопросом от наших клиентов: «как подключить электродвигатель к сети питания?»

Самый простой и надежный способ – обратиться к нормальному электрику и не экономить на этом, т.к. зачастую, пытаясь сэкономить, приглашают «дядю Васю», или других отзывчивых «специалистов», которые рядом, но на самом деле слабо понимают, что происходит.
В лучшем случае, эти «профи» звонят и спрашивают – правильно ли я подключаю. Тут ещё есть шанс не спалить двигатель. Сразу становится понятна квалификация «электрика», когда задают такие вопросы, от которых можно просто впасть в ступор (так как именно этому и учат электриков).

Например:
— зачем шесть контактов в двигателе?
— а почему контактов всего три?
— что такое «звезда» и «треугольник»?
— а почему, когда я подключаю трехфазный насос и ставлю поплавковый выключатель, который рвёт одну фазу, двигатель не останавливается?
— а как измерить ток в обмотках?
— что такое пускатель?
и т.п.

Если ваш электрик задаёт такие вопросы, то нужно его отправить туда, откуда он пришёл. Иначе всё закончится сгоревшим электродвигателем, потерей денег, времени, дорогостоящим ремонтом. Давайте попробуем разобраться в схемах подключения электродвигателя к электропитанию.
Для начала нужно понимать, что существуют несколько популярных типов сетей переменного тока:

1. Однофазная сеть 220 В,
2. Трехфазная сеть 220 В (обычно используется на кораблях),
3. Трехфазная сеть 220В/380В,
4. Трехфазная сеть 380В/660В.
Есть ещё на напряжение 6000В и некоторые другие редкие, но их рассматривать не будем.

В трёхфазной сети обычно есть 4 провода (3 фазы и ноль). Может быть ещё отдельный провод «земля». Но бывают и без нулевого провода.

Как определить напряжение в вашей сети?
Очень просто. Для этого нужно измерить напряжение между фазами и между нулём и фазой.

В сетях 220/380 В напряжение между фазами (U1, U2 и U3) будет равно 380 В, а напряжение между нолём и фазой (U4, U5 и U6) будет равно 220 В.
В сетях 380/660В напряжение между любыми фазами (U1, U2 и U3) будет равно 660В, а напряжение между нулем и фазой (U4, U5 и U6) будет равно 380 В.


Возможные схемы подключения обмоток электродвигателей

Асинхронные электродвигатели имеют три обмотки, каждая из которых имеет начало и конец и соответствует своей фазе. Системы обозначения обмоток могут быть разными. В современных электродвигателях принята система обозначения обмоток U, V и W, а их выводы обозначают цифрой 1 начало обмотки и цифрой 2 – её конец, то есть обмотка U имеет два вывода: U1 и U2, обмотка V – V1 и V2, а обмотка W – W1 и W2.

Однако до сих пор ещё в эксплуатации находятся старые асинхронные двигатели, сделанные во времена СССР и имеющие старую советскую систему маркировки. В них начала обмоток обозначаются C1, C2, C3, а концы — C4, C5, C6. Значит, первая обмотка имеет выводы C1 и C4, вторая — C2 и C5, а третья — C3 и C6.

Обмотки трёхфазных электродвигателей можно подключать по двум различным схемам: звездой (Y) или треугольником (Δ).

Подключение электродвигателя по схеме звезда

Название схемы подключения обусловлено тем, что при соединении обмоток по данной схеме (см. рисунок справа), визуально это напоминает трёхлучевую звезду.


Как видно из схемы подключения электродвигателя, все три обмотки своим одним концом соединены вместе. При таком подключении (сеть 220/380 В), к каждой обмотке отдельно подходит напряжение 220 В, а к двум обмоткам, соединённым последовательно, – напряжение 380 В.

Основным преимуществом подключения электродвигателя по схеме звезда являются небольшие пусковые токи, так как напряжение питания 380 В (межфазное) потребляют сразу 2 обмотки, в отличие от схемы «треугольник». Но при таком подключении мощность питаемого электродвигателя ограничена (главным образом из экономических соображений): обычно по звезде включают относительно слабые электродвигатели.


Подключение электродвигателя по схеме треугольник

Название этой схемы также идёт от графического изображения (см. правый рисунок):


Как видно из схемы подключения электродвигателя – «треугольник», обмотки подключаются последовательно друг к другу: конец первой обмотки соединяется с началом второй и так далее.

То есть к каждой обмотке будет приложено напряжение 380 В (при использовании сети 220/380 В). В этом случае по обмоткам течёт больший ток, по треугольнику обычно включают двигатели большей мощности, чем при соединении по звезде (от 7,5 кВт и выше).


Подключение электродвигателя к трёхфазной сети на 380 В

Последовательность действий такова:

1. Для начала выясняем, на какое напряжение рассчитана наша сеть.
2. Далее смотрим на табличку, которая есть на электродвигателе, она может выглядеть так (звезда Y /треугольник Δ):



Двигатель для однофазной сети 220В
(~ 1, 220В)

Двигатель для трехфазной сети
220В/380В (220/380, Δ / Y)

Двигатель для трехфазной сети 380В
(~ 3, Y, 380В)

Двигатель для трехфазной сети
(380В / 660В (Δ / Y, 380В / 660В)


3. После идентификации параметров сети и параметров электрического подключения электродвигателя (звезда Y /треугольник Δ), переходим к физическому электрическому подключению электродвигателя.
4. Чтобы включить трёхфазный электродвигатель, нужно одновременно подать напряжение на все 3 фазы.
Достаточно частая причина выхода из строя электродвигателя – работа на двух фазах. Это может произойти из-за неисправного пускателя, или при перекосе фаз (когда напряжение в одной из фаз сильно меньше, чем в двух других).
Есть 2 способа подключения электродвигателя:
— использование автоматического выключателя или автомата защиты электродвигателя

Эти устройства при включении подают напряжение сразу на все 3 фазы. Мы рекомендуем ставить именно автомат защиты электродвигателя серии MS, так как его можно настроить в точности на рабочий ток электродвигателя, и он будет чутко отслеживать его повышение в случае перегрузки. Это устройство в момент пуска даёт возможность некоторое время работать на повышенном (пусковом) токе, не отключая двигатель.
Обычный же автомат защиты требуется ставить с превышением номинального тока электродвигателя, с учётом пускового тока (в 2-3 раза выше номинала).
Такой автомат может отключить двигатель только в случае КЗ или его заклинивания, что часто не обеспечивает нужной защиты.

— использование пускателя

Пускатель представляет собой электромеханический контактор, который замыкает каждую фазу с соответствующей обмоткой электродвигателя.
Привод механизма контактора осуществляется с помощью электромагнита (соленоида).

Устройство электромагнитного пускателя:

Магнитный пускатель устроен достаточно просто и состоит из следующих частей:

(1) Катушка электромагнита
(2) Пружина
(3) Подвижная рама с контактами (4) для подключения питания сети (или обмоток)
(5) Контакты неподвижные для подключения обмоток электродвигателя (сети питания).

При подаче питания на катушку, рама (3) с контактами (4) опускается и замыкает свои контакты на соответствующие неподвижные контакты (5).

Типовая схема подключения электродвигателя с использованием пускателя:


При выборе пускателя следует обращать внимание на напряжение питания катушки магнитного пускателя и покупать его в соответствии с возможностью подключения к конкретной сети (например, если у вас есть только 3 провода и сеть на 380 В, то катушку нужно брать на 380 В, если у вас сеть 220/380 В, то катушка может быть и на 220 В).

5. Проконтролировать, в правильную ли сторону крутится вал.
Если требуется изменить направление вращения вала электродвигателя, то нужно просто поменять местами любые 2 фазы. Это особенно важно при запитывании центробежных электронасосов, имеющих строго определённое направление вращения рабочего колеса


Как подключить поплавковый выключатель к трёхфазному насосу

Из всего вышеописанного становится понятно, что для управления трёхфазным электродвигателем насоса в автоматическом режиме с использованием поплавкового выключателя НЕЛЬЗЯ просто разрывать одну фазу, как это делается с монофазными двигателями в однофазной сети.

Самый простой способ – использовать для автоматизации магнитный пускатель.
В этом случае достаточно поплавковый выключатель встроить последовательно в цепь питания катушки пускателя. При замыкании цепи поплавком будет замыкаться цепь катушки пускателя, и включаться электродвигатель, при размыкании – будет отключаться питание электродвигателя.

Подключение электродвигателя к однофазной сети 220 В

Обычно для подключения к однофазной сети 220В используются специальные двигатели, предназначенные для подключения именно к такой сети, и вопросов с их питанием не возникает, т.к. для этого просто требуется вставить вилку (большинство бытовых насосов оснащены стандартной вилкой Шуко) в розетку

Иногда требуется подключение трехфазного электродвигателя к сети 220 В (если, например, нет возможности провести трехфазную сеть).

Максимально возможная мощность электродвигателя, который можно включить в однофазную сеть 220 В, составляет 2,2 кВт.

Самый простой способ – подключить электродвигатель через частотный преобразователь, рассчитанный на питание от сети 220 В.

Следует помнить, что частотный преобразователь на 220 В, выдает на выходе 3 фазы по 220 В. То есть подключить к нему можно только электродвигатель, который имеет напряжение питания на 220 В трёхфазной сети (обычно это двигатели с шестью контактами в распаячной коробке, обмотки которых можно подключить как по звезде, так и по треугольнику). В данном случае требуется подключение обмоток по треугольнику.

Возможно ещё более простое подключение трехфазного электродвигателя в сеть 220 В с использованием конденсатора, но такое подключение приведёт к потере мощности электродвигателя приблизительно на 30%. Третья обмотка запитывается через конденсатор от любой другой.

Данный тип подключения мы рассматривать не будем, так как нормально с насосами такой способ не работает (либо при старте двигатель не запускается, либо электродвигатель перегревается из-за снижения мощности).


Использование частотного преобразователя

В настоящее время достаточно активно все стали применять частотные преобразователи для управления частотой вращения (оборотами) электродвигателя.

Это позволяет не только экономить электроэнергию (например, при использовании частотного регулирования насосов для подачи воды), но и управлять подачей насосов объёмного типа, превращая их в дозировочные (любые насосы объёмного принципа действия).

Но очень часто при использовании частотных преобразователей не обращают внимания на некоторые нюансы их применения:

— регулировка частоты, без доработки электродвигателя, возможна в пределах регулировки частоты +/- 30% от рабочей (50 Гц),
— при увеличении частоты вращения более 65 Гц требуется замена подшипников на усиленные (сейчас с помощью ЧП возможно поднять частоту тока до 400 Гц, обычные подшипники просто разваливаются на таких скоростях),
— при уменьшении частоты вращения встроенный вентилятор электродвигателя начинает работать неэффективно, что приводит к перегреву обмоток.

Из-за того, что не обращают внимания при проектировании установок на такие «мелочи», очень часто электродвигатели выходят из строя.

Для работы на низкой частоте ОБЯЗАТЕЛЬНО требуется установка дополнительного вентилятора принудительного охлаждения электродвигателя.

Вместо крышки вентилятора устанавливается вентилятор принудительного охлаждения (см. фото). В этом случае, даже при снижении оборотов вала основного двигателя,
дополнительный вентилятор обеспечит надёжное охлаждение электродвигателя.

Мы имеем большой опыт модернизации электродвигателей для работы на низкой частоте.
На фото можно видеть винтовые насосы с дополнительными вентиляторами на электродвигателях.

Данные насосы используются в качестве дозирующих насосов на пищевом производстве.


Надеемся, что данная статья поможет вам правильно подключить электродвигатель к сети самостоятельно (ну или хотя бы понять, что перед вами не электрик, а «специалист широкого профиля»).


Технический директор
ООО «Насосы Ампика»
Моисеев Юрий.


Как переделать электродвигатель с 380 на 220

Если у вас есть трехфазный электродвигатель, вы знаете, что это недешевое удовольствие. Поэтому при необходимости использовать однофазный мотор, мысль о покупке нового оборудования посетит вас только тогда, когда вы не знаете, как сделать электродвигатель в домашних условиях. Мы расскажем, как переделать электрический двигатель с 380 на 220 Вольт своими руками.

Что можно переделывать

Для переделки подойдут маломощные электродвигатели 380 Вольт: до 3 кВт. Теоритически переподключаются и мощные моторы. Но это дополнительно повлечет за собой установку отдельного автомата в электрощите и проведение специальной проводки. И эти работы теряют смысл, если вдруг обнаруживается, что такую нагрузку не потянет вводной кабель.

Даже если ваша сеть держит высокие нагрузки, и вам удалось переделать двигатель от 3 кВт с 380 на 220 Вольт, вы огорчитесь при первом его пуске в ход. Запуск будет тяжелым. Вы решите, что труд был напрасным. Поэтому если переделывать, то именно маломощные модели.

Этапы переделки

Чтобы переделать электродвигатель с 380 Вольт на 220 сначала откиньте крышку мотора, чтобы посмотреть, сколько снаружи концов у статорных намоток. Их может быть 6 или 3. Если 6, то есть возможность поменять схему соединения: если была «звезда», можно перейти на «треугольник», и наоборот.

Если конца всего 3, значит, внутри короба намотки уже соединяются либо «звездой», либо «треугольником» (всего 6 концов, которые попарно объединяются клеммами, их и будет 3, так как на каждую клемму – 2 конца). В таком случае придется оставить прежнюю схему.

Внимание! Если вы решили поменять схему соединения статорных обмоток с тремя концами снаружи, то придется своими руками вскрыть корпус мотора. Это трудоемко, но возможно.

Соединение обмоток

Неважно, каков источник питания, трехфазный или однофазный, соединять статорные намотки можно любым из способов (можете прочитать подробнее про способы подключения электродвигателей):

  • Звезда;
  • Треугольник.

Звездой обычно соединяют намотки, если двигатель будет питаться от сети 380 В. Благодаря этому пуск становится плавным, хотя теряется треть мощности. Треугольник же рекомендуется при запитывании от 220 Вольт. Пусковые токи при этом не так высоки по сравнению с теми, что возникают от трехфазного питания. Зато мощность равна той, что дает «звездное» соединение, если мотор подключен к 380 В.

Схемы посмотрите ниже. Разница в том, что в первом случае соединяются все начала так, что получается трехконечная звезда. А во втором – конец одной обмотки соединяется с началом следующей так, что образуется фигура с тремя вершинами (треугольник).

Расчет конденсаторов

Когда концы намоток соединяют звездой или треугольником, образуется 3 места, где они стыкуются. На этих местах ставят клеммы. При питании от 380 Вольт на каждую из них подают фазу. Но наша задача, имея те же 3 контакта, подать лишь 1 фазу 220 Вольт и нуль. Это можно реализовать своими руками, компенсировав отсутствие трехфазного питания конденсаторами. Пусковой будет активным только на время запуска, а рабочий – постоянно.

Чтобы электрический двигатель хорошо запускался и работал, нужно правильно подобрать емкость конденсаторов. У рабочего накопителя она зависит от схемы соединения. Если это звезда, то работает формула:

Если треугольник, то формула преобразует свой вид:

Ср – искомая емкость рабочего накопительного элемента. U – напряжение в сети (220 Вольт). I – сила тока, которую находят по формуле:

Р – мощность, U – уже известное нам напряжение, ƞ – КПД, косинус «фи» — коэффициент мощности. Все эти значения можно посмотреть в техническом паспорте от вашего трехфазного мотора.

Расчет емкости пускового конденсатора (Сп) прост: умножьте Ср на 1,5 или 2. Если Ср=50 мкФ, то Сп будет от 75 до 100 мкФ. Поочередно ставьте то одну емкость, то другую, запуская каждый раз мотор. По звуку хода слушайте: если нет гула, то все в порядке.

Внимание! Конденсаторы обязательно должны быть бумажными. Для переделки двигателя своими руками хорошо идут МБГП или МБГО. Если не нашли накопителя нужной емкости, то соедините несколько штук параллельно.

Сборка по схеме

Схема выше показывает, как правильно соединить своими руками намотки статора с конденсаторами и проводами сети 220 В.  К одной из вершин треугольника или звезды нужно подключить накопительные элементы параллельно друг другу (предусмотрите ключ для ручного отключения пускового накопителя после разгона). Затем их выводят либо на фазу, либо на ноль: неважно. От этого будет зависеть только направление вращения вала.

Как поменять направление вращения

Если поменять направление нужно только 1 раз, то это можно сделать еще на стадии переделки. Для этого достаточно поменять местами любые две обмотки статора. Той же цели достигает перекидывание ветки конденсаторов с нуля на фазу, или наоборот. Но если вам нужно часто реверсировать трехфазный переделанный мотор, необходим переключатель. Собрав электродвигатель по схеме ниже, вы освободите себя от смены намоток каждый раз, когда нужно задать обратное направление вращения вала.

В переделке трехфазного электрического двигателя под однофазную сеть своими руками нет ничего трудного. Наибольшую сложность составит только расчет емкости рабочего конденсатора и экспериментальный подбор емкости из подсчитанного диапазона для пускового накопителя. Но и это становится легко, если вы не потеряли технический паспорт, а под рукой есть калькулятор.

Ещё по теме:
— Схемы подключения асинхронного и синхронного однофазных двигателей
— Схемы подключения электродвигателя через конденсаторы
— Реверсивная схема подключения электродвигателя
— Плавный пуск электродвигателя своими руками
—В чем разница асинхронного и синхронного двигателей
— Реверсивное подключение однофазного асинхронного двигателя своими руками
— Как проверить электродвигатель
— Ремонт электродвигателей

Как подключить электродвигатель 380 на 220 Вольт с конденсатором

Как подключить электродвигатель 380 на 220 Вольт

Содержание статьи

Очень часто под рукой оказывается двигатель, рассчитанный на работу в трехфазной сети, который нужно подключить к 220 Вольт. Сразу же нужно оговориться и сказать о том, что падение мощности трехфазного двигателя подключённого в однофазную сеть, неизбежно. Однако его можно компенсировать рабочим конденсатором подходящей емкости, который устанавливается вместо третьей фазы (выхода обмотки).

Наиболее предпочтительный вариант подключения электродвигателя к бытовой сети, это подключение трёх обмоток по схеме треугольника. В таком случае можно добиться максимальной выходной мощности электродвигателя, но, как правило, не более 70%, чем при трехфазном подключении.

Как именно подключить трехфазный двигатель к однофазной сети, читайте в этой статье строительного журнала samastroyka.ru

Как подключить электродвигатель 380 на 220 Вольт с конденсатором

Итак, подключать трехфазный двигатель к однофазной сети лучше всего по схеме «Треугольник». В таком случае электродвигатель будет работать на 70% от своей мощности. Есть еще схема подключения «Звезда». Однако в таком случае электродвигатель еще большое потеряет в мощности и будет работать не более чем на 50%.

При подключении трехфазного электродвигателя к однофазной сети, к двум выводам обмотки подсоединяется фаза и ноль. К третьему выводу необходимо подсоединить рабочий конденсатор нужной емкости. Такое подключение компенсирует все недостатки и дает возможность меньше всего потерять в мощности электродвигателя при переходе на однофазную сеть.

Важно! Именно подключение третьего вывода через конденсатор (к фазе или к нулю) задаёт направление вращение ротора электродвигателя. При этом частота вращения останется такой же самой, как и при работе электродвигателя в трехфазном режиме.

Схема подключения трехфазного электродвигателя

Электродвигатели небольшой мощности, до 1,5 кВт, можно подключать только через рабочий конденсатор. То есть, пусковой конденсатор для подключения трехфазного электродвигателя в данном случае не нужен.

Схему подключения трехфазного электродвигателя вы можете посмотреть ниже. Здесь, как и было сказано выше, один конец обмотки подключён к фазе, а другой к нулю. К третьему выводу обмотки подсоединён рабочий конденсатор, через ноль. Чтобы изменить направление движения двигателя, достаточно переподсоединить конденсатор через фазу.

В том случае, когда мощность электродвигателя более 1,5 кВт или же, когда двигатель запускается под нагрузкой, для подключения понадобится еще и пусковой конденсатор, который подключается параллельной рабочему конденсатору.

Важно знать, что пусковой конденсатор в отличие от рабочего, задействуется лишь на несколько секунд при включении электродвигателя. Расчет пускового и рабочего конденсатора для подключения электродвигателей производится по специальной формуле, о чем будет рассказано в следующем выпуске строительного журнала «САМаСТРОЙКА».

Оценить статью и поделиться ссылкой:

схемы, фото, видео урок как подключить через конденсатор

Автор Aluarius На чтение 7 мин. Просмотров 17.3k. Опубликовано

Для подключения электродвигателя 380 на 220 В можно воспользоваться разными схемами. Сразу же оговоримся, что оптимальный вариант подключение электрического двигателя, работающего на 380В, к трехфазной сети.

А что делать в том случае, если на участок заходят всего два провода (ноль и фаза), то есть на участок подается однофазное напряжение 220 вольт? Выход один – провести подключение электродвигателя 380 на 220 В, для чего можно воспользоваться разными схемами.

Схема подключения трехфазного двигателя к однофазной сети.

Сразу же оговоримся, что оптимальный вариант подключение электрического двигателя, работающего на 380В, к трехфазной сети. Это обеспечит и номинальную мощность прибора, и номинал вращения, отсюда и эффективность работы агрегата. Поэтому любое вмешательство в параметры создает условия снижения качества эксплуатации.

Схемы подключения

В основном подключение электрического двигателя к однофазной сети производится при соединении двух питающих проводов по схеме или треугольник, или звезда. В первом случае выходная мощность мотора будет отличаться от номинальной (то есть, при трехфазном подключении) на 30%. Во втором, на 50%. То есть, схема треугольник в данном случае является эффективной.

Из электродвигателя торчат три провода. Так вот фаза питающего провода подключается к одному из них, ноль к другому. А вот третий провод подключается к схеме через конденсатор.

Внимание! Вращение вала электродвигателя в ту или другую сторону зависит от того, к какому проводу будет подключен конденсатор: к фазе или к нулю. Чтобы изменить направление вращения, необходимо просто перебросить провода.

И третий параметр – это частота вращения. Так вот он от номинального не отличается. То есть, если электродвигатель вращается, к примеру, 1280 об/мин от трехфазной сети, то при подсоединении его к однофазной сети он будет вращаться с той же частотой.

Как выбрать конденсатор

Есть несколько нюансов, которые касаются количества подсоединяемых конденсаторов.

  1. Если мощность электромотора не превышает 1,5 кВт, то в схему можно устанавливать один рабочий конденсатор.
  2. Если же двигатель сразу при пуске работает под нагрузкой или его мощность превышает 1,5 кВт, тогда в схему придется установить два конденсатора: рабочий и пусковой. Оба элемента в схему вставляются параллельно. При этом последний будет работать только при запуске мотора, после чего он автоматически отключается.

По сути, схема подключения электродвигателя запитана на кнопку «Пуск» и на тумблер отключения питания. Чтобы запустить мотор, необходимо нажать на кнопку «Пуск» и удерживать ее до полного включения двигателя. Это можно контролировать даже на слух.

Подключение трехфазного двигателя в сеть 220В через конденсатор.

Иногда есть необходимость, чтобы электродвигатель работал то в ту, то в другую сторону. Это тоже несложная схема, в которую необходимо установить дополнительный тумблер переключения направления вращения ротора.

Один конец тумблера (основной) запитывается на конденсатор, второй на ноль, третий на фазу. Если при такой схеме подключения мотор набирает слабо обороты, или его мощность снижается, то придется установить дополнительно пусковой конденсатор.

Емкость конденсатора

Есть несколько параметров устанавливаемых в электродвигатель конденсаторов, которые придется рассчитывать под необходимый номинал мощности мотора. И один из них – это емкость. Чтобы ее определить, можно воспользоваться несколькими формулами.

  • Формула: C=2800x(I/U) – если схема подключения треугольник. И C=480x(I/U) – если звезда. При этом «I» – это сила тока, которую можно замерить электрическими клещами, «U» – это напряжение в сети переменного тока.
  • Формула: C=66xP, где «P» – мощность движка.

Есть более простой вариант определения емкости, в нем присутствует соотношение – на каждые 1,0 кВт мощности необходимо присоединять 70 мкФ. Кстати, в данном случае приходится именно подбирать.

Поэтому рекомендуется использовать конденсаторы разной емкости. Подключая их в схему, производится запуск движка, который должен работать корректно. Если необходимо уменьшить или увеличить емкость, то добавляется или уменьшается один из конденсаторов.

Внимание! При сборке схемы, необходимо проверять силу тока в обмотках. Она должна быть меньше, чем номинал данного показателя.

Что касается емкости пускового конденсатора, то он должен быть в 2,5-3,0 раза больше, чем у рабочего.

Пример подбора конденсаторов по емкости

Вводные данные:

  • Схема подключения – треугольник.
  • Сила тока электродвигателя – 3 А (указывается и на бирке прибора, и в паспорте).

Теперь данные подставляем в формулу: C=4800*(3/220)=65 мкФ. Конечно, такого конденсатора нет, но его можно заменить несколькими, соединенными параллельно между собой. К примеру, 10 штук по 6 мкФ, и один 5 мкФ. При этом емкость пускового прибора будет находиться в диапазоне 160-200 мкФ.

Обратите внимание, что этот расчет делается на номинальную мощность мотора. Поэтому если электрический агрегат будет работать без нагрузки, то будет все время греться. Поэтому стоит продумать ситуацию, для чего можно просто снизить емкость установленного блока конденсаторов.

Но данная ситуация – палка о двух концах. Все дело в том, что снижая емкость, снижается и мощность. Поэтому совет: установить в схему минимальный показатель емкости (в нашем случае 160 мкФ), а после проверки начинать поднимать его до оптимального значения.

И все же учитывайте тот факт, что работа без нагрузки – это быстрый выход из строя электродвигателя, который был переделан из прибора, подключаемого к сети 380В в сеть на 220В.

Тип конденсаторов

Какие же конденсаторы используются при подключении электродвигателя 380 на 220 вольт? Чаще всего это марки КБП, МБГП, МПГО, МБГО, все они бумажного типа в герметичном металлическом корпусе. У всех этих типов есть один недостаток – большие габаритные размеры при небольшой емкости. Поэтому связка из нескольких изделий – достаточно большая, что неудобно во всех отношениях.

Есть на рынке так называемые электролитические конденсаторы.

  • Во-первых, у них другая схема подключения двигателя 380В в сеть переменного тока. Сюда добавляются диоды и резисторы, что усложняет схему.
  • Во-вторых, вышедший из строя диод становится причиной того, что через конденсатор начинает перемещать ток большой силы. Конечный результат – взрыв последнего.
Полипропиленовые конденсаторы CBB.

И третий тип конденсаторов – это полипропиленовые элементы металлизированного типа, марка СВВ. Их форма может быть круглой или пластинчатой. Приборы высокого качества, небольших размеров и большой емкости. Их-то и рекомендуют сегодня устанавливать специалисты, когда стоит вопрос, как подключить электродвигатель 380 вольт на 220.

Напряжение конденсатора

Рабочее напряжение – один из основных параметров, на которые надо обязательно обращать внимание. Здесь две позиции:

  • Конденсатор с большим напряжением (от номинального) стоит дорого и имеет большие размеры. Установленный на электродвигатель он изменит размеры последнего, что не всегда удобно.
  • С меньшим напряжением. Эта ситуация приведет к перегреву прибора, и даже к взрыву.

Поэтому совет: умножаете напряжение в сети на 1,15 – это и будет напряжение конденсатора.

Полезные советы

  1. Конденсаторы всегда сохраняют на своих выводах высокое напряжение, поэтому эти приборы всегда надо огораживать.
  2. Работая с этими элементами, необходимо проводить их предварительную разрядку.
  3. Нельзя проводить подключение электродвигателя мощностью более 3,0 кВт к сети переменного тока. Сгорят автоматы и другие приборы, включенные в схему обвязки.
  4. Рабочее напряжение бумажных конденсаторов в два раза меньше от номинального, которое указано на их корпусе.

Заключение по теме

Как видите, подключать двигатель 380В в сеть 220В переменного однофазного тока не большая проблема. Конечно, теряется мощность, но в домашних условиях эксплуатации это не самое важное. Поэтому если вы решили своими руками сделать данное подключение, то в первую очередь правильно подберите конденсатор и определитесь со схемой.

Как подключить электродвигатель 380 на 220 Вольт?

Трёхфазный асинхронный электродвигатель при необходимости можно подключить и к однофазной электросети. Вал движка будет вращаться, но при этом, конечно же, не будет на нём той силы, которая существует при его трёхфазном подключении. Помимо вращающегося магнитного поля в статоре получается наложение электромагнитных полей трёх обмоток. Они и определяют силу и крутящий момент на валу. Но при однофазном включении трёхфазный асинхронный двигатель можно рассматривать и как крупногабаритную разновидность однофазного двигателя. Ведь в нем, по сути, присутствуют одна рабочая и две пусковые обмотки.

Штатное подключение к трёхфазной электросети предусматривает одну из схем соединения обмоток – либо «треугольник», либо «звезда». Поэтому электрические режимы обмоток при соединении их по схеме «треугольник» допускают напряжение 380 В как номинальное. При однофазном напряжении его величина равна 220 В. Это меньше чем при включении по схеме «треугольник» и поэтому безопасно для электрических режимов обмотки относительно надёжности изоляции и насыщения сердечников обмоток. Но уменьшение напряжение приводит к снижению уровня, как электрической мощности, так и мощности на вале движка.

Для чего нужен конденсатор?

Поэтому одну из обмоток надо присоединить в однофазной электросети напрямую. Чтобы остальные обмотки также давали максимальную отдачу их используют совместно при соединении через конденсатор, которым создаётся фазовый сдвиг напряжения на них. В результате получается такое же соединение обмоток по схеме «треугольник», но уже для однофазной электрической цепи с конденсатором. Но поскольку необходимое для вращения ротора пространственное перемещение магнитного поля создаётся конденсатором, имеет значение величина его ёмкости. Трёхфазный движок сконструирован для перемещения максимума магнитного поля в пределах 120 градусов. А при использовании конденсатора можно получить перемещение максимума магнитного поля только в пределах 90 градусов.

Поэтому при запуске двигателя ёмкости конденсатора может оказаться недостаточно. Чтобы увеличить пусковой момент потребуется увеличение ёмкости конденсатора. Однако после разгона ротора движка может получиться так, что добавленная ёмкость слишком велика для этого режима работы двигателя и при меньшей величине он работает лучше. Поэтому чтобы оптимизировать режим запуска и режим номинальных оборотов двигателя конденсаторов используется два. Один из них постоянно присоединён к электрической цепи, а другой присоединяется с использованием кнопки только при запуске электродвигателя.

Ещё одной особенностью конденсатора в электрической цепи с трёхфазным асинхронным двигателем является его присоединение относительно обмоток, фазного и нулевого проводов. Он подключается либо к обмоткам и фазному проводу, либо к обмоткам и нулевому проводу. В зависимости от этих подключений получается то или иное направление вращения ротора электродвигателя. Поэтому, добавив в электрическую цепь всего лишь один переключатель, можно управлять направлением вращения вала движка.


Как известно, ёмкость это не единственный параметр электрической цепи, который влияет на фазовый сдвиг напряжения и тока в ней. Индуктивность так же создаёт фазовый сдвиг в электрической цепи, но при ином соотношении угла между напряжением и током. Но если вместо конденсатора в электрическую цепь включить дроссель он существенно уменьшит силу тока в пусковых обмотках и в результате движок не запустится из-за слабого магнитного поля, которое эти обмотки создают. Поэтому конденсатор это единственный элемент, который пригоден для получения эффективного перемещающегося магнитного поля в статоре электродвигателя в однофазной электросети.

Как правильно подобрать конденсаторы?

Чтобы получить надёжную работу трёхфазного асинхронного двигателя в однофазной электросети конденсаторы надо правильно выбрать. При этом надо помнить о том, что величина 220 В напряжения однофазной электрической сети это величина условная, поскольку реально напряжение изменяется от нуля и до амплитудного значения, которое больше чем 220 В и равно примерно 310 В, то есть больше в 1,42 раза. Но реальные величины напряжения могут быть ещё больше. А поскольку для конденсатора существует номинальное напряжение, его величина при работе от электросети должна быть выбрана с небольшим запасом. Желательно использовать конденсаторы с номинальным напряжением 350 В.

Если нашёлся асинхронный движок предназначенный для трёхфазной электросети в которой величина фазного напряжения меньше 220 В вместо схемы «треугольник» надо применить схему «звезда». Конденсаторы также будут для такого варианта с иными величинами ёмкости применительно к мощности движка. Она является паспортной величиной и всегда указывается в сопроводительной документации к электродвигателю и обычно есть на его металлическом ярлыке, расположенном на корпусе (на шильдике). По величине мощности легко определить силу тока в номинально нагруженном движке. Для этого делится его мощность в Ваттах на 220.

Полученное значение умножается на коэффициент 12,73 для схемы «звезда» и на коэффициент 24 для схемы «треугольник». В результате получается ёмкость в микрофарадах. Ёмкость конденсаторов при запуске двигателя суммируется из двух конденсаторов. Дополнительный конденсатор подбирается опытным путём по запуску нагруженного движка. При опытах надо быть предельно аккуратным в обращении с заряженными конденсаторами. Поскольку рекомендуется применять различные модели металло- бумажных конденсаторов, они долго удерживают заряд. Поэтому рекомендуется припаять к клеммам конденсаторов резисторы с сопротивлением 3 – 5 кОм для ускорения их разряда.

Важно запомнить, что подключение двигателя 380 на 220 Вольт это всегда нестандартные решения. Всегда приходится идти на эксперимент. Его надо выполнять при строгом соблюдении мер безопасности.

Как подключить трехфазный двигатель к 220В

Рассмотрим сначала, почему считается, что двигатель питается от 380 вольт. Имейте счастье быть тремя фазами по 220 вольт. Самые простые вопросы отпугивают новичков, незнание теории порождает практические ошибки. Искренне благодарим энтузиастов, засыпавших Ютуб тренировочными роликами, без такого богатого материала сложно дать дельный совет по планированию подключения электродвигателя на 380 вольт 220 вольт с конденсатором.Приступим к реализации теории на практике.

Работа двигателя 380 В

Такие двигатели называются трехфазными двигателями. Имеют массу преимуществ перед обычными бытовыми, широко применяемыми в промышленности. Достоинства касаются большой мощности, экономичности. Именно в трехфазных двигателях можно обойтись без пусковых обмоток, конденсаторов при наличии достаточной мощности. Конструкции могут устранить лишние элементы. Пусковое реле холодильника, четко контролирующее целостность, время работы пусковой обмотки.Трехфазным двигателям доморощенные ухищрения не нужны.

Простой пример работы трех фаз

Почему так происходит? Благодаря наличию трех фаз можно создать вращающееся электромагнитное поле внутри статора без дополнительных настроек. Посмотрим рисунок. Для простоты показан ротор с двумя полюсами, статор содержит катушку на каждую фазу переменного тока. Конфигурация типовых двигателей на 380 вольт более сложная, упрощение не помешает объяснить суть процессов, происходящих внутри.

На рисунке синим цветом показаны отрицательно заряженные поля, красным — положительные. В начальный момент статор лишен знака, три катушки белые. Ротор в нашем предположении сделан из постоянных магнитов, окрашен и находится в произвольном положении. Полюсов всего два. Далее движемся по схемам:

  1. Первой картинке присвоена фаза B со знаком минус, две другие заряжены слегка положительно (около трети амплитуды), схематично показаны бледно-розовым цветом.Положительный полюс ротора сместился на катушку B. Слабое положительное поле переменного тока притягивало южный полюс ротора. Поскольку уровень заряда одинаков, центр полюса находится точно посередине.
  2. В следующий раз (после 60 градусов, примерно 3,3 мс) южный полюс появится в фазе А статора. Ротор вращается на 60 градусов по часовой стрелке. Слабые отрицательные поля фаз B, C удерживают между собой положительный полюс ротора.
  3. В это время северный полюс статора находится в фазе C, ротор продолжает вращаться еще на 60 градусов.Дальнейшая картина должна быть ясной.

Трехфазный электродвигатель

В результате правильного распределения трех фаз поле статора вращается, увлекая ротор. Скорость не совпадает с сетью 50 Гц. Обмотка статора больше, число полюсов ротора другое. Кроме того, существует явление проскальзывания, зависящее от амплитуды напряжения, многие другие факторы. Нюансы используются для регулировки скорости вращения вала мотора.Вблизи мы подошли к решению проблемы напряжения 380 вольт. Состоит из трех фаз с активным напряжением 220 вольт (как в розетке). Возьмите разницу между любыми двумя в любой момент, значение превышает указанное значение.

Получается 380 вольт. Трехфазный двигатель использует для работы три напряжения с рабочим значением 220 вольт, сдвиг между ними составляет 120 градусов. Это легко проследить по графику на нашем рисунке. Вот почему у многих возникает соблазн использовать оборудование дома, чтобы начать использовать одну фазу, питаемую от розетки.Совершенно невозможно сделать, как должно быть понятно, приходится изобретать уловки. Самый простой — использование конденсатора. Прохождение емкости изменяет фазу напряжения на 90 градусов. Разница меньше 120, что хотели получить в идеале.

На практике подключение электродвигателя через конденсатор работает отлично. На самом деле реализовать идею немного сложно.

Пуск трехфазного двигателя 380 В от домашней сети

Во-первых, нужно знать, как производится электрическая коммутация обмоток.Обычно корпус двигателя снабжен защитной крышкой, закрывающей электрическую проводку. Нам нужно снять щиток, приступаем к изучению схемы. Чаще всего показана схема электрических соединений. Для запуска трехфазной сети используется коммутация «звезда». Концы трех обмоток имеют одну общую точку, называемую нейтралью, на противоположную сторону подаются фазы. По одному на каждую обмотку. Получено рассмотренное выше распределение поля.


Объединение обмотки двигателя треугольником

Подключив асинхронный двигатель 380 к 220 вольт, потрудитесь изменить коммутацию.Электрическая схема, управляемая шильдиком корпуса, пригодится. Согласно рисунку обмотки двигателя совмещены треугольником. Каждый на обоих концах соединяется с другим. Давай посмотрим что происходит. Чем отличается техника от обычного использования оборудования. Для простоты на рисунке показана схема включения конденсатора. Это может выглядеть так:

  • На обмотку С подается напряжение сети 220 В.
  • На обмотку А напряжение поступает через рабочий конденсатор в фазосдвигающем состоянии на 90 градусов.
  • На обмотке B есть разница между этими напряжениями.

Посмотрим схемы: как это будет выглядеть почти. Фазовый сдвиг неравномерный. Между пиками, на которых нанесены диаграммы, отведены 90 и 45 градусов. В результате вращение в принципе лишено возможности быть равномерным. Фазовая форма обмотки B отличается от синусоидальной. Пуск трехфазного двигателя в сеть 220 вольт сопровождается наличием потерь энергии.Процесс возможен. Часто возникает такое явление, как прилипание. Неправильная форма поля внутри статора бессильна выкрутить статор.

Схема подключения двигателя несколько упрощенная, отличная от норм оформления чертежей конструкторской документации. Видимость картинки очевидна. Конденсатор схемы рабочий, запускается. Необходимо усилить крутящий момент на начальном этапе. Любой асинхронный двигатель при запуске потребляет больше тока, много энергии тратится на первое движение.Конденсатор обычно подключают параллельно рабочему конденсатору, он подключается к цепи нажатием специальной кнопки. Например, вы можете отметить как «Ускорение».

Когда вал набирает скорость, пусковая мощность становится ненужной, сопротивление движению вала уменьшается. Отпустив кнопку «Ускорение», мы исключаем элемент из сети. Чтобы пусковая емкость разряжалась (напряжение может достигать 300 В), замыкаем сопротивление на значительную величину, через которую ток в рабочем состоянии не пойдет.Постепенно электроны компенсируются, опасность разрушения исчезнет. Возникает простой вопрос — как выбрать рабочую, пусковую мощность? Подключить мотор 380 В к 220 В задача не из легких. Давайте рассмотрим ответ.

Выбор значений рабочей и пусковой емкости для подключения трехфазного двигателя 220 В

Прежде всего, обратите внимание: рабочее напряжение конденсаторов должно значительно перекрывать номинальное значение 220 В. Подключение 380 двигатель до 220 вольт сопровождается появлением гораздо более значительных напряжений.Среди пусковых и рабочих конденсаторов исключить элементы с рабочим напряжением ниже 400 вольт. Практика накладывает корректировки, придется за руку ловиться. Обратите внимание на провода. Токи в технической документации приведены для напряжения 220 В. В рассматриваемой схеме используются другие значения. Возможно, потребуется пересчитать величину токов.

На практике, если рабочая мощность слишком мала, вал «заедает». Двигатель мог бы заработать, если дать начальное ускорение, если 4-киловаттный зверь бьется пальцами, винить некого.Получается, что номинальная емкость определяется как минимум двумя параметрами:

  1. Двигатель мощный, следует применять конденсатор большего номинала. При 250 Вт достаточно значений в десятки мкФ, при более значительных мощностях значение исчисляется сотнями. Логично заранее запастись солидным набором конденсаторов. Желательно брать пленочные, электролизеры без специальных мер запрещены, рассчитаны на работу в сетях постоянного тока. При подключении переменного тока напряжением 220 В может просто взорваться.
  2. Чем выше частота вращения двигателя, тем больше емкость пускового конденсатора. Достигнув разницы в несколько раз, значение емкости увеличивается на порядок (в 10 раз). Для запуска двигателя мощностью 2,2 кВт при 3000 об / мин попробуйте запастись аккумулятором на 200-250 мкФ. Очень важно. Емкость Земли мФ.

Емкость пускового конденсатора сильно зависит от приложенной нагрузки. Мотор, работающий на шкиве, потребляет много энергии, увеличивается объем аккумулятора.Попробуем подобрать значения. Практические примечания: более стабильно работает двигатель на 380 В от однофазной сети, когда напряжения на плечах конденсаторов равны. Обмотку, работающую напрямую от сети, не трогаем, измеряем потенциал двух других. Как получается, что величина емкости определяет напряжение?

Асинхронный двигатель характеризуется собственным реактивным сопротивлением. При включении образуется разделитель. Красиво нарисованные схемы, на практике форма фаз может существенно различаться.Определяется реактивное сопротивление вышеуказанного набора параметров. Конструкция двигателя, определяющая величину мощности, скорость вращения, нагрузку на вал. Ряд параметров, которые теоретически не могут быть учтены в рамках опроса. Поэтому практики просто рекомендуют сначала найти минимальный размер батареи, при котором двигатель начинает вращаться, а затем постепенно увеличивать номинал, пока напряжение на обмотках не станет равным.

После раскрутки движка может быть: нарушено равенство.Сопротивление движению вала упало. Перед тем как окончательно подключить электродвигатель от 380 до 220, определитесь с условиями работы, постарайтесь обеспечить указанное равенство.

Обратите внимание: фактическое значение может превышать 220 вольт. Напряжение можно выставить 270 В. Перед тем, как подключать мотор через конденсатор, позаботьтесь о контактах. Обеспечьте надежную стыковку, чтобы избежать потерь, перегрева в местах протекания тока. Коммутацию лучше вести к специальным клеммам, затягивая болтами.После окончательного подбора параметров электрическую часть следует закрыть кожухом, пропустив провода через резиновое уплотнение боковой стенки отсека.

Мы считаем, что теперь читатели могут легко запустить двигатель, ракету, сельское хозяйство …

Бывают ситуации, когда оборудование, рассчитанное на 380 вольт, необходимо подключить к домашней сети 220 В. Так как двигатель не запускается, нужно поменять в нем некоторые детали. Это легко можно сделать самостоятельно. Несмотря на то, что эффективность несколько снижается, такой подход оправдан.

Трехфазные и однофазные двигатели

Чтобы понять, как подключить электродвигатель от 380 до 220 вольт, мы узнаем, что означает питание от

Трехфазные двигатели имеют много преимуществ по сравнению с бытовыми однофазными двигателями . Поэтому их использование в промышленности широко. И дело не только в мощности, но и в КПД. К ним также относятся пусковые обмотки и конденсаторы. Это упрощает конструкцию механизма. Например, пусковое защитное реле холодильника отслеживает, сколько обмоток обрезано.А в трехфазном двигателе этот элемент больше не нужен.

Это достигается за счет трех фаз, во время которых электромагнитное поле вращается внутри статора.

Почему 380 В?

Когда поле внутри статора вращается, ротор также перемещается. Обороты не совпадают с пятидесяти Герцами сети из-за того, что обмоток больше, количество полюсов отличное, а проскальзывание происходит по разным причинам. Эти индикаторы используются для регулирования вращения вала двигателя.

Все три фазы имеют значение 220 В. Однако разница между любыми двумя из них в любой момент будет отличаться от 220. Так получится 380 вольт. То есть двигатель использует для работы 220 В, с фазовым сдвигом в сто двадцать градусов.

Поскольку невозможно напрямую подключить электродвигатель с напряжением 380 вольт к 220 вольт, приходится прибегать к хитростям. Конденсатор считается самым простым способом. Когда контейнер проходит фазу, последняя изменяется на девяносто градусов.Хоть и не дотягивает до ста двадцати, но этого достаточно для запуска и работы трехфазного двигателя.

Как подключить электродвигатель от 380 В до 220 В

Для реализации поставленной задачи необходимо понимать, как устроены обмотки. Обычно корпус защищен кожухом, а под ним расположена проводка. Сняв его, нужно изучить содержимое. Часто здесь можно найти схему подключения. Для подключения к сети 380-220 используется коммутация в виде звезды.Концы обмоток находятся в общей точке, называемой нейтралью. Фазы подаются на противоположную сторону.

«Звездочку» надо будет поменять. Для этого обмотку двигателя необходимо соединить другой формы — в виде треугольника, соединив их на концах друг с другом.

Как подключить электродвигатель от 380 до 220: схемы

Схема может выглядеть так:

  • сетевое напряжение подается на третью обмотку;
  • , то напряжение первой обмотки пройдет через конденсатор с фазовым сдвигом девяноста градусов;
  • вторая обмотка будет зависеть от разницы напряжений.


Понятно, что сдвиг фазы будет девяносто сорок пять градусов. Из-за этого вращение не равномерное. Кроме того, форма фазы на второй обмотке не будет синусоидальной. Поэтому после подключения трехфазного электродвигателя на 220 вольт будет возможно, без потери мощности реализовать это невозможно. Иногда вал даже заедает и перестает крутиться.

Работоспособность

После набора оборотов пусковая мощность больше не понадобится, так как сопротивление движению станет незначительным.Чтобы уменьшить емкость, ее сокращают до сопротивления, через которое больше не проходит ток. Для правильного выбора рабочей и пусковой емкости необходимо в первую очередь учесть, что напряжение рабочего конденсатора должно существенно перекрываться 220 вольт. Как минимум должно быть 400 В. Еще нужно обратить внимание на провода, чтобы токи были рассчитаны на однофазную сеть.

Если рабочая мощность слишком низкая, вал заедает, поэтому для него используется начальное ускорение.

Работоспособность также зависит от следующих факторов:

  • Чем мощнее двигатель, тем больше потребуется конденсатор. Если значение 250 Вт, то хватит нескольких десятков мкФ. Однако если мощность больше, то номинал можно считать сотнями. Конденсаторы лучше покупать пленочные, т. К. Электрика придется доработать (они рассчитаны на постоянный, а не на переменный ток и без переделки могут взорваться).
  • Чем выше частота вращения двигателя, тем выше рейтинг.Если взять двигатель на 3000 об / мин и мощность 2,2 кВт, то АКБ потребуется от 200 до 250 мкФ. А это огромная ценность.

Эта емкость также зависит от нагрузки.


Заключительный каскад

Известно, что 380 В в 220 Вольт будет работать лучше, если напряжения будут получены с равными значениями. Для этого не следует трогать подключаемую к сети обмотку, но измеряют потенциал на обеих других.

Асинхронный двигатель свой.Необходимо определить минимум, при котором он начинает вращаться. После этого номинал постепенно увеличивают до тех пор, пока все обмотки не будут выровнены.

Но при раскрутке двигателя может оказаться, что равенство будет нарушено. Это связано с уменьшением сопротивления. Поэтому перед тем, как подключить мотор от 380 до 220 вольт и закрепить, нужно сравнить значения даже при работающем агрегате.

Напряжение может быть выше 220 В. Следите за стабильным соединением контактов, отсутствием потери питания или перегрева.Лучшее переключение происходит на специальных клеммах с фиксированными болтами. После подключения электродвигателя от 380 до 220 вольт он получился с нужными параметрами, кожух снова надевается на блок, а провода пропускаются по бокам через резиновую прокладку.

Что еще может случиться и как решить проблемы

Часто после сборки обнаруживается, что вал вращается не в том направлении, в котором это необходимо. Направление нужно менять.

Для этого третья обмотка через конденсатор подключается к резьбовому выводу второй обмотки статора.


Бывает, что из-за длительной работы со временем появляется шум двигателя. Однако этот звук совершенно другого рода по сравнению с гудением при неправильном подключении. Это происходит со временем и вибрацией мотора. Иногда даже приходится с силой вращать ротор. Обычно это вызвано износом подшипников, который вызывает слишком большие зазоры и шум. Со временем это может привести к заклиниванию, а в дальнейшем — к повреждению деталей двигателя.

Лучше не допускать этого, иначе механизм придет в негодность.Подшипники легче заменить на новые. Тогда электродвигатель прослужит еще много лет.

С такой проблемой приходится сталкиваться со многими старательными хозяевами, которые привыкли все делать своими руками. В том числе и для сбора различного оборудования для хозяйственных нужд; например циркулярная пила на участке, эл / наждак, небольшой лифт в гараже и тому подобное.

Учитывая, сколько стоит электродвигатель, лучше адаптировать имеющийся трехфазный образец для работы от 1 фазы, тем самым адаптируя его к домашней электросети / сети, чем покупать новый.Вам просто нужно понять, как и какой электродвигатель лучше переделать с 380 вольт на 220, чтобы не тратить лишние деньги, и разобраться в существующих схемах их включения.

Что следует учитывать

  1. Переделка с 380 на 220 имеет смысл, если мы говорим об электродвигателе относительно небольшой мощности — до 2,5, но не более (это максимум) 3 кВт. В принципе, ограничений по этой характеристике нет. Но при этом, скорее всего, вам потребуется провести ряд мероприятий и потратить определенное количество денег и времени.
  • Перенести вводный кабель к источнику питания, а также придется иметь дело с поставщиком электроэнергии в части увеличения лимита. Не следует забывать, что для частных домохозяйств установлен лимит эн / потребления; как правило, в 15 кВт. «Влезет» ли в него новая нагрузка в виде мощного электродвигателя? Выдержит ли оригинальный кабель?
  • Для такого прибора надо от силового щита проложить отдельную линию и поставить индивидуальный автомат, как минимум.Просто так подключить его через розетку вряд ли получится; лучше не экспериментировать.
  • Практика переделок показывает, что даже если все сделать правильно, будет еще одна проблема с запуском. «Запуск» мощного электродвигателя будет тяжелым, с длительным нарастанием, скачками напряжения. Такая перспектива мало кому подойдет, особенно если что-то собирают не на дачном участке, а на территории, прилегающей к жилому строению.Пока будет самодельная установка на базе этого двигателя, начнутся сбои в работе бытовой техники. Проверено, и не раз.
  1. Порядок работ по переделке зависит от внутренней схемы электродвигателя. В одних моделях на клеммную коробку выводится всего 3 провода, в других — 6.


В чем разница? В первом случае обмотки уже подключены по одной из своих традиционных цепей — «звезда» или «треугольник», поэтому для маневрирования (в части модификации) возможности несколько меньше.

Вариантов немного — оставить первоначальное включение или разобрать двигатель и повторно сдать второй конец. Если все шесть выведены, то их можно подключить по любой из схем, без ограничений. Главное — выбрать тот, который будет оптимальным для конкретной ситуации (мощность электродвигателя, специфика его применения). .

Как переделать электродвигатель

Схема

Если учесть, что мощность электродвигателя небольшая (то есть не нужно будет его отключать при пуске), а питание планируется от сети 220, то оптимальной схемой является «треугольник».То есть нет необходимости акцентировать внимание на высоких пусковых токах (их не будет), а потери мощности практически сведены к нулю (им можно пренебречь). Все это наглядно показано на рисунке.

Если в электродвигателе схема изначально собрана по «треугольнику», то в ней ничего менять не нужно.

Расчет рабочих емкостей

Так как вместо 3 фаз теперь будет только одна, то она подается на каждую из обмоток, но с небольшим сдвигом синусоиды.По сути включение конденсаторов — это имитация электродвигателя от источника 380 / 3ф. Формулы для расчета рабочих конденсаторов показаны на рисунках ниже.

Ставить их по принципу «больше — лучше», что часто делать домашние умельцы, не особо разбирающиеся в электротехнике, не должны. Только на основании расчетов требуемого номинала. В противном случае возможен перегрев мотора / мотора. Если он стоит на заводском оборудовании (например, переделке подвергается газонокосилка), то нужно будет либо устраивать постоянные перерывы в работе, либо готовиться к внеплановым ремонтам и неоправданным финансовым затратам на новый «движок». .

Примечание:
  • Емкости к обмоткам электродвигателя подбираются не только по номиналу, но и по рабочему напряжению. Если речь идет о переделке с 380 на 220, то U p не должно быть меньше 400 В.
  • Немаловажным фактором является разнообразие конденсаторов. Во-первых, они должны быть одного типа. Во-вторых, только не электролитический. Оптимальный, бумажный; например, старая серия КГБ, МБГ (и их модификации) или ее современные аналоги.Они удобны в застегивании (есть люверсы) и легко выдерживают скачки температуры, силы тока, напряжения.

Для схемы «звезда»

Для схемы «треугольник»

Вы можете увидеть весь процесс в действии на видео:

На практике инженерными расчетами мало кто из знающих людей занимается. Есть определенные пропорции, позволяющие достаточно точно подобрать рабочий конденсатор к конкретному электродвигателю.

Соотношение легко запомнить: на каждые 100 Вт мощности «двигателя» — 7 мкФ рабочей мощности. То есть для изделия мощностью 2 кВт нужно включить в обмотки конденсаторы на 7 х 20 = 140 мкФ.

В чем сложность? Найти емкость с таким рейтингом вряд ли получится. Есть простое решение — взять несколько конденсаторов и подключить параллельно. В результате небольших подсчетов несложно подобрать их необходимое количество с общей емкостью требуемого значения.Тем, кто забыл школу, можно сказать — при таком способе подключения конденсаторов добавляется их емкость.


Запуск

Эта емкость требуется не всегда. Его ставят в схему только в том случае, если при пуске вала двигателя создается значительная нагрузка. Примеры — мощное вытяжное устройство, циркулярная пила. Но для той же газонокосилки хватит и рабочих конденсаторов.

Расчет прост — значение Cn должно превышать Cp на 2,5 (плюс / минус).Здесь не требуется особой точности; размер пусковой емкости определяется приблизительно. Дальнейший анализ работы электродвигателя в разных режимах подскажет, увеличит или уменьшит его.


Кстати, это касается рабочих конденсаторов. Дело в том, что все расчеты априори предполагают, что электродвигатель новый, ни разу не использованный в эксплуатации. А так как большая часть используемых продуктов переделывается, по ходу работы выяснится, что пользователю это не нравится.Вариантов очень много — плохой запуск, быстрый нагрев корпуса и так далее.

Вывод такой — подобрать баки для переделки ДВС / ДВС с 380 на 220, это еще не все. Вначале нужно внимательно следить за его работой в разных режимах. Только так, экспериментируя, заменяя конденсаторы на их номинальные значения, можно выбрать идеальное значение емкости для конкретного продукта.

Как организовать реверс

Иногда необходимо изменить направление вращения вала без дополнительных переделок.Это вполне возможно для электродвигателя на 380, питающегося от 220. Как видно из рисунка, в этом нет ничего сложного, нужен только переключатель на 2 положения.

Трехфазные асинхронные двигатели с короткозамкнутым ротором преобладают над применяемыми однофазными и двухфазными сборками, имеют более высокий КПД, а также включаются в сеть без помощи пусковых устройств. По номинальному питанию бытовые электродвигатели делятся на два типа: напряжением 220/380 и 127/220 Вольт.Последний тип электродвигателей малой мощности используется гораздо реже.

Паспортная табличка, расположенная на корпусе двигателя, указывает необходимую информацию — напряжение питания, мощность, потребляемый ток, КПД, возможные варианты включения и коэффициент мощности, количество оборотов.

Схемы подключения ЗВЕЗДА и ТРЕУГОЛЬНИК

Производители предлагают трехфазные электродвигатели с возможностью изменения схемы подключения и без нее.


Раннее обозначение выводов обмоток С1-С6 соответствует современным U1-U2, W1-W2 и V1-V2.В раздаче. К коробке выводится три провода (заводская установка по схеме подключения звезда *) или шесть (двигатель можно подключать к трехфазной сети как звездой, так и треугольником). В первом случае необходимо соединить начало обмоток (W2, U2, V2) в одной точке, три оставшихся провода (W1, U1, V1) подключить к фазам питающей сети (L1, L2 , L3).


Достоинством звездного метода является плавный пуск двигателя и плавная работа (за счет щадящего режима и благоприятно влияющего на срок службы агрегата), а также меньший пусковой ток.Недостаток — потеря мощности примерно в полтора раза и меньший крутящий момент. Применяется для оборудования, имеющего свободно вращающуюся нагрузку на валу — вентиляторов, центробежных насосов, валов машин, центрифуг и другого оборудования, не требовательного к крутящему моменту. Схема треугольника используется для двигателей, которые изначально имеют на валу неинерциальную нагрузку, такую ​​как вес груза лебедки или сопротивление поршневого компрессора.
Для снижения пускового тока комбинированный тип подключения (применим для электродвигателей мощностью 5 кВт) — совмещающий преимущества первых двух схем — звезда начинает работать, а после электродвигателя переходит в рабочее состояние происходит автоматическое (реле времени) или ручное переключение (пакер) — мощность увеличивается до номинальной.

Включение трехфазного двигателя в однофазную сеть через конденсатор (380 на 220)

На практике часто бывает необходимо подключить трехфазный двигатель к сети 220 вольт; Хотя КПД при этом падает до 50% (в лучшем случае до 70%), такая перестановка оправдана. Фактически двигатель начинает работать как двухфазный двигатель с использованием фазосдвигающего элемента.
Конденсатор подбирается исходя из мощности двигателя — на каждые 100Вт потребуется емкость 6,5 мкф , рабочее напряжение должно быть больше 1.В 5 раз больше минимума питания, иначе могут выйти из строя из-за скачков напряжения в момент включения и выключения; тип — МБГО, МБГ4, К78-17 МБХП, К75-12, БГТ, КГБ, МБХЧ. Хорошо зарекомендовали себя конденсаторы из металлизированного полипропилена типа СВБ5, СВБ60, СВБ61. В случае использования конденсатора большего размера двигатель будет перегреваться, меньше — он будет работать в режиме недогрузки или вообще не запустится. На схеме ниже Cn — пусковой, Cp — рабочий конденсатор.

Пусковой конденсатор с нагрузкой на вал двигателя

В случае, если на валу есть нагрузка, или мощность превышает 1.5 кВт двигатель может не заводиться или медленно набирать обороты. * Правильно * это может быть использование рабочего и пускового конденсатора, служащего для сдвига фаз и ускорения. Кнопку ускорения необходимо удерживать до тех пор, пока число оборотов не достигнет примерно 70% от номинальной скорости (2–3 секунды), затем отпустите.


Емкость пускового конденсатора должна превышать рабочую в 2..3 раза в зависимости от нагрузки на валу. Если получить указанные выше конденсаторы нужной емкости проблематично, можно использовать электролитические, впаянные по специальной схеме с диодами.Однако при эксплуатации мощных машин такой замены следует избегать и рекомендовать только для временного включения.

Важно!

Электродвигатель мощностью более 3 кВт не рекомендуется подключать к домашней сети из-за его малой нагрузочной способности.
Автоматический выключатель в цепи питания двигателя должен иметь временную характеристику C или D из-за значительного кратковременного пускового тока, превышающего номинальный ток в 3 и 5 раз (звезда / треугольник) соответственно.
Если трехфазный электродвигатель долгое время проработает без нагрузки от однофазной сети, он сгорит!
При выборе правильного подключения или переключения необходимо учитывать особенности электрической сети, выходную мощность электродвигателя и варианты подключения. В каждом случае следует ознакомиться с техническими характеристиками мотора и оборудования, для которого он предназначен.

Стоимость подключения электромотора специалисту — 800…. 2000р. в зависимости от сложности, варианта подключения, условий эксплуатации.

С развитием любой гаражной мастерской может возникнуть необходимость подключить трехфазный электродвигатель к однофазной сети 220 вольт. Это неудивительно, поскольку промышленные трехфазные двигатели на 380 В встречаются чаще, чем однофазные (на 220 В), особенно больших габаритов и мощности. А сделав какой-то станок, или купив готовый (например токарный), любой мастер гаража сталкивается с проблемой подключения трехфазного электродвигателя к обычной розетке 220 вольт.В этой статье мы рассмотрим варианты подключения, а также то, что для этого потребуется.

Во-первых, следует внимательно изучить паспортную табличку электродвигателя, чтобы узнать его мощность, так как эта емкость будет зависеть от емкости или количества конденсаторов, которые необходимо будет приобрести. И прежде чем отправиться на поиски и приобрести конденсаторы, для начала необходимо рассчитать, какая емкость потребуется вашему двигателю.

Расчет емкости.

Емкость желаемого конденсатора напрямую зависит от мощности вашего электродвигателя и рассчитывается по простой формуле:

C = 66 П мкФ.

Буква C обозначает емкость конденсатора в мкФ (микрофарад), а буква P обозначает номинальную мощность электродвигателя в кВт (киловатт). Из этой простой формулы видно, что на каждые 100 Вт мощности трехфазного двигателя требуется чуть менее 7 мкФ (а точнее 6,6 мкФ) электрической емкости конденсатора. Например для эл. Для двигателя мощностью 1000 Вт (1 кВт) потребуется конденсатор емкостью 66 мкФ, а для электрического. для двигателя мощностью 600 Вт потребуется конденсатор емкостью примерно 42 мкФ.

Также следует учесть, что требуются конденсаторы, рабочее напряжение которых в 1,5-2 раза превышает напряжение в обычной однофазной сети. Обычно на рынок поступают конденсаторы небольшой емкости (8 или 10 мкФ), но необходимая емкость легко собирается из нескольких параллельных конденсаторов небольшой емкости. То есть, например, 70 мкФ можно легко получить из семи параллельно соединенных конденсаторов по 10 мкФ.

Но всегда нужно стараться найти по возможности один конденсатор емкостью 100 мкФ, чем 10 конденсаторов по 10 мкФ, так это безопаснее.Ну а рабочее напряжение, как я уже сказал, должно быть как минимум в 1,5 — 2 раза больше рабочего напряжения, а лучше в 3 — 4 раза больше (чем больше напряжение, на которое рассчитан конденсатор, тем надежнее и долговечнее). Рабочее напряжение всегда написано на корпусе конденсатора (как и в мкФ).

Правильно у вас есть (рассчитано) емкость конденсатора или нет, можно и на слух. Когда двигатель вращается, должен быть слышен только шум подшипников, а также шум вентилятора воздушного охлаждения.Если же к этим шумам добавляется шум двигателя, необходимо немного уменьшить емкость (Cp) рабочего конденсатора. Если звук нормальный, то можно немного увеличить мощность (чтобы мотор был мощнее), но только чтобы мотор работал тихо (до завывания).

Проще говоря, нужно поймать момент, меняя мощность, когда к нормальному шуму от подшипников и крыльчатки начнет добавляться еле слышный посторонний вой.Это и будет необходимая емкость рабочего конденсатора. Это важно, так как если емкость конденсатора будет больше, чем необходимо, двигатель будет перегреваться, а если емкость будет меньше необходимой, двигатель потеряет свою мощность.

Купите лучше конденсаторы типа МБГЧ, БГТ, КБГ, ну а если вы не найдете таких в продаже, можно применить и электролитические конденсаторы. Но при подключении электролитических конденсаторов их корпуса должны быть хорошо соединены и изолированы от корпуса станка или коробки (если она металлическая, но лучше использовать коробку для конденсаторов из диэлектрика — пластика, текстолита и т. Д.)).

При подключении трехфазного двигателя к сети 220 вольт скорость вращения его вала (ротора) не сильно изменится, но его мощность все равно немного уменьшится. А если подключить электродвигатель по треугольной схеме (рис. 1), то его мощность уменьшится примерно на 30% и составит 70-75% от номинальной мощности (при чуть меньше звезды). Но возможно соединение звездой по схеме (рис. 2), а при подключении звезды двигатель запускается легче и быстрее.

Для подключения трехфазного двигателя звездообразной формы необходимо подключить его две фазные обмотки к однофазной сети, а третью фазную обмотку двигателя через рабочий конденсатор Cp подключить к любому из проводов цепи 220 В. -V сеть.

Для подключения трехфазного электродвигателя мощностью до 1,5 киловатт (1500 ватт) достаточно только рабочего конденсатора необходимой мощности. Но при включении больших моторов (более 1500 Вт) двигатель либо очень медленно набирает обороты, либо вообще не запускается.В этом случае требуется пусковой конденсатор (Cn в схеме), емкость которого в два с половиной раза (желательно в 3 раза) больше емкости рабочего конденсатора. Лучше всего они подходят в качестве пусковых электролитических конденсаторов (типа ЭП), но можно использовать и того же типа, что и рабочие конденсаторы.

Схема соединения трехфазного двигателя с пусковым конденсатором показана на рисунке 3 (а также пунктирной линией на рисунках 1 и 2). Пусковой конденсатор включается только во время пуска двигателя, а когда он запускается и набирает рабочие обороты (обычно 2 секунды), пусковой конденсатор отключается и разряжается.В этой схеме используются кнопка и тумблер. При запуске тумблер и кнопка включаются одновременно, а после запуска двигателя кнопка просто отпускается, и пусковой конденсатор выключается. Для разрядки пускового конденсатора достаточно выключить двигатель (после окончания работы), а затем кратковременно нажать кнопку пускового конденсатора и он разрядится через обмотки мотора.

Определение фазных обмоток и их выводы.

При подключении необходимо знать, где какая обмотка электродвигателя. Как правило, выводы обмоток статора электродвигателей маркируются различными метками, обозначающими начало или конец обмоток, либо маркируются буквами на корпусе распределительной коробки двигателя (или клеммной колодки). Ну а если маркировка стерта или ее нет вообще, то нужно прозвонить обмотки с помощью (мультиметра), установив его переключатель на циферблат, либо с помощью обычной лампочки и батарейки.

Для начала необходимо выяснить принадлежность каждого из шести проводов отдельным фазам обмотки статора. Для этого возьмите любой из проводов (в клеммной коробке) и подключите его к аккумулятору, например, к его плюсу. Минус батареи подключаем к контрольной лампе, а второй вывод (провод) от лампочки по очереди подключаем к оставшимся пяти проводам двигателя до тех пор, пока контрольная лампа не загорится. Когда на каком-то проводе загорается свет, это означает, что оба провода (один от аккумулятора и тот, к которому был подключен провод от лампы и лампа горит) принадлежат одной фазе (одна обмотка).

Теперь отметьте эти два провода картонными бирками (или малярной лентой) и напишите на них маркер первого провода C1 и второго провода обмотки C4. С помощью лампы и батарейки (или тестера) аналогично находим и отмечаем начало и конец оставшихся четырех проводов (двух оставшихся фазных обмоток). Обозначим конец обмотки второй фазы как C2 и C5, а начало и конец обмотки третьей фазы C3 и C6.

Далее необходимо точно определить, где находятся начало и конец обмоток статора.Далее я опишу метод, который поможет определить начало и конец обмоток статора для двигателей до 5 киловатт. Да большего не надо, так как однофазная сеть (разводка) гаража рассчитана на мощность 4 киловатта, а если мощнее, то стандартные провода не выдержат. И вообще мало кто пользуется в гараже двигателями мощнее 5 киловатт.

Для начала соединяем все начала фазных обмоток (С1, С2 и С3) в одну точку (с метками, помеченными метками) по схеме «звезда».А потом подключаем мотор в сеть 220 В с помощью конденсаторов. Если при таком подключении электродвигатель без гудения сразу же раскрутится до рабочей скорости, это означает, что вы попали в одну точку со всеми началами или всеми концами фазных обмоток.

Ну а если включить питание, то электродвигатель загрохочет и не сможет раскручиваться до рабочих оборотов, то в обмотке первой фазы нужно поменять местами выводы С1 и С4 (поменять местами начало и конец).Если это не помогает, то верните выводы С1 и С4 в исходное положение и попробуйте теперь поменять местами выводы С2 и С5. Если двигатель снова не набирает обороты и гудит, то верните выводы C2 и C5, поменяйте местами выводы третьей пары C3 и C6.

При всех вышеперечисленных манипуляциях с проводами строго соблюдайте правила безопасности. Провода только для изоляции, лучше плоскогубцы с ручками из диэлектрика. Ведь у электродвигателя общий стальной магнитопровод и на выводах других обмоток может возникнуть довольно высокое опасное для жизни напряжение.

Изменить вращение вала двигателя (ротора).

Часто бывает, что вы, например, сделали шлифовальные станки с лепестковым кругом на валу. А лепестки наждачной бумаги расположены под определенным углом, против которого вращается вал, но он должен быть в обратном направлении. И опилки не летят на пол, а наоборот. Поэтому необходимо изменить вращение вала двигателя в другую сторону. Как это сделать?

Для изменения вращения трехфазного двигателя, включенного в однофазную сеть 220 вольт по схеме «треугольник», необходимо подключить третью фазную обмотку W (см. Рисунок 1, б) через конденсатор к резьбовому выводу вторая фазная обмотка статора В.

Ну а чтобы изменить вращение вала трехфазного двигателя, соединенного звездой, необходимо подключить третью фазную обмотку статора W (см. Рисунок 2, б) через конденсатор к резьбовому выводу вторая обмотка В.

И напоследок хочу сказать, что шум двигателя от его длительной работы (несколько лет) со временем может возникать, и его не следует путать с гудением от неправильного подключения. Также со временем двигатель может завибрировать. И иногда трудно повернуть ротор вручную.Причиной этого обычно является выработка подшипников — изношены гусеницы и шарики, а также сепаратор. От этого между опорными частями увеличиваются зазоры и они начинают шуметь, а со временем могут даже заклинивать.

Это недопустимо, и дело не только в том, что валу будет труднее вращаться и мощность двигателя упадет, но также из-за относительно небольшого зазора между статором и ротором, и если подшипники сильно изнашиваются, ротор может начать цепляться за статор, а это гораздо серьезнее.Детали двигателя могут выйти из строя и восстановить их не всегда возможно. Поэтому гораздо проще заменить шумные подшипники на новые, от какой-нибудь солидной компании (как выбрать подшипник читаем), и электродвигатель снова проработает долгие годы.

Надеюсь, эта статья поможет гаражным мастерам без проблем подключить трехфазный двигатель станка к однофазной гаражной сети на 220 вольт, т.к. с применением различных станков (шлифовальные, сверлильные, токарные и т. Д.), процесс доводки деталей для тюнинга или ремонта.

Конденсатор

— Как я могу заставить мой двигатель 380/380 вольт работать от 220 вольт?

Подключение конденсатора к трехфазному двигателю для однофазной работы называется подключением Штейнмеца. Если вы выполните поиск «Steinmetz connection», вы найдете довольно много информации об этом.

Если двигатель имеет только шесть выводов или клемм для внешних подключений, он может работать только при напряжении 380 В на любой из двух указанных скоростей.Для низкой скорости U4, V4 и W4 соединяются вместе, а трехфазное питание подключается к U2, V2 и W2. Для высокоскоростной работы нет подключения к U2, T2 и W2, а питание подключается к Uw, T4 и W4. Номинальная механическая мощность одинакова для обеих скоростей, поэтому крутящий момент, доступный на высокой скорости, составляет половину крутящего момента на низкой скорости. Вы можете использовать частотно-регулируемый привод (VFD) с выходом 380 В для любого из этих подключений.

Если на каждом конце каждой обмотки имеется независимое внешнее соединение, 12 выводов или клемм, обмотки могут быть соединены в параллельном треугольнике.Это должно подходить для трехфазного питания 220 вольт. Я считаю, что это все еще будет 4-полюсная низкоскоростная конфигурация. Вы можете использовать VFD с выходом 220 вольт для этого соединения.

У вас не должно возникнуть проблем с поиском частотно-регулируемого привода с однофазным входом 220 вольт и трехфазным выходом 220 вольт. Возможно, вам удастся найти частотно-регулируемый привод со встроенной схемой повышения напряжения, обеспечивающий трехфазный выход 380 вольт и однофазный вход 220 вольт. В противном случае вам понадобится входной трансформатор для VFD и VFD на 380 В, который принимает однофазный вход.

Я не знаю, какие есть варианты с подключением Steinmetz.

Если у существующего двигателя нет специального вала или редуктора, установленного непосредственно на нем. Лучшим вариантом может быть покупка другого двигателя и, возможно, частотно-регулируемого привода для регулирования скорости.

См. Схему ниже:

Для U2, V2 и W2 две катушки двигателя соединены вместе внутри двигателя или в клеммной коробке двигателя. Если вы можете разорвать это соединение, вы можете повторно подключить катушки, как показано красными линиями.Я почти уверен, что это позволит двигателю работать на высокой скорости на 220 вольт. Для однофазной сети подключите конденсатор от одной из линий питания к точке, где должна быть подключена недостающая фаза. Это позволяет двигателю работать от однофазного тока, но его крутящий момент значительно снижается. Это связь Стейнмеца. Вы сможете найти значения конденсаторов и другую информацию, выполнив поиск «Steinmetz connection».

Конденсатор

— трехфазный двигатель, работающий от однофазной сети с использованием соединения треугольником Штейнмеца

Как трехфазные двигатели могут работать от однофазной сети с использованием соединения треугольником Штейнмеца с одним конденсатором?

Подключение не дает хорошей производительности, но дает лучшее, что может быть достигнуто без трехфазного источника питания.2 x 50 / f где:

C в микрофарадах

л.с. — номинальная мощность двигателя

л.с.

В — номинальное напряжение двигателя

f — номинальная частота двигателя

К сожалению, я скопировал ссылки, которые у меня есть некоторое время назад, без указания их происхождения.

Приложение 1:

Ёмкость конденсатора должна быть оптимизирована в зависимости от фактической нагрузки двигателя.

Формула взята из PDF-файла на сайте engineering.com, щелчок по ссылке поиска Google загружает PDF-файл.Я не знаю, как получить доступ к какому-либо связанному контексту на сайте.

В целом можно сказать, что хороший многофазный двигатель делает плохой однофазный двигатель. Хороший многофазный двигатель может быть однофазным. двигатель, и чтобы получить хороший однофазный двигатель исключительно хороший требуется многофазный двигатель.

Однофазный асинхронный двигатель , Чарльз Протеус Стейнмец, заседание Американского института инженеров-электриков, Нью-Йорк, 23 февраля 1898 г.

Приложение 2:

Метод оптимизации емкости конденсатора состоит в том, чтобы отрегулировать емкость таким образом, чтобы ток в конденсаторе был равен номинальному току двигателя для соединения треугольником.

Существуют варианты подключения Steinmetz для конденсаторного запуска, конденсаторного запуска с конденсаторным запуском и для соединения звездой (звездой).

Как подключить однофазный сервопривод 220 В к двигателю 220 В / 380 В, как подключить двигатель 380 В к 220 В …

Нажмите на синий шрифт выше, чтобы интуитивно изучить оборудование, и вы можете подписаться на нас на длительный срок

Юрисконсульт: Адвокат Чжао Цзяньин

1. Сначала разберитесь с двумя способами подключения двигателя

Принципиальная схема двух способов подключения в распределительной коробке двигателя

Первое соединение — звезда (Y), как показано на рисунке, соедините концы Z, X и Y трехфазной обмотки статора внутри двигателя вместе, чтобы они стали общей точкой O, а затем проведите три концевых провода. от начальных концов A, B и C. В распределительной коробке соответственно подключается трехфазный переменный ток UVW (380 В) для обеспечения рабочей мощности двигателя, что подходит для трехфазных асинхронных асинхронных двигателей мощностью 3 кВт и ниже.Физическая карта выглядит следующим образом:

Физическая схема подключения двигателя звездой

Второй — это способ подключения треугольником (△), то есть соответственно подключаются концы трехфазных обмоток статора. Как показано на рисунке, соединение между концом A первой обмотки фазы и концом Z третьей обмотки фазы можно рассматривать как фазу U, а конец B второй обмотки. Соединение с концом X первой обмотки может быть фазой V, а соединение между концом C третьей обмотки и концом Y второй обмотки может быть фазой W, а затем подключаться к распределительной коробке через три провода и, соответственно, получать доступ к трехфазному источнику переменного тока UVW источник питания (380 В), обеспечивает питание двигателя, подходит для трехфазных асинхронных асинхронных двигателей мощностью 4 кВт и выше.Но метод подключения двигателя должен основываться на реальной проводке с паспортной таблички.

Двигатель, физическое соединение треугольником

Простая принципиальная схема подключения двигателя

Почему на картинке U1 вместо W1 под W2? На самом деле это для удобства разводки. Если расположение один к одному, особенно в разводке треугольником, это будет очень неудобно. Как показано ниже:

Принципиальная схема подключения распределительной коробки двигателя

Видно, что при соединении треугольника верхние линии пересекаются, что очень сложно в реальной эксплуатации и относительно небезопасно, и легко вызвать короткое замыкание между фазами.

Принципиальная схема взаимосвязи шести клемм в распределительной коробке

Как мы видим на физическом изображении выше, в распределительной коробке трехфазного двигателя есть два ряда клемм. Мы используем приведенную выше «диаграмму взаимосвязи разъемов», чтобы дополнительно проиллюстрировать их взаимосвязь, и временно помещаем шесть выводов трехфазной обмотки. Они помечены символами D1, D2, D3, D4, D5, D6, из которых D1 и D4 , D2 и D5, D3 и D6 — каждая фаза, которая на самом деле является двумя концами одной и той же линии, и каждая линия называется фазой. Три обмотки называются трехфазными обмотками A, B и C.Причина повторения этого в том, что многих это легко сбивает с толку.

380 В — это напряжение для промышленного использования, а 220 В — для домашнего использования. Если на паспортной табличке указано напряжение 220/380 В, способ подключения △ / Y должен информировать пользователя о том, что двигатель можно подключить по схеме треугольника при условии трехфазного источника питания 220 В и использовать по схеме звезды. подключение при трехфазном источнике питания 380 В. Адаптация к двум различным напряжениям.

Если напряжение питания 220В, то он должен быть соединен треугольником. Если он неправильно соединен звездой, напряжение, подключенное к каждой фазной обмотке, упадет с 220 В до 220 / √3 = 127 В, и двигатель не запустится из-за слишком низкого напряжения. Если он все еще выдерживает номинальную нагрузку, это легко может вызвать перегрузку.

Если напряжение источника питания составляет 380 В, его следует подключать по схеме звезды. Если он ошибочно соединен в форме треугольника, каждая фазная обмотка будет выдерживать напряжение 380 В, что приведет к увеличению тока статора и сожжению обмотки.Следовательно, правильный метод подключения должен позволить двигателю выдерживать напряжение источника питания, которое должно быть равным или близким к номинальному напряжению двигателя во время нормальной работы.

Метод подключения 380 В состоит из трех фазных проводов, нулевого провода и всех проводов под напряжением. Мы объяснили его способ подключения выше. Семейство 220V имеет два провода, один провод под напряжением и один нулевой провод. Как его можно подключить к трем клеммам в распределительной коробке? Или как заставить мотор двигаться? Позвольте мне поделиться двумя способами.

Первый тип: использовать однофазный преобразователь

Электродвигатель с инверторным управлением очень удобен в использовании и может быть очень грамотно настроен. На рынке существует множество инверторов с однофазным входом и трехфазным выходом. Ниже представлены только два справочных изображения, которые вы можете понять с первого взгляда.

220В вход на выход 380В инвертор

Принципиальная электрическая схема другого однофазного преобразователя

Второй: увеличьте емкость, чтобы изменить способ подключения

Трехфазное питание двигателя заменено на двухфазное

Принцип работы однофазного двигателя: две обмотки с разницей электрического угла 90 градусов в пространстве, ось генерируемого магнитного потока также находится под электрическим углом 90 градусов друг к другу в пространстве, а затем двухфазное вращающееся магнитное поле может генерироваться токами разных фаз.Он может генерировать пусковой момент, заставляющий двигатель двигаться.

Метод подключения трехфазного двигателя к однофазному входу

1. При изменении способ подключения трехфазной обмотки не изменяется, то есть исходное соединение звездой остается соединением звездой, а исходное угловое соединение остается угловым соединением. Любые две из трех выходных клемм, первоначально подключенных к трехфазному двигателю, соответственно подключаются к обоим концам источника питания (L-токовый провод, N-нулевой провод), а оставшаяся одна подключается перед конденсатором.

2. Другой конец конденсатора подключается к одному концу источника питания, независимо от того, подключен ли он к токоведущему проводу или к нейтральному проводу, в зависимости от требуемого рулевого управления, и рулевое управление отличается для разных методов подключения. На приведенном выше рисунке также показаны различные методы подключения для реализации прямого и обратного подключения двигателя.

Однофазный вход для прямого и обратного подключения двигателя

Следовательно, как показано на рисунке, мы соединяем любые двухфазные обмотки трехфазного двигателя последовательно в качестве основной обмотки и подключаем соответствующий конденсатор последовательно с обмоткой другой фазы в качестве вторичной обмотки.Подключите их к одному однофазному источнику питания. Однофазный двигатель создает двухфазное вращающееся магнитное поле и создает пусковой крутящий момент.

Трехфазный двигатель Y на однофазный △ физическая схема подключения

1. Метод расчета емкости

Формула расчета пускового конденсатора и рабочего конденсатора, формула рабочего конденсатора: C = 1950I / Ucosφ, C — рабочая емкость (метод uf-micro) I — номинальное значение тока двигателя (A) U — номинальное напряжение, так как мы здесь, чтобы изменить однофазный режим, поэтому номинальное напряжение составляет 220 вольт.cosφ — коэффициент мощности, который указан на многих двигателях. Пусковой конденсатор обычно в 1-4 раза больше рабочего конденсатора.

2. Эмпирическая формула для емкости

Мощность 100 Вт соответствует емкости 7 мкФ, то есть в двигателе мощностью 1 кВт можно использовать конденсатор емкостью около 70 мкФ. Это значение является приблизительным и может быть изменено в зависимости от вашей ситуации с нагрузкой.

Рекомендуется менять только двигатель мощностью менее 1,5 кВт.После изменения мощность будет ослаблена и не сможет выдерживать большие нагрузки. Если мощность чуть больше 1,5 кВт, необходимо добавить пусковой конденсатор.

Изображение конденсатора

Если вы действительно не можете рассчитать емкость конденсатора, вы можете показать паспортную табличку двигателя продавцу при покупке конденсатора. Как правило, у продавца есть расчетная формула, по которой можно легко рассчитать емкость используемого конденсатора.

Примечание. Среди двигателей с логотипом 220/380 220 В также относится к трехфазному входу, но напряжение составляет 220 В.Это также можно реализовать в бытовом электричестве некоторыми методами (например, добавлением клеммных колодок), то есть выбросить три провода. Напряжение 220В. Одним из ключевых моментов, которые мы представили в этой статье, является то, как изменить трехфазный вход двигателя на однофазный, то есть как заставить двигатель работать через провода под напряжением и нейтраль в домашних условиях.

Конец

Источник: Электрики и обучение электрикам (ID: dian_gon)

В разделе комментариев вы можете добавить неправильную или отсутствующую часть статьи, чтобы следующий человек, который ее увидит, узнал больше, и вы точно знали, что всем нужно.. .

Подключение трехфазного двигателя 380В к однофазному 220В.

Когда есть трехфазный двигатель для подключения к однофазному сектору, есть несколько решений.

Это конденсаторный узел, который будет обсуждаться.

Важно:

При подключении трехфазного двигателя к моно с конденсатором его выходная мощность падает. Мы теряем в среднем 30% полезной мощности и 50% при запуске.

В столовых приборах эта система будет хорошо работать с машинами, которые не запускаются под нагрузкой, например с барабаном или полировальной машиной.Не используйте эту сборку для двигателей, которые начинают заряжаться или с высокой мощностью, в качестве задней стойки или песта.

Все системы с конденсаторами по-прежнему работают, и они могут работать хорошо, но результат не может быть гарантирован, вы должны попробовать и протестировать.

Конденсатор можно купить девять (штук бытовой техники), но также восстановить его на старом двигателе или стиральной машине. Всегда проверяйте, что это конденсатор на 230 В переменного тока (таким образом, неполяризованный) и для непрерывной работы двигателя. Конденсаторы в пластиковой упаковке (так называемые «самовосстанавливающиеся») должны быть предпочтительнее конденсаторов в алюминиевой упаковке (старое поколение).

Для изменения направления вращения мотора необходимо пересечь 2 провода сектора.

Монтаж:

Для подключения нашего трехмоторного двигателя 380 В в моно 220 В (фаза + нейтраль) мы будем использовать треугольную муфту.

Мы подключим, например: фазу в «u», нейтраль в «v», и необходимо будет добавить конденсатор между «v» и «w»

Очень важно!

Конденсатор должен иметь напряжение более 230 В и быть переменным током, НИКОГДА не используйте поляризованный конденсатор, иначе он взорвется!

Обычное значение емкости конденсатора выражается в микрофарадах «мкФ»

Чтобы найти его значение, достаточно умножить мощность в CV на 50.

Пример: двигатель мощностью 250 Вт (0,25 кВт)

для начала необходимо преобразовать ватты в лошадей. для этого мы делим мощность на 736 (1 CV = 736 Вт)

В нашем примере 250/736 = 0,34 л.с., наш двигатель составляет 0,34 л.с.

Чтобы найти емкость конденсатора: 0,34 x 50 = 17, поэтому для работы двигателя 0,25 кВт требуется конденсатор 17 мкФ.

Если ёмкость конденсатора меньше 17 мкФ, мотор будет работать намного хуже или совсем не работать.

Если значение больше 17 мкФ, это совсем не раздражает.

Сводка:

C = 50 x P

C = значение конденсатора в микрофарадах «мкФ»

P = мощность двигателя

*** Справка: преобразование ***

Для преобразования из кВт в Вт :

w = kw x 1000 ——- пример ——- 0,25 kw x 1000 = 250 w

Для преобразования w (ватт) в CV (лошадей):

CH = w / 736 ——- пример ——- 250 Вт / 736 = 0,34 л.с.

*** Справка: Конденсаторы ***

Если у вас нет конденсатора нужной емкости, вы можете связать несколько:

Конденсаторы:

Соединение нескольких конденсаторов

— Дополнительные пары валы si il sont branché en parallèle.

Пример: C1 = 10 мкФ и C2 = 15 мкФ => C всего = 25 мкФ

— Дополнительно обратная зависимость валов в серии.

например: C всего = 1 / ((1 / C1) + (1 / C2))

(1/10) = 0,1; (1/15) = 0,0666666

(1/10) + (1/15) = 0,1666666

1 / ((1/10) + (1/15)) = 6

C1 = 10 µf et C2 = 15 µf => Ctotal = 6µf

*** Помощник: lebornier du moteur ***

Когда есть трехфазный двигатель для подключения к однофазному сектору, есть несколько решений.

Это конденсаторный узел, который будет обсуждаться.

Важно:

При подключении трехфазного двигателя к моно с конденсатором его выходная мощность падает. Мы теряем в среднем 30% полезной мощности и 50% при запуске.

В столовых приборах эта система будет хорошо работать с машинами, которые не запускаются под нагрузкой, например с барабаном или полировальной машиной. Не используйте эту сборку для двигателей, которые начинают заряжаться или с высокой мощностью, в качестве задней стойки или песта.

Все системы с конденсаторами по-прежнему работают, и они могут работать хорошо, но результат не может быть гарантирован, вы должны попробовать и протестировать.

Конденсатор можно купить девять (штук бытовой техники), но также восстановить его на старом двигателе или стиральной машине. Всегда проверяйте, что это конденсатор на 230 В переменного тока (таким образом, неполяризованный) и для непрерывной работы двигателя. Конденсаторы в пластиковой упаковке (так называемые «самовосстанавливающиеся») должны быть предпочтительнее конденсаторов в алюминиевой упаковке (старое поколение).

Для изменения направления вращения мотора необходимо пересечь 2 провода сектора.

Монтаж:

Для подключения нашего трехмоторного двигателя 380 В в моно 220 В (фаза + нейтраль) мы будем использовать треугольную муфту.

Мы подключим, например: фазу в «u», нейтраль в «v», и необходимо будет добавить конденсатор между «v» и «w»

Очень важно!

Конденсатор должен иметь напряжение более 230 В и быть переменным током, НИКОГДА не используйте поляризованный конденсатор, иначе он взорвется!

Обычное значение конденсатора выражается в микрофарадах «мкФ»

Чтобы найти его значение, достаточно умножить мощность в CV на 50.

Пример: двигатель мощностью 250 Вт (0.25 кВт)

для начала необходимо преобразовать ватты в лошадей. для этого мы делим мощность на 736 (1 CV = 736 Вт)

В нашем примере 250/736 = 0,34 л.с., наш двигатель составляет 0,34 л.с.

Чтобы найти емкость конденсатора: 0,34 x 50 = 17, поэтому для работы двигателя 0,25 кВт требуется конденсатор 17 мкФ.

Если ёмкость конденсатора меньше 17 мкФ, мотор будет работать намного хуже или совсем не работать.

Если значение больше 17 мкФ, это совсем не раздражает.

Сводка:

C = 50 x P

C = значение конденсатора в микрофарадах «мкФ»

P = мощность двигателя

*** Справка: преобразование ***

Для преобразования из кВт в Вт :

w = kw x 1000 ——- пример ——- 0,25 kw x 1000 = 250 w

Для преобразования w (ватт) в CV (лошадей):

CH = w / 736 ——- пример ——- 250 Вт / 736 = 0,34 л.с.

*** Справка: Конденсаторы ***

Если у вас нет конденсатора нужной емкости, вы можете связать несколько:

Конденсаторы:

Соединение нескольких конденсаторов

— Дополнительные пары валы si il sont branché en parallèle.

Пример: C1 = 10 мкФ и C2 = 15 мкФ => C всего = 25 мкФ

— Дополнительно обратная зависимость валов в серии.

например: C всего = 1 / ((1 / C1) + (1 / C2))

(1/10) = 0,1; (1/15) = 0,0666666

(1/10) + (1/15) = 0,1666666

1 / ((1/10) + (1/15)) = 6

C1 = 10 µf et C2 = 15 µf => Ctotal = 6µf

*** Помощник: lebornier du moteur ***

Как использовать трехфазный двигатель в однофазном источнике питания

На этот раз я хотел бы поделиться некоторыми важными знаниями, которые я использовал при возникновении чрезвычайной или критической ситуации.Что вы делаете, если у вас есть только трехфазный двигатель и однофазный источник питания?

Как использовать трехфазный двигатель в однофазном источнике питания? На самом деле трехфазный двигатель может работать в однофазном питании с помощью постоянного КОНДЕНСАТОРА. Эта маленькая вещь (конденсатор) очень полезна для работы трехфазного двигателя в однофазном питании. поставлять.

Согласно нашему последнему обсуждению трехфазного двигателя, обычно он имеет два (2) соединения с общей обмоткой, соединение ЗВЕЗДОЙ или ТРЕУГОЛЬНИК.В этом посте я объяснил, как подключить конденсатор к трехфазному двигателю, как изменить вращение двигателя, как оценить значение емкости и выбрать подходящий конденсатор.

Как установить и подключить конденсатор для трехфазного двигателя с однофазным питанием?

1) Подключение конденсатора для вращения ВПЕРЕД

-Для вращения ВПЕРЕД, мы должны установить конденсатор в соединение ТРЕУГОЛЬНИК, как показано на рисунке ниже.

* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.

2) Подключение конденсатора для ОБРАТНОГО вращения

— Для ОБРАТНОГО вращения необходимо установить конденсатор в любые две фазы обмотки в соединении ЗВЕЗДА (Y), как показано на рисунке ниже.

* символ -> Изменение клеммы подключения * конденсатора позволяет инвертировать направление вращения двигателя.

Мощность двигателя

Мы должны учитывать мощность двигателя при переходе с трехфазного источника питания на однофазный, чтобы соответствовать и подходить для нашего приложения.Но мы не можем получить реальное значение из-за множества аспектов, которые мы должны вычислить, и это так сложно, поэтому мы можем оценить приблизительное значение мощности двигателя в процентах (%) ниже: —

Как выбрать подходящий конденсатор?

Это очень важное решение, которое мы должны принять во внимание при выборе емкости конденсатора при планировании работы трехфазного двигателя в однофазном источнике питания. В случае неправильного выбора это может повлиять на состояние двигателя, а производительность также может повредить обмотку двигателя. .

Ниже приводится приблизительное значение требуемого конденсатора. Мы должны учитывать рабочее напряжение VS напряжение сети, чтобы избежать повреждения обмотки трехфазного двигателя или самого конденсатора. См. Таблицу ниже: —

Трехфазная электрическая мощность | Передача электроэнергии

Трехфазная электроэнергия — распространенный метод передачи электроэнергии. Это тип многофазной системы, которая в основном используется для питания двигателей и многих других устройств. Трехфазная система использует меньше проводящего материала для передачи электроэнергии, чем эквивалентные однофазные, двухфазные системы или системы постоянного тока при том же напряжении.

В трехфазной системе три проводника цепи несут три переменных тока (одинаковой частоты), которые достигают своих мгновенных пиковых значений в разное время. Если взять за основу один проводник, то два других тока задерживаются во времени на одну треть и две трети одного цикла электрического тока. Эта задержка между «фазами» обеспечивает постоянную передачу мощности в течение каждого цикла тока, а также позволяет создавать вращающееся магнитное поле в электродвигателе.

Трехфазные системы могут иметь или не иметь нейтральный провод. Нейтральный провод позволяет трехфазной системе использовать более высокое напряжение, поддерживая при этом однофазные приборы с более низким напряжением. В ситуациях распределения высокого напряжения обычно не бывает нейтрального провода, поскольку нагрузки можно просто подключить между фазами (соединение фаза-фаза).

Трехфазный имеет свойства, которые делают его очень востребованным в электроэнергетических системах. Во-первых, фазные токи имеют тенденцию нейтрализовать друг друга, суммируясь до нуля в случае линейной сбалансированной нагрузки.Это позволяет исключить нейтральный провод на некоторых линиях; все фазные проводники проходят одинаковый ток и поэтому могут иметь одинаковый размер для сбалансированной нагрузки. Во-вторых, передача мощности на линейную сбалансированную нагрузку является постоянной, что помогает снизить вибрации генератора и двигателя. Наконец, трехфазные системы могут создавать магнитное поле, которое вращается в заданном направлении, что упрощает конструкцию электродвигателей. Три — это самый низкий фазовый порядок, демонстрирующий все эти свойства.

Большинство бытовых нагрузок однофазные. Обычно трехфазное питание либо вообще не поступает в жилые дома, либо там, где оно поступает, оно распределяется на главном распределительном щите.

На электростанции электрический генератор преобразует механическую энергию в набор переменных электрических токов, по одному от каждой электромагнитной катушки или обмотки генератора. Токи являются синусоидальными функциями времени, все с одной и той же частотой, но смещены во времени, чтобы получить разные фазы.В трехфазной системе фазы расположены равномерно, что дает разделение фаз на одну треть цикла. Частота сети обычно составляет 50 Гц в Азии, Европе, Южной Америке и Австралии и 60 Гц в США и Канаде (но более подробную информацию см. В разделе «Системы электроснабжения»).

Генераторы выдают напряжение в диапазоне от сотен вольт до 30 000 вольт. На электростанции трансформаторы «повышают» это напряжение до более подходящего для передачи.

После многочисленных дополнительных преобразований в передающей и распределительной сети мощность окончательно преобразуется в стандартное сетевое напряжение ( i.е. «бытовое» напряжение). Электропитание может быть уже разделено на одну фазу на этом этапе или все еще может быть трехфазным. При трехфазном понижении выход этого трансформатора обычно соединяется звездой со стандартным напряжением сети (120 В в Северной Америке и 230 В в Европе и Австралии), являющимся фазным напряжением. Другая система, обычно встречающаяся в Северной Америке, — это соединение вторичной обмотки треугольником с центральным ответвлением на одной из обмоток, питающих землю и нейтраль.Это позволяет использовать трехфазное напряжение 240 В, а также три различных однофазных напряжения (120 В между двумя фазами и нейтралью, 208 В между третьей фазой (известной как верхняя ветвь) и нейтралью и 240 В между любыми двумя фазами). быть доступным из того же источника.

В большом оборудовании для кондиционирования воздуха и т. Д. Используются трехфазные двигатели из соображений эффективности, экономии и долговечности.

Нагреватели резистивного нагрева, такие как электрические котлы или отопление помещений, могут быть подключены к трехфазным системам.Аналогичным образом может быть подключено электрическое освещение. Эти типы нагрузок не требуют вращающегося магнитного поля, характерного для трехфазных двигателей, но используют более высокий уровень напряжения и мощности, обычно связанный с трехфазным распределением. Системы люминесцентного освещения также выигрывают от уменьшения мерцания, если соседние светильники получают питание от разных фаз.

Большие выпрямительные системы могут иметь трехфазные входы; Результирующий постоянный ток легче фильтровать (сглаживать), чем выходной сигнал однофазного выпрямителя.Такие выпрямители могут использоваться для зарядки аккумуляторов, процессов электролиза, таких как производство алюминия, или для работы двигателей постоянного тока.

Интересным примером трехфазной нагрузки является электродуговая печь, используемая в сталеплавильном производстве и при переработке руд.

В большинстве стран Европы печи рассчитаны на трехфазное питание. Обычно отдельные нагревательные элементы подключаются между фазой и нейтралью, чтобы обеспечить подключение к однофазной сети. Во многих регионах Европы единственным доступным источником является однофазное питание.

Иногда преимущества трехфазных двигателей делают целесообразным преобразование однофазной мощности в трехфазную. Мелкие клиенты, такие как жилые или фермерские хозяйства, могут не иметь доступа к трехфазному питанию или могут не захотеть оплачивать дополнительную стоимость трехфазного обслуживания, но все же могут пожелать использовать трехфазное оборудование. Такие преобразователи также могут позволять изменять частоту, позволяя регулировать скорость. Некоторые локомотивы переходят на многофазные двигатели, приводимые в действие такими системами, даже несмотря на то, что поступающее питание на локомотив почти всегда либо постоянное, либо однофазное переменное.

Поскольку однофазная мощность стремится к нулю в каждый момент, когда напряжение пересекает ноль, но трехфазная подает мощность непрерывно, любой такой преобразователь должен иметь способ накапливать энергию в течение необходимой доли секунды.

Один из методов использования трехфазного оборудования в однофазной сети — это вращающийся фазовый преобразователь, по сути, трехфазный двигатель со специальными пусковыми устройствами и коррекцией коэффициента мощности, которые создают сбалансированные трехфазные напряжения. При правильной конструкции эти вращающиеся преобразователи могут обеспечить удовлетворительную работу трехфазного оборудования, такого как станки, от однофазного источника питания.В таком устройстве накопление энергии осуществляется за счет механической инерции (эффект маховика) вращающихся компонентов. Внешний маховик иногда находится на одном или обоих концах вала.

Вторым методом, который был популярен в 1940-х и 50-х годах, был метод, который назывался «методом трансформатора». В то время конденсаторы были дороже трансформаторов. Таким образом, автотрансформатор использовался для подачи большей мощности через меньшее количество конденсаторов. Этот метод работает хорошо и имеет сторонников даже сегодня.Использование метода преобразования имени отделяет его от другого распространенного метода, статического преобразователя, поскольку оба метода не имеют движущихся частей, что отделяет их от вращающихся преобразователей.

Другой часто применяемый метод — использование устройства, называемого статическим преобразователем фазы. Этот метод работы трехфазного оборудования обычно используется с нагрузками двигателя, хотя он обеспечивает только 2/3 мощности и может вызвать перегрев нагрузок двигателя, а в некоторых случаях и перегрев. Этот метод не будет работать, когда задействованы чувствительные схемы, такие как устройства ЧПУ, или в нагрузках индукционного или выпрямительного типа.

Производятся некоторые устройства, имитирующие трехфазное питание от однофазного трехпроводного источника питания. Это достигается за счет создания третьей «субфазы» между двумя токоведущими проводниками, в результате чего разделение фаз составляет 180 ° — 90 ° = 90 °. Многие трехфазные устройства будут работать в этой конфигурации, но с меньшей эффективностью.

Преобразователи частоты (также известные как твердотельные инверторы) используются для обеспечения точного управления скоростью и крутящим моментом трехфазных двигателей. Некоторые модели могут питаться от однофазной сети.ЧРП работают путем преобразования напряжения питания в постоянный ток, а затем преобразования постоянного тока в подходящий трехфазный источник для двигателя.

Цифровые фазовые преобразователи — это новейшая разработка в технологии фазовых преобразователей, которая использует программное обеспечение в мощном микропроцессоре для управления твердотельными компонентами переключения питания. Этот микропроцессор, называемый процессором цифровых сигналов (DSP), контролирует процесс преобразования фазы, непрерывно регулируя модули ввода и вывода преобразователя для поддержания сбалансированной трехфазной мощности при любых условиях нагрузки.

  • Трехпроводное однофазное распределение полезно, когда трехфазное питание недоступно, и позволяет удвоить нормальное рабочее напряжение для мощных нагрузок.
  • Двухфазное питание, как и трехфазное, обеспечивает постоянную передачу мощности линейной нагрузке. Для нагрузок, которые соединяют каждую фазу с нейтралью, при условии, что нагрузка имеет одинаковую потребляемую мощность, двухпроводная система имеет ток нейтрали, который превышает ток нейтрали в трехфазной системе.Кроме того, двигатели не являются полностью линейными, что означает, что вопреки теории двигатели, работающие на трех фазах, имеют тенденцию работать более плавно, чем на двухфазных. Генераторы на Ниагарском водопаде, установленные в 1895 году, были крупнейшими генераторами в мире в то время и были двухфазными машинами. Истинное двухфазное распределение энергии по существу устарело. В системах специального назначения для управления может использоваться двухфазная система. Двухфазное питание может быть получено от трехфазной системы с использованием трансформаторов, называемых трансформатором Скотта-Т.
  • Моноциклическая мощность — это название асимметричной модифицированной двухфазной системы питания, используемой General Electric около 1897 года (отстаивавшей Чарльз Протеус Стейнмец и Элиху Томсон; это использование, как сообщается, было предпринято, чтобы избежать нарушения патентных прав). В этой системе генератор был намотан с однофазной обмоткой полного напряжения, предназначенной для освещения нагрузок, и с небольшой (обычно линейного напряжения) обмоткой, которая вырабатывала напряжение в квадратуре с основными обмотками. Намерение состояло в том, чтобы использовать эту дополнительную обмотку «силового провода» для обеспечения пускового момента для асинхронных двигателей, при этом основная обмотка обеспечивает питание осветительных нагрузок.После истечения срока действия патентов Westinghouse на симметричные двухфазные и трехфазные системы распределения электроэнергии моноциклическая система вышла из употребления; его было сложно анализировать, и его хватило не на то, чтобы разработать удовлетворительный учет энергии.
  • Созданы и испытаны системы высокого порядка фаз для передачи энергии. Такие линии передачи используют 6 или 12 фаз и конструктивные решения, характерные для линий передачи сверхвысокого напряжения. Линии передачи высокого порядка могут позволить передачу большей мощности через данную линию передачи на полосе отчуждения без затрат на преобразователь HVDC на каждом конце линии.

Многофазная система — это средство распределения электроэнергии переменного тока. Многофазные системы имеют три или более электрических проводника, находящихся под напряжением, по которым проходят переменные токи с определенным временным сдвигом между волнами напряжения в каждом проводнике. Полифазные системы особенно полезны для передачи энергии электродвигателям. Самый распространенный пример — трехфазная система питания, используемая в большинстве промышленных приложений.

Один цикл напряжения трехфазной системы

На заре коммерческой электроэнергетики на некоторых установках для двигателей использовались двухфазные четырехпроводные системы.Основным преимуществом этого было то, что конфигурация обмотки была такой же, как у однофазного двигателя с конденсаторным пуском, а при использовании четырехпроводной системы концептуально фазы были независимыми и легко анализировались с помощью математических инструментов, доступных в то время. . Двухфазные системы заменены трехфазными. Двухфазное питание с углом между фазами 90 градусов может быть получено из трехфазной системы с использованием трансформатора, подключенного по Скотту.

Многофазная система должна обеспечивать определенное направление вращения фаз, поэтому напряжения зеркального отображения не учитываются при определении порядка фаз.Трехпроводная система с двумя фазными проводниками, разнесенными на 180 градусов, по-прежнему остается только однофазной. Такие системы иногда называют расщепленной фазой.

Полифазное питание особенно полезно в двигателях переменного тока, таких как асинхронный двигатель, где оно генерирует вращающееся магнитное поле. Когда трехфазный источник питания завершает один полный цикл, магнитное поле двухполюсного двигателя вращается на 360 ° в физическом пространстве; Двигатели с большим количеством пар полюсов требуют большего количества циклов питания, чтобы совершить один физический оборот магнитного поля, и поэтому эти двигатели работают медленнее.Никола Тесла и Михаил Доливо-Добровольский изобрели первые практические асинхронные двигатели, использующие вращающееся магнитное поле — ранее все коммерческие двигатели были постоянного тока, с дорогими коммутаторами, щетками, требующими большого технического обслуживания, и характеристиками, непригодными для работы в сети переменного тока. Многофазные двигатели просты в сборке, они самозапускаются и мало вибрируют.

Использованы более высокие номера фаз, чем три. Обычной практикой для выпрямительных установок и преобразователей HVDC является обеспечение шести фаз с шагом между фазами 60 градусов, чтобы уменьшить генерацию гармоник в системе питания переменного тока и обеспечить более плавный постоянный ток.Построены экспериментальные линии передачи высокого фазового порядка, содержащие до 12 фаз. Это позволяет применять правила проектирования сверхвысокого напряжения (СВН) при более низких напряжениях и позволит увеличить передачу мощности в коридоре той же ширины линии электропередачи.

Жилые дома и малые предприятия обычно снабжаются одной фазой, взятой из одной из трех фаз коммунального обслуживания. Индивидуальные клиенты распределяются по трем фазам, чтобы сбалансировать нагрузки. Однофазные нагрузки, такие как освещение, могут быть подключены от фазы под напряжением к нейтрали цепи, что позволяет сбалансировать нагрузку в большом здании по трем фазам питания.Сдвиг фаз линейных напряжений составляет 120 градусов; Напряжение между любыми двумя живыми проводами всегда в 3 раза больше между живым и нулевым проводом. См. Статью Системы электроснабжения для получения списка однофазных распределительных напряжений по всему миру; трехфазное линейное напряжение будет в 3 раза больше этих значений.

В Северной Америке в жилых многоквартирных домах может быть распределено напряжение 120 В (линия-нейтраль) и 208 В (линия-линия). Основные однофазные приборы, такие как духовки или плиты, предназначенные для системы с разделением фаз на 240 В, обычно используемой в односемейных домах, могут не работать должным образом при подключении к 208 Вольт; нагревательные приборы будут развивать только 3/4 своей номинальной мощности, а электродвигатели не будут правильно работать при подаче напряжения на 13% ниже.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *