Что нагреется быстрее медь или железо: 5. Сравнение количества теплоты, выделяемого в последовательно соединённых проводниках

Содержание

Медный VS Алюминиевый. Какой кабель выбрать? / Статьи и обзоры / Элек.ру

Всем нам известно, что всю кабельно-проводниковую номенклатуру можно разделить по критерию состава жилы: на алюминиевый кабель/провод и на медный. В чем же разница, какие преимущества и недостатки? Для начала стоит рассмотреть и сравнить характеристики металлов, ведь свойства жилы определяют особенности кабельно-проводниковой продукции.

Начнем с алюминия. Алюминий представляет собой один из самых популярных металлов, который используется человечеством. Он очень легкий, достаточно прочный и мягкий. При одинаковой электропроводности алюминиевый провод весит в два раза меньше медного, такая легкость алюминия позволяет делать проволоки более толстыми. Однако прочность материала относительна, если алюминий перегнуть несколько раз в одном и том же месте, он сломается. Поэтому такой кабель можно использовать только в стационарной прокладке без острого угла надлома.

При контакте с воздухом алюминий моментально окисляется.

В случае появления оксидной пленки химическая активность металла падает. Это происходит потому, что оксид является полным диэлектриком. По этой причине в местах образования пленки электрический ток практически не проходит.

Чем больше жила, тем больше тока она проводит. Если сила тока большая, а сечение маленькое, сопротивление увеличивается, кабель нагревается. Сопротивление алюминия в 1,5 больше чем у меди, поэтому для проведения одного и того же количества тока, размер алюминиевой жилы должен быть в несколько раз больше медной. Для алюминия характерна высокая теплопроводность. Поэтому такой кабель достаточно быстро нагревается.

Что же представляет собой медь? Это уникальный металл, который уступает по электропроводности только серебру. Низкий уровень сопротивления позволяет пропускать через жилу большее количество тока в мелком сечении, по сравнению с алюминием.

Медь достаточно устойчива по отношению к окислению, и даже в окисленном состоянии она не теряет своих свойств. Это достаточно легкий металл, однако алюминию по этому параметрам уступает. Прочность меди позволяет изготавливать жилы мелкого сечения.

Серьезным фактором является цена. Медь при всех своих преимуществах имеет один, но довольно существенный недостаток, который в настоящее время имеет огромное значение. Это высокая цена. Алюминий в этом вопросе является победителем.

Подведем итог. И медный и алюминиевый кабель, благодаря свойствам металлов имеют свои преимущества. Алюминиевый кабель будет легким и дешевым, медный кабель обладает хорошей электропроводностью, небольшим сопротивлением, достаточной прочностью и высокой ценой.

Исходите из своих потребностей и возможностей! С окончательным выбором определитесь, посетив сайт www.energoestore.ru.

Чистая медь, чистое железо

Чистая медьЖелезоЖелезный купоросМедный купорос

Чистая медь

Чистая медь(Cu) — металл красного цвета, имеет высокую пластичность, то есть способность деформироваться, при этом не ломаясь.

Чистая медь – отличный проводник тока. По проводимости она занимает третье место после золота и серебра.

Медь отлично проводит тепло. При контакте с горячей поверхностью очень быстро нагревается, поэтому не рекомендуется её использовать для переноса горячих предметов.

Чистая медь хорошо окисляется. При длительном пребывании в воде на её поверхности образуется зеленоватый налёт, — это гидроксид меди Cu(OH)2 и карбонат меди CuCO3.

Чистая медь на воздухе быстро покрывается тонкой плёнкой тёмного оксида меди CuO, которая предохраняет её от дальнейшего разрушения. Разбавленная серная кислота и медь практически не реагируют, но концентрированная серная кислота и медь легко взаимодействуют друг с другом с образованием голубого раствора медного купороса CuSO

4 (используем для напыления деревьев), ядовитого сернистого газа SO2 и воды.

При нагревании меди на воздухе происходит интенсивное окисление. Изделие из меди чернеют, покрываясь слоем оксида меди (II) CuО. При нагреве медных изделий до температуры свыше 1000 °С образуется другой оксид — Cu2О.

Находясь долгое время на воздухе, чистая медь покрывается плёнкой малахита, образующегося по химической реакции

2Cu+О22О+СО2=(CuОН)2СО3. Именно этому веществу обязаны своим цветом бронзовые памятники и старые крыши городов Западной Европы.

Все соли меди ядовиты. Поэтому не рекомендуется использовать её при приготовлении или употреблении пищи. Азотная кислота и медь реагируют постепенно: сначала чистая медь окисляется до окисла меди, а после реагирует, образуя двуокись азота (NO2), нитрат меди Cu(NO3)2 – голубоватый раствор и воду. Двуокись азота (NO2) – ещё знакомо это вещество под названием “бурый газ”. Соляная кислота и чистая медь реагируют только при нагревании. Сначала чистая медь окисляется до оксида меди, а дальше образуется зеленоватый хлорид меди CuCl

2 и вода.

С медным купоросом Вам приходилось сталкиваться и в домашних условиях: он представляет собой кристаллики синего цвета, хорошо растворимые в воде. Сама молекула медного купороса уже содержит воду (5 молекул воды соединены с 1 молекулой медного купороса). Если нагреть синие кристаллики, то вскоре мы увидим, что они теряют свою форму и цвет, превращаясь в рыхлую белую безводную массу (безводный сульфат меди CuSO4).

Медь влияет на цвет и окраску некоторых минералов, таких как малахит (от светло-голубого до тёмно-зелёного цвета), диоптаз (изумрудно-зелёный) и др.

Чистое железо

Чистое железо (Fe): серебристый металл белого цвета, проявляющий амфотерные свойства (то есть может вступать в реакцию с кислотами и щелочами). Железо — металл тяжёлый (1 м3 весит 7800 кг), имеет высокую пластичность и прочность (прочнее меди). Чистое железо — металл с содержанием чистого железа по массе около 99,995%, — практически не применяется. Говоря о железе, обычно подразумевают его сплавы с углеродом и другими элементами: до 2,14% углерода – это стали, более 2,14% – чугуны.

При наличии других элементов и изменении их концентрации в железном сплаве (стали) резко меняются физико-механические свойства сплава.

Если концентрация углерода в сплаве железа превысит 6,67%, то углерод вступит в химическую реакциюс железом, образовав уже не сплав, а химическое соединение — карбид железа FeC2.

Чистое железо плавится при температуре 1540°С, пластично, легко поддаётся намагничиванию. При нагревании до 768°С железо теряет свои магнитные свойства. Чистое железо — химически активный элемент. Железо и соляная кислота легко реагирует друг с другом, образуя хлорид железа FeCl

2. Чистое железо легко окисляется даже во влажном воздухе, образуя триокись железа Fe2 O3*nH2O, по-другому называемая ржавчиной. Железо и серная кислота реагирует с образованием сульфата железа Fe(SO4)2, — прозрачного зеленоватого раствора. Если оставить раствор на воздухе, то можно заметить через некоторое время образование бурого осадка,- это сульфат железа соединился с кислородом воздуха, образовав рыхлую бурую массу нового соединения железа: Fe(SO4)3

Азотная кислота и чистое железо реагируют с образованием нитрата железа Fe(NO3)2, окиси азота NO или аммиачной селитры NH

4NO3 (вещество ещё известное в качестве аммиачного удобрения) и воды. Так реагируют разбавленные кислоты с железом. Концентрированная азотная и серная кислоты на чистое железо не действуют (при комнатной температуре), благодаря наличию образующейся оксидной плёнки.

Железо легко вытесняет медь в химической реакции замещения, если в раствор медного купороса опустить металлическое изделие. Мы будем наблюдать на поверхности железа образование микроскопических кристаллов химически чистой меди красно-бурого цвета. При этом голубой раствор медного купороса постепенно бледнеет и приобретает зеленоватый окрас, происходит образование железного купороса FeSO

4x5H2O. Но это способ не эффективен для прочного медного покрытия. Для более качественного нанесения медного покрытия используют электричество. Таким способом (реакцией замещения) можно покрыть медью любой металл, стоящий левее меди в ряду напряжений. Но необходимо помнить, что в случае образования глубоких царапин по поверхности покрытия, могут образовываться (если система находится в электролите) гальванические элементы, что приводит к разрушению металлов.

Чистое железо придаёт окрас некоторым минералам: гематит (от серого до тёмного тона окраски), топаз (бесцветный, синий голубой, жёлтый, оранжевый).

Наиболее важными химическими соединениями железа являются:

FeSO4x5H2O — железный купорос — применяется в сельском хозяйстве как яд для борьбы с вредителями;

Fe2(SO4)3x9H2O — водный сульфат железа применяется для очистки воды;

FeCl3 — также применяется для очистки воды, а также для травления меди (электроника)

Fe(NO3)2x9H2O — водный нитрат железа — применяется в текстильной промышленности для обработки и покраски ткани

Что касается чистого железа, то оно используется, в основном, как катализатор в химических реакциях.

Определить наличие ионов железа (2-х или 3-х валентного) можно с помощью Качественной реакции

Железо образует 3 различных оксида железа, отличающихся степенью окисления железа и цветом химического соединения и его активностью.

Обработка металла в древности. Как человечество вошло в железный век

Как известно, основным материалом, из которого первобытные люди изготавливали орудия труда, был камень. Не зря сотни тысяч лет, прошедшие между появлением человека на земле и возникновением первых цивилизаций называют каменным веком. Но в 5-6 тысячелетиях до н. э. люди открыли для себя металл.

Скорее всего, первое время человек относился к металлу точно так же, как к камню. Он находил, например, медные самородки и пытался обрабатывать их точно так же, как камень, т. е. с помощью обивки, шлифования, отжатия отщепов и т. д. Но очень быстро стала ясна разница между камнем и медью. Может быть, даже, первоначально люди решили, что от металлических самородков толку не будет, тем более что медь была достаточно мягкой, и орудия, которые из нее изготавливались, быстро выходили из строя. Кто придумал плавить медь? Теперь мы никогда не узнаем ответа на этот вопрос. Скорее всего, все получилось случайно. Раздосадованный человек бросил камешек, который показался ему неподходящим для изготовления топора или наконечника стрелы, в костер, а затем с удивлением заметил, что камешек растекся блестящей лужицей, а после прогорания огня – застыл. Потом понадобилось только немного поразмыслить – и идея плавки была открыта. На территории современной Сербии был найден медный топор, созданный за 5 500 лет до Рождества Христова.

Правда, медь, конечно, уступала по многим характеристикам даже камню. Как уже говорилось выше, медь – слишком мягкий металл. Его основным преимуществом являлась плавкость, позволявшая изготавливать из меди самые различные предметы, но по прочности и остроте она оставляла желать лучшего. Конечно, до открытия, например, златоустовской стали (Статья «Русский булат из Златоуста»), должно было пройти еще несколько тысячелетий. Ведь технологии создавались постепенно, сначала – неуверенными, робкими шажками, методом проб и бесчисленных ошибок. Вскоре медь была вытеснена бронзой, сплавом меди и олова. Правда, олово, в отличие от меди, встречается далеко не везде. Не зря в древности Британия носила название «Оловянные острова» – многие народы снаряжали туда торговые экспедиции за оловом.

Медь и бронза стали основой древнегреческой цивилизации. В «Илиаде» и «Одиссее» мы постоянно читаем о том, что греки и троянцы были одеты в медные и бронзовые доспехи, использовали бронзовое оружие. Да, в древности металлургия во многом обслуживала именно военных. Пахали землю нередко по старинке, деревянным плугом, да и, например, водостоки можно было сделать из дерева или глины, но на поле битвы бойцы выходили в прочных металлических доспехах. Однако бронза как материал для оружия имела один серьезный недостаток: она была слишком тяжелой. Поэтому со временем человек научился выплавлять и обрабатывать сталь.

Железо было известно еще в те времена, когда на Земле шел бронзовый век. Однако сыродутное железо, получавшееся в результате обработки при небольшой температуре, было чересчур мягким. Большей популярностью пользовалось метеоритное железо, но оно было очень редким, найти его можно было лишь по случайности. Однако оружие из метеоритного железа было дорогим, иметь его было очень престижно. Египтяне называли кинжалы, выкованные из упавших с неба метеоритов, Небесными.

Принято считать, что широкое распространение обработка железа получила у живших на Ближнем Востоке хеттов. Именно они около 1200 г до н. э. научились выплавлять настоящую сталь. На некоторое время ближневосточные державы стали невероятно могущественными, хетты бросали вызов самому Риму, а филистимляне, о которых упоминается в Библии, владели огромными территориями на современном Аравийском полуострове. Но вскоре их технологическое преимущество сошло на нет, ведь технологии выплавки стали, как оказалось, было не так уж сложно позаимствовать. Главной проблемой было создание горнов, в которых можно было достичь той температуры, при которой железо превращалось в сталь. Когда окрестные народы научились строить такие плавильные печи, производство стали началось буквально во всей Европе. Конечно, многое зависело от сырья. Ведь люди лишь относительно недавно научились обогащать исходное сырье дополнительными веществами, придающими стали новые свойства. Например, римляне насмехались над кельтами, ведь у многих кельтских племен сталь была настолько плохой, что их мечи гнулись в сражении, и воины должны были отбежать в задний ряд, чтобы выпрямить клинок. Зато римляне преклонялись перед изделиями мастеров-оружейников из Индии. Да и у некоторых кельтских племен сталь не уступала знаменитой дамасской. (Статья «Дамасская сталь: мифы и реальность»)

Но, в любом случае, человечество вступило в железный век, и его уже нельзя было остановить. Даже широчайшее распространение пластмасс, произошедшее в ХХ веке, не смогло вытеснить металл из большинства сфер человеческой деятельности.

Возврат к списку

Сравнение меди и стали при использовании в качестве молниеотводов, молниеприемников, заземлителей и заземляющих проводников

При прохождении тока молнии в молниеотводе происходит выделение теплоты согласно закону Джоуля-Ленца. Температура проводника увеличивается прямо пропорционально его электрическому сопротивлению.

Согласно нормативной документации молниеотводы выполняют из проволоки сечением более 50 мм2. Ближайшим стандартным калибром проволоки является проводник с круглым сечением диаметром 8 мм (50,24 мм2). В большинстве случаев именно его рекомендуют использовать специалисты.

Поскольку сопротивление меди на порядок ниже сопротивления стали, температура нагрева молниеотвода при протекании тока молнии соответственно составит: медь 122ºС и сталь около 1000ºС. Учитывая то, что температура плавления стали превышает 1300ºС, молниеотвод способен единовременно выдержать однократное воздействие молнии. Однако, при одновременных повторных ударах проводник может перегреться и расплавиться.
медь сталь

 медьсталь
температура нагрева молниеотвода ø8 мм при протекании тока молнии122ºС≈1000ºС
температура плавления1000ºС1300ºС

Эти специфичные свойства стальных молниеотводов следует принимать в расчет при проектировании, выбирая конструкции крепления.

Различный состав обуславливает разную устойчивость к бактериальной коррозии. Медь устойчива к коррозии в грунте, а сталь подвержена разрушению.

Во влажном воздухе медь медленно окисляется и темнеет, образуя на поверхности слой оксида меди, который «консервирует» металл, в дальнейшем предотвращая коррозию. В аналогичных условиях сталь со временем полностью корродирует. Чтобы предотвратить окисление стали, ее покрывают слоем цинка (оцинкованная сталь).

Медь ‒ отличный проводник, проводимость меди многократно превышает проводимость стали.
медь сталь

 медьсталь
электрическая проводимость58,1х106 Ом/м7,7х106 Ом/м
электрическое сопротивление1,72х10-8 Ом*м13х10-8 Ом*м

Сталь представляет собой металлический сплав, а медь ‒ чистый металл. Сталь состоит из железа и углерода, тогда как медь является химическим элементом (Cu атомный номер 29).

Просмотров: 8044| Опубликовано: Среда, 15 Февраль 2017 19:11|

Сравнение алюминиевых, биметаллических и стальных радиаторов отопления

Чтобы у вас дома даже в самые холода было комфортно и уютно нужно правильно выбрать радиатор: конструкцию, материал и размер для каждого помещения. Как же выбрать из многообразия вариантов?

Шаг 1: Выбираем тип радиатора

Алюминиевый радиатор

Достоинства:
  • Для него характерна низкая инерционность (быстро нагревается и быстро остывает) и способность выдерживать относительно высокое давление. Эти особенности делают алюминиевый радиатор универсальным отопительным прибором. Он может быть использован как в автономной, так и в центральной системе отопления.
  • Дополнительно можно приобрести термоголовки и индивидуально задавать температуру для каждого помещения. Это позволит экономить на топливе.
  • Алюминиевые радиаторы обладают эффектным внешним видом, который подойдет под любой интерьер помещения. Эти радиаторы являются секционными — от 4 до 12 секций. И если у вас возникнет необходимость в дополнительных секциях, вы сможете их приобрести в магазинах «Бауцентр». Но надо учитывать, что секционные радиаторы можно раскрутить только напополам (то есть если радиатор состоит из 10 секций, то вы можете купить отдельно 5 секций, если 12 — то 6 секций и т.д.)

Важно! При установке алюминиевых радиаторов важно не допустить контакта алюминия с медными переходниками и фитингами, поскольку в такой паре наступает коррозия металла с возможным выделением водорода.

Биметаллический радиатор

Достоинства:
  • Идеален для всех систем отопления — как для центральной, так и для автономной. Что значит биметалл? Корпус радиатора сделан из алюминия, благодаря чему он обладает высокой теплоотдачей, а внутренние коллекторы (места, где радиатор соприкасается с теплоносителем) выполнены из стали. Стальной коллектор позволяет без опаски устанавливать данный радиатор в центральную систему отопления. Биметаллический радиатор не боится некачественного теплоносителя и выдерживает высокое давление, 25-50 атмосфер, в зависимости от производителя. Этот вид радиатора долговечнее стального и алюминиевого.
  • Биметаллические радиаторы выглядят так же эстетично как алюминиевые и подойдут под любой интерьер помещения. Они тоже являются секционными — от 4 до 12 секций. Можно приобрести дополнительные секции (эти радиаторы также раскручиваются только напополам.).

Важно! Биметаллические радиаторы более тяжелые, чем алюминиевые и стальные, поэтому требуют большего количества креплений при монтаже.

Стальной радиатор

Достоинства:
  • Подходит для автономной системы отопления. В систему центрального отопления устанавливать можно, но при условии, что теплоноситель соответствует ГОСТ-ам, а давление в центральной системе отопления не будет превышать 9 атмосфер. То есть такие радиаторы можно ставить только в малоэтажные дома. В высокоэтажных зданиях с центральной системой отопления давление превышает 9 атмосфер.
  • Огромный выбор размеров – от очень крупного до самого маленького, позволяет подобрать именно тот стальной панельный радиатор, который подойдет для того помещения, которое нужно обогреть.
  • Также стальной радиатор имеет очень низкую тепловую инерционность (быстро нагревается и быстро остывает), и при использовании термоголовок на стальных радиаторах получается наибольшая экономия тепловой энергии.
  • Стальные радиаторы подойдут к дизайну любого помещения. Эти радиаторы панельные и имеют множество вариаций размеров, что дает возможность подобрать стальной радиатор под любую потребность.

Внимание! У данного радиатора есть важная особенность — оборудование из стали плохо переносит редко посещаемые помещения. Если спустить воду из системы на срок более 2-х недель, то попавший воздух приведет к активной коррозии, которую невозможно будет остановить.
Есть и свое ограничение — нарастить или уменьшить такой радиатор не получится, только полностью его заменить при необходимости.

Шаг второй: Считаем количество секций

Важный критерий выбора радиатора — его тепловая мощность. Она указана на ценнике или в паспорте радиатора. Как правильно подобрать радиатор под Ваши потребности?
Необходимо вспомнить размер помещения, куда планируется его установка. Приблизительный расчет таков: 1000 Вт на 10 м кв (для угловых комнат, помещений с обширным остеклением и плохой теплоизоляцией берем 1200-1300 Вт на 10 м кв).
В зависимости от расчетной тепловой мощности выбираем радиатор нужного размера с необходимым количеством секций.
Например, чтобы обогреть помещение 15 м кв, потребуется прибор мощностью 1500 Вт.

Шаг третий: Выбираем вид подключения и размер радиатора

В зависимости от того, в каком месте будет установлен радиатор, а также как и на какой высоте расположены подводящие трубы системы отопления, определяется: вид подключения радиатора (нижняя или боковая подводка), а также размер радиатора (межосевое расстояние – т. е. расстояние между трубами подключения). Он может составлять от 200 до 2000 мм. Это число обязательно указывается в маркировке каждой модели.

Шаг четвертый: Выбираем место установки

Обычно нагревательные приборы находятся около окон под подоконниками. Выступающая над батареей подоконная доска может препятствовать движению вверх теплого воздуха. Поэтому радиатор рекомендуется устанавливать около наружной стены на высоте 10 см от пола так, чтобы между ним и подоконником был зазор не менее 8 см.
Часто из эстетических соображений около батареи ставят различные декоративные экраны, загораживающие нагревательный прибор. В этом случае экран становится препятствием для излучаемой радиатором тепловой энергии, и помещение начинает обогреваться только за счет конвективного теплообмена, что естественно снижает его эффективность. В этом случае мы рекомендуем брать более мощный радиатор для компенсации потери тепла.

Шаг пятый: Самостоятельно регулируем температуру

Можно самостоятельно регулировать и задавать оптимальную температуру в разных комнатах, согласно их использованию, и при этом беречь значительную часть энергии. Это легко сделать с помощью термостатической головки, установленной на термостатический вентиль на подводе к радиатору отопления.
Термостатическая головка, установленная с радиатором, регулирует мощность обогрева в соответствии с заданной температурой. Термостатический вентиль, тот на который ставится термоголовка, не регулирует расход теплоносителя – он либо открыт, либо закрыт. Таким образом, остается лишь установить желаемый уровень температуры в помещении (путём поворота термоголовки на определенную цифру) и термоголовка, в зависимости от температуры окружающей среды, самостоятельно будет её регулировать – открывая или закрывая путь теплоносителю к радиатору отопления. Важно! При установке необходимо, чтобы температура воздуха, окружающего термоголовку, была выставлена правильно, отражая реальную температуру помещения, тогда вся система в целом будет работать как положено.

Больше подробностей об использовании термоголовки — в наших советах!

Оптимальное решение для каждого дома!

Для коттеджной застройки и домов с индивидуальными тепловыми пунктами можно использовать все типы отопительных приборов, при условии, что вы правильно учли при проектировании рабочее и опрессовочное давление, на которое рассчитан выбранный радиатор, а также не забыли о небольших технических нюансах, свойственных каждому типу радиаторов, например, таких как повышенное газовыделение в алюминиевых радиаторах.
В современных многоэтажных домах желательно использовать биметаллические и алюминиевые радиаторы, отличающихся элегантным дизайном, высокой прочностью и коррозийной стойкостью.


что лучше всего подходит для проводки?

В СССР вся проводка была алюминиевой, а в современных новостройках таких уже и не встретишь. Но чем медь лучше алюминия? Какую проводку лучше использовать для дома: медную или алюминиевую? Рассказываем, почему материал проводов так быстро и безспворотно изменился. 

Превосходство меди над алюминием для проводки

1. Электропроводность

Медь превосходит алюминий по электропроводности. Удельное электрическое сопротивление меди составляет 0,017 Ом*мм2/м в то время, как у алюминия 0,028 Ом*мм2/м. То есть электропроводность алюминия составляет 65% электропроводности меди, поэтому для одной и той же нагрузки алюминиевый провод придется брать сечением на «ступень» выше меди.

Например, необходимо запитать нагрузку в 5 кВт. Для нее нужно будет взять или медный провод сечением 2,5 мм2, например, NYM 3х2,5, или алюминиевый сечением 4 мм2. Так как алюминиевый провод более объемный, то он будет занимать больше места в кабель-каналах, для него потребуется клеммы для розеточных групп крупнее по размеру, чем для медных. Учитывая это, медь удобнее использовать для проводки в доме.

2. Окисление

И медь, и алюминий окисляются в процессе эксплуатации под действием воздуха. Однако у меди окисление происходит значительно медленней, и сама по себе пленка (зеленоватый налет) довольно легко разрушается, поэтому неплохо проводит ток (хотя проходимость немного ухудшается).
У алюминия же окисление происходит гораздо быстрее, а сама оксидная пленка очень плотная и плохо проводит ток. Окисленные соединения на скрутках, сжимах или клеммах чаще всего становятся причиной горения контакта. Удалить оксидную пленку можно кварцево-вазелиновой смазкой, но найти ее в магазинах не так-то просто, да и это дополнительные расходы и время на обслуживание.

3. Механическая прочность

Медный провод более гибкий и прочный, чем алюминиевый. В процессе монтажа жилы приходится изгибать, например, для соединения в распредкоробках и розетках. Медные жилы могут выдержать многоразовое изгибание без повреждения, а вот алюминиевые лишь 5 — 10 изгибаний, а дальше ломаются.

Особые проблемы алюминиевая проводка создает, когда нужно ремонтировать соединения в распредкоробках — старый алюминий уже имеет микротрещины, поэтому при одном неверном движении жила может обломаться и придется снимать часть штукатурки, чтобы вытащить хоть немного провода.

4. Теплопроводность

Данный параметр характеризует способность проводника рассеивать тепло. Чем выше коэффициент теплопроводности, тем лучше металл рассеивает тепло. У меди коэффициент теплопроводности составляет 389,6 Вт/м* °С, а у алюминия 209,3 Вт/м* °С. То есть медь почти в два раза лучше рассеивает тепло, чем алюминий. Особенно это важно в местах соединений, где провод греется сильнее всего. При одной и той же нагрузке медь в два раза быстрее будет отводить тепло (точнее не нагреваться).

Превосходство алюминия над медью для ЛЭП 

Но алюминий вовсе не отправлен на пенсию: воздушные линии электропередач по-прежнему выполняют из этого металла. Стало быть, и у него есть преимущества? Конечно! 

1. Вес

Вес во многом определяется исходя из плотности металла. Чем выше плотность, тем тяжелее проводник. Плотность меди составляет 8900 кг/м3, а алюминия 2700 кг/м3. То есть при равном объеме медный провод будет весить в 3,3 раза больше алюминиевого. Для домашней проводки это не критично, так как провод лежит в штробах, а для воздушной линии электропередач это важный показатель. Именно поэтому для ВЛЭП используют алюминиевый провод.

2. Цена

Здесь алюминий явный победитель. Все минусы алюминия сказались на относительно невысокой цене, которая примерно в 4 раза ниже цены на медь, поэтому воздушные линии, а также вводы в дом выполняют исключительно алюминиевым проводом.

Интересные факты из мира электрики:

Теги электропроводка

Алюминий: опыт применения

В последние годы алюминий получил широкое применение в промышленности благодаря своему низкому весу и ряду других качеств, которые делают его привлекательной альтернативной стали. Более того, по прогнозам рынок сварки алюминия будет продолжать расти со скоростью 5,5% в год, в частности, из-за продолжающегося распространения алюминия в автомобильной области.

В том, что касается сварки, алюминий уникален. Он имеет свои особенности и не стоит надеяться, что для работы с алюминием Вам хватит опыта работы со сталью. Например, алюминий имеет высокую теплопроводимость и низкую температуру плавления, которые при несоблюдении должных процедур сварки легко приводят к прожиганию и деформациям.

В этой статье мы рассмотрим различные легирующие элементы и их влияние на свойства алюминия, затем поговорим о сварочных процедурах и оптимальных параметрах сварки. Наконец, мы рассмотрим несколько технологических инноваций, которые могут сделать сварку алюминия немного проще.


Легирующие элементы

Чтобы понять алюминий, сначала нужно разобраться с металлургией алюминиевых сплавов. Алюминий может иметь множество первичных и вторичных легирующих элементов, которые придают ему улучшенные механические характеристики, коррозионную стойкость и/или упрощают сварку.
Первичные легирующие элементы алюминиевых сплавов — это медь, кремний, марганец, магний и цинк. Перед тем, как начать говорить о них более подробно, нужно отметить, что сплавы делятся на два типа: пригодные к тепловой обработке и не пригодные.

 

Пригодность к тепловой обработке
Сплавы, пригодные к тепловой обработке, после сварки можно нагреть до определенной температуры, чтобы восстановить утраченные во время сварки механические характеристики. Тепловая обработка сплава подразумевает нагревание до достаточно высокой температуры, чтобы легирующие элементы перешли в состояние твердого раствора, и затем контролируемого охлаждения для образования перенасыщенного раствора. Следующий этап процесса — поддерживание низкой температуры в течение времени, достаточного для отложения нужного объема легирующих элементов.

В случае сплавов, непригодных к тепловой обработке, механические характеристики можно улучшить за счет холодной обработки или упрочнения под механическими нагрузками. Для этого в структуре металла должны произойти механические деформации, которые вызывают повышение сопротивления деформации и снижение жидкотекучести.


 

 

Другие различия
Алюминиевые сплавы могут иметь следующие обозначения  в зависимости от состояния термообработки: F = после отливки, O = отожженное, H = после механического упрочнения; W = с тепловым растворением и T = после термообработки, которая может подразумевать собственно температурную обработку или старение холодной обработкой. Например, сплав может иметь обозначение 2014 T6. Это значит, что в его состав входит медь (серия 2XXX), а T6 указывает на то, что сплав прошел термообработку и искусственное старение.

В рамках этой статьи мы будем говорить только о пластичных сплавах, то есть алюминиевых сплавах, раскатанных из заготовки или отштампованных по формам заказчика. Учтите, что сплавы также могут быть литыми. Литые сплавы используются для изготовления деталей из расплавленного металла, который заливают в формы. Литые сплавы могут быть дисперсионно-твердеющими, но никогда — твердеющим под механическими нагрузками. Пригодность к сварке таких сплавов зависит от типа литья — в многократную форму, под давлением или в песчаную форму — так как для сварки важна поверхность материала. Литые сплавы обозначаются трехзначным числом с одним десятичным знаком, например, 2xx.x. Для сварки пригодны алюминиевые литые сплавы 319.0, 355.0, 356.0, 443.0, 444.0, 520.0, 535.0, 710.0 и 712.0.


Легирующие элементы

Теперь, когда мы разобрались с основной терминологией, давайте поговорим о различных легирующих элементах.:

Медь (имеет обозначение серии пластичных сплавов 2XXX) обеспечивает алюминию улучшенные механические характеристики. Эта серия сплавов пригодна для тепловой обработки и в основном используется для изготовления деталей авиационных двигателей, заклепок и крепежа. Большинство сплавов серии 2ХХХ плохо подходит для дуговой сварки из-за склонности к горячему растрескиванию. Эти сплавы серий обычно сваривают материалами серий 4043 или 4145, которые имеют низкую температуру плавления и снижают вероятность горячего растрескивания. Исключениями из этого правила являются сплавы 2014, 2219 и 2519, для которых хорошо подходит проволока 2319.

Марганец (серия 3XXX) при добавлении в алюминий образует непригодные к тепловой обработке сплавы для наплавки и производства общего назначения. Сплавы серии 3ХХХ имеют средние механические характеристики и используются для производства формовкой, в том числе листового алюминия для автотрейлеров и бытового применения. С помощью упрочнения под механическими нагрузками этим сплавам можно придать нужную жидкотекучесть и антикоррозионные свойства. Сплавы серии 3ХХХ не склонны к образованию горячих трещин и хорошо поддаются сварке. Для этого обычно используются материалы серий 4043 или 5356. Впрочем, невысокие механические характеристики не позволяют использовать их для изготовления металлоконструкций.

Кремний (серия 4XXX) позволяет снизить температуру плавления алюминия и улучшить жидкотекучесть. В основном эта серия используется в качестве присадочного материала. Сплавы 4ХХХ отличаются высокими сварочно-технологическими характеристиками и считаются не пригодными к термообработке. В частности, сплав 4047 стал предпочтительным выбором в автомобильной промышленности, потому что он обладает очень высокой жидкотекучестью и хорошо подходит для пайки и сварки.

Магний (серия 5XXX) при добавлении в алюминий обеспечивает высокие сварочно-технологические характеристики с минимальным снижением механических свойств и устойчивость к образованию горячих трещин. Более того, серия 5ХХХ имеет самые высокие сварочно-технологические характеристики среди всех алюминиевых сплавов, не пригодных к тепловой обработке. Благодаря коррозионной устойчивости эти сплавы используют для изготовления резервуаров для химикатов и сосудов высокого давления и температуры, а также металлоконструкций, железнодорожных вагонов, самосвалов и мостов. При сварке с присадочными материалами серии 4ХХХ они теряют жидкотекучесть из-за образования Mg2Si.

Кремний и магний (серия 6XXX) — в этой серии сплавов используются оба этих легирующих элемента. В основном они применяются в автомобильной, трубной, железнодорожной и строительной отрасли, а также для штамповки выдавливанием. Серия 6ХХХ несколько склонна к горячему растрескиванию, но эту проблему можно решить, правильно подобрав сварочные материалы. Сплавы этой серии можно сваривать материалами серий 5XXX и 4XXX без риска трещин – однако для этого необходимо обеспечить должное разбавление основного материала присадочным. Чаще всего для этого используют материалы 4043.


 

 

Цинк (серия 7XXX) при добавлении в алюминий вместе с магнием и медью образует пригодный к тепловой обработке сплав с самыми высокими механическими характеристиками. В основном используется в авиационной отрасли. Сплавы серии 7ХХХ часто плохо подходят для сварки из-за склонности к образованию трещин (из-за широкого температурного интервала плавления и низкого солидуса). Сплавы 7005 и 7039 пригодны для сварки присадочными материалами серии 5ХХХ.

Другие элементы (серия 8XXX) — в эту серию включены все остальные легирующие элементы алюминиевых сплавов (например, литий). Большинство из этих сплавов редко подвергаются сварке, хотя они отличаются очень высокой жесткостью и в основном используются в аэрокосмической отрасли. В качестве присадочного материала для этих сплавов используется серия 4ХХХ.

Чистый алюминий (серия 1XXX) — алюминий без легирующих элементов считается непригодным к тепловой обработке и в основном используется для изготовления резервуаров и труб для химикатов ввиду его высокой коррозионной устойчивости. Эти материалы также часто используют в электрических шинах благодаря высокой электропроводимости. Для сварки серии 1ХХХ хорошо подходят сплавы 1070, 1100 и 4043.

Помимо основных легирующих элементов, также существует и множество вторичных, куда входят хром, железо, цирконий, ванадий, висмут, никель и титан. Эти элементы могут придать алюминию коррозионную устойчивость, повышенные механические характеристики и пригодность к тепловой обработке.

Физические свойства
После того, как мы разобрались с металлургией алюминиевых сплавов, давайте рассмотрим физические свойства алюминия и того, как они соотносятся с другими металлами, например, сталью.

 

 

 

Главная причина настолько широкого распространения алюминия — это его физические свойства. Например, алюминий в три раза легче стали и в то же время при соответствующем легировании имеет более высокую прочность. Он проводит электричество в шесть раз лучше углеродистой стали и почти в 30 раз лучше нержавеющей стали. Высокая проводимость делает влияние вылета проволоки в режиме MIG менее значительной по сравнению со сталью.


 

Кроме того, алюминий имеет высокую коррозионную устойчивость, легко меняет форму и соединяется, а также нетоксичен и может использоваться в пищевой отрасли. Так как это немагнитный металл, во время сварки можно не опасаться отклонения дуги. Благодаря в 5 раз более высокой теплопроводимости по сравнению со сталью алюминий легко поддается сварке в сложных пространственных положениях. Впрочем, алюминий имеет свои недостатки, так как он быстро отводит тепло, что затрудняет сплавление и снижает глубину проплавления.

Так как алюминий имеет низкую температуру плавления — 660 градусов Цельсия (в два раза меньше, чем у стали) — при том же диаметре проволоки для его плавления требуется намного меньшая сила тока. Более того, при равной силе сварочного тока скорость расплавления проволоки примерно в два раза выше стали.


Химические свойства

В том, что касается химического состава, алюминий имеет высокую способность к растворению атомов водорода в жидкой форме и низкую — при температуре затвердевания. Это означает, что даже небольшое количество растворенного в жидком наплавленном металле водорода после затвердевания алюминия будет стремиться выйти из металла, что приведет к образованию пористости.

Кроме того, при механической обработке алюминий вступает в реакцию с кислородом и мгновенно образует слой оксида алюминия. Этот слой очень пористый и может легко удерживать в себе влагу, масло и другие материалы. Пленка оксида обеспечивает хорошую коррозионную устойчивость, но перед сваркой ее следует удалить, так как из-за высокой температуры плавления (2050°C) она ограничивает глубину проплавления. Для этого применяются механическая очистка, растворители, химическая очистка и травление.

 

 

Механические свойства
Механические свойства алюминия, например, предел текучести, предел прочности и относительное удлинение, зависят от комбинации основного металла и сварочных материалов. При сварке шва с разделкой кромок прочность соединения зависит от зоны теплового воздействия. В случае непригодных к тепловой обработке сплавов зона теплового воздействия окажется полностью отожжена и зона теплового воздействия станет самым слабым местом. Для полного отжига пригодных к тепловой обработке сплавов требуется намного больше времени при температуре отжига в сочетании с медленным охлаждением, поэтому надежность сварного шва в этом случае падает меньше. Такие аспекты, как предварительный подогрев, отсутствие охлаждения меду проходами сварки и лишнее тепло из-за низкой скорости сварки или поперечных колебаний, увеличивают как пиковую температуру, так и длительность воздействия повышенной температуры, что увеличивает риск падения механических характеристик.

При угловой сварке механические характеристики зависят от состава используемых сварочных материалов. При изготовлении металлоконструкций использование 5ХХХ вместо 4ХХХ может обеспечить в два раза более высокую прочность.

Сплавы, непригодные к тепловой обработке, имеют высокую жидкотекучесть при использовании сварочных материалов той же серии, хотя при сварке материалами серии 4ХХХ жидкотекучесть становится меньше. Пригодные к тепловой обработке сплавы обычно имеют из-за нее низкую жидкотекучесть.

 

   

 

О металлургии подробнее
После того, как мы обсудили основные положения о металлургии алюминия, давайте применим эту информацию к практической сварке сплава. Сначала мы рассмотрим технологию, которая позволяет получить наилучшее качество сварки алюминия и решить такие распространенные проблемы, как недостаточное проплавление, высокий уровень разбрызгивания, прожигание и пористость.

Современные инверторные сварочные аппараты с запатентованной технологией управления формой волны сварочного тока компании Линкольн позволяют точно регулировать характеристики формы волны, чтобы оптимальным образом контролировать перенос капель расплавленного металла. Это помогает снизить разбрызгивание из-за низкой плотности алюминия, в то время как импульсы пикового тока обеспечивают должную глубину проплавления.

Кроме того, так как изменение химического состава оказывает большое влияние на физические характеристики сплава, эта возможность позволяет индивидуально подобрать форму волны для каждого конкретного сплава с учетом физических характеристик металла.

Так как алюминий имеет высокую способность к растворению водорода в жидком виде и низкую — при застывании, можно разработать пульсирующую форму волны, которая позволит сократить длину волны за счет снижения силы сварочного тока и риска возникновения пористости.

Недавно компания Линкольн вывела эту технологию на новый уровень благодаря программе Wave Designer Software®. Она позволяет сварочным инженерам и сварщикам в реальном времени корректировать и изменять текущую форму волны сварочного тока подключенного к сети аппарата на собственных персональных компьютерах. При использовании в сочетании с инверторными сварочными аппаратами это позволяет обеспечить высокое качество сварки в любых условиях.


Новые методы сварки

Применение источников питания на падающей ВАХ для сварки алюминия в защитном газе имеет долгую и успешную историю. При сварке алюминия падающая ВАХ позволяет обеспечить высокоэнергетический струйный перенос металла, который стабильно и равномерно реагирует на изменения собственно силы сварочного тока, несмотря на колебания длины дуги. В результате падающая ВАХ обеспечивает равномерную глубину проплавления по всей длине шва.

Совершенствование контроля дуги привело к появлению инверторных источников питания с программным управлением. «Оптимизация» характеристик дуги программными методами при MIG-сварке алюминия вышла на новый уровень благодаря разработанной компанией Линкольн Электрик технологии управления формой волны. В этом импульсном режиме с высокоскоростным синергетическим управлением падающая вольт-амперная характеристика модифицируется так, чтобы обеспечить несколько преимуществ при сварке алюминия. Например, сюда входит повышенный сварочный ток в момент пика импульса. Пики импульсов позволяют обеспечить равномерный профиль проплавления по всей длине шва. Также при этом снижается разбрызгивание, улучшается жидкотекучесть сварочной ванны, что позволяет увеличить скорость сварки, и снижается тепловложение и связанный с ним риск деформаций.

Технология управления формой волны выводит импульсную сварку на новый уровень. Она позволяет пользователю создать индивидуальную, «идеальную» для каждой конкретной задачи форму волны. Эта технология и ее возможности индивидуальной настройки поддерживается высокотехнологичными источниками питания, например, инверторными моделями семейства Power Wave®. Аппараты Power Wave можно использовать двумя способами. Оператор может выбрать предустановленную форму волны для сварки алюминия или же создать собственную с помощью программы Wave Designer™. Индивидуально разработанные формы волны затем переносятся с компьютера на аппарат Power Wave.


Анатомия формы волны

Но что именно представляет собой технология управления программы Wave Designer Pro? Благодаря этой технологии источник питания мгновенно регулирует сварочный ток по заданной программе. Учтите, что «форма волны» позволяет влиять на поведение каждой отдельной капли расплавленного присадочного материала. Область ниже формы волны отражает энергию, прилагаемую к этой капле. При струйном переносе металла сила тока на несколько миллисекунд увеличивается настолько, чтобы расплавить металл. В этот момент формируется и отделяется капля металла, которая затем начинает движение вдоль дуги. Теперь в период спуска капли к ней можно приложить дополнительную энергию, которая позволила бы сохранить или увеличить ее жидкотекучесть. После этого импульс переходит в фазу фонового тока, которая позволяет поддержать дугу, охладить материал и подготовиться к следующему пику.

Давайте рассмотрим форму волны подробнее. Фаза возрастания (А) — это период увеличения силы тока до пиковой (измеряется в амперах в миллисекунду), в течение которого формируется расплавленная капля на кончике электрода. По достижении пикового значения капля отделяется. Процентная доля «превышения» (B) придает дуге дополнительную жесткость и способствует отделению расплавленной капли от электрода. Длительность пиковой фазы (C) влияет на размер капли: чем она меньше, тем больше становится капля. С этого момента отделившаяся капля зависит от энергии, подаваемой на фазе убывания. Эта фаза состоит из периодов снижения пикового тока (D) и финального тока (E). Период снижения пикового тока позволяет при необходимости увеличить энергию расплавленной капли. Это улучшает жидкотекучесть сварочной ванны в период снижения пикового тока. Фаза финального тока начинается после снижения пикового. Она влияет на стабильность анода и регулировка силы финального тока может помочь избавиться от избыточного распыления мелких капель. С этого момента ток переходит к фоновому значению (F), которое позволяет сохранить дугу. Чем меньше длительность фазы фонового тока, тем больше частота пульсации. Чем выше частота пульсации, тем выше становится средняя сила тока. С другой стороны, увеличение частоты приведет к более сфокусированной дуге.

Форма волны также зависит от «адаптивной характеристики» импульсной MIG-сварки с синергетическим управлением. Адаптивность подразумевает способность дуги сохранять заданную длину дуги несмотря на изменения вылета электрода. Это важный аспект для стабильной сварки и надежности соединения.


Оптимизация сварки через регулировку формы волны

Регулировка формы волны сварочного тока позволяет получить необходимую скорость сварки, хороший внешний вид шва, упростить очистку поверхности после сварки и сократить уровень выделения дыма. Настоящая сила этой технология заключается в возможности самому настраивать форму волны  в программе Wave Designer Pro и том, насколько легко это сделать. Пользователь может в реальном временем менять дугу простым движением мыши в привычной среде PC Windows™. Пятиканальная панель ArcScope позволяет просматривать сделанные изменения, в том числе пиковые значения тока и напряжения, а также расчетное тепловложение. ArcScope собирает данные с частотой 10 КГц. «то ценное опциональное дополнение к программе Wave Designer. ArcScope дает сварочному инженеру визуальное представление разработанной им формы волны. После проведения оценки он может внести поправки.

Например, при сварке тонколистового алюминия технология управления формы волны поможет уменьшить тепловложение, деформации, разбрызгивание, устранить несплавление и прожигание. Это уже смогли подтвердить на своем опыте многие компании. Пользователь может составить программы сварки для определенного диапазона скорости подачи проволоки и/или силы тока и благодаря этому работать с очень широким диапазоном толщин материалов и скорости подачи проволоки.


Заключение

Алюминий имеет целый ряд отличительных особенностей, которые делают его привлекательным выбором для многих задач несмотря на то, что его сварка может быть связана с определенными сложностями. Тем не менее, хорошее понимание его металлургии и знание доступных на современном рынке инструментов и технологий позволят вам справиться с этой задачей.

лучших металлов для отвода тепла

Теплопроводность — это термин, который описывает, насколько быстро материал поглощает тепло из областей с высокой температурой и перемещает его в области с более низкой температурой. Лучшие теплопроводящие металлы обладают высокой теплопроводностью и могут использоваться во многих сферах, таких как посуда, теплообменники и радиаторы. С другой стороны, металлы с более низкой скоростью теплопередачи также полезны, когда они могут действовать как тепловой экран в приложениях, которые выделяют большое количество тепла, таких как двигатели самолетов.

Ознакомьтесь с нашим ассортиментом металлических изделий на IMS!

Вот рейтинг теплопроводных металлов и металлических сплавов от самого низкого до самого высокого среднего значения теплопроводности в ваттах на метр-К при комнатной температуре:

  1. Нержавеющая сталь (16)
  2. Свинец (35)
  3. Углеродистая сталь (51)
  4. Кованое железо (59)
  5. Утюг (73)
  6. Алюминиевая бронза (76)
  7. Медь латунь (111)
  8. Алюминий (237)
  9. Медь (401)
  10. Серебро (429)

Нержавеющая сталь

Обладая одной из самых низких коэффициентов теплопроводности для металлического сплава, нержавеющей стали требуется гораздо больше времени для отвода тепла от источника, чем, скажем, меди.Это означает, что кастрюля из нержавеющей стали нагревает пищу гораздо дольше, чем кастрюля с медным дном (хотя у нержавеющей стали есть и другие преимущества). В паровых и газовых турбинах на электростанциях используется нержавеющая сталь, помимо других свойств, благодаря ее термостойкости. В архитектуре облицовка из нержавеющей стали может дольше выдерживать высокие температуры, сохраняя здания более прохладными на солнце.

Алюминий

Хотя алюминий имеет немного меньшую теплопроводность, чем медь, он легче по весу, дешевле и с ним проще работать, что делает его лучшим выбором для многих приложений.Например, в микроэлектронике, такой как светодиоды и лазерные диоды, используются крошечные радиаторы с алюминиевыми ребрами, которые выступают в воздух. Тепло, генерируемое электроникой, передается от кристалла к алюминию, а затем к воздуху либо пассивно, либо с помощью принудительной конвекции воздушного потока или термоэлектрического охладителя.

Просмотреть доступные металлы

Медь

Медь имеет очень высокую теплопроводность, намного дешевле и доступнее серебра, которое является лучшим металлом для отвода тепла.Медь устойчива к коррозии и биообрастанию, что делает ее хорошим материалом для солнечных водонагревателей, газовых водонагревателей и промышленных теплообменников, холодильников, кондиционеров и тепловых насосов.

Другие факторы, влияющие на теплопроводность

При выборе металлов, которые лучше всего подходят для теплопроводности, вы должны также принимать во внимание другие факторы, помимо теплопроводности, которые влияют на скорость теплового потока. Например, начальная температура металла может иметь огромное значение для скорости теплопередачи.При комнатной температуре железо имеет теплопроводность 73, но при 1832 ° F его проводимость падает до 35. Другие факторы включают разницу температур в металле, толщину металла и площадь поверхности металла.

Ваш местный поставщик металла, обслуживающий Южную Калифорнию, Аризону и Северную Мексику

Industrial Metal Supply — крупнейший на Юго-Западе поставщик всех видов металлообрабатывающего оборудования и принадлежностей для металлообработки.

Запросите предложение или свяжитесь с IMS сегодня.

Данные взяты из Engineering Toolbox.

Удельная тепловая энергия | ТЕПЛО ~ МИР ФИЗИКИ

Теплоемкость и Удельная теплоемкость

Количество тепловой энергии, необходимой для изменения температуры вещества, зависит от:
(a) того, что представляет собой вещество
(b) сколько его нагревается
(c) какого повышения температуры происходит

Тепловая энергия, необходимая для повышения температуры объекта на 1 К, называется ТЕПЛОЕМКОСТЬ объекта.

УДЕЛЬНАЯ ТЕПЛОЕМКОСТЬ вещества — это количество тепла, необходимое для повышения температуры 1 кг вещества на 1 K (или на 1 o C)

Удельная теплоемкость обозначена символом c. Единицы измерения c: Дж / (кг · К) или Дж / (кг o C).
Значения удельной теплоемкости некоторых распространенных веществ приведены в следующей таблице:

Вещество Удельная теплоемкость (Дж / (кг · К)) Вещество Удельная теплоемкость (Дж / (кг · К))
Вода 4200 Алюминий 913
Чугун 500 Кирпич 2300
Медь 385 Бетон 3350
Свинец 126 Мрамор 880

Помните, что вещества с высокой удельной теплоемкостью требуют много тепловой энергии и, следовательно, долго нагреваются, а также долго остывают.

Один интересный эффект — это то, как земля нагревается быстрее, чем море — удельная теплоемкость морской воды больше, чем у суши, и поэтому требуется больше тепловой энергии, чтобы нагреть ее на столько же, сколько и суша. и так занимает больше времени. Также требуется больше времени, чтобы остыть.
Тепловая энергия, необходимая для повышения температуры m кг вещества с удельной теплоемкостью c на определенную разницу температур, определяется уравнением:

Тепловая энергия = масса x удельная теплоемкость x изменение температуры

Давайте посмотрим на этот эксперимент :

Например, удельная теплоемкость золота более чем в 30 раз меньше, чем у воды.Другими словами, температура килограмма золота повысится с 20 ° C до 90 ° C, а температура воды — с 20 ° C до 22 ° C, только когда они оба нагреются одинаково. Удельная теплоемкость золота составляет 0,031 калории на грамм на градус Цельсия (0,031 кал / г · ° C).

Почему такая большая разница?

Каждый металл и каждый материал имеют разную скорость нагрева. Здесь мы видим, что золото нагревается в 7 раз быстрее алюминия. Это означает, что все имеет свою удельную теплоемкость (также называемую теплоемкостью).Удельная теплоемкость алюминия составляет 0,216 кал / г · ° C, что примерно в 7 раз больше, чем у золота (0,031 кал / г · ° C).

Формулы теплоемкости:

Как это:

Нравится Загрузка …

Какой металл лучше всего проводит тепло?

Теплопроводность — это способность металла проводить тепло. Это важное качество для понимания, поскольку оно имеет серьезные последствия для промышленного использования металла, особенно когда возникают проблемы с очень высокими температурами, как в авиационном двигателе.
Уровень теплопроводности остается относительно постоянным для чистых металлов; но в металлических сплавах он будет повышаться при повышении температуры.

Металлы, отводящие тепло

Медь и алюминий — два металла, которые проводят тепло на самом высоком уровне, а сталь и бронза проводят тепло на самом низком уровне. Именно здесь мы можем увидеть, насколько важной может быть теплопроводность в некоторых практических и промышленных приложениях. Поскольку медь хорошо проводит тепло, она отлично подходит для использования на дне кухонной сковороды.С другой стороны, очень низкая теплопроводность стали делает ее идеальным металлом для использования в авиационных двигателях.
Вот несколько примеров промышленного использования металлов с высокой теплопроводностью в системах теплообмена, где тепло передается с целью нагрева или охлаждения.

Промышленность

Теплообменники используются на таких объектах, как атомные электростанции и опреснительные установки, где медные сплавы используются для создания трубок для теплообменника.Медь обладает высокой устойчивостью к коррозии, поэтому этот тип сплава отлично подходит для мест, где воздействие соленой воды является проблемой.

Газовые водонагреватели

Газовые водонагреватели, применяемые в загородных домах и других коммерческих помещениях, являются классическим примером теплообмена. Воду, нагретую газом, можно использовать в доме. Это еще один тип теплообмена, который идеально сочетается с медью из-за ее высокой теплопроводности. С медью также легко работать при производстве, что делает ее популярным выбором для этого применения.

Домашняя посуда

Сковороды с медным дном — популярный выбор в составе высококачественной посуды, так как проводимость, естественно, позволяет пище быстро нагреваться. Более дешевый вариант посуды — алюминиевая, которая нагревает пищу, но медленнее.

Теплопроводность — очень важный аспект металлов и металлических сплавов, и знание того, как каждый тип металла проводит тепло, может быть важной информацией во многих практических приложениях, от кухонной посуды до самолетов и электростанций. Свяжитесь с нами, чтобы получить бесплатное ценовое предложение на наши высококачественные металлы и металлические сплавы.

9 октября 2020 г.

Теплопроводность металлов: какой металл является лучшим проводником тепла? | Научный проект

Какой металл лучше всего проводит тепло: медь, сталь или латунь? Почему? Проведя небольшое онлайн-исследование, сформулируйте свою гипотезу .

  • 3 12-дюймовых металлических стержня или толстой проволоки: медь, сталь, латунь или другой металл. Убедитесь, что все провода имеют одинаковый калибр , или толщину. Почему проверка того, что калибр такой же, может быть важным шагом?
  • 8 одинаковых стаканов из пенополистирола
  • Что-то для кипячения воды (кастрюля или чайник)
  • Плита
  • 4 цифровых термометра мгновенного действия
  • Кувшин или другой большой контейнер, который поместится в холодильнике
  • Вода
  • Блокнот и ручка

Процедура:

  1. Наполните кувшин или другую большую емкость водой и кубиками льда.Дайте воде в кувшине остыть не менее получаса.
  2. Согните каждый металлический стержень пополам два раза, чтобы получились металлические перемычки. Как вы думаете, почему мы должны дважды сложить стержень пополам? Приведет ли его однажды сложение к тем же результатам?

  1. Разместите чашки попарно. Между каждой чашкой проходят три перемычки из одного металла. У одной пары чашек перемычки не будет. Это контрольная группа.
  1. Поместите растворимые цифровые термометры в каждую из чашек для холодной воды.
  2. Попросите взрослого вскипятить воду. Перед использованием дайте ему немного остыть.
  3. На каждую пару чашек налейте равные объемы горячей воды в «горячую» чашку. Убедитесь, что вода покрывает концы перемычек.
  4. На каждую пару чашек налейте равные объемы холодной воды в «холодную» чашку. Убедитесь, что вода покрывает конец перемычек. Как вы думаете, почему количество воды должно быть равным?
  5. Возьмите начальную температуру холодной воды.Запишите температуру в таблице с указанием времени (в минутах) и температуры (в градусах Фаренгейта).
  6. Записывайте температуру каждой чашки с холодной водой каждые 5 минут в течение 30 минут. Ваш стол должен иметь, какой он есть (нет, медь, сталь, латунь), время и поля для заполнения температуры. Вы думаете, что все тепло, отведенное от горячей чашки, переходит в холодную чашку? Почему или почему нет? Подсказка: иногда тепло не всегда идет туда, куда мы хотим!
  7. В какой чашке холодной воды температура от начала до конца изменилась сильнее всего? Рассчитайте это, вычтя начальную температуру чашки из ее конечной температуры.
  8. Организуйте данные с помощью линейных графиков. По оси абсцисс отложите время в минутах. По оси ординат отложите разницу температур в градусах. Создав такую ​​диаграмму, мы сможем увидеть, какой металл в целом передает больше всего тепла. Это также дает нам некоторую информацию о проводимости каждого металла: чем круче наклон, тем выше проводимость.

Медь передает больше всего тепла, за ней следует латунь. Сталь — самый плохой проводник тепла.

Медь имеет самое высокое значение теплопроводности, а сталь — самое низкое значение теплопроводности.Теплопроводность — действительно важное свойство материала — мы должны помнить об этом, когда решаем, для чего мы будем использовать этот материал! Вот пример: поскольку медь является отличным проводником, мы используем ее для таких вещей, как нагревательные стержни и провода. Поскольку сталь плохо проводит ток и может выдерживать высокие температуры, мы используем ее для изготовления двигателей самолетов.

Вспомните, когда мы дважды складывали проволочные перемычки пополам. Как вы думаете, почему мы это сделали? Помните: проводимость лучше всего происходит, когда больше молекул контактируют друг с другом.Дважды сложите стержень пополам, чтобы тепло от горячей чашки проходило через большее количество молекул, позволяя большему количеству тепла перемещаться от горячей чашки к холодной. Складывание металлических стержней только один раз все равно создаст хороший тепловой мост, но мы увидим меньшее изменение температуры в чашках для холода, что затруднит определение того, какой металл является лучшим проводником!

Что касается равенства объемов воды? Чтобы получить хорошие данные из нашего эксперимента, каждая чашка с горячей водой должна удерживать одинаковое количество тепла, а вода имеет очень специфическую теплоемкость . Теплоемкость — это количество тепловой энергии, необходимое для изменения температуры определенного количества вещества. Подумайте об этом так: все четыре наши чашки имеют равные объемы воды при одинаковой температуре, а это означает, что каждая чашка с горячей водой содержит одинаковое количество тепловой энергии.

Итак, когда тепло уходит от горячей чашки, вся эта энергия проходит через металлический мостик в холодную чашку? Нисколько. Тепло часто теряется для окружающей среды, и в этом случае часть тепла от горячей воды будет потеряна для воздуха.Точно так же воздух в комнате будет терять часть тепла из-за чашки с холодной водой. Мы пытались свести к минимуму потери тепла, используя стаканы из пенополистирола, потому что пенополистирол, как известно, является отличным изолятором — материал плохо проводит тепло.

Не стесняйтесь повторить этот эксперимент с другими металлами! Такие металлы, как серебро, золото и алюминий, дадут вам совсем другие результаты. Просто убедитесь, что вы сохранили все остальные условия эксперимента такими же.

Заявление об ограничении ответственности и меры предосторожности

Education.com предоставляет идеи проекта Science Fair для информационных только для целей. Education.com не дает никаких гарантий или заверений относительно идей проектов Science Fair и не несет ответственности за любые убытки или ущерб, прямо или косвенно вызванные использованием вами таких Информация. Получая доступ к идеям проектов Science Fair, вы отказываетесь от отказаться от любых претензий к Education.com, которые возникают в связи с этим. Кроме того, ваш доступ к веб-сайту Education.com и идеям проектов Science Fair покрывается Образование.com Политика конфиденциальности и Условия использования сайта, которые включают ограничения об ответственности Education.com.

Настоящим дается предупреждение, что не все идеи проекта подходят для всех индивидуально или при любых обстоятельствах. Реализация идеи любого научного проекта должны проводиться только в соответствующих условиях и с соответствующими родительскими или другой надзор. Прочтите и соблюдайте правила техники безопасности всех Материалы, используемые в проекте, являются исключительной ответственностью каждого человека.За Для получения дополнительной информации обратитесь к справочнику по научной безопасности вашего штата.

Как это работает

Медь — гораздо лучший металл для рассеивателей тепла, потому что она превосходит по теплопроводности.

Это работает, потому что медь проводит тепло лучше, чем другие металлы, и ваши сковороды будут нагреваться более равномерно!

Лучшее приготовление пищи благодаря современному материаловедению!

Данные по теплопроводности при 300 град.Кельвин (комнатная температура) в ваттах на метр-градус Кельвина. (Научные материалы)

  • Серебро, Ag — 429 W / M-K
  • Медь, Cu — 401 W / M-K
  • Алюминий, чистый, Al — 237 Вт / M-K
  • Алюминий, сплав (не чистый, для большинства кухонных принадлежностей) — 138 Вт / M-K
  • Чугун, Fe — 80 Вт / M-K
  • Высокоуглеродистая сталь — 35 W / M-K
  • Нержавеющая сталь — 15 Вт / M-K
  • Стекло / Керамика — 1 Вт / M-K
  • Медь — превосходный проводник тепла , намного лучше, чем другие кухонные металлы. Только серебро — лучший металл, но даже серебро всего на 7% лучше меди.

    Примечание. Компания BellaCopper проверила медь различной толщины для использования в теплораспределителях и нашла 1/8 дюйма лучшим выбором.

    Наши медные пластины рассеивателя тепла / дефростера изготовлены из меди высокой проводимости C110, чистота 99,9%. Этот сорт меди был разработан для обеспечения высокой проводимости, как электрической, так и тепловой.

    Также обратите внимание, что по теплопроводности золото находится где-то между медью и алюминием — это просто не такой уж хороший проводник тепла.

    Относительная масса металла и теплоемкость:

    Медь — отличный материал для теплопередачи, но также может удерживать больше тепла, чем обычные металлы для жарки. Это называется тепловой массой. Это означает, что теплый диффузор BellaCopper содержит больше тепла, чем диффузор из алюминия или чугуна того же размера при той же температуре. Больше внутреннего тепла означает отсутствие быстрого охлаждения диффузора, поскольку он передает тепло холодной сковороде. С диффузором BellaCopper нет переходных горячих или холодных участков из-за недостатка тепловой массы.

    Все дело в энтропии и энтальпии (держу пари, вы никогда не думали, что услышите эти слова снова после того, как выйдете из класса естественных наук). Энтропия — это свойство теплопередачи и теплопроводности. Энтальпия — это свойство того, сколько тепла что-то может удерживать. Медь превосходна в обоих качествах.

    Медный диффузор BellaCopper в сравнении с алюминием:

    Медный диффузор BellaCopper имеет в 1,7 раза больше теплопроводность чистого алюминия (на 70% лучше).Еще лучше для кастрюль из алюминиевого сплава — теплопроводность в 2,9 раза выше (а все алюминиевые сковороды и посуда из алюминиевого сплава). Это означает, что медный диффузор BellaCopper нагревается в два раза быстрее и более равномерно, чем менее эффективные алюминиевые альтернативы.

    Медный диффузор BellaCopper имеет массу в 3,3 раза больше алюминиевого диффузора того же размера. Это означает, что он будет удерживать в 3,3 раза больше тепла. Это гарантирует, что сковороды нагреются равномерно и быстро. Низкая тепловая масса низкокачественных алюминиевых рассеивателей тепла означает, что холодные и горячие точки неизбежны, что может привести к возможному повреждению ваших нежных соусов и других изысканных продуктов. диффузор имеет , в 5 раз лучшую теплопередачу, чем железные сковороды и диффузоры тепла.Медный диффузор BellaCopper имеет плотность 1,14 плотности стали и железа. Это означает лучший контроль нагрева (большая тепловая масса) и меньшее охлаждение, когда холодная сковорода ставится на теплый медный диффузор BellaCopper. Сталь и железо обладают хорошей термической массой, почти такой же хорошей, как и медь, но плохая теплопроводность железа позволяет образовывать горячие и холодные точки во время приготовления пищи.

    Медный диффузор BellaCopper нагревается в 5 раз быстрее и намного равномернее, чем ненадлежащие диффузоры из железа и стали.

    Медный диффузор BellaCopper в сравнении с нержавеющей сталью:

    Медный диффузор BellaCopper имеет в , 26 раз в лучшую теплопередачу, чем сковороды из нержавеющей стали, и имеет плотность 1,14 плотности нержавеющей стали. Это означает лучший контроль нагрева (большая тепловая масса) и меньшее охлаждение, когда холодная сковорода ставится на медный диффузор BellaCopper. Сталь имеет хорошую тепловую массу, почти такую ​​же хорошую, как и медь, но плохая теплопроводность нержавеющей стали позволяет образовывать горячие и холодные точки во время приготовления пищи.Вот почему у хороших сковородок из нержавеющей стали алюминиевое дно.

    Медный диффузор BellaCopper нагревается в 26 раз быстрее и гораздо равномернее, чем сковороды из нержавеющей стали. Благодаря медному рассеивателю тепла BellaCopper температура поверхности вашей посуды из нержавеющей стали будет более постоянной, от центра к краю.

    Copyright BellaCopper 2002 — 2021

    Эффективность приготовления кастрюль и сковород

    Магазины кухонного оборудования продают два вида кастрюль: одни (например, Revereware) со слоем меди на дне кастрюли из нержавеющей стали, а другие — представляет собой твердый алюминий или, в случае «голландских печей», твердое железо. Доступны даже кастрюли из пирекса. [1] Люди часто сильно отдают предпочтение тому или другому. Есть ли научно обоснованное различие? Точно так же в некоторых рецептах указано разное время приготовления пирожных в зависимости от того, используется ли для их выпекания стеклянная или металлическая сковорода. Одно лучше другого? Есть ли разница в их эффективности приготовления [2] ?

    Теплоемкость варочных сосудов

    Когда мы подаем тепловую энергию от горелки печи к сковороде, происходит повышение температуры, пропорциональное количеству поданной тепловой энергии.(Сначала мы предположим, что сковорода пуста и недостаточно нагрета, чтобы ее растопить!). Если q — это количество подаваемого тепла, и температура повышается с T 1 до T 2 , тогда

    \ [\ text {q} = \ text {C} × \ text {(T} _2 — \ text {T} _1) \]

    или

    \ [\ text {q} = \ text {C} × (\ Delta \ text {T}) \]

    , где коэффициент пропорциональности C называется теплоемкостью образца. Знак q в этом случае равен +, потому что образец поглотил тепло (изменение было эндотермическим), и (Δ T ) определяется обычным способом.

    Если мы добавляем тепло к любому однородному образцу вещества переменной массы, например, к чистому веществу или раствору, количество тепла, необходимое для повышения его температуры, пропорционально массе, а также повышению температуры. То есть

    \ [\ text {q} = \ text {C} × \ text {m} × (\ text {T} _2– \ text {T} _1) \]

    или

    \ [\ text {q} = \ text {C} × \ text {m} × (\ Delta \ text {T}) \]

    Новая константа пропорциональности C — теплоемкость на единицу массы.Это называется удельной теплоемкостью (или иногда удельной теплоемкостью), где слово удельная означает «на единицу массы».

    Пример \ (\ PageIndex {0} \)

    Предположим, у нас есть две кастрюли, каждая весом 1,00 кг, но одна из них алюминиевая, а другая на 75% из нержавеющей стали с 25% медным дном. Мы можем рассчитать количество тепла, необходимое для повышения температуры каждой кастрюли на 1 o C:

    Al:

    \ [\ text {q} = \ text {C} × \ text {m} × (\ Delta \ text {T}) = \ text {0.\ circ C = \ text {96.3 J} \]

    Итого = 439 Дж

    Таким образом, для нагрева алюминиевого электролизера требуется 903 Дж / 439 Дж, или в 2,06 раза больше энергии и времени, чем для обогрева медного электролизера [3] .

    Но основная причина использования медного горшка заключается в том, что медь проводит тепло намного лучше, чем другие обычные металлы, поэтому даже если дно горшка нагревается неравномерно (пламенем или горелкой), тепло распределяется равномерно и эффективно по содержимое кастрюли. Относительная теплопроводность Al: Cu: SiO 2 : Нержавеющая сталь = 200: 333: 25: 1.Мы также видим, что кастрюли из пирекса — плохой выбор, потому что они плохо проводят тепло и имеют относительно высокую теплоемкость (0,737). Это преимущество для приготовления в духовке (см. Ниже).

    Определение количества тепла

    Невозможно измерить тепло напрямую, потому что тепло определяется как энергия, которая передается между телами с разной температурой. Как мы измеряем тепловыделение духовки или присваиваем пищевым продуктам значения энергии, см. Ниже? «Калорийность» пищевой энергии — это количество тепла, которое они выделяют при сжигании в нашем теле или в «калориметре», предназначенном для этой цели.

    Удельная теплоемкость обеспечивает удобный способ определения тепла, добавляемого к материалу или отводимого от него, путем измерения его массы и изменения температуры. Как упоминалось ранее, Джеймс Джоуль установил связь между теплом , энергией и интенсивным свойством температурой , измеряя изменение температуры воды, вызванное энергией, выделяемой падающей массой. В идеальном эксперименте, масса 1,00 кг падает 10.\ circ C} \]

    При 15 ° C точное значение удельной теплоты воды составляет 4,184 Дж К –1 г –1 , а при других температурах оно изменяется от 4,178 до 4,219 Дж К –1 г –1 . Обратите внимание, что удельная теплоемкость выражается в единицах g (а не в базовой единице — кг), и, поскольку шкала Цельсия и шкала Кельвина имеют идентичную градуировку, можно использовать o C или K.

    Пример \ (\ PageIndex {1} \): Heat

    Сколько тепла требуется для повышения температуры 500 мл воды (D = 1.\ circ C = \ text {1474 J} \]

    Для нагрева стеклянной посуды требуется на 3,27 больше времени или энергии, чем для алюминиевой посуды [4] . Самая важная причина использования стеклянных запеканок заключается в том, что они предотвращают слишком быстрое выкипание жидкости из-за их низкой теплопроводности и высокой удельной теплоемкости. Тепло подается очень постепенно к содержимому, которое поддерживается на уровне 100 ° C, поскольку вода закипает за счет скрытой теплоты испарения воды, и поддерживается очень равномерная температура из-за высокой теплоемкости, несмотря на колебания температуры печи. [5]

    Таблица \ (\ PageIndex {1} \): Удельная теплоемкость (25 ° C, если не указано иное)
    Вещество фаза C p (см. Ниже)
    Дж / (г · К)
    воздух, (на уровне моря, сухой, 0 ° C) газ 1,0035
    аргон газ 0.5203
    диоксид углерода газ 0,839
    гелий газ 5,19
    водород газ 14,30
    метан газ 2,191
    неон газ 1. 0301
    кислород газ 0,918
    вода при 100 ° C (пар) газ 2,080
    вода при T = [6] жидкость 0,01 ° C 4,210
    15 ° C 4,184
    25 ° C 4,181
    35 ° C 4,178
    45 ° C 4,181
    55 ° C 4,183
    65 ° C 4,188
    75 ° C 4,194
    85 ° C 4.283
    100 ° С 4,219
    вода (лед) при T = [7] цельный 0 ° C 2,050
    -10 ° C 2,0
    -20 ° C 1,943
    -40 ° C 1,818
    этанол жидкость 2,44
    медь цельный 0,385
    золото цельный 0. 129
    утюг цельный 0,450
    нержавеющая сталь цельный 0,456
    свинец цельный 0,127
    алюминий цельный 0,903
    Стекло (SiO 2 цельный 0.737

    Преобразование электрической энергии

    Есть способ рассчитать количество тепловой энергии, передаваемой электрической змеевиком горелки печи (или калиброванным «калориметром»). Подаваемое тепло является произведением приложенного потенциала В , тока I , протекающего через катушку, и времени t , в течение которого течет ток:

    \ [q = V * I * t \]

    Если используются единицы СИ: вольт для приложенного потенциала, ампер для тока и второй раз, энергия получается в джоулях.Это потому, что вольт определяется как один джоуль на ампер в секунду:

    \ [\ text {1 вольт} × \ text {1 ампер} × \ text {1 секунда} = \ text {1} \ frac {J} {A s} × \ text {1 A} × \ text {1 s} = \ text {1 J} \]

    Пример \ (\ PageIndex {2} \): Теплоемкость

    Электрический нагревательный змеевик, 230 см 3 воды и термометр помещены в кофейную чашку из полистирола. К катушке прикладывают разность потенциалов 6,23 В, создавая ток 0,482 А, который может проходить в течение 483 с.Если температура повысится на 1,53 К, найдите теплоемкость содержимого кофейной чашки. Предположим, что стакан из полистирола — такой хороший изолятор, что он не теряет тепловую энергию.

    Решение

    Тепловая энергия, поставляемая нагревательным змеевиком, определяется как

    \ [\ text {q} = \ text {V} × \ text {I} × \ text {t} = \ text {6.23 V} × \ text {0.482 A} × \ text {483 s} = \ text {1450 ВА · с} = \ text {1450 Дж} \]

    Однако

    \ [\ text {q} = \ text {C} × \ text {(T} _2 — \ text {T} _1) \]

    Поскольку температура повышается, T 2 > T 1 и изменение температуры Δ T является положительным:

    \ [\ text {1450 J} = \ text {C} × \ text {1.53 К} \]

    , так что

    \ [\ text {C} = \ dfrac {1450 J} {1,53 K} = \ text {948} \ frac {J} {K} \]

    Примечание

    Примечание: Найденная теплоемкость относится ко всему содержимому чашки с водой, змеевика и термометра вместе взятых, а не только к воде.

    Еда калорий

    Как обсуждалось в других разделах, более старая, не входящая в систему СИ единица измерения энергии, калория, определялась как тепловая энергия, необходимая для повышения температуры 1 г H 2 O с 14. От 5 до 15,5 ° C. Таким образом, при 15 ° C удельная теплоемкость воды составляет 1,00 кал. К –1 г –1 . Это значение имеет точность до трех значащих цифр в диапазоне от 4 до 90 ° C.

    «Диетическая калория» (с большой буквы) на самом деле составляет 1000 калорий. Таким образом, при ежедневном рационе в 3000 калорий мы сжигаем 3 x 10 6 калорий, или 1,26 x 10 7 Дж, или 1,25 x 10 4 кДж энергии.

    Молярная теплоемкость

    Если образец вещества, который мы нагреваем, является чистым веществом, то количество тепла, необходимое для повышения его температуры, пропорционально количеству вещества.Теплоемкость на единицу количества вещества называется молярной теплоемкостью, обозначение C м . Таким образом, количество тепла, необходимое для повышения температуры количества вещества n с T 1 до T 2 , определяется как

    \ [\ text {q} = \ text {C} × \ text {n} × (\ text {T} _2 — \ text {T} _1) \ label {6} \]

    Молярная теплоемкость обычно обозначается нижним индексом, чтобы указать, было ли вещество нагрето при постоянном давлении ( C p ) или в закрытом контейнере при постоянном объеме ( C V ).

    Пример \ (\ PageIndex {3} \) Молярная теплоемкость

    Образец неонового газа (0,854 моль) нагревается в закрытом контейнере с помощью электронагревательной спирали. На катушку подавали потенциал 5,26 В, в результате чего в течение 30,0 с проходил ток 0,336 А. Было обнаружено, что температура газа повысилась на 4,98 К. Найдите молярную теплоемкость неонового газа, предполагая, что потери тепла отсутствуют.

    Решение

    Тепло, поступающее от нагревательного змеевика, равно

    \ (\ text {q} = \ text {V} × \ text {I} × \ text {t} \)
    = \ (\ текст {5.26 V} × \ text {0,336 A} × \ text {30,0 s} \)
    = \ (\ text {53,0 В А с} \)
    = \ (\ text {53.0 J} \)

    Перестановка уравнения. \ (\ ref {6} \), тогда имеем

    \ (\ text (C) _m = \ dfrac {q} {n (T_2-T_1)} = \ dfrac {53,0 Дж} {0,854 моль * 4,98 К} = \ text {12.47} \ frac {J} { моль * к} \)

    Однако, поскольку процесс происходит при постоянной громкости, мы должны написать

    \ (\ text {C} _V = \ text {12. 47} \ frac {J} {mol * K} \)

    Из ChemPRIME: 15.1: Тепловые мощности

    Список литературы

    1. ↑ Бархам П. «Наука кулинарии». Springer, Берлин, 2001 г., стр.57-8
    2. ↑ Selco, J.I. Эффективность приготовления кастрюль и сковород «, J. Chem. Educ., 71 , 1994, стр. 1046
    3. ↑ Selco, J.I. Эффективность приготовления кастрюль и сковород «, J. Chem. Educ., 71 , 1994, стр. 1046
    4. ↑ Selco, J.I. Эффективность приготовления кастрюль и сковородок », J. Chem. Educ., 71 , 1994, стр.1046
    5. ↑ Бархам П. «Наука кулинарии». Springer, Берлин, 2001 г., стр.57-8
    6. ↑ http://www.engineeringtoolbox.com/water-thermal-properties-d_162.html
    7. ↑ http://www.engineeringtoolbox.com/ice-thermal-properties-d_576.html

    Авторы и авторство

    11.2 Тепло, удельная теплоемкость и теплопередача

    Проводимость, конвекция и излучение

    Теплообмен происходит всякий раз, когда возникает разница температур. Теплопередача может происходить быстро, например, через сковороду, или медленно, например, через стенки изолированного холодильника.

    Существует три различных метода теплопередачи: теплопроводность, конвекция и излучение. Иногда все три могут происходить одновременно. См. Рисунок 11.3.

    Рис. 11.3 В камине передача тепла происходит всеми тремя способами: теплопроводностью, конвекцией и излучением. Излучение отвечает за большую часть тепла, передаваемого в комнату. Передача тепла также происходит через проводимость в комнату, но гораздо медленнее.Теплообмен за счет конвекции также происходит через холодный воздух, поступающий в комнату вокруг окон, и горячий воздух, покидающий комнату, поднимаясь вверх по дымоходу.

    Проводимость — это передача тепла посредством прямого физического контакта. Тепло, передаваемое между электрической горелкой печи и дном сковороды, передается за счет теплопроводности. Иногда мы пытаемся контролировать теплопроводность, чтобы чувствовать себя более комфортно. Поскольку скорость теплопередачи у разных материалов разная, мы выбираем ткани, такие как толстый шерстяной свитер, которые зимой замедляют отвод тепла от нашего тела.

    Когда вы идете босиком по ковру в гостиной, ваши ноги чувствуют себя относительно комфортно… пока вы не ступите на кафельный пол кухни. Поскольку ковер и кафельный пол имеют одинаковую температуру, почему один из них холоднее другого? Это объясняется разной скоростью теплопередачи: материал плитки отводит тепло от вашей кожи с большей скоростью, чем ковровое покрытие, что делает ее на более холодной.

    Некоторые материалы просто проводят тепловую энергию быстрее, чем другие.В целом металлы (например, медь, алюминий, золото и серебро) являются хорошими проводниками тепла, тогда как такие материалы, как дерево, пластик и резина, плохо проводят тепло.

    На рисунке 11.4 показаны частицы (атомы или молекулы) в двух телах при разных температурах. (Средняя) кинетическая энергия частицы в горячем теле выше, чем в более холодном теле. Если две частицы сталкиваются, энергия передается от частицы с большей кинетической энергией к частице с меньшей кинетической энергией. Когда два тела находятся в контакте, происходит множество столкновений частиц, что приводит к чистому потоку тепла от тела с более высокой температурой к телу с более низкой температурой.Тепловой поток зависит от разности температур ΔT = Thot-TcoldΔT = Thot-Tcold. Таким образом, вы получите более сильный ожог от кипятка, чем от горячей воды из-под крана.

    Рис. 11.4 Частицы в двух телах при разных температурах имеют разные средние кинетические энергии. Столкновения, происходящие на контактной поверхности, имеют тенденцию передавать энергию из областей с высокой температурой в области с низкой температурой. На этом рисунке частица в области более низких температур (правая сторона) имеет низкую кинетическую энергию перед столкновением, но ее кинетическая энергия увеличивается после столкновения с контактной поверхностью.Напротив, частица в области более высоких температур (левая сторона) имеет большую кинетическую энергию до столкновения, но ее энергия уменьшается после столкновения с контактной поверхностью.

    Конвекция — это передача тепла движением жидкости. Такой тип теплопередачи происходит, например, в котле, кипящем на плите, или во время грозы, когда горячий воздух поднимается к основанию облаков.

    Советы для успеха

    В обиходе термин жидкость обычно означает жидкость.Например, когда вы заболели и врач говорит вам «выпить жидкости», это означает только пить больше напитков, а не вдыхать больше воздуха. Однако в физике жидкость означает жидкость или газ . Жидкости движутся иначе, чем твердый материал, и даже имеют свой собственный раздел физики, известный как гидродинамика , который изучает их движение.

    При повышении температуры жидкости они расширяются и становятся менее плотными. Например, на рис. 11.4 может быть изображена стенка воздушного шара с газами внутри воздушного шара с другой температурой, чем снаружи в окружающей среде. Более горячие и, следовательно, быстро движущиеся частицы газа внутри воздушного шара ударяются о поверхность с большей силой, чем более холодный воздух снаружи, заставляя воздушный шар расширяться. Это уменьшение плотности по отношению к окружающей среде создает плавучесть (тенденцию к повышению). Конвекция обусловлена ​​плавучестью — горячий воздух поднимается вверх, потому что он менее плотен, чем окружающий воздух.

    Иногда мы контролируем температуру своего дома или себя, контролируя движение воздуха. Герметизация дверей герметичным уплотнением защищает от холодного ветра зимой.Дом на рис. 11.5 и горшок с водой на плите на рис. 11.6 являются примерами конвекции и плавучести, созданными человеком. Океанские течения и крупномасштабная атмосферная циркуляция переносят энергию из одной части земного шара в другую и являются примерами естественной конвекции.

    Рис. 11.5 Воздух, нагретый так называемой гравитационной печью, расширяется и поднимается, образуя конвективную петлю, которая передает энергию другим частям комнаты. По мере того, как воздух охлаждается у потолка и внешних стен, он сжимается, в конечном итоге становясь более плотным, чем воздух в помещении, и опускается на пол.Правильно спроектированная система отопления, подобная этой, в которой используется естественная конвекция, может быть достаточно эффективной для равномерного обогрева дома.

    Рис. 11.6 Конвекция играет важную роль в теплопередаче внутри этого сосуда с водой. Попав внутрь жидкости, теплопередача к другим частям горшка происходит в основном за счет конвекции. Более горячая вода расширяется, плотность уменьшается и поднимается, передавая тепло другим участкам воды, в то время как более холодная вода опускается на дно. Этот процесс повторяется до тех пор, пока в кастрюле есть вода.

    Излучение — это форма теплопередачи, которая происходит при испускании или поглощении электромагнитного излучения. Электромагнитное излучение включает радиоволны, микроволны, инфракрасное излучение, видимый свет, ультрафиолетовое излучение, рентгеновские лучи и гамма-лучи, все из которых имеют разные длины волн и количество энергии (более короткие длины волн имеют более высокую частоту и большую энергию).

    Вы можете почувствовать теплоотдачу от огня и солнца. Точно так же вы иногда можете сказать, что духовка горячая, не касаясь ее дверцы и не заглядывая внутрь — она ​​может просто согреть вас, когда вы пройдете мимо.Другой пример — тепловое излучение человеческого тела; люди постоянно излучают инфракрасное излучение, которое не видно человеческому глазу, но ощущается как тепло.

    Излучение — единственный метод передачи тепла, при котором среда не требуется, а это означает, что тепло не должно напрямую контактировать с какими-либо предметами или переноситься ими. Пространство между Землей и Солнцем в основном пусто, без какой-либо возможности теплопередачи за счет конвекции или теплопроводности. Вместо этого тепло передается за счет излучения, и Земля нагревается, поскольку она поглощает электромагнитное излучение, испускаемое Солнцем.

    Рис. 11.7 Большая часть тепла от этого пожара передается наблюдателям через инфракрасное излучение. Видимый свет передает относительно небольшую тепловую энергию. Поскольку кожа очень чувствительна к инфракрасному излучению, вы можете почувствовать огонь, даже не глядя на него. (Дэниел X. О’Нил)

    Все объекты поглощают и излучают электромагнитное излучение (см. Рисунок 11.7). Скорость передачи тепла излучением в основном зависит от цвета объекта. Черный — наиболее эффективный поглотитель и радиатор, а белый — наименее эффективный.Например, люди, живущие в жарком климате, обычно избегают ношения черной одежды. Точно так же черный асфальт на стоянке будет горячее, чем прилегающие участки травы в летний день, потому что черный поглощает лучше, чем зеленый. Верно и обратное — черный цвет излучает лучше, чем зеленый. Ясной летней ночью черный асфальт будет холоднее, чем зеленый участок травы, потому что черный излучает энергию быстрее, чем зеленый. Напротив, белый цвет — плохой поглотитель и плохой радиатор. Белый объект, как зеркало, отражает почти все излучение.

    Виртуальная физика

    Формы и изменения энергии

    В этой анимации вы исследуете теплопередачу с различными материалами. Поэкспериментируйте с нагревом и охлаждением железа, кирпича и воды. Для этого перетащите объект на пьедестал и затем удерживайте рычаг в положении «Нагреть» или «Охлаждение». Перетащите термометр рядом с каждым объектом, чтобы измерить его температуру — вы можете наблюдать, как быстро он нагревается или остывает, в режиме реального времени.

    Теперь попробуем передать тепло между объектами.Нагрейте кирпич и поместите его в прохладную воду. Теперь снова нагрейте кирпич, но затем поместите его поверх утюга. Что ты заметил?

    Выбор опции быстрой перемотки вперед позволяет ускорить передачу тепла и сэкономить время.

    Проверка захвата

    Сравните, насколько быстро различные материалы нагреваются или охлаждаются. Основываясь на этих результатах, какой материал, по вашему мнению, имеет наибольшую удельную теплоемкость? Почему? Какой из них имеет наименьшую удельную теплоемкость? Можете ли вы представить себе реальную ситуацию, в которой вы хотели бы использовать объект с большой удельной теплоемкостью?

    1. Вода занимает больше всего времени, а железу нужно меньше времени для нагрева и охлаждения. Для изоляции желательны объекты с большей удельной теплоемкостью. Например, шерстяная одежда с большой удельной теплоемкостью предотвратит потерю тепла телом.
    2. Вода занимает меньше всего времени, а железу нужно больше времени для нагрева и охлаждения. Для изоляции желательны объекты с большей удельной теплоемкостью. Например, шерстяная одежда с большой удельной теплоемкостью предотвратит потерю тепла телом.
    3. Кирпичу потребуется меньше всего времени, а железу нужно больше времени, чтобы нагреться и остыть.Для изоляции желательны объекты с большей удельной теплоемкостью. Например, шерстяная одежда с большой удельной теплоемкостью предотвратит потерю тепла телом.
    4. Вода занимает меньше всего времени, а кирпичу нужно больше времени, чтобы нагреться и остыть. Для изоляции желательны объекты с большей удельной теплоемкостью. Например, шерстяная одежда с большой удельной теплоемкостью предотвратит потерю тепла телом.

    Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *