Асинхронные электродвигатели: схема, принцип работы и устройство
Асинхронный электродвигатель – это электрический агрегат с вращающимся ротором. Скорость вращения ротора отличается от скорости, с которой вращается магнитное поле статора. Это – одна из важных особенностей работы агрегата, так как если скорости выровняются, то магнитное поле не будет наводить в роторе ток и действие силы на роторную часть прекратится. Именно поэтому двигатель называется асинхронным (у синхронного показатели скоростного вращения совпадают).
В данной статье мы сфокусируемся на том, что представляет собой схема работы такого двигателя и – самое главное, насколько она эффективна при его эксплуатации.
Устройство и принцип действия
Ток в обмотках статора создает вращающееся магнитное поле. Это поле наводит в роторе ток, который начинает взаимодействовать с магнитным полем таким образом, что ротор начинает вращаться в ту же сторону, что и магнитное поле.
Относительная разность скоростей вращения ротора и частоты переменного магнитного поля называется скольжением. В установившемся режиме скольжение невелико: 1-8% в зависимости от мощности.
Асинхронный двигатель
Подробнее о принципах работы асинхронного электродвигателя – в частности, на примере агрегата трехфазного тока, вы можете прочесть здесь, на сайте, в одном из наших материалов. Далее же мы разберем, какие бывают разновидности асинхронных электрических машин.
Виды асинхронных двигателей
Можно выделить 3 базовых типа асинхронных электродвигателей:
- 1-фазный – с короткозамкнутым ротором
- 3-х фазный – с короткозамкнутым ротором
- 3-х фазный – с фазным ротором
Схема устройства асинхронного двигателя с короткозамкнутым ротором
То есть, двигатели классифицируются по количеству фаз (1 и 3) и по типу ротора – с короткозамкнутым и с фазным. При этом число фаз с установленным типом ротора никак не взаимосвязано.
Ещё одна разновидность – асинхронный двигатель с массивным ротором. Ротор сделан целиком из ферромагнитного материала и фактически представляет собой стальной цилиндр, играющий роль как магнитопровода, так и проводника (вместо обмотки). Такой вид двигателя очень прочный и обладает высоким пусковым моментом, однако в роторе могут возникать большие потери энергии, а сам он может сильно нагреваться.
Какой ротор лучше, фазный или короткозамкнутый?
Преимущества короткозамкнутого:
- Допустимость кратковременных механических перегрузок
- Простая конструкция, легкость пуска и автоматизации
- Более высокие cos φ (коэффициент мощности) и КПД, чем у электродвигателей с фазным ротором
Недостатки:
- Трудности в регулировании скорости вращения
- Большой пусковой ток
- Низкий мощностной коэффициент при недогрузках
Преимущества фазного:
- Высокий начальный вращающий момент
- Допустимость кратковременных механических перегрузок
- Более-менее постоянная скорость при разных перегрузках
- Меньший пусковой ток, чем у двигателей с короткозамкнутым ротором
- Возможность использования автоматических пусковых устройств
Недостатки:
- Большие габариты
- Коэффициент мощности и КПД ниже, чем у электродвигателей с короткозамкнутым ротором
Какой двигатель лучше выбрать?
Асинхронный или коллекторный? Синхронный или асинхронный? Сказать однозначно, что определенный тип двигателя лучше, точно нельзя. В пользу асинхронных моделей говорят их следующие преимущества.
- Относительно небольшая стоимость
- Низкие эксплуатационные затраты
- Отсутствие необходимости в преобразователях при включении в сеть (только для нагрузок, не нуждающихся в регулировании скорости)
- Отсутствие потребности в дополнительном источнике питания – в отличие от синхронных аналогов
Тем не менее, у асинхроников есть недостатки. А именно:
- Малый пусковой момент
- Высокий пусковой ток
- Отсутствие возможности регулировки скорости при подключении к сети
- Ограничение максимальной скорости частотой сети
- Высокая зависимость электромагнитного момента от напряжения питающей сети
- Низкий мощностной коэффициент – в отличие от синхронных агрегатов
Тем не менее, все перечисленные недостатки можно устранить, если питать асинхронный двигатель от статического частотного преобразователя. Кроме того, если соблюдать правила эксплуатации и не перегружать агрегаты, то они исправно прослужат длительный срок.
Но даже несмотря на то, что синхронные машины обладают довольно конкурентными преимуществами, большинство двигателей сегодня – именно асинхронные. Промышленность, сельское хозяйство, ЖКХ и многие другие отрасли используют именно их за счет высокого КПД. Но коэффициент полезного действия может значительно снижаться за счет таких параметров, как:
- Высокий пусковой ток
- Слабый пусковой момент
- Рассинхрон между механическим моментом на валу привода и механической нагрузкой (это провоцирует высокий рост силы тока и избыточные нагрузки при запуске, а также снижение КПД при пониженной нагрузке)
Невозможность точной регулировки скорости работы прибора
Другими факторами, от которых зависит КПД асинхронного электродвигателя, являются:
- степень загрузки двигателя по отношению к номинальной
- конструкция и модель
- степень износа
- отклонение напряжения в сети от номинального.
Как избежать снижения КПД?
- Обеспечение стабильного уровня загрузки – не ниже 75%
- Увеличение мощностного коэффициента
- Регулировать напряжение и частоту подаваемого тока
Для этого используются:
- Частотные преобразователи – они плавно изменяют скорость вращения двигателя путем изменения частоты питающего напряжения
- Устройства плавного пуска – они ограничивают скорость нарастания пускового тока и его предельное значение, как одни из факторов, из-за которых падает КПД
Итак, асинхронный двигатель имеет довольно широкую область использования и применяется во многих хозяйственных и производственных сферах деятельности. У нас, в компании РУСЭЛТ, представлен широкий выбор электродвигателей данного типа, приобрести который вы можете по ценам, которые ощутимо выгоднее, чем у конкурентов.
Асинхронный электродвигатель переменного тока
Электродвигатель предназначен для преобразования электрической энергии в механическую энергию. Это – одно из самых важных электротехнических устройств, без которого немыслима жизнь современного человечества.
Электродвигатель постоянного тока: принцип работы
Если проводник с током поместить в магнитное поле, то он придет в движение. Это продемонстрировал в 1821 году Майкл Фарадей, потом этот принцип был положен в основу работы электродвигателя.
Если поместить рамку с током в поле постоянного магнита, то на нее будет действовать сила, поворачивая вокруг оси вращения. Движение будет осуществляться до тех пор, пока система не придет в равновесие. В этот момент нужно изменить полярность тока в рамке, и движение продолжится. Постоянно меняя полярность тока в рамке, можно получить ее непрерывное вращение. Для этого ток в нее подается через контактные пластины на валу, называемые коллектором, соединенный с источником питания через подпружиненные щетки. При вращении пластины коллектора получают питание то от положительного полюса источника, то от отрицательного.
Коллекторы современных двигателей постоянного тока имеют большое число выводов (ламелей), что позволяет им работать устойчивее и достигать больших скоростей вращения. Питание к ним подводится через графитовые или медно-графитовые щетки.
Якорь с коллекторомПостоянные магниты, в силу непостоянства их магнитного потока, заменяют электромагнитами, обмотки которых располагают в неподвижной части двигателя, называемой статором. Вращающуюся же часть электродвигателя с обмоткой постоянного тока называют якорем.
Статор и якорь имеют сердечники для усиления электромагнитных свойств. Их изготавливают наборными из тонких металлических пластин, изолированных друг от друга специальным термостойким лаком. Это снижает потери на вихревые токи, нагревающие сердечники и снижающие коэффициент полезного действия двигателя. Сердечники имеют сложную форму. В них сделаны пазы, в которые укладываются обмотки.
Принцип работы асинхронного электродвигателя переменного тока
Переменный ток для электродвигателей удобен тем, что можно отказаться от коллекторных схем, изменяющих фазу тока в обмотке на валу двигателя, называемой уже не якорем, а ротором. На переменном токе она сама изменяется по синусоидальному закону. Но есть и сложность: магнитное поле статора тоже изменяется по синусоидальному закону. Поэтому обмотки статора разных фаз разделяется на несколько частей и располагаются в пространстве в определенном порядке.
Принцип работы двигателя переменного тока немного отличается от постоянного. Вращающееся по кругу магнитное поле статора создает магнитный поток, за счет которого в обмотке ротора создается ЭДС. Проводники обмотки замкнуты накоротко, поэтому по ним течет ток. Взаимодействие вращающегося магнитного поля статора с током в короткозамкнутом роторе приводит к его вращению.
При этом скорость, с которой вращается ротор меньше скорости вращения магнитного поля в статоре. Поэтому эти двигатели и называют асинхронными.
Асинхронный электродвигатель с короткозамкнутым роторомЕсли обмотки ротора выполнить не короткозамкнутыми, а вывести их концы на контактные кольца, то получится электродвигатель с фазным ротором. Включая в цепь ротора резисторы, можно регулировать скорость вращения. Это позволяет применять такие двигатели на кранах и экскаваторах. Все мощные асинхронные электродвигатели тоже имеют фазный ротор. Плавное или ступенчатое изменение величины сопротивления в цепи ротора во время пуска позволяет снизить пусковые токи и плавно разгонять приводимый во вращение агрегат.
Фазный ротор асинхронного электродвигателяПринцип действия синхронного электродвигателя переменного тока
Как видно из названия, ротор этого электродвигателя вращается с той же скоростью, что и магнитное поле статора, подключенного к сети переменного тока. В ротор же через контактные кольца и щетки подается постоянный ток, называемый током возбуждения. Регулируя величину тока в роторе, можно менять режим работы электродвигателя.
При определенных параметрах возбуждения получается режим, когда синхронный двигатель начинает отдавать в сеть реактивную мощность. Это – полезное свойство, позволяющее отказаться от применения установок компенсации реактивной мощности на предприятиях, где работают такие двигатели.
Однофазные электродвигатели переменного тока
Самая распространенная конструкция однофазного электродвигателя включает в себя обмотку на статоре и последовательно соединенную с ней обмотку якоря. Соединение происходит через щетки и коллектор якоря с большим количеством ламелей. Обмотки расположены так, что при взаимодействии подключенной в данный момент к цепи обмотки якоря с магнитным полем статора создается вращающий момент. Якорь поворачивается, и подключенной оказывается следующая обмотка. За счет этого момент вращения всегда остается постоянным.
Другая конструкция использует ротор с короткозамкнутыми обмотками и две обмотки на статоре. Одна из них включается через конденсатор, создающий при работе электродвигателя сдвиг фаз между токами и напряжениями в обмотках. Получается некоторое подобие асинхронного электродвигателя, но работающего не на трех, а на двух «фазах».
Оцените качество статьи:
Чем асинхронные электродвигатели отличаются от синхронных
Самые распространённые электродвигатели — трёхфазные машины переменного тока. Они есть двух видов — асинхронные и синхронные. В этой статье рассказывается в чём сходство и различие между машинами обоих типов и область их применения.Принцип действия и устройство электромашин разных типов
Асинхронные и синхронные электродвигатели похожи по конструкции, но есть и отличия.
Устройство и принцип действия асинхронных электродвигателей
Это самые распространённые машины переменного тока. Такие электродвигатели состоят из трёх основных частей:
- Корпус с подшипниковыми щитами и лапами или фланцем.
- В корпусе находятся магнитопровод из железных пластин с обмотками. Этот магнитопровод носит название статор.
- Вал с подшипниками и магнитпроводом. Эта конструкция называется ротор. В электродвигателях с короткозамкнутым ротором в магнитопроводе находятся соединённые между собой алюминиевые стержни, эта конструкция носит название «беличья клетка». В машинах с фазным ротором вместо стержней намотаны обмотки.
В пазах статора со сдвигом 120° намотаны три обмотки. При подключении к трёхфазной сети в статоре наводится вращающееся магнитное поле. Скорость вращения называется «синхронная скорость».
Справка! В однофазных электродвигателях вращающееся поле создаётся дополнительной обмоткой или конструктивными особенностями статора.
Это поле наводит ЭДС в роторе, возникающий при этом ток создаёт своё поле, взаимодействующее с полем статора и приводящее его в движение. Скорость вращения ротора меньше синхронной скорости. Эта разница называется скольжение.
Рассчитывается скольжение по формуле S=(n1-n2)/n1*100%, где: · n1 — синхронная скорость; · n2 — скорость вращения ротора.
Номинальная величи
на скольжения в обычных электромоторах 1-8%. При увеличении нагрузки на валу двигателя скольжение и вращающий момент растут до критической величины, при достижении которой двигатель останавливается.
В электродвигателях с фазным ротором вместо беличьей клетки в пазах ротора намотаны три обмотки. Через токосъёмные кольца и щётки они подключаются к добавочным сопротивлениям. Эти сопротивления ограничивают ток и магнитное поле в роторе. Это увеличивает скольжение и уменьшает скорость двигателя.
Такие аппараты используются при тяжёлом пуске и в устройствах с регулировкой скорости, например, в мостовых кранах.
Принцип действия синхронных электродвигателей
Эти двигатели устроены сложнее и дороже асинхронных машин. Их достоинство в постоянной скорости вращения, не меняющейся при нагрузке.
Справка! В роторе синхронных машин малой мощности вместо электромагнитов установлены постоянные или просто магнитопровод имеет явновыраженные полюса. Скольжение, как в асинхронных машинах, отсутствует, и частота вращения определяется только частотой питающего напряжения.
Запуск электродвигателей
Асинхронные электрические машины мощностью до 30-50кВт запускаются прямой подачей электроэнергии. С двигателями большой мощности и синхронными машинами дело обстоит сложнее.
Пуск асинхронных двигателей большой мощности
Для запуска таких машин используются разные способы:
- Включение добавочных сопротивлений в цепь статора. Они ограничивают пусковой ток, а после разгона закорачиваются пускателем.
- В аппаратах, предназначенных для работы в сети с фазным напряжением 660 вольт обмотки в сети 380 вольт соединены треугольником. На время пуска они переключаются в звезду.
- В электромашинах с фазным ротором для запуска в цепь ротора включаются добавочные сопротивления. После разгона они закорачиваются.
- При наличии регулировки скорости, переключением обмоток или изменением частоты, двигатель включается на минимальные обороты. После начала вращения, обороты увеличиваются.
Пуск синхронных электромашин
В отличие от асинхронных машин, пуск которых производится взаимодействием поля статора и обмоток или беличьей клетки ротора, синхронную машину необходимо предварительно разогнать до скорости, близкой к синхронной.
- С помощью дополнительного асинхронного двигателя. Так запускаются машины с постоянными магнитами в роторе. При достижении скорости, близкой к синхронной, асинхронхронник отключается и подаётся напряжение в статор синхронного двигателя.
- Асинхронный пуск. В роторе, кроме электромагнита, находится «беличья клетка». С её помощью аппарат разгоняется, после чего в обмотку подаётся постоянное напряжение, и двигатель начинает работать в качестве синхронного.
- Обмотки ротора закорачиваются напрямую или через добавочное сопротивление. После разгона в них подаётся постоянное напряжение.
- При помощи ТПЧ (тиристорного преобразователя частоты) частота питающего напряжения и скорость вращения плавно поднимается до номинальной. Этот способ применяется в механизмах с регулировкой скорости.
Особенности и применение разных видов электродвигателей
У каждого типа двигателей есть достоинства и недостатки по сравнению с другими. Это определяет область их применения. Применение разных типов электромашин зависит от их особенностей конструкции и принципа действия.
Достоинства и использование асинхронных электродвигателей
Такие машины имеют достоинства перед синхронными аппаратами:
- простота конструкции и низкая цена; аппараты с фазным ротором позволяют регулировать скорость вращения и осуществлять плавный пуск без использования преобразователей частоты;
- большое разнообразие мощностей — от нескольких ватт до десятков киловатт.
Кроме достоинств есть недостатки:
- падение скорости вращения при росте нагрузки;
- более низкий КПД и большие габариты, чем у синхронных аппаратов той же мощности;
- кроме активной, такие аппараты потребляют реактивную (индуктивную) мощность, что ведёт к необходимости устанавливать компенсаторы или дополнительно оплачивать реактивную электроэнергию.
Используются такие машины практически везде, где необходимо приведение в движение механизма и есть трёхфазное напряжение 380 вольт.
Применение синхронных машин
- Регулировка путём изменения тока возбуждения cos φ. Это позволяет уменьшить ток потребления, габариты и сечение подводящего кабеля, а также увеличить КПД. Кроме того, такие аппараты используются в качестве компенсаторов реактивной мощности.
- Менее чувствительны к колебаниям напряжения и обладают большей перегрузочной способностью, особенно к ударным нагрузкам. Способность к превышению мощности повышается путём перевозбуждения обмоток ротора. Благодаря этому такие двигатели используются в экскаваторах, гильотинных ножницах и других подобных механизмах.
- Частота вращения не меняется при изменения нагрузки. Поэтому синхронные машины применяются в прецизионных станках в металлургии, машиностроении и деревообатывающей промышленности.
Асинхронные двигатели с фазным ротором
Основная классификация асинхронных двигателей осуществляется в зависимости от особенностей их пусковых свойств, которые определяются нюансами конструкции.
Если рассматривать устройство с фазным ротором, то пуск происходит следующим образом:
- Начало запуска параллельно сопровождается переходом фазного ротора из спокойного состояния к постепенному равномерному вращению, во время которого машина начинает уравновешивать момент сил сопротивления на собственном валу.
- При совершении запуска наблюдается увеличение объемов потребления электроэнергии из сети. Усиленное питание обуславливается необходимостью преодоления тормозного момента, приложенного к валу; передачей движущимся элементам кинетической энергии и компенсацией потерь внутри самого двигателя.
- Начало пускового момента и параметры скольжения в этот период напрямую зависят от активного сопротивления, которое оказывают резисторы, введенные в роторную цепь.
- Иногда показателей малого начального пускового момента бывает недостаточно для того, чтобы перевести асинхронный агрегат в полноценный рабочий режим. В такой ситуации, ускорение не является достаточным, а пусковой электрический ток со значительными показателями воздействует на обмотки двигателя, что вызывает их чрезмерный нагрев. Это может ограничить частоту его включений, а если машина была подключена к электросети с малой мощностью, такой запуск может вызвать понижение общего напряжения, что негативно сказывается на функционировании иных потребителей.
- Благодаря введению в роторную цепь пусковых резисторов происходит понижение показателей электрического тока и пропорциональное увеличение начального пускового момента вплоть до достижения им максимальных параметров.
- Последующее увеличение параметров сопротивления резисторов не является необходимым условием, поскольку оно будет способствовать снижению начального пускового момента и постепенному отклонению от максимальных характеристик его работы. Область скольжения при этом рискует достигнуть недопустимых показателей, что негативно скажется на разгоне ротора.
- Пуск двигателя может быть легким, нормальным или тяжелым, именно этот фактор определит оптимальное значение сопротивления резисторов.
- Далее, необходимо только поддержание достигнутого вращающего момента во время разгона ротора, это позволяет сократить длительность переходного процесса, в котором находится запущенная машина, а также способствует снижению степени нагрева. Для достижения этих целей, осуществляется постепенное понижение показателей сопротивления пусковых резисторов. Параметры допустимого изменения момента зависят от общих условий, которые определяют пиковый предел этого параметра.
- Процесс переключения разных резисторов осуществляется за счет последовательного подключения контакторов ускорения. На протяжении всего пуска, моменты, во время которых достигаются пиковые значения, являются одинаковыми, а периоды переключения равными между собой.
- Процесс отключения машины от электросети разрешается осуществлять при накоротко замкнутой роторной цепи, поскольку, в противном случае имеется риск возникновения перенапряжения в обмоточных фазах статора.
- Параметры напряжения могут достичь значения, которое превосходит его номинальные показатели в 3-4 раза, если во время отключения машины роторная цепь находилась в разомкнутом состоянии.
Технические характеристики
Основные требования, которые обеспечивают качественное функционирование асинхронных агрегатов с фазным ротором, определены и указаны в соответствующих ГОСТах.
Именно они определяют главные технические характеристики и к таким параметрам относятся:
- Габариты и мощность двигателя, которые должны иметь показатели, соответствующие техническому регламенту.
- Уровень защиты должен соответствовать условиям, в которых происходит процесс эксплуатации, поскольку различные виды машин могут быть предназначены для установки на улице или только внутри помещений.
- Высокая степень изоляции, которая должна обладать устойчивостью к повышению рабочей температуры и последующему нагреву.
- Различные виды асинхронных двигателей предназначены для использования в определенных климатических условиях. Это касается в первую очередь установки подобных машин в крайне холодных местностях или, наоборот, жарких областях. Исполнение агрегата должно соответствовать климату местности, в которой проходит процесс эксплуатации.
- Полное соответствие режимам функционирования.
- Наличие системы охлаждения, которая должна соответствовать рабочим режимам машины.
- Уровень шума при запуске агрегата на холостом ходу должен соответствовать второму классу или быть ниже его.
Устройство
Для работы с асинхронными двигателями и полного понимания принципов функционирования подобных машин, необходимо ознакомиться с особенностями их устройства:
- Основными частями конструкции агрегата является статор, находящийся в неподвижном состоянии, и вращающийся ротор, который расположен внутри него.
- Воздушный зазор разделяет оба элемента между собой.
- И статор, и ротор обладают специальной обмоткой.
- Статорная обмотка имеет подключение к питающей электросети с переменным напряжением.
- Роторная обмотка по своей сути является вторичной, поскольку не имеет подключения к сети, а передачу необходимой энергии для нее осуществляет непосредственно статор. Этот процесс происходит благодаря созданию магнитного потока.
- Корпус статора и корпус двигателя – это один элемент, который имеет в своей структуре запрессованный сердечник.
- В пазах сердечника размещены проводники обмотки. Специальный электротехнический лак обеспечивает надежную изоляцию данных объектов друг от друга.
- Обмотка сердечника особым образом разделена на секции, которые соединены в катушки.
- Катушки составляют фазы самого двигателя, к которым происходит подключение фазы от питающей электросети.
- Ротор состоит из вала и сердечника.
- Роторный сердечник создан из набранных пластин, которые изготавливаются из особой разновидности электротехнической стали. На его поверхности имеются симметричные пазы, внутри которых размещены проводники обмотки.
- Роторный вал в ходе работы выполняет функции по передаче крутящего момента непосредственно к приводному механизму машины.
- Роторы обладают собственной классификацией, короткозамкнутая разновидность имеет в своей конструкции стержни, изготовленные из алюминия. Они располагаются внутри сердечника, а на торцах замкнуты специальными кольцами. Подобная система получила название беличьего колеса. В машинах с наиболее высокой мощностью, пазы дополнительно заливаются алюминием, что способствует повышению прочности конструкции.
- Вместо короткозамкнутого ротора в конструкции может присутствовать фазная разновидность. Количество катушек, сдвинутых под определенным углом относительно друг друга, в такой системе зависит от числа парных полюсов. При этом, роторные пары полюсов всегда равны количеству аналогичных пар в статоре. Роторная обмотка соединена особым образом и напоминает по своей форме звезду, а ее лучи выводятся на контакты токосъемных колец, которые соединены при помощи механизма щеточного типа и пускового реостата.
Принцип работы
После освоения устройства асинхронного двигателя с фазным ротором и особенностей его запуска, можно переходить к изучению принципа работы, который заключается в следующем:
- На статор, обладающий тройной обмоткой, начинает подаваться трехфазное напряжение, идущее от внешней электросети с переменным током.
- Последовательно происходит процесс возбуждения магнитного поля, которое начинает совершать вращательные движения.
- Совершаемые вращения постепенно становятся быстрее скорости ротора.
- В определенный момент времени начинает происходить пересечение отдельных линий полей статора и ротора, что обуславливает возникновение электродвижущей силы.
- Электродвижущая сила оказывает прямое воздействие на закороченную обмотку ротора, благодаря чему в ней начинает появляться электрический ток.
- Через определенное время начинает происходить взаимодействие между возникшим в роторе током и статорным магнитным полем, из-за этого образуется крутящий момент, обеспечивающий функционирование асинхронной машины.
Преимущества и недостатки
Востребованность асинхронных двигателей подобного типа на сегодняшний день обуславливается следующими значимыми преимуществами, которыми они обладают:
- Значительные показатели, которых способен достигать начальный вращающий момент после запуска машины.
- Механические перегрузки, которые возникают на протяжении коротких промежутков времени, переносятся агрегатом без каких-либо значимых последствий и не оказывают влияния на процесс функционирования машины.
- При возникновении разнообразных перегрузок в системе, двигатель сохраняет постоянную скорость, возможные отклонения не являются значимыми.
- Показатели пускового тока значительно меньше, чем у большинства асинхронных аналогов, например, имеющих в своей конструкции короткозамкнутый ротор.
- Использование подобных агрегатов предусматривает возможность использования систем, автоматизирующих процесс их запуска и введения в рабочее состояние.
- Конструкция и устройство таких машин являются довольно простыми.
- Запуска агрегата осуществляется по простой схеме, не подразумевающей значимых усилий.
- Относительно невысокая стоимость.
- Обслуживание таких машин не требует значительных затрат сил и времени.
Однако, при таком большом количестве положительных сторон, асинхронные двигатели с фазным ротором обладают и некоторыми недостатками, основными из них являются следующие особенности подобных машин:
- Слишком большие размеры двигателя, которые могут причинять некоторые неудобства при монтаже и эксплуатации.
- Коэффициент полезного действия и общая выработка у них намного ниже, чем у многих аналогов. Разновидность агрегатов с короткозамкнутым ротором значительно превосходит их по этим показателям.
Применение
На сегодняшний день, большая часть двигателей, выпускаемых в промышленных масштабах, относится к асинхронной разновидности.
Благодаря ряду преимуществ, которыми обладают машины с фазными роторами, они широко используются в разных сферах человеческой деятельности, в том числе для поддержания работы:
- Устройств автоматики и приборов из телемеханической области.
- Бытовых приборов.
- Медицинского оборудования.
- Оборудования, предназначенного для осуществления аудиозаписи.
Статья была полезна?
0,00 (оценок: 0)
Однофазный асинхронный двигатель. Назначение, устройство, принцип действия.
Однофазные асинхронные двигатели — машины небольшой мощности, которые по конструктивному исполнению напоминают аналогичные трехфазные асинхронные электродвигатели с короткозамкнутым ротором.
Назначение, устройство и принцип действия однофазных асинхронных двигателей
Однофазные асинхронные двигатели отличаются от трехфазных двигателей устройством статора, где в пазах магнитопровода находится двухфазная обмотка, состоящая из основной, или рабочей, фазы с фазной зоной 120 эл. град и выводами к зажимам с обозначениями С1 и С2, и вспомогательной, или пусковой, фазы с фазной зоной 60 эл. град и выводами к зажимам с обозначениями В1 и В2 (рис. 1).
Магнитные оси этих фаз обмотки смещены относительно друг друга на угол 0 = 90 эл. град. Одна рабочая фаза, присоединенная к питающей сети переменного напряжения, не может вызвать вращения ротора, так как ток ее возбуждает переменное магнитное поле с неподвижной осью симметрии, характеризуемое гармонически изменяющейся во времени магнитной индукцией.
Схема включения однофазного асинхронного двигателя
Рис. 1
Это поле можно представить двумя составляющими — одинаковыми круговыми магнитными полями прямой и обратной последовательностей, вращающимися с магнитными индукциями, вращающимися в противоположные стороны с одной и той же скоростью. Однако при предварительном разгоне ротора в необходимом направлении он при включенной рабочей фазе продолжает вращаться в том же направлении.
По этой причине пуск однофазного двигателя начинают с разгона ротора путем нажатия пусковой кнопки, вызывающего возбуждение токов в обеих фазах обмотки статора, которые сдвинуты по фазе на величину, зависящую от параметров фазосдвигающего устройства Z, выполненного в виде резистора, индуктивной катушки или конденсатора, и элементов электрических цепей, в которые входят рабочая и пусковая фазы обмотки статора. Эти токи побуждают в машине вращающееся магнитное поле с магнитной индукцией в воздушном зазоре, которая периодически и монотонно изменяется в пределах максимального и минимального значений, а конец ее вектора описывает эллипс.
Это эллиптическое вращающееся магнитное поле находит в проводниках короткозамкнутой обмотки ротора ЭДС и токи, которые, взаимодействуя с этим полем, обеспечивают разгон ротора однофазного двигателя в направлении вращения поля, и он в течение нескольких секунд достигает почти номинальной скорости.
Отпускание пусковой кнопки переводит электродвигатель с двухфазного режима на однофазный, поддерживаемый в дальнейшем соответствующей составляющей переменного магнитного поля, которая при своем вращении несколько опережает вращающийся ротор из-за скольжения.
Своевременное отключение пусковой фазы обмотки статора однофазного асинхронного двигателя от питающей сети необходимо в связи с ее конструктивным исполнением, предусматривающим кратковременный режим работы — обычно до 3 с, что исключает длительное пребывание ее под нагрузкой в связи с недопустимым перегревом, сгоранием изоляции и выходом из строя.
Маркировка зажимов фаз обмотки статора однофазного асинхронного двигателя с короткозамкнутым ротором
Рис. 2: а, в — соединение для правого вращения ротора; б, г — соединение для левого вращения ротора
Повышение надежности эксплуатации однофазных асинхронных двигателей обеспечивают встраиванием в корпус машин центробежного выключателя с размыкающими контактами, присоединенными к зажимам с обозначениями ВЦ и В2, и теплового реле с аналогичными контактами, имеющими выводы с обозначениями РТ и С1 (рис. 2, в, г).
Центробежный выключатель автоматически отключает пусковую фазу обмотки статора, присоединенную к зажимам с обозначениями В1 и В2 при достижении ротором скорости, близкой к номинальной, а тепловое реле — обе фазы обмотки статора от питающей сети, когда нагрев их окажется выше допустимого.
Перемена направления вращения ротора достигается изменением направления тока в одной из фаз обмотки статора при пуске путем переключения пусковой кнопки и перестановки металлической пластины на зажимах электродвигателя (рис. 2, а, б) или только перестановкой двух аналогичных пластин (рис. 2, в, г).
Двигатель асинхронный трехфазный: устройство и принцип действия.
22.11.2018
Трехфазный асинхронный двигатель является наиболее распространённым типом моторов. В таком электродвигателе на статоре устанавливается трехфазная обмотка, что обуславливает его название.
СОДЕРЖАНИЕ:
- Конструкция
- Принцип действия
- Режим работы
- Преимущества
КОНСТРУКЦИЯ ТРЕХФАЗНОГО асинхронного ДВИГАТЕЛЯ
Основная задача двигателя — это превращение электрической энергии в механическую. Конструкция его состоит из двух основных элементов таких как ротор (подвижная часть) и статор (неподвижная часть).
Между ними находиться воздушный зазор. Оба этих элемента имеют в себе сердечники, где размещается специальные витки обмотки. В роторе они располагаются на валу, а в статоре в специальных пазах на корпусе.
Пазы, на которых крепиться обмотка имеют угловое расстояние между собой в 120 градусов. Наиболее распространённым является система с короткозамкнутым ротором или как ее называют «беличье колесо». В этом случае обмотка крепиться на каркас цилиндрической формы, а стержни соединяются с сердечником ротора и накоротко замыкаются с торцов.
Помимо короткозамкнутого также используются и двигатели с фазным ротором. В этом случае фазы обмотки присоединяется к специальным контактным кольцам, а их концы изолируются друг от друга и от вала. При всем этом статоры в обоих представленных видах могут не отличаться конструкционно.
Существует несколько схем соединения трехфазных обмоток между собой. Основными способами являются т.н. «звезда» и «треугольник». Иногда устанавливаются и комбинированные варианты. Подбор схемы зависит от напряжения питания в сети. В первом случае концы фаз обмоток соединены в одной точке. Во втором — конец каждой фазы поочередно соединяется с началом следующей.
ПРИНЦИП ДЕЙСТВИЯ
Работа асинхронного двигателя основывается на вращении магнитных полей. С помощью тока в обмотке статора создается движущееся магнитное поле, которое воздействует на контур ротора и индуцирует в нем электродвижущую силу. Если этот показатель выше силы трения, то вал приводиться в движение.
Ротор увеличивает частоту вращения пытаясь догнать скорость вращения магнитных полей обмотки статора. Однако, когда этот параметр сравниваеться то электродвижущая достигает нулевого значения и магнитное воздействие пропадает.
Поэтому частота вращение вала никогда не совпадает (не синхронна) с частотой движущихся магнитных полей. Из-за этого двигатель называют асинхронным.
РЕЖИМЫ РАБОТЫ
Трехфазный электродвигатель асинхронного типа имеет несколько возможных режимов работы:
- Пуск.
- Двигательный режим.
- Холостой ход.
- Генераторный режим.
- Электромагнитное торможение.
Пуск является начальным этапом работы любого двигателя. В этом режиме на обмотку пускается ток и создаются вращающиеся магнитные поля. В момент, когда сила трения меньше электродвижущей — ротор начинает вращение.
Двигательный режим выполняет основную задачу электродвигателя, то есть превращает электродвижущую силу в механическое вращение вала.
Холостой ход происходит, когда на валу отсутствует нагрузка, то есть он не подсоединен к другим устройствам.
Генераторный режим включается, когда обороты вала принудительно, например, с помощью другого двигателя, превышают скорость вращения электромагнитного поля. В этом случае электродвижущая сила имеет обратный вектор и двигатель превращается в источник активной энергии.
Электромагнитное торможение происходит, когда искусственно изменяют направление вращения электромагнитного поля и ротора на противоположные. Происходит довольно быстрое торможение. Применяется только в экстренных случаях, так как выделяется огромное количество тепла.
ПРЕИМУЩЕСТВА ТРЕХФАЗНОГО АСИНХРОННОГО ДВиГАТЕЛЯ
Трёхфазный двигатель также может работать в однофазном режиме, когда это потребуется. Однако номинальная мощность при этом понижается приблизительно вдвое.
В случае пропадания одной из фаз двигатель продолжит работу и даже будет возможен запуск, но с пониженной мощностью. Относительная дешевизна, хороший КПД и надежность поспособствовали тому, что такие моторы заслужили наибольшую популярность во всем мире.
На нашем сайте вы сможете найти электродвигали для любых ситуаций. В каталогах представлены моторы таких мировых лидеров как Siemens, ABB, Lenze, а также VEM motors.
На страницах нашего блога также можно также ознакомиться с другими типами асинхронных моторов >>>ОДНОФАЗНЫЕ АСИНХРОННЫЕ ДВИГАТЕЛИ <<< или более подробно узнать о конструкции электродвигателей >>> ВИДЫ ЭЛЕКТРОДВИГАТЕЛЕЙ <<<
Подписывайтесь на наши обновления:
Устройство трехфазного асинхронного двигателя
Электродвигателем называется электрическая машина, функциональным назначением которой является преобразование энергии электрической в энергию механическую. Существует несколько типов электродвигателей постоянного или переменного тока.
Одним из наиболее распространенных типов электродвигателей, нашедших свое применение в производственных условиях различного назначения, является трехфазный асинхронный двигатель переменного тока с короткозамкнутым ротором.
Отличительными особенностями данного типа электродвигателей является отсутствие скользящих контактов, простота и надежность конструкции, легкость технического обслуживания.
Основной функциональный узел трехфазного асинхронного двигателя включает в себя две составные части: статор и короткозамкнутый ротор. Конструктивно статор и ротор представляют собой пакеты пластин, выполненных из специальной электротехнической стали.
Сердечник статора имеет трехфазную обмотку, уложенную и закрепленную в специальных пазах. Фазы обмотки статора соединены по типу «звезда» или «треугольник» в зависимости от напряжения и особенностей питающей сети.
Сердечник ротора и его обмотка не изолированы друг от друга. Обмотка ротора и вентиляционные лопатки представляют собой слитную конструкцию, выполненную из сплава алюминия или полностью алюминиевую. Стержневые выводы обмотки ротора накоротко замкнуты надетыми на них кольцами и образуют конструкцию, называемую «беличьей клеткой».
Принцип действия трехфазного асинхронного двигателя основан на использовании закона электромагнитной индукции. Сердечник статора с трехфазной обмоткой создает вращающееся магнитное поле, силовые линии которого пересекают короткозамкнутые стержневые выводы обмотки ротора. Электродвижущая сила, наведенная в роторе, способствует протеканию переменного тока в его обмотке.
Переменный ток, протекающий в обмотке ротора, создаёт вокруг него магнитное поле, силовые линии которого пересекаются с магнитным полем сердечника статора. Взаимодействующие магнитные поля приводят в движение ротор, который начинает вращаться в направлении магнитного поля статора.
Двигатель назван асинхронным из-за частоты вращения ротора, которая имеет несколько меньшую величину, чем синхронная частота вращения магнитного поля статора и считается асинхронной.
Конструкция асинхронных трехфазных двигателей достаточно проста и надежна в эксплуатации, что позволяет оборудовать ими технические устройства различного назначения. Асинхронные трехфазные двигатели приводят в движение многие виды производственного оборудования и вспомогательных механизмов.
Трехфазными асинхронными двигателями оснащены станки металлообрабатывающей и деревообрабатывающей промышленности, насосное и конвейерное оборудование, строительная техника, многие виды вспомогательных технических устройств.
Трехфазные асинхронные двигатели надежны и не теряют работоспособности в условиях значительных кратковременных перегрузок.
Асинхронные двигатели, наиболее пригодны, для изготовления в герметическом исполнении. Такие двигатели могут эксплуатироваться даже в очень тяжелых специфических условиях.
Простая и надежная конструкция трехфазных асинхронных электродвигателей обуславливает их повсеместное использование в различных сферах производства. Данный тип двигателей нашел широкое применение в технологическом оборудовании для строительной, судостроительной, автомобилестроительной и многих других отраслей.
Конструкция, работа, различия и применение
В электрических машинах, таких как двигатели, мы часто путаемся с типами двигателей, такими как синхронный двигатель, а также асинхронным двигателем с их применением. Эти двигатели используются в различных приложениях благодаря надежности, а также прочности. Как следует из названия, название этого двигателя происходит от того факта, что ротор в двигателе работает асинхронно с вращающимся магнитным полем. Итак, в этой статье дается обзор асинхронного двигателя, конструкции, принципа работы и т. Д.
Что такое асинхронный двигатель?
Определение: Электродвигатель, работающий с переменным током, известен как асинхронный двигатель. Этот двигатель в основном работает на индуцированном токе внутри ротора от вращающегося магнитного поля статора. В этой конструкции двигателя движение ротора не может быть синхронизировано через движущееся поле статора. Поле вращающегося статора этого двигателя может индуцировать ток в обмотках ротора. В свою очередь, этот ток будет создавать силу, толкающую ротор в направлении статора.В этом двигателе, поскольку ротор не совпадает по фазе со статором, создается крутящий момент.
Асинхронный двигатель
Это наиболее распространенный тип двигателя. В частности, в промышленности используется трехфазный асинхронный двигатель по таким причинам, как низкая стоимость, простота обслуживания и простота обслуживания. Характеристики этого двигателя хороши для сравнения с однофазным двигателем. Основная особенность этого мотора в том, что скорость не может быть изменена. Рабочая скорость этого двигателя в основном зависит от частоты источника питания, а также от номера.полюсов.
Конструкция асинхронного двигателя
В этой конструкции двигателя нет магнитов. В этой конструкции двигателя фазы могут быть соединены с катушками. Так что магнитное поле может быть создано. В этом двигателе ток внутри ротора может быть активирован за счет индуцированного напряжения вращающегося поля. Как только магнитное поле проходит через ротор, на роторе индуцируется напряжение. Потому что магнитное поле ротора может быть создано за счет магнитного поля статора.Обычно магнитное поле ротора движется асинхронно по направлению к магнитному полю статора или с задержкой во времени. Таким образом, задержка между двумя магнитными полями может быть известна как «проскальзывание».
Конструкция асинхронного двигателяРабота асинхронного двигателя
Принцип работы этого двигателя почти такой же, как и у двигателя синхронного типа, за исключением внешнего возбудителя. Эти двигатели, также называемые асинхронными двигателями, работают по принципу электромагнитной индукции, когда ротор в этом двигателе не получает никакой электроэнергии за счет теплопроводности, как в случае двигателей постоянного тока.У этих двигателей нет внешних устройств для стимуляции ротора внутри двигателя. Таким образом, скорость вращения ротора в основном зависит от нестабильной магнитной индукции.
Изменяющееся электромагнитное поле может вызвать вращение ротора с меньшей скоростью, чем магнитное поле статора. Когда скорость ротора, а также скорость магнитного поля внутри статора изменяется, эти двигатели называются асинхронными двигателями. Изменение скорости можно назвать скольжением.
Разница между синхронным и асинхронным двигателем
Разница между синхронным и асинхронным двигателем приведена в следующей таблице.
Функция | Синхронный двигатель | Асинхронный двигатель |
Определение | Это один из видов машин, в котором скорость ротора и статора скорость эквивалентна. N = NS = 120f / P | Это один из видов машин, в которых ротор вращается с меньшей скоростью по сравнению с синхронной скоростью. Н меньше NS |
Тип | Типы синхронных: переменное сопротивление, бесщеточный, гистерезисное и переключаемое сопротивление. | Асинхронный двигатель переменного тока также известен как асинхронный двигатель. |
Скольжение | Значение скольжения этого двигателя равно нулю | Значение скольжения этого двигателя не равно нулю |
Стоимость | Это дорого | Это дешевле |
КПД | Высокий КПД | Низкий КПД |
Скорость | Скорость двигателя не зависит от неравенства нагрузки. | Скорость двигателя уменьшается при увеличении нагрузки. |
Электропитание | Электропитание может подаваться на ротор в двигателе | Ротор в этом двигателе не нуждается в токе. |
Самозапуск | Этот двигатель не самозапускается | Этот двигатель самозапускается |
Влияние крутящего момента | Как только приложенное напряжение изменится, это не повлияет на крутящий момент этого двигателя | Как только приложенное напряжение изменится, это повлияет на крутящий момент этого двигателя. |
Коэффициент мощности | Коэффициент мощности может быть изменен после изменения возбуждения на основе запаздывания, единицы или опережения. | Он просто работает с отстающим коэффициентом мощности. |
Применения | Эти двигатели применяются в промышленности, на электростанциях и т. Д. Этот двигатель также используется в качестве контроллера напряжения. | Эти двигатели применяются в вентиляторах, центробежных насосах, бумажных фабриках, воздуходувках, лифтах, компрессорах. и текстильные фабрики и т. д. |
Преимущества
Асинхронный двигатель имеет следующие преимущества.
- Меньше затрат
- Простота обслуживания
- Высокая эффективность при работе с частичной нагрузкой
- Подходит для высоких скоростей вращения, что позволяет достигать высоких оборотов в секунду вместе с инверторами VECTOPOWER
Применения
Большая часть двигатели, используемые в различных приложениях в мире, являются асинхронными.Приложения в основном включают следующее.
- Центробежные насосы
- Воздуходувки
- Вентиляторы
- Конвейеры
- Компрессоры
- Тяжелые краны
- Лифты
- Токарные станки
- Бумажные фабрики 9017
- Масляные мельницы Почему асинхронный двигатель еще называют асинхронным двигателем?
Асинхронный двигатель зависит от индуцированного тока в роторе от вращающегося магнитного поля в статоре.
2). Какие бывают типы асинхронных двигателей?
Это однофазные и трехфазные двигатели
3). В чем главная особенность асинхронного двигателя?
Основной особенностью этого двигателя является то, что скорость не может изменяться.
4). Каков коэффициент мощности асинхронного двигателя?
Этот мотор работает просто на отстающей п.ф.
Итак, это все об асинхронном двигателе. Эти двигатели часто используются в 90% приложений по всему миру из-за высокой прочности и надежности.Эти двигатели используются в различных движущихся или вращающихся машинах, таких как лифты, вентиляторы, шлифовальные машины и т. Д. Вот вопрос к вам, каковы недостатки асинхронного двигателя?
Принцип работы и типы асинхронного двигателя
Асинхронные двигатели — наиболее часто используемые двигатели во многих областях. Их также называют асинхронными двигателями , потому что асинхронный двигатель всегда работает со скоростью ниже синхронной. Синхронная скорость означает скорость вращающегося магнитного поля в статоре.
В основном существует 2 типа асинхронных двигателей в зависимости от типа входного питания — (i) однофазный асинхронный двигатель и (ii) трехфазный асинхронный двигатель.Или их можно разделить по типу ротора — (i) двигатель с короткозамкнутым ротором и (ii) двигатель с контактным кольцом или тип
.Основной принцип работы асинхронного двигателя
В двигателе постоянного тока необходимо подавать питание как на обмотку статора, так и на обмотку ротора. Но в асинхронном двигателе только обмотка статора питается переменным током.- Переменный поток создается вокруг обмотки статора из-за источника переменного тока. Этот переменный поток вращается с синхронной скоростью. Вращающийся поток называется «вращающимся магнитным полем» (RMF).
- Относительная скорость между RMF статора и проводниками ротора вызывает индуцированную ЭДС в проводниках ротора согласно закону электромагнитной индукции Фарадея. Проводники ротора закорочены, и, следовательно, ток ротора возникает из-за наведенной ЭДС. Поэтому такие двигатели называются асинхронными двигателями . (Это действие аналогично тому, что происходит в трансформаторах, поэтому асинхронные двигатели могут называться вращающимися трансформаторами .)
- Теперь индуцированный ток в роторе также будет создавать вокруг него переменный поток. Этот поток ротора отстает от потока статора. Направление индуцированного тока ротора, согласно закону Ленца, таково, что он будет иметь тенденцию противодействовать причине его возникновения.
- Поскольку причиной возникновения тока ротора является относительная скорость между магнитным потоком вращающегося статора и ротором, ротор будет пытаться догнать RMF статора.Таким образом, ротор вращается в том же направлении, что и поток статора, чтобы минимизировать относительную скорость. Однако ротору никогда не удается догнать синхронную скорость. Это основной принцип работы асинхронного двигателя любого типа, однофазный или трехфазный.
Синхронная скорость:
где, f = частота подачи
P = количество полюсов
Квитанция:
Ротор пытается догнать синхронную скорость поля статора, и, следовательно, он вращается.Но на практике ротор никогда не догоняет. Если ротор достигает скорости статора, не будет относительной скорости между потоком статора и ротором, следовательно, не будет индуцированного тока ротора и создания крутящего момента для поддержания вращения. Однако это не остановит двигатель, ротор замедлится из-за потери крутящего момента, крутящий момент снова будет действовать из-за относительной скорости. Вот почему ротор вращается со скоростью, которая всегда меньше синхронной скорости.
Разница между синхронной скоростью (N s ) и фактической скоростью (N) ротора называется скольжением.
Асинхронный двигатель: конструкция, работа и различия
Асинхронный двигатель является наиболее широко используемым двигателем в отрасли. Практически невозможно представить себе отрасль без использования этого двигателя, поскольку он работает на субсинхронной скорости. известен как асинхронный двигатель. Взяв на себя такую важную роль, становится необходимо изучить ее подробно. В этой статье обсуждается обзор асинхронного двигателя, такой как его определение, работа, конструкция, различия и применения.
Что такое асинхронный двигатель?
Определение: Двигатель переменного тока, в котором статор не синхронизирован с ротором и может свободно вращаться со скоростью, меньшей, чем синхронная скорость, из-за скольжения. Это связано с тем, что вращающееся магнитное поле не взаимодействует с индуцированным полем ротора. В этом двигателе крутящий момент создается, когда ротор не совпадает по фазе со статором, а ток, индуцируемый в роторе, подчиняется закону Ленца.
асинхронный двигатель
Однако, если ротор каким-то образом выровняется со статором, это приведет к блокировке ротора и крутящего момента не будет.Этот двигатель всегда работает с запаздывающим коэффициентом мощности, так как ротор отстает от статора. Коэффициент мощности этого двигателя в основном зависит от конструкции и тока нагрузки, в отличие от синхронного двигателя, где его можно легко изменить, изменив ток возбуждения.
Работа асинхронного двигателя
Этот двигатель работает по принципу закона Ленца, который гласит, что направление тока, индуцируемого в проводнике путем изменения магнитного поля, таково, что магнитное поле, создаваемое индуцированным током, противодействует изменяющемуся магнитному полю, которое создает Это.
Изменяющееся магнитное поле создается трехфазным или разделенным фазным током, подаваемым на обмотку статора, и поскольку это магнитное поле разрезает проводники ротора, создавая индуцированный ток в роторе, который противодействует изменяющемуся магнитному полю статора. И, таким образом, производя вращательное движение.
Работа этого двигателя будет продолжена по мере обсуждения конструкции и дизайна.Конструкция асинхронного двигателя / Конструкция асинхронного двигателя
Трехфазный асинхронный двигатель доступен в двух типах
- Скользящий кольцевой тип или с фазным ротором
- Тип с короткозамкнутым ротором или с короткозамкнутым ротором
асинхронный -motor-construction
Первый тип, т.е. контактные кольца, состоит из реальной обмотки в пазах ротора, которая соединена с контактными кольцами.В этом двигателе мы можем создавать сопротивление ротора через контактные кольца и щетки. Это позволяет нам изменять пусковые характеристики двигателя.
Тип с короткозамкнутым ротором имеет стержни ротора на роторе, которые закорочены через кольца с обеих сторон. Этот тип двигателя имеет фиксированные пусковые характеристики, которые нельзя изменить путем добавления дополнительного сопротивления.
Тип контактных колец требует технического обслуживания, так как дополнительно имеет контактные кольца и щетки, которые подвержены износу.Остальные основные части, такие как
- Статор
- Ротор
- Обмотки статора
- Обмотки ротора (для типа ротора с фазным ротором) и стержни клетки с закорачивающими замыканиями (для двигателей с короткозамкнутым ротором)
- Кроме того, этот двигатель также :
- Подшипники
- Торцевые крышки
- Вентилятор двигателя с крышкой.
- Клеммная коробка
Статор и ротор изготовлены из штамповок из кремнистой стали. Это сделано для уменьшения потерь из-за вихревых токов и гистерезиса. Статор может быть подключен к трехфазному источнику питания по схеме треугольника или треугольника. звезда.
Когда мы подаем питание на статор, потребляемый ток делится на две составляющие, одна из которых является составляющей возбуждения, а другая составляющей нагрузки. Создаваемое таким образом циркулирующее магнитное поле вызывает циркуляционное движение в роторе. Все перечисленные выше детали облегчают вращательное движение ротора.
Разница между асинхронным двигателем и синхронным двигателем
Основное различие между ними заключается в скорости, синхронный двигатель вращается со скоростью, которая является скоростью вращающегося магнитного поля и определяется как 120 f / p, где ‘f’ — частота питания, а p — количество полюсов.
В то время как асинхронный двигатель имеет скорость, которая всегда меньше синхронной скорости из-за скольжения. Можно сказать, что Nas = 120f / p-скольжение. Где Nas означает асинхронную скорость, или мы также можем сказать Nas
Разницу можно увидеть в различных аспектах:
Технические характеристики Синхронный двигатель Асинхронный двигатель
Тип
Щеточные двигатели двигатели и двигатели статического возбудителя — это типы двигателей, доступные в синхронном диапазоне. Асинхронный двигатель переменного тока с ротором в клетке или с ротором представляет собой асинхронный двигатель Скольжение
В синхронном двигателе скольжение равно нулю В этом двигателе скольжение не равно нулю Требование дополнительного источника питания
В синхронном двигателе требуется дополнительный источник питания для возбуждения двигателя В случае асинхронного двигателя дополнительный источник питания не требуется Контактное кольцо и щетки
В синхронном двигателе обычно требуются токосъемные кольца и щетки. В этом двигателе контактные кольца и щетки не требуются. Стоимость
Стоимость синхронного двигателя выше Стоимость асинхронного двигателя ниже. КПД
КПД синхронного двигателя выше КПД этого двигателя ниже. Коэффициент мощности
В этом двигателе коэффициент мощности можно изменить путем изменения тока возбуждения. Этот двигатель всегда работает с запаздывающими коэффициентами мощности, которые нельзя изменить. Скорость
В этом двигателе скорость не зависит от нагрузки В этом двигателе скорость уменьшается с нагрузкой. Пуск
Синхронный двигатель не самозапускается, однако его можно запустить как трехфазный асинхронный двигатель, и после достижения почти синхронной скорости он может работать как синхронный двигатель. Этот двигатель самозапускается и может быть легко запущен с помощью подходящего распределительного устройства. Техническое обслуживание
Синхронный двигатель требует высокого технического обслуживания Асинхронный двигатель требует низкого технического обслуживания Крутящий момент
Изменение напряжения не влияет на крутящий момент синхронного двигателя Крутящий момент этого двигателя пропорционален квадрату напряжения. Применения
Синхронный двигатель используется там, где потребность в мощности высока, например, на сталелитейных заводах / электростанциях и т. Д. Эти двигатели очень широко используются во всех небольших приложениях. Этот двигатель также используется в качестве синхронного конденсатора для повышения коэффициента мощности. Применения
- Этот двигатель находит самое широкое применение в промышленности, поскольку он очень надежен, не требует обслуживания и экономичен. Эти двигатели используют почти 70% энергии в промышленности.
- Трудно представить себе отрасль, в которой не используются эти двигатели,
- А именно: бумага, металл, пищевая, перерабатывающая промышленность, такая как цемент, удобрения, перекачивание, транспортировка и т. Д.
Часто задаваемые вопросы
1) Что такое принципиальная разница между синхронным и асинхронным двигателем?
Основное различие заключается в том, что асинхронный двигатель — это двигатель с фиксированной скоростью (синхронный), тогда как скорость асинхронного двигателя всегда меньше синхронной скорости.
2) Почему асинхронный двигатель находит очень широкое применение в промышленности, а синхронный — нет?
Этот двигатель практически не требует обслуживания и экономичен.
3) Можно ли изменить коэффициент мощности асинхронного двигателя?
Нет, коэффициент мощности этого двигателя не может быть изменен, он немного изменится только в зависимости от нагрузки.
4) Может ли асинхронный двигатель когда-либо работать с опережающим коэффициентом мощности, как в синхронном двигателе?
Нет, этот двигатель никогда не может работать с опережающим коэффициентом мощности.
5). Что произойдет с крутящим моментом асинхронного двигателя, если напряжение питания изменится?
В этом двигателе крутящий момент прямо пропорционален квадрату напряжения
6). каково будет влияние изменения частоты на асинхронный двигатель?
Изменение частоты в некоторой степени влияет на частоту вращения двигателя.
7). Можем ли мы каким-либо образом изменить частоту вращения асинхронного двигателя?
Да, мы можем изменить частоту вращения этого двигателя, если мы изменим частоту и напряжение одновременно, сохраняя постоянное соотношение.
8). Что произойдет, если асинхронный двигатель будет работать в условиях перегрузки?
Если этот двигатель работает в условиях перегрузки, он потребляет чрезмерный ток и вызовет перегорание двигателя.
Таким образом, мы можем сделать вывод из вышеизложенного, что асинхронные двигатели широко используются в промышленности, и они предлагают много преимуществ по сравнению с другими типами двигателей, с появлением технологии переменного напряжения и частоты их роль еще больше возросла. Эти двигатели эволюционировали от низкого КПД до очень высокого КПД.Вот вам вопрос, что такое асинхронный двигатель?
Вращающееся магнитное поле — обзор
6.6.2 Самовозбуждающийся индукционный генератор
В предыдущих разделах мы подчеркивали, что вращающееся магнитное поле или возбуждение обеспечивается током намагничивания, получаемым от источника питания, поэтому может показаться очевидным, что двигатель не мог генерировать, если не был обеспечен источник тока намагничивания. Однако можно заставить машину «самовозбуждаться», если условия подходящие, и, учитывая надежность двигателя с кожухом, это может сделать его привлекательным предложением, особенно для небольших изолированных установок.
В главе 5 мы видели, что когда асинхронный двигатель работает с нормальной скоростью, вращающееся магнитное поле, которое создает токи и крутящий момент на роторе, также индуцирует сбалансированные трехфазные наведенные ЭДС в обмотках статора, величина ЭДС не намного меньше напряжения электросети. Итак, чтобы действовать как независимый генератор, мы хотим создать вращающееся магнитное поле без необходимости подключения к активному источнику напряжения.
Мы обсуждали аналогичный вопрос в главе 3 в связи с самовозбуждением шунта d.c. машина. Мы видели, что если после выключения машины в полюсах поля остается достаточно остаточного магнитного потока, то э.д.с. возникающий при вращении вала, мог начать подавать ток на обмотку возбуждения, тем самым увеличивая магнитный поток, дополнительно повышая ЭДС. и инициирование процесса положительной обратной связи (или начальной загрузки), который в конечном итоге стабилизировался характеристикой насыщения железа в магнитной цепи.
К счастью, то же самое может быть достигнуто с помощью изолированного асинхронного двигателя.Мы стремимся извлечь выгоду из остаточного магнетизма в железе ротора и, поворачивая ротор, генерировать начальное напряжение в статоре, чтобы запустить процесс. Э.д.с. индуцированный должен затем управлять током, чтобы усилить остаточное поле и способствовать положительной обратной связи для создания бегущего поля магнитного потока. В отличие от постоянного тока Однако асинхронный двигатель имеет только одну обмотку, которая обеспечивает функции возбуждения и преобразования энергии, поэтому, учитывая, что мы хотим довести напряжение на клеммах до его номинального уровня, прежде чем подключать любую электрическую нагрузку, которую мы планируем подавать, очевидно, что необходимо обеспечить замкнутый путь для потенциального тока возбуждения.Этот путь должен способствовать нарастанию тока намагничивания и, следовательно, напряжения на клеммах.
«Возбуждение» тока означает обеспечение пути с очень низким импедансом, так что небольшое напряжение вызывает большой ток, и поскольку мы имеем дело с переменным током. величин, мы, естественно, стремимся использовать явление резонанса, размещая набор конденсаторов параллельно (индуктивным) обмоткам машины, как показано на рис. 6.17.
Рис. 6.17. Самовозбуждающийся индукционный генератор. Нагрузка подключается только после того, как на статоре нарастает напряжение.
Реактивное сопротивление параллельной цепи, состоящей из чистой индуктивности ( L ) и емкости ( C ) на угловой частоте ω, определяется как X = ωL − 1ωC, поэтому на низких и высоких частотах реактивное сопротивление очень велико, но на так называемой резонансной частоте (ω0 = 1LC) реактивное сопротивление становится равным нулю. Здесь индуктивность — это намагничивающая индуктивность каждой фазы индукционной машины, а C — добавленная емкость, значение выбирается так, чтобы обеспечить резонанс на желаемой частоте генерации.Конечно, схема не идеальна из-за сопротивления в обмотках, но, тем не менее, индуктивное реактивное сопротивление можно «отрегулировать» путем выбора емкости, оставляя контур циркуляции с очень низким сопротивлением. Следовательно, вращая ротор со скоростью, при которой желаемая частота создается остаточным магнетизмом (например, 1800 об / мин для 4-полюсного двигателя, генерирующего 60 Гц), начальная умеренная ЭДС. производит непропорционально высокий ток, и поток увеличивается до тех пор, пока не будет ограничен нелинейной характеристикой насыщения железной магнитной цепи.Затем мы получаем сбалансированные трехфазные напряжения на клеммах, и нагрузка может быть приложена путем включения переключателя S (рис. 6.17).
Приведенное выше описание дает только общую схему механизма самовозбуждения. Такая схема будет удовлетворительной только для очень ограниченного диапазона приводимых скоростей и нагрузок, и на практике требуются дополнительные функции управления для изменения эффективной емкости (обычно с использованием управления симистором), чтобы поддерживать постоянным напряжение при нагрузке и / или скорость варьируется в широких пределах.
Принцип работы трехфазного асинхронного двигателя
Как работает трехфазный асинхронный двигатель? Короче говоря, он работает по принципу электромагнитной индукции. Когда на обмотки статора подается трехфазный переменный ток, между статором и ротором создается вращающееся магнитное поле. Вращающееся магнитное поле разрезает обмотки ротора для создания наведенной электродвижущей силы и тока в цепи ротора. Ток в проводнике ротора заставляет ротор вращаться под действием вращающегося магнитного поля.Ниже давайте подробно проанализируем генерацию вращающегося магнитного поля, его направление и скорость, а также скольжение.
Как создается вращающееся магнитное поле?
Для трехфазного асинхронного двигателя обмотки U / V / W с полностью одинаковой трехфазной структурой размещаются в сердечнике статора. Каждая фаза обмотки пространственно отличается друг от друга под электрическим углом 120 градусов, как показано ниже, а трехфазные обмотки питаются симметричным трехфазным переменным током, как показано на рисунках (b) и (c) ниже.В качестве примера возьмем двухполюсный асинхронный двигатель, чтобы проиллюстрировать расположение магнитного поля в пространстве как ток в разное время.
Как показано на рисунке (b) выше, предполагается, что, когда мгновенное значение тока положительное, он течет с первых концов каждой обмотки и вытекает из хвостовых концов. Напротив, когда ток имеет отрицательное значение.
Как показано на рисунке (c), когда ω t = 0, i u = 0, значение i v отрицательное, а i w положительное.Затем ток фазы V течет из V 2 и вытекает из V 1 , тогда как ток фазы W течет из W 1 и из W 2 . Согласно правилу правой руки Ампера, направление составного магнитного поля, создаваемого трехфазным током, может быть подтверждено в момент ωt = 0, как показано на рисунке (d) ① ниже. Можно видеть, что составное магнитное поле представляет собой пару полюсов, а направление магнитного поля согласуется с направлением продольной оси, то есть верхняя часть является северным полюсом, а нижняя — южным полюсом.
При ω t = π / 2, после четверти цикла значение i u изменяется от нуля до максимума, и ток течет с первого конца U 1 и вытекает из конца U 2. Значение i v все еще отрицательное, поэтому направление тока V-фазы такое же, как показано на рисунке ①. i w также становится отрицательным, и, таким образом, ток W-фазы равен W 2 на входе и W 1 на выходе. Направление составного магнитного поля показано на рисунке (d) ②, что направление магнитного поля вращается по часовой стрелке на 90 ° по сравнению с направлением, когда ω t = 0.
Используя тот же аналитический метод, можно построить график магнитных полей, когда ω t = π, ω t = 2/3 * π и ωt = 2, как показано на (d) ③ ④ ⑤ соответственно. Из рисунка явно видно, что направление магнитного поля постепенно поворачивается по часовой стрелке, всего на 360 °, то есть цикл вращения.
Можно сделать следующий вывод: трехфазные обмотки размещены в статорах трехфазного электродвигателя переменного тока в той же конструкции, но в пространственном положении с разностью электрических углов 120 градусов друг от друга.Поскольку они отдельно питаются от трехфазного переменного тока, сложное магнитное поле, создаваемое между статором и ротором, вращается по внутренней окружности статора, которая называется вращающимся магнитным полем.Направление вращающегося магнитного поля
На приведенном выше рисунке показано, что трехфазный переменный ток изменяется в последовательности фаз U-V-W, таким образом, генерируемое вращающееся магнитное поле вращается в пространстве по часовой стрелке. При произвольном переключении последовательности фаз тока двух фазных обмоток двигателя, таких как U-W-V, практически доказано, что генерируемое вращающееся магнитное поле должно вращаться в направлении против часовой стрелки.В заключение, направление вращающегося магнитного поля зависит от последовательности фаз трехфазного источника питания переменного тока в обмотке. Пока чередование фаз двигателя произвольно переключается, направление вращающегося магнитного поля может быть изменено.Скорость вращающегося магнитного поля и скольжение
Вышеупомянутое для иллюстрации основано на 2-полюсном двигателе. Если вы хотите получить 4-полюсное магнитное поле, количество катушек будет удвоено, как показано на рисунках (a) и (b) ниже.Согласно описанному выше аналитическому методу, диаграмма 4-полюсного вращающегося магнитного поля в пространстве показана на рисунке (c). Сравнивая скорость вращения магнитного поля на рисунке (c) со скоростью на рисунке (d), как упомянуто выше, нетрудно обнаружить, что скорость магнитного поля связана не только с частотой мощности, но и количество полюсов.
Следовательно, скорость вращения магнитного поля рассчитывается по формуле: n 1 = 120f 1 / P, где это:- n 1 — скорость вращающегося магнитного поля в об / мин
- f 1 — частота трехфазной сети переменного тока в Герцах
- P — количество полюсов
Скорость вращения магнитного поля (n 1 ) также известна как синхронная скорость.Скорость ротора трехфазного асинхронного двигателя (n) не будет увеличена до скорости вращающегося магнитного поля (n 1 ). Только так будет происходить относительное движение между обмоткой и вращающимся магнитным полем, чтобы разрезать магнитные линии. Таким образом, индуцированная электродвижущая сила и ток могут генерироваться в проводнике обмотки ротора, а затем создавать электромагнитный момент, заставляющий ротор непрерывно вращаться вместе с направлением вращающегося магнитного поля. Можно видеть, что n ≠ n 1 и n
1 , является необходимым условием для работы асинхронного двигателя, откуда происходит название «асинхронный двигатель».Разница между ними называется «скольжением», которое выражается отношением разницы к синхронной скорости: s = (n 1 -n) / n 1. Основное различие между синхронным и асинхронным двигателем
В чем разница между синхронным и асинхронным двигателем (асинхронным двигателем)Электродвигатели — это машины, которые преобразуют электрическую энергию в механическую для выполнения механических операций.Эти двигатели могут быть предназначены для работы на переменном (AC) или постоянном (DC) токе. Двигатели переменного тока подразделяются на два типа; Синхронные двигатели и асинхронные двигатели. Оба они имеют некоторые общие черты, например, в конструкции, но совершенно разные по принципу действия и производительности.
Прежде чем перейти к списку различий между синхронным двигателем и асинхронным двигателем, мы собираемся обсудить их основы и то, как они работают. Для ясного объяснения вы можете знать разницу между однофазным и трехфазным источником питания, относящуюся к работе однофазных и трехфазных двигателей переменного тока.
Как работает двигатель переменного тока?Как мы знаем из нашей предыдущей статьи «Различия между двигателями переменного и постоянного тока», двигатели постоянного тока работают по принципу магнитного поля, действующего на проводник с током, который испытывает механическую силу. Где статор генерирует статическое магнитное поле, а ротор, состоящий из нескольких обмоток, несет входной постоянный ток.
В двигателях переменного тока используется идея вращательного магнитного поля RMF. Статор состоит из нескольких обмоток, которые создают переменное магнитное поле при подаче входного переменного тока.Это магнитное поле вращается вокруг ротора.
Ротор, состоящий из обмоток или проводников с замкнутым контуром, проводит ток либо посредством индукции, либо от внешнего источника тока, генерирующего собственное магнитное поле. Магнитное поле, создаваемое ротором, взаимодействует с вращающимся магнитным полем и начинает вращаться в его направлении.
Относительная разница между полем вращения статора и скоростью ротора называется скольжением. если скольжение двигателя равно нулю или ротор имеет ту же скорость вращения, что и поле вращения статора, двигатель называется синхронным двигателем переменного тока.если двигатель переменного тока имеет скольжение или существует разница между скоростью возбуждения статора и ротором, двигатель называется асинхронным двигателем. Чтобы узнать больше о различных типах двигателей, обратитесь к предыдущим сообщениям о двигателях BLDC (бесщеточный постоянного тока), шаговых двигателях и серводвигателях.
Связанные сообщения:
Синхронный двигательКак следует из названия, синхронный двигатель имеет ротор, который предназначен для вращения с той же скоростью, что и его вращающееся магнитное поле статора, которое называется синхронная скорость .
Статор создает вращающееся магнитное поле при подаче переменного тока. Ротор может быть спроектирован для создания собственного магнитного поля с использованием внешнего источника постоянного тока через контактные кольца или постоянного магнита .
Ротор предназначен для создания магнитных полюсов, равных полюсам статора или целых кратных полюса. Когда статор и ротор находятся под напряжением, магнитное поле ротора блокируется с вращающимся магнитным полем статора, и он вращается с точной скоростью поля статора.
Из-за инерции синхронный двигатель не запускается сразу с синхронной скоростью (вращательное магнитное поле). Поэтому для обеспечения пускового момента используется дополнительная обмотка, называемая « демпферная обмотка ». Во время запуска он действует как асинхронный двигатель. Таким образом, предполагается, что синхронные двигатели не самозапускающиеся , им нужен дополнительный пусковой механизм.
Это может быть двигатель с раздельным возбуждением или без возбуждения, т.е. первый требует отдельного источника постоянного тока, возбуждает обмотки ротора и генерирует магнитное поле, в то время как последний описывает синхронный двигатель, ротор которого предназначен для намагничивания вращающимся магнитным полем статора. и вращается вместе с ним.
Ротор синхронного двигателя вращается с синхронной скоростью, которая зависит от частоты питания и полюсов обмоток статора. Следовательно, скорость двигателя не зависит от нагрузки. Чтобы изменять скорость синхронного двигателя, необходимо изменять частоту питания. Это достигается за счет использования частотно-регулируемого привода (VFD).
Связанные сообщения:
Асинхронный двигательНазвание асинхронного двигателя предполагает, что скорость ротора асинхронна со скоростью вращения магнитного поля статора.Точнее, ротор асинхронного двигателя вращается с относительно меньшей скоростью, чем статор RMF. Это связано с наличием проскальзывания между скоростью статора и ротора.
Ротор асинхронного двигателя представляет собой короткозамкнутый ротор или ротор с обмоткой. Ротор с короткозамкнутым ротором построен с использованием тяжелых медных стержней, соединенных на конце с помощью токопроводящего кольца, которое электрически закорачивает их вместе. Ротор с обмоткой состоит из нескольких обмоток поверх многослойного стального сердечника.
Вращающееся магнитное поле статора вызывает индуцированный ток в роторе. Этот индуцированный ток течет внутри ротора, создавая собственное магнитное поле. Согласно закону Ленца, это поле ротора противодействует причине, которая его порождает, и пытается устранить ее, догоняя скорость статора RMF (синхронную скорость). При этом ротор вращается в направлении статора RMF. Асинхронный двигатель также известен как асинхронный двигатель , поскольку он работает по принципу индукции.
Асинхронный двигатель никогда не может работать на синхронной скорости, вместо этого она всегда ниже, чем синхронная скорость, и это зависит от скольжения двигателя. Причина в том, что индуцированный ток в роторе генерируется из-за разницы между полем статора и ротора. если в случае, если он работает с синхронной скоростью, это означает, что ротор магнитно заблокирован, и между полем статора и ротора нет разницы. Следовательно, не будет магнитного потока, индуцирующего ток в роторе.Магнитный поток необходим для асинхронного двигателя, поэтому он должен работать с меньшей скоростью, чем его синхронная скорость.
Ротор с короткозамкнутым ротором имеет более простую конструкцию и позволяет наведенному току проходить через медные шины. В то время как заведенный ротор позволяет пользователю изменять ток ротора во время его запуска, как это используется в «Пускателе двигателя». Дело в том, чтобы безопасно запустить двигатель, уменьшив огромный пусковой ток, потребляемый асинхронным двигателем. Обычно это делается путем последовательного подключения переменного резистора к обмоткам ротора с помощью контактных колец.
Скорость асинхронного двигателя зависит от скольжения двигателя, которое изменяется в зависимости от нагрузки и сопротивления ротора. Другими словами, скорость асинхронного двигателя может изменяться в зависимости от нагрузки или за счет изменения сопротивления ротора.
Связанное сообщение:
Различия между синхронным двигателем и асинхронным двигателемВ следующей таблице показаны основные различия между синхронным двигателем и асинхронным (асинхронным) двигателем.
Синхронный двигатель Асинхронный двигатель Синхронный двигатель — это тип двигателя переменного тока, который работает с синхронной скоростью. Асинхронный двигатель — это тип двигателя переменного тока, который работает со скоростью, меньшей, чем синхронная скорость. Он работает по принципу магнитной блокировки между полем ротора и статора. Он работает по принципу электромагнитной индукции между статором и ротором. Нет скольжения, т.е. скольжение синхронного двигателя равно 0. В асинхронном двигателе есть скольжение, и оно всегда больше 0. Скорость двигателя зависит от частоты питания и количество полюсов статора. Н с = 120 f / P
Скорость двигателя зависит от нагрузки, сопротивления ротора и скольжения, с. она всегда меньше синхронной скорости. N = N с (1-с)
N
с Скорость не меняется при изменении нагрузки, подключенной к двигателю. Скорость меняется в зависимости от нагрузки двигателя. Это не самозапуск и требует дополнительных обмоток для запуска двигателя. Асинхронные двигатели самозапускаются и не требуют дополнительных механизмов. Ротор требует дополнительного источника тока. Ротор асинхронного двигателя не требует дополнительного питания. Синхронному двигателю с независимым возбуждением требуется дополнительный источник постоянного тока для питания обмотки ротора. Не требует дополнительных источников. Также необходимы контактные кольца и щетки для подачи постоянного тока на обмотки ротора. Он не требует контактных колец, однако намотанный тип может использовать контактные кольца для управления скоростью. Скорость двигателя регулируется только путем изменения частоты питания с помощью частотно-регулируемого привода. Скорость двигателя можно регулировать с помощью переменного сопротивления ротора, а также устройств с частотно-регулируемым приводом. Источник входного напряжения не изменяет скорость или крутящий момент синхронного двигателя. Источник входного напряжения можно использовать для изменения крутящего момента и скорости двигателя. Колебания основного напряжения питания не влияют на работу синхронного двигателя. Колебания сетевого напряжения влияют на его скорость и работу. Первоначальная стоимость выше, чем у асинхронного двигателя. Асинхронные двигатели дешевле. Операция сложная. Операция проста и удобна для пользователя. Если предлагают высокую эффективность и точность. Они не так эффективны, как синхронный двигатель. Может легко работать на очень низкой скорости с помощью ЧРП. Работать на малых оборотах довольно сложно. Лучше всего работает на более низких оборотах, обычно ниже 300 об / мин. Лучше всего подходит для работы на скорости выше 600 об / мин. Может работать с отстающим, опережающим или единичным коэффициентом мощности, регулируя его возбуждение. Асинхронный или асинхронный двигатель всегда работает с отстающим коэффициентом мощности. Он также может одновременно использоваться для коррекции коэффициента мощности, используя его в качестве опережающего коэффициента мощности. Его нельзя использовать для корректировки коэффициента мощности, а только для управления механическими нагрузками. Поскольку он работает с постоянной скоростью, резкое изменение нагрузки вызовет колебания потребляемого тока. В асинхронном двигателе такого явления нет. Вывод этой статьи состоит в том, что синхронные двигатели эффективны, но дороже и используются для приложений со сверхнизкими оборотами, предлагая при этом функцию коррекции коэффициента мощности. С другой стороны, асинхронные двигатели используются для высоких оборотов с регулируемой скоростью, будучи недорогими и простыми в эксплуатации.
Связанный пост об электрических двигателях.
Основные принципы асинхронных двигателей переменного тока
В этой статье мы рассмотрим работу наиболее распространенного типа двигателей вентиляторов — асинхронных двигателей переменного тока.
Асинхронные двигатели переменного тока
В вентиляторах Fläkt Woods чаще всего используются асинхронные двигатели переменного тока. Они могут работать напрямую от электросети, они надежны, не требуют особого обслуживания и относительно невысоки.
В трехфазном асинхронном двигателе переменного тока катушки изолированного провода находятся в пазах статора, расположенных в корпусе. Эти катушки сконфигурированы для обеспечения набора электромагнитных полюсов для каждой из трех электрических фаз (U, V и W) при включении.
На рисунке 1 показан двигатель, в котором катушки расположены таким образом, чтобы обеспечить пару полюсов для каждой фазы (обозначены как U1 и U2, V1 и V2, W1 и W2). Поскольку у каждой фазы два полюса, это описывается как двухполюсная конфигурация; если бы для каждой фазы было две пары полюсов, это была бы 4-полюсная конфигурация и так далее.
Когда катушки статора подключены к источнику переменного тока, электрический ток будет течь и создавать магнитное поле — катушки намотаны так, что полюса в каждой паре имеют противоположную полярность.
Рисунок 1. Циклическое вращающееся магнитное поле в трехфазном асинхронном двигателе переменного тока
Цикличность формы волны переменного тока приводит к тому, что магнитное поле вращается вокруг центральной оси статора с двумя северными и двумя южными полюсами одновременно.Скорость этого вращения определяется количеством пар полюсов и частотой электроснабжения (50 Гц или 60 Гц — см. «Основные двигатели, часть первая»).
Если имеется одна пара полюсов, магнитное поле вращается один раз за электрический цикл; где есть две пары, магнитное поле вращается один раз за два цикла, а где есть три пары, оно вращается один раз за три цикла.
Основное уравнение для определения синхронной скорости выглядит следующим образом:
Синхронная скорость (об / мин) = 2 x Частота питания (Гц) x 60
Количество полюсов для каждой фазы
Итак, если бы двигатель на Рисунке 1 работал от источника питания 50 Гц, синхронная скорость была бы:
2 x 50 x 60 = 3000 об / мин
2
Таким образом, можно видеть, что чем больше число полюсов, тем медленнее будет синхронная скорость — таким образом, двигатель с 12 полюсами на фазу будет иметь синхронную скорость всего 500 об / мин.
Ротор
Помимо статора, наиболее важной частью асинхронного двигателя переменного тока является ротор. Он состоит из стержней ротора, обычно изготовленных из алюминия или меди, которые на концах соединены с кольцами из того же материала. Иногда это называют ротором «беличья клетка» (см. Рисунок 2).
Поскольку ротор расположен во вращающемся магнитном поле статора, образующиеся линии магнитного потока будут разрезать стержни ротора и индуцировать напряжение в роторе.Это, в свою очередь, приведет к протеканию электрического тока по стержням ротора (обозначенным на рисунке 2 красными стрелками), который создаст собственное магнитное поле вокруг стержней ротора. Это магнитное поле взаимодействует с магнитным полем статора, создавая силу на стержнях ротора, заставляя ротор вращаться вокруг своей оси.
Рисунок 2. Ротор типа «беличья клетка»
Далее: Двигатели Основная часть вторая: асинхронные двигатели переменного тока, двигатели переменного тока с постоянными магнитами и номинальные характеристики двигателей
Поскольку напряжение в стержнях ротора создается магнитным полем в статоре, прорезающим стержни ротора, если ротор вращается с синхронной скоростью, не будет относительного движения между стержнями ротора и магнитным полем статора, что приведет к на стержнях ротора не возникает напряжения.
Если к ротору приложена нагрузка, он начнет замедляться, и, следовательно, он начнет взаимодействовать с магнитным полем статора, и будет создаваться крутящий момент, как показано на рисунке 2. Это будет тот крутящий момент, который приводит в движение приложенную нагрузку. к ротору.
Синхронная скорость является функцией частоты источника питания и конфигурации обмотки статора (количества полюсов). Разница между синхронной скоростью и скоростью ротора известна как скольжение; это выражается в процентах от синхронной скорости и может быть рассчитано по формуле:
Скольжение = синхронная скорость — скорость ротора
Синхронная скорость
Конструкция ротора
На рисунке 3 показана конструкция типичного ротора.Стержни ротора обычно содержатся в пазах в стальном сердечнике для усиления магнитного поля ротора. Стержни ротора обычно перекошены так, что они не совпадают с обмотками статора, что снижает электромагнитный шум и обеспечивает более плавную передачу крутящего момента.
Рисунок 3. Типовая конструкция ротора
Сердечник изготовлен из стальных пластин, уложенных вместе, в то время как стержни ротора и концевые кольца обычно создаются путем заливки расплавленного алюминия в матрицу или форму, которая окружает ламинированный пакет ротора.Этот расплавленный алюминий протекает через прорези в пакете ротора, образуя стержни ротора. Между стержнями ротора и стальным сердечником нет изоляции, поскольку индуцированное напряжение низкое.
Рисунок 4. Компоненты асинхронного двигателя переменного тока общего назначения
Однофазные асинхронные двигатели переменного тока
Статор, сконфигурированный для однофазного питания, не сможет инициировать вращение неподвижного ротора, потому что его магнитное поле просто переключается между полярностями.В результате требуется дополнительная обмотка для создания прогрессивно вращающегося магнитного поля. Эта вспомогательная обмотка подключена к однофазному источнику питания через конденсатор, так что ее форма напряжения может не совпадать по фазе с формой волны первичной обмотки.
Рисунок 5. Непрерывно вращающееся магнитное поле в однофазном асинхронном двигателе переменного тока, создаваемое вспомогательной обмоткой, подключенной к конденсатору
На рисунке 5 показано, как это создает непрерывно вращающееся магнитное поле, позволяющее индуцировать вращение.
Далее: Двигатели, основная часть третья: двигатели переменного тока с постоянными магнитами и номинальные характеристики двигателей
.