Медь плавление температура: происхождение, физические свойства и температура плавления

Содержание

происхождение, физические свойства и температура плавления

Добывать и плавить медь люди научились с древности. Уже в то время элемент находил широкое применение в быту и из него делали различные предметы. Сплав меди с оловом (бронзу) научились делать около трех тысяч лет назад, из него получалось хорошее оружие. Бронза сразу стала популярной, поскольку отличалась прочностью и красивым внешним видом. Из нее изготавливали украшения, посуду, орудия труда и охоты.

Благодаря невысокой температуре плавления человечеству не составило большого труда быстро освоить производство меди в домашних условиях. Как происходит процесс плавления меди, при какой температуре начинает плавиться?

Происхождение и нахождение меди в природе

Свое название химический элемент получил от названия острова Кипр (Cuprum), там его научились добывать еще в 3 тысячелетии до н.э. В периодической системе химических элементов у меди 29 атомный номер, она расположена в 11 группе 4-го периода. Элемент является пластичным переходным металлом, имеющим золотисто-розовый цвет.

По распространению в земной коре элемент занимает среди других элементов 23 место и чаще всего встречается в виде сульфидных руд. Самыми распространенными видами являются медный колчедан и медный блеск. На сегодняшний день есть несколько способов получения меди из руды, но любая из технологий требует поэтапного подхода, чтобы достичь конечного результата.

В самом начале развития цивилизации люди научились получать и использовать медь, а также ее сплавы. Уже в то далекое время они добывали не сульфидную, а малахитовую руду.В таком виде она не нуждалась в предварительном обжиге. Смесь руды с углями помещали в глиняный сосуд, которые опускали в небольшую яму, после чего смесь поджигали, угарный газ помогал восстановиться малахиту до состояния свободной меди.

В природе медь встречается не только в руде, но и в самородном виде, самые богатые месторождения находятся на территории Чили. Сульфиды меди часто образуются в среднетемпературных геотермальных жилах. Часто медные месторождения могут быть в виде осадочных пород — сланцы и медяные песчаники, которые встречаются в Читинской области и Казахстане.

Физически свойства

Пластичный металл на открытом воздухе быстро покрывается оксидной пленкой, она и придает элементу характерный желтовато-красный оттенок, в просвете пленки могут иметь зеленовато-голубой цвет. Медь относится к тем немногим элементам, которые имеют заметную для глаза цветовую окраску. Она обладает высоким уровнем тепло- и электропроводности — это второе место после серебра.

  • Плотность — 8,94*103 кг/м3
  • Удельная теплоемкость при Т=20оС — 390 Дж/кг*К
  • Электрическое удельное сопротивление в температурном режиме от 20-100оС — 1,78*10-8Ом/м
  • Температура кипения — 2595оС
  • Удельная электропроводность при Т=20оС — 55,5-58 МСм/м.

Температура плавления меди

Процесс плавления происходит, когда металл из твердого состояния переходит в жидкое и у каждого элемента есть своя температура плавления. Многое зависит от наличия примесей в составе металла, обычно медь плавится при температуре 1083оС. Когда к ней добавляют олово, то температура плавления снижается и составляет 930-1140оС, температура плавления здесь будет зависеть от содержания в сплаве олова. В сплаве меди с цинком температура плавления становится еще ниже — 900-1050оС.

В процессе нагрева любого металла происходит разрушение кристаллической решетки. По мере нагревания температура плавления становится выше, но затем она остается постоянной, после того как достигла определенного температурного предела. В такой момент и происходит процесс плавления металла, он полностью расплавляется и после этого температура снова начинает повышаться.

Когда начинает происходить охлаждение металла, то температура начинает снижаться и в какой-то момент она остается на прежнем уровне до момента полного затвердения металла. Затем металл затвердевает полностью и температура снова снижается. Это можно увидеть на фазовой диаграмме, где отображен весь температурный процесс с начала момента плавления и до затвердения металла.

Разогретая медь при нагревании начинает переходить в состояние кипения при температуре 2560оС. Процесс кипения металла очень напоминает процесс кипения жидких веществ, когда начинает выделяться газ и на поверхности появляются пузырьки. В моменты кипения металла при максимально высоких температурах начинает выделяться углерод, который образуется в результате окисления.

Плавление меди в домашних условиях

Низкая температура плавления позволила людям в древности расплавлять металл прямо на костре и затем использовать готовый металл в быту, чтобы сделать оружие, украшения, посуду, орудия труда. Для плавления меди в домашних условиях понадобятся следующие предметы:

  • Тигель и специальные щипцы для него.
  • Древесный уголь.
  • Муфельная печь.
  • Горн.
  • Бытовой пылесос.
  • Форма для плавления.
  • Стальной крюк.

Весь процесс происходит поэтапно, для начала металл нужно положить в тигель, после чего разместить в муфельную печь. Установить нужную температуру и наблюдать за процессом через стеклянное окошко. В процессе плавления в емкости с металлом появится окисная пленка, ее необходимо убрать, открыв окошко и стальным крюком отодвинуть в сторону.

Если нет муфельной печи, то медь можно расплавить с помощью автогена, плавление будет происходить при нормальном доступе воздуха. Используя паяльную лампу можно расплавить желтую медь (латунь) и легкоплавкие виды бронзы. Следить за тем, чтобы пламя охватило весь тигель.

Если в домашних условиях нет ничего из перечисленных средств, тогда можно воспользоваться горном, установив его на слой древесного угля. Чтобы усилить температуру можно использовать бытовой пылесос, включив режим выдувания, но только если шланг имеет металлический наконечник. Хорошо, если наконечник будет иметь зауженный конец, чтобы струя воздуха была более тонкой.

В современных промышленных условиях медь в чистом виде не применятся, ее состав содержит в себе много различных примесей — железа, никеля, мышьяка и сурьмы, а также других элементов. Качество готового изделия определяется наличием процентного содержания примесей в сплаве, но не более 1%. Важными показателями являются тепло- и электропроводность металла. Медь широко используется во многих отраслях промышленности благодаря своей пластичности, гибкости и низкой температуре плавления.

Оцените статью: Поделитесь с друзьями!

Температура плавления меди и ее сплавов, график, характеристики

Медные изделия отличаются хорошей прочностью, пластичностью, высокой электропроводностью, устойчивостью к коррозии и химически активным веществам. Для изготовления объектов используется медная руда, которая на заводах обогащается и переплавляется в однородные бруски, прутья или слитки. Чтобы изготовить какое-либо медное изделие, материал помещают в термостойкую форму, доводят до температуры плавления, а потом прекращают нагрев, что приводит к застыванию вещества. Но какая температура плавления меди? Можно ли расплавить медные заготовки в домашних условиях — или для этого требуются специальные печи? О каких правилах техники безопасности нужно знать?

Общие сведения

Температурой плавления называют температуру, при которой твердое вещество переходит в жидкость. Медь расплавляется при температуре 1083 градусов, поэтому этот металл относят к категории тугоплавких. При снижении этой температуры металл может вновь принять твердую форму. Плавят медь на заводах, хотя эту процедуру можно провести в домашних условиях. На химическом уровне расплавление возникает за счет деструкции кристаллической решетки, которая формирует твердую структуру вещества. Атомы меди в кристаллической решетке всегда находятся в непрерывном движении.

Однако их взаимное притяжение и отталкивание происходит сбалансировано, поэтому атомы сохраняют исходное положение в течение длительного времени. В случае повышения температуры атомы меди получают дополнительную энергию, что заставляет двигаться их более интенсивно. При небольшом повышении дополнительная энергия «гасится» за счет сбалансированного движения атомов в решетке. Однако при достижении определенной температуры нагрева количество энергии становится избыточным, а кристаллическая решетка начинает разрушаться.

В этот момент и происходит расплавление вещества. Взаимное притяжение атомов частично сохраняется, поэтому вещество принимает жидкую форму. Однако в случае дальнейшего нагрева энергия атомов усиливается еще сильнее, что может привести к окончательному разрыву связи атомов друг с другом. Эту точку перехода называют испарением (жидкость трансформируется в пар). В случае снижения температуры медного пара может переходить обратно в жидкость, а потом — в твердое состояние.

Температура плавления меди

При нормальных условиях температура плавления меди составляет 1083 градусов по шкале Цельсия. А во время нагрева происходит ряд превращений на молекулярном уровне, что приводит к изменению свойств вещества. Чтобы разобраться во всех этих изменениях, нужно рассмотреть основные этапы нагрева и расплавления медного слитка. Примерный график плавления меди выглядит так:

  1. В нормальном состоянии при температуре от 0 до 100 градусов внутри меди образуется прочная кристаллическая решетка, которая обеспечивает материалу большую устойчивость, упругость, химическую инертность. Решетка является достаточно прочной, однако в случае сильной деформации может происходить пространственное изменение положения атомов в решетке. Этим объясняется ковкость и пластичность медных изделий, которые могут сгибаться и деформироваться (скажем, при кузнечной обработке или в случае пресса).
  2. В нормальном состоянии при температуре от 0 до 100 градусов на поверхности медного изделия также образуется тонкая оксидная пленка. Наличие такой пленки является большим плюсом для изделия, поскольку она выполняет множество важных функций — минимизирует контакт с внешними веществами, защищает материал от коррозии, немного увеличивает прочность. В случае охлаждения материала ниже температуры 0 градусов сама медь сохраняет все свои физические свойства. Однако оксидная пленка при охлаждении становится менее упругой и плотной, изделие становится менее твердым (хотя с практической точки зрения это снижение прочности практически незаметно).
  3. При нагреве материала выше температуры 100 градусов происходит постепенная деструкция оксидной пленки на поверхности металла. Это повышает химическую активность материала, что делает его восприимчивым к воздействию веществ во внешней среде. Одновременно с этим при нагреве происходит насыщение энергией атомов меди, что делает материал более пластичным. По этой причине ковку медных изделий выполняют именно после нагрева, поскольку без нагрева для изменения формы изделия понадобится большое количество физических усилий (это может быть мускульная сила кузнеца, расходы электроэнергии для запуска электрического пресса и так далее).
  4. При достижении температуры 1083 градусов кристаллическая медная решетка начинается постепенно разрушаться, что превращает твердую медь в жидкую. На физическом уровне происходит следующее — из-за избытка энергии атомы начинают двигаться в кристаллической решетке более интенсивно и хаотично, что приводит к частому столкновению атомов между собой. В конечном счете это разрушает решетку, хотя за счет взаимного столкновения и притяжения атомы не разлетаются в разные стороны. На физическом уровне такая структура материала соответствует жидкости (то есть такому состоянию вещества, при котором атомы находятся в относительно свободном движении, но не разлетаются в разные стороны подобно газу).
  5. При остывании медной жидкости ниже температуры 1083 градусов происходит постепенная кристаллизация вещества. Медь вновь обретает твердую форму (чем ниже температура, тем интенсивней происходит затвердение вещества). Однако при необходимости жидкую медь можно и дальше нагревать (на химическом уровне будет происходить дальнейшее насыщение атомов энергией). При достижении температуры 2595 градусов по Цельсию жидкость начнет закипать, а медь начнет принимать газообразную форму. На практике длительное удержание вещества в газообразной форме проблематично — при контакте с атмосферным воздухом вещество будет быстро остывать, обратно превращаясь в жидкость. Чтобы обойти это ограничение, используются разные технологии. Оптимальная — нагрев вещества в тугоплавкой камере с поддержанием стабильной температуры выше критической точки (то есть выше температуры 2595 градусов). В таком случае температура среды будет высокой, а остывание вещества происходить не будет.

Чтобы расплавить/испарить медное изделие с помощью высокоточного нагревательного прибора, нагревать рекомендуется до чуть более высокой температуры. Скажем, в случае расплавления нагревать изделие следует до температуры 1100-1200 градусов (а не 1083 градусов). С практической точки зрения объясняется это просто — нагрев вещества происходит неравномерно, поэтому некоторые фрагменты медного изделия будут долго держать свою форму, тогда как другие — быстро расплавятся. К тому же вещество будет постоянно остывать, что может привести к кристаллизации отдельных фрагментов расплава.

Плавление сплавов на основе меди

На практике медь используют не только в качестве чистого вещества, но и в виде различных сплавов. Примеры таких сплавов — бронза, латунь, мельхиор и другие. Так как сплавы являются многокомпонентными веществами, то их плавление происходит по другому принципу. Рассмотрим примерный алгоритм плавления медных сплавов на примере латуни:

  1. При температуре до 100 градусов Цельсия кристаллическая решетка является устойчивой и однородной. В случае удара происходит деформация материала. На поверхности материала имеется тонкая оксидная пленка, которая защищает изделие от воздействия воды, атмосферного воздуха, химически активных веществ.
  2. При нагреве латуни до 100 градусов внешняя пленка постепенно плавится, что делает вещество менее прочным. Также из-за повреждения защитной пленки увеличивается химическая активность материала (то есть он начинает более активно вступать в реакцию с водой, воздухом, химическими веществами). Кристаллическая решетка устойчива к небольшому нагреву, поэтому материал сохраняет свою форму.
  3. Температура 880 градусов — это точка солидуса. При достижении этой температуры начинается расплавление самых легкоплавких элементов, входящих в состав сплава. Это приводит к частичному переходу твердого вещества в жидкость. На химическом уровне при достижении точки солидуса происходит частичное разрушение кристаллической решетки вещества, однако у более тугоплавких фракций решетка сохраняется.
  4. Температура 950 градусов — это точка ликвидуса. При достижении этой отметки плавятся самые тугоплавкие фракции, которые сохраняют свою твердость при более низких температурах. В результате на химическом уровне материал полностью становится жидким, поскольку полностью разрушается кристаллическая решетка у всех компонентов, входящих в состав латуни.

Как расплавить медь в домашних условиях?

Обычно медь и сплавы на ее основе плавят в специальных печах, где происходит не только расплавление материала, но и формовка новых деталей. Однако при желании медные изделия можно расплавить и в домашних условиях. Температура плавления меди в домашних условиях будет стандартной — 1083 градусов. Опытные металлурги рекомендуют нагревать вещество с небольшим запасом, чтобы минимизировать теплопотери и не допустить повторной кристаллизации вещества при его охлаждении. Во время домашнего расплавления необходимо соблюдать правила техники безопасности. Ниже мы рассмотрим эти правила, а потом узнаем, как именно нужно проводить домашнюю расплавку медных изделий.

Оборудование и правила техники безопасности

Для расплавления Вам понадобится купить или собрать специальное оборудование. В качестве исходного вещества подойдет чистая медь в слитках или брусках. Также для переплавки можно использовать различные детали и домашнюю утварь, содержащие большое количество меди. Это могут быть декоративные изделия, запчасти авто, очищенные провода и другие. Перед переплавкой проверьте удельное содержание меди (обычно ставится штамп с нужной информацией). Для нагрева объектов понадобится муфельная печь с регулятором температуры.

Для расплавления слитков или изделий понадобится не только печь, но и посуда-тигель, в которую будет помещаться медь. При выборе тигля отдайте свое предпочтение посуде, выполненной из тугоплавкой керамики или огнеупорной глины. Эти материалы не трескаются и не деформируются при большой нагреве. Из керамики или огнеупорной глины Вам также нужно выполнить форму, в которую будет заливаться расплавленная медь. Помимо этого Вам понадобится и ряд вспомогательных элементов — металлургические щипцы и крюк для работы с тиглем, древесный уголь (если Вы используете обычную печь), бытовой пылесос для удаления мусора с металлургической площадки и так далее.

Также стоит не забывать о правилах техники безопасности:

  • Все работы рекомендуется проводить на улице либо в хорошо проветриваемом большом помещении с нормальным уровнем влажности воздуха. Это может быть гараж, пристройка к дому, мастерские.
  • Для металлургических работ человеку понадобится купить защитную одежду, которая будет защищать его тело от маленьких капель расплавленной меди и термического воздействия высоких температур. Защитная одежда должна покрывать не только туловище, но и руки, голову и ноги.
  • В случае утечки металла из активной зоны нужно выключить печь, чтобы остановить процедуру переплавки. «Сбежавший» металл необходимо потушить, однако учтите — вода для этих целей не подходит. В случае тушения раскаленного металла водой жидкость может начать распадаться на молекулы кислорода и водорода, что может спровоцировать взрыв (молекулярный водород чрезвычайно взрывоопасен). Для тушения расплавленного металла следует использовать асбестовое одеяло либо сухую кальцинированную соду или хлорид натрия.

Алгоритм расплавления медных изделий

Переплавку медных изделий следует делать так:

  1. Возьмите медные изделия или слитки и поместите в тигель. Тигель с расходными материалами поместите в печь. Начните постепенно нагревать материал: сперва выставите температуру 100 градусов, потом — 200 и так далее. Доведите температуру до 1090-1150 градусов (медь плавится при температуре 1083 градусов, однако нужно брать температуру с небольшим запасом).
  2. Когда материал расплавится, достаньте его из печи с помощью металлургических щипцов. На поверхности смеси вы увидите остатки оксидной пленки. С помощью крюка ее нужно сдвинуть к одной из стенок тигля, чтобы она не попала в форму. После удаления пленки аккуратно перелейте расплавленную медь в форму (переливать жидкость нужно тонкой струей, чтобы не допустить утечку или распрыскивания металла).
  3. Выключите муфельную печь, накройте форму огнеупорной крышкой и дождитесь полного остывания формы вместе с расплавленным металлом. При желании Вы можете поставить форму обратно в печь, чтобы минимизировать контакт металла с атмосферным воздухом (однако перед помещением формы убедитесь, что печь выключена). После полного остывания и затвердения металла достаньте переплавленную запчасть из формы.При необходимости выполните финальную полировку или шлифовку.

Заключение

Твердая медь переходит в жидкое состояние при температуре 1083 градуса по Цельсию. Расплавление представляет собой сложный химический процесс, при котором разрушается твердая кристаллическая решетка вещества, что приводит к изменению его формы. Для повышения температуры меди нужно выполнить ее нагрев. На заводах и фабриках для этого используют специальные камеры и печи. Выполнить нагрев вещества можно в домашних условиях — для этого нужно собрать или приобрести мощную печь, которая может нагревать вещества до температуры выше 1100 градусов. Нагревать медь нужно с запасом, что связано с теплопотерями и особенностями процедуры нагрева.

Для переплавки меди в домашних условиях помимо печи нужно подготовить дополнительное оборудование — тигель, металлургические щипцы, крюк, керамическую форму и так далее. Переплавка выполняется просто — с помощью печи медь нагревается до 1083 градусов, а потом она переливается в форму для застывания. Расплавление медных сплавов отличается от расплавления чистой меди. Сплавы характеризуются «плавающей» температурой плавления. Например, латунь плавится при температуре от 880 до 950 градусов в зависимости от концентрации легирующих элементов. Металлурги рекомендуют плавить латуниевый сплав при температуре 950 градусов (точка ликвидуса).

Используемая литература и источники:

  • Лидин Р. А., Молочко В. А., Андреева Л. Л. Химические свойства неорганических веществ. — «Химия», 2000.
  • Максимов М. М., Горнунг М. Б. Очерк о первой меди. — М.: Недра, 1976.
  • Электротехнический справочник. Т. 1. / Составитель И. И. Алиев. — М. : ИП РадиоСофт, 2006.
  • Статья на Википедии

Поделиться в социальных сетях

температура плавления, физические свойства, сплавы

Твердый металл медь люди научились плавить еще до нашей эры. Название элемента по таблице Менделеева – Cuprum, в честь первого массового расположения производства меди. Именно на острове Кипр в третьем тысячелетии до н.э. начали добывать руду. Металл зарекомендовал себя как хорошее оружие и красивый, блестящий материал для изготовления посуды и других приборов.

Процесс плавления меди

Изготовление предметов требовало множество усилий при отсутствии технологий. В первых шагах развития цивилизации и поиску новых металлов, люди научились добывать и плавить медную руду. Получение руды происходило в малахитовом, а не в сульфидном состоянии. Получение на выходе свободной меди, из которой можно изготавливать детали, требовало обжига. Для исключения окислов, металл с древесным углем размещалась в сосуд из глины. Поджигался металл в специально подготовленной яме, образующийся в процессе угарный газ способствовал процессу появления свободной меди.

Для точных расчетов использовался график плавления меди. В то время производился точный расчет времени и примерная температура, при которой происходит плавка меди.

Медь и ее сплавы

Металл имеет красновато-желтый оттенок благодаря оксидной пленке, которая образуется при первом взаимодействии металла с кислородом. Пленка придает благородный вид и обладает антикоррозийными свойствами.

Сейчас доступно несколько способов добычи металла. Распространёнными являются медный колчедан и блеск, которые встречаются в виде сульфидных руд. Каждая из технологий получения меди требует особого подхода и следования процессу.

Добыча в природных условиях происходит в виде поиска медных сланцев и самородков. Объемные месторождения в виде осадочных пород находятся в Чили, а медные песчаники и сланцы расположились на территории Казахстана. Использование металла обусловлено невысокой температурой плавления. Практически все металлы плавятся путем разрушения кристаллической решетки.

Основной порядок плавления и свойства:

  • на температурных порогах от 20 до 100°  материал полностью сохраняет свои свойства и внешний вид, верхний оксидный слой остается на месте;
  • кристаллическая решетка распадается на отметке 1082°, физическое состояние становится жидким, а цвет белым. Уровень температуры задерживается на некоторое время, а затем продолжает рост;
  • температура кипения меди начинается на отметке 2595°, выделяется углерод, происходит характерное бурление;
  • при отключении источника тепла происходит снижение температуры, происходит переход в твердую стадию.

Плавка меди возможна в домашних условиях, при соблюдении определенных условий. Этапы и сложность задачи зависят от выбора оборудования.

Физические свойства

Основные характеристики металла:

  • в чистом виде плотность металла составляет 8.93 г/см3;
  • хорошая электропроводность с показателем 55,5S, при температуре около 20⁰;
  • теплопередача 390 Дж/кг;
  • кипение происходит на отметке 2600°, после чего начинает выделение углерода;
  • удельное электрическое сопротивление в среднем температурном диапазоне – 1.78×10 Ом/м.

Основными направлениями эксплуатации меди является электротехнические цели. Высокая теплоотдача и пластичность дают возможность применения к различным задачам. Сплавы меди с никелем, латунью, бронзой, делаю более приемлемой себестоимость и улучшают характеристики.

Химический состав меди

В природе она не однородна по своему составу, так как содержит ряд кристаллических элементов, образующих с ней устойчивую структуру, так называемые растворы, которые можно подразделить на три группы:

  1. Твердые растворы. Образуются, если в составе содержаться примеси железа, цинка, сурьмы, олова, никеля и многих других веществ. Такие вхождения существенно снижают ее электрическую и тепловую проводимость. Они усложняют горячий вид обработки под давлением.
  2. Примеси, растворяющиеся в медной решетке. К ним относятся висмут, свинец и другие компоненты. Не ухудшают качества электропроводимости, но затрудняют обработку под давлением.
  3. Примеси, формирующие хрупкие химические соединения. Сюда входят кислород и сера, а также другие элементы. Они ухудшают прочностные качества, в том числе снижают электропроводность.

Масса меди с примесями гораздо больше, чем в чистом виде. Ко всему прочему, элементы примесей существенно влияют на конечные характеристики уже готового продукта. Поэтому их суммарный состав, в том числе количественный, по отдельности должен регулироваться еще на этапе производства. Рассмотрим более подробно влияние каждого элемента на характеристики конечных медных изделий.

  1. Кислород. Один из самых нежелательных элементов для любого материала, не только медного. С его ростом ухудшается такое качество, как пластичность и устойчивость к коррозионным процессам. Его содержание не должно превышать 0,008%. В ходе термической обработки в результате процессов окисления количественное содержание этого элемента уменьшается.
  2. Никель. Образует устойчивый раствор и существенно снижает показатели проводимости.
  3. Сера или селен. Оба компонента одинаково влияют на качество готовой продукции. Высокая концентрация таких вхождений снижает пластичные свойства медных изделий. Содержание таких компонентов не должно превышать 0,001% от общей массы.
  4. Висмут. Негативно влияет на механические и технологические характеристики готовой продукции. Максимальное содержание не должно превышать 0,001%.
  5. Мышьяк. Он не меняет свойств, но образует устойчивый раствор, является своего рода защитником от пагубного влияния других элементов, как кислород, сурьма или висмут.

Химический состав меди

  1. Марганец. Он способен полностью раствориться в меди практически при комнатной температуре. Влияет на проводимость тока.
  2. Сурьма. Компонент лучше всех растворятся в меди, наносит ей минимальный вред. Содержание его не должно превышать 0,05% от массы меди.
  3. Олово. Образует устойчивый раствор с медью и повышает ее свойства по проведению тепла.
  4. Цинк. Его содержание всегда минимально, поэтому такого пагубного влияния он не оказывает.

Фосфор. Основной раскислитель меди, максимальное содержание которого при температуре 714°С составляет 1,7%.

Латунь

Латунь

Сплав на основе меди с добавлением цинка называется латунь. В некоторых ситуациях добавляется олово в меньших пропорциях. Джеймс Эмерсон в 1781 году решил запатентовать комбинацию. Содержание цинка в сплаве может варьироваться от 5 до 45%. Латуни различают в зависимости от предназначения и спецификации:

  • простые, состоящие из двух компонентов – меди и цинка. Маркировка таких сплавов обозначается буквой «Л», напрямую значащая содержание меди в сплаве в процентах;
  • многокомпонентные латуни – содержат множество других металлов в зависимости от назначения к использованию. Такие сплавы повышают эксплуатационные свойства изделий, обозначаются также буквой «Л», но с прибавлением цифр.

Физические свойства латуни относительно высокие, коррозийная стойкость на среднем уровне. Большинство сплавов не критично к пониженным температурам, возможно эксплуатировать металл в различных условиях.
Технологии получения латуни взаимодействует с процессами медной и цинковой промышленности, обработке вторичного сырья. Эффективным способом плавки является использование электропечи индукционного типа с магнитным отводом и регулировкой температуры. После получения однородной массы, она разливается в формы и подвергается процессам деформации.

Плавка латуни

Применение материала в различных отраслях, повышает на него спрос с каждым годом. Сплав применяется в суд строительстве и производстве боеприпасов, различных втулок, переходников, болтов, гаек и сантехнических материалов.

Бронза

Бронза

Цветной металл для изготовки изделий разных типов начали использовать с древних времен. Данный факт подтверждается найденными материалами при археологических раскопках. Состав бронзы изначально был богат оловом.

Промышленностью выпускается различное количество разновидностей бронзы. Опытный мастер способен по цвету металла определить его предназначение. Однако не каждому под силу определить точную марку бронзы, для этого используется маркировка. Способы производства бронзы подразделяются на литейные, когда происходит плавление и отлив и деформируемые.

Состав металла зависит от предназначения к использованию. Основным показателем является наличие бериллия. Повышенная концентрация элемента в сплаве, подвергнутая процедуре закаливания, может соперничать с высокопрочными сталями. Наличие в составе олова отнимает у металла гибкость и пластичность.

Производство бронзовых сплавов изменилось с древних времен фактически внедрением современного оборудования. Технология с использованием в качестве флюса в виде древесного угля используется до сих пор. Последовательность получения бронзы:

  • печь разогревается для требуемой температуры, после этого в нее устанавливается тигель;
  • после плавки металл может окислится, во избежание этого добавляют флюс в качестве древесного угля;
  • кислотным катализатором служит фосфорная медь, добавление происходит после полного прогрева сплава.

Плавка бронзы

Старинные изделия из бронзы подвержены естественным процессам – патинирование. Зеленоватый цвет с белым оттенком проявляется из-за образования пленки, обволакивающей изделие. Искусственные методы патинирования включают в себя методы с использованием серы и параллельным нагреванием до определенной температуры.

Температура плавления меди

Плавится материал при определенной температуре, которая зависит от наличия и количества сплавов в составе.

В большинстве случаев, процесс происходит при температуре от 1085°. Наличие олова в сплаве дает разбег, плавление меди может начаться при 950°. Цинк в составе также понижает нижнюю границу до 900°.

Для точных расчетов времени понадобится график плавления меди. На обычном листке бумаги используется график, где по горизонтали отмечается время, а по вертикали градусы. График должен указывать, на каких моментах поддерживается температура при нагреве для полного процесса кристаллизации.

Печь для плавки меди

Плавление меди в домашних условиях

В домашних условиях медные сплавы возможно плавить несколькими способами. При использовании любого из методов, понадобятся сопутствующие материалы:

  • тигель – посуда, изготовленная из закаленной меди или другого огнеупорного металла;
  • древесный уголь, понадобится в роли флюса;
  • крюк металлический;
  • форма будущего изделия.

Наиболее легким вариантом для плавления является муфельная печь. В емкость опускаются куски материала. После установки температуры плавления процесс можно наблюдать через специальное окошко. Установленная дверца позволяет удалять образованную в процессе оксидную пленку, для этого понадобиться заранее подготовленный металлический крюк.

Вторым способом плавления в домашних условиях является использование горелки или резака. Пропан – кислородное пламя отлично подойдет для работ с цинком или оловом. Куски материалов для будущего сплава помещаются в тигель, и нагреваются мастером произвольными движениями. Максимальная температура плавления меди может быть достигнута при взаимодействии с пламенем синего цвета.

Плавка меди в домашних условиях подразумевает работу с повышенными температурами. Приоритетом служит соблюдение техники безопасности. Перед любой процедурой следует одеть защитные огнеупорный перчатки и плотную, полностью закрывающую тело одежду.

Значение плотности меди

Плотность — это отношение массы к объему. Выражается она в килограммах на кубический метр всего объема. В виду неоднородности состава, значение плотности может меняться в зависимости процентного содержания примесей. Поскольку существуют разные марки медных прокатов с разным содержанием компонентов, то и значение плотности у них будет разное. Плотность меди можно найти в специализированных технических таблицах, которая равна 8,93х103 кг/м3. Это справочная величина. В этих же таблицах показан удельный вес меди, который равен 8,93 г/см3. Таким совпадением значений плотности и его весовых показателей характеризуются не все металлы.

Основные показатели меди

Не секрет, что от плотности напрямую зависит конечная масса изготовленного изделия. Однако для расчетов гораздо правильнее использовать удельный вес. Этот показатель очень важен для производства изделий из меди или любых других металлов, но применим больше к сплавам. Он выражается отношением массы меди к объему всего сплава.

Расчет удельного веса

В настоящее время учеными разработано огромное количество способов, помогающих найти характеристики удельного веса меди, которые позволяют даже без обращения к специализированным таблицам вычислять этот немаловажный показатель. Зная его, можно с легкостью подобрать необходимые материалы, благодаря которым в конечном итоге можно получить нужную деталь с требуемыми параметрам. Это делается еще на стадии подготовки, когда планируется создать необходимую деталь из меди или ее содержащих сплавов.

Как уже говорилось выше, удельный вес меди можно подсмотреть в специализированном справочнике, но если под рукой такого нет, то его можно рассчитать по следующей формуле: вес делим на объем и получаем необходимую нам величину. Общими словами такое соотношение можно выразить как общее весовое значение к общему значению объема всего изделия.

Не стоит путать его с понятием плотности, так как он характеризует металл по-другому, хоть и имеет одинаковые значения показателей.

Рассмотрим, как можно вычислить удельный вес, если известна масса и объем медного изделия.

Например, имеем чистый медный лист толщиной 5 мм, шириной 2 м и длиной 1 м. Для начала посчитаем его объем: 5 мм * 1000 мм (1 м = 1000 мм) * 2000 мм, что составляет 10 000 000 мм3 или 10 000 см3. Для удобства расчетов будем считать, что масса листа составляет 89 кг 300 грамм или 89300 грамм. Делим рассчитанный результат на объем и получаем 8,93 г/см3. Зная этот показатель, мы всегда с легкостью можем вычислить весовое содержание в меди того или иного сплава. Это удобно, например, для обработки металла.

Единицы измерения удельного веса

В разных системах измерения используются разные единицы для обозначения удельного веса меди:

  1. В системе измерения СГС или сантиметр-грамм-секунда используется дин/см3.
  2. В Международной СИ используются единицы н/м3.
  3. В системе МКСС или метр-килограмм-секунда-свеча применяется кг/м3.

Первые два показателя равны между собой, а третий при конвертации равен 0,102 кг/м3.

Расчет веса с использованием значений удельного веса

Не будем уходить далеко и воспользуемся примером, описанным выше. Вычислим общее содержание меди в 25 листах. Поменяем условие и будем считать, что листы изготовлены из медного сплава. Таким образом, берем удельный вес меди из таблицы и он равен 8.93 г/см3. Толщина листа 5 мм, площадь (1000 мм * 2000 мм) составляет 2 000 000 мм, соответственно объем будет равняться 10 000 000 мм3 или 10 000 см3. Теперь умножаем удельный вес на объем и получаем 89 кг и 300 гр. Мы вычислили общий объем меди, который содержится в этих листах без учета веса самих примесей, то есть общее весовое значение может быть больше.

Теперь умножаем рассчитанный результат на 25 листов и получаем 2 235 кг. Такие расчеты уместно использовать при обработке медных деталей, так как позволяют узнать, сколько меди всего содержится в изначальных объектах. Аналогичным образом можно рассчитать медные прутки. Площадь сечения провода умножается на его длину, где получим объем прутка, а далее по аналогии с вышеописанным примером.

Как определяется плотность

Плотность меди, как и плотность любого другого вещества, является справочной величиной. Она выражается соотношением массы к объему. Самостоятельно вычислить этот показатель весьма сложно, так как без специальных приборов состав проверить невозможно.

Пример расчета плотности меди

Выражается показатель в килограммах на кубический метр или в граммах на кубический сантиметр. Показатель плотности более полезен для производителей, которые на основе имеющихся данных могут скомпоновать ту или иную деталь с требуемыми свойствами и характеристиками.

Области использования меди

Благодаря физико-механическим свойствам, она широко используется для различных отраслей промышленности. Наиболее часто ее можно встретить в электротехнической области в качестве составляющей части электрического провода. Не меньшей популярностью она пользуется также в производстве систем отопления и охлаждения, электроники и системах теплового обмена.

В строительной отрасли она используется, прежде всего, для создания разного рода конструкций, которые получаются гораздо меньше по массе, чем из любых других аналогичным материалов. Часто ее используют для кровли, так как такие изделия обладают легкостью и пластичностью. Такой материал легко обрабатывается и позволяет менять геометрии профиля, что очень удобно.

Как уже говорилось выше, основное свое применение она находит в изготовлении электрических и иных токопроводящих кабелей, где она используется для изготовления жил проводов и кабелей. Обладая хорошей электропроводностью, она дает достаточное сопротивление электронам тока.

Широко используются также сплавы меди, например, сплав меди и золота повышает прочность последнего в разы.

На стенках медных прокатов никогда не образуются соляные отложения. Такое качество полезно для транспортировки жидкостей и паров.

На основе оксидов меди получают сверхпроводники, а в чистом виде она идет на изготовление гальванических источников питания.

Схема гальванического источника питания

Она входит в состав бронзы, которая обладает стойкостью к агрессивным средам, как морская вода. Поэтому часто ее используют в навигации. Также бронзовые продукты можно увидеть на фасадах домов, как элемент декора, так как такой сплав обрабатывается легко, так как очень пластичен.

Температура плавления медной проволоки — Морской флот

Медь входит в семёрку самых древних металлов, с которыми люди познакомились на самом начальном этапе своего существования. Период с 4 по 3 тысячелетие до нашей эры так и называется медный век в истории развития человечества. Древние люди изготавливали из неё предметы быта, орудия труда и боевое оружие. Это стало возможным благодаря относительно невысокой температуре плавления меди.

Купрум: характеристика элемента

Научное наименование меди Cuprum (Купрум) происходит от названия греческого острова Кипр, где медь начали добывать ещё в середине третьего тысячелетия до нашей эры. В периодической таблице Менделеева химический элемент медь имеет 29 атомный (порядковый) номер, находится в 11 группе четвёртого периода. Принадлежит к пластичным переходным металлам. В чистом виде имеет характерный золотисто-розовый цвет. Чистую медь легко окислить, поэтому в естественных условиях она всегда образует на своей поверхности тонкую оксидную плёнку, которая придаёт ей красноватый оттенок.

Физические свойства

Это второй металл после серебра по уровню электропроводности, что делает её крайне востребованной в современной электронике. Второе ценное качество — высокая теплопроводность, это позволяет её широко применять во всевозможных теплообменниках и в холодильной аппаратуре.

  • Температура плавления 1083 градуса.
  • Температура кипения 2567 градусов.
  • Удельное сопротивление при 20 градусах составляет 1,68·10 -3 Ом·м.
  • Плотность 8,92 г/см.

Нахождение в природе

В природе встречается в самородном виде и в виде соединений.

Самые крупные месторождения самородной меди находятся в США в районе озера Верхнего. Именно в этом районе был найден самый крупный медный самородок весом 3560 килограмм. А также много самородной меди встречается в рудных горах Германии.

В России и на постсоветском пространстве добыча меди происходит путём извлечения из сульфидной руды. Её можно добыть, извлекая из медного колчедана или халькопирита CuFeS2. Наиболее известны такие месторождения, как Удокан в Забайкалье и Джезказган в Казахстане.

Сульфиты меди чаще всего образуются в так называемых среднетемпературных гидротермальных жилах. Могут образовываться и в осадочных породах в виде медистых песчаников и сланцев.

Как правило, медная руда всегда добывается открытым способом. Процентное содержание чистой меди в руде составляет от 0,2 до 1,0 процента в зависимости от месторождения.

Медные сплавы

Являются самыми первыми металлическими сплавами, получение которых человечество освоило ещё на самой заре своего развития. При какой температуре плавится медь, зависит от того, в каком сплаве она находится. В настоящее время наиболее известны и востребованы такие сплавы, как:

  • Латунь. Сплав с добавление цинка, содержание которого может доходить до 40%. Цинк повышает пластичность и прочность металла. Температура, при которой латунь плавится, составляет 880 — 950 градусов.
  • Бронза. Сплав с оловом, с добавлением некоторых других компонентов, таких как кремний, бериллий, свинец. Получать бронзу из меди человек научился ещё в самом начале бронзового века. Бронза не утратила своей актуальности даже с наступлением века железа, например, ещё в начале 20 века стволы пушек изготавливали из так называемой орудийной бронзы. Температура, при которой бронза начинает плавиться, составляет 930 — 1140 градусов.
  • Мельхиор. Кроме меди, содержит в своём составе 5−30% никеля. Никель увеличивает прочность медного сплава и повышает его электрическое сопротивление. Кроме того, сильно повышается коррозионная стойкость. Температура плавления — 1170 градусов. По своим внешним характеристикам мельхиор очень похож на серебро, раньше его называли белой медью. Но он обладает более высокой механической прочностью, чем обычное серебро.
  • Дюраль, или дюралюминий. Основную массу сплава составляет алюминий 93%, на медь приходится 5%, оставшиеся 2% занимают марганец, железо и магний. Название происходит от названия немецкого города Дюрен, где в 1906 году был впервые получен этот высокопрочный сплав алюминия. Одной из его особенностей является тот факт, что его прочностные характеристики с течением времени имеют тенденцию к увеличению. Поэтому он не теряет своей прочности после нескольких лет эксплуатации, как другие металлы. В настоящее время этот сплав является основой самолётостроения.
  • Ювелирные сплавы. Сплавы меди с золотом. Тем самым увеличивается устойчивость драгметалла к механическим воздействиям и истиранию.

Переплавка меди дома

Этот металл обладает целым набором полезных свойств, которые делают её весьма желанным металлом в домашнем хозяйстве. А относительно невысокая температура при плавлении и изрядное количество медного лома, которое можно обнаружить на ближайшей свалке, позволяют задавать вопрос о том, как расплавить медь в домашних условиях, не как риторический, а вполне реальный и практический.

График плавления меди

Расплавление любого металла заключается в том, что под воздействием высоких температур разрушается кристаллическая решётка и металл переходит из твёрдого состояния в жидкое. Можно выделить некоторые закономерности, свойственные любому металлу в процессе расплавления:

  • Во время нагревания температура внутри металла повышается, но кристаллическая решётка не подвергается разрушению. Металл сохраняет своё твёрдое состояние.
  • При достижении температуры плавления, для меди это 1083 градуса, температура внутри металла перестаёт повышаться, несмотря на то что общий нагрев и передача тепла продолжаются.
  • После того как вся масса метала переходит в расплавленное состояние, температура внутри металла снова начинает резко повышаться.

В случае процесса охлаждения расплавленного металла происходит всё то же самое, но в обратной последовательности. Сначала происходит резкое снижение температуры внутри металла, затем на значении 1080 градусов падение температуры прекращается до тех пор, пока вся масса метала не перейдёт в твёрдое состояние. После этого температура снова начинает резко падать, пока не сравняется с температурой окружающего воздуха и кристаллизация не завершится окончательно.

Температура кипения

Медь начинает активно выделять углерод в виде пузырьков газа при температуре 2560 градусов. Внешне это очень напоминает кипение воды. На самом деле это процесс активного окисления меди, в результате которого металл теряет практически все свои уникальные свойства. Детали, отлитые из кипящей меди, имеют в своей структуре большое количество пор, которые будут уменьшать механическую прочность материала и ухудшать его декоративные свойства. Потому в процессе плавки необходимо внимательно следить за температурой и не допускать закипания меди.

Способы плавки

Медный лом можно переплавить в домашних условиях разными способами в зависимости от технического оснащения домашней мастерской. При этом нужно иметь в виду, что придётся нагревать медь не до её температуры плавления, а чуть выше — примерно до 1100−1200 градусов.

Для этих целей годятся следующие приспособления:

  • Муфельная печь. Наиболее рациональное решение проблемы расплавления меди, так как такая печь позволяет регулировать температуру во время процесса плавки, что очень удобно. Подобные лабораторные печи оснащены специальным окном из жаропрочного стекла, что позволяет постоянно осуществлять визуальный контроль всего процесса.
  • Газовая горелка. Ручная газовая горелка размещается под дном ёмкости из тугоплавкого материала, в которой непосредственно будет размещаться медный лом. Этот способ предполагает наличие тесного контакта расплавляемой массы металла с воздухом, что будет способствовать усилению процесса окисления расплавляемого металла. Чтобы этому как-то противостоять, на расплавляемую массу сверху насыпают слой древесного угля.
  • Паяльная лампа. Способ практически ничем не отличается от плавки с помощью газовой горелки. Но в этом случае невозможно достигнуть относительно высоких температур, поэтому он годится для переплавки сплавов меди, которые обладают меньшей температурой плавления, чем чистая медь.
  • Кузнечный горн. На раскалённые древесные угли специального костра помещается тугоплавкий тигель с измельчённым металлом. Для ускорения процесса расплавления задействуют обычный бытовой пылесос, включённый в режиме выдувания. Труба пылесоса должна быть небольшого диаметра и иметь металлический наконечник, в противном случае она расплавится. Данный способ подходит для тех, кто занимается плавкой меди дома регулярно и имеет дело с большими объёмами исходного материала, который необходимо отжечь.
  • Микроволновая печь. Бытовая мощная микроволновка с небольшими изменениями конструкции может легко плавить довольно большие объёмы медного лома. Для этого необходимо убрать из микроволновки вращающуюся тарелку, а вместо неё поместить соответствующих размеров тигель, который необходимо сделать из тугоплавкого материала, например, из шамотного кирпича.

Пошаговая инструкция

Процесс плавления любого металла происходит поэтапно и подчиняется определённому алгоритму, который одинаков как для промышленного производства, так и для кустарного. Для тех, кто озадачен вопросом плавки меди в домашних условиях, пошаговая инструкция будет выглядеть следующим образом:

  • Необходимо взять тугоплавкий тигель. Металл в измельчённом состоянии насыпается в тигель. После этого тигель помещается в предварительно прогретую муфельную печь. С помощью специального окошка наблюдают за процессом расплавления.
  • После полного расплавления всего объёма медного лома тигель с помощью специальных длинных щипцов извлекается из печи.
  • На поверхности расплавленного металла образуется плёнка его оксида. Эту плёнку необходимо аккуратно сдвинуть в сторону к одной из стенок тигля. Для этих целей используют специальный крючок, изготовленный из тугоплавкого металла.
  • После того как металл освобождён от оксидной плёнки, необходимо его очень быстро разлить в предварительно подготовленные формы.

Практические рекомендации

Температура плавления меди в домашних условиях зависит от того, в каком сплаве она содержится.

Техническая чистая медь содержится в проводах и кабелях, а также в обмотках трансформаторов, электродвигателей и генераторов. При этом нужно иметь в виду, что химически чистая медь содержится только в столовых приборах и в прочей кухонной утвари. Во всех остальных случаях в ней присутствуют те или иные вредные компоненты.

В чистом виде обладает повышенной вязкостью в расплавленном состоянии, поэтому отливать из неё изделия сложной конфигурации и небольших размеров очень сложно. Гораздо легче для этих целей использовать латунь.

В сплавах бронзы, изготовленных вначале и середине прошлого века, использовали в качестве компонентов мышьяк и сурьму. Поэтому следует избегать расплавления так называемой старинной бронзы, так как пары мышьяка могут привести к отравлению организма.

  • Как расплавить медь в домашних условиях
  • Как расплавить латунь
  • Как расплавить золото
  • Тигель
  • Щипцы для тигля
  • Муфельная печь
  • Древесный уголь
  • Горн
  • Бытовой пылесос
  • Крюк из стальной проволоки
  • Форма

Муфельная печь должна позволять получать следующие температуры: для плавления меди – 1083оС, для плавления бронзы – 930—1140оС, для плавления латуни – 880—950оС.

Красная медь является вязкоплавкой. Она малопригодна для тонкой отливки. Для этих целей больше подходит латунь. Чем светлее латунь, тем более легкоплавкой она является.

Не рекомендуется заниматься переплавкой старинной бронзы неизвестного происхождения, поскольку она может содержать в своем составе большое количество мышьяка.

Горн представляет собой открытую печь с вытяжкой, в которой сжигают древесный уголь. Для увеличения температуры в горн вдувают дополнительный воздух с помощью мехов или компрессора.

Для плавления меди применяются глиняные и керамические тигли.

Вместо горна можно использовать автоген или паяльную лампу.

Имеется в виду обычная газовая плита на кухне. Температура плавления меди 1085°С.

Это известный вопрос. Поступающее тепло (из пламени в проволоку) пропорционально площади поверхности (для цилиндрической проволоки – пропорционально первой степени диаметра), а отводящееся тепло – пропорционально площади сечения (второй степени диаметра). При уменьшении диаметра отводящееся тепло уменьшается гораздо резче поступающего, в результате температура повышается. Размерный эффект. (Не размерность, а размер!). О.Андреева не права – в пламени зажигалки тонкие медные провода отлично свариваются.

Провод до 0,15 можно спокойно расплавить в пламени обычной спички, сам таким способом сваривал провода в радиоэлектронных схемах, в газовой горелки плиты можно расплавить провод до 2 мм, часто отпускаю медные провода, иногда зазеваешься, и провод превращается в капли. Но диаметр провода влияет на температуру нагрева, потому что более толстый провод имеет большую теплоемкость и большую поверхность теплообмена с окружающей средой в сравнении с проводом малого диаметра. Но еще стоит знать температуру различных зон языка пламени, тогда можно и расплавить провод, и сохранить его при обжиге.

Какова температура плавления меди и сплавов?

Сфера применения меди очень широка. Поэтому многие задаются вопросами: как правильно плавить медь и какова температура ее плавления? У меди температура плавки довольно низкая,это же касается и ее сплавов, однако условия варьируются в зависимости от количества примесей.

 Медь и ее использование

По предположениям ученых, первобытные предки современного человека находили самородки меди, которые иногда были огромных размеров. На латинице имеет название Cuprum. Древние греки занимались ее добычей на Кипре – отсюда такое имя.

Стоит отметить, что экологи обеспокоены последствиями добычи металла. При открытом способе добычи карьер превращается в источник токсичных веществ. Самое токсичное озеро в мире — Беркли Пит (штат Монтана, США) — зародилось из  кратера медного рудника.

Ввиду того, что температура плавления довольно невысокая (1083 °С), медную руду или же самородки не составляло трудности расплавить прямо на костре. Эта легкость плавления позволяла повсеместно использовать данный металл, чтобы изготовлять предметы быта, орудия труда, оружие, украшения.

Инструменты, изготовленные из этого металла и его сплавов, не создают искр. Этим обуславливается их широкое применение в тех сферах, где существуют повышенные требования к безопасности (на огнеопасных и взрывоопасных производствах).

Еще издавна люди применяли медь регулярно, сфера ее использования была довольно обширна, однако Cuprum занимает всего лишь двадцать третье место среди прочих химических компонентов по количеству нахождения под землей. Наиболее часто можно встретить ее природе в виде различных соединений, компонентов сульфидных руд. Самые популярные – это медный блеск, медный колчедан. Есть несколько методик добывания чистого металла из руды.

к меню ↑

Как плавили медь раньше

Выше мы уже писали следующую информацию: Cuprum легко плавится, так как температура для плавки низкая. Данный факт давал возможность обработки металла еще на этапах зарождения цивилизации. Стоит сказать: мы в долгу у древнейших металлургов. Они нашли способы добывания, плавления как  чистого металла, так и сплавов.

Плавлением называют процесс перехода из твердого состояния в жидкость. Это делали методом простого нагрева, что удавалось благодаря низкой температуре плавления. Далее добавляли олово. Таким образом получалась бронза.

Медь уступала бронзе по своей прочности, именно поэтому из сплава делали оружие.

к меню ↑

Медь, её сплавы

к меню ↑

Медь

Медь, употребляемая сегодня промышленностью, не представляет собой чистый металл Cuprum. Состав содержит огромное количество других компонентов: железо, никель, сурьма, мышьяк. Качество, соответственно и марка, определяется процентным соотношением примесей (их содержание до 1%).  Этот металл является чистым с технической точки зрения.  Очень важные качества этого металла — высокие показатели электропроводности, теплопроводности. Этим обуславливается невысокая температура для плавки. Температура плавления меди  — 1084°С.

Сам по себе – это достаточно гибкий пластичный металл, поэтому его очень широко используют в различных технических отраслях, промышленности.  Как расплавить медь? Идеальный метод плавления красной меди — ацетилено-кислородным пламенем, еще угольной дугой или контактной сваркой.

к меню ↑

Латунь

Латунь – смесь меди с цинком, процентное соотношение может доходить до равноценного: 50 на 50. Температурные условие для плавки латуни: плавится при 800-950 градусах Цельсия, температура плавления изменяется от процентного соотношения двух металлов.  Закономерность такова: чем меньше цинка, тем ниже температура плавления.

Какова сфера использования данного сплава? Его часто используют как литейный материал, а также листовой, сортовой металл.

Помимо цинка в различных марках можно увидеть содержание алюминия, свинца, олова, марганца, железа.  Содержание прочих компонентов будет оказывать влияние на процесс плавки.

Латунь хорошо сваривать  ацетилено-кислородным пламенем. Остальные виды не так предпочтительны, так как цинк интенсивно будет испаряться.

к меню ↑

Бронза

Сплав Cuprum и Stannum (олово) называют бронзой. Встречаются также безоловянные — в них нет олова. Например, с некоторым процентом алюминия или железа и марганца.

Сфера применения бронзы не так широка. Чаще всего ее используют как литейный материал в производстве подшипников, работающих на трение, также иногда для изготовления украшений, предметов интерьера.

Что же касается плавки, то температура зависит от наличия, количества и состава примесей. В общем, чаще всего температура такова: оловянистые виды бронзы — 900—950°, безоловянистые с наличием алюминия и прочих элементов — 950—1080°С. Их можно сваривать ацетилено-кислородным пламенем, также возможно электродуговой сваркой.

Похожие статьи

Чем расплавить медь в домашних условиях

C проблемой, как расплавить медь в домашних условиях, сталкиваются многие хозяева. Одни хотят отлить медные изделия, у других скопился медный лом, который занимает много места, а выбросить его жаль. Тех, кто считает, что это сложный процесс и расплавить медь в домашних условиях не получится, можно успокоить. Древние люди умели это делать за несколько веков до н.э., не имея для этого никаких специальных приспособлений.

Температура плавления чистой меди равна 1083 °С.

Среди металлов, нашедших широкое применение в промышленности, это среднее значение. Олово, свинец, магний, цинк, алюминий имеют существенно меньшую температуру плавления, у серебра и золота она равна соответственно 960 °С и 1063 °C. У железа температура плавления равна 1539 °С. Поэтому медь, серебро и золото можно плавить в железной посуде. Добавление олова, свинца и цинка позволяет существенно снизить температуру плавления меди, но при этом образуется не чистая медь, а ее сплавы — бронза и латунь.

До начала плавления необходимо подготовить:

  1. стальные щипцы,
  2. крючок для сбора оксидной пленки с поверхности расплава,
  3. форму для заливки.

Крючок можно изготовить из стальной проволоки. Формой может служить любая стальная емкость, можно подготовить углубление в земле, как это делали наши предки. Для художественного литья потребуется специальная форма.

Плавление в муфельной печи

  • Бытовые муфельные печи можно приобрести в специализированных магазинах. Современные печи снабжены регуляторами температуры и смотровым окном, могут быть с вертикальной или горизонтальной загрузкой. Печь среднего качества способна поддерживать температуру до 2000 °С, а профессиональная — до 3000°C. В ней можно расплавлять не только медь, но и железо. Но следует учесть, что при температуре 2560 °С медный расплав начинает кипеть. После охлаждения слиток будет иметь пористую поверхность, которая способствует быстрому окислению и разрушению. Такой слиток имеет непрезентабельный вид, он лишен характерного медного блеска.
  • Независимо от способа плавления, медный лом нужно измельчить. Это сократит время процесса и даст гарантию, что расплав получится однородным.
  • Измельченный медный лом засыпают в тигель, тигель помещают в муфельную печь, предварительно нагретую выше 1083 °C.
  • Убедившись, что медь расплавилась, тигель щипцами извлекают из печи и крючком удаляют оксидную пленку, которая всегда образуется на поверхности расплава. После этого расплав сразу следует вылить в форму.

Приобретать дорогостоящую муфельную печь ради одной плавки не стоит. Медь можно расплавить другими способами.

Плавление с помощью самодельных приспособлений

У некоторых автолюбителей в гаражах имеются самодельные горны, с помощью которых можно плавить металлы. Если горн найти не удалось, его можно сделать своими руками.

  • На земле устанавливают опоры, например, силикатные кирпичи, на них кладут стальную сетку с мелкими ячейками.
  • На сетку насыпают слой древесного угля и поджигают его. Чтобы получить высокую температуру, нужно увеличить приток воздуха. Проще всего это сделать с помощью пылесоса, работающего «на выдув», направив струю воздуха в место горения угля.
  • Остается поставить на горящие угли тигель и дождаться, когда медь расплавится. Расплав контактирует с атмосферным кислородом, поэтому активно образуется оксидная пленка, которую постоянно следует убирать. Можно присыпать поверхность расплава мелкими углями или пеплом от них. Образуется шлак, который потом легко отделяется.

Медные сплавы бронзу и латунь можно расплавить с помощью газовой горелки автогенной сварки или паяльной лампой с насадкой для поворота пламени. Пламя должно нагревать тигель равномерно снизу.

Предметы из меди, а также различные изделия, в состав которых она входит, получили широкое распространение в бытовых условиях. Поэтому многие задаются вполне стандартным вопросом: «Как расплавить медь самостоятельно?»

Температура плавления

Плавление – это процесс, характеризующий постепенный переход металла из стандартного твердого состояния в жидкую консистенцию. Каждому металлическому соединению или металлу в чистом виде свойственная своя температура, под воздействием которой он начинает плавиться.

Немаловажным фактором в данном случае является то, какие примеси входят в состав расплавляемого соединения.

Так, медь начинает плавиться при температуре 1083 градусов по Цельсию. Если к ней добавить олово, то температура плавления снизится и составит примерно 930-1140 градусов по Цельсию.

В данном случае такое колебание обусловлено количеством олова, входящего в сплав. Соединение из меди и цинка плавится при еще более низкой температуре – 900-1050 градусов. Нагревание любых металлов связано с постепенным разрушением решетки, образованной из множества кристаллов.

С нагреванием температура плавления поднимается до максимально необходимой отметки, затем ее рост останавливается и сохраняется на достигнутом уровне до того момента, пока не расплавится весь металл, после чего начинает снижаться.

Медь, разогретая до максимально возможной отметки, закипает при температуре, достигшей отметки в 2560 градусов. По внешнему виду ее кипение схоже с кипением любых жидких веществ, на поверхности которых по мере нагревания появляются пузырьки, и выделяется газ. Так, из меди в процессе кипения выходит углерод, образовавшийся в результате окисления и ее тесного контакта с воздухом.

Плавление меди

Технология плавления меди получила широкое применение с древних времен, когда люди с помощью костра расплавляли металл для изготовления стрел, наконечников и другого оружия, и предметов быта.

Плавка меди в домашних условиях также возможна. Для этого понадобятся:

  • Тигель, где будет плавиться медь, и щипцы, необходимые для того, чтобы извлечь тигель из печи или снять его с огня.
  • Древесный уголь.
  • Муфельная печь (лучше, если в ней будет регулироваться температура нагрева).
  • Горн.
  • Обычный пылесос.
  • Форма, в которую выливается расплавленная жидкость.
  • Крюк, изготовленный из стальной проволоки.
  • Газовая горелка, если нет муфельной печи.

Алгоритм плавления включает несколько поэтапных шагов:

  1. Металл измельчить и пересыпать в тигель. Причем чем более мелкие фрагменты будут, тем скорее он достигнет расплавленного состояния. Тигель поставить в печь, раскаленную до максимально высокой температуры, необходимой для начала процесса плавления (здесь кстати придется регулятор температур). Во многих муфельных печах на двери вырезано окошко. Через него можно безопасно осуществлять наблюдение за процессом.
  2. По достижении медью жидкого окончательно расплавленного состояния, тигель с помощью щипцов нужно постараться как можно аккуратнее и скорее вынуть из печи. На поверхности жидкого вещества будет образована пленка, ее подвинуть к краю тигля, используя крюк из проволоки. Очищенный от пленки металл максимально быстро перелить в заранее подготовленную форму.
  3. Если муфельная печь отсутствует, осуществить плавку меди можно с применением обычной газовой горелки. Но тогда медь будет находиться в тесном контакте с воздухом, а сам процесс окисления пройдет значительно быстрее. Поэтому для предотвращения образования толстой пленки на поверхности металла, медь, когда она достигнет жидкого состояния, присыпают растолченным древесным углем.
  4. Расплавить медь и ее сплавы можно также с помощью горна. Для этого древесный уголь нужно хорошо раскалить и поместить на него тигель с металлом (предварительно измельчить медь). Для ускорения нагревательного процесса на уголь направить пылесос, включенный на режиме выдувания. Особое внимание стоит уделить наконечнику трубы. Она должна быть металлической, поскольку пластик расплавится под воздействием высокой температуры.

Тогда стоит использовать сплавы. Например, латунь, оттенок которой светлее остальных. Это говорит о том, что для ее плавления нужны менее высокие температуры.

Уже в древности люди добывали и плавили медь. Этот металл широко применялся в быту и служил материалом для изготовления различных предметов. Бронзу научились делать примерно 3 тыс. лет назад. Из этого сплава делали хорошее оружие. Популярность бронзы быстро распространялась, так как металл отличался красивым внешним видом и прочностью. Из него делали украшения, орудия охоты и труда, посуду. Благодаря небольшой температуре плавления меди человек быстро освоил ее производство.

Нахождение в природе

Свое латинское название Cuprum металл получил от названия острова Кипр, где его научились добывать в третьем тысячелетии до н. э. В системе Менделеева Сu получил 29 номер, а расположен в 11-й группе четвертого периода.

В земной коре элемент на 23-м месте по распространению и встречается чаще в виде сульфидных руд. Наиболее распространены медный блеск и колчедан. Сегодня медь из руды добывается несколькими способами, но любая технологий подразумевает поэтапный подход для достижения результата.

  • На заре развития цивилизации люди уже получали и использовали медь и ее сплавы.
  • В то время добывалась не сульфидная, а малахитовая руда, которой не требовался предварительный обжиг.
  • Смесь руды и углей помещали в глиняный сосуд, который опускался в небольшую яму.
  • Смесь поджигалась, а угарный газ помогал малахиту восстановиться до состояния свободного Cu.
  • В природе есть самородная медь, а богатейшие месторождения находятся в Чили.
  • Сульфиды меди нередко образуются в среднетемпературных геотермальных жилах.
  • Часто месторождения имеют вид осадочных пород.
  • Медяные песчаники и сланцы встречаются в Казахстане и Читинской области.

Физические свойства

Металл пластичен и на открытом воздухе покрывается оксидной пленкой за короткое время. Благодаря этой пленке медь и имеет свой желтовато-красный оттенок, в просвете пленки цвет может быть зеленовато-голубым. По уровню уровнем тепло- и электропроводности Cuprum на втором месте после серебра.

  • Плoтность — 8,94×103 кг/ м3 .
  • Удельная теплоемкость при Т=20 ° C — 390 Дж/кг х К.
  • Электрическoе удельное при 20−100 ° C — 1,78×10−8 Ом/м.
  • Температура кипeния — 2595 ° C.
  • Удельная электропрoводность при 20 ° C — 55,5−58 МСм/м.

При какой температуре плавится медь

Плавления происходит, когда из твердого состояния металл переходит в жидкое. Каждый элемент имеет собственную температуру плавления. Многое зависит от примесей в металле. Обычная температура плавления меди — 1083 ° C. Когда добавляется олово, температура снижается до 930- 1140 ° C. Температура плавления зависит здесь от содержания в сплаве олова. В сплаве купрума с цинком плавление происходит при 900- 1050 ° C .

При нагреве любого металла разрушается его кристаллическая решетка. По мере нагревания повышается температура плавления, но затем выравнивается по достижении определенного предела температуры. В этот момент и плавится металла. Полностью расплавляется, и температура повышается снова.

Когда металл охлаждается, температура снижается, в определенный момент остается на прежнем уровне, пока металл не затвердеет полностью. После полного затвердевания температура снижается опять. Это демонстрирует фазовая диаграмма, где отображен температурный процесс с начала плавления до затвердения. При нагревании разогретая медь при 2560 ° C начинает закипать. Кипение подобно кипению жидких веществ, когда выделяется газ и появляются пузырьки на поверхности. В момент кипения при максимально больших температурах начинается выделение углерода, образующегося при окислении.

Плавление в домашних условиях

Благодаря низкой температуре плавления древние люди могли расплавлять купрум на костре и использовать металл для изготовления различных изделий.

Для расплавки меди в домашних условиях понадобится:

  • древесный уголь;
  • тигель и специальные щипцы для него;
  • муфельная печь;
  • бытовой пылесос;
  • горн;
  • стальной крюк;
  • форма для плавления.

Процесс течет поэтапно, металл помещается в тигель, а затем размещается в муфельной печи. Выставляется нужная температура, а наблюдение за процессом осуществляется через стеклянное оконце. В процессе в емкости с Cu появится окисная пленка, которую нужно устранить — открыть окошко и отодвинуть в сторону стальным крюком.

При отсутствии муфельной печи расплавить медь можно автогеном. Плавление пойдет, если ест нормальный доступ воздуха. Паяльной лампой расплавляется латунь и легкоплавкая бронза. Пламя должно охватить весь тигель.

Если под рукой ничего из перечисленных средств нет, можно использовать горн, установленный на слой древесного угля. Для повышения Т можно использовать пылесос, включенный в режим выдувания, но шланг должен иметь металлический наконечник, хорошо, если с зауженным концом, так струя воздуха будет тоньше.

Температура плавления бронзы и латуни, как температура плавления меди и алюминия — невысоки.

Сегодня в промышленных условиях в чистом виде Cu не используется. В ее составе содержится много примесей: никель, железо, мышьяк, сурьма, другие элементы. Качество продукта определяется наличием содержания в процентах примесей в сплаве (не более 1%). Важные показатели — тепло- и электропроводность. Благодаря пластичности, малой Т плавления и гибкости медь широко используется во многих отраслях промышленности.

Как производится плавление меди

Одним из красивейших при декорировании материалом является медь. Однако осуществить плавление меди в мастерской довольно проблематично. Поэтому люди придумывают различные ухищрения и способы, чтоб осуществить плавление меди дома. Это связано с тем, что медь очень «благородно» смотрится, ее благородный внешний вид украсит любую поделку. Например, медные детали прекрасно украсят рукоятки ножей (охотничьих, так и бытовых), шкатулки, зажигалки, брелоки, дамские сумочки и кошельки и т. д. Однако, при изготовлении таких поделок дома, человек сталкивается с целым рядом проблем: начиная от вопроса «где достать металл?», заканчивая вопросом «как его расплавить?» и «как придать нужную форму элементу?». Где найти медь в быту, как осуществить плавление меди в бытовых условиях и как приготовить формы для заливки детали, будет рассказано ниже.

Медь: где ее достать

Все помнят из школьного курса химии то, что медь это 11 элемент таблицы Менделеева, с температурой плавления порядка 1083,5 градусов Цельсия. Но помимо всего прочего, медь не широко распространена в природе, поэтому на данный момент стоимость меди достигает 9000 долларов США за тонну (при этом исторический рекорд по цене – 12000 долларов за тонну в 2011 году). Высокая стоимость вызвана небольшим количеством месторождений. Основные месторождения меди находятся в Южной Америке (Чили и Перу), Казахстане, Китае, Австралии и США. Именно этим обоснована высокая стоимость чистого металла. Поэтому возникает вопрос: где достать медь в быту?

Общая схема выплавки меди.

Медь может находиться в электронике и электротехнических изделиях. Из меди изготавливают провода и кабели, обмотки для трансформаторов и электрических машин (электродвигателей и электрогенераторов), небольшое количество металла содержится в печатных платах.

Другие бытовые изделия – это радиаторы и нагреватели. В продаже имеются полотенцесушители, трубы, радиаторы (в том числе и автомобильные), которые выполнены из чистой меди. Их достаточно легко определить по желтому (специфическому) цвету материала и массе (медь довольно тяжела).

В продаже (на барахолках или в магазинах) можно встретить медные дверные ручки, столовые приборы, различные поделки и, естественно, монеты, гильзы от артиллерийских снарядов и от стрелкового оружия.

При этом количество металла в тех или иных элементах бывает недостаточно, поэтому многие люди смешивают металл из одного изделия с другим. Однако это неправильно, поскольку столовая медь является очищенной, а электротехническая или металл из труб токсичен, и не годиться для приготовления пищи (если конечное изделие планируется использовать на кухне).

График температуры плавления меди.

Другим вариантом получения меди является использование сплавов меди, таких как латунь или бронза. Так, латунью называют сплав меди и цинка в соотношении примерно 5 к 8 (на 5 частей меди 8 частей цинка). Из латуни изготавливают широкий спектр изделий, связанных с водопроводом: краны, вентиля, патрубки и т.д. Латунь может использоваться в смесителях. Из латуни также делают метизы (гайки, шайбы, болты), манометрические трубки и т.д. Обычно латунь имеет желтый или золотистый цвет, однако существуют сплавы и зеленого цвета. Ее температура плавления около 900 градусов Цельсия.

Бронзой называют сплав меди с оловом в соотношении 90% к 10%. Температура плавления бронзы составляет порядка 1000-1100 градусов Цельсия. В современном мире встретить изделия из бронзы довольно сложно, поскольку ее используют только для отливки украшений и элементов декора. Некоторые бронзовые сплавы применяются для изготовления смесителей.

Выплавить медь из деталей или из сплавов (латуни, бронзы) примерно одинаково по материальным затратам и по времени. Поэтому любая деталь, изготовленная из вышеперечисленных металлов годиться для плавки.

Вернуться к оглавлению

Организация рабочего места

Поскольку медь является тугоплавким металлом, то необходимо приобрести некоторое оборудование для ее плавления. Рассмотрим вариант плавки заготовки весом более 0,5 кг. Что для этого потребуется:

Цветовые характеристики сплавов меди.

  1. Первое, с чего следует начать – это постройка горна. Есть много способов построить горн своими руками. Его выкладывают из огнеупорных кирпичей полностью. При этом не следует гнаться за большим объемом плавильной камеры, для переплавки небольшого объема металла потребуется небольшой объем. Так объема в 0,5 кубометра хватить для переплавки 1 кг меди. Самый примитивный горн делается следующим образом: огнеупорными кирпичами (без раствора) складывается небольшая камера (для этого потребуется 25-30 кирпичей), в которую подводиться газ. При этом особое внимание стоит уделить системе подачи газа и горелке. Естественно, что такая конструкция не предназначена для большого количества плавок, однако на 2-3 плавки.
  2. Муфельная печь. Ею обзаводятся, если лень строить горн. Ее можно свободно приобрести у специализированных фирм. Для малого объема плавки в продаже имеются лабораторные муфельные печи. Стоит отметить, что приобрести готовую муфельную печь менее трудозатратно и не сильно дорого по сравнению с горном. Так стоимость материалов для самостоятельного строительства горна может составлять 70% от стоимости готового изделия.
  3. Далее следует тигель и щипцы к нему. Тиглем называют емкость из тугоплавкого материала, в которой переноситься и плавиться металл. Тигель и щипцы для него рекомендуется купить (их свободно продают для лабораторных нужд).
  4. Бытовой пылесос или компрессор – для нагнетания воздуха в горн и печь. Реконструкторы могут построить кузнечные меха.
  5. Формы для заливки изделий. Их часто изготавливают (вырезают) из дерева или камня. Форма должна быть идентична желаемой детали.
  6. Крюк из стали. Подбирается по диаметру тигля. Крюк должен быть немного меньше диаметра.
  7. Расходные материала. Сюда относится топливо: дрова, кокс и газ.

Вернуться к оглавлению

Как производится плавка

После того, как все необходимое построено, собрано и проверено на работоспособность, можно осуществить плавление меди.

Сначала внутрь тигля укладываются детали и элементы, которые идут на переплавку. После чего тигель помещается внутрь муфельной печи. Далее задается необходимая температура плавки. При этом важно постоянно контролировать металл, чтобы он не сгорел и не выгорел. Для наблюдения в печи имеется смотровое окошко. При этом стоит помнить, что на поверхности металла может образовываться пленка окиси.

Когда температура в печи достигла выставленного значения, дверь печи открывают и при помощи щипцов достают тигель.

Плавка меди в тигле.

Далее следует отодвинуть окисную пленку стальной проволокой, после чего выливают расплавленную медь внутрь стоящей рядом формы. Важно, чтобы форма находилась недалеко от печи, чтобы не дать застыть металлу в процессе переноски. После заливки металлу дают время, чтобы остыть, после чего извлекают готовое изделие. Плавки с использованием муфельной печи очень удобны, требуют минимум вмешательства человека.

В случае, если печь отсутствует, медные детали можно переплавить в горне. Здесь в качестве топлива можно использовать древесные угли, каменные угли, кокс и другие виды топлива. Перед плавкой тигель с металлом устанавливается на слой угля и обкладывается углем. К горну приставляется компрессорная установка для нагнетания воздуха внутрь. В качестве компрессора отлично подойдут бытовые пылесосы, которые работают на выдув. Далее топливо поджигается, и запускается компрессорная установка. Главное отличие плавки в горне от муфельной печи заключается в постоянном участии в процессе плавки (топливо добавить, увеличить напор воздуха и т.д.). При этом стоит постоянно контролировать плавление металла. После того, как медь расплавилась, тигель вынимают щипцами, и металл заливают в форму.

Если объем меди для переплавки небольшой, то можно воспользоваться автогеном. Для этого струю пламени направляют от днища тигля вверх. При этом необходимо защитить металл от чрезмерного окисления. Для этого поверхность металла в тигле присыпают древесным углем (растолченным в пыль). После расплавления металла его также заливают в форму.Небольшие детали из сплавов меди (латунь и бронза) могут быть расплавлены на паяльной лампе.

Вернуться к оглавлению

Заключение по теме

Если планируется регулярно осуществлять плавку меди, то настоятельно рекомендуется построить горн или купить муфельную печь.

Простые способы плавления меди

Если вы хотите плавить медь в домашних условиях, вам будет приятно узнать, что для этого вам не нужна промышленная индукционная печь. Если вы плавите небольшое количество меди, вы можете сделать это с помощью паяльной лампы или на плите. Вы можете использовать его для домашних поделок или переплавить в слитки для хранения. Медь быстро проводит тепло и электричество, поэтому следует проявлять особую осторожность, если вы пытаетесь плавить медь в домашних условиях.

Свойства меди

Медь — мягкий, ковкий металл с характерным ярко-красноватым цветом.Он обладает высокой теплопроводностью и электропроводностью (только серебро имеет более высокую электропроводность, чем медь), что означает, что его легко плавить. Медь имеет относительно высокую температуру плавления — 1083 градуса по Цельсию (1982 F), но если у вас есть подходящее оборудование, вы можете расплавить ее дома.

Плавление меди с помощью паяльной лампы

  1. Подготовка медных проводов

  2. Используйте кусачки для удаления любого внешнего изоляционного покрытия, так как оно токсично при горении. Обрежьте медные провода по размеру, чтобы убедиться, что они подходят к тиглю, который представляет собой чашеобразный контейнер, сделанный из материала, способного выдерживать очень высокие температуры, например керамики.

  3. Поместите проволоку в тигель

  4. Поместите медную проволоку на дно тигля и поместите тигель на цементную плиту. Наденьте все необходимое защитное снаряжение.

  5. Зажгите паяльную лампу

  6. Зажгите паяльную лампу. Для этой цели паяльная лампа промышленного класса, такая как оксиацетиленовая, лучше, чем пропановая горелка, потому что медь имеет высокую температуру плавления. Удерживая тигель клещами, направьте пламя паяльной лампы на медные провода.

  7. Расплав и форма

  8. Поддерживайте полную силу пламени на медных проводах, пока они полностью не расплавятся. Если вы хотите использовать медь в расплавленном состоянии, используйте щипцы, чтобы осторожно наклонить тигель и направить расплавленную медь в форму.

Плавление меди на плите

  1. Выберите правильную кастрюлю

  2. Поставьте железную сковороду на плиту. Если вы используете сковороду из металла с более низкой температурой плавления, чем медь, она может расплавиться раньше, чем медь.У разных плит разные настройки температуры, поэтому не все плиты могут достичь высокой температуры, необходимой для плавления меди.

  3. Добавьте медь в кастрюлю

  4. Поместите медные обрезки в кастрюлю и накройте ее крышкой, чтобы поддерживать температуру.

  5. Растопите медь

  6. Включите плиту и установите максимально возможную температуру. Время от времени поднимайте крышку сковороды, чтобы проверить, как идет процесс, и не расплавилась ли медь.

Тигель 101: Температуры плавления | Настольная печь

Тигель 101

Самый простой способ предоставить информацию о температурах плавления для различных распространенных металлов — это таблица, которую мы приводим ниже:

Металл Цельсия Фаренгейта
Алюминий 659 1218
Латунь 900-940 1652-1724
Медь 1083 1981
Золото 1063 1946
Серебро 961 1762


Как чистота влияет на температуры плавления и разливки?

Тем не менее, стоит упомянуть, что хотя это общие температуры плавления металлов (в зависимости от чистоты могут быть различия), существует другая температура заливки . При заливке в графитовую форму слишком горячий металл просачивается внутрь формы, а не затвердевает при контакте, оставляя шероховатую и неровную поверхность. Температура разливки будет выше, чем температура плавления (поскольку точная температура плавления также является температурой замерзания; металл должен успеть заполнить форму до затвердевания). Хитрость заключается в том, чтобы знать, при какой температуре находится металл внутри печь; Лучше всего выливать металл прямо из печи, если он не слишком горячий. В более совершенных печах для плавления металла должен быть возможен лучший контроль температуры.Таблица для температур заливки :

Металл Цельсия Фаренгейта
Алюминий 700-750 1292-1382
Латунь 1000-1120 1832-2048
Медь 898-1176 1650-2150
Золото 1150-1250 2102-2282
Серебро 1000-1050 1832-1922

Чем чище металл, тем ужесточить диапазон плавления / разливки; примеси расширяют диапазон, понижая требуемую минимальную температуру.

Может ли форма влиять на температуру заливки?

Форма формы — важный фактор, влияющий на температуру заливки. Простая форма, такая как сфера или стержень, заполняется быстро и легко. Но для заполнения сложной конструкции потребуется больше времени, поэтому потребуется более высокая температура заливки.

Лучший результат приходит с опытом. Регулярно тренируйтесь с собственной настольной печью, небольшой печью, которая может нагреться до желаемой температуры менее чем за 10 минут с помощью технологии RapidHeat.Чтобы узнать больше, просмотрите наш веб-сайт или свяжитесь с нами, если у вас возникнут какие-либо вопросы.

Ликвидус против Солидуса

Ликвидус против Солидуса
Проще говоря, ликвидус — это самая низкая температура , при которой сплав является полностью жидким; солидус — максимальная температура , при которой сплав полностью является твердым .

Чистые металлы текучие и плавятся при одной температуре.Например, серебро плавится при 1761 ° F (961 ° C), а медь плавится при 1981 ° F (1083 ° C). Однако сплавы, содержащие различное процентное содержание серебра и меди, не будут иметь единой температуры плавления, а скорее будут иметь диапазон температур плавления . Поскольку большинство припоев являются сплавами, при выборе материалов вы будете иметь дело с диапазонами температур плавления.

Исключение составляет класс сплавов эвтектики . Хотя это не чистые металлы, они имеют одну точку плавления, потому что точка плавления, или солидус , и точка текучести, или ликвидус , идентичны.Например, Lucas-Milhaupt Silvaloy 720/721 плавит и течет при 1435 ° F (780 ° C).

Рекомендации по пайке
На рисунке 1 представлена ​​фазовая диаграмма двойной системы серебро-медь. Обратите внимание, что при составе 72% серебра и 28% меди температуры ликвидуса и солидуса одинаковы. Сплавы слева или справа от этого эвтектического состава не изменяются напрямую из твердого состояния в жидкое, а проходят через «мягкий» диапазон, где сплав представляет собой комбинацию твердого и жидкого.


Рисунок 1. Диаграмма равновесия серебро-медь

Температура между солидусом и ликвидусом — это интервал плавления. По мере увеличения температуры от состояния солидуса к состоянию ликвидуса плавление и текучесть увеличиваются. Возникающий в результате медленный поток может вызвать проблемы с капиллярностью при пайке швов.

Присадочные металлы с широким диапазоном плавления , может происходить некоторое разделение твердой и жидкой фаз. Это называется ликвацией : частичное плавление низших ингредиентов в присадочном металле, которое, в свою очередь, оставляет оболочку из более высокоплавкого материала, называемую черепом .См. Рисунок 2.


Рисунок 2: Распределение присадочных металлов AWS BAg-1 и AWS BAg-2. (A) В результате медленного нагрева AWS BAg-1 в печи не происходит ликвации с присадочными металлами, имеющими узкий интервал плавления 20 ° F (11 ° C). (B) В результате медленного нагрева AWS BAg-2 в печи остается большой череп из-за ликвации, вызванной широким диапазоном плавления 70 ° F (39 ° C). (C) В результате быстрого нагрева AWS BAg-2 остается небольшой череп.

Ожижение обычно происходит во время медленного нагрева в диапазоне плавления сплава.Ликвидация может повлиять на целостность паяного соединения, потенциально вызывая пустоты или недостаточное сцепление с основными материалами. См. Рисунок 3.

Рисунок 3: AWS BCuP-5, используемый для пайки деталей в двухчасовом цикле нагрева печи. На паяном соединении в верхнем левом углу видны участки, богатые медью (компонент с более высокой температурой плавления), а также пустота в правом нижнем углу, что, вероятно, является следствием ликвации.

При пайке нельзя плавить основной металл компонента. Поэтому важно выбрать присадочный металл, температура ликвидуса которого ниже температуры солидуса обоих соединяемых основных металлов.Перед тем, как приступить к пайке, следует учесть несколько других факторов. Примеры приведены ниже.

Примеры
1. Пайка узла с узким зазором : Lucas-Milhaupt Silvaloy 560 — это не содержащий кадмия сплав, который начинает плавиться при 1145 ° F (620 ° C) и свободно течет при 1205 ° F (650 ° С). Диапазон его плавления составляет 60 ° F (15 ° C).

2. Пайка сборки с зазором шириной (более 0,005 дюйма / 0,127 мм): Lucas-Milhaupt Silvaloy 380 начинает плавиться при 1200 ° F (648 ° C) и не расплавляется полностью до 1330 ° F ( 720 ° С).Сплавы с широким диапазоном плавления / текучести считаются пластиком и подходят для условий плохой посадки.

3. «Ступенчатая пайка» сборки: при пайке вблизи ранее спаянного соединения вторая пайка не должна нарушать первое соединение. Решение состоит в том, чтобы использовать более одного типа присадочного металла — присадочный металл с более низкой температурой ликвидуса для второго соединения, чем тот, который используется для первого соединения. Например, в сборке из нержавеющей стали, которая подвергается ступенчатой ​​пайке, может быть Silvaloy 630, который плавится и течет между 1275 ° F-1475 ° F (690 ° C-801 ° C) для первого соединения, а затем Silvaloy 560 (1143 ° C). F-1205 ° F / 618 ° C-651 ° C) для второго стыка.

4. Сборки, подлежащие термообработке: (Вариант 1) термообработка, а затем выбор припоя с выбором присадочного металла, температура ликвидуса которого ниже температуры термообработки, чтобы твердость не пострадала от пайки, или ( Вариант 2) термообработка и пайка одновременно с использованием присадочного металла с температурой ликвидуса, близкой к температурам термообработки. В связи со сложным характером условий термообработки различных основных материалов обратитесь в службу технической поддержки Lucas Milhaupt для получения подробной информации о вашем конкретном применении.

ЗАКЛЮЧЕНИЕ:
Ликвидус
— это самая низкая температура , при которой сплав полностью является жидким; солидус — максимальная температура , при которой сплав полностью является твердым . При выборе присадочного металла для пайки важно учитывать характер плавления, а именно температуру ликвидуса.

Lucas-Milhaupt посвящен предоставлению экспертной информации для Better Brazing. Пожалуйста, не стесняйтесь поделиться этой записью в блоге с коллегами.Ознакомьтесь с полной линейкой припоев Lucas-Milhaupt для вашего производства и свяжитесь с нами, если мы можем вам помочь.

Узнайте, как плавить медь с помощью индукционных плавильных печей

2 июня 2014 г., Чарли Парсана,

Медь — переходный металл, а это значит, что она хорошо проводит электричество и тепло. Это делает его особенно ценным для строительства, проводов, трубопроводов и многих других часто используемых предметов. Его легко расплавить, чтобы придать ему любую форму, которая нужна пользователю.Эта статья вкратце объяснит процесс плавки меди и почему индукционная печь является идеальным средством для этого.

Плавление меди
Медь плавится при 1981,4 градуса по Фаренгейту или 1083 градуса Цельсия. Вопрос о том, как плавить медь, прост. Вам понадобится печь, способная нагревать металл до температуры выше этой и поддерживать тепло.

Загрузите медный лом в тигель (печь) и включите печь.Как только вы достигнете точки плавления, поддерживайте температуру на стабильном уровне, пока вся медь не станет жидкой. Индукционная печь сохраняет тепло на стабильном уровне лучше, чем другие виды печей, и может обеспечить более плавное и стабильное производство, а это означает, что ваш конечный продукт будет прочнее.

Удаление окалины
Вероятно, на поверхности, образованной из минеральных отходов, наверху будет окалина. Этот шлак должен быть удален с поверхности, чтобы ваша медь была настолько чистой, насколько это возможно.

Удаление меди из печи
Последний шаг — снять медь с нагрева и передать ее в формы или другое формовочное оборудование. Это нужно делать быстро, так как расплавленная медь затвердеет после снятия с огня и может испортить тигель. Используйте щипцы или наклоните печь, чтобы перелить расплавленный металл в форму.

С усовершенствованной индукционной печью, которая может обеспечить КПД от 60 до 75%, она чистая и обеспечивает однородность и чистоту при окончательной поставке, является идеальным средством плавления меди.

Индукционные печи и плавка меди
Хотя существует множество печей, способных достигать точки плавления меди, система индукционной плавки является идеальным средством плавления меди, поскольку в этих печах для передачи используется электрическая катушка с низким напряжением и высоким током. тепловая энергия эффективно и легко регулируется. Индукционная плавка — это предварительный процесс плавления, который более безопасен, чем другие процессы плавления.

Что такое солидус и ликвидус

Боб Хенсон

Если вы посмотрите на список присадочных металлов для пайки, вы заметите множество составов и различные температуры плавления.Характеристики плавления присадочного металла для пайки являются важным аспектом при выборе присадочного металла. Вот краткое описание того, как плавятся сплавы, и как использовать эту информацию, чтобы сделать лучший выбор.

Элементы плавятся при одной температуре. Например, серебро плавится при 1761 ° F (961 ° C), а медь плавится при 1981 ° F (1083 ° C). Чтобы произвести припой присадочного металла, мы объединяем два или более элемента в сплав. Этот новый сплав имеет характеристики плавления, отличные от основных элементов.Сплав начинает плавиться при одной температуре, называемой солидусом, и не расплавляется полностью, пока не достигнет второй более высокой температуры, ликвидуса.

Солидус — это самая высокая температура, при которой сплав становится твердым, когда начинается плавление. Ликвидус — это температура, при которой сплав полностью расплавляется. При температурах между солидусом и ликвидусом сплав является частично твердым, частично жидким. Разница между солидусом и ликвидусом называется диапазоном плавления.

Ниже приведена диаграмма, на которой показано плавление сплавов фосфора и меди.Ось Y — температура, а ось X — процент фосфора (остальное — медь). Красная прямая линия — это солидус, а изогнутая синяя линия — это ликвидус. Сплав с низким процентом фосфора и высоким процентом меди (пунктирная линия A ) имеет широкий интервал плавления. Сплав с более высоким содержанием фосфора (пунктирная линия B ) имеет узкий интервал плавления.

Вот почему эта информация о температуре важна при выборе и использовании присадочного металла:

  1. Диапазон плавления является полезным показателем того, насколько быстро плавится сплав.
  2. Сплавы с узким диапазоном плавления текут быстрее и при более низких температурах. Это позволяет паять быстрее и, как правило, увеличивает производительность.
  3. Сплавы с узким интервалом плавления требуют, чтобы компоненты из основного металла имели достаточно узкий зазор (обычно рекомендуется 0,002–0,006 дюймов).
  4. Мы упоминали, что между солидусом и ликвидусом присадочный металл частично является жидким, а частично — твердым. Это состояние диапазона плавления иногда называют «пластичным диапазоном» или «мягким состоянием».Хотя они и не являются действительными техническими терминами, они указывают на то, что эти сплавы больше подходят для заполнения более широких зазоров или «перекрытия» готового соединения.
  5. Хотя медленный нагрев сплава с широким диапазоном плавления полезен для перекрытия зазоров, он может привести к так называемой ликвации. Длительные циклы нагрева могут вызвать некоторое разделение элементов, когда компоненты с более низкой температурой плавления отделяются и текут первыми, оставляя компоненты с более высокой температурой плавления.
  6. Жидкость часто является проблемой при пайке в печи, так как этому может способствовать увеличенное время нагрева, необходимое для доведения деталей до температуры пайки.Для этого применения следует выбирать присадочный металл с узким диапазоном плавления.
  7. Ликвидус определяется как температура, при которой сплав полностью расплавляется. Однако даже сплавы с широким диапазоном плавления будут быстро плавиться, если их наносить на ликвидус или рядом с ним. Для наилучшего капиллярного действия и самых прочных паяных соединений требуется близкий зазор между частями из основного металла. Учитывая это, рекомендуется поддерживать рекомендуемый зазор и пайка при температуре, близкой к температуре ликвидуса.
  8. Серебро часто добавляют для снижения температуры плавления. Многие сплавы с более низкой температурой плавления содержат более высокое содержание серебра и соответствующее увеличение стоимости. При правильной пайке часто можно успешно использовать более широкий диапазон плавления или составы сплавов с более высокой температурой плавления. Свяжитесь с вашим инженером по продажам Harris Products Group для аудита пайки, чтобы узнать, как мы можем помочь вам вывести ваше производство на новый уровень.

Боб Хенсон

Боб Хенсон является техническим директором Harris Products Group и имеет более 40 лет опыта в области соединения металлов.Он является автором или соавтором нескольких патентов и имеет множество опубликованных статей.

Боб работает во многих отраслевых организациях и комитетах. Он является пожизненным членом Американского сварочного общества (AWS) и возглавляет комитет A5H, который составляет спецификации для припоев и флюсов. Боб также является членом Комитета производителей пайки AWS, Группы технической деятельности США, которая рассматривает международные документы по пайке ISO, и Комитета AWS A5 по присадочным металлам, который рассматривает спецификации электродов для дуговой сварки, стержней для газовой сварки и других присадочных металлов, охватывающих как черные и цветные материалы.Боб работает в техническом комитете National Skills USA HVACR и является председателем соревнований по пайке Skills HVACR. Он является членом RSES и членом Консультативного совета производителей RSES.


Низкая температура плавления плавких сплавов делает их полезными

Низкая температура плавления легкоплавких сплавов делает их полезными в самых разных областях применения

Температура плавления алюминия составляет 1220 градусов по Фаренгейту.Углеродистая сталь плавится где-то между 2600 и 2800 градусами по Фаренгейту, а температура должна подняться до 6150 градусов по Фаренгейту, чтобы расплавить вольфрам. Для достижения этих температур необходимы специальные печи, поэтому, когда сплав плавится в кипящей воде или начинает разжижаться при комнатной температуре, это кажется волшебством.

Сплавы с температурой плавления ниже 450 градусов по Фаренгейту относятся к легкоплавким или легкоплавким сплавам. Наиболее широко используемые легкосплавные сплавы содержат высокий процент висмута в сочетании со свинцом, оловом, кадмием, индием и другими металлами.Висмут влияет на температуру плавления, а также на характеристики роста и усадки сплавов. Многие из сплавов на основе висмута плавятся ниже точки кипения воды, а некоторые из них плавятся ниже 150 градусов по Фаренгейту.

Плавкие сплавы стабильны и могут быть классифицированы как эвтектические или неэвтектические. Эвтектические сплавы имеют самую низкую возможную точку плавления — температура, при которой материал является твердым, равна температуре, при которой материал является жидким. Неэвтектические сплавы начинают плавиться при одной температуре, а затем переходят в жидкое состояние, прежде чем они полностью расплавятся при более высокой температуре.Легкоплавкие сплавы доступны в различных формах: кекс, слиток, пруток, дробь, проволока, палочка, полоса и нестандартные формы.

Многие легкоплавкие сплавы обладают хорошей теплопроводностью, могут быть переплавлены и повторно использованы, а также содержат комбинации элементов, которые заставляют их расширяться во время затвердевания без сжатия во время охлаждения. Эти характеристики делают плавкие сплавы универсальными, что позволяет использовать их в самых разных областях, включая обычные повседневные предметы, такие как пожарные спринклеры и выдвижные таймеры для индейки.В обоих случаях сплавы начинают плавиться при определенной температуре, приводя в действие механизм, который либо открывает клапан, чтобы пропустить воду, либо всплывает кнопку, указывающую, что индейка готова.

Производители могут использовать легкоплавкие сплавы для решения проблем и экономии времени и денег. Например, использование плавкого сплава при изгибе тонкостенных трубок может помочь предотвратить перегибы или складки. Трубки смазываются, заполняются легкоплавким сплавом и охлаждаются, так что сплав затвердевает внутри, поддерживая стенку трубки.После сгибания трубка повторно нагревается для разжижения и удаления плавкого сплава.

Аналогичным образом, легкоплавкие сплавы могут использоваться для производства сложных аэрокосмических компонентов, которые имеют внутренние полости или в качестве сердечников для формования стеклопластиковых ламинатов или пластмассовых деталей. Плавкие сплавы также могут использоваться для удержания хрупких деталей или деталей неправильной формы, таких как оптические компоненты, во время производственных операций. После полировки или обработки детали сплав расплавляется и используется повторно. Некоторые легкоплавкие сплавы способны герметизировать стекло со стеклом или стекло с керамикой в ​​электронных устройствах, вакуумных системах и лабораторном оборудовании.Их даже можно использовать в качестве лигатур для добавления свинца, висмута или олова к алюминию и другим металлам.

В дополнение к обычным легкоплавким сплавам с известными диапазонами температур, могут быть составлены другие сплавы, отвечающие определенным температурным требованиям. Обратитесь к надежному производителю сплавов за помощью в металлургии и технической поддержке по стандартным и индивидуальным приложениям.

ПЛОТНОСТЬ ЖИДКОЙ МЕДИ ОТ ТОЧКИ ПЛАВЛЕНИЯ (1356 К.) ДО 2500 К И ОЦЕНКА ЕЕ КРИТИЧЕСКИХ ПОСТОЯННЫХ (Журнальная статья)

Кэхилл, Дж. А., и Киршенбаум, А. Д. ПЛОТНОСТЬ ЖИДКОЙ МЕДИ ОТ ТОЧКИ ПЛАВЛЕНИЯ (1356 К.) ДО 2500 К. И ОЦЕНКА ЕЕ КРИТИЧЕСКИХ ПОСТОЯННЫХ . Страна неизвестна / Код недоступен: N. p., 1962. Интернет. DOI: 10.1021 / j100812a027.

Кэхилл Дж. А. и Киршенбаум А. Д. ПЛОТНОСТЬ ЖИДКОЙ МЕДИ ОТ ТОЧКИ ПЛАВЛЕНИЯ (1356 К.) ДО 2500 К. И ОЦЕНКА ЕЕ КРИТИЧЕСКИХ ПОСТОЯННЫХ .Страна неизвестна / код недоступен. https://doi.org/10.1021/j100812a027

Кэхилл, Дж. А., и Киршенбаум, А. Д. Пт. «ПЛОТНОСТЬ ЖИДКОЙ МЕДИ ОТ ТОЧКИ ПЛАВЛЕНИЯ (1356 К.) ДО 2500 К И ОЦЕНКА ЕЕ КРИТИЧЕСКИХ ПОСТОЯННЫХ». Страна неизвестна / код недоступен. https://doi.org/10.1021/j100812a027.

@article {osti_4812993,
title = {ПЛОТНОСТЬ ЖИДКОЙ МЕДИ ОТ ТОЧКИ ПЛАВЛЕНИЯ (1356 К.) ДО 2500 К. И ОЦЕНКА ЕЕ КРИТИЧЕСКИХ ПОСТОЯННЫХ},
author = {Кэхилл, Дж. А. и Киршенбаум, А. Д.},
abstractNote = {Плотность жидкой меди была определена в атмосфере аргона методом погруженного грузила в диапазоне температур от 1356 до 2500 градусов К. Молибденовые грузила, покрытые диоксидом циркония, с оксидом алюминия и тигли из оксида циркония использовались при температуре ниже 2100 градусов К, а графитовые грузила и тигли были использованы до 2500 градусов К. Плотность по отношению к температуре лучше всего выражается уравнением D г / см / sup 3 / = точка (1356 град K) была 7.992 г / см / sup 3 / и 6,792 г / см / sup 3 / при нормальной температуре кипения (2855 ° K). Рассчитаны мольные объемы и термические коэффициенты расширения жидкой меди. Установлено, что при плавлении медь расширяется на 4,51% от своего твердого объема. Критические константы меди были оценены следующим образом: Т / субкрит. / = 8900 плюс-минус 900 градусов К; D / sub крит /. = 1,04 плюс-минус 0,2 г / см / sup 3 /; V / sub Mcrit /.= 61 плюс-минус 10 см / sup 3 // моль. (auth)},
doi = {10.1021 / j100812a027},
url = {https: // www.osti.gov/biblio/4812993}, journal = {Journal of Physical Chemistry (США)},
number =,
объем = Объем: 66,
place = {Страна неизвестна / Код недоступен},
год = {1962},
месяц = ​​{6}
}

.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *